• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple CPU accounting cgroup controller
4  */
5 #include <linux/cpufreq_times.h>
6 #include <trace/hooks/sched.h>
7 
8 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
9  #include <asm/cputime.h>
10 #endif
11 
12 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
13 
14 /*
15  * There are no locks covering percpu hardirq/softirq time.
16  * They are only modified in vtime_account, on corresponding CPU
17  * with interrupts disabled. So, writes are safe.
18  * They are read and saved off onto struct rq in update_rq_clock().
19  * This may result in other CPU reading this CPU's irq time and can
20  * race with irq/vtime_account on this CPU. We would either get old
21  * or new value with a side effect of accounting a slice of irq time to wrong
22  * task when irq is in progress while we read rq->clock. That is a worthy
23  * compromise in place of having locks on each irq in account_system_time.
24  */
25 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
26 EXPORT_PER_CPU_SYMBOL_GPL(cpu_irqtime);
27 
28 static int sched_clock_irqtime;
29 
enable_sched_clock_irqtime(void)30 void enable_sched_clock_irqtime(void)
31 {
32 	sched_clock_irqtime = 1;
33 }
34 
disable_sched_clock_irqtime(void)35 void disable_sched_clock_irqtime(void)
36 {
37 	sched_clock_irqtime = 0;
38 }
39 
irqtime_account_delta(struct irqtime * irqtime,u64 delta,enum cpu_usage_stat idx)40 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
41 				  enum cpu_usage_stat idx)
42 {
43 	u64 *cpustat = kcpustat_this_cpu->cpustat;
44 
45 	u64_stats_update_begin(&irqtime->sync);
46 	cpustat[idx] += delta;
47 	irqtime->total += delta;
48 	irqtime->tick_delta += delta;
49 	u64_stats_update_end(&irqtime->sync);
50 }
51 
52 /*
53  * Called after incrementing preempt_count on {soft,}irq_enter
54  * and before decrementing preempt_count on {soft,}irq_exit.
55  */
irqtime_account_irq(struct task_struct * curr,unsigned int offset)56 void irqtime_account_irq(struct task_struct *curr, unsigned int offset)
57 {
58 	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
59 	unsigned int pc;
60 	s64 delta;
61 	int cpu;
62 	bool irq_start = true;
63 
64 	if (!sched_clock_irqtime)
65 		return;
66 
67 	cpu = smp_processor_id();
68 	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
69 	irqtime->irq_start_time += delta;
70 	pc = irq_count() - offset;
71 
72 	/*
73 	 * We do not account for softirq time from ksoftirqd here.
74 	 * We want to continue accounting softirq time to ksoftirqd thread
75 	 * in that case, so as not to confuse scheduler with a special task
76 	 * that do not consume any time, but still wants to run.
77 	 */
78 	if (pc & HARDIRQ_MASK) {
79 		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
80 		irq_start = false;
81 	} else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd()) {
82 		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
83 		irq_start = false;
84 	}
85 
86 	trace_android_rvh_account_irq(curr, cpu, delta, irq_start);
87 }
88 
irqtime_tick_accounted(u64 maxtime)89 static u64 irqtime_tick_accounted(u64 maxtime)
90 {
91 	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
92 	u64 delta;
93 
94 	delta = min(irqtime->tick_delta, maxtime);
95 	irqtime->tick_delta -= delta;
96 
97 	return delta;
98 }
99 
100 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
101 
102 #define sched_clock_irqtime	(0)
103 
irqtime_tick_accounted(u64 dummy)104 static u64 irqtime_tick_accounted(u64 dummy)
105 {
106 	return 0;
107 }
108 
109 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
110 
task_group_account_field(struct task_struct * p,int index,u64 tmp)111 static inline void task_group_account_field(struct task_struct *p, int index,
112 					    u64 tmp)
113 {
114 	/*
115 	 * Since all updates are sure to touch the root cgroup, we
116 	 * get ourselves ahead and touch it first. If the root cgroup
117 	 * is the only cgroup, then nothing else should be necessary.
118 	 *
119 	 */
120 	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
121 
122 	cgroup_account_cputime_field(p, index, tmp);
123 }
124 
125 /*
126  * Account user CPU time to a process.
127  * @p: the process that the CPU time gets accounted to
128  * @cputime: the CPU time spent in user space since the last update
129  */
account_user_time(struct task_struct * p,u64 cputime)130 void account_user_time(struct task_struct *p, u64 cputime)
131 {
132 	int index;
133 
134 	/* Add user time to process. */
135 	p->utime += cputime;
136 	account_group_user_time(p, cputime);
137 
138 	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
139 
140 	/* Add user time to cpustat. */
141 	task_group_account_field(p, index, cputime);
142 
143 	/* Account for user time used */
144 	acct_account_cputime(p);
145 
146 	/* Account power usage for user time */
147 	cpufreq_acct_update_power(p, cputime);
148 }
149 
150 /*
151  * Account guest CPU time to a process.
152  * @p: the process that the CPU time gets accounted to
153  * @cputime: the CPU time spent in virtual machine since the last update
154  */
account_guest_time(struct task_struct * p,u64 cputime)155 void account_guest_time(struct task_struct *p, u64 cputime)
156 {
157 	u64 *cpustat = kcpustat_this_cpu->cpustat;
158 
159 	/* Add guest time to process. */
160 	p->utime += cputime;
161 	account_group_user_time(p, cputime);
162 	p->gtime += cputime;
163 
164 	/* Add guest time to cpustat. */
165 	if (task_nice(p) > 0) {
166 		task_group_account_field(p, CPUTIME_NICE, cputime);
167 		cpustat[CPUTIME_GUEST_NICE] += cputime;
168 	} else {
169 		task_group_account_field(p, CPUTIME_USER, cputime);
170 		cpustat[CPUTIME_GUEST] += cputime;
171 	}
172 }
173 
174 /*
175  * Account system CPU time to a process and desired cpustat field
176  * @p: the process that the CPU time gets accounted to
177  * @cputime: the CPU time spent in kernel space since the last update
178  * @index: pointer to cpustat field that has to be updated
179  */
account_system_index_time(struct task_struct * p,u64 cputime,enum cpu_usage_stat index)180 void account_system_index_time(struct task_struct *p,
181 			       u64 cputime, enum cpu_usage_stat index)
182 {
183 	/* Add system time to process. */
184 	p->stime += cputime;
185 	account_group_system_time(p, cputime);
186 
187 	/* Add system time to cpustat. */
188 	task_group_account_field(p, index, cputime);
189 
190 	/* Account for system time used */
191 	acct_account_cputime(p);
192 
193 	/* Account power usage for system time */
194 	cpufreq_acct_update_power(p, cputime);
195 }
196 
197 /*
198  * Account system CPU time to a process.
199  * @p: the process that the CPU time gets accounted to
200  * @hardirq_offset: the offset to subtract from hardirq_count()
201  * @cputime: the CPU time spent in kernel space since the last update
202  */
account_system_time(struct task_struct * p,int hardirq_offset,u64 cputime)203 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
204 {
205 	int index;
206 
207 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
208 		account_guest_time(p, cputime);
209 		return;
210 	}
211 
212 	if (hardirq_count() - hardirq_offset)
213 		index = CPUTIME_IRQ;
214 	else if (in_serving_softirq())
215 		index = CPUTIME_SOFTIRQ;
216 	else
217 		index = CPUTIME_SYSTEM;
218 
219 	account_system_index_time(p, cputime, index);
220 }
221 
222 /*
223  * Account for involuntary wait time.
224  * @cputime: the CPU time spent in involuntary wait
225  */
account_steal_time(u64 cputime)226 void account_steal_time(u64 cputime)
227 {
228 	u64 *cpustat = kcpustat_this_cpu->cpustat;
229 
230 	cpustat[CPUTIME_STEAL] += cputime;
231 }
232 
233 /*
234  * Account for idle time.
235  * @cputime: the CPU time spent in idle wait
236  */
account_idle_time(u64 cputime)237 void account_idle_time(u64 cputime)
238 {
239 	u64 *cpustat = kcpustat_this_cpu->cpustat;
240 	struct rq *rq = this_rq();
241 
242 	if (atomic_read(&rq->nr_iowait) > 0)
243 		cpustat[CPUTIME_IOWAIT] += cputime;
244 	else
245 		cpustat[CPUTIME_IDLE] += cputime;
246 }
247 
248 
249 #ifdef CONFIG_SCHED_CORE
250 /*
251  * Account for forceidle time due to core scheduling.
252  *
253  * REQUIRES: schedstat is enabled.
254  */
__account_forceidle_time(struct task_struct * p,u64 delta)255 void __account_forceidle_time(struct task_struct *p, u64 delta)
256 {
257 	__schedstat_add(p->stats.core_forceidle_sum, delta);
258 
259 	task_group_account_field(p, CPUTIME_FORCEIDLE, delta);
260 }
261 #endif
262 
263 /*
264  * When a guest is interrupted for a longer amount of time, missed clock
265  * ticks are not redelivered later. Due to that, this function may on
266  * occasion account more time than the calling functions think elapsed.
267  */
steal_account_process_time(u64 maxtime)268 static __always_inline u64 steal_account_process_time(u64 maxtime)
269 {
270 #ifdef CONFIG_PARAVIRT
271 	if (static_key_false(&paravirt_steal_enabled)) {
272 		u64 steal;
273 
274 		steal = paravirt_steal_clock(smp_processor_id());
275 		steal -= this_rq()->prev_steal_time;
276 		steal = min(steal, maxtime);
277 		account_steal_time(steal);
278 		this_rq()->prev_steal_time += steal;
279 
280 		return steal;
281 	}
282 #endif
283 	return 0;
284 }
285 
286 /*
287  * Account how much elapsed time was spent in steal, irq, or softirq time.
288  */
account_other_time(u64 max)289 static inline u64 account_other_time(u64 max)
290 {
291 	u64 accounted;
292 
293 	lockdep_assert_irqs_disabled();
294 
295 	accounted = steal_account_process_time(max);
296 
297 	if (accounted < max)
298 		accounted += irqtime_tick_accounted(max - accounted);
299 
300 	return accounted;
301 }
302 
303 #ifdef CONFIG_64BIT
read_sum_exec_runtime(struct task_struct * t)304 static inline u64 read_sum_exec_runtime(struct task_struct *t)
305 {
306 	return t->se.sum_exec_runtime;
307 }
308 #else
read_sum_exec_runtime(struct task_struct * t)309 static u64 read_sum_exec_runtime(struct task_struct *t)
310 {
311 	u64 ns;
312 	struct rq_flags rf;
313 	struct rq *rq;
314 
315 	rq = task_rq_lock(t, &rf);
316 	ns = t->se.sum_exec_runtime;
317 	task_rq_unlock(rq, t, &rf);
318 
319 	return ns;
320 }
321 #endif
322 
323 /*
324  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
325  * tasks (sum on group iteration) belonging to @tsk's group.
326  */
thread_group_cputime(struct task_struct * tsk,struct task_cputime * times)327 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
328 {
329 	struct signal_struct *sig = tsk->signal;
330 	u64 utime, stime;
331 	struct task_struct *t;
332 	unsigned int seq, nextseq;
333 	unsigned long flags;
334 
335 	/*
336 	 * Update current task runtime to account pending time since last
337 	 * scheduler action or thread_group_cputime() call. This thread group
338 	 * might have other running tasks on different CPUs, but updating
339 	 * their runtime can affect syscall performance, so we skip account
340 	 * those pending times and rely only on values updated on tick or
341 	 * other scheduler action.
342 	 */
343 	if (same_thread_group(current, tsk))
344 		(void) task_sched_runtime(current);
345 
346 	rcu_read_lock();
347 	/* Attempt a lockless read on the first round. */
348 	nextseq = 0;
349 	do {
350 		seq = nextseq;
351 		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
352 		times->utime = sig->utime;
353 		times->stime = sig->stime;
354 		times->sum_exec_runtime = sig->sum_sched_runtime;
355 
356 		for_each_thread(tsk, t) {
357 			task_cputime(t, &utime, &stime);
358 			times->utime += utime;
359 			times->stime += stime;
360 			times->sum_exec_runtime += read_sum_exec_runtime(t);
361 		}
362 		/* If lockless access failed, take the lock. */
363 		nextseq = 1;
364 	} while (need_seqretry(&sig->stats_lock, seq));
365 	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
366 	rcu_read_unlock();
367 }
368 
369 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
370 /*
371  * Account a tick to a process and cpustat
372  * @p: the process that the CPU time gets accounted to
373  * @user_tick: is the tick from userspace
374  * @rq: the pointer to rq
375  *
376  * Tick demultiplexing follows the order
377  * - pending hardirq update
378  * - pending softirq update
379  * - user_time
380  * - idle_time
381  * - system time
382  *   - check for guest_time
383  *   - else account as system_time
384  *
385  * Check for hardirq is done both for system and user time as there is
386  * no timer going off while we are on hardirq and hence we may never get an
387  * opportunity to update it solely in system time.
388  * p->stime and friends are only updated on system time and not on irq
389  * softirq as those do not count in task exec_runtime any more.
390  */
irqtime_account_process_tick(struct task_struct * p,int user_tick,int ticks)391 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
392 					 int ticks)
393 {
394 	u64 other, cputime = TICK_NSEC * ticks;
395 
396 	/*
397 	 * When returning from idle, many ticks can get accounted at
398 	 * once, including some ticks of steal, irq, and softirq time.
399 	 * Subtract those ticks from the amount of time accounted to
400 	 * idle, or potentially user or system time. Due to rounding,
401 	 * other time can exceed ticks occasionally.
402 	 */
403 	other = account_other_time(ULONG_MAX);
404 	if (other >= cputime)
405 		return;
406 
407 	cputime -= other;
408 
409 	if (this_cpu_ksoftirqd() == p) {
410 		/*
411 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
412 		 * So, we have to handle it separately here.
413 		 * Also, p->stime needs to be updated for ksoftirqd.
414 		 */
415 		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
416 	} else if (user_tick) {
417 		account_user_time(p, cputime);
418 	} else if (p == this_rq()->idle) {
419 		account_idle_time(cputime);
420 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
421 		account_guest_time(p, cputime);
422 	} else {
423 		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
424 	}
425 	trace_android_vh_irqtime_account_process_tick(p, this_rq(), user_tick, ticks);
426 }
427 
irqtime_account_idle_ticks(int ticks)428 static void irqtime_account_idle_ticks(int ticks)
429 {
430 	irqtime_account_process_tick(current, 0, ticks);
431 }
432 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
irqtime_account_idle_ticks(int ticks)433 static inline void irqtime_account_idle_ticks(int ticks) { }
irqtime_account_process_tick(struct task_struct * p,int user_tick,int nr_ticks)434 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
435 						int nr_ticks) { }
436 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
437 
438 /*
439  * Use precise platform statistics if available:
440  */
441 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
442 
443 # ifndef __ARCH_HAS_VTIME_TASK_SWITCH
vtime_task_switch(struct task_struct * prev)444 void vtime_task_switch(struct task_struct *prev)
445 {
446 	if (is_idle_task(prev))
447 		vtime_account_idle(prev);
448 	else
449 		vtime_account_kernel(prev);
450 
451 	vtime_flush(prev);
452 	arch_vtime_task_switch(prev);
453 }
454 # endif
455 
vtime_account_irq(struct task_struct * tsk,unsigned int offset)456 void vtime_account_irq(struct task_struct *tsk, unsigned int offset)
457 {
458 	unsigned int pc = irq_count() - offset;
459 
460 	if (pc & HARDIRQ_OFFSET) {
461 		vtime_account_hardirq(tsk);
462 	} else if (pc & SOFTIRQ_OFFSET) {
463 		vtime_account_softirq(tsk);
464 	} else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) &&
465 		   is_idle_task(tsk)) {
466 		vtime_account_idle(tsk);
467 	} else {
468 		vtime_account_kernel(tsk);
469 	}
470 }
471 
cputime_adjust(struct task_cputime * curr,struct prev_cputime * prev,u64 * ut,u64 * st)472 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
473 		    u64 *ut, u64 *st)
474 {
475 	*ut = curr->utime;
476 	*st = curr->stime;
477 }
478 
task_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)479 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
480 {
481 	*ut = p->utime;
482 	*st = p->stime;
483 }
484 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
485 
thread_group_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)486 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
487 {
488 	struct task_cputime cputime;
489 
490 	thread_group_cputime(p, &cputime);
491 
492 	*ut = cputime.utime;
493 	*st = cputime.stime;
494 }
495 EXPORT_SYMBOL_GPL(thread_group_cputime_adjusted);
496 
497 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
498 
499 /*
500  * Account a single tick or a few ticks of CPU time.
501  * @p: the process that the CPU time gets accounted to
502  * @user_tick: indicates if the tick is a user or a system tick
503  */
account_process_tick(struct task_struct * p,int user_tick)504 void account_process_tick(struct task_struct *p, int user_tick)
505 {
506 	u64 cputime, steal;
507 	int ticks = 1;
508 
509 	trace_android_vh_account_process_tick_gran(p, this_rq(), user_tick, &ticks);
510 	if (!ticks)
511 		return;
512 
513 	if (vtime_accounting_enabled_this_cpu())
514 		return;
515 
516 	if (sched_clock_irqtime) {
517 		irqtime_account_process_tick(p, user_tick, ticks);
518 		return;
519 	}
520 
521 	cputime = TICK_NSEC * ticks;
522 	steal = steal_account_process_time(ULONG_MAX);
523 
524 	if (steal >= cputime)
525 		return;
526 
527 	cputime -= steal;
528 
529 	if (user_tick)
530 		account_user_time(p, cputime);
531 	else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
532 		account_system_time(p, HARDIRQ_OFFSET, cputime);
533 	else
534 		account_idle_time(cputime);
535 }
536 
537 /*
538  * Account multiple ticks of idle time.
539  * @ticks: number of stolen ticks
540  */
account_idle_ticks(unsigned long ticks)541 void account_idle_ticks(unsigned long ticks)
542 {
543 	u64 cputime, steal;
544 
545 	if (sched_clock_irqtime) {
546 		irqtime_account_idle_ticks(ticks);
547 		return;
548 	}
549 
550 	cputime = ticks * TICK_NSEC;
551 	steal = steal_account_process_time(ULONG_MAX);
552 
553 	if (steal >= cputime)
554 		return;
555 
556 	cputime -= steal;
557 	account_idle_time(cputime);
558 }
559 
560 /*
561  * Adjust tick based cputime random precision against scheduler runtime
562  * accounting.
563  *
564  * Tick based cputime accounting depend on random scheduling timeslices of a
565  * task to be interrupted or not by the timer.  Depending on these
566  * circumstances, the number of these interrupts may be over or
567  * under-optimistic, matching the real user and system cputime with a variable
568  * precision.
569  *
570  * Fix this by scaling these tick based values against the total runtime
571  * accounted by the CFS scheduler.
572  *
573  * This code provides the following guarantees:
574  *
575  *   stime + utime == rtime
576  *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
577  *
578  * Assuming that rtime_i+1 >= rtime_i.
579  */
cputime_adjust(struct task_cputime * curr,struct prev_cputime * prev,u64 * ut,u64 * st)580 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
581 		    u64 *ut, u64 *st)
582 {
583 	u64 rtime, stime, utime;
584 	unsigned long flags;
585 
586 	/* Serialize concurrent callers such that we can honour our guarantees */
587 	raw_spin_lock_irqsave(&prev->lock, flags);
588 	rtime = curr->sum_exec_runtime;
589 
590 	/*
591 	 * This is possible under two circumstances:
592 	 *  - rtime isn't monotonic after all (a bug);
593 	 *  - we got reordered by the lock.
594 	 *
595 	 * In both cases this acts as a filter such that the rest of the code
596 	 * can assume it is monotonic regardless of anything else.
597 	 */
598 	if (prev->stime + prev->utime >= rtime)
599 		goto out;
600 
601 	stime = curr->stime;
602 	utime = curr->utime;
603 
604 	/*
605 	 * If either stime or utime are 0, assume all runtime is userspace.
606 	 * Once a task gets some ticks, the monotonicity code at 'update:'
607 	 * will ensure things converge to the observed ratio.
608 	 */
609 	if (stime == 0) {
610 		utime = rtime;
611 		goto update;
612 	}
613 
614 	if (utime == 0) {
615 		stime = rtime;
616 		goto update;
617 	}
618 
619 	stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
620 	/*
621 	 * Because mul_u64_u64_div_u64() can approximate on some
622 	 * achitectures; enforce the constraint that: a*b/(b+c) <= a.
623 	 */
624 	if (unlikely(stime > rtime))
625 		stime = rtime;
626 
627 update:
628 	/*
629 	 * Make sure stime doesn't go backwards; this preserves monotonicity
630 	 * for utime because rtime is monotonic.
631 	 *
632 	 *  utime_i+1 = rtime_i+1 - stime_i
633 	 *            = rtime_i+1 - (rtime_i - utime_i)
634 	 *            = (rtime_i+1 - rtime_i) + utime_i
635 	 *            >= utime_i
636 	 */
637 	if (stime < prev->stime)
638 		stime = prev->stime;
639 	utime = rtime - stime;
640 
641 	/*
642 	 * Make sure utime doesn't go backwards; this still preserves
643 	 * monotonicity for stime, analogous argument to above.
644 	 */
645 	if (utime < prev->utime) {
646 		utime = prev->utime;
647 		stime = rtime - utime;
648 	}
649 
650 	prev->stime = stime;
651 	prev->utime = utime;
652 out:
653 	*ut = prev->utime;
654 	*st = prev->stime;
655 	raw_spin_unlock_irqrestore(&prev->lock, flags);
656 }
657 
task_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)658 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
659 {
660 	struct task_cputime cputime = {
661 		.sum_exec_runtime = p->se.sum_exec_runtime,
662 	};
663 
664 	if (task_cputime(p, &cputime.utime, &cputime.stime))
665 		cputime.sum_exec_runtime = task_sched_runtime(p);
666 	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
667 }
668 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
669 
thread_group_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)670 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
671 {
672 	struct task_cputime cputime;
673 
674 	thread_group_cputime(p, &cputime);
675 	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
676 }
677 EXPORT_SYMBOL_GPL(thread_group_cputime_adjusted);
678 
679 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
680 
681 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
vtime_delta(struct vtime * vtime)682 static u64 vtime_delta(struct vtime *vtime)
683 {
684 	unsigned long long clock;
685 
686 	clock = sched_clock();
687 	if (clock < vtime->starttime)
688 		return 0;
689 
690 	return clock - vtime->starttime;
691 }
692 
get_vtime_delta(struct vtime * vtime)693 static u64 get_vtime_delta(struct vtime *vtime)
694 {
695 	u64 delta = vtime_delta(vtime);
696 	u64 other;
697 
698 	/*
699 	 * Unlike tick based timing, vtime based timing never has lost
700 	 * ticks, and no need for steal time accounting to make up for
701 	 * lost ticks. Vtime accounts a rounded version of actual
702 	 * elapsed time. Limit account_other_time to prevent rounding
703 	 * errors from causing elapsed vtime to go negative.
704 	 */
705 	other = account_other_time(delta);
706 	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
707 	vtime->starttime += delta;
708 
709 	return delta - other;
710 }
711 
vtime_account_system(struct task_struct * tsk,struct vtime * vtime)712 static void vtime_account_system(struct task_struct *tsk,
713 				 struct vtime *vtime)
714 {
715 	vtime->stime += get_vtime_delta(vtime);
716 	if (vtime->stime >= TICK_NSEC) {
717 		account_system_time(tsk, irq_count(), vtime->stime);
718 		vtime->stime = 0;
719 	}
720 }
721 
vtime_account_guest(struct task_struct * tsk,struct vtime * vtime)722 static void vtime_account_guest(struct task_struct *tsk,
723 				struct vtime *vtime)
724 {
725 	vtime->gtime += get_vtime_delta(vtime);
726 	if (vtime->gtime >= TICK_NSEC) {
727 		account_guest_time(tsk, vtime->gtime);
728 		vtime->gtime = 0;
729 	}
730 }
731 
__vtime_account_kernel(struct task_struct * tsk,struct vtime * vtime)732 static void __vtime_account_kernel(struct task_struct *tsk,
733 				   struct vtime *vtime)
734 {
735 	/* We might have scheduled out from guest path */
736 	if (vtime->state == VTIME_GUEST)
737 		vtime_account_guest(tsk, vtime);
738 	else
739 		vtime_account_system(tsk, vtime);
740 }
741 
vtime_account_kernel(struct task_struct * tsk)742 void vtime_account_kernel(struct task_struct *tsk)
743 {
744 	struct vtime *vtime = &tsk->vtime;
745 
746 	if (!vtime_delta(vtime))
747 		return;
748 
749 	write_seqcount_begin(&vtime->seqcount);
750 	__vtime_account_kernel(tsk, vtime);
751 	write_seqcount_end(&vtime->seqcount);
752 }
753 
vtime_user_enter(struct task_struct * tsk)754 void vtime_user_enter(struct task_struct *tsk)
755 {
756 	struct vtime *vtime = &tsk->vtime;
757 
758 	write_seqcount_begin(&vtime->seqcount);
759 	vtime_account_system(tsk, vtime);
760 	vtime->state = VTIME_USER;
761 	write_seqcount_end(&vtime->seqcount);
762 }
763 
vtime_user_exit(struct task_struct * tsk)764 void vtime_user_exit(struct task_struct *tsk)
765 {
766 	struct vtime *vtime = &tsk->vtime;
767 
768 	write_seqcount_begin(&vtime->seqcount);
769 	vtime->utime += get_vtime_delta(vtime);
770 	if (vtime->utime >= TICK_NSEC) {
771 		account_user_time(tsk, vtime->utime);
772 		vtime->utime = 0;
773 	}
774 	vtime->state = VTIME_SYS;
775 	write_seqcount_end(&vtime->seqcount);
776 }
777 
vtime_guest_enter(struct task_struct * tsk)778 void vtime_guest_enter(struct task_struct *tsk)
779 {
780 	struct vtime *vtime = &tsk->vtime;
781 	/*
782 	 * The flags must be updated under the lock with
783 	 * the vtime_starttime flush and update.
784 	 * That enforces a right ordering and update sequence
785 	 * synchronization against the reader (task_gtime())
786 	 * that can thus safely catch up with a tickless delta.
787 	 */
788 	write_seqcount_begin(&vtime->seqcount);
789 	vtime_account_system(tsk, vtime);
790 	tsk->flags |= PF_VCPU;
791 	vtime->state = VTIME_GUEST;
792 	write_seqcount_end(&vtime->seqcount);
793 }
794 EXPORT_SYMBOL_GPL(vtime_guest_enter);
795 
vtime_guest_exit(struct task_struct * tsk)796 void vtime_guest_exit(struct task_struct *tsk)
797 {
798 	struct vtime *vtime = &tsk->vtime;
799 
800 	write_seqcount_begin(&vtime->seqcount);
801 	vtime_account_guest(tsk, vtime);
802 	tsk->flags &= ~PF_VCPU;
803 	vtime->state = VTIME_SYS;
804 	write_seqcount_end(&vtime->seqcount);
805 }
806 EXPORT_SYMBOL_GPL(vtime_guest_exit);
807 
vtime_account_idle(struct task_struct * tsk)808 void vtime_account_idle(struct task_struct *tsk)
809 {
810 	account_idle_time(get_vtime_delta(&tsk->vtime));
811 }
812 
vtime_task_switch_generic(struct task_struct * prev)813 void vtime_task_switch_generic(struct task_struct *prev)
814 {
815 	struct vtime *vtime = &prev->vtime;
816 
817 	write_seqcount_begin(&vtime->seqcount);
818 	if (vtime->state == VTIME_IDLE)
819 		vtime_account_idle(prev);
820 	else
821 		__vtime_account_kernel(prev, vtime);
822 	vtime->state = VTIME_INACTIVE;
823 	vtime->cpu = -1;
824 	write_seqcount_end(&vtime->seqcount);
825 
826 	vtime = &current->vtime;
827 
828 	write_seqcount_begin(&vtime->seqcount);
829 	if (is_idle_task(current))
830 		vtime->state = VTIME_IDLE;
831 	else if (current->flags & PF_VCPU)
832 		vtime->state = VTIME_GUEST;
833 	else
834 		vtime->state = VTIME_SYS;
835 	vtime->starttime = sched_clock();
836 	vtime->cpu = smp_processor_id();
837 	write_seqcount_end(&vtime->seqcount);
838 }
839 
vtime_init_idle(struct task_struct * t,int cpu)840 void vtime_init_idle(struct task_struct *t, int cpu)
841 {
842 	struct vtime *vtime = &t->vtime;
843 	unsigned long flags;
844 
845 	local_irq_save(flags);
846 	write_seqcount_begin(&vtime->seqcount);
847 	vtime->state = VTIME_IDLE;
848 	vtime->starttime = sched_clock();
849 	vtime->cpu = cpu;
850 	write_seqcount_end(&vtime->seqcount);
851 	local_irq_restore(flags);
852 }
853 
task_gtime(struct task_struct * t)854 u64 task_gtime(struct task_struct *t)
855 {
856 	struct vtime *vtime = &t->vtime;
857 	unsigned int seq;
858 	u64 gtime;
859 
860 	if (!vtime_accounting_enabled())
861 		return t->gtime;
862 
863 	do {
864 		seq = read_seqcount_begin(&vtime->seqcount);
865 
866 		gtime = t->gtime;
867 		if (vtime->state == VTIME_GUEST)
868 			gtime += vtime->gtime + vtime_delta(vtime);
869 
870 	} while (read_seqcount_retry(&vtime->seqcount, seq));
871 
872 	return gtime;
873 }
874 
875 /*
876  * Fetch cputime raw values from fields of task_struct and
877  * add up the pending nohz execution time since the last
878  * cputime snapshot.
879  */
task_cputime(struct task_struct * t,u64 * utime,u64 * stime)880 bool task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
881 {
882 	struct vtime *vtime = &t->vtime;
883 	unsigned int seq;
884 	u64 delta;
885 	int ret;
886 
887 	if (!vtime_accounting_enabled()) {
888 		*utime = t->utime;
889 		*stime = t->stime;
890 		return false;
891 	}
892 
893 	do {
894 		ret = false;
895 		seq = read_seqcount_begin(&vtime->seqcount);
896 
897 		*utime = t->utime;
898 		*stime = t->stime;
899 
900 		/* Task is sleeping or idle, nothing to add */
901 		if (vtime->state < VTIME_SYS)
902 			continue;
903 
904 		ret = true;
905 		delta = vtime_delta(vtime);
906 
907 		/*
908 		 * Task runs either in user (including guest) or kernel space,
909 		 * add pending nohz time to the right place.
910 		 */
911 		if (vtime->state == VTIME_SYS)
912 			*stime += vtime->stime + delta;
913 		else
914 			*utime += vtime->utime + delta;
915 	} while (read_seqcount_retry(&vtime->seqcount, seq));
916 
917 	return ret;
918 }
919 
vtime_state_fetch(struct vtime * vtime,int cpu)920 static int vtime_state_fetch(struct vtime *vtime, int cpu)
921 {
922 	int state = READ_ONCE(vtime->state);
923 
924 	/*
925 	 * We raced against a context switch, fetch the
926 	 * kcpustat task again.
927 	 */
928 	if (vtime->cpu != cpu && vtime->cpu != -1)
929 		return -EAGAIN;
930 
931 	/*
932 	 * Two possible things here:
933 	 * 1) We are seeing the scheduling out task (prev) or any past one.
934 	 * 2) We are seeing the scheduling in task (next) but it hasn't
935 	 *    passed though vtime_task_switch() yet so the pending
936 	 *    cputime of the prev task may not be flushed yet.
937 	 *
938 	 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
939 	 */
940 	if (state == VTIME_INACTIVE)
941 		return -EAGAIN;
942 
943 	return state;
944 }
945 
kcpustat_user_vtime(struct vtime * vtime)946 static u64 kcpustat_user_vtime(struct vtime *vtime)
947 {
948 	if (vtime->state == VTIME_USER)
949 		return vtime->utime + vtime_delta(vtime);
950 	else if (vtime->state == VTIME_GUEST)
951 		return vtime->gtime + vtime_delta(vtime);
952 	return 0;
953 }
954 
kcpustat_field_vtime(u64 * cpustat,struct task_struct * tsk,enum cpu_usage_stat usage,int cpu,u64 * val)955 static int kcpustat_field_vtime(u64 *cpustat,
956 				struct task_struct *tsk,
957 				enum cpu_usage_stat usage,
958 				int cpu, u64 *val)
959 {
960 	struct vtime *vtime = &tsk->vtime;
961 	unsigned int seq;
962 
963 	do {
964 		int state;
965 
966 		seq = read_seqcount_begin(&vtime->seqcount);
967 
968 		state = vtime_state_fetch(vtime, cpu);
969 		if (state < 0)
970 			return state;
971 
972 		*val = cpustat[usage];
973 
974 		/*
975 		 * Nice VS unnice cputime accounting may be inaccurate if
976 		 * the nice value has changed since the last vtime update.
977 		 * But proper fix would involve interrupting target on nice
978 		 * updates which is a no go on nohz_full (although the scheduler
979 		 * may still interrupt the target if rescheduling is needed...)
980 		 */
981 		switch (usage) {
982 		case CPUTIME_SYSTEM:
983 			if (state == VTIME_SYS)
984 				*val += vtime->stime + vtime_delta(vtime);
985 			break;
986 		case CPUTIME_USER:
987 			if (task_nice(tsk) <= 0)
988 				*val += kcpustat_user_vtime(vtime);
989 			break;
990 		case CPUTIME_NICE:
991 			if (task_nice(tsk) > 0)
992 				*val += kcpustat_user_vtime(vtime);
993 			break;
994 		case CPUTIME_GUEST:
995 			if (state == VTIME_GUEST && task_nice(tsk) <= 0)
996 				*val += vtime->gtime + vtime_delta(vtime);
997 			break;
998 		case CPUTIME_GUEST_NICE:
999 			if (state == VTIME_GUEST && task_nice(tsk) > 0)
1000 				*val += vtime->gtime + vtime_delta(vtime);
1001 			break;
1002 		default:
1003 			break;
1004 		}
1005 	} while (read_seqcount_retry(&vtime->seqcount, seq));
1006 
1007 	return 0;
1008 }
1009 
kcpustat_field(struct kernel_cpustat * kcpustat,enum cpu_usage_stat usage,int cpu)1010 u64 kcpustat_field(struct kernel_cpustat *kcpustat,
1011 		   enum cpu_usage_stat usage, int cpu)
1012 {
1013 	u64 *cpustat = kcpustat->cpustat;
1014 	u64 val = cpustat[usage];
1015 	struct rq *rq;
1016 	int err;
1017 
1018 	if (!vtime_accounting_enabled_cpu(cpu))
1019 		return val;
1020 
1021 	rq = cpu_rq(cpu);
1022 
1023 	for (;;) {
1024 		struct task_struct *curr;
1025 
1026 		rcu_read_lock();
1027 		curr = rcu_dereference(rq->curr);
1028 		if (WARN_ON_ONCE(!curr)) {
1029 			rcu_read_unlock();
1030 			return cpustat[usage];
1031 		}
1032 
1033 		err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
1034 		rcu_read_unlock();
1035 
1036 		if (!err)
1037 			return val;
1038 
1039 		cpu_relax();
1040 	}
1041 }
1042 EXPORT_SYMBOL_GPL(kcpustat_field);
1043 
kcpustat_cpu_fetch_vtime(struct kernel_cpustat * dst,const struct kernel_cpustat * src,struct task_struct * tsk,int cpu)1044 static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
1045 				    const struct kernel_cpustat *src,
1046 				    struct task_struct *tsk, int cpu)
1047 {
1048 	struct vtime *vtime = &tsk->vtime;
1049 	unsigned int seq;
1050 
1051 	do {
1052 		u64 *cpustat;
1053 		u64 delta;
1054 		int state;
1055 
1056 		seq = read_seqcount_begin(&vtime->seqcount);
1057 
1058 		state = vtime_state_fetch(vtime, cpu);
1059 		if (state < 0)
1060 			return state;
1061 
1062 		*dst = *src;
1063 		cpustat = dst->cpustat;
1064 
1065 		/* Task is sleeping, dead or idle, nothing to add */
1066 		if (state < VTIME_SYS)
1067 			continue;
1068 
1069 		delta = vtime_delta(vtime);
1070 
1071 		/*
1072 		 * Task runs either in user (including guest) or kernel space,
1073 		 * add pending nohz time to the right place.
1074 		 */
1075 		if (state == VTIME_SYS) {
1076 			cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1077 		} else if (state == VTIME_USER) {
1078 			if (task_nice(tsk) > 0)
1079 				cpustat[CPUTIME_NICE] += vtime->utime + delta;
1080 			else
1081 				cpustat[CPUTIME_USER] += vtime->utime + delta;
1082 		} else {
1083 			WARN_ON_ONCE(state != VTIME_GUEST);
1084 			if (task_nice(tsk) > 0) {
1085 				cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1086 				cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1087 			} else {
1088 				cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1089 				cpustat[CPUTIME_USER] += vtime->gtime + delta;
1090 			}
1091 		}
1092 	} while (read_seqcount_retry(&vtime->seqcount, seq));
1093 
1094 	return 0;
1095 }
1096 
kcpustat_cpu_fetch(struct kernel_cpustat * dst,int cpu)1097 void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1098 {
1099 	const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1100 	struct rq *rq;
1101 	int err;
1102 
1103 	if (!vtime_accounting_enabled_cpu(cpu)) {
1104 		*dst = *src;
1105 		return;
1106 	}
1107 
1108 	rq = cpu_rq(cpu);
1109 
1110 	for (;;) {
1111 		struct task_struct *curr;
1112 
1113 		rcu_read_lock();
1114 		curr = rcu_dereference(rq->curr);
1115 		if (WARN_ON_ONCE(!curr)) {
1116 			rcu_read_unlock();
1117 			*dst = *src;
1118 			return;
1119 		}
1120 
1121 		err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1122 		rcu_read_unlock();
1123 
1124 		if (!err)
1125 			return;
1126 
1127 		cpu_relax();
1128 	}
1129 }
1130 EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1131 
1132 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
1133