1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 # include <linux/entry-common.h>
71 # endif
72 #endif
73
74 #include <uapi/linux/sched/types.h>
75
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #include <trace/events/ipi.h>
84 #undef CREATE_TRACE_POINTS
85
86 #include "sched.h"
87 #include "stats.h"
88 #include "autogroup.h"
89
90 #include "autogroup.h"
91 #include "pelt.h"
92 #include "smp.h"
93 #include "stats.h"
94
95 #include "../workqueue_internal.h"
96 #include "../../io_uring/io-wq.h"
97 #include "../smpboot.h"
98
99 #include <trace/hooks/sched.h>
100 #include <trace/hooks/cgroup.h>
101 #include <trace/hooks/dtask.h>
102
103 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
104 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
105
106 /*
107 * Export tracepoints that act as a bare tracehook (ie: have no trace event
108 * associated with them) to allow external modules to probe them.
109 */
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
119 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
120 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
121 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_switch);
122 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_waking);
123 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_wakeup);
124 #if defined(CONFIG_SCHEDSTATS)
125 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_sleep);
126 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_wait);
127 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_iowait);
128 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_blocked);
129 #endif
130
131 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
132 EXPORT_SYMBOL_GPL(runqueues);
133
134 #ifdef CONFIG_SCHED_DEBUG
135 /*
136 * Debugging: various feature bits
137 *
138 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
139 * sysctl_sched_features, defined in sched.h, to allow constants propagation
140 * at compile time and compiler optimization based on features default.
141 */
142 #define SCHED_FEAT(name, enabled) \
143 (1UL << __SCHED_FEAT_##name) * enabled |
144 const_debug unsigned int sysctl_sched_features =
145 #include "features.h"
146 0;
147 EXPORT_SYMBOL_GPL(sysctl_sched_features);
148 #undef SCHED_FEAT
149
150 /*
151 * Print a warning if need_resched is set for the given duration (if
152 * LATENCY_WARN is enabled).
153 *
154 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
155 * per boot.
156 */
157 __read_mostly int sysctl_resched_latency_warn_ms = 100;
158 __read_mostly int sysctl_resched_latency_warn_once = 1;
159 #endif /* CONFIG_SCHED_DEBUG */
160
161 /*
162 * Number of tasks to iterate in a single balance run.
163 * Limited because this is done with IRQs disabled.
164 */
165 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
166
167 __read_mostly int scheduler_running;
168
169 #ifdef CONFIG_SCHED_CORE
170
171 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
172
173 /* kernel prio, less is more */
__task_prio(const struct task_struct * p)174 static inline int __task_prio(const struct task_struct *p)
175 {
176 if (p->sched_class == &stop_sched_class) /* trumps deadline */
177 return -2;
178
179 if (rt_prio(p->prio)) /* includes deadline */
180 return p->prio; /* [-1, 99] */
181
182 if (p->sched_class == &idle_sched_class)
183 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
184
185 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
186 }
187
188 /*
189 * l(a,b)
190 * le(a,b) := !l(b,a)
191 * g(a,b) := l(b,a)
192 * ge(a,b) := !l(a,b)
193 */
194
195 /* real prio, less is less */
prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)196 static inline bool prio_less(const struct task_struct *a,
197 const struct task_struct *b, bool in_fi)
198 {
199
200 int pa = __task_prio(a), pb = __task_prio(b);
201
202 if (-pa < -pb)
203 return true;
204
205 if (-pb < -pa)
206 return false;
207
208 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
209 return !dl_time_before(a->dl.deadline, b->dl.deadline);
210
211 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
212 return cfs_prio_less(a, b, in_fi);
213
214 return false;
215 }
216
__sched_core_less(const struct task_struct * a,const struct task_struct * b)217 static inline bool __sched_core_less(const struct task_struct *a,
218 const struct task_struct *b)
219 {
220 if (a->core_cookie < b->core_cookie)
221 return true;
222
223 if (a->core_cookie > b->core_cookie)
224 return false;
225
226 /* flip prio, so high prio is leftmost */
227 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
228 return true;
229
230 return false;
231 }
232
233 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
234
rb_sched_core_less(struct rb_node * a,const struct rb_node * b)235 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
236 {
237 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
238 }
239
rb_sched_core_cmp(const void * key,const struct rb_node * node)240 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
241 {
242 const struct task_struct *p = __node_2_sc(node);
243 unsigned long cookie = (unsigned long)key;
244
245 if (cookie < p->core_cookie)
246 return -1;
247
248 if (cookie > p->core_cookie)
249 return 1;
250
251 return 0;
252 }
253
sched_core_enqueue(struct rq * rq,struct task_struct * p)254 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
255 {
256 rq->core->core_task_seq++;
257
258 if (!p->core_cookie)
259 return;
260
261 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
262 }
263
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)264 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
265 {
266 rq->core->core_task_seq++;
267
268 if (sched_core_enqueued(p)) {
269 rb_erase(&p->core_node, &rq->core_tree);
270 RB_CLEAR_NODE(&p->core_node);
271 }
272
273 /*
274 * Migrating the last task off the cpu, with the cpu in forced idle
275 * state. Reschedule to create an accounting edge for forced idle,
276 * and re-examine whether the core is still in forced idle state.
277 */
278 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
279 rq->core->core_forceidle_count && rq->curr == rq->idle)
280 resched_curr(rq);
281 }
282
sched_task_is_throttled(struct task_struct * p,int cpu)283 static int sched_task_is_throttled(struct task_struct *p, int cpu)
284 {
285 if (p->sched_class->task_is_throttled)
286 return p->sched_class->task_is_throttled(p, cpu);
287
288 return 0;
289 }
290
sched_core_next(struct task_struct * p,unsigned long cookie)291 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
292 {
293 struct rb_node *node = &p->core_node;
294 int cpu = task_cpu(p);
295
296 do {
297 node = rb_next(node);
298 if (!node)
299 return NULL;
300
301 p = __node_2_sc(node);
302 if (p->core_cookie != cookie)
303 return NULL;
304
305 } while (sched_task_is_throttled(p, cpu));
306
307 return p;
308 }
309
310 /*
311 * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
312 * If no suitable task is found, NULL will be returned.
313 */
sched_core_find(struct rq * rq,unsigned long cookie)314 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
315 {
316 struct task_struct *p;
317 struct rb_node *node;
318
319 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
320 if (!node)
321 return NULL;
322
323 p = __node_2_sc(node);
324 if (!sched_task_is_throttled(p, rq->cpu))
325 return p;
326
327 return sched_core_next(p, cookie);
328 }
329
330 /*
331 * Magic required such that:
332 *
333 * raw_spin_rq_lock(rq);
334 * ...
335 * raw_spin_rq_unlock(rq);
336 *
337 * ends up locking and unlocking the _same_ lock, and all CPUs
338 * always agree on what rq has what lock.
339 *
340 * XXX entirely possible to selectively enable cores, don't bother for now.
341 */
342
343 static DEFINE_MUTEX(sched_core_mutex);
344 static atomic_t sched_core_count;
345 static struct cpumask sched_core_mask;
346
sched_core_lock(int cpu,unsigned long * flags)347 static void sched_core_lock(int cpu, unsigned long *flags)
348 {
349 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
350 int t, i = 0;
351
352 local_irq_save(*flags);
353 for_each_cpu(t, smt_mask)
354 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
355 }
356
sched_core_unlock(int cpu,unsigned long * flags)357 static void sched_core_unlock(int cpu, unsigned long *flags)
358 {
359 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
360 int t;
361
362 for_each_cpu(t, smt_mask)
363 raw_spin_unlock(&cpu_rq(t)->__lock);
364 local_irq_restore(*flags);
365 }
366
__sched_core_flip(bool enabled)367 static void __sched_core_flip(bool enabled)
368 {
369 unsigned long flags;
370 int cpu, t;
371
372 cpus_read_lock();
373
374 /*
375 * Toggle the online cores, one by one.
376 */
377 cpumask_copy(&sched_core_mask, cpu_online_mask);
378 for_each_cpu(cpu, &sched_core_mask) {
379 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
380
381 sched_core_lock(cpu, &flags);
382
383 for_each_cpu(t, smt_mask)
384 cpu_rq(t)->core_enabled = enabled;
385
386 cpu_rq(cpu)->core->core_forceidle_start = 0;
387
388 sched_core_unlock(cpu, &flags);
389
390 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
391 }
392
393 /*
394 * Toggle the offline CPUs.
395 */
396 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
397 cpu_rq(cpu)->core_enabled = enabled;
398
399 cpus_read_unlock();
400 }
401
sched_core_assert_empty(void)402 static void sched_core_assert_empty(void)
403 {
404 int cpu;
405
406 for_each_possible_cpu(cpu)
407 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
408 }
409
__sched_core_enable(void)410 static void __sched_core_enable(void)
411 {
412 static_branch_enable(&__sched_core_enabled);
413 /*
414 * Ensure all previous instances of raw_spin_rq_*lock() have finished
415 * and future ones will observe !sched_core_disabled().
416 */
417 synchronize_rcu();
418 __sched_core_flip(true);
419 sched_core_assert_empty();
420 }
421
__sched_core_disable(void)422 static void __sched_core_disable(void)
423 {
424 sched_core_assert_empty();
425 __sched_core_flip(false);
426 static_branch_disable(&__sched_core_enabled);
427 }
428
sched_core_get(void)429 void sched_core_get(void)
430 {
431 if (atomic_inc_not_zero(&sched_core_count))
432 return;
433
434 mutex_lock(&sched_core_mutex);
435 if (!atomic_read(&sched_core_count))
436 __sched_core_enable();
437
438 smp_mb__before_atomic();
439 atomic_inc(&sched_core_count);
440 mutex_unlock(&sched_core_mutex);
441 }
442
__sched_core_put(struct work_struct * work)443 static void __sched_core_put(struct work_struct *work)
444 {
445 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
446 __sched_core_disable();
447 mutex_unlock(&sched_core_mutex);
448 }
449 }
450
sched_core_put(void)451 void sched_core_put(void)
452 {
453 static DECLARE_WORK(_work, __sched_core_put);
454
455 /*
456 * "There can be only one"
457 *
458 * Either this is the last one, or we don't actually need to do any
459 * 'work'. If it is the last *again*, we rely on
460 * WORK_STRUCT_PENDING_BIT.
461 */
462 if (!atomic_add_unless(&sched_core_count, -1, 1))
463 schedule_work(&_work);
464 }
465
466 #else /* !CONFIG_SCHED_CORE */
467
sched_core_enqueue(struct rq * rq,struct task_struct * p)468 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
469 static inline void
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)470 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
471
472 #endif /* CONFIG_SCHED_CORE */
473
474 /*
475 * Serialization rules:
476 *
477 * Lock order:
478 *
479 * p->pi_lock
480 * rq->lock
481 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
482 *
483 * rq1->lock
484 * rq2->lock where: rq1 < rq2
485 *
486 * Regular state:
487 *
488 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
489 * local CPU's rq->lock, it optionally removes the task from the runqueue and
490 * always looks at the local rq data structures to find the most eligible task
491 * to run next.
492 *
493 * Task enqueue is also under rq->lock, possibly taken from another CPU.
494 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
495 * the local CPU to avoid bouncing the runqueue state around [ see
496 * ttwu_queue_wakelist() ]
497 *
498 * Task wakeup, specifically wakeups that involve migration, are horribly
499 * complicated to avoid having to take two rq->locks.
500 *
501 * Special state:
502 *
503 * System-calls and anything external will use task_rq_lock() which acquires
504 * both p->pi_lock and rq->lock. As a consequence the state they change is
505 * stable while holding either lock:
506 *
507 * - sched_setaffinity()/
508 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
509 * - set_user_nice(): p->se.load, p->*prio
510 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
511 * p->se.load, p->rt_priority,
512 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
513 * - sched_setnuma(): p->numa_preferred_nid
514 * - sched_move_task(): p->sched_task_group
515 * - uclamp_update_active() p->uclamp*
516 *
517 * p->state <- TASK_*:
518 *
519 * is changed locklessly using set_current_state(), __set_current_state() or
520 * set_special_state(), see their respective comments, or by
521 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
522 * concurrent self.
523 *
524 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
525 *
526 * is set by activate_task() and cleared by deactivate_task(), under
527 * rq->lock. Non-zero indicates the task is runnable, the special
528 * ON_RQ_MIGRATING state is used for migration without holding both
529 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
530 *
531 * p->on_cpu <- { 0, 1 }:
532 *
533 * is set by prepare_task() and cleared by finish_task() such that it will be
534 * set before p is scheduled-in and cleared after p is scheduled-out, both
535 * under rq->lock. Non-zero indicates the task is running on its CPU.
536 *
537 * [ The astute reader will observe that it is possible for two tasks on one
538 * CPU to have ->on_cpu = 1 at the same time. ]
539 *
540 * task_cpu(p): is changed by set_task_cpu(), the rules are:
541 *
542 * - Don't call set_task_cpu() on a blocked task:
543 *
544 * We don't care what CPU we're not running on, this simplifies hotplug,
545 * the CPU assignment of blocked tasks isn't required to be valid.
546 *
547 * - for try_to_wake_up(), called under p->pi_lock:
548 *
549 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
550 *
551 * - for migration called under rq->lock:
552 * [ see task_on_rq_migrating() in task_rq_lock() ]
553 *
554 * o move_queued_task()
555 * o detach_task()
556 *
557 * - for migration called under double_rq_lock():
558 *
559 * o __migrate_swap_task()
560 * o push_rt_task() / pull_rt_task()
561 * o push_dl_task() / pull_dl_task()
562 * o dl_task_offline_migration()
563 *
564 */
565
raw_spin_rq_lock_nested(struct rq * rq,int subclass)566 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
567 {
568 raw_spinlock_t *lock;
569
570 /* Matches synchronize_rcu() in __sched_core_enable() */
571 preempt_disable();
572 if (sched_core_disabled()) {
573 raw_spin_lock_nested(&rq->__lock, subclass);
574 /* preempt_count *MUST* be > 1 */
575 preempt_enable_no_resched();
576 return;
577 }
578
579 for (;;) {
580 lock = __rq_lockp(rq);
581 raw_spin_lock_nested(lock, subclass);
582 if (likely(lock == __rq_lockp(rq))) {
583 /* preempt_count *MUST* be > 1 */
584 preempt_enable_no_resched();
585 return;
586 }
587 raw_spin_unlock(lock);
588 }
589 }
590 EXPORT_SYMBOL_GPL(raw_spin_rq_lock_nested);
591
raw_spin_rq_trylock(struct rq * rq)592 bool raw_spin_rq_trylock(struct rq *rq)
593 {
594 raw_spinlock_t *lock;
595 bool ret;
596
597 /* Matches synchronize_rcu() in __sched_core_enable() */
598 preempt_disable();
599 if (sched_core_disabled()) {
600 ret = raw_spin_trylock(&rq->__lock);
601 preempt_enable();
602 return ret;
603 }
604
605 for (;;) {
606 lock = __rq_lockp(rq);
607 ret = raw_spin_trylock(lock);
608 if (!ret || (likely(lock == __rq_lockp(rq)))) {
609 preempt_enable();
610 return ret;
611 }
612 raw_spin_unlock(lock);
613 }
614 }
615
raw_spin_rq_unlock(struct rq * rq)616 void raw_spin_rq_unlock(struct rq *rq)
617 {
618 raw_spin_unlock(rq_lockp(rq));
619 }
620 EXPORT_SYMBOL_GPL(raw_spin_rq_unlock);
621
622 #ifdef CONFIG_SMP
623 /*
624 * double_rq_lock - safely lock two runqueues
625 */
double_rq_lock(struct rq * rq1,struct rq * rq2)626 void double_rq_lock(struct rq *rq1, struct rq *rq2)
627 {
628 lockdep_assert_irqs_disabled();
629
630 if (rq_order_less(rq2, rq1))
631 swap(rq1, rq2);
632
633 raw_spin_rq_lock(rq1);
634 if (__rq_lockp(rq1) != __rq_lockp(rq2))
635 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
636
637 double_rq_clock_clear_update(rq1, rq2);
638 }
639 EXPORT_SYMBOL_GPL(double_rq_lock);
640 #endif
641
642 /*
643 * __task_rq_lock - lock the rq @p resides on.
644 */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)645 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
646 __acquires(rq->lock)
647 {
648 struct rq *rq;
649
650 lockdep_assert_held(&p->pi_lock);
651
652 for (;;) {
653 rq = task_rq(p);
654 raw_spin_rq_lock(rq);
655 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
656 rq_pin_lock(rq, rf);
657 return rq;
658 }
659 raw_spin_rq_unlock(rq);
660
661 while (unlikely(task_on_rq_migrating(p)))
662 cpu_relax();
663 }
664 }
665 EXPORT_SYMBOL_GPL(__task_rq_lock);
666
667 /*
668 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
669 */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)670 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
671 __acquires(p->pi_lock)
672 __acquires(rq->lock)
673 {
674 struct rq *rq;
675
676 for (;;) {
677 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
678 rq = task_rq(p);
679 raw_spin_rq_lock(rq);
680 /*
681 * move_queued_task() task_rq_lock()
682 *
683 * ACQUIRE (rq->lock)
684 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
685 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
686 * [S] ->cpu = new_cpu [L] task_rq()
687 * [L] ->on_rq
688 * RELEASE (rq->lock)
689 *
690 * If we observe the old CPU in task_rq_lock(), the acquire of
691 * the old rq->lock will fully serialize against the stores.
692 *
693 * If we observe the new CPU in task_rq_lock(), the address
694 * dependency headed by '[L] rq = task_rq()' and the acquire
695 * will pair with the WMB to ensure we then also see migrating.
696 */
697 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
698 rq_pin_lock(rq, rf);
699 return rq;
700 }
701 raw_spin_rq_unlock(rq);
702 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
703
704 while (unlikely(task_on_rq_migrating(p)))
705 cpu_relax();
706 }
707 }
708 EXPORT_SYMBOL_GPL(task_rq_lock);
709
710 /*
711 * RQ-clock updating methods:
712 */
713
update_rq_clock_task(struct rq * rq,s64 delta)714 static void update_rq_clock_task(struct rq *rq, s64 delta)
715 {
716 /*
717 * In theory, the compile should just see 0 here, and optimize out the call
718 * to sched_rt_avg_update. But I don't trust it...
719 */
720 s64 __maybe_unused steal = 0, irq_delta = 0;
721
722 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
723 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
724
725 /*
726 * Since irq_time is only updated on {soft,}irq_exit, we might run into
727 * this case when a previous update_rq_clock() happened inside a
728 * {soft,}irq region.
729 *
730 * When this happens, we stop ->clock_task and only update the
731 * prev_irq_time stamp to account for the part that fit, so that a next
732 * update will consume the rest. This ensures ->clock_task is
733 * monotonic.
734 *
735 * It does however cause some slight miss-attribution of {soft,}irq
736 * time, a more accurate solution would be to update the irq_time using
737 * the current rq->clock timestamp, except that would require using
738 * atomic ops.
739 */
740 if (irq_delta > delta)
741 irq_delta = delta;
742
743 rq->prev_irq_time += irq_delta;
744 delta -= irq_delta;
745 delayacct_irq(rq->curr, irq_delta);
746 #endif
747 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
748 if (static_key_false((¶virt_steal_rq_enabled))) {
749 steal = paravirt_steal_clock(cpu_of(rq));
750 steal -= rq->prev_steal_time_rq;
751
752 if (unlikely(steal > delta))
753 steal = delta;
754
755 rq->prev_steal_time_rq += steal;
756 delta -= steal;
757 }
758 #endif
759
760 rq->clock_task += delta;
761
762 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
763 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
764 update_irq_load_avg(rq, irq_delta + steal);
765 #endif
766 update_rq_clock_task_mult(rq, delta);
767 }
768
update_rq_clock(struct rq * rq)769 void update_rq_clock(struct rq *rq)
770 {
771 s64 delta;
772
773 lockdep_assert_rq_held(rq);
774
775 if (rq->clock_update_flags & RQCF_ACT_SKIP)
776 return;
777
778 #ifdef CONFIG_SCHED_DEBUG
779 if (sched_feat(WARN_DOUBLE_CLOCK))
780 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
781 rq->clock_update_flags |= RQCF_UPDATED;
782 #endif
783
784 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
785 if (delta < 0)
786 return;
787 rq->clock += delta;
788 update_rq_clock_task(rq, delta);
789 }
790 EXPORT_SYMBOL_GPL(update_rq_clock);
791
792 #ifdef CONFIG_SCHED_HRTICK
793 /*
794 * Use HR-timers to deliver accurate preemption points.
795 */
796
hrtick_clear(struct rq * rq)797 static void hrtick_clear(struct rq *rq)
798 {
799 if (hrtimer_active(&rq->hrtick_timer))
800 hrtimer_cancel(&rq->hrtick_timer);
801 }
802
803 /*
804 * High-resolution timer tick.
805 * Runs from hardirq context with interrupts disabled.
806 */
hrtick(struct hrtimer * timer)807 static enum hrtimer_restart hrtick(struct hrtimer *timer)
808 {
809 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
810 struct rq_flags rf;
811
812 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
813
814 rq_lock(rq, &rf);
815 update_rq_clock(rq);
816 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
817 rq_unlock(rq, &rf);
818
819 return HRTIMER_NORESTART;
820 }
821
822 #ifdef CONFIG_SMP
823
__hrtick_restart(struct rq * rq)824 static void __hrtick_restart(struct rq *rq)
825 {
826 struct hrtimer *timer = &rq->hrtick_timer;
827 ktime_t time = rq->hrtick_time;
828
829 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
830 }
831
832 /*
833 * called from hardirq (IPI) context
834 */
__hrtick_start(void * arg)835 static void __hrtick_start(void *arg)
836 {
837 struct rq *rq = arg;
838 struct rq_flags rf;
839
840 rq_lock(rq, &rf);
841 __hrtick_restart(rq);
842 rq_unlock(rq, &rf);
843 }
844
845 /*
846 * Called to set the hrtick timer state.
847 *
848 * called with rq->lock held and irqs disabled
849 */
hrtick_start(struct rq * rq,u64 delay)850 void hrtick_start(struct rq *rq, u64 delay)
851 {
852 struct hrtimer *timer = &rq->hrtick_timer;
853 s64 delta;
854
855 /*
856 * Don't schedule slices shorter than 10000ns, that just
857 * doesn't make sense and can cause timer DoS.
858 */
859 delta = max_t(s64, delay, 10000LL);
860 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
861
862 if (rq == this_rq())
863 __hrtick_restart(rq);
864 else
865 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
866 }
867
868 #else
869 /*
870 * Called to set the hrtick timer state.
871 *
872 * called with rq->lock held and irqs disabled
873 */
hrtick_start(struct rq * rq,u64 delay)874 void hrtick_start(struct rq *rq, u64 delay)
875 {
876 /*
877 * Don't schedule slices shorter than 10000ns, that just
878 * doesn't make sense. Rely on vruntime for fairness.
879 */
880 delay = max_t(u64, delay, 10000LL);
881 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
882 HRTIMER_MODE_REL_PINNED_HARD);
883 }
884
885 #endif /* CONFIG_SMP */
886
hrtick_rq_init(struct rq * rq)887 static void hrtick_rq_init(struct rq *rq)
888 {
889 #ifdef CONFIG_SMP
890 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
891 #endif
892 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
893 rq->hrtick_timer.function = hrtick;
894 }
895 #else /* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)896 static inline void hrtick_clear(struct rq *rq)
897 {
898 }
899
hrtick_rq_init(struct rq * rq)900 static inline void hrtick_rq_init(struct rq *rq)
901 {
902 }
903 #endif /* CONFIG_SCHED_HRTICK */
904
905 /*
906 * cmpxchg based fetch_or, macro so it works for different integer types
907 */
908 #define fetch_or(ptr, mask) \
909 ({ \
910 typeof(ptr) _ptr = (ptr); \
911 typeof(mask) _mask = (mask); \
912 typeof(*_ptr) _val = *_ptr; \
913 \
914 do { \
915 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \
916 _val; \
917 })
918
919 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
920 /*
921 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
922 * this avoids any races wrt polling state changes and thereby avoids
923 * spurious IPIs.
924 */
set_nr_and_not_polling(struct task_struct * p)925 static inline bool set_nr_and_not_polling(struct task_struct *p)
926 {
927 struct thread_info *ti = task_thread_info(p);
928 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
929 }
930
931 /*
932 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
933 *
934 * If this returns true, then the idle task promises to call
935 * sched_ttwu_pending() and reschedule soon.
936 */
set_nr_if_polling(struct task_struct * p)937 static bool set_nr_if_polling(struct task_struct *p)
938 {
939 struct thread_info *ti = task_thread_info(p);
940 typeof(ti->flags) val = READ_ONCE(ti->flags);
941
942 for (;;) {
943 if (!(val & _TIF_POLLING_NRFLAG))
944 return false;
945 if (val & _TIF_NEED_RESCHED)
946 return true;
947 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
948 break;
949 }
950 return true;
951 }
952
953 #else
set_nr_and_not_polling(struct task_struct * p)954 static inline bool set_nr_and_not_polling(struct task_struct *p)
955 {
956 set_tsk_need_resched(p);
957 return true;
958 }
959
960 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)961 static inline bool set_nr_if_polling(struct task_struct *p)
962 {
963 return false;
964 }
965 #endif
966 #endif
967
__wake_q_add(struct wake_q_head * head,struct task_struct * task)968 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
969 {
970 struct wake_q_node *node = &task->wake_q;
971
972 /*
973 * Atomically grab the task, if ->wake_q is !nil already it means
974 * it's already queued (either by us or someone else) and will get the
975 * wakeup due to that.
976 *
977 * In order to ensure that a pending wakeup will observe our pending
978 * state, even in the failed case, an explicit smp_mb() must be used.
979 */
980 smp_mb__before_atomic();
981 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
982 return false;
983
984 /*
985 * The head is context local, there can be no concurrency.
986 */
987 *head->lastp = node;
988 head->lastp = &node->next;
989 head->count++;
990 return true;
991 }
992
993 /**
994 * wake_q_add() - queue a wakeup for 'later' waking.
995 * @head: the wake_q_head to add @task to
996 * @task: the task to queue for 'later' wakeup
997 *
998 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
999 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1000 * instantly.
1001 *
1002 * This function must be used as-if it were wake_up_process(); IOW the task
1003 * must be ready to be woken at this location.
1004 */
wake_q_add(struct wake_q_head * head,struct task_struct * task)1005 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
1006 {
1007 if (__wake_q_add(head, task))
1008 get_task_struct(task);
1009 }
1010
1011 /**
1012 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
1013 * @head: the wake_q_head to add @task to
1014 * @task: the task to queue for 'later' wakeup
1015 *
1016 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1017 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1018 * instantly.
1019 *
1020 * This function must be used as-if it were wake_up_process(); IOW the task
1021 * must be ready to be woken at this location.
1022 *
1023 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1024 * that already hold reference to @task can call the 'safe' version and trust
1025 * wake_q to do the right thing depending whether or not the @task is already
1026 * queued for wakeup.
1027 */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)1028 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1029 {
1030 if (!__wake_q_add(head, task))
1031 put_task_struct(task);
1032 }
1033
wake_up_q(struct wake_q_head * head)1034 void wake_up_q(struct wake_q_head *head)
1035 {
1036 struct wake_q_node *node = head->first;
1037
1038 while (node != WAKE_Q_TAIL) {
1039 struct task_struct *task;
1040
1041 task = container_of(node, struct task_struct, wake_q);
1042 /* Task can safely be re-inserted now: */
1043 node = node->next;
1044 task->wake_q.next = NULL;
1045 task->wake_q_count = head->count;
1046
1047 /*
1048 * wake_up_process() executes a full barrier, which pairs with
1049 * the queueing in wake_q_add() so as not to miss wakeups.
1050 */
1051 wake_up_process(task);
1052 task->wake_q_count = 0;
1053 put_task_struct(task);
1054 }
1055 }
1056
1057 /*
1058 * resched_curr - mark rq's current task 'to be rescheduled now'.
1059 *
1060 * On UP this means the setting of the need_resched flag, on SMP it
1061 * might also involve a cross-CPU call to trigger the scheduler on
1062 * the target CPU.
1063 */
resched_curr(struct rq * rq)1064 void resched_curr(struct rq *rq)
1065 {
1066 struct task_struct *curr = rq->curr;
1067 int cpu, need_lazy = 0;
1068
1069 lockdep_assert_rq_held(rq);
1070
1071 if (test_tsk_need_resched(curr))
1072 return;
1073
1074 trace_android_vh_set_tsk_need_resched_lazy(curr, rq, &need_lazy);
1075 if (need_lazy)
1076 return;
1077
1078 cpu = cpu_of(rq);
1079
1080 if (cpu == smp_processor_id()) {
1081 set_tsk_need_resched(curr);
1082 set_preempt_need_resched();
1083 return;
1084 }
1085
1086 if (set_nr_and_not_polling(curr))
1087 smp_send_reschedule(cpu);
1088 else
1089 trace_sched_wake_idle_without_ipi(cpu);
1090 }
1091 EXPORT_SYMBOL_GPL(resched_curr);
1092
resched_cpu(int cpu)1093 void resched_cpu(int cpu)
1094 {
1095 struct rq *rq = cpu_rq(cpu);
1096 unsigned long flags;
1097
1098 raw_spin_rq_lock_irqsave(rq, flags);
1099 if (cpu_online(cpu) || cpu == smp_processor_id())
1100 resched_curr(rq);
1101 raw_spin_rq_unlock_irqrestore(rq, flags);
1102 }
1103
1104 #ifdef CONFIG_SMP
1105 #ifdef CONFIG_NO_HZ_COMMON
1106 /*
1107 * In the semi idle case, use the nearest busy CPU for migrating timers
1108 * from an idle CPU. This is good for power-savings.
1109 *
1110 * We don't do similar optimization for completely idle system, as
1111 * selecting an idle CPU will add more delays to the timers than intended
1112 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1113 */
get_nohz_timer_target(void)1114 int get_nohz_timer_target(void)
1115 {
1116 int i, cpu = smp_processor_id(), default_cpu = -1;
1117 struct sched_domain *sd;
1118 const struct cpumask *hk_mask;
1119 bool done = false;
1120
1121 trace_android_rvh_get_nohz_timer_target(&cpu, &done);
1122 if (done)
1123 return cpu;
1124
1125 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1126 if (!idle_cpu(cpu))
1127 return cpu;
1128 default_cpu = cpu;
1129 }
1130
1131 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1132
1133 guard(rcu)();
1134
1135 for_each_domain(cpu, sd) {
1136 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1137 if (cpu == i)
1138 continue;
1139
1140 if (!idle_cpu(i))
1141 return i;
1142 }
1143 }
1144
1145 if (default_cpu == -1)
1146 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1147
1148 return default_cpu;
1149 }
1150
1151 /*
1152 * When add_timer_on() enqueues a timer into the timer wheel of an
1153 * idle CPU then this timer might expire before the next timer event
1154 * which is scheduled to wake up that CPU. In case of a completely
1155 * idle system the next event might even be infinite time into the
1156 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1157 * leaves the inner idle loop so the newly added timer is taken into
1158 * account when the CPU goes back to idle and evaluates the timer
1159 * wheel for the next timer event.
1160 */
wake_up_idle_cpu(int cpu)1161 static void wake_up_idle_cpu(int cpu)
1162 {
1163 struct rq *rq = cpu_rq(cpu);
1164
1165 if (cpu == smp_processor_id())
1166 return;
1167
1168 if (set_nr_and_not_polling(rq->idle))
1169 smp_send_reschedule(cpu);
1170 else
1171 trace_sched_wake_idle_without_ipi(cpu);
1172 }
1173
wake_up_full_nohz_cpu(int cpu)1174 static bool wake_up_full_nohz_cpu(int cpu)
1175 {
1176 /*
1177 * We just need the target to call irq_exit() and re-evaluate
1178 * the next tick. The nohz full kick at least implies that.
1179 * If needed we can still optimize that later with an
1180 * empty IRQ.
1181 */
1182 if (cpu_is_offline(cpu))
1183 return true; /* Don't try to wake offline CPUs. */
1184 if (tick_nohz_full_cpu(cpu)) {
1185 if (cpu != smp_processor_id() ||
1186 tick_nohz_tick_stopped())
1187 tick_nohz_full_kick_cpu(cpu);
1188 return true;
1189 }
1190
1191 return false;
1192 }
1193
1194 /*
1195 * Wake up the specified CPU. If the CPU is going offline, it is the
1196 * caller's responsibility to deal with the lost wakeup, for example,
1197 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1198 */
wake_up_nohz_cpu(int cpu)1199 void wake_up_nohz_cpu(int cpu)
1200 {
1201 if (!wake_up_full_nohz_cpu(cpu))
1202 wake_up_idle_cpu(cpu);
1203 }
1204
nohz_csd_func(void * info)1205 static void nohz_csd_func(void *info)
1206 {
1207 struct rq *rq = info;
1208 int cpu = cpu_of(rq);
1209 unsigned int flags;
1210
1211 /*
1212 * Release the rq::nohz_csd.
1213 */
1214 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1215 WARN_ON(!(flags & NOHZ_KICK_MASK));
1216
1217 rq->idle_balance = idle_cpu(cpu);
1218 if (rq->idle_balance && !need_resched()) {
1219 rq->nohz_idle_balance = flags;
1220 raise_softirq_irqoff(SCHED_SOFTIRQ);
1221 }
1222 }
1223
1224 #endif /* CONFIG_NO_HZ_COMMON */
1225
1226 #ifdef CONFIG_NO_HZ_FULL
__need_bw_check(struct rq * rq,struct task_struct * p)1227 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1228 {
1229 if (rq->nr_running != 1)
1230 return false;
1231
1232 if (p->sched_class != &fair_sched_class)
1233 return false;
1234
1235 if (!task_on_rq_queued(p))
1236 return false;
1237
1238 return true;
1239 }
1240
sched_can_stop_tick(struct rq * rq)1241 bool sched_can_stop_tick(struct rq *rq)
1242 {
1243 int fifo_nr_running;
1244
1245 /* Deadline tasks, even if single, need the tick */
1246 if (rq->dl.dl_nr_running)
1247 return false;
1248
1249 /*
1250 * If there are more than one RR tasks, we need the tick to affect the
1251 * actual RR behaviour.
1252 */
1253 if (rq->rt.rr_nr_running) {
1254 if (rq->rt.rr_nr_running == 1)
1255 return true;
1256 else
1257 return false;
1258 }
1259
1260 /*
1261 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1262 * forced preemption between FIFO tasks.
1263 */
1264 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1265 if (fifo_nr_running)
1266 return true;
1267
1268 /*
1269 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1270 * if there's more than one we need the tick for involuntary
1271 * preemption.
1272 */
1273 if (rq->nr_running > 1)
1274 return false;
1275
1276 /*
1277 * If there is one task and it has CFS runtime bandwidth constraints
1278 * and it's on the cpu now we don't want to stop the tick.
1279 * This check prevents clearing the bit if a newly enqueued task here is
1280 * dequeued by migrating while the constrained task continues to run.
1281 * E.g. going from 2->1 without going through pick_next_task().
1282 */
1283 if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) {
1284 if (cfs_task_bw_constrained(rq->curr))
1285 return false;
1286 }
1287
1288 return true;
1289 }
1290 #endif /* CONFIG_NO_HZ_FULL */
1291 #endif /* CONFIG_SMP */
1292
1293 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1294 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1295 /*
1296 * Iterate task_group tree rooted at *from, calling @down when first entering a
1297 * node and @up when leaving it for the final time.
1298 *
1299 * Caller must hold rcu_lock or sufficient equivalent.
1300 */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)1301 int walk_tg_tree_from(struct task_group *from,
1302 tg_visitor down, tg_visitor up, void *data)
1303 {
1304 struct task_group *parent, *child;
1305 int ret;
1306
1307 parent = from;
1308
1309 down:
1310 ret = (*down)(parent, data);
1311 if (ret)
1312 goto out;
1313 list_for_each_entry_rcu(child, &parent->children, siblings) {
1314 parent = child;
1315 goto down;
1316
1317 up:
1318 continue;
1319 }
1320 ret = (*up)(parent, data);
1321 if (ret || parent == from)
1322 goto out;
1323
1324 child = parent;
1325 parent = parent->parent;
1326 if (parent)
1327 goto up;
1328 out:
1329 return ret;
1330 }
1331
tg_nop(struct task_group * tg,void * data)1332 int tg_nop(struct task_group *tg, void *data)
1333 {
1334 return 0;
1335 }
1336 #endif
1337
set_load_weight(struct task_struct * p,bool update_load)1338 static void set_load_weight(struct task_struct *p, bool update_load)
1339 {
1340 int prio = p->static_prio - MAX_RT_PRIO;
1341 struct load_weight *load = &p->se.load;
1342
1343 /*
1344 * SCHED_IDLE tasks get minimal weight:
1345 */
1346 if (task_has_idle_policy(p)) {
1347 load->weight = scale_load(WEIGHT_IDLEPRIO);
1348 load->inv_weight = WMULT_IDLEPRIO;
1349 return;
1350 }
1351
1352 /*
1353 * SCHED_OTHER tasks have to update their load when changing their
1354 * weight
1355 */
1356 if (update_load && p->sched_class == &fair_sched_class) {
1357 reweight_task(p, prio);
1358 } else {
1359 load->weight = scale_load(sched_prio_to_weight[prio]);
1360 load->inv_weight = sched_prio_to_wmult[prio];
1361 }
1362 }
1363
1364 #ifdef CONFIG_UCLAMP_TASK
1365 /*
1366 * Serializes updates of utilization clamp values
1367 *
1368 * The (slow-path) user-space triggers utilization clamp value updates which
1369 * can require updates on (fast-path) scheduler's data structures used to
1370 * support enqueue/dequeue operations.
1371 * While the per-CPU rq lock protects fast-path update operations, user-space
1372 * requests are serialized using a mutex to reduce the risk of conflicting
1373 * updates or API abuses.
1374 */
1375 static DEFINE_MUTEX(uclamp_mutex);
1376
1377 /* Max allowed minimum utilization */
1378 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1379
1380 /* Max allowed maximum utilization */
1381 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1382
1383 /*
1384 * By default RT tasks run at the maximum performance point/capacity of the
1385 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1386 * SCHED_CAPACITY_SCALE.
1387 *
1388 * This knob allows admins to change the default behavior when uclamp is being
1389 * used. In battery powered devices, particularly, running at the maximum
1390 * capacity and frequency will increase energy consumption and shorten the
1391 * battery life.
1392 *
1393 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1394 *
1395 * This knob will not override the system default sched_util_clamp_min defined
1396 * above.
1397 */
1398 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1399
1400 /* All clamps are required to be less or equal than these values */
1401 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1402
1403 /*
1404 * This static key is used to reduce the uclamp overhead in the fast path. It
1405 * primarily disables the call to uclamp_rq_{inc, dec}() in
1406 * enqueue/dequeue_task().
1407 *
1408 * This allows users to continue to enable uclamp in their kernel config with
1409 * minimum uclamp overhead in the fast path.
1410 *
1411 * As soon as userspace modifies any of the uclamp knobs, the static key is
1412 * enabled, since we have an actual users that make use of uclamp
1413 * functionality.
1414 *
1415 * The knobs that would enable this static key are:
1416 *
1417 * * A task modifying its uclamp value with sched_setattr().
1418 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1419 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1420 */
1421 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1422 EXPORT_SYMBOL_GPL(sched_uclamp_used);
1423
1424 /* Integer rounded range for each bucket */
1425 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1426
1427 #define for_each_clamp_id(clamp_id) \
1428 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1429
uclamp_bucket_id(unsigned int clamp_value)1430 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1431 {
1432 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1433 }
1434
uclamp_none(enum uclamp_id clamp_id)1435 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1436 {
1437 if (clamp_id == UCLAMP_MIN)
1438 return 0;
1439 return SCHED_CAPACITY_SCALE;
1440 }
1441
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)1442 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1443 unsigned int value, bool user_defined)
1444 {
1445 uc_se->value = value;
1446 uc_se->bucket_id = uclamp_bucket_id(value);
1447 uc_se->user_defined = user_defined;
1448 }
1449
1450 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1451 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1452 unsigned int clamp_value)
1453 {
1454 /*
1455 * Avoid blocked utilization pushing up the frequency when we go
1456 * idle (which drops the max-clamp) by retaining the last known
1457 * max-clamp.
1458 */
1459 if (clamp_id == UCLAMP_MAX) {
1460 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1461 return clamp_value;
1462 }
1463
1464 return uclamp_none(UCLAMP_MIN);
1465 }
1466
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1467 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1468 unsigned int clamp_value)
1469 {
1470 /* Reset max-clamp retention only on idle exit */
1471 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1472 return;
1473
1474 uclamp_rq_set(rq, clamp_id, clamp_value);
1475 }
1476
1477 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1478 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1479 unsigned int clamp_value)
1480 {
1481 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1482 int bucket_id = UCLAMP_BUCKETS - 1;
1483
1484 /*
1485 * Since both min and max clamps are max aggregated, find the
1486 * top most bucket with tasks in.
1487 */
1488 for ( ; bucket_id >= 0; bucket_id--) {
1489 if (!bucket[bucket_id].tasks)
1490 continue;
1491 return bucket[bucket_id].value;
1492 }
1493
1494 /* No tasks -- default clamp values */
1495 return uclamp_idle_value(rq, clamp_id, clamp_value);
1496 }
1497
__uclamp_update_util_min_rt_default(struct task_struct * p)1498 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1499 {
1500 unsigned int default_util_min;
1501 struct uclamp_se *uc_se;
1502
1503 lockdep_assert_held(&p->pi_lock);
1504
1505 uc_se = &p->uclamp_req[UCLAMP_MIN];
1506
1507 /* Only sync if user didn't override the default */
1508 if (uc_se->user_defined)
1509 return;
1510
1511 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1512 uclamp_se_set(uc_se, default_util_min, false);
1513 }
1514
uclamp_update_util_min_rt_default(struct task_struct * p)1515 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1516 {
1517 struct rq_flags rf;
1518 struct rq *rq;
1519
1520 if (!rt_task(p))
1521 return;
1522
1523 /* Protect updates to p->uclamp_* */
1524 rq = task_rq_lock(p, &rf);
1525 __uclamp_update_util_min_rt_default(p);
1526 task_rq_unlock(rq, p, &rf);
1527 }
1528
1529 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1530 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1531 {
1532 /* Copy by value as we could modify it */
1533 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1534 #ifdef CONFIG_UCLAMP_TASK_GROUP
1535 unsigned int tg_min, tg_max, value;
1536
1537 /*
1538 * Tasks in autogroups or root task group will be
1539 * restricted by system defaults.
1540 */
1541 if (task_group_is_autogroup(task_group(p)))
1542 return uc_req;
1543 if (task_group(p) == &root_task_group)
1544 return uc_req;
1545
1546 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1547 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1548 value = uc_req.value;
1549 value = clamp(value, tg_min, tg_max);
1550 uclamp_se_set(&uc_req, value, false);
1551 #endif
1552
1553 return uc_req;
1554 }
1555
1556 /*
1557 * The effective clamp bucket index of a task depends on, by increasing
1558 * priority:
1559 * - the task specific clamp value, when explicitly requested from userspace
1560 * - the task group effective clamp value, for tasks not either in the root
1561 * group or in an autogroup
1562 * - the system default clamp value, defined by the sysadmin
1563 */
1564 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1565 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1566 {
1567 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1568 struct uclamp_se uc_max = uclamp_default[clamp_id];
1569 struct uclamp_se uc_eff;
1570 int ret = 0;
1571
1572 trace_android_rvh_uclamp_eff_get(p, clamp_id, &uc_max, &uc_eff, &ret);
1573 if (ret)
1574 return uc_eff;
1575
1576 /* System default restrictions always apply */
1577 if (unlikely(uc_req.value > uc_max.value))
1578 return uc_max;
1579
1580 return uc_req;
1581 }
1582
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1583 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1584 {
1585 struct uclamp_se uc_eff;
1586
1587 /* Task currently refcounted: use back-annotated (effective) value */
1588 if (p->uclamp[clamp_id].active)
1589 return (unsigned long)p->uclamp[clamp_id].value;
1590
1591 uc_eff = uclamp_eff_get(p, clamp_id);
1592
1593 return (unsigned long)uc_eff.value;
1594 }
1595 EXPORT_SYMBOL_GPL(uclamp_eff_value);
1596
1597 /*
1598 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1599 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1600 * updates the rq's clamp value if required.
1601 *
1602 * Tasks can have a task-specific value requested from user-space, track
1603 * within each bucket the maximum value for tasks refcounted in it.
1604 * This "local max aggregation" allows to track the exact "requested" value
1605 * for each bucket when all its RUNNABLE tasks require the same clamp.
1606 */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1607 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1608 enum uclamp_id clamp_id)
1609 {
1610 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1611 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1612 struct uclamp_bucket *bucket;
1613
1614 lockdep_assert_rq_held(rq);
1615
1616 /* Update task effective clamp */
1617 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1618
1619 bucket = &uc_rq->bucket[uc_se->bucket_id];
1620 bucket->tasks++;
1621 uc_se->active = true;
1622
1623 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1624
1625 /*
1626 * Local max aggregation: rq buckets always track the max
1627 * "requested" clamp value of its RUNNABLE tasks.
1628 */
1629 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1630 bucket->value = uc_se->value;
1631
1632 if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1633 uclamp_rq_set(rq, clamp_id, uc_se->value);
1634 }
1635
1636 /*
1637 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1638 * is released. If this is the last task reference counting the rq's max
1639 * active clamp value, then the rq's clamp value is updated.
1640 *
1641 * Both refcounted tasks and rq's cached clamp values are expected to be
1642 * always valid. If it's detected they are not, as defensive programming,
1643 * enforce the expected state and warn.
1644 */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1645 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1646 enum uclamp_id clamp_id)
1647 {
1648 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1649 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1650 struct uclamp_bucket *bucket;
1651 unsigned int bkt_clamp;
1652 unsigned int rq_clamp;
1653
1654 lockdep_assert_rq_held(rq);
1655
1656 /*
1657 * If sched_uclamp_used was enabled after task @p was enqueued,
1658 * we could end up with unbalanced call to uclamp_rq_dec_id().
1659 *
1660 * In this case the uc_se->active flag should be false since no uclamp
1661 * accounting was performed at enqueue time and we can just return
1662 * here.
1663 *
1664 * Need to be careful of the following enqueue/dequeue ordering
1665 * problem too
1666 *
1667 * enqueue(taskA)
1668 * // sched_uclamp_used gets enabled
1669 * enqueue(taskB)
1670 * dequeue(taskA)
1671 * // Must not decrement bucket->tasks here
1672 * dequeue(taskB)
1673 *
1674 * where we could end up with stale data in uc_se and
1675 * bucket[uc_se->bucket_id].
1676 *
1677 * The following check here eliminates the possibility of such race.
1678 */
1679 if (unlikely(!uc_se->active))
1680 return;
1681
1682 bucket = &uc_rq->bucket[uc_se->bucket_id];
1683
1684 SCHED_WARN_ON(!bucket->tasks);
1685 if (likely(bucket->tasks))
1686 bucket->tasks--;
1687
1688 uc_se->active = false;
1689
1690 /*
1691 * Keep "local max aggregation" simple and accept to (possibly)
1692 * overboost some RUNNABLE tasks in the same bucket.
1693 * The rq clamp bucket value is reset to its base value whenever
1694 * there are no more RUNNABLE tasks refcounting it.
1695 */
1696 if (likely(bucket->tasks))
1697 return;
1698
1699 rq_clamp = uclamp_rq_get(rq, clamp_id);
1700 /*
1701 * Defensive programming: this should never happen. If it happens,
1702 * e.g. due to future modification, warn and fixup the expected value.
1703 */
1704 SCHED_WARN_ON(bucket->value > rq_clamp);
1705 if (bucket->value >= rq_clamp) {
1706 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1707 uclamp_rq_set(rq, clamp_id, bkt_clamp);
1708 }
1709 }
1710
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1711 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1712 {
1713 enum uclamp_id clamp_id;
1714
1715 /*
1716 * Avoid any overhead until uclamp is actually used by the userspace.
1717 *
1718 * The condition is constructed such that a NOP is generated when
1719 * sched_uclamp_used is disabled.
1720 */
1721 if (!static_branch_unlikely(&sched_uclamp_used))
1722 return;
1723
1724 if (unlikely(!p->sched_class->uclamp_enabled))
1725 return;
1726
1727 for_each_clamp_id(clamp_id)
1728 uclamp_rq_inc_id(rq, p, clamp_id);
1729
1730 /* Reset clamp idle holding when there is one RUNNABLE task */
1731 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1732 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1733 }
1734
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1735 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1736 {
1737 enum uclamp_id clamp_id;
1738
1739 /*
1740 * Avoid any overhead until uclamp is actually used by the userspace.
1741 *
1742 * The condition is constructed such that a NOP is generated when
1743 * sched_uclamp_used is disabled.
1744 */
1745 if (!static_branch_unlikely(&sched_uclamp_used))
1746 return;
1747
1748 if (unlikely(!p->sched_class->uclamp_enabled))
1749 return;
1750
1751 for_each_clamp_id(clamp_id)
1752 uclamp_rq_dec_id(rq, p, clamp_id);
1753 }
1754
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1755 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1756 enum uclamp_id clamp_id)
1757 {
1758 if (!p->uclamp[clamp_id].active)
1759 return;
1760
1761 uclamp_rq_dec_id(rq, p, clamp_id);
1762 uclamp_rq_inc_id(rq, p, clamp_id);
1763
1764 /*
1765 * Make sure to clear the idle flag if we've transiently reached 0
1766 * active tasks on rq.
1767 */
1768 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1769 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1770 }
1771
1772 static inline void
uclamp_update_active(struct task_struct * p)1773 uclamp_update_active(struct task_struct *p)
1774 {
1775 enum uclamp_id clamp_id;
1776 struct rq_flags rf;
1777 struct rq *rq;
1778
1779 /*
1780 * Lock the task and the rq where the task is (or was) queued.
1781 *
1782 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1783 * price to pay to safely serialize util_{min,max} updates with
1784 * enqueues, dequeues and migration operations.
1785 * This is the same locking schema used by __set_cpus_allowed_ptr().
1786 */
1787 rq = task_rq_lock(p, &rf);
1788
1789 /*
1790 * Setting the clamp bucket is serialized by task_rq_lock().
1791 * If the task is not yet RUNNABLE and its task_struct is not
1792 * affecting a valid clamp bucket, the next time it's enqueued,
1793 * it will already see the updated clamp bucket value.
1794 */
1795 for_each_clamp_id(clamp_id)
1796 uclamp_rq_reinc_id(rq, p, clamp_id);
1797
1798 task_rq_unlock(rq, p, &rf);
1799 }
1800
1801 #ifdef CONFIG_UCLAMP_TASK_GROUP
1802 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1803 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1804 {
1805 struct css_task_iter it;
1806 struct task_struct *p;
1807
1808 css_task_iter_start(css, 0, &it);
1809 while ((p = css_task_iter_next(&it)))
1810 uclamp_update_active(p);
1811 css_task_iter_end(&it);
1812 }
1813
1814 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1815 #endif
1816
1817 #ifdef CONFIG_SYSCTL
1818 #ifdef CONFIG_UCLAMP_TASK
1819 #ifdef CONFIG_UCLAMP_TASK_GROUP
uclamp_update_root_tg(void)1820 static void uclamp_update_root_tg(void)
1821 {
1822 struct task_group *tg = &root_task_group;
1823
1824 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1825 sysctl_sched_uclamp_util_min, false);
1826 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1827 sysctl_sched_uclamp_util_max, false);
1828
1829 rcu_read_lock();
1830 cpu_util_update_eff(&root_task_group.css);
1831 rcu_read_unlock();
1832 }
1833 #else
uclamp_update_root_tg(void)1834 static void uclamp_update_root_tg(void) { }
1835 #endif
1836
uclamp_sync_util_min_rt_default(void)1837 static void uclamp_sync_util_min_rt_default(void)
1838 {
1839 struct task_struct *g, *p;
1840
1841 /*
1842 * copy_process() sysctl_uclamp
1843 * uclamp_min_rt = X;
1844 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1845 * // link thread smp_mb__after_spinlock()
1846 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1847 * sched_post_fork() for_each_process_thread()
1848 * __uclamp_sync_rt() __uclamp_sync_rt()
1849 *
1850 * Ensures that either sched_post_fork() will observe the new
1851 * uclamp_min_rt or for_each_process_thread() will observe the new
1852 * task.
1853 */
1854 read_lock(&tasklist_lock);
1855 smp_mb__after_spinlock();
1856 read_unlock(&tasklist_lock);
1857
1858 rcu_read_lock();
1859 for_each_process_thread(g, p)
1860 uclamp_update_util_min_rt_default(p);
1861 rcu_read_unlock();
1862 }
1863
sysctl_sched_uclamp_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1864 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1865 void *buffer, size_t *lenp, loff_t *ppos)
1866 {
1867 bool update_root_tg = false;
1868 int old_min, old_max, old_min_rt;
1869 int result;
1870
1871 guard(mutex)(&uclamp_mutex);
1872
1873 old_min = sysctl_sched_uclamp_util_min;
1874 old_max = sysctl_sched_uclamp_util_max;
1875 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1876
1877 result = proc_dointvec(table, write, buffer, lenp, ppos);
1878 if (result)
1879 goto undo;
1880 if (!write)
1881 return 0;
1882
1883 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1884 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1885 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1886
1887 result = -EINVAL;
1888 goto undo;
1889 }
1890
1891 if (old_min != sysctl_sched_uclamp_util_min) {
1892 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1893 sysctl_sched_uclamp_util_min, false);
1894 update_root_tg = true;
1895 }
1896 if (old_max != sysctl_sched_uclamp_util_max) {
1897 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1898 sysctl_sched_uclamp_util_max, false);
1899 update_root_tg = true;
1900 }
1901
1902 if (update_root_tg) {
1903 static_branch_enable(&sched_uclamp_used);
1904 uclamp_update_root_tg();
1905 }
1906
1907 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1908 static_branch_enable(&sched_uclamp_used);
1909 uclamp_sync_util_min_rt_default();
1910 }
1911
1912 /*
1913 * We update all RUNNABLE tasks only when task groups are in use.
1914 * Otherwise, keep it simple and do just a lazy update at each next
1915 * task enqueue time.
1916 */
1917 return 0;
1918
1919 undo:
1920 sysctl_sched_uclamp_util_min = old_min;
1921 sysctl_sched_uclamp_util_max = old_max;
1922 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1923 return result;
1924 }
1925 #endif
1926 #endif
1927
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1928 static int uclamp_validate(struct task_struct *p,
1929 const struct sched_attr *attr)
1930 {
1931 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1932 int util_max = p->uclamp_req[UCLAMP_MAX].value;
1933 bool done = false;
1934 int ret = 0;
1935
1936 trace_android_vh_uclamp_validate(p, attr, &ret, &done);
1937 if (done)
1938 return ret;
1939
1940 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1941 util_min = attr->sched_util_min;
1942
1943 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1944 return -EINVAL;
1945 }
1946
1947 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1948 util_max = attr->sched_util_max;
1949
1950 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1951 return -EINVAL;
1952 }
1953
1954 if (util_min != -1 && util_max != -1 && util_min > util_max)
1955 return -EINVAL;
1956
1957 /*
1958 * We have valid uclamp attributes; make sure uclamp is enabled.
1959 *
1960 * We need to do that here, because enabling static branches is a
1961 * blocking operation which obviously cannot be done while holding
1962 * scheduler locks.
1963 */
1964 static_branch_enable(&sched_uclamp_used);
1965
1966 return 0;
1967 }
1968
uclamp_reset(const struct sched_attr * attr,enum uclamp_id clamp_id,struct uclamp_se * uc_se)1969 static bool uclamp_reset(const struct sched_attr *attr,
1970 enum uclamp_id clamp_id,
1971 struct uclamp_se *uc_se)
1972 {
1973 /* Reset on sched class change for a non user-defined clamp value. */
1974 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1975 !uc_se->user_defined)
1976 return true;
1977
1978 /* Reset on sched_util_{min,max} == -1. */
1979 if (clamp_id == UCLAMP_MIN &&
1980 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1981 attr->sched_util_min == -1) {
1982 return true;
1983 }
1984
1985 if (clamp_id == UCLAMP_MAX &&
1986 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1987 attr->sched_util_max == -1) {
1988 return true;
1989 }
1990
1991 return false;
1992 }
1993
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1994 static void __setscheduler_uclamp(struct task_struct *p,
1995 const struct sched_attr *attr)
1996 {
1997 enum uclamp_id clamp_id;
1998
1999 for_each_clamp_id(clamp_id) {
2000 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
2001 unsigned int value;
2002
2003 if (!uclamp_reset(attr, clamp_id, uc_se))
2004 continue;
2005
2006 /*
2007 * RT by default have a 100% boost value that could be modified
2008 * at runtime.
2009 */
2010 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
2011 value = sysctl_sched_uclamp_util_min_rt_default;
2012 else
2013 value = uclamp_none(clamp_id);
2014
2015 uclamp_se_set(uc_se, value, false);
2016
2017 }
2018
2019 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
2020 return;
2021
2022 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
2023 attr->sched_util_min != -1) {
2024 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
2025 attr->sched_util_min, true);
2026 trace_android_vh_setscheduler_uclamp(p, UCLAMP_MIN, attr->sched_util_min);
2027 }
2028
2029 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
2030 attr->sched_util_max != -1) {
2031 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
2032 attr->sched_util_max, true);
2033 trace_android_vh_setscheduler_uclamp(p, UCLAMP_MAX, attr->sched_util_max);
2034 }
2035 }
2036
uclamp_fork(struct task_struct * p)2037 static void uclamp_fork(struct task_struct *p)
2038 {
2039 enum uclamp_id clamp_id;
2040
2041 /*
2042 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
2043 * as the task is still at its early fork stages.
2044 */
2045 for_each_clamp_id(clamp_id)
2046 p->uclamp[clamp_id].active = false;
2047
2048 if (likely(!p->sched_reset_on_fork))
2049 return;
2050
2051 for_each_clamp_id(clamp_id) {
2052 uclamp_se_set(&p->uclamp_req[clamp_id],
2053 uclamp_none(clamp_id), false);
2054 }
2055 }
2056
uclamp_post_fork(struct task_struct * p)2057 static void uclamp_post_fork(struct task_struct *p)
2058 {
2059 uclamp_update_util_min_rt_default(p);
2060 }
2061
init_uclamp_rq(struct rq * rq)2062 static void __init init_uclamp_rq(struct rq *rq)
2063 {
2064 enum uclamp_id clamp_id;
2065 struct uclamp_rq *uc_rq = rq->uclamp;
2066
2067 for_each_clamp_id(clamp_id) {
2068 uc_rq[clamp_id] = (struct uclamp_rq) {
2069 .value = uclamp_none(clamp_id)
2070 };
2071 }
2072
2073 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2074 }
2075
init_uclamp(void)2076 static void __init init_uclamp(void)
2077 {
2078 struct uclamp_se uc_max = {};
2079 enum uclamp_id clamp_id;
2080 int cpu;
2081
2082 for_each_possible_cpu(cpu)
2083 init_uclamp_rq(cpu_rq(cpu));
2084
2085 for_each_clamp_id(clamp_id) {
2086 uclamp_se_set(&init_task.uclamp_req[clamp_id],
2087 uclamp_none(clamp_id), false);
2088 }
2089
2090 /* System defaults allow max clamp values for both indexes */
2091 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2092 for_each_clamp_id(clamp_id) {
2093 uclamp_default[clamp_id] = uc_max;
2094 #ifdef CONFIG_UCLAMP_TASK_GROUP
2095 root_task_group.uclamp_req[clamp_id] = uc_max;
2096 root_task_group.uclamp[clamp_id] = uc_max;
2097 #endif
2098 }
2099 }
2100
2101 #else /* CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)2102 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)2103 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)2104 static inline int uclamp_validate(struct task_struct *p,
2105 const struct sched_attr *attr)
2106 {
2107 return -EOPNOTSUPP;
2108 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)2109 static void __setscheduler_uclamp(struct task_struct *p,
2110 const struct sched_attr *attr) { }
uclamp_fork(struct task_struct * p)2111 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)2112 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)2113 static inline void init_uclamp(void) { }
2114 #endif /* CONFIG_UCLAMP_TASK */
2115
sched_task_on_rq(struct task_struct * p)2116 bool sched_task_on_rq(struct task_struct *p)
2117 {
2118 return task_on_rq_queued(p);
2119 }
2120
get_wchan(struct task_struct * p)2121 unsigned long get_wchan(struct task_struct *p)
2122 {
2123 unsigned long ip = 0;
2124 unsigned int state;
2125
2126 if (!p || p == current)
2127 return 0;
2128
2129 /* Only get wchan if task is blocked and we can keep it that way. */
2130 raw_spin_lock_irq(&p->pi_lock);
2131 state = READ_ONCE(p->__state);
2132 smp_rmb(); /* see try_to_wake_up() */
2133 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2134 ip = __get_wchan(p);
2135 raw_spin_unlock_irq(&p->pi_lock);
2136
2137 return ip;
2138 }
2139 EXPORT_SYMBOL_GPL(get_wchan);
2140
enqueue_task(struct rq * rq,struct task_struct * p,int flags)2141 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2142 {
2143 if (!(flags & ENQUEUE_NOCLOCK))
2144 update_rq_clock(rq);
2145
2146 if (!(flags & ENQUEUE_RESTORE)) {
2147 sched_info_enqueue(rq, p);
2148 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2149 }
2150
2151 uclamp_rq_inc(rq, p);
2152 trace_android_rvh_enqueue_task(rq, p, flags);
2153 p->sched_class->enqueue_task(rq, p, flags);
2154 trace_android_rvh_after_enqueue_task(rq, p, flags);
2155
2156 if (sched_core_enabled(rq))
2157 sched_core_enqueue(rq, p);
2158 }
2159
dequeue_task(struct rq * rq,struct task_struct * p,int flags)2160 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2161 {
2162 if (sched_core_enabled(rq))
2163 sched_core_dequeue(rq, p, flags);
2164
2165 if (!(flags & DEQUEUE_NOCLOCK))
2166 update_rq_clock(rq);
2167
2168 if (!(flags & DEQUEUE_SAVE)) {
2169 sched_info_dequeue(rq, p);
2170 psi_dequeue(p, flags & DEQUEUE_SLEEP);
2171 }
2172
2173 uclamp_rq_dec(rq, p);
2174 trace_android_rvh_dequeue_task(rq, p, flags);
2175 p->sched_class->dequeue_task(rq, p, flags);
2176 trace_android_rvh_after_dequeue_task(rq, p, flags);
2177 }
2178
activate_task(struct rq * rq,struct task_struct * p,int flags)2179 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2180 {
2181 if (task_on_rq_migrating(p))
2182 flags |= ENQUEUE_MIGRATED;
2183 if (flags & ENQUEUE_MIGRATED)
2184 sched_mm_cid_migrate_to(rq, p);
2185
2186 enqueue_task(rq, p, flags);
2187
2188 p->on_rq = TASK_ON_RQ_QUEUED;
2189 }
2190 EXPORT_SYMBOL_GPL(activate_task);
2191
deactivate_task(struct rq * rq,struct task_struct * p,int flags)2192 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2193 {
2194 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2195
2196 dequeue_task(rq, p, flags);
2197 }
2198 EXPORT_SYMBOL_GPL(deactivate_task);
2199
__normal_prio(int policy,int rt_prio,int nice)2200 static inline int __normal_prio(int policy, int rt_prio, int nice)
2201 {
2202 int prio;
2203
2204 if (dl_policy(policy))
2205 prio = MAX_DL_PRIO - 1;
2206 else if (rt_policy(policy))
2207 prio = MAX_RT_PRIO - 1 - rt_prio;
2208 else
2209 prio = NICE_TO_PRIO(nice);
2210
2211 return prio;
2212 }
2213
2214 /*
2215 * Calculate the expected normal priority: i.e. priority
2216 * without taking RT-inheritance into account. Might be
2217 * boosted by interactivity modifiers. Changes upon fork,
2218 * setprio syscalls, and whenever the interactivity
2219 * estimator recalculates.
2220 */
normal_prio(struct task_struct * p)2221 static inline int normal_prio(struct task_struct *p)
2222 {
2223 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2224 }
2225
2226 /*
2227 * Calculate the current priority, i.e. the priority
2228 * taken into account by the scheduler. This value might
2229 * be boosted by RT tasks, or might be boosted by
2230 * interactivity modifiers. Will be RT if the task got
2231 * RT-boosted. If not then it returns p->normal_prio.
2232 */
effective_prio(struct task_struct * p)2233 static int effective_prio(struct task_struct *p)
2234 {
2235 p->normal_prio = normal_prio(p);
2236 /*
2237 * If we are RT tasks or we were boosted to RT priority,
2238 * keep the priority unchanged. Otherwise, update priority
2239 * to the normal priority:
2240 */
2241 if (!rt_prio(p->prio))
2242 return p->normal_prio;
2243 return p->prio;
2244 }
2245
2246 /**
2247 * task_curr - is this task currently executing on a CPU?
2248 * @p: the task in question.
2249 *
2250 * Return: 1 if the task is currently executing. 0 otherwise.
2251 */
task_curr(const struct task_struct * p)2252 inline int task_curr(const struct task_struct *p)
2253 {
2254 return cpu_curr(task_cpu(p)) == p;
2255 }
2256
2257 /*
2258 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2259 * use the balance_callback list if you want balancing.
2260 *
2261 * this means any call to check_class_changed() must be followed by a call to
2262 * balance_callback().
2263 */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)2264 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2265 const struct sched_class *prev_class,
2266 int oldprio)
2267 {
2268 if (prev_class != p->sched_class) {
2269 if (prev_class->switched_from)
2270 prev_class->switched_from(rq, p);
2271
2272 p->sched_class->switched_to(rq, p);
2273 } else if (oldprio != p->prio || dl_task(p))
2274 p->sched_class->prio_changed(rq, p, oldprio);
2275 }
2276
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)2277 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2278 {
2279 if (p->sched_class == rq->curr->sched_class)
2280 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2281 else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2282 resched_curr(rq);
2283
2284 /*
2285 * A queue event has occurred, and we're going to schedule. In
2286 * this case, we can save a useless back to back clock update.
2287 */
2288 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2289 rq_clock_skip_update(rq);
2290 }
2291 EXPORT_SYMBOL_GPL(check_preempt_curr);
2292
2293 static __always_inline
__task_state_match(struct task_struct * p,unsigned int state)2294 int __task_state_match(struct task_struct *p, unsigned int state)
2295 {
2296 if (READ_ONCE(p->__state) & state)
2297 return 1;
2298
2299 if (READ_ONCE(p->saved_state) & state)
2300 return -1;
2301
2302 return 0;
2303 }
2304
2305 static __always_inline
task_state_match(struct task_struct * p,unsigned int state)2306 int task_state_match(struct task_struct *p, unsigned int state)
2307 {
2308 int match;
2309
2310 /*
2311 * Serialize against current_save_and_set_rtlock_wait_state(),
2312 * current_restore_rtlock_saved_state(), and __refrigerator().
2313 */
2314 raw_spin_lock_irq(&p->pi_lock);
2315 match = __task_state_match(p, state);
2316 raw_spin_unlock_irq(&p->pi_lock);
2317
2318 return match;
2319 }
2320
2321 /*
2322 * wait_task_inactive - wait for a thread to unschedule.
2323 *
2324 * Wait for the thread to block in any of the states set in @match_state.
2325 * If it changes, i.e. @p might have woken up, then return zero. When we
2326 * succeed in waiting for @p to be off its CPU, we return a positive number
2327 * (its total switch count). If a second call a short while later returns the
2328 * same number, the caller can be sure that @p has remained unscheduled the
2329 * whole time.
2330 *
2331 * The caller must ensure that the task *will* unschedule sometime soon,
2332 * else this function might spin for a *long* time. This function can't
2333 * be called with interrupts off, or it may introduce deadlock with
2334 * smp_call_function() if an IPI is sent by the same process we are
2335 * waiting to become inactive.
2336 */
wait_task_inactive(struct task_struct * p,unsigned int match_state)2337 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2338 {
2339 int running, queued, match;
2340 struct rq_flags rf;
2341 unsigned long ncsw;
2342 struct rq *rq;
2343
2344 for (;;) {
2345 /*
2346 * We do the initial early heuristics without holding
2347 * any task-queue locks at all. We'll only try to get
2348 * the runqueue lock when things look like they will
2349 * work out!
2350 */
2351 rq = task_rq(p);
2352
2353 /*
2354 * If the task is actively running on another CPU
2355 * still, just relax and busy-wait without holding
2356 * any locks.
2357 *
2358 * NOTE! Since we don't hold any locks, it's not
2359 * even sure that "rq" stays as the right runqueue!
2360 * But we don't care, since "task_on_cpu()" will
2361 * return false if the runqueue has changed and p
2362 * is actually now running somewhere else!
2363 */
2364 while (task_on_cpu(rq, p)) {
2365 if (!task_state_match(p, match_state))
2366 return 0;
2367 cpu_relax();
2368 }
2369
2370 /*
2371 * Ok, time to look more closely! We need the rq
2372 * lock now, to be *sure*. If we're wrong, we'll
2373 * just go back and repeat.
2374 */
2375 rq = task_rq_lock(p, &rf);
2376 trace_sched_wait_task(p);
2377 running = task_on_cpu(rq, p);
2378 queued = task_on_rq_queued(p);
2379 ncsw = 0;
2380 if ((match = __task_state_match(p, match_state))) {
2381 /*
2382 * When matching on p->saved_state, consider this task
2383 * still queued so it will wait.
2384 */
2385 if (match < 0)
2386 queued = 1;
2387 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2388 }
2389 task_rq_unlock(rq, p, &rf);
2390
2391 /*
2392 * If it changed from the expected state, bail out now.
2393 */
2394 if (unlikely(!ncsw))
2395 break;
2396
2397 /*
2398 * Was it really running after all now that we
2399 * checked with the proper locks actually held?
2400 *
2401 * Oops. Go back and try again..
2402 */
2403 if (unlikely(running)) {
2404 cpu_relax();
2405 continue;
2406 }
2407
2408 /*
2409 * It's not enough that it's not actively running,
2410 * it must be off the runqueue _entirely_, and not
2411 * preempted!
2412 *
2413 * So if it was still runnable (but just not actively
2414 * running right now), it's preempted, and we should
2415 * yield - it could be a while.
2416 */
2417 if (unlikely(queued)) {
2418 ktime_t to = NSEC_PER_SEC / HZ;
2419
2420 set_current_state(TASK_UNINTERRUPTIBLE);
2421 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2422 continue;
2423 }
2424
2425 /*
2426 * Ahh, all good. It wasn't running, and it wasn't
2427 * runnable, which means that it will never become
2428 * running in the future either. We're all done!
2429 */
2430 break;
2431 }
2432
2433 return ncsw;
2434 }
2435
2436 #ifdef CONFIG_SMP
2437
2438 static void
2439 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2440
2441 static int __set_cpus_allowed_ptr(struct task_struct *p,
2442 struct affinity_context *ctx);
2443
migrate_disable_switch(struct rq * rq,struct task_struct * p)2444 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2445 {
2446 struct affinity_context ac = {
2447 .new_mask = cpumask_of(rq->cpu),
2448 .flags = SCA_MIGRATE_DISABLE,
2449 };
2450
2451 if (likely(!p->migration_disabled))
2452 return;
2453
2454 if (p->cpus_ptr != &p->cpus_mask)
2455 return;
2456
2457 /*
2458 * Violates locking rules! see comment in __do_set_cpus_allowed().
2459 */
2460 __do_set_cpus_allowed(p, &ac);
2461 }
2462
migrate_disable(void)2463 void migrate_disable(void)
2464 {
2465 struct task_struct *p = current;
2466
2467 if (p->migration_disabled) {
2468 p->migration_disabled++;
2469 return;
2470 }
2471
2472 preempt_disable();
2473 this_rq()->nr_pinned++;
2474 p->migration_disabled = 1;
2475 preempt_enable();
2476 }
2477 EXPORT_SYMBOL_GPL(migrate_disable);
2478
migrate_enable(void)2479 void migrate_enable(void)
2480 {
2481 struct task_struct *p = current;
2482 struct affinity_context ac = {
2483 .new_mask = &p->cpus_mask,
2484 .flags = SCA_MIGRATE_ENABLE,
2485 };
2486
2487 if (p->migration_disabled > 1) {
2488 p->migration_disabled--;
2489 return;
2490 }
2491
2492 if (WARN_ON_ONCE(!p->migration_disabled))
2493 return;
2494
2495 /*
2496 * Ensure stop_task runs either before or after this, and that
2497 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2498 */
2499 preempt_disable();
2500 if (p->cpus_ptr != &p->cpus_mask)
2501 __set_cpus_allowed_ptr(p, &ac);
2502 /*
2503 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2504 * regular cpus_mask, otherwise things that race (eg.
2505 * select_fallback_rq) get confused.
2506 */
2507 barrier();
2508 p->migration_disabled = 0;
2509 this_rq()->nr_pinned--;
2510 preempt_enable();
2511 }
2512 EXPORT_SYMBOL_GPL(migrate_enable);
2513
rq_has_pinned_tasks(struct rq * rq)2514 static inline bool rq_has_pinned_tasks(struct rq *rq)
2515 {
2516 return rq->nr_pinned;
2517 }
2518
2519 /*
2520 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2521 * __set_cpus_allowed_ptr() and select_fallback_rq().
2522 */
is_cpu_allowed(struct task_struct * p,int cpu)2523 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2524 {
2525 bool allowed = true;
2526
2527 /* When not in the task's cpumask, no point in looking further. */
2528 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2529 return false;
2530
2531 /* migrate_disabled() must be allowed to finish. */
2532 if (is_migration_disabled(p))
2533 return cpu_online(cpu);
2534
2535 /* check for all cases */
2536 trace_android_rvh_is_cpu_allowed(p, cpu, &allowed);
2537
2538 /* Non kernel threads are not allowed during either online or offline. */
2539 if (!(p->flags & PF_KTHREAD))
2540 return cpu_active(cpu) && task_cpu_possible(cpu, p) && allowed;
2541
2542 /* KTHREAD_IS_PER_CPU is always allowed. */
2543 if (kthread_is_per_cpu(p))
2544 return cpu_online(cpu);
2545
2546 if (!allowed)
2547 return false;
2548
2549 /* Regular kernel threads don't get to stay during offline. */
2550 if (cpu_dying(cpu))
2551 return false;
2552
2553 /* But are allowed during online. */
2554 return cpu_online(cpu);
2555 }
2556
2557 /*
2558 * This is how migration works:
2559 *
2560 * 1) we invoke migration_cpu_stop() on the target CPU using
2561 * stop_one_cpu().
2562 * 2) stopper starts to run (implicitly forcing the migrated thread
2563 * off the CPU)
2564 * 3) it checks whether the migrated task is still in the wrong runqueue.
2565 * 4) if it's in the wrong runqueue then the migration thread removes
2566 * it and puts it into the right queue.
2567 * 5) stopper completes and stop_one_cpu() returns and the migration
2568 * is done.
2569 */
2570
2571 /*
2572 * move_queued_task - move a queued task to new rq.
2573 *
2574 * Returns (locked) new rq. Old rq's lock is released.
2575 */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)2576 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2577 struct task_struct *p, int new_cpu)
2578 {
2579 int detached = 0;
2580
2581 lockdep_assert_rq_held(rq);
2582
2583 /*
2584 * The vendor hook may drop the lock temporarily, so
2585 * pass the rq flags to unpin lock. We expect the
2586 * rq lock to be held after return.
2587 */
2588 trace_android_rvh_migrate_queued_task(rq, rf, p, new_cpu, &detached);
2589 if (detached)
2590 goto attach;
2591
2592 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2593 set_task_cpu(p, new_cpu);
2594
2595 attach:
2596 rq_unlock(rq, rf);
2597 rq = cpu_rq(new_cpu);
2598
2599 rq_lock(rq, rf);
2600 WARN_ON_ONCE(task_cpu(p) != new_cpu);
2601 activate_task(rq, p, 0);
2602 check_preempt_curr(rq, p, 0);
2603
2604 return rq;
2605 }
2606
2607 struct migration_arg {
2608 struct task_struct *task;
2609 int dest_cpu;
2610 struct set_affinity_pending *pending;
2611 };
2612
2613 /*
2614 * @refs: number of wait_for_completion()
2615 * @stop_pending: is @stop_work in use
2616 */
2617 struct set_affinity_pending {
2618 refcount_t refs;
2619 unsigned int stop_pending;
2620 struct completion done;
2621 struct cpu_stop_work stop_work;
2622 struct migration_arg arg;
2623 };
2624
2625 /*
2626 * Move (not current) task off this CPU, onto the destination CPU. We're doing
2627 * this because either it can't run here any more (set_cpus_allowed()
2628 * away from this CPU, or CPU going down), or because we're
2629 * attempting to rebalance this task on exec (sched_exec).
2630 *
2631 * So we race with normal scheduler movements, but that's OK, as long
2632 * as the task is no longer on this CPU.
2633 */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)2634 struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2635 struct task_struct *p, int dest_cpu)
2636 {
2637 /* Affinity changed (again). */
2638 if (!is_cpu_allowed(p, dest_cpu))
2639 return rq;
2640
2641 rq = move_queued_task(rq, rf, p, dest_cpu);
2642
2643 return rq;
2644 }
2645 EXPORT_SYMBOL_GPL(__migrate_task);
2646
2647 /*
2648 * migration_cpu_stop - this will be executed by a highprio stopper thread
2649 * and performs thread migration by bumping thread off CPU then
2650 * 'pushing' onto another runqueue.
2651 */
migration_cpu_stop(void * data)2652 static int migration_cpu_stop(void *data)
2653 {
2654 struct migration_arg *arg = data;
2655 struct set_affinity_pending *pending = arg->pending;
2656 struct task_struct *p = arg->task;
2657 struct rq *rq = this_rq();
2658 bool complete = false;
2659 struct rq_flags rf;
2660
2661 /*
2662 * The original target CPU might have gone down and we might
2663 * be on another CPU but it doesn't matter.
2664 */
2665 local_irq_save(rf.flags);
2666 /*
2667 * We need to explicitly wake pending tasks before running
2668 * __migrate_task() such that we will not miss enforcing cpus_ptr
2669 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2670 */
2671 flush_smp_call_function_queue();
2672
2673 raw_spin_lock(&p->pi_lock);
2674 rq_lock(rq, &rf);
2675
2676 /*
2677 * If we were passed a pending, then ->stop_pending was set, thus
2678 * p->migration_pending must have remained stable.
2679 */
2680 WARN_ON_ONCE(pending && pending != p->migration_pending);
2681
2682 /*
2683 * If task_rq(p) != rq, it cannot be migrated here, because we're
2684 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2685 * we're holding p->pi_lock.
2686 */
2687 if (task_rq(p) == rq) {
2688 if (is_migration_disabled(p))
2689 goto out;
2690
2691 if (pending) {
2692 p->migration_pending = NULL;
2693 complete = true;
2694
2695 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2696 goto out;
2697 }
2698
2699 if (task_on_rq_queued(p)) {
2700 update_rq_clock(rq);
2701 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2702 } else {
2703 p->wake_cpu = arg->dest_cpu;
2704 }
2705
2706 /*
2707 * XXX __migrate_task() can fail, at which point we might end
2708 * up running on a dodgy CPU, AFAICT this can only happen
2709 * during CPU hotplug, at which point we'll get pushed out
2710 * anyway, so it's probably not a big deal.
2711 */
2712
2713 } else if (pending) {
2714 /*
2715 * This happens when we get migrated between migrate_enable()'s
2716 * preempt_enable() and scheduling the stopper task. At that
2717 * point we're a regular task again and not current anymore.
2718 *
2719 * A !PREEMPT kernel has a giant hole here, which makes it far
2720 * more likely.
2721 */
2722
2723 /*
2724 * The task moved before the stopper got to run. We're holding
2725 * ->pi_lock, so the allowed mask is stable - if it got
2726 * somewhere allowed, we're done.
2727 */
2728 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2729 p->migration_pending = NULL;
2730 complete = true;
2731 goto out;
2732 }
2733
2734 /*
2735 * When migrate_enable() hits a rq mis-match we can't reliably
2736 * determine is_migration_disabled() and so have to chase after
2737 * it.
2738 */
2739 WARN_ON_ONCE(!pending->stop_pending);
2740 preempt_disable();
2741 task_rq_unlock(rq, p, &rf);
2742 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2743 &pending->arg, &pending->stop_work);
2744 preempt_enable();
2745 return 0;
2746 }
2747 out:
2748 if (pending)
2749 pending->stop_pending = false;
2750 task_rq_unlock(rq, p, &rf);
2751
2752 if (complete)
2753 complete_all(&pending->done);
2754
2755 return 0;
2756 }
2757
push_cpu_stop(void * arg)2758 int push_cpu_stop(void *arg)
2759 {
2760 struct rq *lowest_rq = NULL, *rq = this_rq();
2761 struct task_struct *p = arg;
2762
2763 raw_spin_lock_irq(&p->pi_lock);
2764 raw_spin_rq_lock(rq);
2765
2766 if (task_rq(p) != rq)
2767 goto out_unlock;
2768
2769 if (is_migration_disabled(p)) {
2770 p->migration_flags |= MDF_PUSH;
2771 goto out_unlock;
2772 }
2773
2774 p->migration_flags &= ~MDF_PUSH;
2775
2776 if (p->sched_class->find_lock_rq)
2777 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2778
2779 if (!lowest_rq)
2780 goto out_unlock;
2781
2782 // XXX validate p is still the highest prio task
2783 if (task_rq(p) == rq) {
2784 deactivate_task(rq, p, 0);
2785 set_task_cpu(p, lowest_rq->cpu);
2786 activate_task(lowest_rq, p, 0);
2787 resched_curr(lowest_rq);
2788 }
2789
2790 double_unlock_balance(rq, lowest_rq);
2791
2792 out_unlock:
2793 rq->push_busy = false;
2794 raw_spin_rq_unlock(rq);
2795 raw_spin_unlock_irq(&p->pi_lock);
2796
2797 put_task_struct(p);
2798 return 0;
2799 }
2800 EXPORT_SYMBOL_GPL(push_cpu_stop);
2801
2802 /*
2803 * sched_class::set_cpus_allowed must do the below, but is not required to
2804 * actually call this function.
2805 */
set_cpus_allowed_common(struct task_struct * p,struct affinity_context * ctx)2806 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2807 {
2808 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2809 p->cpus_ptr = ctx->new_mask;
2810 return;
2811 }
2812
2813 cpumask_copy(&p->cpus_mask, ctx->new_mask);
2814 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2815
2816 /*
2817 * Swap in a new user_cpus_ptr if SCA_USER flag set
2818 */
2819 if (ctx->flags & SCA_USER)
2820 swap(p->user_cpus_ptr, ctx->user_mask);
2821
2822 trace_android_rvh_set_cpus_allowed_comm(p, ctx->new_mask);
2823 }
2824
2825 static void
__do_set_cpus_allowed(struct task_struct * p,struct affinity_context * ctx)2826 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2827 {
2828 struct rq *rq = task_rq(p);
2829 bool queued, running;
2830
2831 /*
2832 * This here violates the locking rules for affinity, since we're only
2833 * supposed to change these variables while holding both rq->lock and
2834 * p->pi_lock.
2835 *
2836 * HOWEVER, it magically works, because ttwu() is the only code that
2837 * accesses these variables under p->pi_lock and only does so after
2838 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2839 * before finish_task().
2840 *
2841 * XXX do further audits, this smells like something putrid.
2842 */
2843 if (ctx->flags & SCA_MIGRATE_DISABLE)
2844 SCHED_WARN_ON(!p->on_cpu);
2845 else
2846 lockdep_assert_held(&p->pi_lock);
2847
2848 queued = task_on_rq_queued(p);
2849 running = task_current(rq, p);
2850
2851 if (queued) {
2852 /*
2853 * Because __kthread_bind() calls this on blocked tasks without
2854 * holding rq->lock.
2855 */
2856 lockdep_assert_rq_held(rq);
2857 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2858 }
2859 if (running)
2860 put_prev_task(rq, p);
2861
2862 p->sched_class->set_cpus_allowed(p, ctx);
2863
2864 if (queued)
2865 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2866 if (running)
2867 set_next_task(rq, p);
2868 }
2869
2870 /*
2871 * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2872 * affinity (if any) should be destroyed too.
2873 */
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2874 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2875 {
2876 struct affinity_context ac = {
2877 .new_mask = new_mask,
2878 .user_mask = NULL,
2879 .flags = SCA_USER, /* clear the user requested mask */
2880 };
2881 union cpumask_rcuhead {
2882 cpumask_t cpumask;
2883 struct rcu_head rcu;
2884 };
2885
2886 __do_set_cpus_allowed(p, &ac);
2887
2888 /*
2889 * Because this is called with p->pi_lock held, it is not possible
2890 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2891 * kfree_rcu().
2892 */
2893 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2894 }
2895
alloc_user_cpus_ptr(int node)2896 static cpumask_t *alloc_user_cpus_ptr(int node)
2897 {
2898 /*
2899 * See do_set_cpus_allowed() above for the rcu_head usage.
2900 */
2901 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2902
2903 return kmalloc_node(size, GFP_KERNEL, node);
2904 }
2905
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)2906 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2907 int node)
2908 {
2909 cpumask_t *user_mask;
2910 unsigned long flags;
2911
2912 /*
2913 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2914 * may differ by now due to racing.
2915 */
2916 dst->user_cpus_ptr = NULL;
2917
2918 /*
2919 * This check is racy and losing the race is a valid situation.
2920 * It is not worth the extra overhead of taking the pi_lock on
2921 * every fork/clone.
2922 */
2923 if (data_race(!src->user_cpus_ptr))
2924 return 0;
2925
2926 user_mask = alloc_user_cpus_ptr(node);
2927 if (!user_mask)
2928 return -ENOMEM;
2929
2930 /*
2931 * Use pi_lock to protect content of user_cpus_ptr
2932 *
2933 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2934 * do_set_cpus_allowed().
2935 */
2936 raw_spin_lock_irqsave(&src->pi_lock, flags);
2937 if (src->user_cpus_ptr) {
2938 swap(dst->user_cpus_ptr, user_mask);
2939 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2940 }
2941 raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2942
2943 if (unlikely(user_mask))
2944 kfree(user_mask);
2945
2946 return 0;
2947 }
2948
clear_user_cpus_ptr(struct task_struct * p)2949 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2950 {
2951 struct cpumask *user_mask = NULL;
2952
2953 swap(p->user_cpus_ptr, user_mask);
2954
2955 return user_mask;
2956 }
2957
release_user_cpus_ptr(struct task_struct * p)2958 void release_user_cpus_ptr(struct task_struct *p)
2959 {
2960 kfree(clear_user_cpus_ptr(p));
2961 }
2962
2963 /*
2964 * This function is wildly self concurrent; here be dragons.
2965 *
2966 *
2967 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2968 * designated task is enqueued on an allowed CPU. If that task is currently
2969 * running, we have to kick it out using the CPU stopper.
2970 *
2971 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2972 * Consider:
2973 *
2974 * Initial conditions: P0->cpus_mask = [0, 1]
2975 *
2976 * P0@CPU0 P1
2977 *
2978 * migrate_disable();
2979 * <preempted>
2980 * set_cpus_allowed_ptr(P0, [1]);
2981 *
2982 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2983 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2984 * This means we need the following scheme:
2985 *
2986 * P0@CPU0 P1
2987 *
2988 * migrate_disable();
2989 * <preempted>
2990 * set_cpus_allowed_ptr(P0, [1]);
2991 * <blocks>
2992 * <resumes>
2993 * migrate_enable();
2994 * __set_cpus_allowed_ptr();
2995 * <wakes local stopper>
2996 * `--> <woken on migration completion>
2997 *
2998 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2999 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
3000 * task p are serialized by p->pi_lock, which we can leverage: the one that
3001 * should come into effect at the end of the Migrate-Disable region is the last
3002 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
3003 * but we still need to properly signal those waiting tasks at the appropriate
3004 * moment.
3005 *
3006 * This is implemented using struct set_affinity_pending. The first
3007 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
3008 * setup an instance of that struct and install it on the targeted task_struct.
3009 * Any and all further callers will reuse that instance. Those then wait for
3010 * a completion signaled at the tail of the CPU stopper callback (1), triggered
3011 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
3012 *
3013 *
3014 * (1) In the cases covered above. There is one more where the completion is
3015 * signaled within affine_move_task() itself: when a subsequent affinity request
3016 * occurs after the stopper bailed out due to the targeted task still being
3017 * Migrate-Disable. Consider:
3018 *
3019 * Initial conditions: P0->cpus_mask = [0, 1]
3020 *
3021 * CPU0 P1 P2
3022 * <P0>
3023 * migrate_disable();
3024 * <preempted>
3025 * set_cpus_allowed_ptr(P0, [1]);
3026 * <blocks>
3027 * <migration/0>
3028 * migration_cpu_stop()
3029 * is_migration_disabled()
3030 * <bails>
3031 * set_cpus_allowed_ptr(P0, [0, 1]);
3032 * <signal completion>
3033 * <awakes>
3034 *
3035 * Note that the above is safe vs a concurrent migrate_enable(), as any
3036 * pending affinity completion is preceded by an uninstallation of
3037 * p->migration_pending done with p->pi_lock held.
3038 */
affine_move_task(struct rq * rq,struct task_struct * p,struct rq_flags * rf,int dest_cpu,unsigned int flags)3039 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
3040 int dest_cpu, unsigned int flags)
3041 __releases(rq->lock)
3042 __releases(p->pi_lock)
3043 {
3044 struct set_affinity_pending my_pending = { }, *pending = NULL;
3045 bool stop_pending, complete = false;
3046
3047 /* Can the task run on the task's current CPU? If so, we're done */
3048 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
3049 struct task_struct *push_task = NULL;
3050
3051 if ((flags & SCA_MIGRATE_ENABLE) &&
3052 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
3053 rq->push_busy = true;
3054 push_task = get_task_struct(p);
3055 }
3056
3057 /*
3058 * If there are pending waiters, but no pending stop_work,
3059 * then complete now.
3060 */
3061 pending = p->migration_pending;
3062 if (pending && !pending->stop_pending) {
3063 p->migration_pending = NULL;
3064 complete = true;
3065 }
3066
3067 preempt_disable();
3068 task_rq_unlock(rq, p, rf);
3069 if (push_task) {
3070 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
3071 p, &rq->push_work);
3072 }
3073 preempt_enable();
3074
3075 if (complete)
3076 complete_all(&pending->done);
3077
3078 return 0;
3079 }
3080
3081 if (!(flags & SCA_MIGRATE_ENABLE)) {
3082 /* serialized by p->pi_lock */
3083 if (!p->migration_pending) {
3084 /* Install the request */
3085 refcount_set(&my_pending.refs, 1);
3086 init_completion(&my_pending.done);
3087 my_pending.arg = (struct migration_arg) {
3088 .task = p,
3089 .dest_cpu = dest_cpu,
3090 .pending = &my_pending,
3091 };
3092
3093 p->migration_pending = &my_pending;
3094 } else {
3095 pending = p->migration_pending;
3096 refcount_inc(&pending->refs);
3097 /*
3098 * Affinity has changed, but we've already installed a
3099 * pending. migration_cpu_stop() *must* see this, else
3100 * we risk a completion of the pending despite having a
3101 * task on a disallowed CPU.
3102 *
3103 * Serialized by p->pi_lock, so this is safe.
3104 */
3105 pending->arg.dest_cpu = dest_cpu;
3106 }
3107 }
3108 pending = p->migration_pending;
3109 /*
3110 * - !MIGRATE_ENABLE:
3111 * we'll have installed a pending if there wasn't one already.
3112 *
3113 * - MIGRATE_ENABLE:
3114 * we're here because the current CPU isn't matching anymore,
3115 * the only way that can happen is because of a concurrent
3116 * set_cpus_allowed_ptr() call, which should then still be
3117 * pending completion.
3118 *
3119 * Either way, we really should have a @pending here.
3120 */
3121 if (WARN_ON_ONCE(!pending)) {
3122 task_rq_unlock(rq, p, rf);
3123 return -EINVAL;
3124 }
3125
3126 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3127 /*
3128 * MIGRATE_ENABLE gets here because 'p == current', but for
3129 * anything else we cannot do is_migration_disabled(), punt
3130 * and have the stopper function handle it all race-free.
3131 */
3132 stop_pending = pending->stop_pending;
3133 if (!stop_pending)
3134 pending->stop_pending = true;
3135
3136 if (flags & SCA_MIGRATE_ENABLE)
3137 p->migration_flags &= ~MDF_PUSH;
3138
3139 preempt_disable();
3140 task_rq_unlock(rq, p, rf);
3141 if (!stop_pending) {
3142 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3143 &pending->arg, &pending->stop_work);
3144 }
3145 preempt_enable();
3146
3147 if (flags & SCA_MIGRATE_ENABLE)
3148 return 0;
3149 } else {
3150
3151 if (!is_migration_disabled(p)) {
3152 if (task_on_rq_queued(p))
3153 rq = move_queued_task(rq, rf, p, dest_cpu);
3154
3155 if (!pending->stop_pending) {
3156 p->migration_pending = NULL;
3157 complete = true;
3158 }
3159 }
3160 task_rq_unlock(rq, p, rf);
3161
3162 if (complete)
3163 complete_all(&pending->done);
3164 }
3165
3166 wait_for_completion(&pending->done);
3167
3168 if (refcount_dec_and_test(&pending->refs))
3169 wake_up_var(&pending->refs); /* No UaF, just an address */
3170
3171 /*
3172 * Block the original owner of &pending until all subsequent callers
3173 * have seen the completion and decremented the refcount
3174 */
3175 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3176
3177 /* ARGH */
3178 WARN_ON_ONCE(my_pending.stop_pending);
3179
3180 return 0;
3181 }
3182
3183 /*
3184 * Called with both p->pi_lock and rq->lock held; drops both before returning.
3185 */
__set_cpus_allowed_ptr_locked(struct task_struct * p,struct affinity_context * ctx,struct rq * rq,struct rq_flags * rf)3186 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3187 struct affinity_context *ctx,
3188 struct rq *rq,
3189 struct rq_flags *rf)
3190 __releases(rq->lock)
3191 __releases(p->pi_lock)
3192 {
3193 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3194 const struct cpumask *cpu_valid_mask = cpu_active_mask;
3195 bool kthread = p->flags & PF_KTHREAD;
3196 unsigned int dest_cpu;
3197 int ret = 0;
3198
3199 update_rq_clock(rq);
3200
3201 if (kthread || is_migration_disabled(p)) {
3202 /*
3203 * Kernel threads are allowed on online && !active CPUs,
3204 * however, during cpu-hot-unplug, even these might get pushed
3205 * away if not KTHREAD_IS_PER_CPU.
3206 *
3207 * Specifically, migration_disabled() tasks must not fail the
3208 * cpumask_any_and_distribute() pick below, esp. so on
3209 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3210 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3211 */
3212 cpu_valid_mask = cpu_online_mask;
3213 }
3214
3215 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3216 ret = -EINVAL;
3217 goto out;
3218 }
3219
3220 /*
3221 * Must re-check here, to close a race against __kthread_bind(),
3222 * sched_setaffinity() is not guaranteed to observe the flag.
3223 */
3224 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3225 ret = -EINVAL;
3226 goto out;
3227 }
3228
3229 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3230 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3231 if (ctx->flags & SCA_USER)
3232 swap(p->user_cpus_ptr, ctx->user_mask);
3233 goto out;
3234 }
3235
3236 if (WARN_ON_ONCE(p == current &&
3237 is_migration_disabled(p) &&
3238 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3239 ret = -EBUSY;
3240 goto out;
3241 }
3242 }
3243
3244 /*
3245 * Picking a ~random cpu helps in cases where we are changing affinity
3246 * for groups of tasks (ie. cpuset), so that load balancing is not
3247 * immediately required to distribute the tasks within their new mask.
3248 */
3249 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3250 trace_android_rvh_set_cpus_allowed_by_task(cpu_valid_mask, ctx->new_mask, p, &dest_cpu);
3251 if (dest_cpu >= nr_cpu_ids) {
3252 ret = -EINVAL;
3253 goto out;
3254 }
3255
3256 __do_set_cpus_allowed(p, ctx);
3257
3258 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3259
3260 out:
3261 task_rq_unlock(rq, p, rf);
3262
3263 return ret;
3264 }
3265
3266 /*
3267 * Change a given task's CPU affinity. Migrate the thread to a
3268 * proper CPU and schedule it away if the CPU it's executing on
3269 * is removed from the allowed bitmask.
3270 *
3271 * NOTE: the caller must have a valid reference to the task, the
3272 * task must not exit() & deallocate itself prematurely. The
3273 * call is not atomic; no spinlocks may be held.
3274 */
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)3275 static int __set_cpus_allowed_ptr(struct task_struct *p,
3276 struct affinity_context *ctx)
3277 {
3278 struct rq_flags rf;
3279 struct rq *rq;
3280 bool skip_user_ptr = false;
3281
3282 trace_android_rvh_set_cpus_allowed_ptr(p, ctx, &skip_user_ptr);
3283 rq = task_rq_lock(p, &rf);
3284 /*
3285 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3286 * flags are set.
3287 */
3288 if (!skip_user_ptr && p->user_cpus_ptr &&
3289 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3290 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3291 ctx->new_mask = rq->scratch_mask;
3292
3293 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3294 }
3295
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)3296 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3297 {
3298 struct affinity_context ac = {
3299 .new_mask = new_mask,
3300 .flags = 0,
3301 };
3302
3303 return __set_cpus_allowed_ptr(p, &ac);
3304 }
3305 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3306
3307 /*
3308 * Change a given task's CPU affinity to the intersection of its current
3309 * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3310 * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3311 * affinity or use cpu_online_mask instead.
3312 *
3313 * If the resulting mask is empty, leave the affinity unchanged and return
3314 * -EINVAL.
3315 */
restrict_cpus_allowed_ptr(struct task_struct * p,struct cpumask * new_mask,const struct cpumask * subset_mask)3316 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3317 struct cpumask *new_mask,
3318 const struct cpumask *subset_mask)
3319 {
3320 struct affinity_context ac = {
3321 .new_mask = new_mask,
3322 .flags = 0,
3323 };
3324 struct rq_flags rf;
3325 struct rq *rq;
3326 int err;
3327
3328 rq = task_rq_lock(p, &rf);
3329
3330 /*
3331 * Forcefully restricting the affinity of a deadline task is
3332 * likely to cause problems, so fail and noisily override the
3333 * mask entirely.
3334 */
3335 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3336 err = -EPERM;
3337 goto err_unlock;
3338 }
3339
3340 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3341 err = -EINVAL;
3342 goto err_unlock;
3343 }
3344
3345 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3346
3347 err_unlock:
3348 task_rq_unlock(rq, p, &rf);
3349 return err;
3350 }
3351
3352 /*
3353 * Restrict the CPU affinity of task @p so that it is a subset of
3354 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3355 * old affinity mask. If the resulting mask is empty, we warn and walk
3356 * up the cpuset hierarchy until we find a suitable mask.
3357 */
force_compatible_cpus_allowed_ptr(struct task_struct * p)3358 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3359 {
3360 cpumask_var_t new_mask;
3361 const struct cpumask *override_mask = task_cpu_possible_mask(p);
3362
3363 alloc_cpumask_var(&new_mask, GFP_KERNEL);
3364
3365 /*
3366 * __migrate_task() can fail silently in the face of concurrent
3367 * offlining of the chosen destination CPU, so take the hotplug
3368 * lock to ensure that the migration succeeds.
3369 */
3370 cpus_read_lock();
3371 if (!cpumask_available(new_mask))
3372 goto out_set_mask;
3373
3374 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3375 goto out_free_mask;
3376
3377 /*
3378 * We failed to find a valid subset of the affinity mask for the
3379 * task, so override it based on its cpuset hierarchy.
3380 */
3381 cpuset_cpus_allowed(p, new_mask);
3382 override_mask = new_mask;
3383
3384 out_set_mask:
3385 if (printk_ratelimit()) {
3386 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3387 task_pid_nr(p), p->comm,
3388 cpumask_pr_args(override_mask));
3389 }
3390
3391 WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3392 out_free_mask:
3393 cpus_read_unlock();
3394 free_cpumask_var(new_mask);
3395 }
3396
3397 static int
3398 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3399
3400 /*
3401 * Restore the affinity of a task @p which was previously restricted by a
3402 * call to force_compatible_cpus_allowed_ptr().
3403 *
3404 * It is the caller's responsibility to serialise this with any calls to
3405 * force_compatible_cpus_allowed_ptr(@p).
3406 */
relax_compatible_cpus_allowed_ptr(struct task_struct * p)3407 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3408 {
3409 struct affinity_context ac = {
3410 .new_mask = task_user_cpus(p),
3411 .flags = 0,
3412 };
3413 int ret;
3414
3415 /*
3416 * Try to restore the old affinity mask with __sched_setaffinity().
3417 * Cpuset masking will be done there too.
3418 */
3419 ret = __sched_setaffinity(p, &ac);
3420 WARN_ON_ONCE(ret);
3421 }
3422
set_task_cpu(struct task_struct * p,unsigned int new_cpu)3423 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3424 {
3425 #ifdef CONFIG_SCHED_DEBUG
3426 unsigned int state = READ_ONCE(p->__state);
3427
3428 /*
3429 * We should never call set_task_cpu() on a blocked task,
3430 * ttwu() will sort out the placement.
3431 */
3432 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3433
3434 /*
3435 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3436 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3437 * time relying on p->on_rq.
3438 */
3439 WARN_ON_ONCE(state == TASK_RUNNING &&
3440 p->sched_class == &fair_sched_class &&
3441 (p->on_rq && !task_on_rq_migrating(p)));
3442
3443 #ifdef CONFIG_LOCKDEP
3444 /*
3445 * The caller should hold either p->pi_lock or rq->lock, when changing
3446 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3447 *
3448 * sched_move_task() holds both and thus holding either pins the cgroup,
3449 * see task_group().
3450 *
3451 * Furthermore, all task_rq users should acquire both locks, see
3452 * task_rq_lock().
3453 */
3454 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3455 lockdep_is_held(__rq_lockp(task_rq(p)))));
3456 #endif
3457 /*
3458 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3459 */
3460 WARN_ON_ONCE(!cpu_online(new_cpu));
3461
3462 WARN_ON_ONCE(is_migration_disabled(p));
3463 #endif
3464
3465 trace_sched_migrate_task(p, new_cpu);
3466
3467 if (task_cpu(p) != new_cpu) {
3468 if (p->sched_class->migrate_task_rq)
3469 p->sched_class->migrate_task_rq(p, new_cpu);
3470 p->se.nr_migrations++;
3471 rseq_migrate(p);
3472 sched_mm_cid_migrate_from(p);
3473 perf_event_task_migrate(p);
3474 trace_android_rvh_set_task_cpu(p, new_cpu);
3475 }
3476
3477 __set_task_cpu(p, new_cpu);
3478 }
3479 EXPORT_SYMBOL_GPL(set_task_cpu);
3480
__migrate_swap_task(struct task_struct * p,int cpu)3481 static void __migrate_swap_task(struct task_struct *p, int cpu)
3482 {
3483 if (task_on_rq_queued(p)) {
3484 struct rq *src_rq, *dst_rq;
3485 struct rq_flags srf, drf;
3486
3487 src_rq = task_rq(p);
3488 dst_rq = cpu_rq(cpu);
3489
3490 rq_pin_lock(src_rq, &srf);
3491 rq_pin_lock(dst_rq, &drf);
3492
3493 deactivate_task(src_rq, p, 0);
3494 set_task_cpu(p, cpu);
3495 activate_task(dst_rq, p, 0);
3496 check_preempt_curr(dst_rq, p, 0);
3497
3498 rq_unpin_lock(dst_rq, &drf);
3499 rq_unpin_lock(src_rq, &srf);
3500
3501 } else {
3502 /*
3503 * Task isn't running anymore; make it appear like we migrated
3504 * it before it went to sleep. This means on wakeup we make the
3505 * previous CPU our target instead of where it really is.
3506 */
3507 p->wake_cpu = cpu;
3508 }
3509 }
3510
3511 struct migration_swap_arg {
3512 struct task_struct *src_task, *dst_task;
3513 int src_cpu, dst_cpu;
3514 };
3515
migrate_swap_stop(void * data)3516 static int migrate_swap_stop(void *data)
3517 {
3518 struct migration_swap_arg *arg = data;
3519 struct rq *src_rq, *dst_rq;
3520
3521 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3522 return -EAGAIN;
3523
3524 src_rq = cpu_rq(arg->src_cpu);
3525 dst_rq = cpu_rq(arg->dst_cpu);
3526
3527 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3528 guard(double_rq_lock)(src_rq, dst_rq);
3529
3530 if (task_cpu(arg->dst_task) != arg->dst_cpu)
3531 return -EAGAIN;
3532
3533 if (task_cpu(arg->src_task) != arg->src_cpu)
3534 return -EAGAIN;
3535
3536 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3537 return -EAGAIN;
3538
3539 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3540 return -EAGAIN;
3541
3542 __migrate_swap_task(arg->src_task, arg->dst_cpu);
3543 __migrate_swap_task(arg->dst_task, arg->src_cpu);
3544
3545 return 0;
3546 }
3547
3548 /*
3549 * Cross migrate two tasks
3550 */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)3551 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3552 int target_cpu, int curr_cpu)
3553 {
3554 struct migration_swap_arg arg;
3555 int ret = -EINVAL;
3556
3557 arg = (struct migration_swap_arg){
3558 .src_task = cur,
3559 .src_cpu = curr_cpu,
3560 .dst_task = p,
3561 .dst_cpu = target_cpu,
3562 };
3563
3564 if (arg.src_cpu == arg.dst_cpu)
3565 goto out;
3566
3567 /*
3568 * These three tests are all lockless; this is OK since all of them
3569 * will be re-checked with proper locks held further down the line.
3570 */
3571 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3572 goto out;
3573
3574 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3575 goto out;
3576
3577 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3578 goto out;
3579
3580 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3581 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3582
3583 out:
3584 return ret;
3585 }
3586 EXPORT_SYMBOL_GPL(migrate_swap);
3587
3588 /***
3589 * kick_process - kick a running thread to enter/exit the kernel
3590 * @p: the to-be-kicked thread
3591 *
3592 * Cause a process which is running on another CPU to enter
3593 * kernel-mode, without any delay. (to get signals handled.)
3594 *
3595 * NOTE: this function doesn't have to take the runqueue lock,
3596 * because all it wants to ensure is that the remote task enters
3597 * the kernel. If the IPI races and the task has been migrated
3598 * to another CPU then no harm is done and the purpose has been
3599 * achieved as well.
3600 */
kick_process(struct task_struct * p)3601 void kick_process(struct task_struct *p)
3602 {
3603 int cpu;
3604
3605 preempt_disable();
3606 cpu = task_cpu(p);
3607 if ((cpu != smp_processor_id()) && task_curr(p))
3608 smp_send_reschedule(cpu);
3609 preempt_enable();
3610 }
3611 EXPORT_SYMBOL_GPL(kick_process);
3612
3613 /*
3614 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3615 *
3616 * A few notes on cpu_active vs cpu_online:
3617 *
3618 * - cpu_active must be a subset of cpu_online
3619 *
3620 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3621 * see __set_cpus_allowed_ptr(). At this point the newly online
3622 * CPU isn't yet part of the sched domains, and balancing will not
3623 * see it.
3624 *
3625 * - on CPU-down we clear cpu_active() to mask the sched domains and
3626 * avoid the load balancer to place new tasks on the to be removed
3627 * CPU. Existing tasks will remain running there and will be taken
3628 * off.
3629 *
3630 * This means that fallback selection must not select !active CPUs.
3631 * And can assume that any active CPU must be online. Conversely
3632 * select_task_rq() below may allow selection of !active CPUs in order
3633 * to satisfy the above rules.
3634 */
select_fallback_rq(int cpu,struct task_struct * p)3635 int select_fallback_rq(int cpu, struct task_struct *p)
3636 {
3637 int nid = cpu_to_node(cpu);
3638 const struct cpumask *nodemask = NULL;
3639 enum { cpuset, possible, fail } state = cpuset;
3640 int dest_cpu = -1;
3641
3642 trace_android_rvh_select_fallback_rq(cpu, p, &dest_cpu);
3643 if (dest_cpu >= 0)
3644 return dest_cpu;
3645
3646 /*
3647 * If the node that the CPU is on has been offlined, cpu_to_node()
3648 * will return -1. There is no CPU on the node, and we should
3649 * select the CPU on the other node.
3650 */
3651 if (nid != -1) {
3652 nodemask = cpumask_of_node(nid);
3653
3654 /* Look for allowed, online CPU in same node. */
3655 for_each_cpu(dest_cpu, nodemask) {
3656 if (is_cpu_allowed(p, dest_cpu))
3657 return dest_cpu;
3658 }
3659 }
3660
3661 for (;;) {
3662 /* Any allowed, online CPU? */
3663 for_each_cpu(dest_cpu, p->cpus_ptr) {
3664 if (!is_cpu_allowed(p, dest_cpu))
3665 continue;
3666
3667 goto out;
3668 }
3669
3670 /* No more Mr. Nice Guy. */
3671 switch (state) {
3672 case cpuset:
3673 if (cpuset_cpus_allowed_fallback(p)) {
3674 state = possible;
3675 break;
3676 }
3677 fallthrough;
3678 case possible:
3679 /*
3680 * XXX When called from select_task_rq() we only
3681 * hold p->pi_lock and again violate locking order.
3682 *
3683 * More yuck to audit.
3684 */
3685 do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3686 state = fail;
3687 break;
3688 case fail:
3689 BUG();
3690 break;
3691 }
3692 }
3693
3694 out:
3695 if (state != cpuset) {
3696 /*
3697 * Don't tell them about moving exiting tasks or
3698 * kernel threads (both mm NULL), since they never
3699 * leave kernel.
3700 */
3701 if (p->mm && printk_ratelimit()) {
3702 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3703 task_pid_nr(p), p->comm, cpu);
3704 }
3705 }
3706
3707 return dest_cpu;
3708 }
3709 EXPORT_SYMBOL_GPL(select_fallback_rq);
3710
3711 /*
3712 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3713 */
3714 static inline
select_task_rq(struct task_struct * p,int cpu,int wake_flags)3715 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3716 {
3717 lockdep_assert_held(&p->pi_lock);
3718
3719 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3720 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3721 else
3722 cpu = cpumask_any(p->cpus_ptr);
3723
3724 /*
3725 * In order not to call set_task_cpu() on a blocking task we need
3726 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3727 * CPU.
3728 *
3729 * Since this is common to all placement strategies, this lives here.
3730 *
3731 * [ this allows ->select_task() to simply return task_cpu(p) and
3732 * not worry about this generic constraint ]
3733 */
3734 if (unlikely(!is_cpu_allowed(p, cpu)))
3735 cpu = select_fallback_rq(task_cpu(p), p);
3736
3737 return cpu;
3738 }
3739
sched_set_stop_task(int cpu,struct task_struct * stop)3740 void sched_set_stop_task(int cpu, struct task_struct *stop)
3741 {
3742 static struct lock_class_key stop_pi_lock;
3743 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3744 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3745
3746 if (stop) {
3747 /*
3748 * Make it appear like a SCHED_FIFO task, its something
3749 * userspace knows about and won't get confused about.
3750 *
3751 * Also, it will make PI more or less work without too
3752 * much confusion -- but then, stop work should not
3753 * rely on PI working anyway.
3754 */
3755 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
3756
3757 stop->sched_class = &stop_sched_class;
3758
3759 /*
3760 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3761 * adjust the effective priority of a task. As a result,
3762 * rt_mutex_setprio() can trigger (RT) balancing operations,
3763 * which can then trigger wakeups of the stop thread to push
3764 * around the current task.
3765 *
3766 * The stop task itself will never be part of the PI-chain, it
3767 * never blocks, therefore that ->pi_lock recursion is safe.
3768 * Tell lockdep about this by placing the stop->pi_lock in its
3769 * own class.
3770 */
3771 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3772 }
3773
3774 cpu_rq(cpu)->stop = stop;
3775
3776 if (old_stop) {
3777 /*
3778 * Reset it back to a normal scheduling class so that
3779 * it can die in pieces.
3780 */
3781 old_stop->sched_class = &rt_sched_class;
3782 }
3783 }
3784
3785 #else /* CONFIG_SMP */
3786
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)3787 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3788 struct affinity_context *ctx)
3789 {
3790 return set_cpus_allowed_ptr(p, ctx->new_mask);
3791 }
3792
migrate_disable_switch(struct rq * rq,struct task_struct * p)3793 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3794
rq_has_pinned_tasks(struct rq * rq)3795 static inline bool rq_has_pinned_tasks(struct rq *rq)
3796 {
3797 return false;
3798 }
3799
alloc_user_cpus_ptr(int node)3800 static inline cpumask_t *alloc_user_cpus_ptr(int node)
3801 {
3802 return NULL;
3803 }
3804
3805 #endif /* !CONFIG_SMP */
3806
3807 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)3808 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3809 {
3810 struct rq *rq;
3811
3812 if (!schedstat_enabled())
3813 return;
3814
3815 rq = this_rq();
3816
3817 #ifdef CONFIG_SMP
3818 if (cpu == rq->cpu) {
3819 __schedstat_inc(rq->ttwu_local);
3820 __schedstat_inc(p->stats.nr_wakeups_local);
3821 } else {
3822 struct sched_domain *sd;
3823
3824 __schedstat_inc(p->stats.nr_wakeups_remote);
3825
3826 guard(rcu)();
3827 for_each_domain(rq->cpu, sd) {
3828 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3829 __schedstat_inc(sd->ttwu_wake_remote);
3830 break;
3831 }
3832 }
3833 }
3834
3835 if (wake_flags & WF_MIGRATED)
3836 __schedstat_inc(p->stats.nr_wakeups_migrate);
3837 #endif /* CONFIG_SMP */
3838
3839 __schedstat_inc(rq->ttwu_count);
3840 __schedstat_inc(p->stats.nr_wakeups);
3841
3842 if (wake_flags & WF_SYNC)
3843 __schedstat_inc(p->stats.nr_wakeups_sync);
3844 }
3845
3846 /*
3847 * Mark the task runnable.
3848 */
ttwu_do_wakeup(struct task_struct * p)3849 static inline void ttwu_do_wakeup(struct task_struct *p)
3850 {
3851 WRITE_ONCE(p->__state, TASK_RUNNING);
3852 trace_sched_wakeup(p);
3853 }
3854
3855 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)3856 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3857 struct rq_flags *rf)
3858 {
3859 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3860
3861 if (wake_flags & WF_SYNC)
3862 en_flags |= ENQUEUE_WAKEUP_SYNC;
3863
3864 lockdep_assert_rq_held(rq);
3865
3866 if (p->sched_contributes_to_load)
3867 rq->nr_uninterruptible--;
3868
3869 #ifdef CONFIG_SMP
3870 if (wake_flags & WF_MIGRATED)
3871 en_flags |= ENQUEUE_MIGRATED;
3872 else
3873 #endif
3874 if (p->in_iowait) {
3875 delayacct_blkio_end(p);
3876 atomic_dec(&task_rq(p)->nr_iowait);
3877 }
3878
3879 activate_task(rq, p, en_flags);
3880 check_preempt_curr(rq, p, wake_flags);
3881
3882 ttwu_do_wakeup(p);
3883
3884 #ifdef CONFIG_SMP
3885 if (p->sched_class->task_woken) {
3886 /*
3887 * Our task @p is fully woken up and running; so it's safe to
3888 * drop the rq->lock, hereafter rq is only used for statistics.
3889 */
3890 rq_unpin_lock(rq, rf);
3891 p->sched_class->task_woken(rq, p);
3892 rq_repin_lock(rq, rf);
3893 }
3894
3895 if (rq->idle_stamp) {
3896 u64 delta = rq_clock(rq) - rq->idle_stamp;
3897 u64 max = 2*rq->max_idle_balance_cost;
3898
3899 update_avg(&rq->avg_idle, delta);
3900
3901 if (rq->avg_idle > max)
3902 rq->avg_idle = max;
3903
3904 rq->wake_stamp = jiffies;
3905 rq->wake_avg_idle = rq->avg_idle / 2;
3906
3907 rq->idle_stamp = 0;
3908 }
3909 #endif
3910 }
3911
3912 /*
3913 * Consider @p being inside a wait loop:
3914 *
3915 * for (;;) {
3916 * set_current_state(TASK_UNINTERRUPTIBLE);
3917 *
3918 * if (CONDITION)
3919 * break;
3920 *
3921 * schedule();
3922 * }
3923 * __set_current_state(TASK_RUNNING);
3924 *
3925 * between set_current_state() and schedule(). In this case @p is still
3926 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3927 * an atomic manner.
3928 *
3929 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3930 * then schedule() must still happen and p->state can be changed to
3931 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3932 * need to do a full wakeup with enqueue.
3933 *
3934 * Returns: %true when the wakeup is done,
3935 * %false otherwise.
3936 */
ttwu_runnable(struct task_struct * p,int wake_flags)3937 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3938 {
3939 struct rq_flags rf;
3940 struct rq *rq;
3941 int ret = 0;
3942
3943 rq = __task_rq_lock(p, &rf);
3944 if (task_on_rq_queued(p)) {
3945 if (!task_on_cpu(rq, p)) {
3946 /*
3947 * When on_rq && !on_cpu the task is preempted, see if
3948 * it should preempt the task that is current now.
3949 */
3950 update_rq_clock(rq);
3951 check_preempt_curr(rq, p, wake_flags);
3952 }
3953 ttwu_do_wakeup(p);
3954 ret = 1;
3955 }
3956 __task_rq_unlock(rq, &rf);
3957
3958 return ret;
3959 }
3960
3961 #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)3962 void sched_ttwu_pending(void *arg)
3963 {
3964 struct llist_node *llist = arg;
3965 struct rq *rq = this_rq();
3966 struct task_struct *p, *t;
3967 struct rq_flags rf;
3968
3969 if (!llist)
3970 return;
3971
3972 rq_lock_irqsave(rq, &rf);
3973 update_rq_clock(rq);
3974
3975 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3976 if (WARN_ON_ONCE(p->on_cpu))
3977 smp_cond_load_acquire(&p->on_cpu, !VAL);
3978
3979 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3980 set_task_cpu(p, cpu_of(rq));
3981
3982 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3983 }
3984
3985 /*
3986 * Must be after enqueueing at least once task such that
3987 * idle_cpu() does not observe a false-negative -- if it does,
3988 * it is possible for select_idle_siblings() to stack a number
3989 * of tasks on this CPU during that window.
3990 *
3991 * It is ok to clear ttwu_pending when another task pending.
3992 * We will receive IPI after local irq enabled and then enqueue it.
3993 * Since now nr_running > 0, idle_cpu() will always get correct result.
3994 */
3995 WRITE_ONCE(rq->ttwu_pending, 0);
3996 rq_unlock_irqrestore(rq, &rf);
3997 }
3998
3999 /*
4000 * Prepare the scene for sending an IPI for a remote smp_call
4001 *
4002 * Returns true if the caller can proceed with sending the IPI.
4003 * Returns false otherwise.
4004 */
call_function_single_prep_ipi(int cpu)4005 bool call_function_single_prep_ipi(int cpu)
4006 {
4007 if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
4008 trace_sched_wake_idle_without_ipi(cpu);
4009 return false;
4010 }
4011
4012 return true;
4013 }
4014
4015 /*
4016 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
4017 * necessary. The wakee CPU on receipt of the IPI will queue the task
4018 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
4019 * of the wakeup instead of the waker.
4020 */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)4021 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4022 {
4023 struct rq *rq = cpu_rq(cpu);
4024
4025 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
4026
4027 WRITE_ONCE(rq->ttwu_pending, 1);
4028 __smp_call_single_queue(cpu, &p->wake_entry.llist);
4029 }
4030
wake_up_if_idle(int cpu)4031 void wake_up_if_idle(int cpu)
4032 {
4033 struct rq *rq = cpu_rq(cpu);
4034
4035 guard(rcu)();
4036 if (is_idle_task(rcu_dereference(rq->curr))) {
4037 guard(rq_lock_irqsave)(rq);
4038 if (is_idle_task(rq->curr))
4039 resched_curr(rq);
4040 }
4041 }
4042 EXPORT_SYMBOL_GPL(wake_up_if_idle);
4043
cpus_equal_capacity(int this_cpu,int that_cpu)4044 bool cpus_equal_capacity(int this_cpu, int that_cpu)
4045 {
4046 if (!sched_asym_cpucap_active())
4047 return true;
4048
4049 if (this_cpu == that_cpu)
4050 return true;
4051
4052 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
4053 }
4054
cpus_share_cache(int this_cpu,int that_cpu)4055 bool cpus_share_cache(int this_cpu, int that_cpu)
4056 {
4057 if (this_cpu == that_cpu)
4058 return true;
4059
4060 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
4061 }
4062
ttwu_queue_cond(struct task_struct * p,int cpu)4063 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
4064 {
4065 /*
4066 * Do not complicate things with the async wake_list while the CPU is
4067 * in hotplug state.
4068 */
4069 if (!cpu_active(cpu))
4070 return false;
4071
4072 /* Ensure the task will still be allowed to run on the CPU. */
4073 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
4074 return false;
4075
4076 /*
4077 * If the CPU does not share cache, then queue the task on the
4078 * remote rqs wakelist to avoid accessing remote data.
4079 */
4080 if (!cpus_share_cache(smp_processor_id(), cpu))
4081 return true;
4082
4083 if (cpu == smp_processor_id())
4084 return false;
4085
4086 /*
4087 * If the wakee cpu is idle, or the task is descheduling and the
4088 * only running task on the CPU, then use the wakelist to offload
4089 * the task activation to the idle (or soon-to-be-idle) CPU as
4090 * the current CPU is likely busy. nr_running is checked to
4091 * avoid unnecessary task stacking.
4092 *
4093 * Note that we can only get here with (wakee) p->on_rq=0,
4094 * p->on_cpu can be whatever, we've done the dequeue, so
4095 * the wakee has been accounted out of ->nr_running.
4096 */
4097 if (!cpu_rq(cpu)->nr_running)
4098 return true;
4099
4100 return false;
4101 }
4102
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)4103 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4104 {
4105 bool cond = false;
4106
4107 trace_android_rvh_ttwu_cond(cpu, &cond);
4108
4109 if ((sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) ||
4110 cond) {
4111 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
4112 __ttwu_queue_wakelist(p, cpu, wake_flags);
4113 return true;
4114 }
4115
4116 return false;
4117 }
4118
4119 #else /* !CONFIG_SMP */
4120
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)4121 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4122 {
4123 return false;
4124 }
4125
4126 #endif /* CONFIG_SMP */
4127
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)4128 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4129 {
4130 struct rq *rq = cpu_rq(cpu);
4131 struct rq_flags rf;
4132
4133 if (ttwu_queue_wakelist(p, cpu, wake_flags))
4134 return;
4135
4136 rq_lock(rq, &rf);
4137 update_rq_clock(rq);
4138 ttwu_do_activate(rq, p, wake_flags, &rf);
4139 rq_unlock(rq, &rf);
4140 }
4141
4142 /*
4143 * Invoked from try_to_wake_up() to check whether the task can be woken up.
4144 *
4145 * The caller holds p::pi_lock if p != current or has preemption
4146 * disabled when p == current.
4147 *
4148 * The rules of saved_state:
4149 *
4150 * The related locking code always holds p::pi_lock when updating
4151 * p::saved_state, which means the code is fully serialized in both cases.
4152 *
4153 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
4154 * No other bits set. This allows to distinguish all wakeup scenarios.
4155 *
4156 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
4157 * allows us to prevent early wakeup of tasks before they can be run on
4158 * asymmetric ISA architectures (eg ARMv9).
4159 */
4160 static __always_inline
ttwu_state_match(struct task_struct * p,unsigned int state,int * success)4161 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4162 {
4163 int match;
4164
4165 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4166 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4167 state != TASK_RTLOCK_WAIT);
4168 }
4169
4170 *success = !!(match = __task_state_match(p, state));
4171
4172 /*
4173 * Saved state preserves the task state across blocking on
4174 * an RT lock or TASK_FREEZABLE tasks. If the state matches,
4175 * set p::saved_state to TASK_RUNNING, but do not wake the task
4176 * because it waits for a lock wakeup or __thaw_task(). Also
4177 * indicate success because from the regular waker's point of
4178 * view this has succeeded.
4179 *
4180 * After acquiring the lock the task will restore p::__state
4181 * from p::saved_state which ensures that the regular
4182 * wakeup is not lost. The restore will also set
4183 * p::saved_state to TASK_RUNNING so any further tests will
4184 * not result in false positives vs. @success
4185 */
4186 if (match < 0)
4187 p->saved_state = TASK_RUNNING;
4188
4189 return match > 0;
4190 }
4191
4192 /*
4193 * Notes on Program-Order guarantees on SMP systems.
4194 *
4195 * MIGRATION
4196 *
4197 * The basic program-order guarantee on SMP systems is that when a task [t]
4198 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4199 * execution on its new CPU [c1].
4200 *
4201 * For migration (of runnable tasks) this is provided by the following means:
4202 *
4203 * A) UNLOCK of the rq(c0)->lock scheduling out task t
4204 * B) migration for t is required to synchronize *both* rq(c0)->lock and
4205 * rq(c1)->lock (if not at the same time, then in that order).
4206 * C) LOCK of the rq(c1)->lock scheduling in task
4207 *
4208 * Release/acquire chaining guarantees that B happens after A and C after B.
4209 * Note: the CPU doing B need not be c0 or c1
4210 *
4211 * Example:
4212 *
4213 * CPU0 CPU1 CPU2
4214 *
4215 * LOCK rq(0)->lock
4216 * sched-out X
4217 * sched-in Y
4218 * UNLOCK rq(0)->lock
4219 *
4220 * LOCK rq(0)->lock // orders against CPU0
4221 * dequeue X
4222 * UNLOCK rq(0)->lock
4223 *
4224 * LOCK rq(1)->lock
4225 * enqueue X
4226 * UNLOCK rq(1)->lock
4227 *
4228 * LOCK rq(1)->lock // orders against CPU2
4229 * sched-out Z
4230 * sched-in X
4231 * UNLOCK rq(1)->lock
4232 *
4233 *
4234 * BLOCKING -- aka. SLEEP + WAKEUP
4235 *
4236 * For blocking we (obviously) need to provide the same guarantee as for
4237 * migration. However the means are completely different as there is no lock
4238 * chain to provide order. Instead we do:
4239 *
4240 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
4241 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4242 *
4243 * Example:
4244 *
4245 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
4246 *
4247 * LOCK rq(0)->lock LOCK X->pi_lock
4248 * dequeue X
4249 * sched-out X
4250 * smp_store_release(X->on_cpu, 0);
4251 *
4252 * smp_cond_load_acquire(&X->on_cpu, !VAL);
4253 * X->state = WAKING
4254 * set_task_cpu(X,2)
4255 *
4256 * LOCK rq(2)->lock
4257 * enqueue X
4258 * X->state = RUNNING
4259 * UNLOCK rq(2)->lock
4260 *
4261 * LOCK rq(2)->lock // orders against CPU1
4262 * sched-out Z
4263 * sched-in X
4264 * UNLOCK rq(2)->lock
4265 *
4266 * UNLOCK X->pi_lock
4267 * UNLOCK rq(0)->lock
4268 *
4269 *
4270 * However, for wakeups there is a second guarantee we must provide, namely we
4271 * must ensure that CONDITION=1 done by the caller can not be reordered with
4272 * accesses to the task state; see try_to_wake_up() and set_current_state().
4273 */
4274
4275 /**
4276 * try_to_wake_up - wake up a thread
4277 * @p: the thread to be awakened
4278 * @state: the mask of task states that can be woken
4279 * @wake_flags: wake modifier flags (WF_*)
4280 *
4281 * Conceptually does:
4282 *
4283 * If (@state & @p->state) @p->state = TASK_RUNNING.
4284 *
4285 * If the task was not queued/runnable, also place it back on a runqueue.
4286 *
4287 * This function is atomic against schedule() which would dequeue the task.
4288 *
4289 * It issues a full memory barrier before accessing @p->state, see the comment
4290 * with set_current_state().
4291 *
4292 * Uses p->pi_lock to serialize against concurrent wake-ups.
4293 *
4294 * Relies on p->pi_lock stabilizing:
4295 * - p->sched_class
4296 * - p->cpus_ptr
4297 * - p->sched_task_group
4298 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4299 *
4300 * Tries really hard to only take one task_rq(p)->lock for performance.
4301 * Takes rq->lock in:
4302 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
4303 * - ttwu_queue() -- new rq, for enqueue of the task;
4304 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4305 *
4306 * As a consequence we race really badly with just about everything. See the
4307 * many memory barriers and their comments for details.
4308 *
4309 * Return: %true if @p->state changes (an actual wakeup was done),
4310 * %false otherwise.
4311 */
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)4312 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4313 {
4314 guard(preempt)();
4315 int cpu, success = 0;
4316
4317 if (p == current) {
4318 /*
4319 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4320 * == smp_processor_id()'. Together this means we can special
4321 * case the whole 'p->on_rq && ttwu_runnable()' case below
4322 * without taking any locks.
4323 *
4324 * In particular:
4325 * - we rely on Program-Order guarantees for all the ordering,
4326 * - we're serialized against set_special_state() by virtue of
4327 * it disabling IRQs (this allows not taking ->pi_lock).
4328 */
4329 if (!ttwu_state_match(p, state, &success))
4330 goto out;
4331
4332 trace_sched_waking(p);
4333 ttwu_do_wakeup(p);
4334 goto out;
4335 }
4336
4337 /*
4338 * If we are going to wake up a thread waiting for CONDITION we
4339 * need to ensure that CONDITION=1 done by the caller can not be
4340 * reordered with p->state check below. This pairs with smp_store_mb()
4341 * in set_current_state() that the waiting thread does.
4342 */
4343 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4344 smp_mb__after_spinlock();
4345 if (!ttwu_state_match(p, state, &success))
4346 break;
4347
4348 trace_sched_waking(p);
4349
4350 /*
4351 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4352 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4353 * in smp_cond_load_acquire() below.
4354 *
4355 * sched_ttwu_pending() try_to_wake_up()
4356 * STORE p->on_rq = 1 LOAD p->state
4357 * UNLOCK rq->lock
4358 *
4359 * __schedule() (switch to task 'p')
4360 * LOCK rq->lock smp_rmb();
4361 * smp_mb__after_spinlock();
4362 * UNLOCK rq->lock
4363 *
4364 * [task p]
4365 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
4366 *
4367 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4368 * __schedule(). See the comment for smp_mb__after_spinlock().
4369 *
4370 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4371 */
4372 smp_rmb();
4373 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4374 break;
4375
4376 if (READ_ONCE(p->__state) & TASK_UNINTERRUPTIBLE)
4377 trace_sched_blocked_reason(p);
4378
4379 #ifdef CONFIG_SMP
4380 /*
4381 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4382 * possible to, falsely, observe p->on_cpu == 0.
4383 *
4384 * One must be running (->on_cpu == 1) in order to remove oneself
4385 * from the runqueue.
4386 *
4387 * __schedule() (switch to task 'p') try_to_wake_up()
4388 * STORE p->on_cpu = 1 LOAD p->on_rq
4389 * UNLOCK rq->lock
4390 *
4391 * __schedule() (put 'p' to sleep)
4392 * LOCK rq->lock smp_rmb();
4393 * smp_mb__after_spinlock();
4394 * STORE p->on_rq = 0 LOAD p->on_cpu
4395 *
4396 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4397 * __schedule(). See the comment for smp_mb__after_spinlock().
4398 *
4399 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4400 * schedule()'s deactivate_task() has 'happened' and p will no longer
4401 * care about it's own p->state. See the comment in __schedule().
4402 */
4403 smp_acquire__after_ctrl_dep();
4404
4405 /*
4406 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4407 * == 0), which means we need to do an enqueue, change p->state to
4408 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4409 * enqueue, such as ttwu_queue_wakelist().
4410 */
4411 WRITE_ONCE(p->__state, TASK_WAKING);
4412
4413 /*
4414 * If the owning (remote) CPU is still in the middle of schedule() with
4415 * this task as prev, considering queueing p on the remote CPUs wake_list
4416 * which potentially sends an IPI instead of spinning on p->on_cpu to
4417 * let the waker make forward progress. This is safe because IRQs are
4418 * disabled and the IPI will deliver after on_cpu is cleared.
4419 *
4420 * Ensure we load task_cpu(p) after p->on_cpu:
4421 *
4422 * set_task_cpu(p, cpu);
4423 * STORE p->cpu = @cpu
4424 * __schedule() (switch to task 'p')
4425 * LOCK rq->lock
4426 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
4427 * STORE p->on_cpu = 1 LOAD p->cpu
4428 *
4429 * to ensure we observe the correct CPU on which the task is currently
4430 * scheduling.
4431 */
4432 if (smp_load_acquire(&p->on_cpu) &&
4433 ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4434 break;
4435
4436 /*
4437 * If the owning (remote) CPU is still in the middle of schedule() with
4438 * this task as prev, wait until it's done referencing the task.
4439 *
4440 * Pairs with the smp_store_release() in finish_task().
4441 *
4442 * This ensures that tasks getting woken will be fully ordered against
4443 * their previous state and preserve Program Order.
4444 */
4445 smp_cond_load_acquire(&p->on_cpu, !VAL);
4446
4447 trace_android_rvh_try_to_wake_up(p);
4448
4449 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4450 if (task_cpu(p) != cpu) {
4451 if (p->in_iowait) {
4452 delayacct_blkio_end(p);
4453 atomic_dec(&task_rq(p)->nr_iowait);
4454 }
4455
4456 wake_flags |= WF_MIGRATED;
4457 psi_ttwu_dequeue(p);
4458 set_task_cpu(p, cpu);
4459 }
4460 #else
4461 cpu = task_cpu(p);
4462 #endif /* CONFIG_SMP */
4463
4464 ttwu_queue(p, cpu, wake_flags);
4465 }
4466 out:
4467 if (success) {
4468 trace_android_rvh_try_to_wake_up_success(p);
4469 ttwu_stat(p, task_cpu(p), wake_flags);
4470 }
4471 return success;
4472 }
4473
__task_needs_rq_lock(struct task_struct * p)4474 static bool __task_needs_rq_lock(struct task_struct *p)
4475 {
4476 unsigned int state = READ_ONCE(p->__state);
4477
4478 /*
4479 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4480 * the task is blocked. Make sure to check @state since ttwu() can drop
4481 * locks at the end, see ttwu_queue_wakelist().
4482 */
4483 if (state == TASK_RUNNING || state == TASK_WAKING)
4484 return true;
4485
4486 /*
4487 * Ensure we load p->on_rq after p->__state, otherwise it would be
4488 * possible to, falsely, observe p->on_rq == 0.
4489 *
4490 * See try_to_wake_up() for a longer comment.
4491 */
4492 smp_rmb();
4493 if (p->on_rq)
4494 return true;
4495
4496 #ifdef CONFIG_SMP
4497 /*
4498 * Ensure the task has finished __schedule() and will not be referenced
4499 * anymore. Again, see try_to_wake_up() for a longer comment.
4500 */
4501 smp_rmb();
4502 smp_cond_load_acquire(&p->on_cpu, !VAL);
4503 #endif
4504
4505 return false;
4506 }
4507
4508 /**
4509 * task_call_func - Invoke a function on task in fixed state
4510 * @p: Process for which the function is to be invoked, can be @current.
4511 * @func: Function to invoke.
4512 * @arg: Argument to function.
4513 *
4514 * Fix the task in it's current state by avoiding wakeups and or rq operations
4515 * and call @func(@arg) on it. This function can use ->on_rq and task_curr()
4516 * to work out what the state is, if required. Given that @func can be invoked
4517 * with a runqueue lock held, it had better be quite lightweight.
4518 *
4519 * Returns:
4520 * Whatever @func returns
4521 */
task_call_func(struct task_struct * p,task_call_f func,void * arg)4522 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4523 {
4524 struct rq *rq = NULL;
4525 struct rq_flags rf;
4526 int ret;
4527
4528 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4529
4530 if (__task_needs_rq_lock(p))
4531 rq = __task_rq_lock(p, &rf);
4532
4533 /*
4534 * At this point the task is pinned; either:
4535 * - blocked and we're holding off wakeups (pi->lock)
4536 * - woken, and we're holding off enqueue (rq->lock)
4537 * - queued, and we're holding off schedule (rq->lock)
4538 * - running, and we're holding off de-schedule (rq->lock)
4539 *
4540 * The called function (@func) can use: task_curr(), p->on_rq and
4541 * p->__state to differentiate between these states.
4542 */
4543 ret = func(p, arg);
4544
4545 if (rq)
4546 rq_unlock(rq, &rf);
4547
4548 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4549 return ret;
4550 }
4551
4552 /**
4553 * cpu_curr_snapshot - Return a snapshot of the currently running task
4554 * @cpu: The CPU on which to snapshot the task.
4555 *
4556 * Returns the task_struct pointer of the task "currently" running on
4557 * the specified CPU.
4558 *
4559 * If the specified CPU was offline, the return value is whatever it
4560 * is, perhaps a pointer to the task_struct structure of that CPU's idle
4561 * task, but there is no guarantee. Callers wishing a useful return
4562 * value must take some action to ensure that the specified CPU remains
4563 * online throughout.
4564 *
4565 * This function executes full memory barriers before and after fetching
4566 * the pointer, which permits the caller to confine this function's fetch
4567 * with respect to the caller's accesses to other shared variables.
4568 */
cpu_curr_snapshot(int cpu)4569 struct task_struct *cpu_curr_snapshot(int cpu)
4570 {
4571 struct rq *rq = cpu_rq(cpu);
4572 struct task_struct *t;
4573 struct rq_flags rf;
4574
4575 rq_lock_irqsave(rq, &rf);
4576 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4577 t = rcu_dereference(cpu_curr(cpu));
4578 rq_unlock_irqrestore(rq, &rf);
4579 smp_mb(); /* Pairing determined by caller's synchronization design. */
4580
4581 return t;
4582 }
4583
4584 /**
4585 * wake_up_process - Wake up a specific process
4586 * @p: The process to be woken up.
4587 *
4588 * Attempt to wake up the nominated process and move it to the set of runnable
4589 * processes.
4590 *
4591 * Return: 1 if the process was woken up, 0 if it was already running.
4592 *
4593 * This function executes a full memory barrier before accessing the task state.
4594 */
wake_up_process(struct task_struct * p)4595 int wake_up_process(struct task_struct *p)
4596 {
4597 return try_to_wake_up(p, TASK_NORMAL, 0);
4598 }
4599 EXPORT_SYMBOL(wake_up_process);
4600
wake_up_state(struct task_struct * p,unsigned int state)4601 int wake_up_state(struct task_struct *p, unsigned int state)
4602 {
4603 return try_to_wake_up(p, state, 0);
4604 }
4605 EXPORT_SYMBOL(wake_up_state);
4606
4607 /*
4608 * Perform scheduler related setup for a newly forked process p.
4609 * p is forked by current.
4610 *
4611 * __sched_fork() is basic setup used by init_idle() too:
4612 */
__sched_fork(unsigned long clone_flags,struct task_struct * p)4613 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4614 {
4615 p->on_rq = 0;
4616
4617 p->se.on_rq = 0;
4618 p->se.exec_start = 0;
4619 p->se.sum_exec_runtime = 0;
4620 p->se.prev_sum_exec_runtime = 0;
4621 p->se.nr_migrations = 0;
4622 p->se.vruntime = 0;
4623 p->se.vlag = 0;
4624 p->se.slice = sysctl_sched_base_slice;
4625 INIT_LIST_HEAD(&p->se.group_node);
4626
4627 #ifdef CONFIG_FAIR_GROUP_SCHED
4628 p->se.cfs_rq = NULL;
4629 #endif
4630
4631 trace_android_rvh_sched_fork_init(p);
4632
4633 #ifdef CONFIG_SCHEDSTATS
4634 /* Even if schedstat is disabled, there should not be garbage */
4635 memset(&p->stats, 0, sizeof(p->stats));
4636 #endif
4637
4638 RB_CLEAR_NODE(&p->dl.rb_node);
4639 init_dl_task_timer(&p->dl);
4640 init_dl_inactive_task_timer(&p->dl);
4641 __dl_clear_params(p);
4642
4643 INIT_LIST_HEAD(&p->rt.run_list);
4644 p->rt.timeout = 0;
4645 p->rt.time_slice = sched_rr_timeslice;
4646 p->rt.on_rq = 0;
4647 p->rt.on_list = 0;
4648
4649 #ifdef CONFIG_PREEMPT_NOTIFIERS
4650 INIT_HLIST_HEAD(&p->preempt_notifiers);
4651 #endif
4652
4653 #ifdef CONFIG_COMPACTION
4654 p->capture_control = NULL;
4655 #endif
4656 init_numa_balancing(clone_flags, p);
4657 #ifdef CONFIG_SMP
4658 p->wake_entry.u_flags = CSD_TYPE_TTWU;
4659 p->migration_pending = NULL;
4660 #endif
4661 init_sched_mm_cid(p);
4662 }
4663
4664 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4665
4666 #ifdef CONFIG_NUMA_BALANCING
4667
4668 int sysctl_numa_balancing_mode;
4669
__set_numabalancing_state(bool enabled)4670 static void __set_numabalancing_state(bool enabled)
4671 {
4672 if (enabled)
4673 static_branch_enable(&sched_numa_balancing);
4674 else
4675 static_branch_disable(&sched_numa_balancing);
4676 }
4677
set_numabalancing_state(bool enabled)4678 void set_numabalancing_state(bool enabled)
4679 {
4680 if (enabled)
4681 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4682 else
4683 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4684 __set_numabalancing_state(enabled);
4685 }
4686
4687 #ifdef CONFIG_PROC_SYSCTL
reset_memory_tiering(void)4688 static void reset_memory_tiering(void)
4689 {
4690 struct pglist_data *pgdat;
4691
4692 for_each_online_pgdat(pgdat) {
4693 pgdat->nbp_threshold = 0;
4694 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4695 pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4696 }
4697 }
4698
sysctl_numa_balancing(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4699 static int sysctl_numa_balancing(struct ctl_table *table, int write,
4700 void *buffer, size_t *lenp, loff_t *ppos)
4701 {
4702 struct ctl_table t;
4703 int err;
4704 int state = sysctl_numa_balancing_mode;
4705
4706 if (write && !capable(CAP_SYS_ADMIN))
4707 return -EPERM;
4708
4709 t = *table;
4710 t.data = &state;
4711 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4712 if (err < 0)
4713 return err;
4714 if (write) {
4715 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4716 (state & NUMA_BALANCING_MEMORY_TIERING))
4717 reset_memory_tiering();
4718 sysctl_numa_balancing_mode = state;
4719 __set_numabalancing_state(state);
4720 }
4721 return err;
4722 }
4723 #endif
4724 #endif
4725
4726 #ifdef CONFIG_SCHEDSTATS
4727
4728 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4729
set_schedstats(bool enabled)4730 static void set_schedstats(bool enabled)
4731 {
4732 if (enabled)
4733 static_branch_enable(&sched_schedstats);
4734 else
4735 static_branch_disable(&sched_schedstats);
4736 }
4737
force_schedstat_enabled(void)4738 void force_schedstat_enabled(void)
4739 {
4740 if (!schedstat_enabled()) {
4741 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4742 static_branch_enable(&sched_schedstats);
4743 }
4744 }
4745
setup_schedstats(char * str)4746 static int __init setup_schedstats(char *str)
4747 {
4748 int ret = 0;
4749 if (!str)
4750 goto out;
4751
4752 if (!strcmp(str, "enable")) {
4753 set_schedstats(true);
4754 ret = 1;
4755 } else if (!strcmp(str, "disable")) {
4756 set_schedstats(false);
4757 ret = 1;
4758 }
4759 out:
4760 if (!ret)
4761 pr_warn("Unable to parse schedstats=\n");
4762
4763 return ret;
4764 }
4765 __setup("schedstats=", setup_schedstats);
4766
4767 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4768 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4769 size_t *lenp, loff_t *ppos)
4770 {
4771 struct ctl_table t;
4772 int err;
4773 int state = static_branch_likely(&sched_schedstats);
4774
4775 if (write && !capable(CAP_SYS_ADMIN))
4776 return -EPERM;
4777
4778 t = *table;
4779 t.data = &state;
4780 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4781 if (err < 0)
4782 return err;
4783 if (write)
4784 set_schedstats(state);
4785 return err;
4786 }
4787 #endif /* CONFIG_PROC_SYSCTL */
4788 #endif /* CONFIG_SCHEDSTATS */
4789
4790 #ifdef CONFIG_SYSCTL
4791 static struct ctl_table sched_core_sysctls[] = {
4792 #ifdef CONFIG_SCHEDSTATS
4793 {
4794 .procname = "sched_schedstats",
4795 .data = NULL,
4796 .maxlen = sizeof(unsigned int),
4797 .mode = 0644,
4798 .proc_handler = sysctl_schedstats,
4799 .extra1 = SYSCTL_ZERO,
4800 .extra2 = SYSCTL_ONE,
4801 },
4802 #endif /* CONFIG_SCHEDSTATS */
4803 #ifdef CONFIG_UCLAMP_TASK
4804 {
4805 .procname = "sched_util_clamp_min",
4806 .data = &sysctl_sched_uclamp_util_min,
4807 .maxlen = sizeof(unsigned int),
4808 .mode = 0644,
4809 .proc_handler = sysctl_sched_uclamp_handler,
4810 },
4811 {
4812 .procname = "sched_util_clamp_max",
4813 .data = &sysctl_sched_uclamp_util_max,
4814 .maxlen = sizeof(unsigned int),
4815 .mode = 0644,
4816 .proc_handler = sysctl_sched_uclamp_handler,
4817 },
4818 {
4819 .procname = "sched_util_clamp_min_rt_default",
4820 .data = &sysctl_sched_uclamp_util_min_rt_default,
4821 .maxlen = sizeof(unsigned int),
4822 .mode = 0644,
4823 .proc_handler = sysctl_sched_uclamp_handler,
4824 },
4825 #endif /* CONFIG_UCLAMP_TASK */
4826 #ifdef CONFIG_NUMA_BALANCING
4827 {
4828 .procname = "numa_balancing",
4829 .data = NULL, /* filled in by handler */
4830 .maxlen = sizeof(unsigned int),
4831 .mode = 0644,
4832 .proc_handler = sysctl_numa_balancing,
4833 .extra1 = SYSCTL_ZERO,
4834 .extra2 = SYSCTL_FOUR,
4835 },
4836 #endif /* CONFIG_NUMA_BALANCING */
4837 {}
4838 };
sched_core_sysctl_init(void)4839 static int __init sched_core_sysctl_init(void)
4840 {
4841 register_sysctl_init("kernel", sched_core_sysctls);
4842 return 0;
4843 }
4844 late_initcall(sched_core_sysctl_init);
4845 #endif /* CONFIG_SYSCTL */
4846
4847 /*
4848 * fork()/clone()-time setup:
4849 */
sched_fork(unsigned long clone_flags,struct task_struct * p)4850 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4851 {
4852 trace_android_rvh_sched_fork(p);
4853
4854 __sched_fork(clone_flags, p);
4855 /*
4856 * We mark the process as NEW here. This guarantees that
4857 * nobody will actually run it, and a signal or other external
4858 * event cannot wake it up and insert it on the runqueue either.
4859 */
4860 p->__state = TASK_NEW;
4861
4862 /*
4863 * Make sure we do not leak PI boosting priority to the child.
4864 */
4865 p->prio = current->normal_prio;
4866 trace_android_rvh_prepare_prio_fork(p);
4867
4868 uclamp_fork(p);
4869
4870 /*
4871 * Revert to default priority/policy on fork if requested.
4872 */
4873 if (unlikely(p->sched_reset_on_fork)) {
4874 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4875 p->policy = SCHED_NORMAL;
4876 p->static_prio = NICE_TO_PRIO(0);
4877 p->rt_priority = 0;
4878 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4879 p->static_prio = NICE_TO_PRIO(0);
4880
4881 p->prio = p->normal_prio = p->static_prio;
4882 set_load_weight(p, false);
4883
4884 /*
4885 * We don't need the reset flag anymore after the fork. It has
4886 * fulfilled its duty:
4887 */
4888 p->sched_reset_on_fork = 0;
4889 }
4890
4891 if (dl_prio(p->prio))
4892 return -EAGAIN;
4893 else if (rt_prio(p->prio))
4894 p->sched_class = &rt_sched_class;
4895 else
4896 p->sched_class = &fair_sched_class;
4897
4898 init_entity_runnable_average(&p->se);
4899 trace_android_rvh_finish_prio_fork(p);
4900
4901
4902 #ifdef CONFIG_SCHED_INFO
4903 if (likely(sched_info_on()))
4904 memset(&p->sched_info, 0, sizeof(p->sched_info));
4905 #endif
4906 #if defined(CONFIG_SMP)
4907 p->on_cpu = 0;
4908 #endif
4909 init_task_preempt_count(p);
4910 #ifdef CONFIG_SMP
4911 plist_node_init(&p->pushable_tasks, MAX_PRIO);
4912 RB_CLEAR_NODE(&p->pushable_dl_tasks);
4913 #endif
4914 return 0;
4915 }
4916
sched_cgroup_fork(struct task_struct * p,struct kernel_clone_args * kargs)4917 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4918 {
4919 unsigned long flags;
4920
4921 /*
4922 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4923 * required yet, but lockdep gets upset if rules are violated.
4924 */
4925 raw_spin_lock_irqsave(&p->pi_lock, flags);
4926 #ifdef CONFIG_CGROUP_SCHED
4927 if (1) {
4928 struct task_group *tg;
4929 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4930 struct task_group, css);
4931 tg = autogroup_task_group(p, tg);
4932 p->sched_task_group = tg;
4933 }
4934 #endif
4935 rseq_migrate(p);
4936 /*
4937 * We're setting the CPU for the first time, we don't migrate,
4938 * so use __set_task_cpu().
4939 */
4940 __set_task_cpu(p, smp_processor_id());
4941 if (p->sched_class->task_fork)
4942 p->sched_class->task_fork(p);
4943 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4944 }
4945
sched_post_fork(struct task_struct * p)4946 void sched_post_fork(struct task_struct *p)
4947 {
4948 uclamp_post_fork(p);
4949 }
4950
to_ratio(u64 period,u64 runtime)4951 unsigned long to_ratio(u64 period, u64 runtime)
4952 {
4953 if (runtime == RUNTIME_INF)
4954 return BW_UNIT;
4955
4956 /*
4957 * Doing this here saves a lot of checks in all
4958 * the calling paths, and returning zero seems
4959 * safe for them anyway.
4960 */
4961 if (period == 0)
4962 return 0;
4963
4964 return div64_u64(runtime << BW_SHIFT, period);
4965 }
4966
4967 /*
4968 * wake_up_new_task - wake up a newly created task for the first time.
4969 *
4970 * This function will do some initial scheduler statistics housekeeping
4971 * that must be done for every newly created context, then puts the task
4972 * on the runqueue and wakes it.
4973 */
wake_up_new_task(struct task_struct * p)4974 void wake_up_new_task(struct task_struct *p)
4975 {
4976 struct rq_flags rf;
4977 struct rq *rq;
4978
4979 trace_android_rvh_wake_up_new_task(p);
4980
4981 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4982 WRITE_ONCE(p->__state, TASK_RUNNING);
4983 #ifdef CONFIG_SMP
4984 /*
4985 * Fork balancing, do it here and not earlier because:
4986 * - cpus_ptr can change in the fork path
4987 * - any previously selected CPU might disappear through hotplug
4988 *
4989 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4990 * as we're not fully set-up yet.
4991 */
4992 p->recent_used_cpu = task_cpu(p);
4993 rseq_migrate(p);
4994 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4995 #endif
4996 rq = __task_rq_lock(p, &rf);
4997 update_rq_clock(rq);
4998 post_init_entity_util_avg(p);
4999 trace_android_rvh_new_task_stats(p);
5000
5001 activate_task(rq, p, ENQUEUE_NOCLOCK);
5002 trace_sched_wakeup_new(p);
5003 check_preempt_curr(rq, p, WF_FORK);
5004 #ifdef CONFIG_SMP
5005 if (p->sched_class->task_woken) {
5006 /*
5007 * Nothing relies on rq->lock after this, so it's fine to
5008 * drop it.
5009 */
5010 rq_unpin_lock(rq, &rf);
5011 p->sched_class->task_woken(rq, p);
5012 rq_repin_lock(rq, &rf);
5013 }
5014 #endif
5015 task_rq_unlock(rq, p, &rf);
5016 }
5017
5018 #ifdef CONFIG_PREEMPT_NOTIFIERS
5019
5020 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
5021
preempt_notifier_inc(void)5022 void preempt_notifier_inc(void)
5023 {
5024 static_branch_inc(&preempt_notifier_key);
5025 }
5026 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
5027
preempt_notifier_dec(void)5028 void preempt_notifier_dec(void)
5029 {
5030 static_branch_dec(&preempt_notifier_key);
5031 }
5032 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
5033
5034 /**
5035 * preempt_notifier_register - tell me when current is being preempted & rescheduled
5036 * @notifier: notifier struct to register
5037 */
preempt_notifier_register(struct preempt_notifier * notifier)5038 void preempt_notifier_register(struct preempt_notifier *notifier)
5039 {
5040 if (!static_branch_unlikely(&preempt_notifier_key))
5041 WARN(1, "registering preempt_notifier while notifiers disabled\n");
5042
5043 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
5044 }
5045 EXPORT_SYMBOL_GPL(preempt_notifier_register);
5046
5047 /**
5048 * preempt_notifier_unregister - no longer interested in preemption notifications
5049 * @notifier: notifier struct to unregister
5050 *
5051 * This is *not* safe to call from within a preemption notifier.
5052 */
preempt_notifier_unregister(struct preempt_notifier * notifier)5053 void preempt_notifier_unregister(struct preempt_notifier *notifier)
5054 {
5055 hlist_del(¬ifier->link);
5056 }
5057 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
5058
__fire_sched_in_preempt_notifiers(struct task_struct * curr)5059 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
5060 {
5061 struct preempt_notifier *notifier;
5062
5063 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
5064 notifier->ops->sched_in(notifier, raw_smp_processor_id());
5065 }
5066
fire_sched_in_preempt_notifiers(struct task_struct * curr)5067 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
5068 {
5069 if (static_branch_unlikely(&preempt_notifier_key))
5070 __fire_sched_in_preempt_notifiers(curr);
5071 }
5072
5073 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)5074 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
5075 struct task_struct *next)
5076 {
5077 struct preempt_notifier *notifier;
5078
5079 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
5080 notifier->ops->sched_out(notifier, next);
5081 }
5082
5083 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)5084 fire_sched_out_preempt_notifiers(struct task_struct *curr,
5085 struct task_struct *next)
5086 {
5087 if (static_branch_unlikely(&preempt_notifier_key))
5088 __fire_sched_out_preempt_notifiers(curr, next);
5089 }
5090
5091 #else /* !CONFIG_PREEMPT_NOTIFIERS */
5092
fire_sched_in_preempt_notifiers(struct task_struct * curr)5093 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
5094 {
5095 }
5096
5097 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)5098 fire_sched_out_preempt_notifiers(struct task_struct *curr,
5099 struct task_struct *next)
5100 {
5101 }
5102
5103 #endif /* CONFIG_PREEMPT_NOTIFIERS */
5104
prepare_task(struct task_struct * next)5105 static inline void prepare_task(struct task_struct *next)
5106 {
5107 #ifdef CONFIG_SMP
5108 /*
5109 * Claim the task as running, we do this before switching to it
5110 * such that any running task will have this set.
5111 *
5112 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
5113 * its ordering comment.
5114 */
5115 WRITE_ONCE(next->on_cpu, 1);
5116 #endif
5117 }
5118
finish_task(struct task_struct * prev)5119 static inline void finish_task(struct task_struct *prev)
5120 {
5121 #ifdef CONFIG_SMP
5122 /*
5123 * This must be the very last reference to @prev from this CPU. After
5124 * p->on_cpu is cleared, the task can be moved to a different CPU. We
5125 * must ensure this doesn't happen until the switch is completely
5126 * finished.
5127 *
5128 * In particular, the load of prev->state in finish_task_switch() must
5129 * happen before this.
5130 *
5131 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5132 */
5133 smp_store_release(&prev->on_cpu, 0);
5134 #endif
5135 }
5136
5137 #ifdef CONFIG_SMP
5138
do_balance_callbacks(struct rq * rq,struct balance_callback * head)5139 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5140 {
5141 void (*func)(struct rq *rq);
5142 struct balance_callback *next;
5143
5144 lockdep_assert_rq_held(rq);
5145
5146 while (head) {
5147 func = (void (*)(struct rq *))head->func;
5148 next = head->next;
5149 head->next = NULL;
5150 head = next;
5151
5152 func(rq);
5153 }
5154 }
5155
5156 static void balance_push(struct rq *rq);
5157
5158 /*
5159 * balance_push_callback is a right abuse of the callback interface and plays
5160 * by significantly different rules.
5161 *
5162 * Where the normal balance_callback's purpose is to be ran in the same context
5163 * that queued it (only later, when it's safe to drop rq->lock again),
5164 * balance_push_callback is specifically targeted at __schedule().
5165 *
5166 * This abuse is tolerated because it places all the unlikely/odd cases behind
5167 * a single test, namely: rq->balance_callback == NULL.
5168 */
5169 struct balance_callback balance_push_callback = {
5170 .next = NULL,
5171 .func = balance_push,
5172 };
5173 EXPORT_SYMBOL_GPL(balance_push_callback);
5174
5175 static inline struct balance_callback *
__splice_balance_callbacks(struct rq * rq,bool split)5176 __splice_balance_callbacks(struct rq *rq, bool split)
5177 {
5178 struct balance_callback *head = rq->balance_callback;
5179
5180 if (likely(!head))
5181 return NULL;
5182
5183 lockdep_assert_rq_held(rq);
5184 /*
5185 * Must not take balance_push_callback off the list when
5186 * splice_balance_callbacks() and balance_callbacks() are not
5187 * in the same rq->lock section.
5188 *
5189 * In that case it would be possible for __schedule() to interleave
5190 * and observe the list empty.
5191 */
5192 if (split && head == &balance_push_callback)
5193 head = NULL;
5194 else
5195 rq->balance_callback = NULL;
5196
5197 return head;
5198 }
5199
splice_balance_callbacks(struct rq * rq)5200 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5201 {
5202 return __splice_balance_callbacks(rq, true);
5203 }
5204
__balance_callbacks(struct rq * rq)5205 void __balance_callbacks(struct rq *rq)
5206 {
5207 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5208 }
5209 EXPORT_SYMBOL_GPL(__balance_callbacks);
5210
balance_callbacks(struct rq * rq,struct balance_callback * head)5211 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5212 {
5213 unsigned long flags;
5214
5215 if (unlikely(head)) {
5216 raw_spin_rq_lock_irqsave(rq, flags);
5217 do_balance_callbacks(rq, head);
5218 raw_spin_rq_unlock_irqrestore(rq, flags);
5219 }
5220 }
5221
5222 #else
5223
__balance_callbacks(struct rq * rq)5224 static inline void __balance_callbacks(struct rq *rq)
5225 {
5226 }
5227
splice_balance_callbacks(struct rq * rq)5228 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5229 {
5230 return NULL;
5231 }
5232
balance_callbacks(struct rq * rq,struct balance_callback * head)5233 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5234 {
5235 }
5236
5237 #endif
5238
5239 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)5240 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5241 {
5242 /*
5243 * Since the runqueue lock will be released by the next
5244 * task (which is an invalid locking op but in the case
5245 * of the scheduler it's an obvious special-case), so we
5246 * do an early lockdep release here:
5247 */
5248 rq_unpin_lock(rq, rf);
5249 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5250 #ifdef CONFIG_DEBUG_SPINLOCK
5251 /* this is a valid case when another task releases the spinlock */
5252 rq_lockp(rq)->owner = next;
5253 #endif
5254 }
5255
finish_lock_switch(struct rq * rq)5256 static inline void finish_lock_switch(struct rq *rq)
5257 {
5258 /*
5259 * If we are tracking spinlock dependencies then we have to
5260 * fix up the runqueue lock - which gets 'carried over' from
5261 * prev into current:
5262 */
5263 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5264 __balance_callbacks(rq);
5265 raw_spin_rq_unlock_irq(rq);
5266 }
5267
5268 /*
5269 * NOP if the arch has not defined these:
5270 */
5271
5272 #ifndef prepare_arch_switch
5273 # define prepare_arch_switch(next) do { } while (0)
5274 #endif
5275
5276 #ifndef finish_arch_post_lock_switch
5277 # define finish_arch_post_lock_switch() do { } while (0)
5278 #endif
5279
kmap_local_sched_out(void)5280 static inline void kmap_local_sched_out(void)
5281 {
5282 #ifdef CONFIG_KMAP_LOCAL
5283 if (unlikely(current->kmap_ctrl.idx))
5284 __kmap_local_sched_out();
5285 #endif
5286 }
5287
kmap_local_sched_in(void)5288 static inline void kmap_local_sched_in(void)
5289 {
5290 #ifdef CONFIG_KMAP_LOCAL
5291 if (unlikely(current->kmap_ctrl.idx))
5292 __kmap_local_sched_in();
5293 #endif
5294 }
5295
5296 /**
5297 * prepare_task_switch - prepare to switch tasks
5298 * @rq: the runqueue preparing to switch
5299 * @prev: the current task that is being switched out
5300 * @next: the task we are going to switch to.
5301 *
5302 * This is called with the rq lock held and interrupts off. It must
5303 * be paired with a subsequent finish_task_switch after the context
5304 * switch.
5305 *
5306 * prepare_task_switch sets up locking and calls architecture specific
5307 * hooks.
5308 */
5309 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)5310 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5311 struct task_struct *next)
5312 {
5313 kcov_prepare_switch(prev);
5314 sched_info_switch(rq, prev, next);
5315 perf_event_task_sched_out(prev, next);
5316 rseq_preempt(prev);
5317 fire_sched_out_preempt_notifiers(prev, next);
5318 kmap_local_sched_out();
5319 prepare_task(next);
5320 prepare_arch_switch(next);
5321 }
5322
5323 /**
5324 * finish_task_switch - clean up after a task-switch
5325 * @prev: the thread we just switched away from.
5326 *
5327 * finish_task_switch must be called after the context switch, paired
5328 * with a prepare_task_switch call before the context switch.
5329 * finish_task_switch will reconcile locking set up by prepare_task_switch,
5330 * and do any other architecture-specific cleanup actions.
5331 *
5332 * Note that we may have delayed dropping an mm in context_switch(). If
5333 * so, we finish that here outside of the runqueue lock. (Doing it
5334 * with the lock held can cause deadlocks; see schedule() for
5335 * details.)
5336 *
5337 * The context switch have flipped the stack from under us and restored the
5338 * local variables which were saved when this task called schedule() in the
5339 * past. prev == current is still correct but we need to recalculate this_rq
5340 * because prev may have moved to another CPU.
5341 */
finish_task_switch(struct task_struct * prev)5342 static struct rq *finish_task_switch(struct task_struct *prev)
5343 __releases(rq->lock)
5344 {
5345 struct rq *rq = this_rq();
5346 struct mm_struct *mm = rq->prev_mm;
5347 unsigned int prev_state;
5348
5349 /*
5350 * The previous task will have left us with a preempt_count of 2
5351 * because it left us after:
5352 *
5353 * schedule()
5354 * preempt_disable(); // 1
5355 * __schedule()
5356 * raw_spin_lock_irq(&rq->lock) // 2
5357 *
5358 * Also, see FORK_PREEMPT_COUNT.
5359 */
5360 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5361 "corrupted preempt_count: %s/%d/0x%x\n",
5362 current->comm, current->pid, preempt_count()))
5363 preempt_count_set(FORK_PREEMPT_COUNT);
5364
5365 rq->prev_mm = NULL;
5366
5367 /*
5368 * A task struct has one reference for the use as "current".
5369 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5370 * schedule one last time. The schedule call will never return, and
5371 * the scheduled task must drop that reference.
5372 *
5373 * We must observe prev->state before clearing prev->on_cpu (in
5374 * finish_task), otherwise a concurrent wakeup can get prev
5375 * running on another CPU and we could rave with its RUNNING -> DEAD
5376 * transition, resulting in a double drop.
5377 */
5378 prev_state = READ_ONCE(prev->__state);
5379 vtime_task_switch(prev);
5380 perf_event_task_sched_in(prev, current);
5381 finish_task(prev);
5382 tick_nohz_task_switch();
5383 finish_lock_switch(rq);
5384 finish_arch_post_lock_switch();
5385 kcov_finish_switch(current);
5386 /*
5387 * kmap_local_sched_out() is invoked with rq::lock held and
5388 * interrupts disabled. There is no requirement for that, but the
5389 * sched out code does not have an interrupt enabled section.
5390 * Restoring the maps on sched in does not require interrupts being
5391 * disabled either.
5392 */
5393 kmap_local_sched_in();
5394
5395 fire_sched_in_preempt_notifiers(current);
5396 /*
5397 * When switching through a kernel thread, the loop in
5398 * membarrier_{private,global}_expedited() may have observed that
5399 * kernel thread and not issued an IPI. It is therefore possible to
5400 * schedule between user->kernel->user threads without passing though
5401 * switch_mm(). Membarrier requires a barrier after storing to
5402 * rq->curr, before returning to userspace, so provide them here:
5403 *
5404 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5405 * provided by mmdrop_lazy_tlb(),
5406 * - a sync_core for SYNC_CORE.
5407 */
5408 if (mm) {
5409 membarrier_mm_sync_core_before_usermode(mm);
5410 mmdrop_lazy_tlb_sched(mm);
5411 }
5412
5413 if (unlikely(prev_state == TASK_DEAD)) {
5414 if (prev->sched_class->task_dead)
5415 prev->sched_class->task_dead(prev);
5416
5417 trace_android_rvh_flush_task(prev);
5418
5419 /* Task is done with its stack. */
5420 put_task_stack(prev);
5421
5422 put_task_struct_rcu_user(prev);
5423 }
5424
5425 return rq;
5426 }
5427
5428 /**
5429 * schedule_tail - first thing a freshly forked thread must call.
5430 * @prev: the thread we just switched away from.
5431 */
schedule_tail(struct task_struct * prev)5432 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5433 __releases(rq->lock)
5434 {
5435 /*
5436 * New tasks start with FORK_PREEMPT_COUNT, see there and
5437 * finish_task_switch() for details.
5438 *
5439 * finish_task_switch() will drop rq->lock() and lower preempt_count
5440 * and the preempt_enable() will end up enabling preemption (on
5441 * PREEMPT_COUNT kernels).
5442 */
5443
5444 finish_task_switch(prev);
5445 preempt_enable();
5446
5447 if (current->set_child_tid)
5448 put_user(task_pid_vnr(current), current->set_child_tid);
5449
5450 calculate_sigpending();
5451 }
5452
5453 /*
5454 * context_switch - switch to the new MM and the new thread's register state.
5455 */
5456 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)5457 context_switch(struct rq *rq, struct task_struct *prev,
5458 struct task_struct *next, struct rq_flags *rf)
5459 {
5460 prepare_task_switch(rq, prev, next);
5461
5462 /*
5463 * For paravirt, this is coupled with an exit in switch_to to
5464 * combine the page table reload and the switch backend into
5465 * one hypercall.
5466 */
5467 arch_start_context_switch(prev);
5468
5469 /*
5470 * kernel -> kernel lazy + transfer active
5471 * user -> kernel lazy + mmgrab_lazy_tlb() active
5472 *
5473 * kernel -> user switch + mmdrop_lazy_tlb() active
5474 * user -> user switch
5475 *
5476 * switch_mm_cid() needs to be updated if the barriers provided
5477 * by context_switch() are modified.
5478 */
5479 if (!next->mm) { // to kernel
5480 enter_lazy_tlb(prev->active_mm, next);
5481
5482 next->active_mm = prev->active_mm;
5483 if (prev->mm) // from user
5484 mmgrab_lazy_tlb(prev->active_mm);
5485 else
5486 prev->active_mm = NULL;
5487 } else { // to user
5488 membarrier_switch_mm(rq, prev->active_mm, next->mm);
5489 /*
5490 * sys_membarrier() requires an smp_mb() between setting
5491 * rq->curr / membarrier_switch_mm() and returning to userspace.
5492 *
5493 * The below provides this either through switch_mm(), or in
5494 * case 'prev->active_mm == next->mm' through
5495 * finish_task_switch()'s mmdrop().
5496 */
5497 switch_mm_irqs_off(prev->active_mm, next->mm, next);
5498 lru_gen_use_mm(next->mm);
5499
5500 if (!prev->mm) { // from kernel
5501 /* will mmdrop_lazy_tlb() in finish_task_switch(). */
5502 rq->prev_mm = prev->active_mm;
5503 prev->active_mm = NULL;
5504 }
5505 }
5506
5507 /* switch_mm_cid() requires the memory barriers above. */
5508 switch_mm_cid(rq, prev, next);
5509
5510 prepare_lock_switch(rq, next, rf);
5511
5512 trace_android_rvh_context_switch(prev, next);
5513 /* Here we just switch the register state and the stack. */
5514 switch_to(prev, next, prev);
5515 barrier();
5516
5517 return finish_task_switch(prev);
5518 }
5519
5520 /*
5521 * nr_running and nr_context_switches:
5522 *
5523 * externally visible scheduler statistics: current number of runnable
5524 * threads, total number of context switches performed since bootup.
5525 */
nr_running(void)5526 unsigned int nr_running(void)
5527 {
5528 unsigned int i, sum = 0;
5529
5530 for_each_online_cpu(i)
5531 sum += cpu_rq(i)->nr_running;
5532
5533 return sum;
5534 }
5535 EXPORT_SYMBOL(nr_running);
5536
5537 /*
5538 * Check if only the current task is running on the CPU.
5539 *
5540 * Caution: this function does not check that the caller has disabled
5541 * preemption, thus the result might have a time-of-check-to-time-of-use
5542 * race. The caller is responsible to use it correctly, for example:
5543 *
5544 * - from a non-preemptible section (of course)
5545 *
5546 * - from a thread that is bound to a single CPU
5547 *
5548 * - in a loop with very short iterations (e.g. a polling loop)
5549 */
single_task_running(void)5550 bool single_task_running(void)
5551 {
5552 return raw_rq()->nr_running == 1;
5553 }
5554 EXPORT_SYMBOL(single_task_running);
5555
nr_context_switches_cpu(int cpu)5556 unsigned long long nr_context_switches_cpu(int cpu)
5557 {
5558 return cpu_rq(cpu)->nr_switches;
5559 }
5560
nr_context_switches(void)5561 unsigned long long nr_context_switches(void)
5562 {
5563 int i;
5564 unsigned long long sum = 0;
5565
5566 for_each_possible_cpu(i)
5567 sum += cpu_rq(i)->nr_switches;
5568
5569 return sum;
5570 }
5571
5572 /*
5573 * Consumers of these two interfaces, like for example the cpuidle menu
5574 * governor, are using nonsensical data. Preferring shallow idle state selection
5575 * for a CPU that has IO-wait which might not even end up running the task when
5576 * it does become runnable.
5577 */
5578
nr_iowait_cpu(int cpu)5579 unsigned int nr_iowait_cpu(int cpu)
5580 {
5581 return atomic_read(&cpu_rq(cpu)->nr_iowait);
5582 }
5583
5584 /*
5585 * IO-wait accounting, and how it's mostly bollocks (on SMP).
5586 *
5587 * The idea behind IO-wait account is to account the idle time that we could
5588 * have spend running if it were not for IO. That is, if we were to improve the
5589 * storage performance, we'd have a proportional reduction in IO-wait time.
5590 *
5591 * This all works nicely on UP, where, when a task blocks on IO, we account
5592 * idle time as IO-wait, because if the storage were faster, it could've been
5593 * running and we'd not be idle.
5594 *
5595 * This has been extended to SMP, by doing the same for each CPU. This however
5596 * is broken.
5597 *
5598 * Imagine for instance the case where two tasks block on one CPU, only the one
5599 * CPU will have IO-wait accounted, while the other has regular idle. Even
5600 * though, if the storage were faster, both could've ran at the same time,
5601 * utilising both CPUs.
5602 *
5603 * This means, that when looking globally, the current IO-wait accounting on
5604 * SMP is a lower bound, by reason of under accounting.
5605 *
5606 * Worse, since the numbers are provided per CPU, they are sometimes
5607 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5608 * associated with any one particular CPU, it can wake to another CPU than it
5609 * blocked on. This means the per CPU IO-wait number is meaningless.
5610 *
5611 * Task CPU affinities can make all that even more 'interesting'.
5612 */
5613
nr_iowait(void)5614 unsigned int nr_iowait(void)
5615 {
5616 unsigned int i, sum = 0;
5617
5618 for_each_possible_cpu(i)
5619 sum += nr_iowait_cpu(i);
5620
5621 return sum;
5622 }
5623
5624 #ifdef CONFIG_SMP
5625
5626 /*
5627 * sched_exec - execve() is a valuable balancing opportunity, because at
5628 * this point the task has the smallest effective memory and cache footprint.
5629 */
sched_exec(void)5630 void sched_exec(void)
5631 {
5632 struct task_struct *p = current;
5633 struct migration_arg arg;
5634 int dest_cpu;
5635 bool cond = false;
5636
5637 trace_android_rvh_sched_exec(&cond);
5638 if (cond)
5639 return;
5640
5641 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5642 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5643 if (dest_cpu == smp_processor_id())
5644 return;
5645
5646 if (unlikely(!cpu_active(dest_cpu)))
5647 return;
5648
5649 arg = (struct migration_arg){ p, dest_cpu };
5650 }
5651 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5652 }
5653
5654 #endif
5655
5656 DEFINE_PER_CPU(struct kernel_stat, kstat);
5657 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5658
5659 EXPORT_PER_CPU_SYMBOL(kstat);
5660 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5661
5662 /*
5663 * The function fair_sched_class.update_curr accesses the struct curr
5664 * and its field curr->exec_start; when called from task_sched_runtime(),
5665 * we observe a high rate of cache misses in practice.
5666 * Prefetching this data results in improved performance.
5667 */
prefetch_curr_exec_start(struct task_struct * p)5668 static inline void prefetch_curr_exec_start(struct task_struct *p)
5669 {
5670 #ifdef CONFIG_FAIR_GROUP_SCHED
5671 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5672 #else
5673 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5674 #endif
5675 prefetch(curr);
5676 prefetch(&curr->exec_start);
5677 }
5678
5679 /*
5680 * Return accounted runtime for the task.
5681 * In case the task is currently running, return the runtime plus current's
5682 * pending runtime that have not been accounted yet.
5683 */
task_sched_runtime(struct task_struct * p)5684 unsigned long long task_sched_runtime(struct task_struct *p)
5685 {
5686 struct rq_flags rf;
5687 struct rq *rq;
5688 u64 ns;
5689
5690 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5691 /*
5692 * 64-bit doesn't need locks to atomically read a 64-bit value.
5693 * So we have a optimization chance when the task's delta_exec is 0.
5694 * Reading ->on_cpu is racy, but this is ok.
5695 *
5696 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5697 * If we race with it entering CPU, unaccounted time is 0. This is
5698 * indistinguishable from the read occurring a few cycles earlier.
5699 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5700 * been accounted, so we're correct here as well.
5701 */
5702 if (!p->on_cpu || !task_on_rq_queued(p))
5703 return p->se.sum_exec_runtime;
5704 #endif
5705
5706 rq = task_rq_lock(p, &rf);
5707 /*
5708 * Must be ->curr _and_ ->on_rq. If dequeued, we would
5709 * project cycles that may never be accounted to this
5710 * thread, breaking clock_gettime().
5711 */
5712 if (task_current(rq, p) && task_on_rq_queued(p)) {
5713 prefetch_curr_exec_start(p);
5714 update_rq_clock(rq);
5715 p->sched_class->update_curr(rq);
5716 }
5717 ns = p->se.sum_exec_runtime;
5718 task_rq_unlock(rq, p, &rf);
5719
5720 return ns;
5721 }
5722 EXPORT_SYMBOL_GPL(task_sched_runtime);
5723
5724 #ifdef CONFIG_SCHED_DEBUG
cpu_resched_latency(struct rq * rq)5725 static u64 cpu_resched_latency(struct rq *rq)
5726 {
5727 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5728 u64 resched_latency, now = rq_clock(rq);
5729 static bool warned_once;
5730
5731 if (sysctl_resched_latency_warn_once && warned_once)
5732 return 0;
5733
5734 if (!need_resched() || !latency_warn_ms)
5735 return 0;
5736
5737 if (system_state == SYSTEM_BOOTING)
5738 return 0;
5739
5740 if (!rq->last_seen_need_resched_ns) {
5741 rq->last_seen_need_resched_ns = now;
5742 rq->ticks_without_resched = 0;
5743 return 0;
5744 }
5745
5746 rq->ticks_without_resched++;
5747 resched_latency = now - rq->last_seen_need_resched_ns;
5748 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5749 return 0;
5750
5751 warned_once = true;
5752
5753 return resched_latency;
5754 }
5755
setup_resched_latency_warn_ms(char * str)5756 static int __init setup_resched_latency_warn_ms(char *str)
5757 {
5758 long val;
5759
5760 if ((kstrtol(str, 0, &val))) {
5761 pr_warn("Unable to set resched_latency_warn_ms\n");
5762 return 1;
5763 }
5764
5765 sysctl_resched_latency_warn_ms = val;
5766 return 1;
5767 }
5768 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5769 #else
cpu_resched_latency(struct rq * rq)5770 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5771 #endif /* CONFIG_SCHED_DEBUG */
5772
5773 /*
5774 * This function gets called by the timer code, with HZ frequency.
5775 * We call it with interrupts disabled.
5776 */
scheduler_tick(void)5777 void scheduler_tick(void)
5778 {
5779 int cpu = smp_processor_id();
5780 struct rq *rq = cpu_rq(cpu);
5781 struct task_struct *curr;
5782 struct rq_flags rf;
5783 unsigned long thermal_pressure;
5784 u64 resched_latency;
5785
5786 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5787 arch_scale_freq_tick();
5788
5789 sched_clock_tick();
5790
5791 rq_lock(rq, &rf);
5792
5793 curr = rq->curr;
5794 psi_account_irqtime(rq, curr, NULL);
5795
5796 update_rq_clock(rq);
5797 trace_android_rvh_tick_entry(rq);
5798
5799 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5800 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5801 curr->sched_class->task_tick(rq, curr, 0);
5802 if (sched_feat(LATENCY_WARN))
5803 resched_latency = cpu_resched_latency(rq);
5804 calc_global_load_tick(rq);
5805 sched_core_tick(rq);
5806 task_tick_mm_cid(rq, curr);
5807
5808 rq_unlock(rq, &rf);
5809
5810 if (sched_feat(LATENCY_WARN) && resched_latency)
5811 resched_latency_warn(cpu, resched_latency);
5812
5813 perf_event_task_tick();
5814
5815 if (curr->flags & PF_WQ_WORKER)
5816 wq_worker_tick(curr);
5817
5818 #ifdef CONFIG_SMP
5819 rq->idle_balance = idle_cpu(cpu);
5820 trigger_load_balance(rq);
5821 #endif
5822
5823 trace_android_vh_scheduler_tick(rq);
5824 }
5825
5826 #ifdef CONFIG_NO_HZ_FULL
5827
5828 struct tick_work {
5829 int cpu;
5830 atomic_t state;
5831 struct delayed_work work;
5832 };
5833 /* Values for ->state, see diagram below. */
5834 #define TICK_SCHED_REMOTE_OFFLINE 0
5835 #define TICK_SCHED_REMOTE_OFFLINING 1
5836 #define TICK_SCHED_REMOTE_RUNNING 2
5837
5838 /*
5839 * State diagram for ->state:
5840 *
5841 *
5842 * TICK_SCHED_REMOTE_OFFLINE
5843 * | ^
5844 * | |
5845 * | | sched_tick_remote()
5846 * | |
5847 * | |
5848 * +--TICK_SCHED_REMOTE_OFFLINING
5849 * | ^
5850 * | |
5851 * sched_tick_start() | | sched_tick_stop()
5852 * | |
5853 * V |
5854 * TICK_SCHED_REMOTE_RUNNING
5855 *
5856 *
5857 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5858 * and sched_tick_start() are happy to leave the state in RUNNING.
5859 */
5860
5861 static struct tick_work __percpu *tick_work_cpu;
5862
sched_tick_remote(struct work_struct * work)5863 static void sched_tick_remote(struct work_struct *work)
5864 {
5865 struct delayed_work *dwork = to_delayed_work(work);
5866 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5867 int cpu = twork->cpu;
5868 struct rq *rq = cpu_rq(cpu);
5869 int os;
5870
5871 /*
5872 * Handle the tick only if it appears the remote CPU is running in full
5873 * dynticks mode. The check is racy by nature, but missing a tick or
5874 * having one too much is no big deal because the scheduler tick updates
5875 * statistics and checks timeslices in a time-independent way, regardless
5876 * of when exactly it is running.
5877 */
5878 if (tick_nohz_tick_stopped_cpu(cpu)) {
5879 guard(rq_lock_irq)(rq);
5880 struct task_struct *curr = rq->curr;
5881
5882 if (cpu_online(cpu)) {
5883 update_rq_clock(rq);
5884
5885 if (!is_idle_task(curr)) {
5886 /*
5887 * Make sure the next tick runs within a
5888 * reasonable amount of time.
5889 */
5890 u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5891 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5892 }
5893 curr->sched_class->task_tick(rq, curr, 0);
5894
5895 calc_load_nohz_remote(rq);
5896 }
5897 }
5898
5899 /*
5900 * Run the remote tick once per second (1Hz). This arbitrary
5901 * frequency is large enough to avoid overload but short enough
5902 * to keep scheduler internal stats reasonably up to date. But
5903 * first update state to reflect hotplug activity if required.
5904 */
5905 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5906 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5907 if (os == TICK_SCHED_REMOTE_RUNNING)
5908 queue_delayed_work(system_unbound_wq, dwork, HZ);
5909 }
5910
sched_tick_start(int cpu)5911 static void sched_tick_start(int cpu)
5912 {
5913 int os;
5914 struct tick_work *twork;
5915
5916 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5917 return;
5918
5919 WARN_ON_ONCE(!tick_work_cpu);
5920
5921 twork = per_cpu_ptr(tick_work_cpu, cpu);
5922 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5923 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5924 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5925 twork->cpu = cpu;
5926 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5927 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5928 }
5929 }
5930
5931 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)5932 static void sched_tick_stop(int cpu)
5933 {
5934 struct tick_work *twork;
5935 int os;
5936
5937 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5938 return;
5939
5940 WARN_ON_ONCE(!tick_work_cpu);
5941
5942 twork = per_cpu_ptr(tick_work_cpu, cpu);
5943 /* There cannot be competing actions, but don't rely on stop-machine. */
5944 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5945 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5946 /* Don't cancel, as this would mess up the state machine. */
5947 }
5948 #endif /* CONFIG_HOTPLUG_CPU */
5949
sched_tick_offload_init(void)5950 int __init sched_tick_offload_init(void)
5951 {
5952 tick_work_cpu = alloc_percpu(struct tick_work);
5953 BUG_ON(!tick_work_cpu);
5954 return 0;
5955 }
5956
5957 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)5958 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)5959 static inline void sched_tick_stop(int cpu) { }
5960 #endif
5961
5962 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5963 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5964 /*
5965 * If the value passed in is equal to the current preempt count
5966 * then we just disabled preemption. Start timing the latency.
5967 */
preempt_latency_start(int val)5968 static inline void preempt_latency_start(int val)
5969 {
5970 if (preempt_count() == val) {
5971 unsigned long ip = get_lock_parent_ip();
5972 #ifdef CONFIG_DEBUG_PREEMPT
5973 current->preempt_disable_ip = ip;
5974 #endif
5975 trace_preempt_off(CALLER_ADDR0, ip);
5976 }
5977 }
5978
preempt_count_add(int val)5979 void preempt_count_add(int val)
5980 {
5981 #ifdef CONFIG_DEBUG_PREEMPT
5982 /*
5983 * Underflow?
5984 */
5985 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5986 return;
5987 #endif
5988 __preempt_count_add(val);
5989 #ifdef CONFIG_DEBUG_PREEMPT
5990 /*
5991 * Spinlock count overflowing soon?
5992 */
5993 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5994 PREEMPT_MASK - 10);
5995 #endif
5996 preempt_latency_start(val);
5997 }
5998 EXPORT_SYMBOL(preempt_count_add);
5999 NOKPROBE_SYMBOL(preempt_count_add);
6000
6001 /*
6002 * If the value passed in equals to the current preempt count
6003 * then we just enabled preemption. Stop timing the latency.
6004 */
preempt_latency_stop(int val)6005 static inline void preempt_latency_stop(int val)
6006 {
6007 if (preempt_count() == val)
6008 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
6009 }
6010
preempt_count_sub(int val)6011 void preempt_count_sub(int val)
6012 {
6013 #ifdef CONFIG_DEBUG_PREEMPT
6014 /*
6015 * Underflow?
6016 */
6017 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
6018 return;
6019 /*
6020 * Is the spinlock portion underflowing?
6021 */
6022 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
6023 !(preempt_count() & PREEMPT_MASK)))
6024 return;
6025 #endif
6026
6027 preempt_latency_stop(val);
6028 __preempt_count_sub(val);
6029 }
6030 EXPORT_SYMBOL(preempt_count_sub);
6031 NOKPROBE_SYMBOL(preempt_count_sub);
6032
6033 #else
preempt_latency_start(int val)6034 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)6035 static inline void preempt_latency_stop(int val) { }
6036 #endif
6037
get_preempt_disable_ip(struct task_struct * p)6038 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
6039 {
6040 #ifdef CONFIG_DEBUG_PREEMPT
6041 return p->preempt_disable_ip;
6042 #else
6043 return 0;
6044 #endif
6045 }
6046
6047 /*
6048 * Print scheduling while atomic bug:
6049 */
__schedule_bug(struct task_struct * prev)6050 static noinline void __schedule_bug(struct task_struct *prev)
6051 {
6052 /* Save this before calling printk(), since that will clobber it */
6053 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
6054
6055 if (oops_in_progress)
6056 return;
6057
6058 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
6059 prev->comm, prev->pid, preempt_count());
6060
6061 debug_show_held_locks(prev);
6062 print_modules();
6063 if (irqs_disabled())
6064 print_irqtrace_events(prev);
6065 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6066 && in_atomic_preempt_off()) {
6067 pr_err("Preemption disabled at:");
6068 print_ip_sym(KERN_ERR, preempt_disable_ip);
6069 }
6070 check_panic_on_warn("scheduling while atomic");
6071
6072 trace_android_rvh_schedule_bug(prev);
6073
6074 dump_stack();
6075 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6076 }
6077
6078 /*
6079 * Various schedule()-time debugging checks and statistics:
6080 */
schedule_debug(struct task_struct * prev,bool preempt)6081 static inline void schedule_debug(struct task_struct *prev, bool preempt)
6082 {
6083 #ifdef CONFIG_SCHED_STACK_END_CHECK
6084 if (task_stack_end_corrupted(prev))
6085 panic("corrupted stack end detected inside scheduler\n");
6086
6087 if (task_scs_end_corrupted(prev))
6088 panic("corrupted shadow stack detected inside scheduler\n");
6089 #endif
6090
6091 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6092 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
6093 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
6094 prev->comm, prev->pid, prev->non_block_count);
6095 dump_stack();
6096 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6097 }
6098 #endif
6099
6100 if (unlikely(in_atomic_preempt_off())) {
6101 __schedule_bug(prev);
6102 preempt_count_set(PREEMPT_DISABLED);
6103 }
6104 rcu_sleep_check();
6105 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
6106
6107 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
6108
6109 schedstat_inc(this_rq()->sched_count);
6110 }
6111
put_prev_task_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6112 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
6113 struct rq_flags *rf)
6114 {
6115 #ifdef CONFIG_SMP
6116 const struct sched_class *class;
6117 /*
6118 * We must do the balancing pass before put_prev_task(), such
6119 * that when we release the rq->lock the task is in the same
6120 * state as before we took rq->lock.
6121 *
6122 * We can terminate the balance pass as soon as we know there is
6123 * a runnable task of @class priority or higher.
6124 */
6125 for_class_range(class, prev->sched_class, &idle_sched_class) {
6126 if (class->balance(rq, prev, rf))
6127 break;
6128 }
6129 #endif
6130
6131 put_prev_task(rq, prev);
6132 }
6133
6134 /*
6135 * Pick up the highest-prio task:
6136 */
6137 static inline struct task_struct *
__pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6138 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6139 {
6140 const struct sched_class *class;
6141 struct task_struct *p;
6142
6143 /*
6144 * Optimization: we know that if all tasks are in the fair class we can
6145 * call that function directly, but only if the @prev task wasn't of a
6146 * higher scheduling class, because otherwise those lose the
6147 * opportunity to pull in more work from other CPUs.
6148 */
6149 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6150 rq->nr_running == rq->cfs.h_nr_running)) {
6151
6152 p = pick_next_task_fair(rq, prev, rf);
6153 if (unlikely(p == RETRY_TASK))
6154 goto restart;
6155
6156 /* Assume the next prioritized class is idle_sched_class */
6157 if (!p) {
6158 put_prev_task(rq, prev);
6159 p = pick_next_task_idle(rq);
6160 }
6161
6162 return p;
6163 }
6164
6165 restart:
6166 put_prev_task_balance(rq, prev, rf);
6167
6168 for_each_class(class) {
6169 p = class->pick_next_task(rq);
6170 if (p)
6171 return p;
6172 }
6173
6174 BUG(); /* The idle class should always have a runnable task. */
6175 }
6176
6177 #ifdef CONFIG_SCHED_CORE
is_task_rq_idle(struct task_struct * t)6178 static inline bool is_task_rq_idle(struct task_struct *t)
6179 {
6180 return (task_rq(t)->idle == t);
6181 }
6182
cookie_equals(struct task_struct * a,unsigned long cookie)6183 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6184 {
6185 return is_task_rq_idle(a) || (a->core_cookie == cookie);
6186 }
6187
cookie_match(struct task_struct * a,struct task_struct * b)6188 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6189 {
6190 if (is_task_rq_idle(a) || is_task_rq_idle(b))
6191 return true;
6192
6193 return a->core_cookie == b->core_cookie;
6194 }
6195
pick_task(struct rq * rq)6196 static inline struct task_struct *pick_task(struct rq *rq)
6197 {
6198 const struct sched_class *class;
6199 struct task_struct *p;
6200
6201 for_each_class(class) {
6202 p = class->pick_task(rq);
6203 if (p)
6204 return p;
6205 }
6206
6207 BUG(); /* The idle class should always have a runnable task. */
6208 }
6209
6210 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6211
6212 static void queue_core_balance(struct rq *rq);
6213
6214 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6215 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6216 {
6217 struct task_struct *next, *p, *max = NULL;
6218 const struct cpumask *smt_mask;
6219 bool fi_before = false;
6220 bool core_clock_updated = (rq == rq->core);
6221 unsigned long cookie;
6222 int i, cpu, occ = 0;
6223 struct rq *rq_i;
6224 bool need_sync;
6225
6226 if (!sched_core_enabled(rq))
6227 return __pick_next_task(rq, prev, rf);
6228
6229 cpu = cpu_of(rq);
6230
6231 /* Stopper task is switching into idle, no need core-wide selection. */
6232 if (cpu_is_offline(cpu)) {
6233 /*
6234 * Reset core_pick so that we don't enter the fastpath when
6235 * coming online. core_pick would already be migrated to
6236 * another cpu during offline.
6237 */
6238 rq->core_pick = NULL;
6239 return __pick_next_task(rq, prev, rf);
6240 }
6241
6242 /*
6243 * If there were no {en,de}queues since we picked (IOW, the task
6244 * pointers are all still valid), and we haven't scheduled the last
6245 * pick yet, do so now.
6246 *
6247 * rq->core_pick can be NULL if no selection was made for a CPU because
6248 * it was either offline or went offline during a sibling's core-wide
6249 * selection. In this case, do a core-wide selection.
6250 */
6251 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6252 rq->core->core_pick_seq != rq->core_sched_seq &&
6253 rq->core_pick) {
6254 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6255
6256 next = rq->core_pick;
6257 if (next != prev) {
6258 put_prev_task(rq, prev);
6259 set_next_task(rq, next);
6260 }
6261
6262 rq->core_pick = NULL;
6263 goto out;
6264 }
6265
6266 put_prev_task_balance(rq, prev, rf);
6267
6268 smt_mask = cpu_smt_mask(cpu);
6269 need_sync = !!rq->core->core_cookie;
6270
6271 /* reset state */
6272 rq->core->core_cookie = 0UL;
6273 if (rq->core->core_forceidle_count) {
6274 if (!core_clock_updated) {
6275 update_rq_clock(rq->core);
6276 core_clock_updated = true;
6277 }
6278 sched_core_account_forceidle(rq);
6279 /* reset after accounting force idle */
6280 rq->core->core_forceidle_start = 0;
6281 rq->core->core_forceidle_count = 0;
6282 rq->core->core_forceidle_occupation = 0;
6283 need_sync = true;
6284 fi_before = true;
6285 }
6286
6287 /*
6288 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6289 *
6290 * @task_seq guards the task state ({en,de}queues)
6291 * @pick_seq is the @task_seq we did a selection on
6292 * @sched_seq is the @pick_seq we scheduled
6293 *
6294 * However, preemptions can cause multiple picks on the same task set.
6295 * 'Fix' this by also increasing @task_seq for every pick.
6296 */
6297 rq->core->core_task_seq++;
6298
6299 /*
6300 * Optimize for common case where this CPU has no cookies
6301 * and there are no cookied tasks running on siblings.
6302 */
6303 if (!need_sync) {
6304 next = pick_task(rq);
6305 if (!next->core_cookie) {
6306 rq->core_pick = NULL;
6307 /*
6308 * For robustness, update the min_vruntime_fi for
6309 * unconstrained picks as well.
6310 */
6311 WARN_ON_ONCE(fi_before);
6312 task_vruntime_update(rq, next, false);
6313 goto out_set_next;
6314 }
6315 }
6316
6317 /*
6318 * For each thread: do the regular task pick and find the max prio task
6319 * amongst them.
6320 *
6321 * Tie-break prio towards the current CPU
6322 */
6323 for_each_cpu_wrap(i, smt_mask, cpu) {
6324 rq_i = cpu_rq(i);
6325
6326 /*
6327 * Current cpu always has its clock updated on entrance to
6328 * pick_next_task(). If the current cpu is not the core,
6329 * the core may also have been updated above.
6330 */
6331 if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6332 update_rq_clock(rq_i);
6333
6334 p = rq_i->core_pick = pick_task(rq_i);
6335 if (!max || prio_less(max, p, fi_before))
6336 max = p;
6337 }
6338
6339 cookie = rq->core->core_cookie = max->core_cookie;
6340
6341 /*
6342 * For each thread: try and find a runnable task that matches @max or
6343 * force idle.
6344 */
6345 for_each_cpu(i, smt_mask) {
6346 rq_i = cpu_rq(i);
6347 p = rq_i->core_pick;
6348
6349 if (!cookie_equals(p, cookie)) {
6350 p = NULL;
6351 if (cookie)
6352 p = sched_core_find(rq_i, cookie);
6353 if (!p)
6354 p = idle_sched_class.pick_task(rq_i);
6355 }
6356
6357 rq_i->core_pick = p;
6358
6359 if (p == rq_i->idle) {
6360 if (rq_i->nr_running) {
6361 rq->core->core_forceidle_count++;
6362 if (!fi_before)
6363 rq->core->core_forceidle_seq++;
6364 }
6365 } else {
6366 occ++;
6367 }
6368 }
6369
6370 if (schedstat_enabled() && rq->core->core_forceidle_count) {
6371 rq->core->core_forceidle_start = rq_clock(rq->core);
6372 rq->core->core_forceidle_occupation = occ;
6373 }
6374
6375 rq->core->core_pick_seq = rq->core->core_task_seq;
6376 next = rq->core_pick;
6377 rq->core_sched_seq = rq->core->core_pick_seq;
6378
6379 /* Something should have been selected for current CPU */
6380 WARN_ON_ONCE(!next);
6381
6382 /*
6383 * Reschedule siblings
6384 *
6385 * NOTE: L1TF -- at this point we're no longer running the old task and
6386 * sending an IPI (below) ensures the sibling will no longer be running
6387 * their task. This ensures there is no inter-sibling overlap between
6388 * non-matching user state.
6389 */
6390 for_each_cpu(i, smt_mask) {
6391 rq_i = cpu_rq(i);
6392
6393 /*
6394 * An online sibling might have gone offline before a task
6395 * could be picked for it, or it might be offline but later
6396 * happen to come online, but its too late and nothing was
6397 * picked for it. That's Ok - it will pick tasks for itself,
6398 * so ignore it.
6399 */
6400 if (!rq_i->core_pick)
6401 continue;
6402
6403 /*
6404 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6405 * fi_before fi update?
6406 * 0 0 1
6407 * 0 1 1
6408 * 1 0 1
6409 * 1 1 0
6410 */
6411 if (!(fi_before && rq->core->core_forceidle_count))
6412 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6413
6414 rq_i->core_pick->core_occupation = occ;
6415
6416 if (i == cpu) {
6417 rq_i->core_pick = NULL;
6418 continue;
6419 }
6420
6421 /* Did we break L1TF mitigation requirements? */
6422 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6423
6424 if (rq_i->curr == rq_i->core_pick) {
6425 rq_i->core_pick = NULL;
6426 continue;
6427 }
6428
6429 resched_curr(rq_i);
6430 }
6431
6432 out_set_next:
6433 set_next_task(rq, next);
6434 out:
6435 if (rq->core->core_forceidle_count && next == rq->idle)
6436 queue_core_balance(rq);
6437
6438 return next;
6439 }
6440
try_steal_cookie(int this,int that)6441 static bool try_steal_cookie(int this, int that)
6442 {
6443 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6444 struct task_struct *p;
6445 unsigned long cookie;
6446 bool success = false;
6447
6448 guard(irq)();
6449 guard(double_rq_lock)(dst, src);
6450
6451 cookie = dst->core->core_cookie;
6452 if (!cookie)
6453 return false;
6454
6455 if (dst->curr != dst->idle)
6456 return false;
6457
6458 p = sched_core_find(src, cookie);
6459 if (!p)
6460 return false;
6461
6462 do {
6463 if (p == src->core_pick || p == src->curr)
6464 goto next;
6465
6466 if (!is_cpu_allowed(p, this))
6467 goto next;
6468
6469 if (p->core_occupation > dst->idle->core_occupation)
6470 goto next;
6471 /*
6472 * sched_core_find() and sched_core_next() will ensure
6473 * that task @p is not throttled now, we also need to
6474 * check whether the runqueue of the destination CPU is
6475 * being throttled.
6476 */
6477 if (sched_task_is_throttled(p, this))
6478 goto next;
6479
6480 deactivate_task(src, p, 0);
6481 set_task_cpu(p, this);
6482 activate_task(dst, p, 0);
6483
6484 resched_curr(dst);
6485
6486 success = true;
6487 break;
6488
6489 next:
6490 p = sched_core_next(p, cookie);
6491 } while (p);
6492
6493 return success;
6494 }
6495
steal_cookie_task(int cpu,struct sched_domain * sd)6496 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6497 {
6498 int i;
6499
6500 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6501 if (i == cpu)
6502 continue;
6503
6504 if (need_resched())
6505 break;
6506
6507 if (try_steal_cookie(cpu, i))
6508 return true;
6509 }
6510
6511 return false;
6512 }
6513
sched_core_balance(struct rq * rq)6514 static void sched_core_balance(struct rq *rq)
6515 {
6516 struct sched_domain *sd;
6517 int cpu = cpu_of(rq);
6518
6519 preempt_disable();
6520 rcu_read_lock();
6521 raw_spin_rq_unlock_irq(rq);
6522 for_each_domain(cpu, sd) {
6523 if (need_resched())
6524 break;
6525
6526 if (steal_cookie_task(cpu, sd))
6527 break;
6528 }
6529 raw_spin_rq_lock_irq(rq);
6530 rcu_read_unlock();
6531 preempt_enable();
6532 }
6533
6534 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6535
queue_core_balance(struct rq * rq)6536 static void queue_core_balance(struct rq *rq)
6537 {
6538 if (!sched_core_enabled(rq))
6539 return;
6540
6541 if (!rq->core->core_cookie)
6542 return;
6543
6544 if (!rq->nr_running) /* not forced idle */
6545 return;
6546
6547 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6548 }
6549
6550 DEFINE_LOCK_GUARD_1(core_lock, int,
6551 sched_core_lock(*_T->lock, &_T->flags),
6552 sched_core_unlock(*_T->lock, &_T->flags),
6553 unsigned long flags)
6554
sched_core_cpu_starting(unsigned int cpu)6555 static void sched_core_cpu_starting(unsigned int cpu)
6556 {
6557 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6558 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6559 int t;
6560
6561 guard(core_lock)(&cpu);
6562
6563 WARN_ON_ONCE(rq->core != rq);
6564
6565 /* if we're the first, we'll be our own leader */
6566 if (cpumask_weight(smt_mask) == 1)
6567 return;
6568
6569 /* find the leader */
6570 for_each_cpu(t, smt_mask) {
6571 if (t == cpu)
6572 continue;
6573 rq = cpu_rq(t);
6574 if (rq->core == rq) {
6575 core_rq = rq;
6576 break;
6577 }
6578 }
6579
6580 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6581 return;
6582
6583 /* install and validate core_rq */
6584 for_each_cpu(t, smt_mask) {
6585 rq = cpu_rq(t);
6586
6587 if (t == cpu)
6588 rq->core = core_rq;
6589
6590 WARN_ON_ONCE(rq->core != core_rq);
6591 }
6592 }
6593
sched_core_cpu_deactivate(unsigned int cpu)6594 static void sched_core_cpu_deactivate(unsigned int cpu)
6595 {
6596 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6597 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6598 int t;
6599
6600 guard(core_lock)(&cpu);
6601
6602 /* if we're the last man standing, nothing to do */
6603 if (cpumask_weight(smt_mask) == 1) {
6604 WARN_ON_ONCE(rq->core != rq);
6605 return;
6606 }
6607
6608 /* if we're not the leader, nothing to do */
6609 if (rq->core != rq)
6610 return;
6611
6612 /* find a new leader */
6613 for_each_cpu(t, smt_mask) {
6614 if (t == cpu)
6615 continue;
6616 core_rq = cpu_rq(t);
6617 break;
6618 }
6619
6620 if (WARN_ON_ONCE(!core_rq)) /* impossible */
6621 return;
6622
6623 /* copy the shared state to the new leader */
6624 core_rq->core_task_seq = rq->core_task_seq;
6625 core_rq->core_pick_seq = rq->core_pick_seq;
6626 core_rq->core_cookie = rq->core_cookie;
6627 core_rq->core_forceidle_count = rq->core_forceidle_count;
6628 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6629 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6630
6631 /*
6632 * Accounting edge for forced idle is handled in pick_next_task().
6633 * Don't need another one here, since the hotplug thread shouldn't
6634 * have a cookie.
6635 */
6636 core_rq->core_forceidle_start = 0;
6637
6638 /* install new leader */
6639 for_each_cpu(t, smt_mask) {
6640 rq = cpu_rq(t);
6641 rq->core = core_rq;
6642 }
6643 }
6644
sched_core_cpu_dying(unsigned int cpu)6645 static inline void sched_core_cpu_dying(unsigned int cpu)
6646 {
6647 struct rq *rq = cpu_rq(cpu);
6648
6649 if (rq->core != rq)
6650 rq->core = rq;
6651 }
6652
6653 #else /* !CONFIG_SCHED_CORE */
6654
sched_core_cpu_starting(unsigned int cpu)6655 static inline void sched_core_cpu_starting(unsigned int cpu) {}
sched_core_cpu_deactivate(unsigned int cpu)6656 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
sched_core_cpu_dying(unsigned int cpu)6657 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6658
6659 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6660 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6661 {
6662 return __pick_next_task(rq, prev, rf);
6663 }
6664
6665 #endif /* CONFIG_SCHED_CORE */
6666
6667 /*
6668 * Constants for the sched_mode argument of __schedule().
6669 *
6670 * The mode argument allows RT enabled kernels to differentiate a
6671 * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6672 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6673 * optimize the AND operation out and just check for zero.
6674 */
6675 #define SM_NONE 0x0
6676 #define SM_PREEMPT 0x1
6677 #define SM_RTLOCK_WAIT 0x2
6678
6679 #ifndef CONFIG_PREEMPT_RT
6680 # define SM_MASK_PREEMPT (~0U)
6681 #else
6682 # define SM_MASK_PREEMPT SM_PREEMPT
6683 #endif
6684
6685 /*
6686 * __schedule() is the main scheduler function.
6687 *
6688 * The main means of driving the scheduler and thus entering this function are:
6689 *
6690 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6691 *
6692 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6693 * paths. For example, see arch/x86/entry_64.S.
6694 *
6695 * To drive preemption between tasks, the scheduler sets the flag in timer
6696 * interrupt handler scheduler_tick().
6697 *
6698 * 3. Wakeups don't really cause entry into schedule(). They add a
6699 * task to the run-queue and that's it.
6700 *
6701 * Now, if the new task added to the run-queue preempts the current
6702 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6703 * called on the nearest possible occasion:
6704 *
6705 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6706 *
6707 * - in syscall or exception context, at the next outmost
6708 * preempt_enable(). (this might be as soon as the wake_up()'s
6709 * spin_unlock()!)
6710 *
6711 * - in IRQ context, return from interrupt-handler to
6712 * preemptible context
6713 *
6714 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6715 * then at the next:
6716 *
6717 * - cond_resched() call
6718 * - explicit schedule() call
6719 * - return from syscall or exception to user-space
6720 * - return from interrupt-handler to user-space
6721 *
6722 * WARNING: must be called with preemption disabled!
6723 */
__schedule(unsigned int sched_mode)6724 static void __sched notrace __schedule(unsigned int sched_mode)
6725 {
6726 struct task_struct *prev, *next;
6727 unsigned long *switch_count;
6728 unsigned long prev_state;
6729 struct rq_flags rf;
6730 struct rq *rq;
6731 int cpu;
6732
6733 cpu = smp_processor_id();
6734 rq = cpu_rq(cpu);
6735 prev = rq->curr;
6736
6737 schedule_debug(prev, !!sched_mode);
6738
6739 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6740 hrtick_clear(rq);
6741
6742 local_irq_disable();
6743 rcu_note_context_switch(!!sched_mode);
6744
6745 /*
6746 * Make sure that signal_pending_state()->signal_pending() below
6747 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6748 * done by the caller to avoid the race with signal_wake_up():
6749 *
6750 * __set_current_state(@state) signal_wake_up()
6751 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
6752 * wake_up_state(p, state)
6753 * LOCK rq->lock LOCK p->pi_state
6754 * smp_mb__after_spinlock() smp_mb__after_spinlock()
6755 * if (signal_pending_state()) if (p->state & @state)
6756 *
6757 * Also, the membarrier system call requires a full memory barrier
6758 * after coming from user-space, before storing to rq->curr.
6759 */
6760 rq_lock(rq, &rf);
6761 smp_mb__after_spinlock();
6762
6763 /* Promote REQ to ACT */
6764 rq->clock_update_flags <<= 1;
6765 update_rq_clock(rq);
6766 rq->clock_update_flags = RQCF_UPDATED;
6767
6768 switch_count = &prev->nivcsw;
6769
6770 /*
6771 * We must load prev->state once (task_struct::state is volatile), such
6772 * that we form a control dependency vs deactivate_task() below.
6773 */
6774 prev_state = READ_ONCE(prev->__state);
6775 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6776 if (signal_pending_state(prev_state, prev)) {
6777 WRITE_ONCE(prev->__state, TASK_RUNNING);
6778 } else {
6779 prev->sched_contributes_to_load =
6780 (prev_state & TASK_UNINTERRUPTIBLE) &&
6781 !(prev_state & TASK_NOLOAD) &&
6782 !(prev_state & TASK_FROZEN);
6783
6784 if (prev->sched_contributes_to_load)
6785 rq->nr_uninterruptible++;
6786
6787 /*
6788 * __schedule() ttwu()
6789 * prev_state = prev->state; if (p->on_rq && ...)
6790 * if (prev_state) goto out;
6791 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
6792 * p->state = TASK_WAKING
6793 *
6794 * Where __schedule() and ttwu() have matching control dependencies.
6795 *
6796 * After this, schedule() must not care about p->state any more.
6797 */
6798 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6799
6800 if (prev->in_iowait) {
6801 atomic_inc(&rq->nr_iowait);
6802 delayacct_blkio_start();
6803 }
6804 }
6805 switch_count = &prev->nvcsw;
6806 }
6807
6808 next = pick_next_task(rq, prev, &rf);
6809 clear_tsk_need_resched(prev);
6810 clear_preempt_need_resched();
6811 #ifdef CONFIG_SCHED_DEBUG
6812 rq->last_seen_need_resched_ns = 0;
6813 #endif
6814
6815 trace_android_rvh_schedule(prev, next, rq);
6816 if (likely(prev != next)) {
6817 rq->nr_switches++;
6818 /*
6819 * RCU users of rcu_dereference(rq->curr) may not see
6820 * changes to task_struct made by pick_next_task().
6821 */
6822 RCU_INIT_POINTER(rq->curr, next);
6823 /*
6824 * The membarrier system call requires each architecture
6825 * to have a full memory barrier after updating
6826 * rq->curr, before returning to user-space.
6827 *
6828 * Here are the schemes providing that barrier on the
6829 * various architectures:
6830 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6831 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6832 * - finish_lock_switch() for weakly-ordered
6833 * architectures where spin_unlock is a full barrier,
6834 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6835 * is a RELEASE barrier),
6836 */
6837 ++*switch_count;
6838
6839 migrate_disable_switch(rq, prev);
6840 psi_account_irqtime(rq, prev, next);
6841 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6842
6843 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6844
6845 /* Also unlocks the rq: */
6846 rq = context_switch(rq, prev, next, &rf);
6847 } else {
6848 rq_unpin_lock(rq, &rf);
6849 __balance_callbacks(rq);
6850 raw_spin_rq_unlock_irq(rq);
6851 }
6852 }
6853
do_task_dead(void)6854 void __noreturn do_task_dead(void)
6855 {
6856 /* Causes final put_task_struct in finish_task_switch(): */
6857 set_special_state(TASK_DEAD);
6858
6859 /* Tell freezer to ignore us: */
6860 current->flags |= PF_NOFREEZE;
6861
6862 __schedule(SM_NONE);
6863 BUG();
6864
6865 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6866 for (;;)
6867 cpu_relax();
6868 }
6869
sched_submit_work(struct task_struct * tsk)6870 static inline void sched_submit_work(struct task_struct *tsk)
6871 {
6872 unsigned int task_flags;
6873
6874 if (task_is_running(tsk))
6875 return;
6876
6877 task_flags = tsk->flags;
6878 /*
6879 * If a worker goes to sleep, notify and ask workqueue whether it
6880 * wants to wake up a task to maintain concurrency.
6881 */
6882 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6883 if (task_flags & PF_WQ_WORKER)
6884 wq_worker_sleeping(tsk);
6885 else
6886 io_wq_worker_sleeping(tsk);
6887 }
6888
6889 /*
6890 * spinlock and rwlock must not flush block requests. This will
6891 * deadlock if the callback attempts to acquire a lock which is
6892 * already acquired.
6893 */
6894 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6895
6896 /*
6897 * If we are going to sleep and we have plugged IO queued,
6898 * make sure to submit it to avoid deadlocks.
6899 */
6900 blk_flush_plug(tsk->plug, true);
6901 }
6902
sched_update_worker(struct task_struct * tsk)6903 static void sched_update_worker(struct task_struct *tsk)
6904 {
6905 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6906 if (tsk->flags & PF_WQ_WORKER)
6907 wq_worker_running(tsk);
6908 else
6909 io_wq_worker_running(tsk);
6910 }
6911 }
6912
schedule(void)6913 asmlinkage __visible void __sched schedule(void)
6914 {
6915 struct task_struct *tsk = current;
6916
6917 sched_submit_work(tsk);
6918 do {
6919 preempt_disable();
6920 __schedule(SM_NONE);
6921 sched_preempt_enable_no_resched();
6922 } while (need_resched());
6923 sched_update_worker(tsk);
6924 }
6925 EXPORT_SYMBOL(schedule);
6926
6927 /*
6928 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6929 * state (have scheduled out non-voluntarily) by making sure that all
6930 * tasks have either left the run queue or have gone into user space.
6931 * As idle tasks do not do either, they must not ever be preempted
6932 * (schedule out non-voluntarily).
6933 *
6934 * schedule_idle() is similar to schedule_preempt_disable() except that it
6935 * never enables preemption because it does not call sched_submit_work().
6936 */
schedule_idle(void)6937 void __sched schedule_idle(void)
6938 {
6939 /*
6940 * As this skips calling sched_submit_work(), which the idle task does
6941 * regardless because that function is a nop when the task is in a
6942 * TASK_RUNNING state, make sure this isn't used someplace that the
6943 * current task can be in any other state. Note, idle is always in the
6944 * TASK_RUNNING state.
6945 */
6946 WARN_ON_ONCE(current->__state);
6947 do {
6948 __schedule(SM_NONE);
6949 } while (need_resched());
6950 }
6951
6952 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
schedule_user(void)6953 asmlinkage __visible void __sched schedule_user(void)
6954 {
6955 /*
6956 * If we come here after a random call to set_need_resched(),
6957 * or we have been woken up remotely but the IPI has not yet arrived,
6958 * we haven't yet exited the RCU idle mode. Do it here manually until
6959 * we find a better solution.
6960 *
6961 * NB: There are buggy callers of this function. Ideally we
6962 * should warn if prev_state != CONTEXT_USER, but that will trigger
6963 * too frequently to make sense yet.
6964 */
6965 enum ctx_state prev_state = exception_enter();
6966 schedule();
6967 exception_exit(prev_state);
6968 }
6969 #endif
6970
6971 /**
6972 * schedule_preempt_disabled - called with preemption disabled
6973 *
6974 * Returns with preemption disabled. Note: preempt_count must be 1
6975 */
schedule_preempt_disabled(void)6976 void __sched schedule_preempt_disabled(void)
6977 {
6978 sched_preempt_enable_no_resched();
6979 schedule();
6980 preempt_disable();
6981 }
6982
6983 #ifdef CONFIG_PREEMPT_RT
schedule_rtlock(void)6984 void __sched notrace schedule_rtlock(void)
6985 {
6986 do {
6987 preempt_disable();
6988 __schedule(SM_RTLOCK_WAIT);
6989 sched_preempt_enable_no_resched();
6990 } while (need_resched());
6991 }
6992 NOKPROBE_SYMBOL(schedule_rtlock);
6993 #endif
6994
preempt_schedule_common(void)6995 static void __sched notrace preempt_schedule_common(void)
6996 {
6997 do {
6998 /*
6999 * Because the function tracer can trace preempt_count_sub()
7000 * and it also uses preempt_enable/disable_notrace(), if
7001 * NEED_RESCHED is set, the preempt_enable_notrace() called
7002 * by the function tracer will call this function again and
7003 * cause infinite recursion.
7004 *
7005 * Preemption must be disabled here before the function
7006 * tracer can trace. Break up preempt_disable() into two
7007 * calls. One to disable preemption without fear of being
7008 * traced. The other to still record the preemption latency,
7009 * which can also be traced by the function tracer.
7010 */
7011 preempt_disable_notrace();
7012 preempt_latency_start(1);
7013 __schedule(SM_PREEMPT);
7014 preempt_latency_stop(1);
7015 preempt_enable_no_resched_notrace();
7016
7017 /*
7018 * Check again in case we missed a preemption opportunity
7019 * between schedule and now.
7020 */
7021 } while (need_resched());
7022 }
7023
7024 #ifdef CONFIG_PREEMPTION
7025 /*
7026 * This is the entry point to schedule() from in-kernel preemption
7027 * off of preempt_enable.
7028 */
preempt_schedule(void)7029 asmlinkage __visible void __sched notrace preempt_schedule(void)
7030 {
7031 /*
7032 * If there is a non-zero preempt_count or interrupts are disabled,
7033 * we do not want to preempt the current task. Just return..
7034 */
7035 if (likely(!preemptible()))
7036 return;
7037 preempt_schedule_common();
7038 }
7039 NOKPROBE_SYMBOL(preempt_schedule);
7040 EXPORT_SYMBOL(preempt_schedule);
7041
7042 #ifdef CONFIG_PREEMPT_DYNAMIC
7043 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7044 #ifndef preempt_schedule_dynamic_enabled
7045 #define preempt_schedule_dynamic_enabled preempt_schedule
7046 #define preempt_schedule_dynamic_disabled NULL
7047 #endif
7048 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
7049 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
7050 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7051 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
dynamic_preempt_schedule(void)7052 void __sched notrace dynamic_preempt_schedule(void)
7053 {
7054 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
7055 return;
7056 preempt_schedule();
7057 }
7058 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
7059 EXPORT_SYMBOL(dynamic_preempt_schedule);
7060 #endif
7061 #endif
7062
7063 /**
7064 * preempt_schedule_notrace - preempt_schedule called by tracing
7065 *
7066 * The tracing infrastructure uses preempt_enable_notrace to prevent
7067 * recursion and tracing preempt enabling caused by the tracing
7068 * infrastructure itself. But as tracing can happen in areas coming
7069 * from userspace or just about to enter userspace, a preempt enable
7070 * can occur before user_exit() is called. This will cause the scheduler
7071 * to be called when the system is still in usermode.
7072 *
7073 * To prevent this, the preempt_enable_notrace will use this function
7074 * instead of preempt_schedule() to exit user context if needed before
7075 * calling the scheduler.
7076 */
preempt_schedule_notrace(void)7077 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
7078 {
7079 enum ctx_state prev_ctx;
7080
7081 if (likely(!preemptible()))
7082 return;
7083
7084 do {
7085 /*
7086 * Because the function tracer can trace preempt_count_sub()
7087 * and it also uses preempt_enable/disable_notrace(), if
7088 * NEED_RESCHED is set, the preempt_enable_notrace() called
7089 * by the function tracer will call this function again and
7090 * cause infinite recursion.
7091 *
7092 * Preemption must be disabled here before the function
7093 * tracer can trace. Break up preempt_disable() into two
7094 * calls. One to disable preemption without fear of being
7095 * traced. The other to still record the preemption latency,
7096 * which can also be traced by the function tracer.
7097 */
7098 preempt_disable_notrace();
7099 preempt_latency_start(1);
7100 /*
7101 * Needs preempt disabled in case user_exit() is traced
7102 * and the tracer calls preempt_enable_notrace() causing
7103 * an infinite recursion.
7104 */
7105 prev_ctx = exception_enter();
7106 __schedule(SM_PREEMPT);
7107 exception_exit(prev_ctx);
7108
7109 preempt_latency_stop(1);
7110 preempt_enable_no_resched_notrace();
7111 } while (need_resched());
7112 }
7113 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
7114
7115 #ifdef CONFIG_PREEMPT_DYNAMIC
7116 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7117 #ifndef preempt_schedule_notrace_dynamic_enabled
7118 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace
7119 #define preempt_schedule_notrace_dynamic_disabled NULL
7120 #endif
7121 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
7122 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
7123 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7124 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
dynamic_preempt_schedule_notrace(void)7125 void __sched notrace dynamic_preempt_schedule_notrace(void)
7126 {
7127 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
7128 return;
7129 preempt_schedule_notrace();
7130 }
7131 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
7132 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
7133 #endif
7134 #endif
7135
7136 #endif /* CONFIG_PREEMPTION */
7137
7138 /*
7139 * This is the entry point to schedule() from kernel preemption
7140 * off of irq context.
7141 * Note, that this is called and return with irqs disabled. This will
7142 * protect us against recursive calling from irq.
7143 */
preempt_schedule_irq(void)7144 asmlinkage __visible void __sched preempt_schedule_irq(void)
7145 {
7146 enum ctx_state prev_state;
7147
7148 /* Catch callers which need to be fixed */
7149 BUG_ON(preempt_count() || !irqs_disabled());
7150
7151 prev_state = exception_enter();
7152
7153 do {
7154 preempt_disable();
7155 local_irq_enable();
7156 __schedule(SM_PREEMPT);
7157 local_irq_disable();
7158 sched_preempt_enable_no_resched();
7159 } while (need_resched());
7160
7161 exception_exit(prev_state);
7162 }
7163
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)7164 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7165 void *key)
7166 {
7167 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU|WF_ANDROID_VENDOR));
7168 return try_to_wake_up(curr->private, mode, wake_flags);
7169 }
7170 EXPORT_SYMBOL(default_wake_function);
7171
__setscheduler_prio(struct task_struct * p,int prio)7172 static void __setscheduler_prio(struct task_struct *p, int prio)
7173 {
7174 if (dl_prio(prio))
7175 p->sched_class = &dl_sched_class;
7176 else if (rt_prio(prio))
7177 p->sched_class = &rt_sched_class;
7178 else
7179 p->sched_class = &fair_sched_class;
7180
7181 p->prio = prio;
7182 }
7183
7184 #ifdef CONFIG_RT_MUTEXES
7185
__rt_effective_prio(struct task_struct * pi_task,int prio)7186 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
7187 {
7188 if (pi_task)
7189 prio = min(prio, pi_task->prio);
7190
7191 return prio;
7192 }
7193
rt_effective_prio(struct task_struct * p,int prio)7194 static inline int rt_effective_prio(struct task_struct *p, int prio)
7195 {
7196 struct task_struct *pi_task = rt_mutex_get_top_task(p);
7197
7198 return __rt_effective_prio(pi_task, prio);
7199 }
7200
7201 /*
7202 * rt_mutex_setprio - set the current priority of a task
7203 * @p: task to boost
7204 * @pi_task: donor task
7205 *
7206 * This function changes the 'effective' priority of a task. It does
7207 * not touch ->normal_prio like __setscheduler().
7208 *
7209 * Used by the rt_mutex code to implement priority inheritance
7210 * logic. Call site only calls if the priority of the task changed.
7211 */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)7212 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7213 {
7214 int prio, oldprio, queued, running, queue_flag =
7215 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7216 const struct sched_class *prev_class;
7217 struct rq_flags rf;
7218 struct rq *rq;
7219 int update = 0;
7220
7221 trace_android_rvh_rtmutex_prepare_setprio(p, pi_task);
7222 /* XXX used to be waiter->prio, not waiter->task->prio */
7223 prio = __rt_effective_prio(pi_task, p->normal_prio);
7224
7225 trace_android_rvh_rtmutex_force_update(p, pi_task, &update);
7226 /*
7227 * If nothing changed; bail early.
7228 */
7229 if (!update && p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7230 return;
7231
7232 rq = __task_rq_lock(p, &rf);
7233 update_rq_clock(rq);
7234 /*
7235 * Set under pi_lock && rq->lock, such that the value can be used under
7236 * either lock.
7237 *
7238 * Note that there is loads of tricky to make this pointer cache work
7239 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7240 * ensure a task is de-boosted (pi_task is set to NULL) before the
7241 * task is allowed to run again (and can exit). This ensures the pointer
7242 * points to a blocked task -- which guarantees the task is present.
7243 */
7244 p->pi_top_task = pi_task;
7245
7246 /*
7247 * For FIFO/RR we only need to set prio, if that matches we're done.
7248 */
7249 if (!update && prio == p->prio && !dl_prio(prio))
7250 goto out_unlock;
7251
7252 /*
7253 * Idle task boosting is a nono in general. There is one
7254 * exception, when PREEMPT_RT and NOHZ is active:
7255 *
7256 * The idle task calls get_next_timer_interrupt() and holds
7257 * the timer wheel base->lock on the CPU and another CPU wants
7258 * to access the timer (probably to cancel it). We can safely
7259 * ignore the boosting request, as the idle CPU runs this code
7260 * with interrupts disabled and will complete the lock
7261 * protected section without being interrupted. So there is no
7262 * real need to boost.
7263 */
7264 if (unlikely(p == rq->idle)) {
7265 WARN_ON(p != rq->curr);
7266 WARN_ON(p->pi_blocked_on);
7267 goto out_unlock;
7268 }
7269
7270 trace_sched_pi_setprio(p, pi_task);
7271 oldprio = p->prio;
7272
7273 if (oldprio == prio)
7274 queue_flag &= ~DEQUEUE_MOVE;
7275
7276 prev_class = p->sched_class;
7277 queued = task_on_rq_queued(p);
7278 running = task_current(rq, p);
7279 if (queued)
7280 dequeue_task(rq, p, queue_flag);
7281 if (running)
7282 put_prev_task(rq, p);
7283
7284 /*
7285 * Boosting condition are:
7286 * 1. -rt task is running and holds mutex A
7287 * --> -dl task blocks on mutex A
7288 *
7289 * 2. -dl task is running and holds mutex A
7290 * --> -dl task blocks on mutex A and could preempt the
7291 * running task
7292 */
7293 if (dl_prio(prio)) {
7294 if (!dl_prio(p->normal_prio) ||
7295 (pi_task && dl_prio(pi_task->prio) &&
7296 dl_entity_preempt(&pi_task->dl, &p->dl))) {
7297 p->dl.pi_se = pi_task->dl.pi_se;
7298 queue_flag |= ENQUEUE_REPLENISH;
7299 } else {
7300 p->dl.pi_se = &p->dl;
7301 }
7302 } else if (rt_prio(prio)) {
7303 if (dl_prio(oldprio))
7304 p->dl.pi_se = &p->dl;
7305 if (oldprio < prio)
7306 queue_flag |= ENQUEUE_HEAD;
7307 } else {
7308 if (dl_prio(oldprio))
7309 p->dl.pi_se = &p->dl;
7310 else if (rt_prio(oldprio))
7311 p->rt.timeout = 0;
7312 else if (!task_has_idle_policy(p))
7313 reweight_task(p, prio - MAX_RT_PRIO);
7314 }
7315
7316 __setscheduler_prio(p, prio);
7317
7318 if (queued)
7319 enqueue_task(rq, p, queue_flag);
7320 if (running)
7321 set_next_task(rq, p);
7322
7323 check_class_changed(rq, p, prev_class, oldprio);
7324 out_unlock:
7325 /* Avoid rq from going away on us: */
7326 preempt_disable();
7327
7328 rq_unpin_lock(rq, &rf);
7329 __balance_callbacks(rq);
7330 raw_spin_rq_unlock(rq);
7331
7332 preempt_enable();
7333 }
7334 #else
rt_effective_prio(struct task_struct * p,int prio)7335 static inline int rt_effective_prio(struct task_struct *p, int prio)
7336 {
7337 return prio;
7338 }
7339 #endif
7340
set_user_nice(struct task_struct * p,long nice)7341 void set_user_nice(struct task_struct *p, long nice)
7342 {
7343 bool queued, running, allowed = false;
7344 int old_prio;
7345 struct rq_flags rf;
7346 struct rq *rq;
7347
7348 trace_android_rvh_set_user_nice(p, &nice, &allowed);
7349 if ((task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) && !allowed)
7350 return;
7351 /*
7352 * We have to be careful, if called from sys_setpriority(),
7353 * the task might be in the middle of scheduling on another CPU.
7354 */
7355 rq = task_rq_lock(p, &rf);
7356 update_rq_clock(rq);
7357
7358 trace_android_rvh_set_user_nice_locked(p, &nice);
7359 if (task_nice(p) == nice)
7360 goto out_unlock;
7361
7362 /*
7363 * The RT priorities are set via sched_setscheduler(), but we still
7364 * allow the 'normal' nice value to be set - but as expected
7365 * it won't have any effect on scheduling until the task is
7366 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7367 */
7368 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7369 p->static_prio = NICE_TO_PRIO(nice);
7370 goto out_unlock;
7371 }
7372 queued = task_on_rq_queued(p);
7373 running = task_current(rq, p);
7374 if (queued)
7375 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7376 if (running)
7377 put_prev_task(rq, p);
7378
7379 p->static_prio = NICE_TO_PRIO(nice);
7380 set_load_weight(p, true);
7381 old_prio = p->prio;
7382 p->prio = effective_prio(p);
7383
7384 if (queued)
7385 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7386 if (running)
7387 set_next_task(rq, p);
7388
7389 /*
7390 * If the task increased its priority or is running and
7391 * lowered its priority, then reschedule its CPU:
7392 */
7393 p->sched_class->prio_changed(rq, p, old_prio);
7394
7395 out_unlock:
7396 task_rq_unlock(rq, p, &rf);
7397 }
7398 EXPORT_SYMBOL(set_user_nice);
7399
7400 /*
7401 * is_nice_reduction - check if nice value is an actual reduction
7402 *
7403 * Similar to can_nice() but does not perform a capability check.
7404 *
7405 * @p: task
7406 * @nice: nice value
7407 */
is_nice_reduction(const struct task_struct * p,const int nice)7408 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7409 {
7410 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7411 int nice_rlim = nice_to_rlimit(nice);
7412
7413 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7414 }
7415
7416 /*
7417 * can_nice - check if a task can reduce its nice value
7418 * @p: task
7419 * @nice: nice value
7420 */
can_nice(const struct task_struct * p,const int nice)7421 int can_nice(const struct task_struct *p, const int nice)
7422 {
7423 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7424 }
7425
7426 #ifdef __ARCH_WANT_SYS_NICE
7427
7428 /*
7429 * sys_nice - change the priority of the current process.
7430 * @increment: priority increment
7431 *
7432 * sys_setpriority is a more generic, but much slower function that
7433 * does similar things.
7434 */
SYSCALL_DEFINE1(nice,int,increment)7435 SYSCALL_DEFINE1(nice, int, increment)
7436 {
7437 long nice, retval;
7438
7439 /*
7440 * Setpriority might change our priority at the same moment.
7441 * We don't have to worry. Conceptually one call occurs first
7442 * and we have a single winner.
7443 */
7444 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7445 nice = task_nice(current) + increment;
7446
7447 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7448 if (increment < 0 && !can_nice(current, nice))
7449 return -EPERM;
7450
7451 retval = security_task_setnice(current, nice);
7452 if (retval)
7453 return retval;
7454
7455 set_user_nice(current, nice);
7456 return 0;
7457 }
7458
7459 #endif
7460
7461 /**
7462 * task_prio - return the priority value of a given task.
7463 * @p: the task in question.
7464 *
7465 * Return: The priority value as seen by users in /proc.
7466 *
7467 * sched policy return value kernel prio user prio/nice
7468 *
7469 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
7470 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
7471 * deadline -101 -1 0
7472 */
task_prio(const struct task_struct * p)7473 int task_prio(const struct task_struct *p)
7474 {
7475 return p->prio - MAX_RT_PRIO;
7476 }
7477
7478 /**
7479 * idle_cpu - is a given CPU idle currently?
7480 * @cpu: the processor in question.
7481 *
7482 * Return: 1 if the CPU is currently idle. 0 otherwise.
7483 */
idle_cpu(int cpu)7484 int idle_cpu(int cpu)
7485 {
7486 struct rq *rq = cpu_rq(cpu);
7487
7488 if (rq->curr != rq->idle)
7489 return 0;
7490
7491 if (rq->nr_running)
7492 return 0;
7493
7494 #ifdef CONFIG_SMP
7495 if (rq->ttwu_pending)
7496 return 0;
7497 #endif
7498
7499 return 1;
7500 }
7501
7502 /**
7503 * available_idle_cpu - is a given CPU idle for enqueuing work.
7504 * @cpu: the CPU in question.
7505 *
7506 * Return: 1 if the CPU is currently idle. 0 otherwise.
7507 */
available_idle_cpu(int cpu)7508 int available_idle_cpu(int cpu)
7509 {
7510 if (!idle_cpu(cpu))
7511 return 0;
7512
7513 if (vcpu_is_preempted(cpu))
7514 return 0;
7515
7516 return 1;
7517 }
7518 EXPORT_SYMBOL_GPL(available_idle_cpu);
7519
7520 /**
7521 * idle_task - return the idle task for a given CPU.
7522 * @cpu: the processor in question.
7523 *
7524 * Return: The idle task for the CPU @cpu.
7525 */
idle_task(int cpu)7526 struct task_struct *idle_task(int cpu)
7527 {
7528 return cpu_rq(cpu)->idle;
7529 }
7530
7531 #ifdef CONFIG_SCHED_CORE
sched_core_idle_cpu(int cpu)7532 int sched_core_idle_cpu(int cpu)
7533 {
7534 struct rq *rq = cpu_rq(cpu);
7535
7536 if (sched_core_enabled(rq) && rq->curr == rq->idle)
7537 return 1;
7538
7539 return idle_cpu(cpu);
7540 }
7541
7542 #endif
7543
7544 #ifdef CONFIG_SMP
7545 /*
7546 * This function computes an effective utilization for the given CPU, to be
7547 * used for frequency selection given the linear relation: f = u * f_max.
7548 *
7549 * The scheduler tracks the following metrics:
7550 *
7551 * cpu_util_{cfs,rt,dl,irq}()
7552 * cpu_bw_dl()
7553 *
7554 * Where the cfs,rt and dl util numbers are tracked with the same metric and
7555 * synchronized windows and are thus directly comparable.
7556 *
7557 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7558 * which excludes things like IRQ and steal-time. These latter are then accrued
7559 * in the irq utilization.
7560 *
7561 * The DL bandwidth number otoh is not a measured metric but a value computed
7562 * based on the task model parameters and gives the minimal utilization
7563 * required to meet deadlines.
7564 */
effective_cpu_util(int cpu,unsigned long util_cfs,enum cpu_util_type type,struct task_struct * p)7565 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7566 enum cpu_util_type type,
7567 struct task_struct *p)
7568 {
7569 unsigned long dl_util, util, irq, max;
7570 struct rq *rq = cpu_rq(cpu);
7571 unsigned long new_util = ULONG_MAX;
7572
7573 max = arch_scale_cpu_capacity(cpu);
7574
7575 trace_android_rvh_effective_cpu_util(cpu, util_cfs, max, type, p, &new_util);
7576 if (new_util != ULONG_MAX)
7577 return new_util;
7578
7579 if (!uclamp_is_used() &&
7580 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7581 return max;
7582 }
7583
7584 /*
7585 * Early check to see if IRQ/steal time saturates the CPU, can be
7586 * because of inaccuracies in how we track these -- see
7587 * update_irq_load_avg().
7588 */
7589 irq = cpu_util_irq(rq);
7590 if (unlikely(irq >= max))
7591 return max;
7592
7593 /*
7594 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7595 * CFS tasks and we use the same metric to track the effective
7596 * utilization (PELT windows are synchronized) we can directly add them
7597 * to obtain the CPU's actual utilization.
7598 *
7599 * CFS and RT utilization can be boosted or capped, depending on
7600 * utilization clamp constraints requested by currently RUNNABLE
7601 * tasks.
7602 * When there are no CFS RUNNABLE tasks, clamps are released and
7603 * frequency will be gracefully reduced with the utilization decay.
7604 */
7605 util = util_cfs + cpu_util_rt(rq);
7606 if (type == FREQUENCY_UTIL)
7607 util = uclamp_rq_util_with(rq, util, p);
7608
7609 dl_util = cpu_util_dl(rq);
7610
7611 /*
7612 * For frequency selection we do not make cpu_util_dl() a permanent part
7613 * of this sum because we want to use cpu_bw_dl() later on, but we need
7614 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7615 * that we select f_max when there is no idle time.
7616 *
7617 * NOTE: numerical errors or stop class might cause us to not quite hit
7618 * saturation when we should -- something for later.
7619 */
7620 if (util + dl_util >= max)
7621 return max;
7622
7623 /*
7624 * OTOH, for energy computation we need the estimated running time, so
7625 * include util_dl and ignore dl_bw.
7626 */
7627 if (type == ENERGY_UTIL)
7628 util += dl_util;
7629
7630 /*
7631 * There is still idle time; further improve the number by using the
7632 * irq metric. Because IRQ/steal time is hidden from the task clock we
7633 * need to scale the task numbers:
7634 *
7635 * max - irq
7636 * U' = irq + --------- * U
7637 * max
7638 */
7639 util = scale_irq_capacity(util, irq, max);
7640 util += irq;
7641
7642 /*
7643 * Bandwidth required by DEADLINE must always be granted while, for
7644 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7645 * to gracefully reduce the frequency when no tasks show up for longer
7646 * periods of time.
7647 *
7648 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7649 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7650 * an interface. So, we only do the latter for now.
7651 */
7652 if (type == FREQUENCY_UTIL)
7653 util += cpu_bw_dl(rq);
7654
7655 return min(max, util);
7656 }
7657
sched_cpu_util(int cpu)7658 unsigned long sched_cpu_util(int cpu)
7659 {
7660 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7661 }
7662 #endif /* CONFIG_SMP */
7663
7664 /**
7665 * find_process_by_pid - find a process with a matching PID value.
7666 * @pid: the pid in question.
7667 *
7668 * The task of @pid, if found. %NULL otherwise.
7669 */
find_process_by_pid(pid_t pid)7670 static struct task_struct *find_process_by_pid(pid_t pid)
7671 {
7672 return pid ? find_task_by_vpid(pid) : current;
7673 }
7674
7675 /*
7676 * sched_setparam() passes in -1 for its policy, to let the functions
7677 * it calls know not to change it.
7678 */
7679 #define SETPARAM_POLICY -1
7680
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)7681 static void __setscheduler_params(struct task_struct *p,
7682 const struct sched_attr *attr)
7683 {
7684 int policy = attr->sched_policy;
7685
7686 if (policy == SETPARAM_POLICY)
7687 policy = p->policy;
7688
7689 p->policy = policy;
7690
7691 if (dl_policy(policy))
7692 __setparam_dl(p, attr);
7693 else if (fair_policy(policy))
7694 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7695
7696 /*
7697 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7698 * !rt_policy. Always setting this ensures that things like
7699 * getparam()/getattr() don't report silly values for !rt tasks.
7700 */
7701 p->rt_priority = attr->sched_priority;
7702 p->normal_prio = normal_prio(p);
7703 set_load_weight(p, true);
7704 }
7705
7706 /*
7707 * Check the target process has a UID that matches the current process's:
7708 */
check_same_owner(struct task_struct * p)7709 static bool check_same_owner(struct task_struct *p)
7710 {
7711 const struct cred *cred = current_cred(), *pcred;
7712 bool match;
7713
7714 rcu_read_lock();
7715 pcred = __task_cred(p);
7716 match = (uid_eq(cred->euid, pcred->euid) ||
7717 uid_eq(cred->euid, pcred->uid));
7718 rcu_read_unlock();
7719 return match;
7720 }
7721
7722 /*
7723 * Allow unprivileged RT tasks to decrease priority.
7724 * Only issue a capable test if needed and only once to avoid an audit
7725 * event on permitted non-privileged operations:
7726 */
user_check_sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,int policy,int reset_on_fork)7727 static int user_check_sched_setscheduler(struct task_struct *p,
7728 const struct sched_attr *attr,
7729 int policy, int reset_on_fork)
7730 {
7731 if (fair_policy(policy)) {
7732 if (attr->sched_nice < task_nice(p) &&
7733 !is_nice_reduction(p, attr->sched_nice))
7734 goto req_priv;
7735 }
7736
7737 if (rt_policy(policy)) {
7738 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7739
7740 /* Can't set/change the rt policy: */
7741 if (policy != p->policy && !rlim_rtprio)
7742 goto req_priv;
7743
7744 /* Can't increase priority: */
7745 if (attr->sched_priority > p->rt_priority &&
7746 attr->sched_priority > rlim_rtprio)
7747 goto req_priv;
7748 }
7749
7750 /*
7751 * Can't set/change SCHED_DEADLINE policy at all for now
7752 * (safest behavior); in the future we would like to allow
7753 * unprivileged DL tasks to increase their relative deadline
7754 * or reduce their runtime (both ways reducing utilization)
7755 */
7756 if (dl_policy(policy))
7757 goto req_priv;
7758
7759 /*
7760 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7761 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7762 */
7763 if (task_has_idle_policy(p) && !idle_policy(policy)) {
7764 if (!is_nice_reduction(p, task_nice(p)))
7765 goto req_priv;
7766 }
7767
7768 /* Can't change other user's priorities: */
7769 if (!check_same_owner(p))
7770 goto req_priv;
7771
7772 /* Normal users shall not reset the sched_reset_on_fork flag: */
7773 if (p->sched_reset_on_fork && !reset_on_fork)
7774 goto req_priv;
7775
7776 return 0;
7777
7778 req_priv:
7779 if (!capable(CAP_SYS_NICE))
7780 return -EPERM;
7781
7782 return 0;
7783 }
7784
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)7785 static int __sched_setscheduler(struct task_struct *p,
7786 const struct sched_attr *attr,
7787 bool user, bool pi)
7788 {
7789 int oldpolicy = -1, policy = attr->sched_policy;
7790 int retval, oldprio, newprio, queued, running;
7791 const struct sched_class *prev_class;
7792 struct balance_callback *head;
7793 struct rq_flags rf;
7794 int reset_on_fork;
7795 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7796 struct rq *rq;
7797 bool cpuset_locked = false;
7798
7799 /* The pi code expects interrupts enabled */
7800 BUG_ON(pi && in_interrupt());
7801 recheck:
7802 /* Double check policy once rq lock held: */
7803 if (policy < 0) {
7804 reset_on_fork = p->sched_reset_on_fork;
7805 policy = oldpolicy = p->policy;
7806 } else {
7807 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7808
7809 if (!valid_policy(policy))
7810 return -EINVAL;
7811 }
7812
7813 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7814 return -EINVAL;
7815
7816 /*
7817 * Valid priorities for SCHED_FIFO and SCHED_RR are
7818 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7819 * SCHED_BATCH and SCHED_IDLE is 0.
7820 */
7821 if (attr->sched_priority > MAX_RT_PRIO-1)
7822 return -EINVAL;
7823 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7824 (rt_policy(policy) != (attr->sched_priority != 0)))
7825 return -EINVAL;
7826
7827 if (user) {
7828 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7829 if (retval)
7830 return retval;
7831
7832 if (attr->sched_flags & SCHED_FLAG_SUGOV)
7833 return -EINVAL;
7834
7835 retval = security_task_setscheduler(p);
7836 if (retval)
7837 return retval;
7838 }
7839
7840 /* Update task specific "requested" clamps */
7841 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7842 retval = uclamp_validate(p, attr);
7843 if (retval)
7844 return retval;
7845 }
7846
7847 /*
7848 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
7849 * information.
7850 */
7851 if (dl_policy(policy) || dl_policy(p->policy)) {
7852 cpuset_locked = true;
7853 cpuset_lock();
7854 }
7855
7856 /*
7857 * Make sure no PI-waiters arrive (or leave) while we are
7858 * changing the priority of the task:
7859 *
7860 * To be able to change p->policy safely, the appropriate
7861 * runqueue lock must be held.
7862 */
7863 rq = task_rq_lock(p, &rf);
7864 update_rq_clock(rq);
7865
7866 /*
7867 * Changing the policy of the stop threads its a very bad idea:
7868 */
7869 if (p == rq->stop) {
7870 retval = -EINVAL;
7871 goto unlock;
7872 }
7873
7874 /*
7875 * If not changing anything there's no need to proceed further,
7876 * but store a possible modification of reset_on_fork.
7877 */
7878 if (unlikely(policy == p->policy)) {
7879 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7880 goto change;
7881 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7882 goto change;
7883 if (dl_policy(policy) && dl_param_changed(p, attr))
7884 goto change;
7885 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7886 goto change;
7887
7888 p->sched_reset_on_fork = reset_on_fork;
7889 retval = 0;
7890 goto unlock;
7891 }
7892 change:
7893
7894 if (user) {
7895 #ifdef CONFIG_RT_GROUP_SCHED
7896 /*
7897 * Do not allow realtime tasks into groups that have no runtime
7898 * assigned.
7899 */
7900 if (rt_bandwidth_enabled() && rt_policy(policy) &&
7901 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7902 !task_group_is_autogroup(task_group(p))) {
7903 retval = -EPERM;
7904 goto unlock;
7905 }
7906 #endif
7907 #ifdef CONFIG_SMP
7908 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7909 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7910 cpumask_t *span = rq->rd->span;
7911
7912 /*
7913 * Don't allow tasks with an affinity mask smaller than
7914 * the entire root_domain to become SCHED_DEADLINE. We
7915 * will also fail if there's no bandwidth available.
7916 */
7917 if (!cpumask_subset(span, p->cpus_ptr) ||
7918 rq->rd->dl_bw.bw == 0) {
7919 retval = -EPERM;
7920 goto unlock;
7921 }
7922 }
7923 #endif
7924 }
7925
7926 /* Re-check policy now with rq lock held: */
7927 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7928 policy = oldpolicy = -1;
7929 task_rq_unlock(rq, p, &rf);
7930 if (cpuset_locked)
7931 cpuset_unlock();
7932 goto recheck;
7933 }
7934
7935 /*
7936 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7937 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7938 * is available.
7939 */
7940 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7941 retval = -EBUSY;
7942 goto unlock;
7943 }
7944
7945 p->sched_reset_on_fork = reset_on_fork;
7946 oldprio = p->prio;
7947
7948 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7949 if (pi) {
7950 /*
7951 * Take priority boosted tasks into account. If the new
7952 * effective priority is unchanged, we just store the new
7953 * normal parameters and do not touch the scheduler class and
7954 * the runqueue. This will be done when the task deboost
7955 * itself.
7956 */
7957 newprio = rt_effective_prio(p, newprio);
7958 if (newprio == oldprio)
7959 queue_flags &= ~DEQUEUE_MOVE;
7960 }
7961
7962 queued = task_on_rq_queued(p);
7963 running = task_current(rq, p);
7964 if (queued)
7965 dequeue_task(rq, p, queue_flags);
7966 if (running)
7967 put_prev_task(rq, p);
7968
7969 prev_class = p->sched_class;
7970
7971 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7972 __setscheduler_params(p, attr);
7973 __setscheduler_prio(p, newprio);
7974 trace_android_rvh_setscheduler(p);
7975 }
7976 __setscheduler_uclamp(p, attr);
7977
7978 if (queued) {
7979 /*
7980 * We enqueue to tail when the priority of a task is
7981 * increased (user space view).
7982 */
7983 if (oldprio < p->prio)
7984 queue_flags |= ENQUEUE_HEAD;
7985
7986 enqueue_task(rq, p, queue_flags);
7987 }
7988 if (running)
7989 set_next_task(rq, p);
7990
7991 check_class_changed(rq, p, prev_class, oldprio);
7992
7993 /* Avoid rq from going away on us: */
7994 preempt_disable();
7995 head = splice_balance_callbacks(rq);
7996 task_rq_unlock(rq, p, &rf);
7997
7998 if (pi) {
7999 if (cpuset_locked)
8000 cpuset_unlock();
8001 rt_mutex_adjust_pi(p);
8002 }
8003
8004 /* Run balance callbacks after we've adjusted the PI chain: */
8005 balance_callbacks(rq, head);
8006 preempt_enable();
8007
8008 return 0;
8009
8010 unlock:
8011 task_rq_unlock(rq, p, &rf);
8012 if (cpuset_locked)
8013 cpuset_unlock();
8014 return retval;
8015 }
8016
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)8017 static int _sched_setscheduler(struct task_struct *p, int policy,
8018 const struct sched_param *param, bool check)
8019 {
8020 struct sched_attr attr = {
8021 .sched_policy = policy,
8022 .sched_priority = param->sched_priority,
8023 .sched_nice = PRIO_TO_NICE(p->static_prio),
8024 };
8025
8026 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
8027 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
8028 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8029 policy &= ~SCHED_RESET_ON_FORK;
8030 attr.sched_policy = policy;
8031 }
8032
8033 return __sched_setscheduler(p, &attr, check, true);
8034 }
8035 /**
8036 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
8037 * @p: the task in question.
8038 * @policy: new policy.
8039 * @param: structure containing the new RT priority.
8040 *
8041 * Use sched_set_fifo(), read its comment.
8042 *
8043 * Return: 0 on success. An error code otherwise.
8044 *
8045 * NOTE that the task may be already dead.
8046 */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)8047 int sched_setscheduler(struct task_struct *p, int policy,
8048 const struct sched_param *param)
8049 {
8050 return _sched_setscheduler(p, policy, param, true);
8051 }
8052 EXPORT_SYMBOL_GPL(sched_setscheduler);
8053
sched_setattr(struct task_struct * p,const struct sched_attr * attr)8054 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
8055 {
8056 return __sched_setscheduler(p, attr, true, true);
8057 }
8058 EXPORT_SYMBOL_GPL(sched_setattr);
8059
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)8060 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
8061 {
8062 return __sched_setscheduler(p, attr, false, true);
8063 }
8064 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
8065
8066 /**
8067 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
8068 * @p: the task in question.
8069 * @policy: new policy.
8070 * @param: structure containing the new RT priority.
8071 *
8072 * Just like sched_setscheduler, only don't bother checking if the
8073 * current context has permission. For example, this is needed in
8074 * stop_machine(): we create temporary high priority worker threads,
8075 * but our caller might not have that capability.
8076 *
8077 * Return: 0 on success. An error code otherwise.
8078 */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)8079 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
8080 const struct sched_param *param)
8081 {
8082 return _sched_setscheduler(p, policy, param, false);
8083 }
8084 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
8085
8086 /*
8087 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
8088 * incapable of resource management, which is the one thing an OS really should
8089 * be doing.
8090 *
8091 * This is of course the reason it is limited to privileged users only.
8092 *
8093 * Worse still; it is fundamentally impossible to compose static priority
8094 * workloads. You cannot take two correctly working static prio workloads
8095 * and smash them together and still expect them to work.
8096 *
8097 * For this reason 'all' FIFO tasks the kernel creates are basically at:
8098 *
8099 * MAX_RT_PRIO / 2
8100 *
8101 * The administrator _MUST_ configure the system, the kernel simply doesn't
8102 * know enough information to make a sensible choice.
8103 */
sched_set_fifo(struct task_struct * p)8104 void sched_set_fifo(struct task_struct *p)
8105 {
8106 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
8107 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
8108 }
8109 EXPORT_SYMBOL_GPL(sched_set_fifo);
8110
8111 /*
8112 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
8113 */
sched_set_fifo_low(struct task_struct * p)8114 void sched_set_fifo_low(struct task_struct *p)
8115 {
8116 struct sched_param sp = { .sched_priority = 1 };
8117 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
8118 }
8119 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
8120
sched_set_normal(struct task_struct * p,int nice)8121 void sched_set_normal(struct task_struct *p, int nice)
8122 {
8123 struct sched_attr attr = {
8124 .sched_policy = SCHED_NORMAL,
8125 .sched_nice = nice,
8126 };
8127 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
8128 }
8129 EXPORT_SYMBOL_GPL(sched_set_normal);
8130
8131 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)8132 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
8133 {
8134 struct sched_param lparam;
8135 struct task_struct *p;
8136 int retval;
8137
8138 if (!param || pid < 0)
8139 return -EINVAL;
8140 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
8141 return -EFAULT;
8142
8143 rcu_read_lock();
8144 retval = -ESRCH;
8145 p = find_process_by_pid(pid);
8146 if (likely(p))
8147 get_task_struct(p);
8148 rcu_read_unlock();
8149
8150 if (likely(p)) {
8151 retval = sched_setscheduler(p, policy, &lparam);
8152 put_task_struct(p);
8153 }
8154
8155 return retval;
8156 }
8157
8158 /*
8159 * Mimics kernel/events/core.c perf_copy_attr().
8160 */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)8161 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
8162 {
8163 u32 size;
8164 int ret;
8165
8166 /* Zero the full structure, so that a short copy will be nice: */
8167 memset(attr, 0, sizeof(*attr));
8168
8169 ret = get_user(size, &uattr->size);
8170 if (ret)
8171 return ret;
8172
8173 /* ABI compatibility quirk: */
8174 if (!size)
8175 size = SCHED_ATTR_SIZE_VER0;
8176 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
8177 goto err_size;
8178
8179 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
8180 if (ret) {
8181 if (ret == -E2BIG)
8182 goto err_size;
8183 return ret;
8184 }
8185
8186 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
8187 size < SCHED_ATTR_SIZE_VER1)
8188 return -EINVAL;
8189
8190 /*
8191 * XXX: Do we want to be lenient like existing syscalls; or do we want
8192 * to be strict and return an error on out-of-bounds values?
8193 */
8194 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
8195
8196 return 0;
8197
8198 err_size:
8199 put_user(sizeof(*attr), &uattr->size);
8200 return -E2BIG;
8201 }
8202
get_params(struct task_struct * p,struct sched_attr * attr)8203 static void get_params(struct task_struct *p, struct sched_attr *attr)
8204 {
8205 if (task_has_dl_policy(p))
8206 __getparam_dl(p, attr);
8207 else if (task_has_rt_policy(p))
8208 attr->sched_priority = p->rt_priority;
8209 else
8210 attr->sched_nice = task_nice(p);
8211 }
8212
8213 /**
8214 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
8215 * @pid: the pid in question.
8216 * @policy: new policy.
8217 * @param: structure containing the new RT priority.
8218 *
8219 * Return: 0 on success. An error code otherwise.
8220 */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)8221 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
8222 {
8223 if (policy < 0)
8224 return -EINVAL;
8225
8226 return do_sched_setscheduler(pid, policy, param);
8227 }
8228
8229 /**
8230 * sys_sched_setparam - set/change the RT priority of a thread
8231 * @pid: the pid in question.
8232 * @param: structure containing the new RT priority.
8233 *
8234 * Return: 0 on success. An error code otherwise.
8235 */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)8236 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
8237 {
8238 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
8239 }
8240
8241 /**
8242 * sys_sched_setattr - same as above, but with extended sched_attr
8243 * @pid: the pid in question.
8244 * @uattr: structure containing the extended parameters.
8245 * @flags: for future extension.
8246 */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)8247 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
8248 unsigned int, flags)
8249 {
8250 struct sched_attr attr;
8251 struct task_struct *p;
8252 int retval;
8253
8254 if (!uattr || pid < 0 || flags)
8255 return -EINVAL;
8256
8257 retval = sched_copy_attr(uattr, &attr);
8258 if (retval)
8259 return retval;
8260
8261 if ((int)attr.sched_policy < 0)
8262 return -EINVAL;
8263 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
8264 attr.sched_policy = SETPARAM_POLICY;
8265
8266 rcu_read_lock();
8267 retval = -ESRCH;
8268 p = find_process_by_pid(pid);
8269 if (likely(p))
8270 get_task_struct(p);
8271 rcu_read_unlock();
8272
8273 if (likely(p)) {
8274 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8275 get_params(p, &attr);
8276 retval = sched_setattr(p, &attr);
8277 put_task_struct(p);
8278 }
8279
8280 return retval;
8281 }
8282
8283 /**
8284 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8285 * @pid: the pid in question.
8286 *
8287 * Return: On success, the policy of the thread. Otherwise, a negative error
8288 * code.
8289 */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)8290 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8291 {
8292 struct task_struct *p;
8293 int retval;
8294
8295 if (pid < 0)
8296 return -EINVAL;
8297
8298 retval = -ESRCH;
8299 rcu_read_lock();
8300 p = find_process_by_pid(pid);
8301 if (p) {
8302 retval = security_task_getscheduler(p);
8303 if (!retval)
8304 retval = p->policy
8305 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
8306 }
8307 rcu_read_unlock();
8308 return retval;
8309 }
8310
8311 /**
8312 * sys_sched_getparam - get the RT priority of a thread
8313 * @pid: the pid in question.
8314 * @param: structure containing the RT priority.
8315 *
8316 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8317 * code.
8318 */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)8319 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8320 {
8321 struct sched_param lp = { .sched_priority = 0 };
8322 struct task_struct *p;
8323 int retval;
8324
8325 if (!param || pid < 0)
8326 return -EINVAL;
8327
8328 rcu_read_lock();
8329 p = find_process_by_pid(pid);
8330 retval = -ESRCH;
8331 if (!p)
8332 goto out_unlock;
8333
8334 retval = security_task_getscheduler(p);
8335 if (retval)
8336 goto out_unlock;
8337
8338 if (task_has_rt_policy(p))
8339 lp.sched_priority = p->rt_priority;
8340 rcu_read_unlock();
8341
8342 /*
8343 * This one might sleep, we cannot do it with a spinlock held ...
8344 */
8345 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8346
8347 return retval;
8348
8349 out_unlock:
8350 rcu_read_unlock();
8351 return retval;
8352 }
8353
8354 /*
8355 * Copy the kernel size attribute structure (which might be larger
8356 * than what user-space knows about) to user-space.
8357 *
8358 * Note that all cases are valid: user-space buffer can be larger or
8359 * smaller than the kernel-space buffer. The usual case is that both
8360 * have the same size.
8361 */
8362 static int
sched_attr_copy_to_user(struct sched_attr __user * uattr,struct sched_attr * kattr,unsigned int usize)8363 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8364 struct sched_attr *kattr,
8365 unsigned int usize)
8366 {
8367 unsigned int ksize = sizeof(*kattr);
8368
8369 if (!access_ok(uattr, usize))
8370 return -EFAULT;
8371
8372 /*
8373 * sched_getattr() ABI forwards and backwards compatibility:
8374 *
8375 * If usize == ksize then we just copy everything to user-space and all is good.
8376 *
8377 * If usize < ksize then we only copy as much as user-space has space for,
8378 * this keeps ABI compatibility as well. We skip the rest.
8379 *
8380 * If usize > ksize then user-space is using a newer version of the ABI,
8381 * which part the kernel doesn't know about. Just ignore it - tooling can
8382 * detect the kernel's knowledge of attributes from the attr->size value
8383 * which is set to ksize in this case.
8384 */
8385 kattr->size = min(usize, ksize);
8386
8387 if (copy_to_user(uattr, kattr, kattr->size))
8388 return -EFAULT;
8389
8390 return 0;
8391 }
8392
8393 /**
8394 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8395 * @pid: the pid in question.
8396 * @uattr: structure containing the extended parameters.
8397 * @usize: sizeof(attr) for fwd/bwd comp.
8398 * @flags: for future extension.
8399 */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)8400 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8401 unsigned int, usize, unsigned int, flags)
8402 {
8403 struct sched_attr kattr = { };
8404 struct task_struct *p;
8405 int retval;
8406
8407 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8408 usize < SCHED_ATTR_SIZE_VER0 || flags)
8409 return -EINVAL;
8410
8411 rcu_read_lock();
8412 p = find_process_by_pid(pid);
8413 retval = -ESRCH;
8414 if (!p)
8415 goto out_unlock;
8416
8417 retval = security_task_getscheduler(p);
8418 if (retval)
8419 goto out_unlock;
8420
8421 kattr.sched_policy = p->policy;
8422 if (p->sched_reset_on_fork)
8423 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8424 get_params(p, &kattr);
8425 kattr.sched_flags &= SCHED_FLAG_ALL;
8426
8427 #ifdef CONFIG_UCLAMP_TASK
8428 /*
8429 * This could race with another potential updater, but this is fine
8430 * because it'll correctly read the old or the new value. We don't need
8431 * to guarantee who wins the race as long as it doesn't return garbage.
8432 */
8433 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8434 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8435 #endif
8436
8437 rcu_read_unlock();
8438
8439 return sched_attr_copy_to_user(uattr, &kattr, usize);
8440
8441 out_unlock:
8442 rcu_read_unlock();
8443 return retval;
8444 }
8445
8446 #ifdef CONFIG_SMP
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)8447 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8448 {
8449 int ret = 0;
8450
8451 /*
8452 * If the task isn't a deadline task or admission control is
8453 * disabled then we don't care about affinity changes.
8454 */
8455 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8456 return 0;
8457
8458 /*
8459 * Since bandwidth control happens on root_domain basis,
8460 * if admission test is enabled, we only admit -deadline
8461 * tasks allowed to run on all the CPUs in the task's
8462 * root_domain.
8463 */
8464 rcu_read_lock();
8465 if (!cpumask_subset(task_rq(p)->rd->span, mask))
8466 ret = -EBUSY;
8467 rcu_read_unlock();
8468 return ret;
8469 }
8470 #endif
8471
8472 static int
__sched_setaffinity(struct task_struct * p,struct affinity_context * ctx)8473 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8474 {
8475 int retval;
8476 cpumask_var_t cpus_allowed, new_mask;
8477
8478 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8479 return -ENOMEM;
8480
8481 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8482 retval = -ENOMEM;
8483 goto out_free_cpus_allowed;
8484 }
8485
8486 cpuset_cpus_allowed(p, cpus_allowed);
8487 cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8488
8489 ctx->new_mask = new_mask;
8490 ctx->flags |= SCA_CHECK;
8491
8492 retval = dl_task_check_affinity(p, new_mask);
8493 if (retval)
8494 goto out_free_new_mask;
8495
8496 retval = __set_cpus_allowed_ptr(p, ctx);
8497 if (retval)
8498 goto out_free_new_mask;
8499
8500 cpuset_cpus_allowed(p, cpus_allowed);
8501 if (!cpumask_subset(new_mask, cpus_allowed)) {
8502 /*
8503 * We must have raced with a concurrent cpuset update.
8504 * Just reset the cpumask to the cpuset's cpus_allowed.
8505 */
8506 cpumask_copy(new_mask, cpus_allowed);
8507
8508 /*
8509 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8510 * will restore the previous user_cpus_ptr value.
8511 *
8512 * In the unlikely event a previous user_cpus_ptr exists,
8513 * we need to further restrict the mask to what is allowed
8514 * by that old user_cpus_ptr.
8515 */
8516 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8517 bool empty = !cpumask_and(new_mask, new_mask,
8518 ctx->user_mask);
8519
8520 if (WARN_ON_ONCE(empty))
8521 cpumask_copy(new_mask, cpus_allowed);
8522 }
8523 __set_cpus_allowed_ptr(p, ctx);
8524 retval = -EINVAL;
8525 }
8526
8527 out_free_new_mask:
8528 free_cpumask_var(new_mask);
8529 out_free_cpus_allowed:
8530 free_cpumask_var(cpus_allowed);
8531 return retval;
8532 }
8533
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)8534 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8535 {
8536 struct affinity_context ac;
8537 struct cpumask *user_mask;
8538 struct task_struct *p;
8539 int retval = 0;
8540 bool skip = false;
8541
8542 rcu_read_lock();
8543
8544 p = find_process_by_pid(pid);
8545 if (!p) {
8546 rcu_read_unlock();
8547 return -ESRCH;
8548 }
8549
8550 /* Prevent p going away */
8551 get_task_struct(p);
8552 rcu_read_unlock();
8553
8554 if (p->flags & PF_NO_SETAFFINITY) {
8555 retval = -EINVAL;
8556 goto out_put_task;
8557 }
8558
8559 if (!check_same_owner(p)) {
8560 rcu_read_lock();
8561 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8562 rcu_read_unlock();
8563 retval = -EPERM;
8564 goto out_put_task;
8565 }
8566 rcu_read_unlock();
8567 }
8568
8569 trace_android_vh_sched_setaffinity_early(p, in_mask, &skip);
8570 if (skip)
8571 goto out_put_task;
8572 retval = security_task_setscheduler(p);
8573 if (retval)
8574 goto out_put_task;
8575
8576 /*
8577 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
8578 * alloc_user_cpus_ptr() returns NULL.
8579 */
8580 user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
8581 if (user_mask) {
8582 cpumask_copy(user_mask, in_mask);
8583 } else if (IS_ENABLED(CONFIG_SMP)) {
8584 retval = -ENOMEM;
8585 goto out_put_task;
8586 }
8587
8588 ac = (struct affinity_context){
8589 .new_mask = in_mask,
8590 .user_mask = user_mask,
8591 .flags = SCA_USER,
8592 };
8593
8594 retval = __sched_setaffinity(p, &ac);
8595 trace_android_rvh_sched_setaffinity(p, in_mask, &retval);
8596 kfree(ac.user_mask);
8597
8598 out_put_task:
8599 put_task_struct(p);
8600 return retval;
8601 }
8602
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)8603 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8604 struct cpumask *new_mask)
8605 {
8606 if (len < cpumask_size())
8607 cpumask_clear(new_mask);
8608 else if (len > cpumask_size())
8609 len = cpumask_size();
8610
8611 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8612 }
8613
8614 /**
8615 * sys_sched_setaffinity - set the CPU affinity of a process
8616 * @pid: pid of the process
8617 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8618 * @user_mask_ptr: user-space pointer to the new CPU mask
8619 *
8620 * Return: 0 on success. An error code otherwise.
8621 */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8622 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8623 unsigned long __user *, user_mask_ptr)
8624 {
8625 cpumask_var_t new_mask;
8626 int retval;
8627
8628 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8629 return -ENOMEM;
8630
8631 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8632 if (retval == 0)
8633 retval = sched_setaffinity(pid, new_mask);
8634 free_cpumask_var(new_mask);
8635 return retval;
8636 }
8637
sched_getaffinity(pid_t pid,struct cpumask * mask)8638 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8639 {
8640 struct task_struct *p;
8641 unsigned long flags;
8642 int retval;
8643
8644 rcu_read_lock();
8645
8646 retval = -ESRCH;
8647 p = find_process_by_pid(pid);
8648 if (!p)
8649 goto out_unlock;
8650
8651 retval = security_task_getscheduler(p);
8652 if (retval)
8653 goto out_unlock;
8654
8655 raw_spin_lock_irqsave(&p->pi_lock, flags);
8656 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8657 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8658
8659 out_unlock:
8660 rcu_read_unlock();
8661
8662 return retval;
8663 }
8664
8665 /**
8666 * sys_sched_getaffinity - get the CPU affinity of a process
8667 * @pid: pid of the process
8668 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8669 * @user_mask_ptr: user-space pointer to hold the current CPU mask
8670 *
8671 * Return: size of CPU mask copied to user_mask_ptr on success. An
8672 * error code otherwise.
8673 */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8674 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8675 unsigned long __user *, user_mask_ptr)
8676 {
8677 int ret;
8678 cpumask_var_t mask;
8679
8680 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8681 return -EINVAL;
8682 if (len & (sizeof(unsigned long)-1))
8683 return -EINVAL;
8684
8685 if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
8686 return -ENOMEM;
8687
8688 ret = sched_getaffinity(pid, mask);
8689 if (ret == 0) {
8690 unsigned int retlen = min(len, cpumask_size());
8691
8692 if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
8693 ret = -EFAULT;
8694 else
8695 ret = retlen;
8696 }
8697 free_cpumask_var(mask);
8698
8699 return ret;
8700 }
8701
do_sched_yield(void)8702 static void do_sched_yield(void)
8703 {
8704 struct rq_flags rf;
8705 struct rq *rq;
8706 long skip = 0;
8707
8708 trace_android_rvh_before_do_sched_yield(&skip);
8709 if (skip)
8710 return;
8711
8712 rq = this_rq_lock_irq(&rf);
8713
8714 schedstat_inc(rq->yld_count);
8715 current->sched_class->yield_task(rq);
8716
8717 trace_android_rvh_do_sched_yield(rq);
8718
8719 preempt_disable();
8720 rq_unlock_irq(rq, &rf);
8721 sched_preempt_enable_no_resched();
8722
8723 schedule();
8724 }
8725
8726 /**
8727 * sys_sched_yield - yield the current processor to other threads.
8728 *
8729 * This function yields the current CPU to other tasks. If there are no
8730 * other threads running on this CPU then this function will return.
8731 *
8732 * Return: 0.
8733 */
SYSCALL_DEFINE0(sched_yield)8734 SYSCALL_DEFINE0(sched_yield)
8735 {
8736 do_sched_yield();
8737 return 0;
8738 }
8739
8740 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
__cond_resched(void)8741 int __sched __cond_resched(void)
8742 {
8743 if (should_resched(0)) {
8744 preempt_schedule_common();
8745 return 1;
8746 }
8747 /*
8748 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8749 * whether the current CPU is in an RCU read-side critical section,
8750 * so the tick can report quiescent states even for CPUs looping
8751 * in kernel context. In contrast, in non-preemptible kernels,
8752 * RCU readers leave no in-memory hints, which means that CPU-bound
8753 * processes executing in kernel context might never report an
8754 * RCU quiescent state. Therefore, the following code causes
8755 * cond_resched() to report a quiescent state, but only when RCU
8756 * is in urgent need of one.
8757 */
8758 #ifndef CONFIG_PREEMPT_RCU
8759 rcu_all_qs();
8760 #endif
8761 return 0;
8762 }
8763 EXPORT_SYMBOL(__cond_resched);
8764 #endif
8765
8766 #ifdef CONFIG_PREEMPT_DYNAMIC
8767 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8768 #define cond_resched_dynamic_enabled __cond_resched
8769 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0)
8770 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8771 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8772
8773 #define might_resched_dynamic_enabled __cond_resched
8774 #define might_resched_dynamic_disabled ((void *)&__static_call_return0)
8775 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8776 EXPORT_STATIC_CALL_TRAMP(might_resched);
8777 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8778 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
dynamic_cond_resched(void)8779 int __sched dynamic_cond_resched(void)
8780 {
8781 klp_sched_try_switch();
8782 if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8783 return 0;
8784 return __cond_resched();
8785 }
8786 EXPORT_SYMBOL(dynamic_cond_resched);
8787
8788 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
dynamic_might_resched(void)8789 int __sched dynamic_might_resched(void)
8790 {
8791 if (!static_branch_unlikely(&sk_dynamic_might_resched))
8792 return 0;
8793 return __cond_resched();
8794 }
8795 EXPORT_SYMBOL(dynamic_might_resched);
8796 #endif
8797 #endif
8798
8799 /*
8800 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8801 * call schedule, and on return reacquire the lock.
8802 *
8803 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8804 * operations here to prevent schedule() from being called twice (once via
8805 * spin_unlock(), once by hand).
8806 */
__cond_resched_lock(spinlock_t * lock)8807 int __cond_resched_lock(spinlock_t *lock)
8808 {
8809 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8810 int ret = 0;
8811
8812 lockdep_assert_held(lock);
8813
8814 if (spin_needbreak(lock) || resched) {
8815 spin_unlock(lock);
8816 if (!_cond_resched())
8817 cpu_relax();
8818 ret = 1;
8819 spin_lock(lock);
8820 }
8821 return ret;
8822 }
8823 EXPORT_SYMBOL(__cond_resched_lock);
8824
__cond_resched_rwlock_read(rwlock_t * lock)8825 int __cond_resched_rwlock_read(rwlock_t *lock)
8826 {
8827 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8828 int ret = 0;
8829
8830 lockdep_assert_held_read(lock);
8831
8832 if (rwlock_needbreak(lock) || resched) {
8833 read_unlock(lock);
8834 if (!_cond_resched())
8835 cpu_relax();
8836 ret = 1;
8837 read_lock(lock);
8838 }
8839 return ret;
8840 }
8841 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8842
__cond_resched_rwlock_write(rwlock_t * lock)8843 int __cond_resched_rwlock_write(rwlock_t *lock)
8844 {
8845 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8846 int ret = 0;
8847
8848 lockdep_assert_held_write(lock);
8849
8850 if (rwlock_needbreak(lock) || resched) {
8851 write_unlock(lock);
8852 if (!_cond_resched())
8853 cpu_relax();
8854 ret = 1;
8855 write_lock(lock);
8856 }
8857 return ret;
8858 }
8859 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8860
8861 #ifdef CONFIG_PREEMPT_DYNAMIC
8862
8863 #ifdef CONFIG_GENERIC_ENTRY
8864 #include <linux/entry-common.h>
8865 #endif
8866
8867 /*
8868 * SC:cond_resched
8869 * SC:might_resched
8870 * SC:preempt_schedule
8871 * SC:preempt_schedule_notrace
8872 * SC:irqentry_exit_cond_resched
8873 *
8874 *
8875 * NONE:
8876 * cond_resched <- __cond_resched
8877 * might_resched <- RET0
8878 * preempt_schedule <- NOP
8879 * preempt_schedule_notrace <- NOP
8880 * irqentry_exit_cond_resched <- NOP
8881 *
8882 * VOLUNTARY:
8883 * cond_resched <- __cond_resched
8884 * might_resched <- __cond_resched
8885 * preempt_schedule <- NOP
8886 * preempt_schedule_notrace <- NOP
8887 * irqentry_exit_cond_resched <- NOP
8888 *
8889 * FULL:
8890 * cond_resched <- RET0
8891 * might_resched <- RET0
8892 * preempt_schedule <- preempt_schedule
8893 * preempt_schedule_notrace <- preempt_schedule_notrace
8894 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8895 */
8896
8897 enum {
8898 preempt_dynamic_undefined = -1,
8899 preempt_dynamic_none,
8900 preempt_dynamic_voluntary,
8901 preempt_dynamic_full,
8902 };
8903
8904 int preempt_dynamic_mode = preempt_dynamic_undefined;
8905
sched_dynamic_mode(const char * str)8906 int sched_dynamic_mode(const char *str)
8907 {
8908 if (!strcmp(str, "none"))
8909 return preempt_dynamic_none;
8910
8911 if (!strcmp(str, "voluntary"))
8912 return preempt_dynamic_voluntary;
8913
8914 if (!strcmp(str, "full"))
8915 return preempt_dynamic_full;
8916
8917 return -EINVAL;
8918 }
8919
8920 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8921 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
8922 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
8923 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8924 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key)
8925 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key)
8926 #else
8927 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8928 #endif
8929
8930 static DEFINE_MUTEX(sched_dynamic_mutex);
8931 static bool klp_override;
8932
__sched_dynamic_update(int mode)8933 static void __sched_dynamic_update(int mode)
8934 {
8935 /*
8936 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8937 * the ZERO state, which is invalid.
8938 */
8939 if (!klp_override)
8940 preempt_dynamic_enable(cond_resched);
8941 preempt_dynamic_enable(might_resched);
8942 preempt_dynamic_enable(preempt_schedule);
8943 preempt_dynamic_enable(preempt_schedule_notrace);
8944 preempt_dynamic_enable(irqentry_exit_cond_resched);
8945
8946 switch (mode) {
8947 case preempt_dynamic_none:
8948 if (!klp_override)
8949 preempt_dynamic_enable(cond_resched);
8950 preempt_dynamic_disable(might_resched);
8951 preempt_dynamic_disable(preempt_schedule);
8952 preempt_dynamic_disable(preempt_schedule_notrace);
8953 preempt_dynamic_disable(irqentry_exit_cond_resched);
8954 if (mode != preempt_dynamic_mode)
8955 pr_info("Dynamic Preempt: none\n");
8956 break;
8957
8958 case preempt_dynamic_voluntary:
8959 if (!klp_override)
8960 preempt_dynamic_enable(cond_resched);
8961 preempt_dynamic_enable(might_resched);
8962 preempt_dynamic_disable(preempt_schedule);
8963 preempt_dynamic_disable(preempt_schedule_notrace);
8964 preempt_dynamic_disable(irqentry_exit_cond_resched);
8965 if (mode != preempt_dynamic_mode)
8966 pr_info("Dynamic Preempt: voluntary\n");
8967 break;
8968
8969 case preempt_dynamic_full:
8970 if (!klp_override)
8971 preempt_dynamic_disable(cond_resched);
8972 preempt_dynamic_disable(might_resched);
8973 preempt_dynamic_enable(preempt_schedule);
8974 preempt_dynamic_enable(preempt_schedule_notrace);
8975 preempt_dynamic_enable(irqentry_exit_cond_resched);
8976 if (mode != preempt_dynamic_mode)
8977 pr_info("Dynamic Preempt: full\n");
8978 break;
8979 }
8980
8981 preempt_dynamic_mode = mode;
8982 }
8983
sched_dynamic_update(int mode)8984 void sched_dynamic_update(int mode)
8985 {
8986 mutex_lock(&sched_dynamic_mutex);
8987 __sched_dynamic_update(mode);
8988 mutex_unlock(&sched_dynamic_mutex);
8989 }
8990
8991 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
8992
klp_cond_resched(void)8993 static int klp_cond_resched(void)
8994 {
8995 __klp_sched_try_switch();
8996 return __cond_resched();
8997 }
8998
sched_dynamic_klp_enable(void)8999 void sched_dynamic_klp_enable(void)
9000 {
9001 mutex_lock(&sched_dynamic_mutex);
9002
9003 klp_override = true;
9004 static_call_update(cond_resched, klp_cond_resched);
9005
9006 mutex_unlock(&sched_dynamic_mutex);
9007 }
9008
sched_dynamic_klp_disable(void)9009 void sched_dynamic_klp_disable(void)
9010 {
9011 mutex_lock(&sched_dynamic_mutex);
9012
9013 klp_override = false;
9014 __sched_dynamic_update(preempt_dynamic_mode);
9015
9016 mutex_unlock(&sched_dynamic_mutex);
9017 }
9018
9019 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
9020
setup_preempt_mode(char * str)9021 static int __init setup_preempt_mode(char *str)
9022 {
9023 int mode = sched_dynamic_mode(str);
9024 if (mode < 0) {
9025 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
9026 return 0;
9027 }
9028
9029 sched_dynamic_update(mode);
9030 return 1;
9031 }
9032 __setup("preempt=", setup_preempt_mode);
9033
preempt_dynamic_init(void)9034 static void __init preempt_dynamic_init(void)
9035 {
9036 if (preempt_dynamic_mode == preempt_dynamic_undefined) {
9037 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
9038 sched_dynamic_update(preempt_dynamic_none);
9039 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
9040 sched_dynamic_update(preempt_dynamic_voluntary);
9041 } else {
9042 /* Default static call setting, nothing to do */
9043 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
9044 preempt_dynamic_mode = preempt_dynamic_full;
9045 pr_info("Dynamic Preempt: full\n");
9046 }
9047 }
9048 }
9049
9050 #define PREEMPT_MODEL_ACCESSOR(mode) \
9051 bool preempt_model_##mode(void) \
9052 { \
9053 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
9054 return preempt_dynamic_mode == preempt_dynamic_##mode; \
9055 } \
9056 EXPORT_SYMBOL_GPL(preempt_model_##mode)
9057
9058 PREEMPT_MODEL_ACCESSOR(none);
9059 PREEMPT_MODEL_ACCESSOR(voluntary);
9060 PREEMPT_MODEL_ACCESSOR(full);
9061
9062 #else /* !CONFIG_PREEMPT_DYNAMIC */
9063
preempt_dynamic_init(void)9064 static inline void preempt_dynamic_init(void) { }
9065
9066 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
9067
9068 /**
9069 * yield - yield the current processor to other threads.
9070 *
9071 * Do not ever use this function, there's a 99% chance you're doing it wrong.
9072 *
9073 * The scheduler is at all times free to pick the calling task as the most
9074 * eligible task to run, if removing the yield() call from your code breaks
9075 * it, it's already broken.
9076 *
9077 * Typical broken usage is:
9078 *
9079 * while (!event)
9080 * yield();
9081 *
9082 * where one assumes that yield() will let 'the other' process run that will
9083 * make event true. If the current task is a SCHED_FIFO task that will never
9084 * happen. Never use yield() as a progress guarantee!!
9085 *
9086 * If you want to use yield() to wait for something, use wait_event().
9087 * If you want to use yield() to be 'nice' for others, use cond_resched().
9088 * If you still want to use yield(), do not!
9089 */
yield(void)9090 void __sched yield(void)
9091 {
9092 set_current_state(TASK_RUNNING);
9093 do_sched_yield();
9094 }
9095 EXPORT_SYMBOL(yield);
9096
9097 /**
9098 * yield_to - yield the current processor to another thread in
9099 * your thread group, or accelerate that thread toward the
9100 * processor it's on.
9101 * @p: target task
9102 * @preempt: whether task preemption is allowed or not
9103 *
9104 * It's the caller's job to ensure that the target task struct
9105 * can't go away on us before we can do any checks.
9106 *
9107 * Return:
9108 * true (>0) if we indeed boosted the target task.
9109 * false (0) if we failed to boost the target.
9110 * -ESRCH if there's no task to yield to.
9111 */
yield_to(struct task_struct * p,bool preempt)9112 int __sched yield_to(struct task_struct *p, bool preempt)
9113 {
9114 struct task_struct *curr = current;
9115 struct rq *rq, *p_rq;
9116 unsigned long flags;
9117 int yielded = 0;
9118
9119 local_irq_save(flags);
9120 rq = this_rq();
9121
9122 again:
9123 p_rq = task_rq(p);
9124 /*
9125 * If we're the only runnable task on the rq and target rq also
9126 * has only one task, there's absolutely no point in yielding.
9127 */
9128 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
9129 yielded = -ESRCH;
9130 goto out_irq;
9131 }
9132
9133 double_rq_lock(rq, p_rq);
9134 if (task_rq(p) != p_rq) {
9135 double_rq_unlock(rq, p_rq);
9136 goto again;
9137 }
9138
9139 if (!curr->sched_class->yield_to_task)
9140 goto out_unlock;
9141
9142 if (curr->sched_class != p->sched_class)
9143 goto out_unlock;
9144
9145 if (task_on_cpu(p_rq, p) || !task_is_running(p))
9146 goto out_unlock;
9147
9148 yielded = curr->sched_class->yield_to_task(rq, p);
9149 if (yielded) {
9150 schedstat_inc(rq->yld_count);
9151 /*
9152 * Make p's CPU reschedule; pick_next_entity takes care of
9153 * fairness.
9154 */
9155 if (preempt && rq != p_rq)
9156 resched_curr(p_rq);
9157 }
9158
9159 out_unlock:
9160 double_rq_unlock(rq, p_rq);
9161 out_irq:
9162 local_irq_restore(flags);
9163
9164 if (yielded > 0)
9165 schedule();
9166
9167 return yielded;
9168 }
9169 EXPORT_SYMBOL_GPL(yield_to);
9170
io_schedule_prepare(void)9171 int io_schedule_prepare(void)
9172 {
9173 int old_iowait = current->in_iowait;
9174
9175 current->in_iowait = 1;
9176 blk_flush_plug(current->plug, true);
9177 return old_iowait;
9178 }
9179
io_schedule_finish(int token)9180 void io_schedule_finish(int token)
9181 {
9182 current->in_iowait = token;
9183 }
9184
9185 /*
9186 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
9187 * that process accounting knows that this is a task in IO wait state.
9188 */
io_schedule_timeout(long timeout)9189 long __sched io_schedule_timeout(long timeout)
9190 {
9191 int token;
9192 long ret;
9193
9194 token = io_schedule_prepare();
9195 ret = schedule_timeout(timeout);
9196 io_schedule_finish(token);
9197
9198 return ret;
9199 }
9200 EXPORT_SYMBOL(io_schedule_timeout);
9201
io_schedule(void)9202 void __sched io_schedule(void)
9203 {
9204 int token;
9205
9206 token = io_schedule_prepare();
9207 schedule();
9208 io_schedule_finish(token);
9209 }
9210 EXPORT_SYMBOL(io_schedule);
9211
9212 /**
9213 * sys_sched_get_priority_max - return maximum RT priority.
9214 * @policy: scheduling class.
9215 *
9216 * Return: On success, this syscall returns the maximum
9217 * rt_priority that can be used by a given scheduling class.
9218 * On failure, a negative error code is returned.
9219 */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)9220 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
9221 {
9222 int ret = -EINVAL;
9223
9224 switch (policy) {
9225 case SCHED_FIFO:
9226 case SCHED_RR:
9227 ret = MAX_RT_PRIO-1;
9228 break;
9229 case SCHED_DEADLINE:
9230 case SCHED_NORMAL:
9231 case SCHED_BATCH:
9232 case SCHED_IDLE:
9233 ret = 0;
9234 break;
9235 }
9236 return ret;
9237 }
9238
9239 /**
9240 * sys_sched_get_priority_min - return minimum RT priority.
9241 * @policy: scheduling class.
9242 *
9243 * Return: On success, this syscall returns the minimum
9244 * rt_priority that can be used by a given scheduling class.
9245 * On failure, a negative error code is returned.
9246 */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)9247 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
9248 {
9249 int ret = -EINVAL;
9250
9251 switch (policy) {
9252 case SCHED_FIFO:
9253 case SCHED_RR:
9254 ret = 1;
9255 break;
9256 case SCHED_DEADLINE:
9257 case SCHED_NORMAL:
9258 case SCHED_BATCH:
9259 case SCHED_IDLE:
9260 ret = 0;
9261 }
9262 return ret;
9263 }
9264
sched_rr_get_interval(pid_t pid,struct timespec64 * t)9265 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
9266 {
9267 struct task_struct *p;
9268 unsigned int time_slice;
9269 struct rq_flags rf;
9270 struct rq *rq;
9271 int retval;
9272
9273 if (pid < 0)
9274 return -EINVAL;
9275
9276 retval = -ESRCH;
9277 rcu_read_lock();
9278 p = find_process_by_pid(pid);
9279 if (!p)
9280 goto out_unlock;
9281
9282 retval = security_task_getscheduler(p);
9283 if (retval)
9284 goto out_unlock;
9285
9286 rq = task_rq_lock(p, &rf);
9287 time_slice = 0;
9288 if (p->sched_class->get_rr_interval)
9289 time_slice = p->sched_class->get_rr_interval(rq, p);
9290 task_rq_unlock(rq, p, &rf);
9291
9292 rcu_read_unlock();
9293 jiffies_to_timespec64(time_slice, t);
9294 return 0;
9295
9296 out_unlock:
9297 rcu_read_unlock();
9298 return retval;
9299 }
9300
9301 /**
9302 * sys_sched_rr_get_interval - return the default timeslice of a process.
9303 * @pid: pid of the process.
9304 * @interval: userspace pointer to the timeslice value.
9305 *
9306 * this syscall writes the default timeslice value of a given process
9307 * into the user-space timespec buffer. A value of '0' means infinity.
9308 *
9309 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
9310 * an error code.
9311 */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)9312 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
9313 struct __kernel_timespec __user *, interval)
9314 {
9315 struct timespec64 t;
9316 int retval = sched_rr_get_interval(pid, &t);
9317
9318 if (retval == 0)
9319 retval = put_timespec64(&t, interval);
9320
9321 return retval;
9322 }
9323
9324 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)9325 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
9326 struct old_timespec32 __user *, interval)
9327 {
9328 struct timespec64 t;
9329 int retval = sched_rr_get_interval(pid, &t);
9330
9331 if (retval == 0)
9332 retval = put_old_timespec32(&t, interval);
9333 return retval;
9334 }
9335 #endif
9336
sched_show_task(struct task_struct * p)9337 void sched_show_task(struct task_struct *p)
9338 {
9339 unsigned long free = 0;
9340 int ppid;
9341
9342 if (!try_get_task_stack(p))
9343 return;
9344
9345 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
9346
9347 if (task_is_running(p))
9348 pr_cont(" running task ");
9349 #ifdef CONFIG_DEBUG_STACK_USAGE
9350 free = stack_not_used(p);
9351 #endif
9352 ppid = 0;
9353 rcu_read_lock();
9354 if (pid_alive(p))
9355 ppid = task_pid_nr(rcu_dereference(p->real_parent));
9356 rcu_read_unlock();
9357 pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
9358 free, task_pid_nr(p), ppid,
9359 read_task_thread_flags(p));
9360
9361 print_worker_info(KERN_INFO, p);
9362 print_stop_info(KERN_INFO, p);
9363 trace_android_vh_sched_show_task(p);
9364 show_stack(p, NULL, KERN_INFO);
9365 put_task_stack(p);
9366 }
9367 EXPORT_SYMBOL_GPL(sched_show_task);
9368
9369 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)9370 state_filter_match(unsigned long state_filter, struct task_struct *p)
9371 {
9372 unsigned int state = READ_ONCE(p->__state);
9373
9374 /* no filter, everything matches */
9375 if (!state_filter)
9376 return true;
9377
9378 /* filter, but doesn't match */
9379 if (!(state & state_filter))
9380 return false;
9381
9382 /*
9383 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9384 * TASK_KILLABLE).
9385 */
9386 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
9387 return false;
9388
9389 return true;
9390 }
9391
9392
show_state_filter(unsigned int state_filter)9393 void show_state_filter(unsigned int state_filter)
9394 {
9395 struct task_struct *g, *p;
9396
9397 rcu_read_lock();
9398 for_each_process_thread(g, p) {
9399 /*
9400 * reset the NMI-timeout, listing all files on a slow
9401 * console might take a lot of time:
9402 * Also, reset softlockup watchdogs on all CPUs, because
9403 * another CPU might be blocked waiting for us to process
9404 * an IPI.
9405 */
9406 touch_nmi_watchdog();
9407 touch_all_softlockup_watchdogs();
9408 if (state_filter_match(state_filter, p))
9409 sched_show_task(p);
9410 }
9411
9412 #ifdef CONFIG_SCHED_DEBUG
9413 if (!state_filter)
9414 sysrq_sched_debug_show();
9415 #endif
9416 rcu_read_unlock();
9417 /*
9418 * Only show locks if all tasks are dumped:
9419 */
9420 if (!state_filter)
9421 debug_show_all_locks();
9422 }
9423
9424 /**
9425 * init_idle - set up an idle thread for a given CPU
9426 * @idle: task in question
9427 * @cpu: CPU the idle task belongs to
9428 *
9429 * NOTE: this function does not set the idle thread's NEED_RESCHED
9430 * flag, to make booting more robust.
9431 */
init_idle(struct task_struct * idle,int cpu)9432 void __init init_idle(struct task_struct *idle, int cpu)
9433 {
9434 #ifdef CONFIG_SMP
9435 struct affinity_context ac = (struct affinity_context) {
9436 .new_mask = cpumask_of(cpu),
9437 .flags = 0,
9438 };
9439 #endif
9440 struct rq *rq = cpu_rq(cpu);
9441 unsigned long flags;
9442
9443 __sched_fork(0, idle);
9444
9445 raw_spin_lock_irqsave(&idle->pi_lock, flags);
9446 raw_spin_rq_lock(rq);
9447
9448 idle->__state = TASK_RUNNING;
9449 idle->se.exec_start = sched_clock();
9450 /*
9451 * PF_KTHREAD should already be set at this point; regardless, make it
9452 * look like a proper per-CPU kthread.
9453 */
9454 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
9455 kthread_set_per_cpu(idle, cpu);
9456
9457 #ifdef CONFIG_SMP
9458 /*
9459 * It's possible that init_idle() gets called multiple times on a task,
9460 * in that case do_set_cpus_allowed() will not do the right thing.
9461 *
9462 * And since this is boot we can forgo the serialization.
9463 */
9464 set_cpus_allowed_common(idle, &ac);
9465 #endif
9466 /*
9467 * We're having a chicken and egg problem, even though we are
9468 * holding rq->lock, the CPU isn't yet set to this CPU so the
9469 * lockdep check in task_group() will fail.
9470 *
9471 * Similar case to sched_fork(). / Alternatively we could
9472 * use task_rq_lock() here and obtain the other rq->lock.
9473 *
9474 * Silence PROVE_RCU
9475 */
9476 rcu_read_lock();
9477 __set_task_cpu(idle, cpu);
9478 rcu_read_unlock();
9479
9480 rq->idle = idle;
9481 rcu_assign_pointer(rq->curr, idle);
9482 idle->on_rq = TASK_ON_RQ_QUEUED;
9483 #ifdef CONFIG_SMP
9484 idle->on_cpu = 1;
9485 #endif
9486 raw_spin_rq_unlock(rq);
9487 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9488
9489 /* Set the preempt count _outside_ the spinlocks! */
9490 init_idle_preempt_count(idle, cpu);
9491
9492 /*
9493 * The idle tasks have their own, simple scheduling class:
9494 */
9495 idle->sched_class = &idle_sched_class;
9496 ftrace_graph_init_idle_task(idle, cpu);
9497 vtime_init_idle(idle, cpu);
9498 #ifdef CONFIG_SMP
9499 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9500 #endif
9501 }
9502
9503 #ifdef CONFIG_SMP
9504
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)9505 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9506 const struct cpumask *trial)
9507 {
9508 int ret = 1;
9509
9510 if (cpumask_empty(cur))
9511 return ret;
9512
9513 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9514
9515 return ret;
9516 }
9517
task_can_attach(struct task_struct * p)9518 int task_can_attach(struct task_struct *p)
9519 {
9520 int ret = 0;
9521
9522 /*
9523 * Kthreads which disallow setaffinity shouldn't be moved
9524 * to a new cpuset; we don't want to change their CPU
9525 * affinity and isolating such threads by their set of
9526 * allowed nodes is unnecessary. Thus, cpusets are not
9527 * applicable for such threads. This prevents checking for
9528 * success of set_cpus_allowed_ptr() on all attached tasks
9529 * before cpus_mask may be changed.
9530 */
9531 if (p->flags & PF_NO_SETAFFINITY)
9532 ret = -EINVAL;
9533
9534 return ret;
9535 }
9536
9537 bool sched_smp_initialized __read_mostly;
9538
9539 #ifdef CONFIG_NUMA_BALANCING
9540 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)9541 int migrate_task_to(struct task_struct *p, int target_cpu)
9542 {
9543 struct migration_arg arg = { p, target_cpu };
9544 int curr_cpu = task_cpu(p);
9545
9546 if (curr_cpu == target_cpu)
9547 return 0;
9548
9549 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9550 return -EINVAL;
9551
9552 /* TODO: This is not properly updating schedstats */
9553
9554 trace_sched_move_numa(p, curr_cpu, target_cpu);
9555 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9556 }
9557
9558 /*
9559 * Requeue a task on a given node and accurately track the number of NUMA
9560 * tasks on the runqueues
9561 */
sched_setnuma(struct task_struct * p,int nid)9562 void sched_setnuma(struct task_struct *p, int nid)
9563 {
9564 bool queued, running;
9565 struct rq_flags rf;
9566 struct rq *rq;
9567
9568 rq = task_rq_lock(p, &rf);
9569 queued = task_on_rq_queued(p);
9570 running = task_current(rq, p);
9571
9572 if (queued)
9573 dequeue_task(rq, p, DEQUEUE_SAVE);
9574 if (running)
9575 put_prev_task(rq, p);
9576
9577 p->numa_preferred_nid = nid;
9578
9579 if (queued)
9580 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9581 if (running)
9582 set_next_task(rq, p);
9583 task_rq_unlock(rq, p, &rf);
9584 }
9585 #endif /* CONFIG_NUMA_BALANCING */
9586
9587 #ifdef CONFIG_HOTPLUG_CPU
9588 /*
9589 * Ensure that the idle task is using init_mm right before its CPU goes
9590 * offline.
9591 */
idle_task_exit(void)9592 void idle_task_exit(void)
9593 {
9594 struct mm_struct *mm = current->active_mm;
9595
9596 BUG_ON(cpu_online(smp_processor_id()));
9597 BUG_ON(current != this_rq()->idle);
9598
9599 if (mm != &init_mm) {
9600 switch_mm(mm, &init_mm, current);
9601 finish_arch_post_lock_switch();
9602 }
9603
9604 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9605 }
9606
pick_migrate_task(struct rq * rq)9607 struct task_struct *pick_migrate_task(struct rq *rq)
9608 {
9609 const struct sched_class *class;
9610 struct task_struct *next;
9611
9612 for_each_class(class) {
9613 next = class->pick_next_task(rq);
9614 if (next) {
9615 next->sched_class->put_prev_task(rq, next);
9616 return next;
9617 }
9618 }
9619
9620 /* The idle class should always have a runnable task */
9621 BUG();
9622 }
9623 EXPORT_SYMBOL_GPL(pick_migrate_task);
9624
__balance_push_cpu_stop(void * arg)9625 static int __balance_push_cpu_stop(void *arg)
9626 {
9627 struct task_struct *p = arg;
9628 struct rq *rq = this_rq();
9629 struct rq_flags rf;
9630 int cpu;
9631
9632 raw_spin_lock_irq(&p->pi_lock);
9633 rq_lock(rq, &rf);
9634
9635 update_rq_clock(rq);
9636
9637 if (task_rq(p) == rq && task_on_rq_queued(p)) {
9638 cpu = select_fallback_rq(rq->cpu, p);
9639 rq = __migrate_task(rq, &rf, p, cpu);
9640 }
9641
9642 rq_unlock(rq, &rf);
9643 raw_spin_unlock_irq(&p->pi_lock);
9644
9645 put_task_struct(p);
9646
9647 return 0;
9648 }
9649
9650 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9651
9652 /*
9653 * Ensure we only run per-cpu kthreads once the CPU goes !active.
9654 *
9655 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9656 * effective when the hotplug motion is down.
9657 */
balance_push(struct rq * rq)9658 static void balance_push(struct rq *rq)
9659 {
9660 struct task_struct *push_task = rq->curr;
9661
9662 lockdep_assert_rq_held(rq);
9663
9664 /*
9665 * Ensure the thing is persistent until balance_push_set(.on = false);
9666 */
9667 rq->balance_callback = &balance_push_callback;
9668
9669 /*
9670 * Only active while going offline and when invoked on the outgoing
9671 * CPU.
9672 */
9673 if (!cpu_dying(rq->cpu) || rq != this_rq())
9674 return;
9675
9676 /*
9677 * Both the cpu-hotplug and stop task are in this case and are
9678 * required to complete the hotplug process.
9679 */
9680 if (kthread_is_per_cpu(push_task) ||
9681 is_migration_disabled(push_task)) {
9682
9683 /*
9684 * If this is the idle task on the outgoing CPU try to wake
9685 * up the hotplug control thread which might wait for the
9686 * last task to vanish. The rcuwait_active() check is
9687 * accurate here because the waiter is pinned on this CPU
9688 * and can't obviously be running in parallel.
9689 *
9690 * On RT kernels this also has to check whether there are
9691 * pinned and scheduled out tasks on the runqueue. They
9692 * need to leave the migrate disabled section first.
9693 */
9694 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9695 rcuwait_active(&rq->hotplug_wait)) {
9696 raw_spin_rq_unlock(rq);
9697 rcuwait_wake_up(&rq->hotplug_wait);
9698 raw_spin_rq_lock(rq);
9699 }
9700 return;
9701 }
9702
9703 get_task_struct(push_task);
9704 /*
9705 * Temporarily drop rq->lock such that we can wake-up the stop task.
9706 * Both preemption and IRQs are still disabled.
9707 */
9708 preempt_disable();
9709 raw_spin_rq_unlock(rq);
9710 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9711 this_cpu_ptr(&push_work));
9712 preempt_enable();
9713 /*
9714 * At this point need_resched() is true and we'll take the loop in
9715 * schedule(). The next pick is obviously going to be the stop task
9716 * which kthread_is_per_cpu() and will push this task away.
9717 */
9718 raw_spin_rq_lock(rq);
9719 }
9720
balance_push_set(int cpu,bool on)9721 static void balance_push_set(int cpu, bool on)
9722 {
9723 struct rq *rq = cpu_rq(cpu);
9724 struct rq_flags rf;
9725
9726 rq_lock_irqsave(rq, &rf);
9727 if (on) {
9728 WARN_ON_ONCE(rq->balance_callback);
9729 rq->balance_callback = &balance_push_callback;
9730 } else if (rq->balance_callback == &balance_push_callback) {
9731 rq->balance_callback = NULL;
9732 }
9733 rq_unlock_irqrestore(rq, &rf);
9734 }
9735
9736 /*
9737 * Invoked from a CPUs hotplug control thread after the CPU has been marked
9738 * inactive. All tasks which are not per CPU kernel threads are either
9739 * pushed off this CPU now via balance_push() or placed on a different CPU
9740 * during wakeup. Wait until the CPU is quiescent.
9741 */
balance_hotplug_wait(void)9742 static void balance_hotplug_wait(void)
9743 {
9744 struct rq *rq = this_rq();
9745
9746 rcuwait_wait_event(&rq->hotplug_wait,
9747 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9748 TASK_UNINTERRUPTIBLE);
9749 }
9750
9751 #else
9752
balance_push(struct rq * rq)9753 static inline void balance_push(struct rq *rq)
9754 {
9755 }
9756
balance_push_set(int cpu,bool on)9757 static inline void balance_push_set(int cpu, bool on)
9758 {
9759 }
9760
balance_hotplug_wait(void)9761 static inline void balance_hotplug_wait(void)
9762 {
9763 }
9764
9765 #endif /* CONFIG_HOTPLUG_CPU */
9766
set_rq_online(struct rq * rq)9767 void set_rq_online(struct rq *rq)
9768 {
9769 if (!rq->online) {
9770 const struct sched_class *class;
9771
9772 cpumask_set_cpu(rq->cpu, rq->rd->online);
9773 rq->online = 1;
9774
9775 for_each_class(class) {
9776 if (class->rq_online)
9777 class->rq_online(rq);
9778 }
9779 }
9780 }
9781
set_rq_offline(struct rq * rq)9782 void set_rq_offline(struct rq *rq)
9783 {
9784 if (rq->online) {
9785 const struct sched_class *class;
9786
9787 update_rq_clock(rq);
9788 for_each_class(class) {
9789 if (class->rq_offline)
9790 class->rq_offline(rq);
9791 }
9792
9793 cpumask_clear_cpu(rq->cpu, rq->rd->online);
9794 rq->online = 0;
9795 }
9796 }
9797
sched_set_rq_online(struct rq * rq,int cpu)9798 static inline void sched_set_rq_online(struct rq *rq, int cpu)
9799 {
9800 struct rq_flags rf;
9801
9802 rq_lock_irqsave(rq, &rf);
9803 if (rq->rd) {
9804 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9805 set_rq_online(rq);
9806 }
9807 rq_unlock_irqrestore(rq, &rf);
9808 }
9809
sched_set_rq_offline(struct rq * rq,int cpu)9810 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
9811 {
9812 struct rq_flags rf;
9813
9814 rq_lock_irqsave(rq, &rf);
9815 if (rq->rd) {
9816 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9817 set_rq_offline(rq);
9818 }
9819 rq_unlock_irqrestore(rq, &rf);
9820 }
9821
9822 /*
9823 * used to mark begin/end of suspend/resume:
9824 */
9825 static int num_cpus_frozen;
9826
9827 /*
9828 * Update cpusets according to cpu_active mask. If cpusets are
9829 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9830 * around partition_sched_domains().
9831 *
9832 * If we come here as part of a suspend/resume, don't touch cpusets because we
9833 * want to restore it back to its original state upon resume anyway.
9834 */
cpuset_cpu_active(void)9835 static void cpuset_cpu_active(void)
9836 {
9837 if (cpuhp_tasks_frozen) {
9838 /*
9839 * num_cpus_frozen tracks how many CPUs are involved in suspend
9840 * resume sequence. As long as this is not the last online
9841 * operation in the resume sequence, just build a single sched
9842 * domain, ignoring cpusets.
9843 */
9844 partition_sched_domains(1, NULL, NULL);
9845 if (--num_cpus_frozen)
9846 return;
9847 /*
9848 * This is the last CPU online operation. So fall through and
9849 * restore the original sched domains by considering the
9850 * cpuset configurations.
9851 */
9852 cpuset_force_rebuild();
9853 }
9854 cpuset_update_active_cpus();
9855 }
9856
cpuset_cpu_inactive(unsigned int cpu)9857 static int cpuset_cpu_inactive(unsigned int cpu)
9858 {
9859 if (!cpuhp_tasks_frozen) {
9860 int ret = dl_bw_check_overflow(cpu);
9861
9862 if (ret)
9863 return ret;
9864 cpuset_update_active_cpus();
9865 } else {
9866 num_cpus_frozen++;
9867 partition_sched_domains(1, NULL, NULL);
9868 }
9869 return 0;
9870 }
9871
sched_smt_present_inc(int cpu)9872 static inline void sched_smt_present_inc(int cpu)
9873 {
9874 #ifdef CONFIG_SCHED_SMT
9875 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9876 static_branch_inc_cpuslocked(&sched_smt_present);
9877 #endif
9878 }
9879
sched_smt_present_dec(int cpu)9880 static inline void sched_smt_present_dec(int cpu)
9881 {
9882 #ifdef CONFIG_SCHED_SMT
9883 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9884 static_branch_dec_cpuslocked(&sched_smt_present);
9885 #endif
9886 }
9887
sched_cpu_activate(unsigned int cpu)9888 int sched_cpu_activate(unsigned int cpu)
9889 {
9890 struct rq *rq = cpu_rq(cpu);
9891
9892 /*
9893 * Clear the balance_push callback and prepare to schedule
9894 * regular tasks.
9895 */
9896 balance_push_set(cpu, false);
9897
9898 /*
9899 * When going up, increment the number of cores with SMT present.
9900 */
9901 sched_smt_present_inc(cpu);
9902 set_cpu_active(cpu, true);
9903
9904 if (sched_smp_initialized) {
9905 sched_update_numa(cpu, true);
9906 sched_domains_numa_masks_set(cpu);
9907 cpuset_cpu_active();
9908 }
9909
9910 /*
9911 * Put the rq online, if not already. This happens:
9912 *
9913 * 1) In the early boot process, because we build the real domains
9914 * after all CPUs have been brought up.
9915 *
9916 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9917 * domains.
9918 */
9919 sched_set_rq_online(rq, cpu);
9920
9921 return 0;
9922 }
9923
sched_cpu_deactivate(unsigned int cpu)9924 int sched_cpu_deactivate(unsigned int cpu)
9925 {
9926 struct rq *rq = cpu_rq(cpu);
9927 int ret;
9928
9929 /*
9930 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9931 * load balancing when not active
9932 */
9933 nohz_balance_exit_idle(rq);
9934
9935 set_cpu_active(cpu, false);
9936
9937 /*
9938 * From this point forward, this CPU will refuse to run any task that
9939 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9940 * push those tasks away until this gets cleared, see
9941 * sched_cpu_dying().
9942 */
9943 balance_push_set(cpu, true);
9944
9945 /*
9946 * We've cleared cpu_active_mask / set balance_push, wait for all
9947 * preempt-disabled and RCU users of this state to go away such that
9948 * all new such users will observe it.
9949 *
9950 * Specifically, we rely on ttwu to no longer target this CPU, see
9951 * ttwu_queue_cond() and is_cpu_allowed().
9952 *
9953 * Do sync before park smpboot threads to take care the rcu boost case.
9954 */
9955 synchronize_rcu();
9956
9957 sched_set_rq_offline(rq, cpu);
9958
9959 /*
9960 * When going down, decrement the number of cores with SMT present.
9961 */
9962 sched_smt_present_dec(cpu);
9963
9964 #ifdef CONFIG_SCHED_SMT
9965 sched_core_cpu_deactivate(cpu);
9966 #endif
9967
9968 if (!sched_smp_initialized)
9969 return 0;
9970
9971 sched_update_numa(cpu, false);
9972 ret = cpuset_cpu_inactive(cpu);
9973 if (ret) {
9974 sched_smt_present_inc(cpu);
9975 sched_set_rq_online(rq, cpu);
9976 balance_push_set(cpu, false);
9977 set_cpu_active(cpu, true);
9978 sched_update_numa(cpu, true);
9979 return ret;
9980 }
9981 sched_domains_numa_masks_clear(cpu);
9982 return 0;
9983 }
9984
sched_rq_cpu_starting(unsigned int cpu)9985 static void sched_rq_cpu_starting(unsigned int cpu)
9986 {
9987 struct rq *rq = cpu_rq(cpu);
9988
9989 rq->calc_load_update = calc_load_update;
9990 update_max_interval();
9991 }
9992
sched_cpu_starting(unsigned int cpu)9993 int sched_cpu_starting(unsigned int cpu)
9994 {
9995 sched_core_cpu_starting(cpu);
9996 sched_rq_cpu_starting(cpu);
9997 sched_tick_start(cpu);
9998 trace_android_rvh_sched_cpu_starting(cpu);
9999 return 0;
10000 }
10001
10002 #ifdef CONFIG_HOTPLUG_CPU
10003
10004 /*
10005 * Invoked immediately before the stopper thread is invoked to bring the
10006 * CPU down completely. At this point all per CPU kthreads except the
10007 * hotplug thread (current) and the stopper thread (inactive) have been
10008 * either parked or have been unbound from the outgoing CPU. Ensure that
10009 * any of those which might be on the way out are gone.
10010 *
10011 * If after this point a bound task is being woken on this CPU then the
10012 * responsible hotplug callback has failed to do it's job.
10013 * sched_cpu_dying() will catch it with the appropriate fireworks.
10014 */
sched_cpu_wait_empty(unsigned int cpu)10015 int sched_cpu_wait_empty(unsigned int cpu)
10016 {
10017 balance_hotplug_wait();
10018 return 0;
10019 }
10020
10021 /*
10022 * Since this CPU is going 'away' for a while, fold any nr_active delta we
10023 * might have. Called from the CPU stopper task after ensuring that the
10024 * stopper is the last running task on the CPU, so nr_active count is
10025 * stable. We need to take the teardown thread which is calling this into
10026 * account, so we hand in adjust = 1 to the load calculation.
10027 *
10028 * Also see the comment "Global load-average calculations".
10029 */
calc_load_migrate(struct rq * rq)10030 static void calc_load_migrate(struct rq *rq)
10031 {
10032 long delta = calc_load_fold_active(rq, 1);
10033
10034 if (delta)
10035 atomic_long_add(delta, &calc_load_tasks);
10036 }
10037
dump_rq_tasks(struct rq * rq,const char * loglvl)10038 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
10039 {
10040 struct task_struct *g, *p;
10041 int cpu = cpu_of(rq);
10042
10043 lockdep_assert_rq_held(rq);
10044
10045 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
10046 for_each_process_thread(g, p) {
10047 if (task_cpu(p) != cpu)
10048 continue;
10049
10050 if (!task_on_rq_queued(p))
10051 continue;
10052
10053 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
10054 }
10055 }
10056
sched_cpu_dying(unsigned int cpu)10057 int sched_cpu_dying(unsigned int cpu)
10058 {
10059 struct rq *rq = cpu_rq(cpu);
10060 struct rq_flags rf;
10061
10062 /* Handle pending wakeups and then migrate everything off */
10063 sched_tick_stop(cpu);
10064
10065 rq_lock_irqsave(rq, &rf);
10066 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
10067 WARN(true, "Dying CPU not properly vacated!");
10068 dump_rq_tasks(rq, KERN_WARNING);
10069 }
10070 rq_unlock_irqrestore(rq, &rf);
10071
10072 trace_android_rvh_sched_cpu_dying(cpu);
10073
10074 calc_load_migrate(rq);
10075 update_max_interval();
10076 hrtick_clear(rq);
10077 sched_core_cpu_dying(cpu);
10078 return 0;
10079 }
10080 #endif
10081
sched_init_smp(void)10082 void __init sched_init_smp(void)
10083 {
10084 sched_init_numa(NUMA_NO_NODE);
10085
10086 /*
10087 * There's no userspace yet to cause hotplug operations; hence all the
10088 * CPU masks are stable and all blatant races in the below code cannot
10089 * happen.
10090 */
10091 mutex_lock(&sched_domains_mutex);
10092 sched_init_domains(cpu_active_mask);
10093 mutex_unlock(&sched_domains_mutex);
10094
10095 /* Move init over to a non-isolated CPU */
10096 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
10097 BUG();
10098 current->flags &= ~PF_NO_SETAFFINITY;
10099 sched_init_granularity();
10100
10101 init_sched_rt_class();
10102 init_sched_dl_class();
10103
10104 sched_smp_initialized = true;
10105 }
10106
migration_init(void)10107 static int __init migration_init(void)
10108 {
10109 sched_cpu_starting(smp_processor_id());
10110 return 0;
10111 }
10112 early_initcall(migration_init);
10113
10114 #else
sched_init_smp(void)10115 void __init sched_init_smp(void)
10116 {
10117 sched_init_granularity();
10118 }
10119 #endif /* CONFIG_SMP */
10120
in_sched_functions(unsigned long addr)10121 int in_sched_functions(unsigned long addr)
10122 {
10123 return in_lock_functions(addr) ||
10124 (addr >= (unsigned long)__sched_text_start
10125 && addr < (unsigned long)__sched_text_end);
10126 }
10127
10128 #ifdef CONFIG_CGROUP_SCHED
10129 /*
10130 * Default task group.
10131 * Every task in system belongs to this group at bootup.
10132 */
10133 struct task_group root_task_group;
10134 EXPORT_SYMBOL_GPL(root_task_group);
10135 LIST_HEAD(task_groups);
10136 EXPORT_SYMBOL_GPL(task_groups);
10137
10138 /* Cacheline aligned slab cache for task_group */
10139 static struct kmem_cache *task_group_cache __read_mostly;
10140 #endif
10141
sched_init(void)10142 void __init sched_init(void)
10143 {
10144 unsigned long ptr = 0;
10145 int i;
10146
10147 /* Make sure the linker didn't screw up */
10148 BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
10149 &fair_sched_class != &rt_sched_class + 1 ||
10150 &rt_sched_class != &dl_sched_class + 1);
10151 #ifdef CONFIG_SMP
10152 BUG_ON(&dl_sched_class != &stop_sched_class + 1);
10153 #endif
10154
10155 wait_bit_init();
10156
10157 #ifdef CONFIG_FAIR_GROUP_SCHED
10158 ptr += 2 * nr_cpu_ids * sizeof(void **);
10159 #endif
10160 #ifdef CONFIG_RT_GROUP_SCHED
10161 ptr += 2 * nr_cpu_ids * sizeof(void **);
10162 #endif
10163 if (ptr) {
10164 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
10165
10166 #ifdef CONFIG_FAIR_GROUP_SCHED
10167 root_task_group.se = (struct sched_entity **)ptr;
10168 ptr += nr_cpu_ids * sizeof(void **);
10169
10170 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
10171 ptr += nr_cpu_ids * sizeof(void **);
10172
10173 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
10174 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
10175 #endif /* CONFIG_FAIR_GROUP_SCHED */
10176 #ifdef CONFIG_RT_GROUP_SCHED
10177 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
10178 ptr += nr_cpu_ids * sizeof(void **);
10179
10180 root_task_group.rt_rq = (struct rt_rq **)ptr;
10181 ptr += nr_cpu_ids * sizeof(void **);
10182
10183 #endif /* CONFIG_RT_GROUP_SCHED */
10184 }
10185
10186 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
10187
10188 #ifdef CONFIG_SMP
10189 init_defrootdomain();
10190 #endif
10191
10192 #ifdef CONFIG_RT_GROUP_SCHED
10193 init_rt_bandwidth(&root_task_group.rt_bandwidth,
10194 global_rt_period(), global_rt_runtime());
10195 #endif /* CONFIG_RT_GROUP_SCHED */
10196
10197 #ifdef CONFIG_CGROUP_SCHED
10198 task_group_cache = KMEM_CACHE(task_group, 0);
10199
10200 list_add(&root_task_group.list, &task_groups);
10201 INIT_LIST_HEAD(&root_task_group.children);
10202 INIT_LIST_HEAD(&root_task_group.siblings);
10203 autogroup_init(&init_task);
10204 #endif /* CONFIG_CGROUP_SCHED */
10205
10206 for_each_possible_cpu(i) {
10207 struct rq *rq;
10208
10209 rq = cpu_rq(i);
10210 raw_spin_lock_init(&rq->__lock);
10211 rq->nr_running = 0;
10212 rq->calc_load_active = 0;
10213 rq->calc_load_update = jiffies + LOAD_FREQ;
10214 init_cfs_rq(&rq->cfs);
10215 init_rt_rq(&rq->rt);
10216 init_dl_rq(&rq->dl);
10217 #ifdef CONFIG_FAIR_GROUP_SCHED
10218 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
10219 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
10220 /*
10221 * How much CPU bandwidth does root_task_group get?
10222 *
10223 * In case of task-groups formed thr' the cgroup filesystem, it
10224 * gets 100% of the CPU resources in the system. This overall
10225 * system CPU resource is divided among the tasks of
10226 * root_task_group and its child task-groups in a fair manner,
10227 * based on each entity's (task or task-group's) weight
10228 * (se->load.weight).
10229 *
10230 * In other words, if root_task_group has 10 tasks of weight
10231 * 1024) and two child groups A0 and A1 (of weight 1024 each),
10232 * then A0's share of the CPU resource is:
10233 *
10234 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
10235 *
10236 * We achieve this by letting root_task_group's tasks sit
10237 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
10238 */
10239 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
10240 #endif /* CONFIG_FAIR_GROUP_SCHED */
10241
10242 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
10243 #ifdef CONFIG_RT_GROUP_SCHED
10244 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
10245 #endif
10246 #ifdef CONFIG_SMP
10247 rq->sd = NULL;
10248 rq->rd = NULL;
10249 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
10250 rq->balance_callback = &balance_push_callback;
10251 rq->active_balance = 0;
10252 rq->next_balance = jiffies;
10253 rq->push_cpu = 0;
10254 rq->cpu = i;
10255 rq->online = 0;
10256 rq->idle_stamp = 0;
10257 rq->avg_idle = 2*sysctl_sched_migration_cost;
10258 rq->wake_stamp = jiffies;
10259 rq->wake_avg_idle = rq->avg_idle;
10260 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
10261
10262 INIT_LIST_HEAD(&rq->cfs_tasks);
10263
10264 rq_attach_root(rq, &def_root_domain);
10265 #ifdef CONFIG_NO_HZ_COMMON
10266 rq->last_blocked_load_update_tick = jiffies;
10267 atomic_set(&rq->nohz_flags, 0);
10268
10269 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
10270 #endif
10271 #ifdef CONFIG_HOTPLUG_CPU
10272 rcuwait_init(&rq->hotplug_wait);
10273 #endif
10274 #endif /* CONFIG_SMP */
10275 hrtick_rq_init(rq);
10276 atomic_set(&rq->nr_iowait, 0);
10277
10278 #ifdef CONFIG_SCHED_CORE
10279 rq->core = rq;
10280 rq->core_pick = NULL;
10281 rq->core_enabled = 0;
10282 rq->core_tree = RB_ROOT;
10283 rq->core_forceidle_count = 0;
10284 rq->core_forceidle_occupation = 0;
10285 rq->core_forceidle_start = 0;
10286
10287 rq->core_cookie = 0UL;
10288 #endif
10289 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
10290 }
10291
10292 set_load_weight(&init_task, false);
10293
10294 /*
10295 * The boot idle thread does lazy MMU switching as well:
10296 */
10297 mmgrab_lazy_tlb(&init_mm);
10298 enter_lazy_tlb(&init_mm, current);
10299
10300 /*
10301 * The idle task doesn't need the kthread struct to function, but it
10302 * is dressed up as a per-CPU kthread and thus needs to play the part
10303 * if we want to avoid special-casing it in code that deals with per-CPU
10304 * kthreads.
10305 */
10306 WARN_ON(!set_kthread_struct(current));
10307
10308 /*
10309 * Make us the idle thread. Technically, schedule() should not be
10310 * called from this thread, however somewhere below it might be,
10311 * but because we are the idle thread, we just pick up running again
10312 * when this runqueue becomes "idle".
10313 */
10314 init_idle(current, smp_processor_id());
10315
10316 calc_load_update = jiffies + LOAD_FREQ;
10317
10318 #ifdef CONFIG_SMP
10319 idle_thread_set_boot_cpu();
10320 balance_push_set(smp_processor_id(), false);
10321 #endif
10322 init_sched_fair_class();
10323
10324 psi_init();
10325
10326 init_uclamp();
10327
10328 preempt_dynamic_init();
10329
10330 scheduler_running = 1;
10331 }
10332
10333 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
10334
__might_sleep(const char * file,int line)10335 void __might_sleep(const char *file, int line)
10336 {
10337 unsigned int state = get_current_state();
10338 /*
10339 * Blocking primitives will set (and therefore destroy) current->state,
10340 * since we will exit with TASK_RUNNING make sure we enter with it,
10341 * otherwise we will destroy state.
10342 */
10343 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
10344 "do not call blocking ops when !TASK_RUNNING; "
10345 "state=%x set at [<%p>] %pS\n", state,
10346 (void *)current->task_state_change,
10347 (void *)current->task_state_change);
10348
10349 __might_resched(file, line, 0);
10350 }
10351 EXPORT_SYMBOL(__might_sleep);
10352
print_preempt_disable_ip(int preempt_offset,unsigned long ip)10353 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10354 {
10355 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10356 return;
10357
10358 if (preempt_count() == preempt_offset)
10359 return;
10360
10361 pr_err("Preemption disabled at:");
10362 print_ip_sym(KERN_ERR, ip);
10363 }
10364
resched_offsets_ok(unsigned int offsets)10365 static inline bool resched_offsets_ok(unsigned int offsets)
10366 {
10367 unsigned int nested = preempt_count();
10368
10369 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10370
10371 return nested == offsets;
10372 }
10373
__might_resched(const char * file,int line,unsigned int offsets)10374 void __might_resched(const char *file, int line, unsigned int offsets)
10375 {
10376 /* Ratelimiting timestamp: */
10377 static unsigned long prev_jiffy;
10378
10379 unsigned long preempt_disable_ip;
10380
10381 /* WARN_ON_ONCE() by default, no rate limit required: */
10382 rcu_sleep_check();
10383
10384 if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10385 !is_idle_task(current) && !current->non_block_count) ||
10386 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10387 oops_in_progress)
10388 return;
10389
10390 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10391 return;
10392 prev_jiffy = jiffies;
10393
10394 /* Save this before calling printk(), since that will clobber it: */
10395 preempt_disable_ip = get_preempt_disable_ip(current);
10396
10397 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10398 file, line);
10399 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10400 in_atomic(), irqs_disabled(), current->non_block_count,
10401 current->pid, current->comm);
10402 pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10403 offsets & MIGHT_RESCHED_PREEMPT_MASK);
10404
10405 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10406 pr_err("RCU nest depth: %d, expected: %u\n",
10407 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10408 }
10409
10410 if (task_stack_end_corrupted(current))
10411 pr_emerg("Thread overran stack, or stack corrupted\n");
10412
10413 debug_show_held_locks(current);
10414 if (irqs_disabled())
10415 print_irqtrace_events(current);
10416
10417 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10418 preempt_disable_ip);
10419
10420 trace_android_rvh_schedule_bug(NULL);
10421
10422 dump_stack();
10423 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10424 }
10425 EXPORT_SYMBOL(__might_resched);
10426
__cant_sleep(const char * file,int line,int preempt_offset)10427 void __cant_sleep(const char *file, int line, int preempt_offset)
10428 {
10429 static unsigned long prev_jiffy;
10430
10431 if (irqs_disabled())
10432 return;
10433
10434 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10435 return;
10436
10437 if (preempt_count() > preempt_offset)
10438 return;
10439
10440 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10441 return;
10442 prev_jiffy = jiffies;
10443
10444 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10445 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10446 in_atomic(), irqs_disabled(),
10447 current->pid, current->comm);
10448
10449 debug_show_held_locks(current);
10450 dump_stack();
10451 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10452 }
10453 EXPORT_SYMBOL_GPL(__cant_sleep);
10454
10455 #ifdef CONFIG_SMP
__cant_migrate(const char * file,int line)10456 void __cant_migrate(const char *file, int line)
10457 {
10458 static unsigned long prev_jiffy;
10459
10460 if (irqs_disabled())
10461 return;
10462
10463 if (is_migration_disabled(current))
10464 return;
10465
10466 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10467 return;
10468
10469 if (preempt_count() > 0)
10470 return;
10471
10472 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10473 return;
10474 prev_jiffy = jiffies;
10475
10476 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10477 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10478 in_atomic(), irqs_disabled(), is_migration_disabled(current),
10479 current->pid, current->comm);
10480
10481 debug_show_held_locks(current);
10482 dump_stack();
10483 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10484 }
10485 EXPORT_SYMBOL_GPL(__cant_migrate);
10486 #endif
10487 #endif
10488
10489 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)10490 void normalize_rt_tasks(void)
10491 {
10492 struct task_struct *g, *p;
10493 struct sched_attr attr = {
10494 .sched_policy = SCHED_NORMAL,
10495 };
10496
10497 read_lock(&tasklist_lock);
10498 for_each_process_thread(g, p) {
10499 /*
10500 * Only normalize user tasks:
10501 */
10502 if (p->flags & PF_KTHREAD)
10503 continue;
10504
10505 p->se.exec_start = 0;
10506 schedstat_set(p->stats.wait_start, 0);
10507 schedstat_set(p->stats.sleep_start, 0);
10508 schedstat_set(p->stats.block_start, 0);
10509
10510 if (!dl_task(p) && !rt_task(p)) {
10511 /*
10512 * Renice negative nice level userspace
10513 * tasks back to 0:
10514 */
10515 if (task_nice(p) < 0)
10516 set_user_nice(p, 0);
10517 continue;
10518 }
10519
10520 __sched_setscheduler(p, &attr, false, false);
10521 }
10522 read_unlock(&tasklist_lock);
10523 }
10524
10525 #endif /* CONFIG_MAGIC_SYSRQ */
10526
10527 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
10528 /*
10529 * These functions are only useful for the IA64 MCA handling, or kdb.
10530 *
10531 * They can only be called when the whole system has been
10532 * stopped - every CPU needs to be quiescent, and no scheduling
10533 * activity can take place. Using them for anything else would
10534 * be a serious bug, and as a result, they aren't even visible
10535 * under any other configuration.
10536 */
10537
10538 /**
10539 * curr_task - return the current task for a given CPU.
10540 * @cpu: the processor in question.
10541 *
10542 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10543 *
10544 * Return: The current task for @cpu.
10545 */
curr_task(int cpu)10546 struct task_struct *curr_task(int cpu)
10547 {
10548 return cpu_curr(cpu);
10549 }
10550
10551 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10552
10553 #ifdef CONFIG_IA64
10554 /**
10555 * ia64_set_curr_task - set the current task for a given CPU.
10556 * @cpu: the processor in question.
10557 * @p: the task pointer to set.
10558 *
10559 * Description: This function must only be used when non-maskable interrupts
10560 * are serviced on a separate stack. It allows the architecture to switch the
10561 * notion of the current task on a CPU in a non-blocking manner. This function
10562 * must be called with all CPU's synchronized, and interrupts disabled, the
10563 * and caller must save the original value of the current task (see
10564 * curr_task() above) and restore that value before reenabling interrupts and
10565 * re-starting the system.
10566 *
10567 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10568 */
ia64_set_curr_task(int cpu,struct task_struct * p)10569 void ia64_set_curr_task(int cpu, struct task_struct *p)
10570 {
10571 cpu_curr(cpu) = p;
10572 }
10573
10574 #endif
10575
10576 #ifdef CONFIG_CGROUP_SCHED
10577 /* task_group_lock serializes the addition/removal of task groups */
10578 static DEFINE_SPINLOCK(task_group_lock);
10579
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)10580 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10581 struct task_group *parent)
10582 {
10583 #ifdef CONFIG_UCLAMP_TASK_GROUP
10584 enum uclamp_id clamp_id;
10585
10586 for_each_clamp_id(clamp_id) {
10587 uclamp_se_set(&tg->uclamp_req[clamp_id],
10588 uclamp_none(clamp_id), false);
10589 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10590 }
10591 #endif
10592 }
10593
sched_free_group(struct task_group * tg)10594 static void sched_free_group(struct task_group *tg)
10595 {
10596 free_fair_sched_group(tg);
10597 free_rt_sched_group(tg);
10598 autogroup_free(tg);
10599 kmem_cache_free(task_group_cache, tg);
10600 }
10601
sched_free_group_rcu(struct rcu_head * rcu)10602 static void sched_free_group_rcu(struct rcu_head *rcu)
10603 {
10604 sched_free_group(container_of(rcu, struct task_group, rcu));
10605 }
10606
sched_unregister_group(struct task_group * tg)10607 static void sched_unregister_group(struct task_group *tg)
10608 {
10609 unregister_fair_sched_group(tg);
10610 unregister_rt_sched_group(tg);
10611 /*
10612 * We have to wait for yet another RCU grace period to expire, as
10613 * print_cfs_stats() might run concurrently.
10614 */
10615 call_rcu(&tg->rcu, sched_free_group_rcu);
10616 }
10617
10618 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)10619 struct task_group *sched_create_group(struct task_group *parent)
10620 {
10621 struct task_group *tg;
10622
10623 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10624 if (!tg)
10625 return ERR_PTR(-ENOMEM);
10626
10627 if (!alloc_fair_sched_group(tg, parent))
10628 goto err;
10629
10630 if (!alloc_rt_sched_group(tg, parent))
10631 goto err;
10632
10633 alloc_uclamp_sched_group(tg, parent);
10634
10635 return tg;
10636
10637 err:
10638 sched_free_group(tg);
10639 return ERR_PTR(-ENOMEM);
10640 }
10641
sched_online_group(struct task_group * tg,struct task_group * parent)10642 void sched_online_group(struct task_group *tg, struct task_group *parent)
10643 {
10644 unsigned long flags;
10645
10646 spin_lock_irqsave(&task_group_lock, flags);
10647 list_add_rcu(&tg->list, &task_groups);
10648
10649 /* Root should already exist: */
10650 WARN_ON(!parent);
10651
10652 tg->parent = parent;
10653 INIT_LIST_HEAD(&tg->children);
10654 list_add_rcu(&tg->siblings, &parent->children);
10655 spin_unlock_irqrestore(&task_group_lock, flags);
10656
10657 online_fair_sched_group(tg);
10658 }
10659
10660 /* rcu callback to free various structures associated with a task group */
sched_unregister_group_rcu(struct rcu_head * rhp)10661 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10662 {
10663 /* Now it should be safe to free those cfs_rqs: */
10664 sched_unregister_group(container_of(rhp, struct task_group, rcu));
10665 }
10666
sched_destroy_group(struct task_group * tg)10667 void sched_destroy_group(struct task_group *tg)
10668 {
10669 /* Wait for possible concurrent references to cfs_rqs complete: */
10670 call_rcu(&tg->rcu, sched_unregister_group_rcu);
10671 }
10672
sched_release_group(struct task_group * tg)10673 void sched_release_group(struct task_group *tg)
10674 {
10675 unsigned long flags;
10676
10677 /*
10678 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10679 * sched_cfs_period_timer()).
10680 *
10681 * For this to be effective, we have to wait for all pending users of
10682 * this task group to leave their RCU critical section to ensure no new
10683 * user will see our dying task group any more. Specifically ensure
10684 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10685 *
10686 * We therefore defer calling unregister_fair_sched_group() to
10687 * sched_unregister_group() which is guarantied to get called only after the
10688 * current RCU grace period has expired.
10689 */
10690 spin_lock_irqsave(&task_group_lock, flags);
10691 list_del_rcu(&tg->list);
10692 list_del_rcu(&tg->siblings);
10693 spin_unlock_irqrestore(&task_group_lock, flags);
10694 }
10695
sched_get_task_group(struct task_struct * tsk)10696 static struct task_group *sched_get_task_group(struct task_struct *tsk)
10697 {
10698 struct task_group *tg;
10699
10700 /*
10701 * All callers are synchronized by task_rq_lock(); we do not use RCU
10702 * which is pointless here. Thus, we pass "true" to task_css_check()
10703 * to prevent lockdep warnings.
10704 */
10705 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10706 struct task_group, css);
10707 tg = autogroup_task_group(tsk, tg);
10708
10709 return tg;
10710 }
10711
sched_change_group(struct task_struct * tsk,struct task_group * group)10712 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
10713 {
10714 tsk->sched_task_group = group;
10715
10716 #ifdef CONFIG_FAIR_GROUP_SCHED
10717 if (tsk->sched_class->task_change_group)
10718 tsk->sched_class->task_change_group(tsk);
10719 else
10720 #endif
10721 set_task_rq(tsk, task_cpu(tsk));
10722 }
10723
10724 /*
10725 * Change task's runqueue when it moves between groups.
10726 *
10727 * The caller of this function should have put the task in its new group by
10728 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10729 * its new group.
10730 */
sched_move_task(struct task_struct * tsk)10731 void sched_move_task(struct task_struct *tsk)
10732 {
10733 int queued, running, queue_flags =
10734 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10735 struct task_group *group;
10736 struct rq_flags rf;
10737 struct rq *rq;
10738
10739 trace_android_vh_sched_move_task(tsk);
10740 rq = task_rq_lock(tsk, &rf);
10741 /*
10742 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
10743 * group changes.
10744 */
10745 group = sched_get_task_group(tsk);
10746 if (group == tsk->sched_task_group)
10747 goto unlock;
10748
10749 update_rq_clock(rq);
10750
10751 running = task_current(rq, tsk);
10752 queued = task_on_rq_queued(tsk);
10753
10754 if (queued)
10755 dequeue_task(rq, tsk, queue_flags);
10756 if (running)
10757 put_prev_task(rq, tsk);
10758
10759 sched_change_group(tsk, group);
10760
10761 if (queued)
10762 enqueue_task(rq, tsk, queue_flags);
10763 if (running) {
10764 set_next_task(rq, tsk);
10765 /*
10766 * After changing group, the running task may have joined a
10767 * throttled one but it's still the running task. Trigger a
10768 * resched to make sure that task can still run.
10769 */
10770 resched_curr(rq);
10771 }
10772
10773 unlock:
10774 task_rq_unlock(rq, tsk, &rf);
10775 }
10776
css_tg(struct cgroup_subsys_state * css)10777 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10778 {
10779 return css ? container_of(css, struct task_group, css) : NULL;
10780 }
10781
10782 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)10783 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10784 {
10785 struct task_group *parent = css_tg(parent_css);
10786 struct task_group *tg;
10787
10788 if (!parent) {
10789 trace_android_vh_cpu_cgroup_css_alloc_early(parent);
10790 /* This is early initialization for the top cgroup */
10791 return &root_task_group.css;
10792 }
10793
10794 tg = sched_create_group(parent);
10795 if (IS_ERR(tg))
10796 return ERR_PTR(-ENOMEM);
10797
10798 trace_android_vh_cpu_cgroup_css_alloc(tg, parent_css);
10799
10800 return &tg->css;
10801 }
10802
10803 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)10804 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10805 {
10806 struct task_group *tg = css_tg(css);
10807 struct task_group *parent = css_tg(css->parent);
10808
10809 if (parent)
10810 sched_online_group(tg, parent);
10811
10812 #ifdef CONFIG_UCLAMP_TASK_GROUP
10813 /* Propagate the effective uclamp value for the new group */
10814 mutex_lock(&uclamp_mutex);
10815 rcu_read_lock();
10816 cpu_util_update_eff(css);
10817 rcu_read_unlock();
10818 mutex_unlock(&uclamp_mutex);
10819 #endif
10820
10821 trace_android_rvh_cpu_cgroup_online(css);
10822 return 0;
10823 }
10824
cpu_cgroup_css_released(struct cgroup_subsys_state * css)10825 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10826 {
10827 struct task_group *tg = css_tg(css);
10828
10829 sched_release_group(tg);
10830 }
10831
cpu_cgroup_css_free(struct cgroup_subsys_state * css)10832 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10833 {
10834 struct task_group *tg = css_tg(css);
10835
10836 /*
10837 * Relies on the RCU grace period between css_released() and this.
10838 */
10839 sched_unregister_group(tg);
10840
10841 trace_android_vh_cpu_cgroup_css_free(css);
10842 }
10843
10844 #ifdef CONFIG_RT_GROUP_SCHED
cpu_cgroup_can_attach(struct cgroup_taskset * tset)10845 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10846 {
10847 struct task_struct *task;
10848 struct cgroup_subsys_state *css;
10849
10850 cgroup_taskset_for_each(task, css, tset) {
10851 if (!sched_rt_can_attach(css_tg(css), task))
10852 return -EINVAL;
10853 }
10854 return 0;
10855 }
10856 #endif
10857
cpu_cgroup_attach(struct cgroup_taskset * tset)10858 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10859 {
10860 struct task_struct *task;
10861 struct cgroup_subsys_state *css;
10862
10863 cgroup_taskset_for_each(task, css, tset)
10864 sched_move_task(task);
10865
10866 trace_android_rvh_cpu_cgroup_attach(tset);
10867 }
10868
10869 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)10870 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10871 {
10872 struct cgroup_subsys_state *top_css = css;
10873 struct uclamp_se *uc_parent = NULL;
10874 struct uclamp_se *uc_se = NULL;
10875 unsigned int eff[UCLAMP_CNT];
10876 enum uclamp_id clamp_id;
10877 unsigned int clamps;
10878
10879 lockdep_assert_held(&uclamp_mutex);
10880 SCHED_WARN_ON(!rcu_read_lock_held());
10881
10882 css_for_each_descendant_pre(css, top_css) {
10883 uc_parent = css_tg(css)->parent
10884 ? css_tg(css)->parent->uclamp : NULL;
10885
10886 for_each_clamp_id(clamp_id) {
10887 /* Assume effective clamps matches requested clamps */
10888 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10889 /* Cap effective clamps with parent's effective clamps */
10890 if (uc_parent &&
10891 eff[clamp_id] > uc_parent[clamp_id].value) {
10892 eff[clamp_id] = uc_parent[clamp_id].value;
10893 }
10894 }
10895 /* Ensure protection is always capped by limit */
10896 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10897
10898 /* Propagate most restrictive effective clamps */
10899 clamps = 0x0;
10900 uc_se = css_tg(css)->uclamp;
10901 for_each_clamp_id(clamp_id) {
10902 if (eff[clamp_id] == uc_se[clamp_id].value)
10903 continue;
10904 uc_se[clamp_id].value = eff[clamp_id];
10905 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10906 clamps |= (0x1 << clamp_id);
10907 }
10908 if (!clamps) {
10909 css = css_rightmost_descendant(css);
10910 continue;
10911 }
10912
10913 /* Immediately update descendants RUNNABLE tasks */
10914 uclamp_update_active_tasks(css);
10915 }
10916 }
10917
10918 /*
10919 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10920 * C expression. Since there is no way to convert a macro argument (N) into a
10921 * character constant, use two levels of macros.
10922 */
10923 #define _POW10(exp) ((unsigned int)1e##exp)
10924 #define POW10(exp) _POW10(exp)
10925
10926 struct uclamp_request {
10927 #define UCLAMP_PERCENT_SHIFT 2
10928 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
10929 s64 percent;
10930 u64 util;
10931 int ret;
10932 };
10933
10934 static inline struct uclamp_request
capacity_from_percent(char * buf)10935 capacity_from_percent(char *buf)
10936 {
10937 struct uclamp_request req = {
10938 .percent = UCLAMP_PERCENT_SCALE,
10939 .util = SCHED_CAPACITY_SCALE,
10940 .ret = 0,
10941 };
10942
10943 buf = strim(buf);
10944 if (strcmp(buf, "max")) {
10945 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10946 &req.percent);
10947 if (req.ret)
10948 return req;
10949 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10950 req.ret = -ERANGE;
10951 return req;
10952 }
10953
10954 req.util = req.percent << SCHED_CAPACITY_SHIFT;
10955 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10956 }
10957
10958 return req;
10959 }
10960
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)10961 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10962 size_t nbytes, loff_t off,
10963 enum uclamp_id clamp_id)
10964 {
10965 struct uclamp_request req;
10966 struct task_group *tg;
10967
10968 req = capacity_from_percent(buf);
10969 if (req.ret)
10970 return req.ret;
10971
10972 static_branch_enable(&sched_uclamp_used);
10973
10974 mutex_lock(&uclamp_mutex);
10975 rcu_read_lock();
10976
10977 tg = css_tg(of_css(of));
10978 if (tg->uclamp_req[clamp_id].value != req.util)
10979 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10980
10981 /*
10982 * Because of not recoverable conversion rounding we keep track of the
10983 * exact requested value
10984 */
10985 tg->uclamp_pct[clamp_id] = req.percent;
10986
10987 /* Update effective clamps to track the most restrictive value */
10988 cpu_util_update_eff(of_css(of));
10989
10990 rcu_read_unlock();
10991 mutex_unlock(&uclamp_mutex);
10992
10993 return nbytes;
10994 }
10995
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10996 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10997 char *buf, size_t nbytes,
10998 loff_t off)
10999 {
11000 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
11001 }
11002
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)11003 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
11004 char *buf, size_t nbytes,
11005 loff_t off)
11006 {
11007 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
11008 }
11009
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)11010 static inline void cpu_uclamp_print(struct seq_file *sf,
11011 enum uclamp_id clamp_id)
11012 {
11013 struct task_group *tg;
11014 u64 util_clamp;
11015 u64 percent;
11016 u32 rem;
11017
11018 rcu_read_lock();
11019 tg = css_tg(seq_css(sf));
11020 util_clamp = tg->uclamp_req[clamp_id].value;
11021 rcu_read_unlock();
11022
11023 if (util_clamp == SCHED_CAPACITY_SCALE) {
11024 seq_puts(sf, "max\n");
11025 return;
11026 }
11027
11028 percent = tg->uclamp_pct[clamp_id];
11029 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
11030 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
11031 }
11032
cpu_uclamp_min_show(struct seq_file * sf,void * v)11033 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
11034 {
11035 cpu_uclamp_print(sf, UCLAMP_MIN);
11036 return 0;
11037 }
11038
cpu_uclamp_max_show(struct seq_file * sf,void * v)11039 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
11040 {
11041 cpu_uclamp_print(sf, UCLAMP_MAX);
11042 return 0;
11043 }
11044
cpu_uclamp_ls_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 ls)11045 static int cpu_uclamp_ls_write_u64(struct cgroup_subsys_state *css,
11046 struct cftype *cftype, u64 ls)
11047 {
11048 struct task_group *tg;
11049
11050 if (ls > 1)
11051 return -EINVAL;
11052 tg = css_tg(css);
11053 tg->latency_sensitive = (unsigned int) ls;
11054
11055 return 0;
11056 }
11057
cpu_uclamp_ls_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11058 static u64 cpu_uclamp_ls_read_u64(struct cgroup_subsys_state *css,
11059 struct cftype *cft)
11060 {
11061 struct task_group *tg = css_tg(css);
11062
11063 return (u64) tg->latency_sensitive;
11064 }
11065 #endif /* CONFIG_UCLAMP_TASK_GROUP */
11066
11067 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)11068 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
11069 struct cftype *cftype, u64 shareval)
11070 {
11071 if (shareval > scale_load_down(ULONG_MAX))
11072 shareval = MAX_SHARES;
11073 return sched_group_set_shares(css_tg(css), scale_load(shareval));
11074 }
11075
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11076 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
11077 struct cftype *cft)
11078 {
11079 struct task_group *tg = css_tg(css);
11080
11081 return (u64) scale_load_down(tg->shares);
11082 }
11083
11084 #ifdef CONFIG_CFS_BANDWIDTH
11085 static DEFINE_MUTEX(cfs_constraints_mutex);
11086
11087 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
11088 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
11089 /* More than 203 days if BW_SHIFT equals 20. */
11090 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
11091
11092 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
11093
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota,u64 burst)11094 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
11095 u64 burst)
11096 {
11097 int i, ret = 0, runtime_enabled, runtime_was_enabled;
11098 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11099
11100 if (tg == &root_task_group)
11101 return -EINVAL;
11102
11103 /*
11104 * Ensure we have at some amount of bandwidth every period. This is
11105 * to prevent reaching a state of large arrears when throttled via
11106 * entity_tick() resulting in prolonged exit starvation.
11107 */
11108 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
11109 return -EINVAL;
11110
11111 /*
11112 * Likewise, bound things on the other side by preventing insane quota
11113 * periods. This also allows us to normalize in computing quota
11114 * feasibility.
11115 */
11116 if (period > max_cfs_quota_period)
11117 return -EINVAL;
11118
11119 /*
11120 * Bound quota to defend quota against overflow during bandwidth shift.
11121 */
11122 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
11123 return -EINVAL;
11124
11125 if (quota != RUNTIME_INF && (burst > quota ||
11126 burst + quota > max_cfs_runtime))
11127 return -EINVAL;
11128
11129 /*
11130 * Prevent race between setting of cfs_rq->runtime_enabled and
11131 * unthrottle_offline_cfs_rqs().
11132 */
11133 guard(cpus_read_lock)();
11134 guard(mutex)(&cfs_constraints_mutex);
11135
11136 ret = __cfs_schedulable(tg, period, quota);
11137 if (ret)
11138 return ret;
11139
11140 runtime_enabled = quota != RUNTIME_INF;
11141 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
11142 /*
11143 * If we need to toggle cfs_bandwidth_used, off->on must occur
11144 * before making related changes, and on->off must occur afterwards
11145 */
11146 if (runtime_enabled && !runtime_was_enabled)
11147 cfs_bandwidth_usage_inc();
11148
11149 scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
11150 cfs_b->period = ns_to_ktime(period);
11151 cfs_b->quota = quota;
11152 cfs_b->burst = burst;
11153
11154 __refill_cfs_bandwidth_runtime(cfs_b);
11155
11156 /*
11157 * Restart the period timer (if active) to handle new
11158 * period expiry:
11159 */
11160 if (runtime_enabled)
11161 start_cfs_bandwidth(cfs_b);
11162 }
11163
11164 for_each_online_cpu(i) {
11165 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
11166 struct rq *rq = cfs_rq->rq;
11167
11168 guard(rq_lock_irq)(rq);
11169 cfs_rq->runtime_enabled = runtime_enabled;
11170 cfs_rq->runtime_remaining = 0;
11171
11172 if (cfs_rq->throttled)
11173 unthrottle_cfs_rq(cfs_rq);
11174 }
11175
11176 if (runtime_was_enabled && !runtime_enabled)
11177 cfs_bandwidth_usage_dec();
11178
11179 return 0;
11180 }
11181
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)11182 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
11183 {
11184 u64 quota, period, burst;
11185
11186 period = ktime_to_ns(tg->cfs_bandwidth.period);
11187 burst = tg->cfs_bandwidth.burst;
11188 if (cfs_quota_us < 0)
11189 quota = RUNTIME_INF;
11190 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
11191 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
11192 else
11193 return -EINVAL;
11194
11195 return tg_set_cfs_bandwidth(tg, period, quota, burst);
11196 }
11197
tg_get_cfs_quota(struct task_group * tg)11198 static long tg_get_cfs_quota(struct task_group *tg)
11199 {
11200 u64 quota_us;
11201
11202 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
11203 return -1;
11204
11205 quota_us = tg->cfs_bandwidth.quota;
11206 do_div(quota_us, NSEC_PER_USEC);
11207
11208 return quota_us;
11209 }
11210
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)11211 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
11212 {
11213 u64 quota, period, burst;
11214
11215 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
11216 return -EINVAL;
11217
11218 period = (u64)cfs_period_us * NSEC_PER_USEC;
11219 quota = tg->cfs_bandwidth.quota;
11220 burst = tg->cfs_bandwidth.burst;
11221
11222 return tg_set_cfs_bandwidth(tg, period, quota, burst);
11223 }
11224
tg_get_cfs_period(struct task_group * tg)11225 static long tg_get_cfs_period(struct task_group *tg)
11226 {
11227 u64 cfs_period_us;
11228
11229 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
11230 do_div(cfs_period_us, NSEC_PER_USEC);
11231
11232 return cfs_period_us;
11233 }
11234
tg_set_cfs_burst(struct task_group * tg,long cfs_burst_us)11235 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
11236 {
11237 u64 quota, period, burst;
11238
11239 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
11240 return -EINVAL;
11241
11242 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
11243 period = ktime_to_ns(tg->cfs_bandwidth.period);
11244 quota = tg->cfs_bandwidth.quota;
11245
11246 return tg_set_cfs_bandwidth(tg, period, quota, burst);
11247 }
11248
tg_get_cfs_burst(struct task_group * tg)11249 static long tg_get_cfs_burst(struct task_group *tg)
11250 {
11251 u64 burst_us;
11252
11253 burst_us = tg->cfs_bandwidth.burst;
11254 do_div(burst_us, NSEC_PER_USEC);
11255
11256 return burst_us;
11257 }
11258
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11259 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
11260 struct cftype *cft)
11261 {
11262 return tg_get_cfs_quota(css_tg(css));
11263 }
11264
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)11265 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
11266 struct cftype *cftype, s64 cfs_quota_us)
11267 {
11268 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
11269 }
11270
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11271 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
11272 struct cftype *cft)
11273 {
11274 return tg_get_cfs_period(css_tg(css));
11275 }
11276
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)11277 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
11278 struct cftype *cftype, u64 cfs_period_us)
11279 {
11280 return tg_set_cfs_period(css_tg(css), cfs_period_us);
11281 }
11282
cpu_cfs_burst_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11283 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
11284 struct cftype *cft)
11285 {
11286 return tg_get_cfs_burst(css_tg(css));
11287 }
11288
cpu_cfs_burst_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_burst_us)11289 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
11290 struct cftype *cftype, u64 cfs_burst_us)
11291 {
11292 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
11293 }
11294
11295 struct cfs_schedulable_data {
11296 struct task_group *tg;
11297 u64 period, quota;
11298 };
11299
11300 /*
11301 * normalize group quota/period to be quota/max_period
11302 * note: units are usecs
11303 */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)11304 static u64 normalize_cfs_quota(struct task_group *tg,
11305 struct cfs_schedulable_data *d)
11306 {
11307 u64 quota, period;
11308
11309 if (tg == d->tg) {
11310 period = d->period;
11311 quota = d->quota;
11312 } else {
11313 period = tg_get_cfs_period(tg);
11314 quota = tg_get_cfs_quota(tg);
11315 }
11316
11317 /* note: these should typically be equivalent */
11318 if (quota == RUNTIME_INF || quota == -1)
11319 return RUNTIME_INF;
11320
11321 return to_ratio(period, quota);
11322 }
11323
tg_cfs_schedulable_down(struct task_group * tg,void * data)11324 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
11325 {
11326 struct cfs_schedulable_data *d = data;
11327 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11328 s64 quota = 0, parent_quota = -1;
11329
11330 if (!tg->parent) {
11331 quota = RUNTIME_INF;
11332 } else {
11333 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
11334
11335 quota = normalize_cfs_quota(tg, d);
11336 parent_quota = parent_b->hierarchical_quota;
11337
11338 /*
11339 * Ensure max(child_quota) <= parent_quota. On cgroup2,
11340 * always take the non-RUNTIME_INF min. On cgroup1, only
11341 * inherit when no limit is set. In both cases this is used
11342 * by the scheduler to determine if a given CFS task has a
11343 * bandwidth constraint at some higher level.
11344 */
11345 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
11346 if (quota == RUNTIME_INF)
11347 quota = parent_quota;
11348 else if (parent_quota != RUNTIME_INF)
11349 quota = min(quota, parent_quota);
11350 } else {
11351 if (quota == RUNTIME_INF)
11352 quota = parent_quota;
11353 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
11354 return -EINVAL;
11355 }
11356 }
11357 cfs_b->hierarchical_quota = quota;
11358
11359 return 0;
11360 }
11361
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)11362 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
11363 {
11364 int ret;
11365 struct cfs_schedulable_data data = {
11366 .tg = tg,
11367 .period = period,
11368 .quota = quota,
11369 };
11370
11371 if (quota != RUNTIME_INF) {
11372 do_div(data.period, NSEC_PER_USEC);
11373 do_div(data.quota, NSEC_PER_USEC);
11374 }
11375
11376 rcu_read_lock();
11377 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
11378 rcu_read_unlock();
11379
11380 return ret;
11381 }
11382
cpu_cfs_stat_show(struct seq_file * sf,void * v)11383 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
11384 {
11385 struct task_group *tg = css_tg(seq_css(sf));
11386 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11387
11388 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
11389 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
11390 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
11391
11392 if (schedstat_enabled() && tg != &root_task_group) {
11393 struct sched_statistics *stats;
11394 u64 ws = 0;
11395 int i;
11396
11397 for_each_possible_cpu(i) {
11398 stats = __schedstats_from_se(tg->se[i]);
11399 ws += schedstat_val(stats->wait_sum);
11400 }
11401
11402 seq_printf(sf, "wait_sum %llu\n", ws);
11403 }
11404
11405 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
11406 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
11407
11408 return 0;
11409 }
11410
throttled_time_self(struct task_group * tg)11411 static u64 throttled_time_self(struct task_group *tg)
11412 {
11413 int i;
11414 u64 total = 0;
11415
11416 for_each_possible_cpu(i) {
11417 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
11418 }
11419
11420 return total;
11421 }
11422
cpu_cfs_local_stat_show(struct seq_file * sf,void * v)11423 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
11424 {
11425 struct task_group *tg = css_tg(seq_css(sf));
11426
11427 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
11428
11429 return 0;
11430 }
11431 #endif /* CONFIG_CFS_BANDWIDTH */
11432 #endif /* CONFIG_FAIR_GROUP_SCHED */
11433
11434 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)11435 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11436 struct cftype *cft, s64 val)
11437 {
11438 return sched_group_set_rt_runtime(css_tg(css), val);
11439 }
11440
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)11441 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11442 struct cftype *cft)
11443 {
11444 return sched_group_rt_runtime(css_tg(css));
11445 }
11446
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)11447 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11448 struct cftype *cftype, u64 rt_period_us)
11449 {
11450 return sched_group_set_rt_period(css_tg(css), rt_period_us);
11451 }
11452
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)11453 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11454 struct cftype *cft)
11455 {
11456 return sched_group_rt_period(css_tg(css));
11457 }
11458 #endif /* CONFIG_RT_GROUP_SCHED */
11459
11460 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_idle_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11461 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11462 struct cftype *cft)
11463 {
11464 return css_tg(css)->idle;
11465 }
11466
cpu_idle_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 idle)11467 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11468 struct cftype *cft, s64 idle)
11469 {
11470 return sched_group_set_idle(css_tg(css), idle);
11471 }
11472 #endif
11473
11474 static struct cftype cpu_legacy_files[] = {
11475 #ifdef CONFIG_FAIR_GROUP_SCHED
11476 {
11477 .name = "shares",
11478 .read_u64 = cpu_shares_read_u64,
11479 .write_u64 = cpu_shares_write_u64,
11480 },
11481 {
11482 .name = "idle",
11483 .read_s64 = cpu_idle_read_s64,
11484 .write_s64 = cpu_idle_write_s64,
11485 },
11486 #endif
11487 #ifdef CONFIG_CFS_BANDWIDTH
11488 {
11489 .name = "cfs_quota_us",
11490 .read_s64 = cpu_cfs_quota_read_s64,
11491 .write_s64 = cpu_cfs_quota_write_s64,
11492 },
11493 {
11494 .name = "cfs_period_us",
11495 .read_u64 = cpu_cfs_period_read_u64,
11496 .write_u64 = cpu_cfs_period_write_u64,
11497 },
11498 {
11499 .name = "cfs_burst_us",
11500 .read_u64 = cpu_cfs_burst_read_u64,
11501 .write_u64 = cpu_cfs_burst_write_u64,
11502 },
11503 {
11504 .name = "stat",
11505 .seq_show = cpu_cfs_stat_show,
11506 },
11507 {
11508 .name = "stat.local",
11509 .seq_show = cpu_cfs_local_stat_show,
11510 },
11511 #endif
11512 #ifdef CONFIG_RT_GROUP_SCHED
11513 {
11514 .name = "rt_runtime_us",
11515 .read_s64 = cpu_rt_runtime_read,
11516 .write_s64 = cpu_rt_runtime_write,
11517 },
11518 {
11519 .name = "rt_period_us",
11520 .read_u64 = cpu_rt_period_read_uint,
11521 .write_u64 = cpu_rt_period_write_uint,
11522 },
11523 #endif
11524 #ifdef CONFIG_UCLAMP_TASK_GROUP
11525 {
11526 .name = "uclamp.min",
11527 .flags = CFTYPE_NOT_ON_ROOT,
11528 .seq_show = cpu_uclamp_min_show,
11529 .write = cpu_uclamp_min_write,
11530 },
11531 {
11532 .name = "uclamp.max",
11533 .flags = CFTYPE_NOT_ON_ROOT,
11534 .seq_show = cpu_uclamp_max_show,
11535 .write = cpu_uclamp_max_write,
11536 },
11537 {
11538 .name = "uclamp.latency_sensitive",
11539 .flags = CFTYPE_NOT_ON_ROOT,
11540 .read_u64 = cpu_uclamp_ls_read_u64,
11541 .write_u64 = cpu_uclamp_ls_write_u64,
11542 },
11543 #endif
11544 { } /* Terminate */
11545 };
11546
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)11547 static int cpu_extra_stat_show(struct seq_file *sf,
11548 struct cgroup_subsys_state *css)
11549 {
11550 #ifdef CONFIG_CFS_BANDWIDTH
11551 {
11552 struct task_group *tg = css_tg(css);
11553 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11554 u64 throttled_usec, burst_usec;
11555
11556 throttled_usec = cfs_b->throttled_time;
11557 do_div(throttled_usec, NSEC_PER_USEC);
11558 burst_usec = cfs_b->burst_time;
11559 do_div(burst_usec, NSEC_PER_USEC);
11560
11561 seq_printf(sf, "nr_periods %d\n"
11562 "nr_throttled %d\n"
11563 "throttled_usec %llu\n"
11564 "nr_bursts %d\n"
11565 "burst_usec %llu\n",
11566 cfs_b->nr_periods, cfs_b->nr_throttled,
11567 throttled_usec, cfs_b->nr_burst, burst_usec);
11568 }
11569 #endif
11570 return 0;
11571 }
11572
cpu_local_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)11573 static int cpu_local_stat_show(struct seq_file *sf,
11574 struct cgroup_subsys_state *css)
11575 {
11576 #ifdef CONFIG_CFS_BANDWIDTH
11577 {
11578 struct task_group *tg = css_tg(css);
11579 u64 throttled_self_usec;
11580
11581 throttled_self_usec = throttled_time_self(tg);
11582 do_div(throttled_self_usec, NSEC_PER_USEC);
11583
11584 seq_printf(sf, "throttled_usec %llu\n",
11585 throttled_self_usec);
11586 }
11587 #endif
11588 return 0;
11589 }
11590
11591 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11592 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11593 struct cftype *cft)
11594 {
11595 struct task_group *tg = css_tg(css);
11596 u64 weight = scale_load_down(tg->shares);
11597
11598 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11599 }
11600
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 weight)11601 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11602 struct cftype *cft, u64 weight)
11603 {
11604 /*
11605 * cgroup weight knobs should use the common MIN, DFL and MAX
11606 * values which are 1, 100 and 10000 respectively. While it loses
11607 * a bit of range on both ends, it maps pretty well onto the shares
11608 * value used by scheduler and the round-trip conversions preserve
11609 * the original value over the entire range.
11610 */
11611 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11612 return -ERANGE;
11613
11614 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11615
11616 return sched_group_set_shares(css_tg(css), scale_load(weight));
11617 }
11618
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11619 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11620 struct cftype *cft)
11621 {
11622 unsigned long weight = scale_load_down(css_tg(css)->shares);
11623 int last_delta = INT_MAX;
11624 int prio, delta;
11625
11626 /* find the closest nice value to the current weight */
11627 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11628 delta = abs(sched_prio_to_weight[prio] - weight);
11629 if (delta >= last_delta)
11630 break;
11631 last_delta = delta;
11632 }
11633
11634 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11635 }
11636
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)11637 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11638 struct cftype *cft, s64 nice)
11639 {
11640 unsigned long weight;
11641 int idx;
11642
11643 if (nice < MIN_NICE || nice > MAX_NICE)
11644 return -ERANGE;
11645
11646 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11647 idx = array_index_nospec(idx, 40);
11648 weight = sched_prio_to_weight[idx];
11649
11650 return sched_group_set_shares(css_tg(css), scale_load(weight));
11651 }
11652 #endif
11653
cpu_period_quota_print(struct seq_file * sf,long period,long quota)11654 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11655 long period, long quota)
11656 {
11657 if (quota < 0)
11658 seq_puts(sf, "max");
11659 else
11660 seq_printf(sf, "%ld", quota);
11661
11662 seq_printf(sf, " %ld\n", period);
11663 }
11664
11665 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)11666 static int __maybe_unused cpu_period_quota_parse(char *buf,
11667 u64 *periodp, u64 *quotap)
11668 {
11669 char tok[21]; /* U64_MAX */
11670
11671 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11672 return -EINVAL;
11673
11674 *periodp *= NSEC_PER_USEC;
11675
11676 if (sscanf(tok, "%llu", quotap))
11677 *quotap *= NSEC_PER_USEC;
11678 else if (!strcmp(tok, "max"))
11679 *quotap = RUNTIME_INF;
11680 else
11681 return -EINVAL;
11682
11683 return 0;
11684 }
11685
11686 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)11687 static int cpu_max_show(struct seq_file *sf, void *v)
11688 {
11689 struct task_group *tg = css_tg(seq_css(sf));
11690
11691 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11692 return 0;
11693 }
11694
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)11695 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11696 char *buf, size_t nbytes, loff_t off)
11697 {
11698 struct task_group *tg = css_tg(of_css(of));
11699 u64 period = tg_get_cfs_period(tg);
11700 u64 burst = tg->cfs_bandwidth.burst;
11701 u64 quota;
11702 int ret;
11703
11704 ret = cpu_period_quota_parse(buf, &period, "a);
11705 if (!ret)
11706 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11707 return ret ?: nbytes;
11708 }
11709 #endif
11710
11711 static struct cftype cpu_files[] = {
11712 #ifdef CONFIG_FAIR_GROUP_SCHED
11713 {
11714 .name = "weight",
11715 .flags = CFTYPE_NOT_ON_ROOT,
11716 .read_u64 = cpu_weight_read_u64,
11717 .write_u64 = cpu_weight_write_u64,
11718 },
11719 {
11720 .name = "weight.nice",
11721 .flags = CFTYPE_NOT_ON_ROOT,
11722 .read_s64 = cpu_weight_nice_read_s64,
11723 .write_s64 = cpu_weight_nice_write_s64,
11724 },
11725 {
11726 .name = "idle",
11727 .flags = CFTYPE_NOT_ON_ROOT,
11728 .read_s64 = cpu_idle_read_s64,
11729 .write_s64 = cpu_idle_write_s64,
11730 },
11731 #endif
11732 #ifdef CONFIG_CFS_BANDWIDTH
11733 {
11734 .name = "max",
11735 .flags = CFTYPE_NOT_ON_ROOT,
11736 .seq_show = cpu_max_show,
11737 .write = cpu_max_write,
11738 },
11739 {
11740 .name = "max.burst",
11741 .flags = CFTYPE_NOT_ON_ROOT,
11742 .read_u64 = cpu_cfs_burst_read_u64,
11743 .write_u64 = cpu_cfs_burst_write_u64,
11744 },
11745 #endif
11746 #ifdef CONFIG_UCLAMP_TASK_GROUP
11747 {
11748 .name = "uclamp.min",
11749 .flags = CFTYPE_NOT_ON_ROOT,
11750 .seq_show = cpu_uclamp_min_show,
11751 .write = cpu_uclamp_min_write,
11752 },
11753 {
11754 .name = "uclamp.max",
11755 .flags = CFTYPE_NOT_ON_ROOT,
11756 .seq_show = cpu_uclamp_max_show,
11757 .write = cpu_uclamp_max_write,
11758 },
11759 {
11760 .name = "uclamp.latency_sensitive",
11761 .flags = CFTYPE_NOT_ON_ROOT,
11762 .read_u64 = cpu_uclamp_ls_read_u64,
11763 .write_u64 = cpu_uclamp_ls_write_u64,
11764 },
11765 #endif
11766 { } /* terminate */
11767 };
11768
11769 struct cgroup_subsys cpu_cgrp_subsys = {
11770 .css_alloc = cpu_cgroup_css_alloc,
11771 .css_online = cpu_cgroup_css_online,
11772 .css_released = cpu_cgroup_css_released,
11773 .css_free = cpu_cgroup_css_free,
11774 .css_extra_stat_show = cpu_extra_stat_show,
11775 .css_local_stat_show = cpu_local_stat_show,
11776 #ifdef CONFIG_RT_GROUP_SCHED
11777 .can_attach = cpu_cgroup_can_attach,
11778 #endif
11779 .attach = cpu_cgroup_attach,
11780 .legacy_cftypes = cpu_legacy_files,
11781 .dfl_cftypes = cpu_files,
11782 .early_init = true,
11783 .threaded = true,
11784 };
11785 EXPORT_SYMBOL_GPL(cpu_cgrp_subsys);
11786 #endif /* CONFIG_CGROUP_SCHED */
11787
dump_cpu_task(int cpu)11788 void dump_cpu_task(int cpu)
11789 {
11790 if (cpu == smp_processor_id() && in_hardirq()) {
11791 struct pt_regs *regs;
11792
11793 regs = get_irq_regs();
11794 if (regs) {
11795 show_regs(regs);
11796 return;
11797 }
11798 }
11799
11800 if (trigger_single_cpu_backtrace(cpu))
11801 return;
11802
11803 pr_info("Task dump for CPU %d:\n", cpu);
11804 sched_show_task(cpu_curr(cpu));
11805 }
11806
11807 /*
11808 * Nice levels are multiplicative, with a gentle 10% change for every
11809 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11810 * nice 1, it will get ~10% less CPU time than another CPU-bound task
11811 * that remained on nice 0.
11812 *
11813 * The "10% effect" is relative and cumulative: from _any_ nice level,
11814 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11815 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11816 * If a task goes up by ~10% and another task goes down by ~10% then
11817 * the relative distance between them is ~25%.)
11818 */
11819 const int sched_prio_to_weight[40] = {
11820 /* -20 */ 88761, 71755, 56483, 46273, 36291,
11821 /* -15 */ 29154, 23254, 18705, 14949, 11916,
11822 /* -10 */ 9548, 7620, 6100, 4904, 3906,
11823 /* -5 */ 3121, 2501, 1991, 1586, 1277,
11824 /* 0 */ 1024, 820, 655, 526, 423,
11825 /* 5 */ 335, 272, 215, 172, 137,
11826 /* 10 */ 110, 87, 70, 56, 45,
11827 /* 15 */ 36, 29, 23, 18, 15,
11828 };
11829
11830 /*
11831 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11832 *
11833 * In cases where the weight does not change often, we can use the
11834 * precalculated inverse to speed up arithmetics by turning divisions
11835 * into multiplications:
11836 */
11837 const u32 sched_prio_to_wmult[40] = {
11838 /* -20 */ 48388, 59856, 76040, 92818, 118348,
11839 /* -15 */ 147320, 184698, 229616, 287308, 360437,
11840 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
11841 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
11842 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
11843 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
11844 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
11845 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11846 };
11847
call_trace_sched_update_nr_running(struct rq * rq,int count)11848 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11849 {
11850 trace_sched_update_nr_running_tp(rq, count);
11851 }
11852
11853 #ifdef CONFIG_SCHED_MM_CID
11854
11855 /*
11856 * @cid_lock: Guarantee forward-progress of cid allocation.
11857 *
11858 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
11859 * is only used when contention is detected by the lock-free allocation so
11860 * forward progress can be guaranteed.
11861 */
11862 DEFINE_RAW_SPINLOCK(cid_lock);
11863
11864 /*
11865 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
11866 *
11867 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
11868 * detected, it is set to 1 to ensure that all newly coming allocations are
11869 * serialized by @cid_lock until the allocation which detected contention
11870 * completes and sets @use_cid_lock back to 0. This guarantees forward progress
11871 * of a cid allocation.
11872 */
11873 int use_cid_lock;
11874
11875 /*
11876 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
11877 * concurrently with respect to the execution of the source runqueue context
11878 * switch.
11879 *
11880 * There is one basic properties we want to guarantee here:
11881 *
11882 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
11883 * used by a task. That would lead to concurrent allocation of the cid and
11884 * userspace corruption.
11885 *
11886 * Provide this guarantee by introducing a Dekker memory ordering to guarantee
11887 * that a pair of loads observe at least one of a pair of stores, which can be
11888 * shown as:
11889 *
11890 * X = Y = 0
11891 *
11892 * w[X]=1 w[Y]=1
11893 * MB MB
11894 * r[Y]=y r[X]=x
11895 *
11896 * Which guarantees that x==0 && y==0 is impossible. But rather than using
11897 * values 0 and 1, this algorithm cares about specific state transitions of the
11898 * runqueue current task (as updated by the scheduler context switch), and the
11899 * per-mm/cpu cid value.
11900 *
11901 * Let's introduce task (Y) which has task->mm == mm and task (N) which has
11902 * task->mm != mm for the rest of the discussion. There are two scheduler state
11903 * transitions on context switch we care about:
11904 *
11905 * (TSA) Store to rq->curr with transition from (N) to (Y)
11906 *
11907 * (TSB) Store to rq->curr with transition from (Y) to (N)
11908 *
11909 * On the remote-clear side, there is one transition we care about:
11910 *
11911 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
11912 *
11913 * There is also a transition to UNSET state which can be performed from all
11914 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
11915 * guarantees that only a single thread will succeed:
11916 *
11917 * (TMB) cmpxchg to *pcpu_cid to mark UNSET
11918 *
11919 * Just to be clear, what we do _not_ want to happen is a transition to UNSET
11920 * when a thread is actively using the cid (property (1)).
11921 *
11922 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
11923 *
11924 * Scenario A) (TSA)+(TMA) (from next task perspective)
11925 *
11926 * CPU0 CPU1
11927 *
11928 * Context switch CS-1 Remote-clear
11929 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA)
11930 * (implied barrier after cmpxchg)
11931 * - switch_mm_cid()
11932 * - memory barrier (see switch_mm_cid()
11933 * comment explaining how this barrier
11934 * is combined with other scheduler
11935 * barriers)
11936 * - mm_cid_get (next)
11937 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr)
11938 *
11939 * This Dekker ensures that either task (Y) is observed by the
11940 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
11941 * observed.
11942 *
11943 * If task (Y) store is observed by rcu_dereference(), it means that there is
11944 * still an active task on the cpu. Remote-clear will therefore not transition
11945 * to UNSET, which fulfills property (1).
11946 *
11947 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
11948 * it will move its state to UNSET, which clears the percpu cid perhaps
11949 * uselessly (which is not an issue for correctness). Because task (Y) is not
11950 * observed, CPU1 can move ahead to set the state to UNSET. Because moving
11951 * state to UNSET is done with a cmpxchg expecting that the old state has the
11952 * LAZY flag set, only one thread will successfully UNSET.
11953 *
11954 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
11955 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
11956 * CPU1 will observe task (Y) and do nothing more, which is fine.
11957 *
11958 * What we are effectively preventing with this Dekker is a scenario where
11959 * neither LAZY flag nor store (Y) are observed, which would fail property (1)
11960 * because this would UNSET a cid which is actively used.
11961 */
11962
sched_mm_cid_migrate_from(struct task_struct * t)11963 void sched_mm_cid_migrate_from(struct task_struct *t)
11964 {
11965 t->migrate_from_cpu = task_cpu(t);
11966 }
11967
11968 static
__sched_mm_cid_migrate_from_fetch_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid)11969 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
11970 struct task_struct *t,
11971 struct mm_cid *src_pcpu_cid)
11972 {
11973 struct mm_struct *mm = t->mm;
11974 struct task_struct *src_task;
11975 int src_cid, last_mm_cid;
11976
11977 if (!mm)
11978 return -1;
11979
11980 last_mm_cid = t->last_mm_cid;
11981 /*
11982 * If the migrated task has no last cid, or if the current
11983 * task on src rq uses the cid, it means the source cid does not need
11984 * to be moved to the destination cpu.
11985 */
11986 if (last_mm_cid == -1)
11987 return -1;
11988 src_cid = READ_ONCE(src_pcpu_cid->cid);
11989 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
11990 return -1;
11991
11992 /*
11993 * If we observe an active task using the mm on this rq, it means we
11994 * are not the last task to be migrated from this cpu for this mm, so
11995 * there is no need to move src_cid to the destination cpu.
11996 */
11997 rcu_read_lock();
11998 src_task = rcu_dereference(src_rq->curr);
11999 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
12000 rcu_read_unlock();
12001 t->last_mm_cid = -1;
12002 return -1;
12003 }
12004 rcu_read_unlock();
12005
12006 return src_cid;
12007 }
12008
12009 static
__sched_mm_cid_migrate_from_try_steal_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid,int src_cid)12010 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
12011 struct task_struct *t,
12012 struct mm_cid *src_pcpu_cid,
12013 int src_cid)
12014 {
12015 struct task_struct *src_task;
12016 struct mm_struct *mm = t->mm;
12017 int lazy_cid;
12018
12019 if (src_cid == -1)
12020 return -1;
12021
12022 /*
12023 * Attempt to clear the source cpu cid to move it to the destination
12024 * cpu.
12025 */
12026 lazy_cid = mm_cid_set_lazy_put(src_cid);
12027 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
12028 return -1;
12029
12030 /*
12031 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
12032 * rq->curr->mm matches the scheduler barrier in context_switch()
12033 * between store to rq->curr and load of prev and next task's
12034 * per-mm/cpu cid.
12035 *
12036 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
12037 * rq->curr->mm_cid_active matches the barrier in
12038 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
12039 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
12040 * load of per-mm/cpu cid.
12041 */
12042
12043 /*
12044 * If we observe an active task using the mm on this rq after setting
12045 * the lazy-put flag, this task will be responsible for transitioning
12046 * from lazy-put flag set to MM_CID_UNSET.
12047 */
12048 rcu_read_lock();
12049 src_task = rcu_dereference(src_rq->curr);
12050 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
12051 rcu_read_unlock();
12052 /*
12053 * We observed an active task for this mm, there is therefore
12054 * no point in moving this cid to the destination cpu.
12055 */
12056 t->last_mm_cid = -1;
12057 return -1;
12058 }
12059 rcu_read_unlock();
12060
12061 /*
12062 * The src_cid is unused, so it can be unset.
12063 */
12064 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
12065 return -1;
12066 return src_cid;
12067 }
12068
12069 /*
12070 * Migration to dst cpu. Called with dst_rq lock held.
12071 * Interrupts are disabled, which keeps the window of cid ownership without the
12072 * source rq lock held small.
12073 */
sched_mm_cid_migrate_to(struct rq * dst_rq,struct task_struct * t)12074 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
12075 {
12076 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
12077 struct mm_struct *mm = t->mm;
12078 int src_cid, dst_cid, src_cpu;
12079 struct rq *src_rq;
12080
12081 lockdep_assert_rq_held(dst_rq);
12082
12083 if (!mm)
12084 return;
12085 src_cpu = t->migrate_from_cpu;
12086 if (src_cpu == -1) {
12087 t->last_mm_cid = -1;
12088 return;
12089 }
12090 /*
12091 * Move the src cid if the dst cid is unset. This keeps id
12092 * allocation closest to 0 in cases where few threads migrate around
12093 * many cpus.
12094 *
12095 * If destination cid is already set, we may have to just clear
12096 * the src cid to ensure compactness in frequent migrations
12097 * scenarios.
12098 *
12099 * It is not useful to clear the src cid when the number of threads is
12100 * greater or equal to the number of allowed cpus, because user-space
12101 * can expect that the number of allowed cids can reach the number of
12102 * allowed cpus.
12103 */
12104 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
12105 dst_cid = READ_ONCE(dst_pcpu_cid->cid);
12106 if (!mm_cid_is_unset(dst_cid) &&
12107 atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
12108 return;
12109 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
12110 src_rq = cpu_rq(src_cpu);
12111 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
12112 if (src_cid == -1)
12113 return;
12114 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
12115 src_cid);
12116 if (src_cid == -1)
12117 return;
12118 if (!mm_cid_is_unset(dst_cid)) {
12119 __mm_cid_put(mm, src_cid);
12120 return;
12121 }
12122 /* Move src_cid to dst cpu. */
12123 mm_cid_snapshot_time(dst_rq, mm);
12124 WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
12125 }
12126
sched_mm_cid_remote_clear(struct mm_struct * mm,struct mm_cid * pcpu_cid,int cpu)12127 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
12128 int cpu)
12129 {
12130 struct rq *rq = cpu_rq(cpu);
12131 struct task_struct *t;
12132 unsigned long flags;
12133 int cid, lazy_cid;
12134
12135 cid = READ_ONCE(pcpu_cid->cid);
12136 if (!mm_cid_is_valid(cid))
12137 return;
12138
12139 /*
12140 * Clear the cpu cid if it is set to keep cid allocation compact. If
12141 * there happens to be other tasks left on the source cpu using this
12142 * mm, the next task using this mm will reallocate its cid on context
12143 * switch.
12144 */
12145 lazy_cid = mm_cid_set_lazy_put(cid);
12146 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
12147 return;
12148
12149 /*
12150 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
12151 * rq->curr->mm matches the scheduler barrier in context_switch()
12152 * between store to rq->curr and load of prev and next task's
12153 * per-mm/cpu cid.
12154 *
12155 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
12156 * rq->curr->mm_cid_active matches the barrier in
12157 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
12158 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
12159 * load of per-mm/cpu cid.
12160 */
12161
12162 /*
12163 * If we observe an active task using the mm on this rq after setting
12164 * the lazy-put flag, that task will be responsible for transitioning
12165 * from lazy-put flag set to MM_CID_UNSET.
12166 */
12167 rcu_read_lock();
12168 t = rcu_dereference(rq->curr);
12169 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) {
12170 rcu_read_unlock();
12171 return;
12172 }
12173 rcu_read_unlock();
12174
12175 /*
12176 * The cid is unused, so it can be unset.
12177 * Disable interrupts to keep the window of cid ownership without rq
12178 * lock small.
12179 */
12180 local_irq_save(flags);
12181 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
12182 __mm_cid_put(mm, cid);
12183 local_irq_restore(flags);
12184 }
12185
sched_mm_cid_remote_clear_old(struct mm_struct * mm,int cpu)12186 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
12187 {
12188 struct rq *rq = cpu_rq(cpu);
12189 struct mm_cid *pcpu_cid;
12190 struct task_struct *curr;
12191 u64 rq_clock;
12192
12193 /*
12194 * rq->clock load is racy on 32-bit but one spurious clear once in a
12195 * while is irrelevant.
12196 */
12197 rq_clock = READ_ONCE(rq->clock);
12198 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
12199
12200 /*
12201 * In order to take care of infrequently scheduled tasks, bump the time
12202 * snapshot associated with this cid if an active task using the mm is
12203 * observed on this rq.
12204 */
12205 rcu_read_lock();
12206 curr = rcu_dereference(rq->curr);
12207 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
12208 WRITE_ONCE(pcpu_cid->time, rq_clock);
12209 rcu_read_unlock();
12210 return;
12211 }
12212 rcu_read_unlock();
12213
12214 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
12215 return;
12216 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
12217 }
12218
sched_mm_cid_remote_clear_weight(struct mm_struct * mm,int cpu,int weight)12219 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
12220 int weight)
12221 {
12222 struct mm_cid *pcpu_cid;
12223 int cid;
12224
12225 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
12226 cid = READ_ONCE(pcpu_cid->cid);
12227 if (!mm_cid_is_valid(cid) || cid < weight)
12228 return;
12229 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
12230 }
12231
task_mm_cid_work(struct callback_head * work)12232 static void task_mm_cid_work(struct callback_head *work)
12233 {
12234 unsigned long now = jiffies, old_scan, next_scan;
12235 struct task_struct *t = current;
12236 struct cpumask *cidmask;
12237 struct mm_struct *mm;
12238 int weight, cpu;
12239
12240 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
12241
12242 work->next = work; /* Prevent double-add */
12243 if (t->flags & PF_EXITING)
12244 return;
12245 mm = t->mm;
12246 if (!mm)
12247 return;
12248 old_scan = READ_ONCE(mm->mm_cid_next_scan);
12249 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
12250 if (!old_scan) {
12251 unsigned long res;
12252
12253 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
12254 if (res != old_scan)
12255 old_scan = res;
12256 else
12257 old_scan = next_scan;
12258 }
12259 if (time_before(now, old_scan))
12260 return;
12261 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
12262 return;
12263 cidmask = mm_cidmask(mm);
12264 /* Clear cids that were not recently used. */
12265 for_each_possible_cpu(cpu)
12266 sched_mm_cid_remote_clear_old(mm, cpu);
12267 weight = cpumask_weight(cidmask);
12268 /*
12269 * Clear cids that are greater or equal to the cidmask weight to
12270 * recompact it.
12271 */
12272 for_each_possible_cpu(cpu)
12273 sched_mm_cid_remote_clear_weight(mm, cpu, weight);
12274 }
12275
init_sched_mm_cid(struct task_struct * t)12276 void init_sched_mm_cid(struct task_struct *t)
12277 {
12278 struct mm_struct *mm = t->mm;
12279 int mm_users = 0;
12280
12281 if (mm) {
12282 mm_users = atomic_read(&mm->mm_users);
12283 if (mm_users == 1)
12284 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
12285 }
12286 t->cid_work.next = &t->cid_work; /* Protect against double add */
12287 init_task_work(&t->cid_work, task_mm_cid_work);
12288 }
12289
task_tick_mm_cid(struct rq * rq,struct task_struct * curr)12290 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
12291 {
12292 struct callback_head *work = &curr->cid_work;
12293 unsigned long now = jiffies;
12294
12295 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
12296 work->next != work)
12297 return;
12298 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
12299 return;
12300 task_work_add(curr, work, TWA_RESUME);
12301 }
12302
sched_mm_cid_exit_signals(struct task_struct * t)12303 void sched_mm_cid_exit_signals(struct task_struct *t)
12304 {
12305 struct mm_struct *mm = t->mm;
12306 struct rq_flags rf;
12307 struct rq *rq;
12308
12309 if (!mm)
12310 return;
12311
12312 preempt_disable();
12313 rq = this_rq();
12314 rq_lock_irqsave(rq, &rf);
12315 preempt_enable_no_resched(); /* holding spinlock */
12316 WRITE_ONCE(t->mm_cid_active, 0);
12317 /*
12318 * Store t->mm_cid_active before loading per-mm/cpu cid.
12319 * Matches barrier in sched_mm_cid_remote_clear_old().
12320 */
12321 smp_mb();
12322 mm_cid_put(mm);
12323 t->last_mm_cid = t->mm_cid = -1;
12324 rq_unlock_irqrestore(rq, &rf);
12325 }
12326
sched_mm_cid_before_execve(struct task_struct * t)12327 void sched_mm_cid_before_execve(struct task_struct *t)
12328 {
12329 struct mm_struct *mm = t->mm;
12330 struct rq_flags rf;
12331 struct rq *rq;
12332
12333 if (!mm)
12334 return;
12335
12336 preempt_disable();
12337 rq = this_rq();
12338 rq_lock_irqsave(rq, &rf);
12339 preempt_enable_no_resched(); /* holding spinlock */
12340 WRITE_ONCE(t->mm_cid_active, 0);
12341 /*
12342 * Store t->mm_cid_active before loading per-mm/cpu cid.
12343 * Matches barrier in sched_mm_cid_remote_clear_old().
12344 */
12345 smp_mb();
12346 mm_cid_put(mm);
12347 t->last_mm_cid = t->mm_cid = -1;
12348 rq_unlock_irqrestore(rq, &rf);
12349 }
12350
sched_mm_cid_after_execve(struct task_struct * t)12351 void sched_mm_cid_after_execve(struct task_struct *t)
12352 {
12353 struct mm_struct *mm = t->mm;
12354 struct rq_flags rf;
12355 struct rq *rq;
12356
12357 if (!mm)
12358 return;
12359
12360 preempt_disable();
12361 rq = this_rq();
12362 rq_lock_irqsave(rq, &rf);
12363 preempt_enable_no_resched(); /* holding spinlock */
12364 WRITE_ONCE(t->mm_cid_active, 1);
12365 /*
12366 * Store t->mm_cid_active before loading per-mm/cpu cid.
12367 * Matches barrier in sched_mm_cid_remote_clear_old().
12368 */
12369 smp_mb();
12370 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
12371 rq_unlock_irqrestore(rq, &rf);
12372 rseq_set_notify_resume(t);
12373 }
12374
sched_mm_cid_fork(struct task_struct * t)12375 void sched_mm_cid_fork(struct task_struct *t)
12376 {
12377 WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
12378 t->mm_cid_active = 1;
12379 }
12380 #endif
12381