1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/sched/debug.h>
53 #include <linux/nmi.h>
54 #include <linux/kvm_para.h>
55 #include <linux/delay.h>
56
57 #include "workqueue_internal.h"
58
59 #include <trace/hooks/wqlockup.h>
60 /* events/workqueue.h uses default TRACE_INCLUDE_PATH */
61 #undef TRACE_INCLUDE_PATH
62
63 enum {
64 /*
65 * worker_pool flags
66 *
67 * A bound pool is either associated or disassociated with its CPU.
68 * While associated (!DISASSOCIATED), all workers are bound to the
69 * CPU and none has %WORKER_UNBOUND set and concurrency management
70 * is in effect.
71 *
72 * While DISASSOCIATED, the cpu may be offline and all workers have
73 * %WORKER_UNBOUND set and concurrency management disabled, and may
74 * be executing on any CPU. The pool behaves as an unbound one.
75 *
76 * Note that DISASSOCIATED should be flipped only while holding
77 * wq_pool_attach_mutex to avoid changing binding state while
78 * worker_attach_to_pool() is in progress.
79 */
80 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
81 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
82
83 /* worker flags */
84 WORKER_DIE = 1 << 1, /* die die die */
85 WORKER_IDLE = 1 << 2, /* is idle */
86 WORKER_PREP = 1 << 3, /* preparing to run works */
87 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
88 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
89 WORKER_REBOUND = 1 << 8, /* worker was rebound */
90
91 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
92 WORKER_UNBOUND | WORKER_REBOUND,
93
94 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
95
96 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
97 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
98
99 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
100 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
101
102 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
103 /* call for help after 10ms
104 (min two ticks) */
105 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
106 CREATE_COOLDOWN = HZ, /* time to breath after fail */
107
108 /*
109 * Rescue workers are used only on emergencies and shared by
110 * all cpus. Give MIN_NICE.
111 */
112 RESCUER_NICE_LEVEL = MIN_NICE,
113 HIGHPRI_NICE_LEVEL = MIN_NICE,
114
115 WQ_NAME_LEN = 24,
116 };
117
118 /*
119 * Structure fields follow one of the following exclusion rules.
120 *
121 * I: Modifiable by initialization/destruction paths and read-only for
122 * everyone else.
123 *
124 * P: Preemption protected. Disabling preemption is enough and should
125 * only be modified and accessed from the local cpu.
126 *
127 * L: pool->lock protected. Access with pool->lock held.
128 *
129 * K: Only modified by worker while holding pool->lock. Can be safely read by
130 * self, while holding pool->lock or from IRQ context if %current is the
131 * kworker.
132 *
133 * S: Only modified by worker self.
134 *
135 * A: wq_pool_attach_mutex protected.
136 *
137 * PL: wq_pool_mutex protected.
138 *
139 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
140 *
141 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
142 *
143 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
144 * RCU for reads.
145 *
146 * WQ: wq->mutex protected.
147 *
148 * WR: wq->mutex protected for writes. RCU protected for reads.
149 *
150 * MD: wq_mayday_lock protected.
151 *
152 * WD: Used internally by the watchdog.
153 */
154
155 /* struct worker is defined in workqueue_internal.h */
156
157 struct worker_pool {
158 raw_spinlock_t lock; /* the pool lock */
159 int cpu; /* I: the associated cpu */
160 int node; /* I: the associated node ID */
161 int id; /* I: pool ID */
162 unsigned int flags; /* L: flags */
163
164 unsigned long watchdog_ts; /* L: watchdog timestamp */
165 bool cpu_stall; /* WD: stalled cpu bound pool */
166
167 /*
168 * The counter is incremented in a process context on the associated CPU
169 * w/ preemption disabled, and decremented or reset in the same context
170 * but w/ pool->lock held. The readers grab pool->lock and are
171 * guaranteed to see if the counter reached zero.
172 */
173 int nr_running;
174
175 struct list_head worklist; /* L: list of pending works */
176
177 int nr_workers; /* L: total number of workers */
178 int nr_idle; /* L: currently idle workers */
179
180 struct list_head idle_list; /* L: list of idle workers */
181 struct timer_list idle_timer; /* L: worker idle timeout */
182 struct work_struct idle_cull_work; /* L: worker idle cleanup */
183
184 struct timer_list mayday_timer; /* L: SOS timer for workers */
185
186 /* a workers is either on busy_hash or idle_list, or the manager */
187 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
188 /* L: hash of busy workers */
189
190 struct worker *manager; /* L: purely informational */
191 struct list_head workers; /* A: attached workers */
192 struct list_head dying_workers; /* A: workers about to die */
193 struct completion *detach_completion; /* all workers detached */
194
195 struct ida worker_ida; /* worker IDs for task name */
196
197 struct workqueue_attrs *attrs; /* I: worker attributes */
198 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
199 int refcnt; /* PL: refcnt for unbound pools */
200
201 /*
202 * Destruction of pool is RCU protected to allow dereferences
203 * from get_work_pool().
204 */
205 struct rcu_head rcu;
206 };
207
208 /*
209 * Per-pool_workqueue statistics. These can be monitored using
210 * tools/workqueue/wq_monitor.py.
211 */
212 enum pool_workqueue_stats {
213 PWQ_STAT_STARTED, /* work items started execution */
214 PWQ_STAT_COMPLETED, /* work items completed execution */
215 PWQ_STAT_CPU_TIME, /* total CPU time consumed */
216 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */
217 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */
218 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */
219 PWQ_STAT_MAYDAY, /* maydays to rescuer */
220 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */
221
222 PWQ_NR_STATS,
223 };
224
225 /*
226 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
227 * of work_struct->data are used for flags and the remaining high bits
228 * point to the pwq; thus, pwqs need to be aligned at two's power of the
229 * number of flag bits.
230 */
231 struct pool_workqueue {
232 struct worker_pool *pool; /* I: the associated pool */
233 struct workqueue_struct *wq; /* I: the owning workqueue */
234 int work_color; /* L: current color */
235 int flush_color; /* L: flushing color */
236 int refcnt; /* L: reference count */
237 int nr_in_flight[WORK_NR_COLORS];
238 /* L: nr of in_flight works */
239
240 /*
241 * nr_active management and WORK_STRUCT_INACTIVE:
242 *
243 * When pwq->nr_active >= max_active, new work item is queued to
244 * pwq->inactive_works instead of pool->worklist and marked with
245 * WORK_STRUCT_INACTIVE.
246 *
247 * All work items marked with WORK_STRUCT_INACTIVE do not participate
248 * in pwq->nr_active and all work items in pwq->inactive_works are
249 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE
250 * work items are in pwq->inactive_works. Some of them are ready to
251 * run in pool->worklist or worker->scheduled. Those work itmes are
252 * only struct wq_barrier which is used for flush_work() and should
253 * not participate in pwq->nr_active. For non-barrier work item, it
254 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
255 */
256 int nr_active; /* L: nr of active works */
257 int max_active; /* L: max active works */
258 struct list_head inactive_works; /* L: inactive works */
259 struct list_head pwqs_node; /* WR: node on wq->pwqs */
260 struct list_head mayday_node; /* MD: node on wq->maydays */
261
262 u64 stats[PWQ_NR_STATS];
263
264 /*
265 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
266 * and pwq_release_workfn() for details. pool_workqueue itself is also
267 * RCU protected so that the first pwq can be determined without
268 * grabbing wq->mutex.
269 */
270 struct kthread_work release_work;
271 struct rcu_head rcu;
272 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
273
274 /*
275 * Structure used to wait for workqueue flush.
276 */
277 struct wq_flusher {
278 struct list_head list; /* WQ: list of flushers */
279 int flush_color; /* WQ: flush color waiting for */
280 struct completion done; /* flush completion */
281 };
282
283 struct wq_device;
284
285 /*
286 * The externally visible workqueue. It relays the issued work items to
287 * the appropriate worker_pool through its pool_workqueues.
288 */
289 struct workqueue_struct {
290 struct list_head pwqs; /* WR: all pwqs of this wq */
291 struct list_head list; /* PR: list of all workqueues */
292
293 struct mutex mutex; /* protects this wq */
294 int work_color; /* WQ: current work color */
295 int flush_color; /* WQ: current flush color */
296 atomic_t nr_pwqs_to_flush; /* flush in progress */
297 struct wq_flusher *first_flusher; /* WQ: first flusher */
298 struct list_head flusher_queue; /* WQ: flush waiters */
299 struct list_head flusher_overflow; /* WQ: flush overflow list */
300
301 struct list_head maydays; /* MD: pwqs requesting rescue */
302 struct worker *rescuer; /* MD: rescue worker */
303
304 int nr_drainers; /* WQ: drain in progress */
305 int saved_max_active; /* WQ: saved pwq max_active */
306
307 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
308 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
309
310 #ifdef CONFIG_SYSFS
311 struct wq_device *wq_dev; /* I: for sysfs interface */
312 #endif
313 #ifdef CONFIG_LOCKDEP
314 char *lock_name;
315 struct lock_class_key key;
316 struct lockdep_map lockdep_map;
317 #endif
318 char name[WQ_NAME_LEN]; /* I: workqueue name */
319
320 /*
321 * Destruction of workqueue_struct is RCU protected to allow walking
322 * the workqueues list without grabbing wq_pool_mutex.
323 * This is used to dump all workqueues from sysrq.
324 */
325 struct rcu_head rcu;
326
327 /* hot fields used during command issue, aligned to cacheline */
328 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
329 struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
330 };
331
332 static struct kmem_cache *pwq_cache;
333
334 /*
335 * Each pod type describes how CPUs should be grouped for unbound workqueues.
336 * See the comment above workqueue_attrs->affn_scope.
337 */
338 struct wq_pod_type {
339 int nr_pods; /* number of pods */
340 cpumask_var_t *pod_cpus; /* pod -> cpus */
341 int *pod_node; /* pod -> node */
342 int *cpu_pod; /* cpu -> pod */
343 };
344
345 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
346 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
347
348 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
349 [WQ_AFFN_DFL] = "default",
350 [WQ_AFFN_CPU] = "cpu",
351 [WQ_AFFN_SMT] = "smt",
352 [WQ_AFFN_CACHE] = "cache",
353 [WQ_AFFN_NUMA] = "numa",
354 [WQ_AFFN_SYSTEM] = "system",
355 };
356
357 /*
358 * Per-cpu work items which run for longer than the following threshold are
359 * automatically considered CPU intensive and excluded from concurrency
360 * management to prevent them from noticeably delaying other per-cpu work items.
361 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
362 * The actual value is initialized in wq_cpu_intensive_thresh_init().
363 */
364 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
365 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
366 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
367 static unsigned int wq_cpu_intensive_warning_thresh = 4;
368 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
369 #endif
370
371 /* see the comment above the definition of WQ_POWER_EFFICIENT */
372 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
373 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
374
375 static bool wq_online; /* can kworkers be created yet? */
376
377 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
378 static struct workqueue_attrs *wq_update_pod_attrs_buf;
379
380 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
381 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
382 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
383 /* wait for manager to go away */
384 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
385
386 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
387 static bool workqueue_freezing; /* PL: have wqs started freezing? */
388
389 /* PL&A: allowable cpus for unbound wqs and work items */
390 static cpumask_var_t wq_unbound_cpumask;
391
392 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
393 static struct cpumask wq_cmdline_cpumask __initdata;
394
395 /* CPU where unbound work was last round robin scheduled from this CPU */
396 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
397
398 /*
399 * Local execution of unbound work items is no longer guaranteed. The
400 * following always forces round-robin CPU selection on unbound work items
401 * to uncover usages which depend on it.
402 */
403 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
404 static bool wq_debug_force_rr_cpu = true;
405 #else
406 static bool wq_debug_force_rr_cpu = false;
407 #endif
408 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
409
410 /* the per-cpu worker pools */
411 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
412
413 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
414
415 /* PL: hash of all unbound pools keyed by pool->attrs */
416 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
417
418 /* I: attributes used when instantiating standard unbound pools on demand */
419 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
420
421 /* I: attributes used when instantiating ordered pools on demand */
422 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
423
424 /*
425 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
426 * process context while holding a pool lock. Bounce to a dedicated kthread
427 * worker to avoid A-A deadlocks.
428 */
429 static struct kthread_worker *pwq_release_worker;
430
431 struct workqueue_struct *system_wq __read_mostly;
432 EXPORT_SYMBOL(system_wq);
433 struct workqueue_struct *system_highpri_wq __read_mostly;
434 EXPORT_SYMBOL_GPL(system_highpri_wq);
435 struct workqueue_struct *system_long_wq __read_mostly;
436 EXPORT_SYMBOL_GPL(system_long_wq);
437 struct workqueue_struct *system_unbound_wq __read_mostly;
438 EXPORT_SYMBOL_GPL(system_unbound_wq);
439 struct workqueue_struct *system_freezable_wq __read_mostly;
440 EXPORT_SYMBOL_GPL(system_freezable_wq);
441 struct workqueue_struct *system_power_efficient_wq __read_mostly;
442 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
443 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
444 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
445
446 static int worker_thread(void *__worker);
447 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
448 static void show_pwq(struct pool_workqueue *pwq);
449 static void show_one_worker_pool(struct worker_pool *pool);
450
451 #define CREATE_TRACE_POINTS
452 #include <trace/events/workqueue.h>
453
454 EXPORT_TRACEPOINT_SYMBOL_GPL(workqueue_execute_start);
455 EXPORT_TRACEPOINT_SYMBOL_GPL(workqueue_execute_end);
456
457 #define assert_rcu_or_pool_mutex() \
458 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
459 !lockdep_is_held(&wq_pool_mutex), \
460 "RCU or wq_pool_mutex should be held")
461
462 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
463 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
464 !lockdep_is_held(&wq->mutex) && \
465 !lockdep_is_held(&wq_pool_mutex), \
466 "RCU, wq->mutex or wq_pool_mutex should be held")
467
468 #define for_each_cpu_worker_pool(pool, cpu) \
469 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
470 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
471 (pool)++)
472
473 /**
474 * for_each_pool - iterate through all worker_pools in the system
475 * @pool: iteration cursor
476 * @pi: integer used for iteration
477 *
478 * This must be called either with wq_pool_mutex held or RCU read
479 * locked. If the pool needs to be used beyond the locking in effect, the
480 * caller is responsible for guaranteeing that the pool stays online.
481 *
482 * The if/else clause exists only for the lockdep assertion and can be
483 * ignored.
484 */
485 #define for_each_pool(pool, pi) \
486 idr_for_each_entry(&worker_pool_idr, pool, pi) \
487 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
488 else
489
490 /**
491 * for_each_pool_worker - iterate through all workers of a worker_pool
492 * @worker: iteration cursor
493 * @pool: worker_pool to iterate workers of
494 *
495 * This must be called with wq_pool_attach_mutex.
496 *
497 * The if/else clause exists only for the lockdep assertion and can be
498 * ignored.
499 */
500 #define for_each_pool_worker(worker, pool) \
501 list_for_each_entry((worker), &(pool)->workers, node) \
502 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
503 else
504
505 /**
506 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
507 * @pwq: iteration cursor
508 * @wq: the target workqueue
509 *
510 * This must be called either with wq->mutex held or RCU read locked.
511 * If the pwq needs to be used beyond the locking in effect, the caller is
512 * responsible for guaranteeing that the pwq stays online.
513 *
514 * The if/else clause exists only for the lockdep assertion and can be
515 * ignored.
516 */
517 #define for_each_pwq(pwq, wq) \
518 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
519 lockdep_is_held(&(wq->mutex)))
520
521 #ifdef CONFIG_DEBUG_OBJECTS_WORK
522
523 static const struct debug_obj_descr work_debug_descr;
524
work_debug_hint(void * addr)525 static void *work_debug_hint(void *addr)
526 {
527 return ((struct work_struct *) addr)->func;
528 }
529
work_is_static_object(void * addr)530 static bool work_is_static_object(void *addr)
531 {
532 struct work_struct *work = addr;
533
534 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
535 }
536
537 /*
538 * fixup_init is called when:
539 * - an active object is initialized
540 */
work_fixup_init(void * addr,enum debug_obj_state state)541 static bool work_fixup_init(void *addr, enum debug_obj_state state)
542 {
543 struct work_struct *work = addr;
544
545 switch (state) {
546 case ODEBUG_STATE_ACTIVE:
547 cancel_work_sync(work);
548 debug_object_init(work, &work_debug_descr);
549 return true;
550 default:
551 return false;
552 }
553 }
554
555 /*
556 * fixup_free is called when:
557 * - an active object is freed
558 */
work_fixup_free(void * addr,enum debug_obj_state state)559 static bool work_fixup_free(void *addr, enum debug_obj_state state)
560 {
561 struct work_struct *work = addr;
562
563 switch (state) {
564 case ODEBUG_STATE_ACTIVE:
565 cancel_work_sync(work);
566 debug_object_free(work, &work_debug_descr);
567 return true;
568 default:
569 return false;
570 }
571 }
572
573 static const struct debug_obj_descr work_debug_descr = {
574 .name = "work_struct",
575 .debug_hint = work_debug_hint,
576 .is_static_object = work_is_static_object,
577 .fixup_init = work_fixup_init,
578 .fixup_free = work_fixup_free,
579 };
580
debug_work_activate(struct work_struct * work)581 static inline void debug_work_activate(struct work_struct *work)
582 {
583 debug_object_activate(work, &work_debug_descr);
584 }
585
debug_work_deactivate(struct work_struct * work)586 static inline void debug_work_deactivate(struct work_struct *work)
587 {
588 debug_object_deactivate(work, &work_debug_descr);
589 }
590
__init_work(struct work_struct * work,int onstack)591 void __init_work(struct work_struct *work, int onstack)
592 {
593 if (onstack)
594 debug_object_init_on_stack(work, &work_debug_descr);
595 else
596 debug_object_init(work, &work_debug_descr);
597 }
598 EXPORT_SYMBOL_GPL(__init_work);
599
destroy_work_on_stack(struct work_struct * work)600 void destroy_work_on_stack(struct work_struct *work)
601 {
602 debug_object_free(work, &work_debug_descr);
603 }
604 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
605
destroy_delayed_work_on_stack(struct delayed_work * work)606 void destroy_delayed_work_on_stack(struct delayed_work *work)
607 {
608 destroy_timer_on_stack(&work->timer);
609 debug_object_free(&work->work, &work_debug_descr);
610 }
611 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
612
613 #else
debug_work_activate(struct work_struct * work)614 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)615 static inline void debug_work_deactivate(struct work_struct *work) { }
616 #endif
617
618 /**
619 * worker_pool_assign_id - allocate ID and assign it to @pool
620 * @pool: the pool pointer of interest
621 *
622 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
623 * successfully, -errno on failure.
624 */
worker_pool_assign_id(struct worker_pool * pool)625 static int worker_pool_assign_id(struct worker_pool *pool)
626 {
627 int ret;
628
629 lockdep_assert_held(&wq_pool_mutex);
630
631 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
632 GFP_KERNEL);
633 if (ret >= 0) {
634 pool->id = ret;
635 return 0;
636 }
637 return ret;
638 }
639
work_color_to_flags(int color)640 static unsigned int work_color_to_flags(int color)
641 {
642 return color << WORK_STRUCT_COLOR_SHIFT;
643 }
644
get_work_color(unsigned long work_data)645 static int get_work_color(unsigned long work_data)
646 {
647 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
648 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
649 }
650
work_next_color(int color)651 static int work_next_color(int color)
652 {
653 return (color + 1) % WORK_NR_COLORS;
654 }
655
656 /*
657 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
658 * contain the pointer to the queued pwq. Once execution starts, the flag
659 * is cleared and the high bits contain OFFQ flags and pool ID.
660 *
661 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
662 * and clear_work_data() can be used to set the pwq, pool or clear
663 * work->data. These functions should only be called while the work is
664 * owned - ie. while the PENDING bit is set.
665 *
666 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
667 * corresponding to a work. Pool is available once the work has been
668 * queued anywhere after initialization until it is sync canceled. pwq is
669 * available only while the work item is queued.
670 *
671 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
672 * canceled. While being canceled, a work item may have its PENDING set
673 * but stay off timer and worklist for arbitrarily long and nobody should
674 * try to steal the PENDING bit.
675 */
set_work_data(struct work_struct * work,unsigned long data,unsigned long flags)676 static inline void set_work_data(struct work_struct *work, unsigned long data,
677 unsigned long flags)
678 {
679 WARN_ON_ONCE(!work_pending(work));
680 atomic_long_set(&work->data, data | flags | work_static(work));
681 }
682
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long extra_flags)683 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
684 unsigned long extra_flags)
685 {
686 set_work_data(work, (unsigned long)pwq,
687 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
688 }
689
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id)690 static void set_work_pool_and_keep_pending(struct work_struct *work,
691 int pool_id)
692 {
693 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
694 WORK_STRUCT_PENDING);
695 }
696
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id)697 static void set_work_pool_and_clear_pending(struct work_struct *work,
698 int pool_id)
699 {
700 /*
701 * The following wmb is paired with the implied mb in
702 * test_and_set_bit(PENDING) and ensures all updates to @work made
703 * here are visible to and precede any updates by the next PENDING
704 * owner.
705 */
706 smp_wmb();
707 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
708 /*
709 * The following mb guarantees that previous clear of a PENDING bit
710 * will not be reordered with any speculative LOADS or STORES from
711 * work->current_func, which is executed afterwards. This possible
712 * reordering can lead to a missed execution on attempt to queue
713 * the same @work. E.g. consider this case:
714 *
715 * CPU#0 CPU#1
716 * ---------------------------- --------------------------------
717 *
718 * 1 STORE event_indicated
719 * 2 queue_work_on() {
720 * 3 test_and_set_bit(PENDING)
721 * 4 } set_..._and_clear_pending() {
722 * 5 set_work_data() # clear bit
723 * 6 smp_mb()
724 * 7 work->current_func() {
725 * 8 LOAD event_indicated
726 * }
727 *
728 * Without an explicit full barrier speculative LOAD on line 8 can
729 * be executed before CPU#0 does STORE on line 1. If that happens,
730 * CPU#0 observes the PENDING bit is still set and new execution of
731 * a @work is not queued in a hope, that CPU#1 will eventually
732 * finish the queued @work. Meanwhile CPU#1 does not see
733 * event_indicated is set, because speculative LOAD was executed
734 * before actual STORE.
735 */
736 smp_mb();
737 }
738
clear_work_data(struct work_struct * work)739 static void clear_work_data(struct work_struct *work)
740 {
741 smp_wmb(); /* see set_work_pool_and_clear_pending() */
742 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
743 }
744
work_struct_pwq(unsigned long data)745 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
746 {
747 return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
748 }
749
get_work_pwq(struct work_struct * work)750 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
751 {
752 unsigned long data = atomic_long_read(&work->data);
753
754 if (data & WORK_STRUCT_PWQ)
755 return work_struct_pwq(data);
756 else
757 return NULL;
758 }
759
760 /**
761 * get_work_pool - return the worker_pool a given work was associated with
762 * @work: the work item of interest
763 *
764 * Pools are created and destroyed under wq_pool_mutex, and allows read
765 * access under RCU read lock. As such, this function should be
766 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
767 *
768 * All fields of the returned pool are accessible as long as the above
769 * mentioned locking is in effect. If the returned pool needs to be used
770 * beyond the critical section, the caller is responsible for ensuring the
771 * returned pool is and stays online.
772 *
773 * Return: The worker_pool @work was last associated with. %NULL if none.
774 */
get_work_pool(struct work_struct * work)775 static struct worker_pool *get_work_pool(struct work_struct *work)
776 {
777 unsigned long data = atomic_long_read(&work->data);
778 int pool_id;
779
780 assert_rcu_or_pool_mutex();
781
782 if (data & WORK_STRUCT_PWQ)
783 return work_struct_pwq(data)->pool;
784
785 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
786 if (pool_id == WORK_OFFQ_POOL_NONE)
787 return NULL;
788
789 return idr_find(&worker_pool_idr, pool_id);
790 }
791
792 /**
793 * get_work_pool_id - return the worker pool ID a given work is associated with
794 * @work: the work item of interest
795 *
796 * Return: The worker_pool ID @work was last associated with.
797 * %WORK_OFFQ_POOL_NONE if none.
798 */
get_work_pool_id(struct work_struct * work)799 static int get_work_pool_id(struct work_struct *work)
800 {
801 unsigned long data = atomic_long_read(&work->data);
802
803 if (data & WORK_STRUCT_PWQ)
804 return work_struct_pwq(data)->pool->id;
805
806 return data >> WORK_OFFQ_POOL_SHIFT;
807 }
808
mark_work_canceling(struct work_struct * work)809 static void mark_work_canceling(struct work_struct *work)
810 {
811 unsigned long pool_id = get_work_pool_id(work);
812
813 pool_id <<= WORK_OFFQ_POOL_SHIFT;
814 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
815 }
816
work_is_canceling(struct work_struct * work)817 static bool work_is_canceling(struct work_struct *work)
818 {
819 unsigned long data = atomic_long_read(&work->data);
820
821 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
822 }
823
824 /*
825 * Policy functions. These define the policies on how the global worker
826 * pools are managed. Unless noted otherwise, these functions assume that
827 * they're being called with pool->lock held.
828 */
829
830 /*
831 * Need to wake up a worker? Called from anything but currently
832 * running workers.
833 *
834 * Note that, because unbound workers never contribute to nr_running, this
835 * function will always return %true for unbound pools as long as the
836 * worklist isn't empty.
837 */
need_more_worker(struct worker_pool * pool)838 static bool need_more_worker(struct worker_pool *pool)
839 {
840 return !list_empty(&pool->worklist) && !pool->nr_running;
841 }
842
843 /* Can I start working? Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)844 static bool may_start_working(struct worker_pool *pool)
845 {
846 return pool->nr_idle;
847 }
848
849 /* Do I need to keep working? Called from currently running workers. */
keep_working(struct worker_pool * pool)850 static bool keep_working(struct worker_pool *pool)
851 {
852 return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
853 }
854
855 /* Do we need a new worker? Called from manager. */
need_to_create_worker(struct worker_pool * pool)856 static bool need_to_create_worker(struct worker_pool *pool)
857 {
858 return need_more_worker(pool) && !may_start_working(pool);
859 }
860
861 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)862 static bool too_many_workers(struct worker_pool *pool)
863 {
864 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
865 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
866 int nr_busy = pool->nr_workers - nr_idle;
867
868 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
869 }
870
871 /**
872 * worker_set_flags - set worker flags and adjust nr_running accordingly
873 * @worker: self
874 * @flags: flags to set
875 *
876 * Set @flags in @worker->flags and adjust nr_running accordingly.
877 */
worker_set_flags(struct worker * worker,unsigned int flags)878 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
879 {
880 struct worker_pool *pool = worker->pool;
881
882 lockdep_assert_held(&pool->lock);
883
884 /* If transitioning into NOT_RUNNING, adjust nr_running. */
885 if ((flags & WORKER_NOT_RUNNING) &&
886 !(worker->flags & WORKER_NOT_RUNNING)) {
887 pool->nr_running--;
888 }
889
890 worker->flags |= flags;
891 }
892
893 /**
894 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
895 * @worker: self
896 * @flags: flags to clear
897 *
898 * Clear @flags in @worker->flags and adjust nr_running accordingly.
899 */
worker_clr_flags(struct worker * worker,unsigned int flags)900 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
901 {
902 struct worker_pool *pool = worker->pool;
903 unsigned int oflags = worker->flags;
904
905 lockdep_assert_held(&pool->lock);
906
907 worker->flags &= ~flags;
908
909 /*
910 * If transitioning out of NOT_RUNNING, increment nr_running. Note
911 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
912 * of multiple flags, not a single flag.
913 */
914 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
915 if (!(worker->flags & WORKER_NOT_RUNNING))
916 pool->nr_running++;
917 }
918
919 /* Return the first idle worker. Called with pool->lock held. */
first_idle_worker(struct worker_pool * pool)920 static struct worker *first_idle_worker(struct worker_pool *pool)
921 {
922 if (unlikely(list_empty(&pool->idle_list)))
923 return NULL;
924
925 return list_first_entry(&pool->idle_list, struct worker, entry);
926 }
927
928 /**
929 * worker_enter_idle - enter idle state
930 * @worker: worker which is entering idle state
931 *
932 * @worker is entering idle state. Update stats and idle timer if
933 * necessary.
934 *
935 * LOCKING:
936 * raw_spin_lock_irq(pool->lock).
937 */
worker_enter_idle(struct worker * worker)938 static void worker_enter_idle(struct worker *worker)
939 {
940 struct worker_pool *pool = worker->pool;
941
942 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
943 WARN_ON_ONCE(!list_empty(&worker->entry) &&
944 (worker->hentry.next || worker->hentry.pprev)))
945 return;
946
947 /* can't use worker_set_flags(), also called from create_worker() */
948 worker->flags |= WORKER_IDLE;
949 pool->nr_idle++;
950 worker->last_active = jiffies;
951
952 /* idle_list is LIFO */
953 list_add(&worker->entry, &pool->idle_list);
954
955 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
956 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
957
958 /* Sanity check nr_running. */
959 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
960 }
961
962 /**
963 * worker_leave_idle - leave idle state
964 * @worker: worker which is leaving idle state
965 *
966 * @worker is leaving idle state. Update stats.
967 *
968 * LOCKING:
969 * raw_spin_lock_irq(pool->lock).
970 */
worker_leave_idle(struct worker * worker)971 static void worker_leave_idle(struct worker *worker)
972 {
973 struct worker_pool *pool = worker->pool;
974
975 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
976 return;
977 worker_clr_flags(worker, WORKER_IDLE);
978 pool->nr_idle--;
979 list_del_init(&worker->entry);
980 }
981
982 /**
983 * find_worker_executing_work - find worker which is executing a work
984 * @pool: pool of interest
985 * @work: work to find worker for
986 *
987 * Find a worker which is executing @work on @pool by searching
988 * @pool->busy_hash which is keyed by the address of @work. For a worker
989 * to match, its current execution should match the address of @work and
990 * its work function. This is to avoid unwanted dependency between
991 * unrelated work executions through a work item being recycled while still
992 * being executed.
993 *
994 * This is a bit tricky. A work item may be freed once its execution
995 * starts and nothing prevents the freed area from being recycled for
996 * another work item. If the same work item address ends up being reused
997 * before the original execution finishes, workqueue will identify the
998 * recycled work item as currently executing and make it wait until the
999 * current execution finishes, introducing an unwanted dependency.
1000 *
1001 * This function checks the work item address and work function to avoid
1002 * false positives. Note that this isn't complete as one may construct a
1003 * work function which can introduce dependency onto itself through a
1004 * recycled work item. Well, if somebody wants to shoot oneself in the
1005 * foot that badly, there's only so much we can do, and if such deadlock
1006 * actually occurs, it should be easy to locate the culprit work function.
1007 *
1008 * CONTEXT:
1009 * raw_spin_lock_irq(pool->lock).
1010 *
1011 * Return:
1012 * Pointer to worker which is executing @work if found, %NULL
1013 * otherwise.
1014 */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1015 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1016 struct work_struct *work)
1017 {
1018 struct worker *worker;
1019
1020 hash_for_each_possible(pool->busy_hash, worker, hentry,
1021 (unsigned long)work)
1022 if (worker->current_work == work &&
1023 worker->current_func == work->func)
1024 return worker;
1025
1026 return NULL;
1027 }
1028
1029 /**
1030 * move_linked_works - move linked works to a list
1031 * @work: start of series of works to be scheduled
1032 * @head: target list to append @work to
1033 * @nextp: out parameter for nested worklist walking
1034 *
1035 * Schedule linked works starting from @work to @head. Work series to be
1036 * scheduled starts at @work and includes any consecutive work with
1037 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1038 * @nextp.
1039 *
1040 * CONTEXT:
1041 * raw_spin_lock_irq(pool->lock).
1042 */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1043 static void move_linked_works(struct work_struct *work, struct list_head *head,
1044 struct work_struct **nextp)
1045 {
1046 struct work_struct *n;
1047
1048 /*
1049 * Linked worklist will always end before the end of the list,
1050 * use NULL for list head.
1051 */
1052 list_for_each_entry_safe_from(work, n, NULL, entry) {
1053 list_move_tail(&work->entry, head);
1054 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1055 break;
1056 }
1057
1058 /*
1059 * If we're already inside safe list traversal and have moved
1060 * multiple works to the scheduled queue, the next position
1061 * needs to be updated.
1062 */
1063 if (nextp)
1064 *nextp = n;
1065 }
1066
1067 /**
1068 * assign_work - assign a work item and its linked work items to a worker
1069 * @work: work to assign
1070 * @worker: worker to assign to
1071 * @nextp: out parameter for nested worklist walking
1072 *
1073 * Assign @work and its linked work items to @worker. If @work is already being
1074 * executed by another worker in the same pool, it'll be punted there.
1075 *
1076 * If @nextp is not NULL, it's updated to point to the next work of the last
1077 * scheduled work. This allows assign_work() to be nested inside
1078 * list_for_each_entry_safe().
1079 *
1080 * Returns %true if @work was successfully assigned to @worker. %false if @work
1081 * was punted to another worker already executing it.
1082 */
assign_work(struct work_struct * work,struct worker * worker,struct work_struct ** nextp)1083 static bool assign_work(struct work_struct *work, struct worker *worker,
1084 struct work_struct **nextp)
1085 {
1086 struct worker_pool *pool = worker->pool;
1087 struct worker *collision;
1088
1089 lockdep_assert_held(&pool->lock);
1090
1091 /*
1092 * A single work shouldn't be executed concurrently by multiple workers.
1093 * __queue_work() ensures that @work doesn't jump to a different pool
1094 * while still running in the previous pool. Here, we should ensure that
1095 * @work is not executed concurrently by multiple workers from the same
1096 * pool. Check whether anyone is already processing the work. If so,
1097 * defer the work to the currently executing one.
1098 */
1099 collision = find_worker_executing_work(pool, work);
1100 if (unlikely(collision)) {
1101 move_linked_works(work, &collision->scheduled, nextp);
1102 return false;
1103 }
1104
1105 move_linked_works(work, &worker->scheduled, nextp);
1106 return true;
1107 }
1108
1109 /**
1110 * kick_pool - wake up an idle worker if necessary
1111 * @pool: pool to kick
1112 *
1113 * @pool may have pending work items. Wake up worker if necessary. Returns
1114 * whether a worker was woken up.
1115 */
kick_pool(struct worker_pool * pool)1116 static bool kick_pool(struct worker_pool *pool)
1117 {
1118 struct worker *worker = first_idle_worker(pool);
1119 struct task_struct *p;
1120
1121 lockdep_assert_held(&pool->lock);
1122
1123 if (!need_more_worker(pool) || !worker)
1124 return false;
1125
1126 p = worker->task;
1127
1128 #ifdef CONFIG_SMP
1129 /*
1130 * Idle @worker is about to execute @work and waking up provides an
1131 * opportunity to migrate @worker at a lower cost by setting the task's
1132 * wake_cpu field. Let's see if we want to move @worker to improve
1133 * execution locality.
1134 *
1135 * We're waking the worker that went idle the latest and there's some
1136 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1137 * so, setting the wake_cpu won't do anything. As this is a best-effort
1138 * optimization and the race window is narrow, let's leave as-is for
1139 * now. If this becomes pronounced, we can skip over workers which are
1140 * still on cpu when picking an idle worker.
1141 *
1142 * If @pool has non-strict affinity, @worker might have ended up outside
1143 * its affinity scope. Repatriate.
1144 */
1145 if (!pool->attrs->affn_strict &&
1146 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1147 struct work_struct *work = list_first_entry(&pool->worklist,
1148 struct work_struct, entry);
1149 int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
1150 cpu_online_mask);
1151 if (wake_cpu < nr_cpu_ids) {
1152 p->wake_cpu = wake_cpu;
1153 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1154 }
1155 }
1156 #endif
1157 wake_up_process(p);
1158 return true;
1159 }
1160
1161 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1162
1163 /*
1164 * Concurrency-managed per-cpu work items that hog CPU for longer than
1165 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1166 * which prevents them from stalling other concurrency-managed work items. If a
1167 * work function keeps triggering this mechanism, it's likely that the work item
1168 * should be using an unbound workqueue instead.
1169 *
1170 * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1171 * and report them so that they can be examined and converted to use unbound
1172 * workqueues as appropriate. To avoid flooding the console, each violating work
1173 * function is tracked and reported with exponential backoff.
1174 */
1175 #define WCI_MAX_ENTS 128
1176
1177 struct wci_ent {
1178 work_func_t func;
1179 atomic64_t cnt;
1180 struct hlist_node hash_node;
1181 };
1182
1183 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1184 static int wci_nr_ents;
1185 static DEFINE_RAW_SPINLOCK(wci_lock);
1186 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1187
wci_find_ent(work_func_t func)1188 static struct wci_ent *wci_find_ent(work_func_t func)
1189 {
1190 struct wci_ent *ent;
1191
1192 hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1193 (unsigned long)func) {
1194 if (ent->func == func)
1195 return ent;
1196 }
1197 return NULL;
1198 }
1199
wq_cpu_intensive_report(work_func_t func)1200 static void wq_cpu_intensive_report(work_func_t func)
1201 {
1202 struct wci_ent *ent;
1203
1204 restart:
1205 ent = wci_find_ent(func);
1206 if (ent) {
1207 u64 cnt;
1208
1209 /*
1210 * Start reporting from the warning_thresh and back off
1211 * exponentially.
1212 */
1213 cnt = atomic64_inc_return_relaxed(&ent->cnt);
1214 if (wq_cpu_intensive_warning_thresh &&
1215 cnt >= wq_cpu_intensive_warning_thresh &&
1216 is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1217 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1218 ent->func, wq_cpu_intensive_thresh_us,
1219 atomic64_read(&ent->cnt));
1220 return;
1221 }
1222
1223 /*
1224 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1225 * is exhausted, something went really wrong and we probably made enough
1226 * noise already.
1227 */
1228 if (wci_nr_ents >= WCI_MAX_ENTS)
1229 return;
1230
1231 raw_spin_lock(&wci_lock);
1232
1233 if (wci_nr_ents >= WCI_MAX_ENTS) {
1234 raw_spin_unlock(&wci_lock);
1235 return;
1236 }
1237
1238 if (wci_find_ent(func)) {
1239 raw_spin_unlock(&wci_lock);
1240 goto restart;
1241 }
1242
1243 ent = &wci_ents[wci_nr_ents++];
1244 ent->func = func;
1245 atomic64_set(&ent->cnt, 0);
1246 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1247
1248 raw_spin_unlock(&wci_lock);
1249
1250 goto restart;
1251 }
1252
1253 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
wq_cpu_intensive_report(work_func_t func)1254 static void wq_cpu_intensive_report(work_func_t func) {}
1255 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1256
1257 /**
1258 * wq_worker_running - a worker is running again
1259 * @task: task waking up
1260 *
1261 * This function is called when a worker returns from schedule()
1262 */
wq_worker_running(struct task_struct * task)1263 void wq_worker_running(struct task_struct *task)
1264 {
1265 struct worker *worker = kthread_data(task);
1266
1267 if (!READ_ONCE(worker->sleeping))
1268 return;
1269
1270 /*
1271 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1272 * and the nr_running increment below, we may ruin the nr_running reset
1273 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1274 * pool. Protect against such race.
1275 */
1276 preempt_disable();
1277 if (!(worker->flags & WORKER_NOT_RUNNING))
1278 worker->pool->nr_running++;
1279 preempt_enable();
1280
1281 /*
1282 * CPU intensive auto-detection cares about how long a work item hogged
1283 * CPU without sleeping. Reset the starting timestamp on wakeup.
1284 */
1285 worker->current_at = worker->task->se.sum_exec_runtime;
1286
1287 WRITE_ONCE(worker->sleeping, 0);
1288 }
1289
1290 /**
1291 * wq_worker_sleeping - a worker is going to sleep
1292 * @task: task going to sleep
1293 *
1294 * This function is called from schedule() when a busy worker is
1295 * going to sleep.
1296 */
wq_worker_sleeping(struct task_struct * task)1297 void wq_worker_sleeping(struct task_struct *task)
1298 {
1299 struct worker *worker = kthread_data(task);
1300 struct worker_pool *pool;
1301
1302 /*
1303 * Rescuers, which may not have all the fields set up like normal
1304 * workers, also reach here, let's not access anything before
1305 * checking NOT_RUNNING.
1306 */
1307 if (worker->flags & WORKER_NOT_RUNNING)
1308 return;
1309
1310 pool = worker->pool;
1311
1312 /* Return if preempted before wq_worker_running() was reached */
1313 if (READ_ONCE(worker->sleeping))
1314 return;
1315
1316 WRITE_ONCE(worker->sleeping, 1);
1317 raw_spin_lock_irq(&pool->lock);
1318
1319 /*
1320 * Recheck in case unbind_workers() preempted us. We don't
1321 * want to decrement nr_running after the worker is unbound
1322 * and nr_running has been reset.
1323 */
1324 if (worker->flags & WORKER_NOT_RUNNING) {
1325 raw_spin_unlock_irq(&pool->lock);
1326 return;
1327 }
1328
1329 pool->nr_running--;
1330 if (kick_pool(pool))
1331 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1332
1333 raw_spin_unlock_irq(&pool->lock);
1334 }
1335
1336 /**
1337 * wq_worker_tick - a scheduler tick occurred while a kworker is running
1338 * @task: task currently running
1339 *
1340 * Called from scheduler_tick(). We're in the IRQ context and the current
1341 * worker's fields which follow the 'K' locking rule can be accessed safely.
1342 */
wq_worker_tick(struct task_struct * task)1343 void wq_worker_tick(struct task_struct *task)
1344 {
1345 struct worker *worker = kthread_data(task);
1346 struct pool_workqueue *pwq = worker->current_pwq;
1347 struct worker_pool *pool = worker->pool;
1348
1349 if (!pwq)
1350 return;
1351
1352 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1353
1354 if (!wq_cpu_intensive_thresh_us)
1355 return;
1356
1357 /*
1358 * If the current worker is concurrency managed and hogged the CPU for
1359 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1360 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1361 *
1362 * Set @worker->sleeping means that @worker is in the process of
1363 * switching out voluntarily and won't be contributing to
1364 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1365 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1366 * double decrements. The task is releasing the CPU anyway. Let's skip.
1367 * We probably want to make this prettier in the future.
1368 */
1369 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1370 worker->task->se.sum_exec_runtime - worker->current_at <
1371 wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1372 return;
1373
1374 raw_spin_lock(&pool->lock);
1375
1376 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1377 wq_cpu_intensive_report(worker->current_func);
1378 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1379
1380 if (kick_pool(pool))
1381 pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1382
1383 raw_spin_unlock(&pool->lock);
1384 }
1385
1386 /**
1387 * wq_worker_last_func - retrieve worker's last work function
1388 * @task: Task to retrieve last work function of.
1389 *
1390 * Determine the last function a worker executed. This is called from
1391 * the scheduler to get a worker's last known identity.
1392 *
1393 * CONTEXT:
1394 * raw_spin_lock_irq(rq->lock)
1395 *
1396 * This function is called during schedule() when a kworker is going
1397 * to sleep. It's used by psi to identify aggregation workers during
1398 * dequeuing, to allow periodic aggregation to shut-off when that
1399 * worker is the last task in the system or cgroup to go to sleep.
1400 *
1401 * As this function doesn't involve any workqueue-related locking, it
1402 * only returns stable values when called from inside the scheduler's
1403 * queuing and dequeuing paths, when @task, which must be a kworker,
1404 * is guaranteed to not be processing any works.
1405 *
1406 * Return:
1407 * The last work function %current executed as a worker, NULL if it
1408 * hasn't executed any work yet.
1409 */
wq_worker_last_func(struct task_struct * task)1410 work_func_t wq_worker_last_func(struct task_struct *task)
1411 {
1412 struct worker *worker = kthread_data(task);
1413
1414 return worker->last_func;
1415 }
1416
1417 /**
1418 * get_pwq - get an extra reference on the specified pool_workqueue
1419 * @pwq: pool_workqueue to get
1420 *
1421 * Obtain an extra reference on @pwq. The caller should guarantee that
1422 * @pwq has positive refcnt and be holding the matching pool->lock.
1423 */
get_pwq(struct pool_workqueue * pwq)1424 static void get_pwq(struct pool_workqueue *pwq)
1425 {
1426 lockdep_assert_held(&pwq->pool->lock);
1427 WARN_ON_ONCE(pwq->refcnt <= 0);
1428 pwq->refcnt++;
1429 }
1430
1431 /**
1432 * put_pwq - put a pool_workqueue reference
1433 * @pwq: pool_workqueue to put
1434 *
1435 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1436 * destruction. The caller should be holding the matching pool->lock.
1437 */
put_pwq(struct pool_workqueue * pwq)1438 static void put_pwq(struct pool_workqueue *pwq)
1439 {
1440 lockdep_assert_held(&pwq->pool->lock);
1441 if (likely(--pwq->refcnt))
1442 return;
1443 /*
1444 * @pwq can't be released under pool->lock, bounce to a dedicated
1445 * kthread_worker to avoid A-A deadlocks.
1446 */
1447 kthread_queue_work(pwq_release_worker, &pwq->release_work);
1448 }
1449
1450 /**
1451 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1452 * @pwq: pool_workqueue to put (can be %NULL)
1453 *
1454 * put_pwq() with locking. This function also allows %NULL @pwq.
1455 */
put_pwq_unlocked(struct pool_workqueue * pwq)1456 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1457 {
1458 if (pwq) {
1459 /*
1460 * As both pwqs and pools are RCU protected, the
1461 * following lock operations are safe.
1462 */
1463 raw_spin_lock_irq(&pwq->pool->lock);
1464 put_pwq(pwq);
1465 raw_spin_unlock_irq(&pwq->pool->lock);
1466 }
1467 }
1468
pwq_activate_inactive_work(struct work_struct * work)1469 static void pwq_activate_inactive_work(struct work_struct *work)
1470 {
1471 struct pool_workqueue *pwq = get_work_pwq(work);
1472
1473 trace_workqueue_activate_work(work);
1474 if (list_empty(&pwq->pool->worklist))
1475 pwq->pool->watchdog_ts = jiffies;
1476 move_linked_works(work, &pwq->pool->worklist, NULL);
1477 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1478 pwq->nr_active++;
1479 }
1480
pwq_activate_first_inactive(struct pool_workqueue * pwq)1481 static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1482 {
1483 struct work_struct *work = list_first_entry(&pwq->inactive_works,
1484 struct work_struct, entry);
1485
1486 pwq_activate_inactive_work(work);
1487 }
1488
1489 /**
1490 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1491 * @pwq: pwq of interest
1492 * @work_data: work_data of work which left the queue
1493 *
1494 * A work either has completed or is removed from pending queue,
1495 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1496 *
1497 * CONTEXT:
1498 * raw_spin_lock_irq(pool->lock).
1499 */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,unsigned long work_data)1500 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1501 {
1502 int color = get_work_color(work_data);
1503
1504 if (!(work_data & WORK_STRUCT_INACTIVE)) {
1505 pwq->nr_active--;
1506 if (!list_empty(&pwq->inactive_works)) {
1507 /* one down, submit an inactive one */
1508 if (pwq->nr_active < pwq->max_active)
1509 pwq_activate_first_inactive(pwq);
1510 }
1511 }
1512
1513 pwq->nr_in_flight[color]--;
1514
1515 /* is flush in progress and are we at the flushing tip? */
1516 if (likely(pwq->flush_color != color))
1517 goto out_put;
1518
1519 /* are there still in-flight works? */
1520 if (pwq->nr_in_flight[color])
1521 goto out_put;
1522
1523 /* this pwq is done, clear flush_color */
1524 pwq->flush_color = -1;
1525
1526 /*
1527 * If this was the last pwq, wake up the first flusher. It
1528 * will handle the rest.
1529 */
1530 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1531 complete(&pwq->wq->first_flusher->done);
1532 out_put:
1533 put_pwq(pwq);
1534 }
1535
1536 /**
1537 * try_to_grab_pending - steal work item from worklist and disable irq
1538 * @work: work item to steal
1539 * @is_dwork: @work is a delayed_work
1540 * @flags: place to store irq state
1541 *
1542 * Try to grab PENDING bit of @work. This function can handle @work in any
1543 * stable state - idle, on timer or on worklist.
1544 *
1545 * Return:
1546 *
1547 * ======== ================================================================
1548 * 1 if @work was pending and we successfully stole PENDING
1549 * 0 if @work was idle and we claimed PENDING
1550 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1551 * -ENOENT if someone else is canceling @work, this state may persist
1552 * for arbitrarily long
1553 * ======== ================================================================
1554 *
1555 * Note:
1556 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1557 * interrupted while holding PENDING and @work off queue, irq must be
1558 * disabled on entry. This, combined with delayed_work->timer being
1559 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1560 *
1561 * On successful return, >= 0, irq is disabled and the caller is
1562 * responsible for releasing it using local_irq_restore(*@flags).
1563 *
1564 * This function is safe to call from any context including IRQ handler.
1565 */
try_to_grab_pending(struct work_struct * work,bool is_dwork,unsigned long * flags)1566 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1567 unsigned long *flags)
1568 {
1569 struct worker_pool *pool;
1570 struct pool_workqueue *pwq;
1571
1572 local_irq_save(*flags);
1573
1574 /* try to steal the timer if it exists */
1575 if (is_dwork) {
1576 struct delayed_work *dwork = to_delayed_work(work);
1577
1578 /*
1579 * dwork->timer is irqsafe. If del_timer() fails, it's
1580 * guaranteed that the timer is not queued anywhere and not
1581 * running on the local CPU.
1582 */
1583 if (likely(del_timer(&dwork->timer)))
1584 return 1;
1585 }
1586
1587 /* try to claim PENDING the normal way */
1588 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1589 return 0;
1590
1591 rcu_read_lock();
1592 /*
1593 * The queueing is in progress, or it is already queued. Try to
1594 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1595 */
1596 pool = get_work_pool(work);
1597 if (!pool)
1598 goto fail;
1599
1600 raw_spin_lock(&pool->lock);
1601 /*
1602 * work->data is guaranteed to point to pwq only while the work
1603 * item is queued on pwq->wq, and both updating work->data to point
1604 * to pwq on queueing and to pool on dequeueing are done under
1605 * pwq->pool->lock. This in turn guarantees that, if work->data
1606 * points to pwq which is associated with a locked pool, the work
1607 * item is currently queued on that pool.
1608 */
1609 pwq = get_work_pwq(work);
1610 if (pwq && pwq->pool == pool) {
1611 debug_work_deactivate(work);
1612
1613 /*
1614 * A cancelable inactive work item must be in the
1615 * pwq->inactive_works since a queued barrier can't be
1616 * canceled (see the comments in insert_wq_barrier()).
1617 *
1618 * An inactive work item cannot be grabbed directly because
1619 * it might have linked barrier work items which, if left
1620 * on the inactive_works list, will confuse pwq->nr_active
1621 * management later on and cause stall. Make sure the work
1622 * item is activated before grabbing.
1623 */
1624 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1625 pwq_activate_inactive_work(work);
1626
1627 list_del_init(&work->entry);
1628 pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1629
1630 /* work->data points to pwq iff queued, point to pool */
1631 set_work_pool_and_keep_pending(work, pool->id);
1632
1633 raw_spin_unlock(&pool->lock);
1634 rcu_read_unlock();
1635 return 1;
1636 }
1637 raw_spin_unlock(&pool->lock);
1638 fail:
1639 rcu_read_unlock();
1640 local_irq_restore(*flags);
1641 if (work_is_canceling(work))
1642 return -ENOENT;
1643 cpu_relax();
1644 return -EAGAIN;
1645 }
1646
1647 /**
1648 * insert_work - insert a work into a pool
1649 * @pwq: pwq @work belongs to
1650 * @work: work to insert
1651 * @head: insertion point
1652 * @extra_flags: extra WORK_STRUCT_* flags to set
1653 *
1654 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1655 * work_struct flags.
1656 *
1657 * CONTEXT:
1658 * raw_spin_lock_irq(pool->lock).
1659 */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)1660 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1661 struct list_head *head, unsigned int extra_flags)
1662 {
1663 debug_work_activate(work);
1664
1665 /* record the work call stack in order to print it in KASAN reports */
1666 kasan_record_aux_stack_noalloc(work);
1667
1668 /* we own @work, set data and link */
1669 set_work_pwq(work, pwq, extra_flags);
1670 list_add_tail(&work->entry, head);
1671 get_pwq(pwq);
1672 }
1673
1674 /*
1675 * Test whether @work is being queued from another work executing on the
1676 * same workqueue.
1677 */
is_chained_work(struct workqueue_struct * wq)1678 static bool is_chained_work(struct workqueue_struct *wq)
1679 {
1680 struct worker *worker;
1681
1682 worker = current_wq_worker();
1683 /*
1684 * Return %true iff I'm a worker executing a work item on @wq. If
1685 * I'm @worker, it's safe to dereference it without locking.
1686 */
1687 return worker && worker->current_pwq->wq == wq;
1688 }
1689
1690 /*
1691 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1692 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1693 * avoid perturbing sensitive tasks.
1694 */
wq_select_unbound_cpu(int cpu)1695 static int wq_select_unbound_cpu(int cpu)
1696 {
1697 int new_cpu;
1698
1699 if (likely(!wq_debug_force_rr_cpu)) {
1700 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1701 return cpu;
1702 } else {
1703 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
1704 }
1705
1706 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1707 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1708 if (unlikely(new_cpu >= nr_cpu_ids)) {
1709 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1710 if (unlikely(new_cpu >= nr_cpu_ids))
1711 return cpu;
1712 }
1713 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1714
1715 return new_cpu;
1716 }
1717
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)1718 static void __queue_work(int cpu, struct workqueue_struct *wq,
1719 struct work_struct *work)
1720 {
1721 struct pool_workqueue *pwq;
1722 struct worker_pool *last_pool, *pool;
1723 unsigned int work_flags;
1724 unsigned int req_cpu = cpu;
1725
1726 /*
1727 * While a work item is PENDING && off queue, a task trying to
1728 * steal the PENDING will busy-loop waiting for it to either get
1729 * queued or lose PENDING. Grabbing PENDING and queueing should
1730 * happen with IRQ disabled.
1731 */
1732 lockdep_assert_irqs_disabled();
1733
1734
1735 /*
1736 * For a draining wq, only works from the same workqueue are
1737 * allowed. The __WQ_DESTROYING helps to spot the issue that
1738 * queues a new work item to a wq after destroy_workqueue(wq).
1739 */
1740 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
1741 WARN_ON_ONCE(!is_chained_work(wq))))
1742 return;
1743 rcu_read_lock();
1744 retry:
1745 /* pwq which will be used unless @work is executing elsewhere */
1746 if (req_cpu == WORK_CPU_UNBOUND) {
1747 if (wq->flags & WQ_UNBOUND)
1748 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1749 else
1750 cpu = raw_smp_processor_id();
1751 }
1752
1753 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
1754 pool = pwq->pool;
1755
1756 /*
1757 * If @work was previously on a different pool, it might still be
1758 * running there, in which case the work needs to be queued on that
1759 * pool to guarantee non-reentrancy.
1760 */
1761 last_pool = get_work_pool(work);
1762 if (last_pool && last_pool != pool) {
1763 struct worker *worker;
1764
1765 raw_spin_lock(&last_pool->lock);
1766
1767 worker = find_worker_executing_work(last_pool, work);
1768
1769 if (worker && worker->current_pwq->wq == wq) {
1770 pwq = worker->current_pwq;
1771 pool = pwq->pool;
1772 WARN_ON_ONCE(pool != last_pool);
1773 } else {
1774 /* meh... not running there, queue here */
1775 raw_spin_unlock(&last_pool->lock);
1776 raw_spin_lock(&pool->lock);
1777 }
1778 } else {
1779 raw_spin_lock(&pool->lock);
1780 }
1781
1782 /*
1783 * pwq is determined and locked. For unbound pools, we could have raced
1784 * with pwq release and it could already be dead. If its refcnt is zero,
1785 * repeat pwq selection. Note that unbound pwqs never die without
1786 * another pwq replacing it in cpu_pwq or while work items are executing
1787 * on it, so the retrying is guaranteed to make forward-progress.
1788 */
1789 if (unlikely(!pwq->refcnt)) {
1790 if (wq->flags & WQ_UNBOUND) {
1791 raw_spin_unlock(&pool->lock);
1792 cpu_relax();
1793 goto retry;
1794 }
1795 /* oops */
1796 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1797 wq->name, cpu);
1798 }
1799
1800 /* pwq determined, queue */
1801 trace_workqueue_queue_work(req_cpu, pwq, work);
1802
1803 if (WARN_ON(!list_empty(&work->entry)))
1804 goto out;
1805
1806 pwq->nr_in_flight[pwq->work_color]++;
1807 work_flags = work_color_to_flags(pwq->work_color);
1808
1809 if (likely(pwq->nr_active < pwq->max_active)) {
1810 if (list_empty(&pool->worklist))
1811 pool->watchdog_ts = jiffies;
1812
1813 trace_workqueue_activate_work(work);
1814 pwq->nr_active++;
1815 insert_work(pwq, work, &pool->worklist, work_flags);
1816 kick_pool(pool);
1817 } else {
1818 work_flags |= WORK_STRUCT_INACTIVE;
1819 insert_work(pwq, work, &pwq->inactive_works, work_flags);
1820 }
1821
1822 out:
1823 raw_spin_unlock(&pool->lock);
1824 rcu_read_unlock();
1825 }
1826
1827 /**
1828 * queue_work_on - queue work on specific cpu
1829 * @cpu: CPU number to execute work on
1830 * @wq: workqueue to use
1831 * @work: work to queue
1832 *
1833 * We queue the work to a specific CPU, the caller must ensure it
1834 * can't go away. Callers that fail to ensure that the specified
1835 * CPU cannot go away will execute on a randomly chosen CPU.
1836 * But note well that callers specifying a CPU that never has been
1837 * online will get a splat.
1838 *
1839 * Return: %false if @work was already on a queue, %true otherwise.
1840 */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)1841 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1842 struct work_struct *work)
1843 {
1844 bool ret = false;
1845 unsigned long flags;
1846
1847 local_irq_save(flags);
1848
1849 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1850 __queue_work(cpu, wq, work);
1851 ret = true;
1852 }
1853
1854 local_irq_restore(flags);
1855 return ret;
1856 }
1857 EXPORT_SYMBOL(queue_work_on);
1858
1859 /**
1860 * select_numa_node_cpu - Select a CPU based on NUMA node
1861 * @node: NUMA node ID that we want to select a CPU from
1862 *
1863 * This function will attempt to find a "random" cpu available on a given
1864 * node. If there are no CPUs available on the given node it will return
1865 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1866 * available CPU if we need to schedule this work.
1867 */
select_numa_node_cpu(int node)1868 static int select_numa_node_cpu(int node)
1869 {
1870 int cpu;
1871
1872 /* Delay binding to CPU if node is not valid or online */
1873 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1874 return WORK_CPU_UNBOUND;
1875
1876 /* Use local node/cpu if we are already there */
1877 cpu = raw_smp_processor_id();
1878 if (node == cpu_to_node(cpu))
1879 return cpu;
1880
1881 /* Use "random" otherwise know as "first" online CPU of node */
1882 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1883
1884 /* If CPU is valid return that, otherwise just defer */
1885 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1886 }
1887
1888 /**
1889 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1890 * @node: NUMA node that we are targeting the work for
1891 * @wq: workqueue to use
1892 * @work: work to queue
1893 *
1894 * We queue the work to a "random" CPU within a given NUMA node. The basic
1895 * idea here is to provide a way to somehow associate work with a given
1896 * NUMA node.
1897 *
1898 * This function will only make a best effort attempt at getting this onto
1899 * the right NUMA node. If no node is requested or the requested node is
1900 * offline then we just fall back to standard queue_work behavior.
1901 *
1902 * Currently the "random" CPU ends up being the first available CPU in the
1903 * intersection of cpu_online_mask and the cpumask of the node, unless we
1904 * are running on the node. In that case we just use the current CPU.
1905 *
1906 * Return: %false if @work was already on a queue, %true otherwise.
1907 */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)1908 bool queue_work_node(int node, struct workqueue_struct *wq,
1909 struct work_struct *work)
1910 {
1911 unsigned long flags;
1912 bool ret = false;
1913
1914 /*
1915 * This current implementation is specific to unbound workqueues.
1916 * Specifically we only return the first available CPU for a given
1917 * node instead of cycling through individual CPUs within the node.
1918 *
1919 * If this is used with a per-cpu workqueue then the logic in
1920 * workqueue_select_cpu_near would need to be updated to allow for
1921 * some round robin type logic.
1922 */
1923 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1924
1925 local_irq_save(flags);
1926
1927 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1928 int cpu = select_numa_node_cpu(node);
1929
1930 __queue_work(cpu, wq, work);
1931 ret = true;
1932 }
1933
1934 local_irq_restore(flags);
1935 return ret;
1936 }
1937 EXPORT_SYMBOL_GPL(queue_work_node);
1938
delayed_work_timer_fn(struct timer_list * t)1939 void delayed_work_timer_fn(struct timer_list *t)
1940 {
1941 struct delayed_work *dwork = from_timer(dwork, t, timer);
1942
1943 /* should have been called from irqsafe timer with irq already off */
1944 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1945 }
1946 EXPORT_SYMBOL(delayed_work_timer_fn);
1947
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1948 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1949 struct delayed_work *dwork, unsigned long delay)
1950 {
1951 struct timer_list *timer = &dwork->timer;
1952 struct work_struct *work = &dwork->work;
1953
1954 WARN_ON_ONCE(!wq);
1955 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1956 WARN_ON_ONCE(timer_pending(timer));
1957 WARN_ON_ONCE(!list_empty(&work->entry));
1958
1959 /*
1960 * If @delay is 0, queue @dwork->work immediately. This is for
1961 * both optimization and correctness. The earliest @timer can
1962 * expire is on the closest next tick and delayed_work users depend
1963 * on that there's no such delay when @delay is 0.
1964 */
1965 if (!delay) {
1966 __queue_work(cpu, wq, &dwork->work);
1967 return;
1968 }
1969
1970 dwork->wq = wq;
1971 dwork->cpu = cpu;
1972 timer->expires = jiffies + delay;
1973
1974 if (unlikely(cpu != WORK_CPU_UNBOUND))
1975 add_timer_on(timer, cpu);
1976 else
1977 add_timer(timer);
1978 }
1979
1980 /**
1981 * queue_delayed_work_on - queue work on specific CPU after delay
1982 * @cpu: CPU number to execute work on
1983 * @wq: workqueue to use
1984 * @dwork: work to queue
1985 * @delay: number of jiffies to wait before queueing
1986 *
1987 * Return: %false if @work was already on a queue, %true otherwise. If
1988 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1989 * execution.
1990 */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1991 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1992 struct delayed_work *dwork, unsigned long delay)
1993 {
1994 struct work_struct *work = &dwork->work;
1995 bool ret = false;
1996 unsigned long flags;
1997
1998 /* read the comment in __queue_work() */
1999 local_irq_save(flags);
2000
2001 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2002 __queue_delayed_work(cpu, wq, dwork, delay);
2003 ret = true;
2004 }
2005
2006 local_irq_restore(flags);
2007 return ret;
2008 }
2009 EXPORT_SYMBOL(queue_delayed_work_on);
2010
2011 /**
2012 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2013 * @cpu: CPU number to execute work on
2014 * @wq: workqueue to use
2015 * @dwork: work to queue
2016 * @delay: number of jiffies to wait before queueing
2017 *
2018 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2019 * modify @dwork's timer so that it expires after @delay. If @delay is
2020 * zero, @work is guaranteed to be scheduled immediately regardless of its
2021 * current state.
2022 *
2023 * Return: %false if @dwork was idle and queued, %true if @dwork was
2024 * pending and its timer was modified.
2025 *
2026 * This function is safe to call from any context including IRQ handler.
2027 * See try_to_grab_pending() for details.
2028 */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2029 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2030 struct delayed_work *dwork, unsigned long delay)
2031 {
2032 unsigned long flags;
2033 int ret;
2034
2035 do {
2036 ret = try_to_grab_pending(&dwork->work, true, &flags);
2037 } while (unlikely(ret == -EAGAIN));
2038
2039 if (likely(ret >= 0)) {
2040 __queue_delayed_work(cpu, wq, dwork, delay);
2041 local_irq_restore(flags);
2042 }
2043
2044 /* -ENOENT from try_to_grab_pending() becomes %true */
2045 return ret;
2046 }
2047 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2048
rcu_work_rcufn(struct rcu_head * rcu)2049 static void rcu_work_rcufn(struct rcu_head *rcu)
2050 {
2051 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2052
2053 /* read the comment in __queue_work() */
2054 local_irq_disable();
2055 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2056 local_irq_enable();
2057 }
2058
2059 /**
2060 * queue_rcu_work - queue work after a RCU grace period
2061 * @wq: workqueue to use
2062 * @rwork: work to queue
2063 *
2064 * Return: %false if @rwork was already pending, %true otherwise. Note
2065 * that a full RCU grace period is guaranteed only after a %true return.
2066 * While @rwork is guaranteed to be executed after a %false return, the
2067 * execution may happen before a full RCU grace period has passed.
2068 */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)2069 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2070 {
2071 struct work_struct *work = &rwork->work;
2072
2073 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2074 rwork->wq = wq;
2075 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2076 return true;
2077 }
2078
2079 return false;
2080 }
2081 EXPORT_SYMBOL(queue_rcu_work);
2082
alloc_worker(int node)2083 static struct worker *alloc_worker(int node)
2084 {
2085 struct worker *worker;
2086
2087 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2088 if (worker) {
2089 INIT_LIST_HEAD(&worker->entry);
2090 INIT_LIST_HEAD(&worker->scheduled);
2091 INIT_LIST_HEAD(&worker->node);
2092 /* on creation a worker is in !idle && prep state */
2093 worker->flags = WORKER_PREP;
2094 }
2095 return worker;
2096 }
2097
pool_allowed_cpus(struct worker_pool * pool)2098 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2099 {
2100 if (pool->cpu < 0 && pool->attrs->affn_strict)
2101 return pool->attrs->__pod_cpumask;
2102 else
2103 return pool->attrs->cpumask;
2104 }
2105
2106 /**
2107 * worker_attach_to_pool() - attach a worker to a pool
2108 * @worker: worker to be attached
2109 * @pool: the target pool
2110 *
2111 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
2112 * cpu-binding of @worker are kept coordinated with the pool across
2113 * cpu-[un]hotplugs.
2114 */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)2115 static void worker_attach_to_pool(struct worker *worker,
2116 struct worker_pool *pool)
2117 {
2118 mutex_lock(&wq_pool_attach_mutex);
2119
2120 /*
2121 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
2122 * stable across this function. See the comments above the flag
2123 * definition for details.
2124 */
2125 if (pool->flags & POOL_DISASSOCIATED)
2126 worker->flags |= WORKER_UNBOUND;
2127 else
2128 kthread_set_per_cpu(worker->task, pool->cpu);
2129
2130 if (worker->rescue_wq)
2131 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2132
2133 list_add_tail(&worker->node, &pool->workers);
2134 worker->pool = pool;
2135
2136 mutex_unlock(&wq_pool_attach_mutex);
2137 }
2138
2139 /**
2140 * worker_detach_from_pool() - detach a worker from its pool
2141 * @worker: worker which is attached to its pool
2142 *
2143 * Undo the attaching which had been done in worker_attach_to_pool(). The
2144 * caller worker shouldn't access to the pool after detached except it has
2145 * other reference to the pool.
2146 */
worker_detach_from_pool(struct worker * worker)2147 static void worker_detach_from_pool(struct worker *worker)
2148 {
2149 struct worker_pool *pool = worker->pool;
2150 struct completion *detach_completion = NULL;
2151
2152 mutex_lock(&wq_pool_attach_mutex);
2153
2154 kthread_set_per_cpu(worker->task, -1);
2155 list_del(&worker->node);
2156 worker->pool = NULL;
2157
2158 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
2159 detach_completion = pool->detach_completion;
2160 mutex_unlock(&wq_pool_attach_mutex);
2161
2162 /* clear leftover flags without pool->lock after it is detached */
2163 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2164
2165 if (detach_completion)
2166 complete(detach_completion);
2167 }
2168
2169 /**
2170 * create_worker - create a new workqueue worker
2171 * @pool: pool the new worker will belong to
2172 *
2173 * Create and start a new worker which is attached to @pool.
2174 *
2175 * CONTEXT:
2176 * Might sleep. Does GFP_KERNEL allocations.
2177 *
2178 * Return:
2179 * Pointer to the newly created worker.
2180 */
create_worker(struct worker_pool * pool)2181 static struct worker *create_worker(struct worker_pool *pool)
2182 {
2183 struct worker *worker;
2184 int id;
2185 char id_buf[23];
2186
2187 /* ID is needed to determine kthread name */
2188 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2189 if (id < 0) {
2190 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2191 ERR_PTR(id));
2192 return NULL;
2193 }
2194
2195 worker = alloc_worker(pool->node);
2196 if (!worker) {
2197 pr_err_once("workqueue: Failed to allocate a worker\n");
2198 goto fail;
2199 }
2200
2201 worker->id = id;
2202
2203 if (pool->cpu >= 0)
2204 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2205 pool->attrs->nice < 0 ? "H" : "");
2206 else
2207 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2208
2209 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
2210 "kworker/%s", id_buf);
2211 if (IS_ERR(worker->task)) {
2212 if (PTR_ERR(worker->task) == -EINTR) {
2213 pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2214 id_buf);
2215 } else {
2216 pr_err_once("workqueue: Failed to create a worker thread: %pe",
2217 worker->task);
2218 }
2219 goto fail;
2220 }
2221
2222 set_user_nice(worker->task, pool->attrs->nice);
2223 trace_android_rvh_create_worker(worker->task, pool->attrs);
2224 kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2225
2226 /* successful, attach the worker to the pool */
2227 worker_attach_to_pool(worker, pool);
2228
2229 /* start the newly created worker */
2230 raw_spin_lock_irq(&pool->lock);
2231
2232 worker->pool->nr_workers++;
2233 worker_enter_idle(worker);
2234 kick_pool(pool);
2235
2236 /*
2237 * @worker is waiting on a completion in kthread() and will trigger hung
2238 * check if not woken up soon. As kick_pool() might not have waken it
2239 * up, wake it up explicitly once more.
2240 */
2241 wake_up_process(worker->task);
2242
2243 raw_spin_unlock_irq(&pool->lock);
2244
2245 return worker;
2246
2247 fail:
2248 ida_free(&pool->worker_ida, id);
2249 kfree(worker);
2250 return NULL;
2251 }
2252
unbind_worker(struct worker * worker)2253 static void unbind_worker(struct worker *worker)
2254 {
2255 lockdep_assert_held(&wq_pool_attach_mutex);
2256
2257 kthread_set_per_cpu(worker->task, -1);
2258 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2259 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2260 else
2261 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2262 }
2263
wake_dying_workers(struct list_head * cull_list)2264 static void wake_dying_workers(struct list_head *cull_list)
2265 {
2266 struct worker *worker, *tmp;
2267
2268 list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2269 list_del_init(&worker->entry);
2270 unbind_worker(worker);
2271 /*
2272 * If the worker was somehow already running, then it had to be
2273 * in pool->idle_list when set_worker_dying() happened or we
2274 * wouldn't have gotten here.
2275 *
2276 * Thus, the worker must either have observed the WORKER_DIE
2277 * flag, or have set its state to TASK_IDLE. Either way, the
2278 * below will be observed by the worker and is safe to do
2279 * outside of pool->lock.
2280 */
2281 wake_up_process(worker->task);
2282 }
2283 }
2284
2285 /**
2286 * set_worker_dying - Tag a worker for destruction
2287 * @worker: worker to be destroyed
2288 * @list: transfer worker away from its pool->idle_list and into list
2289 *
2290 * Tag @worker for destruction and adjust @pool stats accordingly. The worker
2291 * should be idle.
2292 *
2293 * CONTEXT:
2294 * raw_spin_lock_irq(pool->lock).
2295 */
set_worker_dying(struct worker * worker,struct list_head * list)2296 static void set_worker_dying(struct worker *worker, struct list_head *list)
2297 {
2298 struct worker_pool *pool = worker->pool;
2299
2300 lockdep_assert_held(&pool->lock);
2301 lockdep_assert_held(&wq_pool_attach_mutex);
2302
2303 /* sanity check frenzy */
2304 if (WARN_ON(worker->current_work) ||
2305 WARN_ON(!list_empty(&worker->scheduled)) ||
2306 WARN_ON(!(worker->flags & WORKER_IDLE)))
2307 return;
2308
2309 pool->nr_workers--;
2310 pool->nr_idle--;
2311
2312 worker->flags |= WORKER_DIE;
2313
2314 list_move(&worker->entry, list);
2315 list_move(&worker->node, &pool->dying_workers);
2316 }
2317
2318 /**
2319 * idle_worker_timeout - check if some idle workers can now be deleted.
2320 * @t: The pool's idle_timer that just expired
2321 *
2322 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2323 * worker_leave_idle(), as a worker flicking between idle and active while its
2324 * pool is at the too_many_workers() tipping point would cause too much timer
2325 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2326 * it expire and re-evaluate things from there.
2327 */
idle_worker_timeout(struct timer_list * t)2328 static void idle_worker_timeout(struct timer_list *t)
2329 {
2330 struct worker_pool *pool = from_timer(pool, t, idle_timer);
2331 bool do_cull = false;
2332
2333 if (work_pending(&pool->idle_cull_work))
2334 return;
2335
2336 raw_spin_lock_irq(&pool->lock);
2337
2338 if (too_many_workers(pool)) {
2339 struct worker *worker;
2340 unsigned long expires;
2341
2342 /* idle_list is kept in LIFO order, check the last one */
2343 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2344 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2345 do_cull = !time_before(jiffies, expires);
2346
2347 if (!do_cull)
2348 mod_timer(&pool->idle_timer, expires);
2349 }
2350 raw_spin_unlock_irq(&pool->lock);
2351
2352 if (do_cull)
2353 queue_work(system_unbound_wq, &pool->idle_cull_work);
2354 }
2355
2356 /**
2357 * idle_cull_fn - cull workers that have been idle for too long.
2358 * @work: the pool's work for handling these idle workers
2359 *
2360 * This goes through a pool's idle workers and gets rid of those that have been
2361 * idle for at least IDLE_WORKER_TIMEOUT seconds.
2362 *
2363 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2364 * culled, so this also resets worker affinity. This requires a sleepable
2365 * context, hence the split between timer callback and work item.
2366 */
idle_cull_fn(struct work_struct * work)2367 static void idle_cull_fn(struct work_struct *work)
2368 {
2369 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2370 LIST_HEAD(cull_list);
2371
2372 /*
2373 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2374 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2375 * path. This is required as a previously-preempted worker could run after
2376 * set_worker_dying() has happened but before wake_dying_workers() did.
2377 */
2378 mutex_lock(&wq_pool_attach_mutex);
2379 raw_spin_lock_irq(&pool->lock);
2380
2381 while (too_many_workers(pool)) {
2382 struct worker *worker;
2383 unsigned long expires;
2384
2385 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2386 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2387
2388 if (time_before(jiffies, expires)) {
2389 mod_timer(&pool->idle_timer, expires);
2390 break;
2391 }
2392
2393 set_worker_dying(worker, &cull_list);
2394 }
2395
2396 raw_spin_unlock_irq(&pool->lock);
2397 wake_dying_workers(&cull_list);
2398 mutex_unlock(&wq_pool_attach_mutex);
2399 }
2400
send_mayday(struct work_struct * work)2401 static void send_mayday(struct work_struct *work)
2402 {
2403 struct pool_workqueue *pwq = get_work_pwq(work);
2404 struct workqueue_struct *wq = pwq->wq;
2405
2406 lockdep_assert_held(&wq_mayday_lock);
2407
2408 if (!wq->rescuer)
2409 return;
2410
2411 /* mayday mayday mayday */
2412 if (list_empty(&pwq->mayday_node)) {
2413 /*
2414 * If @pwq is for an unbound wq, its base ref may be put at
2415 * any time due to an attribute change. Pin @pwq until the
2416 * rescuer is done with it.
2417 */
2418 get_pwq(pwq);
2419 list_add_tail(&pwq->mayday_node, &wq->maydays);
2420 wake_up_process(wq->rescuer->task);
2421 pwq->stats[PWQ_STAT_MAYDAY]++;
2422 }
2423 }
2424
pool_mayday_timeout(struct timer_list * t)2425 static void pool_mayday_timeout(struct timer_list *t)
2426 {
2427 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2428 struct work_struct *work;
2429
2430 raw_spin_lock_irq(&pool->lock);
2431 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
2432
2433 if (need_to_create_worker(pool)) {
2434 /*
2435 * We've been trying to create a new worker but
2436 * haven't been successful. We might be hitting an
2437 * allocation deadlock. Send distress signals to
2438 * rescuers.
2439 */
2440 list_for_each_entry(work, &pool->worklist, entry)
2441 send_mayday(work);
2442 }
2443
2444 raw_spin_unlock(&wq_mayday_lock);
2445 raw_spin_unlock_irq(&pool->lock);
2446
2447 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2448 }
2449
2450 /**
2451 * maybe_create_worker - create a new worker if necessary
2452 * @pool: pool to create a new worker for
2453 *
2454 * Create a new worker for @pool if necessary. @pool is guaranteed to
2455 * have at least one idle worker on return from this function. If
2456 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2457 * sent to all rescuers with works scheduled on @pool to resolve
2458 * possible allocation deadlock.
2459 *
2460 * On return, need_to_create_worker() is guaranteed to be %false and
2461 * may_start_working() %true.
2462 *
2463 * LOCKING:
2464 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2465 * multiple times. Does GFP_KERNEL allocations. Called only from
2466 * manager.
2467 */
maybe_create_worker(struct worker_pool * pool)2468 static void maybe_create_worker(struct worker_pool *pool)
2469 __releases(&pool->lock)
2470 __acquires(&pool->lock)
2471 {
2472 restart:
2473 raw_spin_unlock_irq(&pool->lock);
2474
2475 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2476 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2477
2478 while (true) {
2479 if (create_worker(pool) || !need_to_create_worker(pool))
2480 break;
2481
2482 schedule_timeout_interruptible(CREATE_COOLDOWN);
2483
2484 if (!need_to_create_worker(pool))
2485 break;
2486 }
2487
2488 del_timer_sync(&pool->mayday_timer);
2489 raw_spin_lock_irq(&pool->lock);
2490 /*
2491 * This is necessary even after a new worker was just successfully
2492 * created as @pool->lock was dropped and the new worker might have
2493 * already become busy.
2494 */
2495 if (need_to_create_worker(pool))
2496 goto restart;
2497 }
2498
2499 /**
2500 * manage_workers - manage worker pool
2501 * @worker: self
2502 *
2503 * Assume the manager role and manage the worker pool @worker belongs
2504 * to. At any given time, there can be only zero or one manager per
2505 * pool. The exclusion is handled automatically by this function.
2506 *
2507 * The caller can safely start processing works on false return. On
2508 * true return, it's guaranteed that need_to_create_worker() is false
2509 * and may_start_working() is true.
2510 *
2511 * CONTEXT:
2512 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2513 * multiple times. Does GFP_KERNEL allocations.
2514 *
2515 * Return:
2516 * %false if the pool doesn't need management and the caller can safely
2517 * start processing works, %true if management function was performed and
2518 * the conditions that the caller verified before calling the function may
2519 * no longer be true.
2520 */
manage_workers(struct worker * worker)2521 static bool manage_workers(struct worker *worker)
2522 {
2523 struct worker_pool *pool = worker->pool;
2524
2525 if (pool->flags & POOL_MANAGER_ACTIVE)
2526 return false;
2527
2528 pool->flags |= POOL_MANAGER_ACTIVE;
2529 pool->manager = worker;
2530
2531 maybe_create_worker(pool);
2532
2533 pool->manager = NULL;
2534 pool->flags &= ~POOL_MANAGER_ACTIVE;
2535 rcuwait_wake_up(&manager_wait);
2536 return true;
2537 }
2538
2539 /**
2540 * process_one_work - process single work
2541 * @worker: self
2542 * @work: work to process
2543 *
2544 * Process @work. This function contains all the logics necessary to
2545 * process a single work including synchronization against and
2546 * interaction with other workers on the same cpu, queueing and
2547 * flushing. As long as context requirement is met, any worker can
2548 * call this function to process a work.
2549 *
2550 * CONTEXT:
2551 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2552 */
process_one_work(struct worker * worker,struct work_struct * work)2553 static void process_one_work(struct worker *worker, struct work_struct *work)
2554 __releases(&pool->lock)
2555 __acquires(&pool->lock)
2556 {
2557 struct pool_workqueue *pwq = get_work_pwq(work);
2558 struct worker_pool *pool = worker->pool;
2559 unsigned long work_data;
2560 #ifdef CONFIG_LOCKDEP
2561 /*
2562 * It is permissible to free the struct work_struct from
2563 * inside the function that is called from it, this we need to
2564 * take into account for lockdep too. To avoid bogus "held
2565 * lock freed" warnings as well as problems when looking into
2566 * work->lockdep_map, make a copy and use that here.
2567 */
2568 struct lockdep_map lockdep_map;
2569
2570 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2571 #endif
2572 /* ensure we're on the correct CPU */
2573 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2574 raw_smp_processor_id() != pool->cpu);
2575
2576 /* claim and dequeue */
2577 debug_work_deactivate(work);
2578 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2579 worker->current_work = work;
2580 worker->current_func = work->func;
2581 worker->current_pwq = pwq;
2582 worker->current_at = worker->task->se.sum_exec_runtime;
2583 work_data = *work_data_bits(work);
2584 worker->current_color = get_work_color(work_data);
2585
2586 /*
2587 * Record wq name for cmdline and debug reporting, may get
2588 * overridden through set_worker_desc().
2589 */
2590 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2591
2592 list_del_init(&work->entry);
2593
2594 /*
2595 * CPU intensive works don't participate in concurrency management.
2596 * They're the scheduler's responsibility. This takes @worker out
2597 * of concurrency management and the next code block will chain
2598 * execution of the pending work items.
2599 */
2600 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
2601 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2602
2603 /*
2604 * Kick @pool if necessary. It's always noop for per-cpu worker pools
2605 * since nr_running would always be >= 1 at this point. This is used to
2606 * chain execution of the pending work items for WORKER_NOT_RUNNING
2607 * workers such as the UNBOUND and CPU_INTENSIVE ones.
2608 */
2609 kick_pool(pool);
2610
2611 /*
2612 * Record the last pool and clear PENDING which should be the last
2613 * update to @work. Also, do this inside @pool->lock so that
2614 * PENDING and queued state changes happen together while IRQ is
2615 * disabled.
2616 */
2617 set_work_pool_and_clear_pending(work, pool->id);
2618
2619 pwq->stats[PWQ_STAT_STARTED]++;
2620 raw_spin_unlock_irq(&pool->lock);
2621
2622 lock_map_acquire(&pwq->wq->lockdep_map);
2623 lock_map_acquire(&lockdep_map);
2624 /*
2625 * Strictly speaking we should mark the invariant state without holding
2626 * any locks, that is, before these two lock_map_acquire()'s.
2627 *
2628 * However, that would result in:
2629 *
2630 * A(W1)
2631 * WFC(C)
2632 * A(W1)
2633 * C(C)
2634 *
2635 * Which would create W1->C->W1 dependencies, even though there is no
2636 * actual deadlock possible. There are two solutions, using a
2637 * read-recursive acquire on the work(queue) 'locks', but this will then
2638 * hit the lockdep limitation on recursive locks, or simply discard
2639 * these locks.
2640 *
2641 * AFAICT there is no possible deadlock scenario between the
2642 * flush_work() and complete() primitives (except for single-threaded
2643 * workqueues), so hiding them isn't a problem.
2644 */
2645 lockdep_invariant_state(true);
2646 trace_workqueue_execute_start(work);
2647 worker->current_func(work);
2648 /*
2649 * While we must be careful to not use "work" after this, the trace
2650 * point will only record its address.
2651 */
2652 trace_workqueue_execute_end(work, worker->current_func);
2653 pwq->stats[PWQ_STAT_COMPLETED]++;
2654 lock_map_release(&lockdep_map);
2655 lock_map_release(&pwq->wq->lockdep_map);
2656
2657 if (unlikely(in_atomic() || lockdep_depth(current) > 0 ||
2658 rcu_preempt_depth() > 0)) {
2659 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d/%d\n"
2660 " last function: %ps\n",
2661 current->comm, preempt_count(), rcu_preempt_depth(),
2662 task_pid_nr(current), worker->current_func);
2663 debug_show_held_locks(current);
2664 dump_stack();
2665 }
2666
2667 /*
2668 * The following prevents a kworker from hogging CPU on !PREEMPTION
2669 * kernels, where a requeueing work item waiting for something to
2670 * happen could deadlock with stop_machine as such work item could
2671 * indefinitely requeue itself while all other CPUs are trapped in
2672 * stop_machine. At the same time, report a quiescent RCU state so
2673 * the same condition doesn't freeze RCU.
2674 */
2675 cond_resched();
2676
2677 raw_spin_lock_irq(&pool->lock);
2678
2679 /*
2680 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
2681 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
2682 * wq_cpu_intensive_thresh_us. Clear it.
2683 */
2684 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2685
2686 /* tag the worker for identification in schedule() */
2687 worker->last_func = worker->current_func;
2688
2689 /* we're done with it, release */
2690 hash_del(&worker->hentry);
2691 worker->current_work = NULL;
2692 worker->current_func = NULL;
2693 worker->current_pwq = NULL;
2694 worker->current_color = INT_MAX;
2695 pwq_dec_nr_in_flight(pwq, work_data);
2696 }
2697
2698 /**
2699 * process_scheduled_works - process scheduled works
2700 * @worker: self
2701 *
2702 * Process all scheduled works. Please note that the scheduled list
2703 * may change while processing a work, so this function repeatedly
2704 * fetches a work from the top and executes it.
2705 *
2706 * CONTEXT:
2707 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2708 * multiple times.
2709 */
process_scheduled_works(struct worker * worker)2710 static void process_scheduled_works(struct worker *worker)
2711 {
2712 struct work_struct *work;
2713 bool first = true;
2714
2715 while ((work = list_first_entry_or_null(&worker->scheduled,
2716 struct work_struct, entry))) {
2717 if (first) {
2718 worker->pool->watchdog_ts = jiffies;
2719 first = false;
2720 }
2721 process_one_work(worker, work);
2722 }
2723 }
2724
set_pf_worker(bool val)2725 static void set_pf_worker(bool val)
2726 {
2727 mutex_lock(&wq_pool_attach_mutex);
2728 if (val)
2729 current->flags |= PF_WQ_WORKER;
2730 else
2731 current->flags &= ~PF_WQ_WORKER;
2732 mutex_unlock(&wq_pool_attach_mutex);
2733 }
2734
2735 /**
2736 * worker_thread - the worker thread function
2737 * @__worker: self
2738 *
2739 * The worker thread function. All workers belong to a worker_pool -
2740 * either a per-cpu one or dynamic unbound one. These workers process all
2741 * work items regardless of their specific target workqueue. The only
2742 * exception is work items which belong to workqueues with a rescuer which
2743 * will be explained in rescuer_thread().
2744 *
2745 * Return: 0
2746 */
worker_thread(void * __worker)2747 static int worker_thread(void *__worker)
2748 {
2749 struct worker *worker = __worker;
2750 struct worker_pool *pool = worker->pool;
2751
2752 /* tell the scheduler that this is a workqueue worker */
2753 set_pf_worker(true);
2754 woke_up:
2755 raw_spin_lock_irq(&pool->lock);
2756
2757 /* am I supposed to die? */
2758 if (unlikely(worker->flags & WORKER_DIE)) {
2759 raw_spin_unlock_irq(&pool->lock);
2760 set_pf_worker(false);
2761
2762 set_task_comm(worker->task, "kworker/dying");
2763 ida_free(&pool->worker_ida, worker->id);
2764 worker_detach_from_pool(worker);
2765 WARN_ON_ONCE(!list_empty(&worker->entry));
2766 kfree(worker);
2767 return 0;
2768 }
2769
2770 worker_leave_idle(worker);
2771 recheck:
2772 /* no more worker necessary? */
2773 if (!need_more_worker(pool))
2774 goto sleep;
2775
2776 /* do we need to manage? */
2777 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2778 goto recheck;
2779
2780 /*
2781 * ->scheduled list can only be filled while a worker is
2782 * preparing to process a work or actually processing it.
2783 * Make sure nobody diddled with it while I was sleeping.
2784 */
2785 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2786
2787 /*
2788 * Finish PREP stage. We're guaranteed to have at least one idle
2789 * worker or that someone else has already assumed the manager
2790 * role. This is where @worker starts participating in concurrency
2791 * management if applicable and concurrency management is restored
2792 * after being rebound. See rebind_workers() for details.
2793 */
2794 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2795
2796 do {
2797 struct work_struct *work =
2798 list_first_entry(&pool->worklist,
2799 struct work_struct, entry);
2800
2801 if (assign_work(work, worker, NULL))
2802 process_scheduled_works(worker);
2803 } while (keep_working(pool));
2804
2805 worker_set_flags(worker, WORKER_PREP);
2806 sleep:
2807 /*
2808 * pool->lock is held and there's no work to process and no need to
2809 * manage, sleep. Workers are woken up only while holding
2810 * pool->lock or from local cpu, so setting the current state
2811 * before releasing pool->lock is enough to prevent losing any
2812 * event.
2813 */
2814 worker_enter_idle(worker);
2815 __set_current_state(TASK_IDLE);
2816 raw_spin_unlock_irq(&pool->lock);
2817 schedule();
2818 goto woke_up;
2819 }
2820
2821 /**
2822 * rescuer_thread - the rescuer thread function
2823 * @__rescuer: self
2824 *
2825 * Workqueue rescuer thread function. There's one rescuer for each
2826 * workqueue which has WQ_MEM_RECLAIM set.
2827 *
2828 * Regular work processing on a pool may block trying to create a new
2829 * worker which uses GFP_KERNEL allocation which has slight chance of
2830 * developing into deadlock if some works currently on the same queue
2831 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2832 * the problem rescuer solves.
2833 *
2834 * When such condition is possible, the pool summons rescuers of all
2835 * workqueues which have works queued on the pool and let them process
2836 * those works so that forward progress can be guaranteed.
2837 *
2838 * This should happen rarely.
2839 *
2840 * Return: 0
2841 */
rescuer_thread(void * __rescuer)2842 static int rescuer_thread(void *__rescuer)
2843 {
2844 struct worker *rescuer = __rescuer;
2845 struct workqueue_struct *wq = rescuer->rescue_wq;
2846 bool should_stop;
2847
2848 set_user_nice(current, RESCUER_NICE_LEVEL);
2849
2850 /*
2851 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2852 * doesn't participate in concurrency management.
2853 */
2854 set_pf_worker(true);
2855 repeat:
2856 set_current_state(TASK_IDLE);
2857
2858 /*
2859 * By the time the rescuer is requested to stop, the workqueue
2860 * shouldn't have any work pending, but @wq->maydays may still have
2861 * pwq(s) queued. This can happen by non-rescuer workers consuming
2862 * all the work items before the rescuer got to them. Go through
2863 * @wq->maydays processing before acting on should_stop so that the
2864 * list is always empty on exit.
2865 */
2866 should_stop = kthread_should_stop();
2867
2868 /* see whether any pwq is asking for help */
2869 raw_spin_lock_irq(&wq_mayday_lock);
2870
2871 while (!list_empty(&wq->maydays)) {
2872 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2873 struct pool_workqueue, mayday_node);
2874 struct worker_pool *pool = pwq->pool;
2875 struct work_struct *work, *n;
2876
2877 __set_current_state(TASK_RUNNING);
2878 list_del_init(&pwq->mayday_node);
2879
2880 raw_spin_unlock_irq(&wq_mayday_lock);
2881
2882 worker_attach_to_pool(rescuer, pool);
2883
2884 raw_spin_lock_irq(&pool->lock);
2885
2886 /*
2887 * Slurp in all works issued via this workqueue and
2888 * process'em.
2889 */
2890 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2891 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2892 if (get_work_pwq(work) == pwq &&
2893 assign_work(work, rescuer, &n))
2894 pwq->stats[PWQ_STAT_RESCUED]++;
2895 }
2896
2897 if (!list_empty(&rescuer->scheduled)) {
2898 process_scheduled_works(rescuer);
2899
2900 /*
2901 * The above execution of rescued work items could
2902 * have created more to rescue through
2903 * pwq_activate_first_inactive() or chained
2904 * queueing. Let's put @pwq back on mayday list so
2905 * that such back-to-back work items, which may be
2906 * being used to relieve memory pressure, don't
2907 * incur MAYDAY_INTERVAL delay inbetween.
2908 */
2909 if (pwq->nr_active && need_to_create_worker(pool)) {
2910 raw_spin_lock(&wq_mayday_lock);
2911 /*
2912 * Queue iff we aren't racing destruction
2913 * and somebody else hasn't queued it already.
2914 */
2915 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2916 get_pwq(pwq);
2917 list_add_tail(&pwq->mayday_node, &wq->maydays);
2918 }
2919 raw_spin_unlock(&wq_mayday_lock);
2920 }
2921 }
2922
2923 /*
2924 * Put the reference grabbed by send_mayday(). @pool won't
2925 * go away while we're still attached to it.
2926 */
2927 put_pwq(pwq);
2928
2929 /*
2930 * Leave this pool. Notify regular workers; otherwise, we end up
2931 * with 0 concurrency and stalling the execution.
2932 */
2933 kick_pool(pool);
2934
2935 raw_spin_unlock_irq(&pool->lock);
2936
2937 worker_detach_from_pool(rescuer);
2938
2939 raw_spin_lock_irq(&wq_mayday_lock);
2940 }
2941
2942 raw_spin_unlock_irq(&wq_mayday_lock);
2943
2944 if (should_stop) {
2945 __set_current_state(TASK_RUNNING);
2946 set_pf_worker(false);
2947 return 0;
2948 }
2949
2950 /* rescuers should never participate in concurrency management */
2951 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2952 schedule();
2953 goto repeat;
2954 }
2955
2956 /**
2957 * check_flush_dependency - check for flush dependency sanity
2958 * @target_wq: workqueue being flushed
2959 * @target_work: work item being flushed (NULL for workqueue flushes)
2960 *
2961 * %current is trying to flush the whole @target_wq or @target_work on it.
2962 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2963 * reclaiming memory or running on a workqueue which doesn't have
2964 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2965 * a deadlock.
2966 */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work)2967 static void check_flush_dependency(struct workqueue_struct *target_wq,
2968 struct work_struct *target_work)
2969 {
2970 work_func_t target_func = target_work ? target_work->func : NULL;
2971 struct worker *worker;
2972
2973 if (target_wq->flags & WQ_MEM_RECLAIM)
2974 return;
2975
2976 worker = current_wq_worker();
2977
2978 WARN_ONCE(current->flags & PF_MEMALLOC,
2979 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2980 current->pid, current->comm, target_wq->name, target_func);
2981 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2982 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2983 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2984 worker->current_pwq->wq->name, worker->current_func,
2985 target_wq->name, target_func);
2986 }
2987
2988 struct wq_barrier {
2989 struct work_struct work;
2990 struct completion done;
2991 struct task_struct *task; /* purely informational */
2992 };
2993
wq_barrier_func(struct work_struct * work)2994 static void wq_barrier_func(struct work_struct *work)
2995 {
2996 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2997 complete(&barr->done);
2998 }
2999
3000 /**
3001 * insert_wq_barrier - insert a barrier work
3002 * @pwq: pwq to insert barrier into
3003 * @barr: wq_barrier to insert
3004 * @target: target work to attach @barr to
3005 * @worker: worker currently executing @target, NULL if @target is not executing
3006 *
3007 * @barr is linked to @target such that @barr is completed only after
3008 * @target finishes execution. Please note that the ordering
3009 * guarantee is observed only with respect to @target and on the local
3010 * cpu.
3011 *
3012 * Currently, a queued barrier can't be canceled. This is because
3013 * try_to_grab_pending() can't determine whether the work to be
3014 * grabbed is at the head of the queue and thus can't clear LINKED
3015 * flag of the previous work while there must be a valid next work
3016 * after a work with LINKED flag set.
3017 *
3018 * Note that when @worker is non-NULL, @target may be modified
3019 * underneath us, so we can't reliably determine pwq from @target.
3020 *
3021 * CONTEXT:
3022 * raw_spin_lock_irq(pool->lock).
3023 */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)3024 static void insert_wq_barrier(struct pool_workqueue *pwq,
3025 struct wq_barrier *barr,
3026 struct work_struct *target, struct worker *worker)
3027 {
3028 unsigned int work_flags = 0;
3029 unsigned int work_color;
3030 struct list_head *head;
3031
3032 /*
3033 * debugobject calls are safe here even with pool->lock locked
3034 * as we know for sure that this will not trigger any of the
3035 * checks and call back into the fixup functions where we
3036 * might deadlock.
3037 */
3038 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
3039 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3040
3041 init_completion_map(&barr->done, &target->lockdep_map);
3042
3043 barr->task = current;
3044
3045 /* The barrier work item does not participate in pwq->nr_active. */
3046 work_flags |= WORK_STRUCT_INACTIVE;
3047
3048 /*
3049 * If @target is currently being executed, schedule the
3050 * barrier to the worker; otherwise, put it after @target.
3051 */
3052 if (worker) {
3053 head = worker->scheduled.next;
3054 work_color = worker->current_color;
3055 } else {
3056 unsigned long *bits = work_data_bits(target);
3057
3058 head = target->entry.next;
3059 /* there can already be other linked works, inherit and set */
3060 work_flags |= *bits & WORK_STRUCT_LINKED;
3061 work_color = get_work_color(*bits);
3062 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
3063 }
3064
3065 pwq->nr_in_flight[work_color]++;
3066 work_flags |= work_color_to_flags(work_color);
3067
3068 insert_work(pwq, &barr->work, head, work_flags);
3069 }
3070
3071 /**
3072 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3073 * @wq: workqueue being flushed
3074 * @flush_color: new flush color, < 0 for no-op
3075 * @work_color: new work color, < 0 for no-op
3076 *
3077 * Prepare pwqs for workqueue flushing.
3078 *
3079 * If @flush_color is non-negative, flush_color on all pwqs should be
3080 * -1. If no pwq has in-flight commands at the specified color, all
3081 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
3082 * has in flight commands, its pwq->flush_color is set to
3083 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3084 * wakeup logic is armed and %true is returned.
3085 *
3086 * The caller should have initialized @wq->first_flusher prior to
3087 * calling this function with non-negative @flush_color. If
3088 * @flush_color is negative, no flush color update is done and %false
3089 * is returned.
3090 *
3091 * If @work_color is non-negative, all pwqs should have the same
3092 * work_color which is previous to @work_color and all will be
3093 * advanced to @work_color.
3094 *
3095 * CONTEXT:
3096 * mutex_lock(wq->mutex).
3097 *
3098 * Return:
3099 * %true if @flush_color >= 0 and there's something to flush. %false
3100 * otherwise.
3101 */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)3102 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3103 int flush_color, int work_color)
3104 {
3105 bool wait = false;
3106 struct pool_workqueue *pwq;
3107
3108 if (flush_color >= 0) {
3109 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3110 atomic_set(&wq->nr_pwqs_to_flush, 1);
3111 }
3112
3113 for_each_pwq(pwq, wq) {
3114 struct worker_pool *pool = pwq->pool;
3115
3116 raw_spin_lock_irq(&pool->lock);
3117
3118 if (flush_color >= 0) {
3119 WARN_ON_ONCE(pwq->flush_color != -1);
3120
3121 if (pwq->nr_in_flight[flush_color]) {
3122 pwq->flush_color = flush_color;
3123 atomic_inc(&wq->nr_pwqs_to_flush);
3124 wait = true;
3125 }
3126 }
3127
3128 if (work_color >= 0) {
3129 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3130 pwq->work_color = work_color;
3131 }
3132
3133 raw_spin_unlock_irq(&pool->lock);
3134 }
3135
3136 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3137 complete(&wq->first_flusher->done);
3138
3139 return wait;
3140 }
3141
3142 /**
3143 * __flush_workqueue - ensure that any scheduled work has run to completion.
3144 * @wq: workqueue to flush
3145 *
3146 * This function sleeps until all work items which were queued on entry
3147 * have finished execution, but it is not livelocked by new incoming ones.
3148 */
__flush_workqueue(struct workqueue_struct * wq)3149 void __flush_workqueue(struct workqueue_struct *wq)
3150 {
3151 struct wq_flusher this_flusher = {
3152 .list = LIST_HEAD_INIT(this_flusher.list),
3153 .flush_color = -1,
3154 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3155 };
3156 int next_color;
3157
3158 if (WARN_ON(!wq_online))
3159 return;
3160
3161 lock_map_acquire(&wq->lockdep_map);
3162 lock_map_release(&wq->lockdep_map);
3163
3164 mutex_lock(&wq->mutex);
3165
3166 /*
3167 * Start-to-wait phase
3168 */
3169 next_color = work_next_color(wq->work_color);
3170
3171 if (next_color != wq->flush_color) {
3172 /*
3173 * Color space is not full. The current work_color
3174 * becomes our flush_color and work_color is advanced
3175 * by one.
3176 */
3177 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3178 this_flusher.flush_color = wq->work_color;
3179 wq->work_color = next_color;
3180
3181 if (!wq->first_flusher) {
3182 /* no flush in progress, become the first flusher */
3183 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3184
3185 wq->first_flusher = &this_flusher;
3186
3187 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3188 wq->work_color)) {
3189 /* nothing to flush, done */
3190 wq->flush_color = next_color;
3191 wq->first_flusher = NULL;
3192 goto out_unlock;
3193 }
3194 } else {
3195 /* wait in queue */
3196 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3197 list_add_tail(&this_flusher.list, &wq->flusher_queue);
3198 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3199 }
3200 } else {
3201 /*
3202 * Oops, color space is full, wait on overflow queue.
3203 * The next flush completion will assign us
3204 * flush_color and transfer to flusher_queue.
3205 */
3206 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3207 }
3208
3209 check_flush_dependency(wq, NULL);
3210
3211 mutex_unlock(&wq->mutex);
3212
3213 wait_for_completion(&this_flusher.done);
3214
3215 /*
3216 * Wake-up-and-cascade phase
3217 *
3218 * First flushers are responsible for cascading flushes and
3219 * handling overflow. Non-first flushers can simply return.
3220 */
3221 if (READ_ONCE(wq->first_flusher) != &this_flusher)
3222 return;
3223
3224 mutex_lock(&wq->mutex);
3225
3226 /* we might have raced, check again with mutex held */
3227 if (wq->first_flusher != &this_flusher)
3228 goto out_unlock;
3229
3230 WRITE_ONCE(wq->first_flusher, NULL);
3231
3232 WARN_ON_ONCE(!list_empty(&this_flusher.list));
3233 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3234
3235 while (true) {
3236 struct wq_flusher *next, *tmp;
3237
3238 /* complete all the flushers sharing the current flush color */
3239 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3240 if (next->flush_color != wq->flush_color)
3241 break;
3242 list_del_init(&next->list);
3243 complete(&next->done);
3244 }
3245
3246 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
3247 wq->flush_color != work_next_color(wq->work_color));
3248
3249 /* this flush_color is finished, advance by one */
3250 wq->flush_color = work_next_color(wq->flush_color);
3251
3252 /* one color has been freed, handle overflow queue */
3253 if (!list_empty(&wq->flusher_overflow)) {
3254 /*
3255 * Assign the same color to all overflowed
3256 * flushers, advance work_color and append to
3257 * flusher_queue. This is the start-to-wait
3258 * phase for these overflowed flushers.
3259 */
3260 list_for_each_entry(tmp, &wq->flusher_overflow, list)
3261 tmp->flush_color = wq->work_color;
3262
3263 wq->work_color = work_next_color(wq->work_color);
3264
3265 list_splice_tail_init(&wq->flusher_overflow,
3266 &wq->flusher_queue);
3267 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3268 }
3269
3270 if (list_empty(&wq->flusher_queue)) {
3271 WARN_ON_ONCE(wq->flush_color != wq->work_color);
3272 break;
3273 }
3274
3275 /*
3276 * Need to flush more colors. Make the next flusher
3277 * the new first flusher and arm pwqs.
3278 */
3279 WARN_ON_ONCE(wq->flush_color == wq->work_color);
3280 WARN_ON_ONCE(wq->flush_color != next->flush_color);
3281
3282 list_del_init(&next->list);
3283 wq->first_flusher = next;
3284
3285 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
3286 break;
3287
3288 /*
3289 * Meh... this color is already done, clear first
3290 * flusher and repeat cascading.
3291 */
3292 wq->first_flusher = NULL;
3293 }
3294
3295 out_unlock:
3296 mutex_unlock(&wq->mutex);
3297 }
3298 EXPORT_SYMBOL(__flush_workqueue);
3299
3300 /**
3301 * drain_workqueue - drain a workqueue
3302 * @wq: workqueue to drain
3303 *
3304 * Wait until the workqueue becomes empty. While draining is in progress,
3305 * only chain queueing is allowed. IOW, only currently pending or running
3306 * work items on @wq can queue further work items on it. @wq is flushed
3307 * repeatedly until it becomes empty. The number of flushing is determined
3308 * by the depth of chaining and should be relatively short. Whine if it
3309 * takes too long.
3310 */
drain_workqueue(struct workqueue_struct * wq)3311 void drain_workqueue(struct workqueue_struct *wq)
3312 {
3313 unsigned int flush_cnt = 0;
3314 struct pool_workqueue *pwq;
3315
3316 /*
3317 * __queue_work() needs to test whether there are drainers, is much
3318 * hotter than drain_workqueue() and already looks at @wq->flags.
3319 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
3320 */
3321 mutex_lock(&wq->mutex);
3322 if (!wq->nr_drainers++)
3323 wq->flags |= __WQ_DRAINING;
3324 mutex_unlock(&wq->mutex);
3325 reflush:
3326 __flush_workqueue(wq);
3327
3328 mutex_lock(&wq->mutex);
3329
3330 for_each_pwq(pwq, wq) {
3331 bool drained;
3332
3333 raw_spin_lock_irq(&pwq->pool->lock);
3334 drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
3335 raw_spin_unlock_irq(&pwq->pool->lock);
3336
3337 if (drained)
3338 continue;
3339
3340 if (++flush_cnt == 10 ||
3341 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3342 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3343 wq->name, __func__, flush_cnt);
3344
3345 mutex_unlock(&wq->mutex);
3346 goto reflush;
3347 }
3348
3349 if (!--wq->nr_drainers)
3350 wq->flags &= ~__WQ_DRAINING;
3351 mutex_unlock(&wq->mutex);
3352 }
3353 EXPORT_SYMBOL_GPL(drain_workqueue);
3354
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)3355 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3356 bool from_cancel)
3357 {
3358 struct worker *worker = NULL;
3359 struct worker_pool *pool;
3360 struct pool_workqueue *pwq;
3361
3362 might_sleep();
3363
3364 rcu_read_lock();
3365 pool = get_work_pool(work);
3366 if (!pool) {
3367 rcu_read_unlock();
3368 return false;
3369 }
3370
3371 raw_spin_lock_irq(&pool->lock);
3372 /* see the comment in try_to_grab_pending() with the same code */
3373 pwq = get_work_pwq(work);
3374 if (pwq) {
3375 if (unlikely(pwq->pool != pool))
3376 goto already_gone;
3377 } else {
3378 worker = find_worker_executing_work(pool, work);
3379 if (!worker)
3380 goto already_gone;
3381 pwq = worker->current_pwq;
3382 }
3383
3384 check_flush_dependency(pwq->wq, work);
3385
3386 insert_wq_barrier(pwq, barr, work, worker);
3387 raw_spin_unlock_irq(&pool->lock);
3388
3389 /*
3390 * Force a lock recursion deadlock when using flush_work() inside a
3391 * single-threaded or rescuer equipped workqueue.
3392 *
3393 * For single threaded workqueues the deadlock happens when the work
3394 * is after the work issuing the flush_work(). For rescuer equipped
3395 * workqueues the deadlock happens when the rescuer stalls, blocking
3396 * forward progress.
3397 */
3398 if (!from_cancel &&
3399 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3400 lock_map_acquire(&pwq->wq->lockdep_map);
3401 lock_map_release(&pwq->wq->lockdep_map);
3402 }
3403 rcu_read_unlock();
3404 return true;
3405 already_gone:
3406 raw_spin_unlock_irq(&pool->lock);
3407 rcu_read_unlock();
3408 return false;
3409 }
3410
__flush_work(struct work_struct * work,bool from_cancel)3411 static bool __flush_work(struct work_struct *work, bool from_cancel)
3412 {
3413 struct wq_barrier barr;
3414
3415 if (WARN_ON(!wq_online))
3416 return false;
3417
3418 if (WARN_ON(!work->func))
3419 return false;
3420
3421 lock_map_acquire(&work->lockdep_map);
3422 lock_map_release(&work->lockdep_map);
3423
3424 if (start_flush_work(work, &barr, from_cancel)) {
3425 wait_for_completion(&barr.done);
3426 destroy_work_on_stack(&barr.work);
3427 return true;
3428 } else {
3429 return false;
3430 }
3431 }
3432
3433 /**
3434 * flush_work - wait for a work to finish executing the last queueing instance
3435 * @work: the work to flush
3436 *
3437 * Wait until @work has finished execution. @work is guaranteed to be idle
3438 * on return if it hasn't been requeued since flush started.
3439 *
3440 * Return:
3441 * %true if flush_work() waited for the work to finish execution,
3442 * %false if it was already idle.
3443 */
flush_work(struct work_struct * work)3444 bool flush_work(struct work_struct *work)
3445 {
3446 return __flush_work(work, false);
3447 }
3448 EXPORT_SYMBOL_GPL(flush_work);
3449
3450 struct cwt_wait {
3451 wait_queue_entry_t wait;
3452 struct work_struct *work;
3453 };
3454
cwt_wakefn(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)3455 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3456 {
3457 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3458
3459 if (cwait->work != key)
3460 return 0;
3461 return autoremove_wake_function(wait, mode, sync, key);
3462 }
3463
__cancel_work_timer(struct work_struct * work,bool is_dwork)3464 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3465 {
3466 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3467 unsigned long flags;
3468 int ret;
3469
3470 do {
3471 ret = try_to_grab_pending(work, is_dwork, &flags);
3472 /*
3473 * If someone else is already canceling, wait for it to
3474 * finish. flush_work() doesn't work for PREEMPT_NONE
3475 * because we may get scheduled between @work's completion
3476 * and the other canceling task resuming and clearing
3477 * CANCELING - flush_work() will return false immediately
3478 * as @work is no longer busy, try_to_grab_pending() will
3479 * return -ENOENT as @work is still being canceled and the
3480 * other canceling task won't be able to clear CANCELING as
3481 * we're hogging the CPU.
3482 *
3483 * Let's wait for completion using a waitqueue. As this
3484 * may lead to the thundering herd problem, use a custom
3485 * wake function which matches @work along with exclusive
3486 * wait and wakeup.
3487 */
3488 if (unlikely(ret == -ENOENT)) {
3489 struct cwt_wait cwait;
3490
3491 init_wait(&cwait.wait);
3492 cwait.wait.func = cwt_wakefn;
3493 cwait.work = work;
3494
3495 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3496 TASK_UNINTERRUPTIBLE);
3497 if (work_is_canceling(work))
3498 schedule();
3499 finish_wait(&cancel_waitq, &cwait.wait);
3500 }
3501 } while (unlikely(ret < 0));
3502
3503 /* tell other tasks trying to grab @work to back off */
3504 mark_work_canceling(work);
3505 local_irq_restore(flags);
3506
3507 /*
3508 * This allows canceling during early boot. We know that @work
3509 * isn't executing.
3510 */
3511 if (wq_online)
3512 __flush_work(work, true);
3513
3514 clear_work_data(work);
3515
3516 /*
3517 * Paired with prepare_to_wait() above so that either
3518 * waitqueue_active() is visible here or !work_is_canceling() is
3519 * visible there.
3520 */
3521 smp_mb();
3522 if (waitqueue_active(&cancel_waitq))
3523 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3524
3525 return ret;
3526 }
3527
3528 /**
3529 * cancel_work_sync - cancel a work and wait for it to finish
3530 * @work: the work to cancel
3531 *
3532 * Cancel @work and wait for its execution to finish. This function
3533 * can be used even if the work re-queues itself or migrates to
3534 * another workqueue. On return from this function, @work is
3535 * guaranteed to be not pending or executing on any CPU.
3536 *
3537 * cancel_work_sync(&delayed_work->work) must not be used for
3538 * delayed_work's. Use cancel_delayed_work_sync() instead.
3539 *
3540 * The caller must ensure that the workqueue on which @work was last
3541 * queued can't be destroyed before this function returns.
3542 *
3543 * Return:
3544 * %true if @work was pending, %false otherwise.
3545 */
cancel_work_sync(struct work_struct * work)3546 bool cancel_work_sync(struct work_struct *work)
3547 {
3548 return __cancel_work_timer(work, false);
3549 }
3550 EXPORT_SYMBOL_GPL(cancel_work_sync);
3551
3552 /**
3553 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3554 * @dwork: the delayed work to flush
3555 *
3556 * Delayed timer is cancelled and the pending work is queued for
3557 * immediate execution. Like flush_work(), this function only
3558 * considers the last queueing instance of @dwork.
3559 *
3560 * Return:
3561 * %true if flush_work() waited for the work to finish execution,
3562 * %false if it was already idle.
3563 */
flush_delayed_work(struct delayed_work * dwork)3564 bool flush_delayed_work(struct delayed_work *dwork)
3565 {
3566 local_irq_disable();
3567 if (del_timer_sync(&dwork->timer))
3568 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3569 local_irq_enable();
3570 return flush_work(&dwork->work);
3571 }
3572 EXPORT_SYMBOL(flush_delayed_work);
3573
3574 /**
3575 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3576 * @rwork: the rcu work to flush
3577 *
3578 * Return:
3579 * %true if flush_rcu_work() waited for the work to finish execution,
3580 * %false if it was already idle.
3581 */
flush_rcu_work(struct rcu_work * rwork)3582 bool flush_rcu_work(struct rcu_work *rwork)
3583 {
3584 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3585 rcu_barrier();
3586 flush_work(&rwork->work);
3587 return true;
3588 } else {
3589 return flush_work(&rwork->work);
3590 }
3591 }
3592 EXPORT_SYMBOL(flush_rcu_work);
3593
__cancel_work(struct work_struct * work,bool is_dwork)3594 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3595 {
3596 unsigned long flags;
3597 int ret;
3598
3599 do {
3600 ret = try_to_grab_pending(work, is_dwork, &flags);
3601 } while (unlikely(ret == -EAGAIN));
3602
3603 if (unlikely(ret < 0))
3604 return false;
3605
3606 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3607 local_irq_restore(flags);
3608 return ret;
3609 }
3610
3611 /*
3612 * See cancel_delayed_work()
3613 */
cancel_work(struct work_struct * work)3614 bool cancel_work(struct work_struct *work)
3615 {
3616 return __cancel_work(work, false);
3617 }
3618 EXPORT_SYMBOL(cancel_work);
3619
3620 /**
3621 * cancel_delayed_work - cancel a delayed work
3622 * @dwork: delayed_work to cancel
3623 *
3624 * Kill off a pending delayed_work.
3625 *
3626 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3627 * pending.
3628 *
3629 * Note:
3630 * The work callback function may still be running on return, unless
3631 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3632 * use cancel_delayed_work_sync() to wait on it.
3633 *
3634 * This function is safe to call from any context including IRQ handler.
3635 */
cancel_delayed_work(struct delayed_work * dwork)3636 bool cancel_delayed_work(struct delayed_work *dwork)
3637 {
3638 return __cancel_work(&dwork->work, true);
3639 }
3640 EXPORT_SYMBOL(cancel_delayed_work);
3641
3642 /**
3643 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3644 * @dwork: the delayed work cancel
3645 *
3646 * This is cancel_work_sync() for delayed works.
3647 *
3648 * Return:
3649 * %true if @dwork was pending, %false otherwise.
3650 */
cancel_delayed_work_sync(struct delayed_work * dwork)3651 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3652 {
3653 return __cancel_work_timer(&dwork->work, true);
3654 }
3655 EXPORT_SYMBOL(cancel_delayed_work_sync);
3656
3657 /**
3658 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3659 * @func: the function to call
3660 *
3661 * schedule_on_each_cpu() executes @func on each online CPU using the
3662 * system workqueue and blocks until all CPUs have completed.
3663 * schedule_on_each_cpu() is very slow.
3664 *
3665 * Return:
3666 * 0 on success, -errno on failure.
3667 */
schedule_on_each_cpu(work_func_t func)3668 int schedule_on_each_cpu(work_func_t func)
3669 {
3670 int cpu;
3671 struct work_struct __percpu *works;
3672
3673 works = alloc_percpu(struct work_struct);
3674 if (!works)
3675 return -ENOMEM;
3676
3677 cpus_read_lock();
3678
3679 for_each_online_cpu(cpu) {
3680 struct work_struct *work = per_cpu_ptr(works, cpu);
3681
3682 INIT_WORK(work, func);
3683 schedule_work_on(cpu, work);
3684 }
3685
3686 for_each_online_cpu(cpu)
3687 flush_work(per_cpu_ptr(works, cpu));
3688
3689 cpus_read_unlock();
3690 free_percpu(works);
3691 return 0;
3692 }
3693
3694 /**
3695 * execute_in_process_context - reliably execute the routine with user context
3696 * @fn: the function to execute
3697 * @ew: guaranteed storage for the execute work structure (must
3698 * be available when the work executes)
3699 *
3700 * Executes the function immediately if process context is available,
3701 * otherwise schedules the function for delayed execution.
3702 *
3703 * Return: 0 - function was executed
3704 * 1 - function was scheduled for execution
3705 */
execute_in_process_context(work_func_t fn,struct execute_work * ew)3706 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3707 {
3708 if (!in_interrupt()) {
3709 fn(&ew->work);
3710 return 0;
3711 }
3712
3713 INIT_WORK(&ew->work, fn);
3714 schedule_work(&ew->work);
3715
3716 return 1;
3717 }
3718 EXPORT_SYMBOL_GPL(execute_in_process_context);
3719
3720 /**
3721 * free_workqueue_attrs - free a workqueue_attrs
3722 * @attrs: workqueue_attrs to free
3723 *
3724 * Undo alloc_workqueue_attrs().
3725 */
free_workqueue_attrs(struct workqueue_attrs * attrs)3726 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3727 {
3728 if (attrs) {
3729 free_cpumask_var(attrs->cpumask);
3730 free_cpumask_var(attrs->__pod_cpumask);
3731 kfree(attrs);
3732 }
3733 }
3734 EXPORT_SYMBOL_GPL(free_workqueue_attrs);
3735
3736 /**
3737 * alloc_workqueue_attrs - allocate a workqueue_attrs
3738 *
3739 * Allocate a new workqueue_attrs, initialize with default settings and
3740 * return it.
3741 *
3742 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3743 */
alloc_workqueue_attrs(void)3744 struct workqueue_attrs *alloc_workqueue_attrs(void)
3745 {
3746 struct workqueue_attrs *attrs;
3747
3748 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3749 if (!attrs)
3750 goto fail;
3751 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3752 goto fail;
3753 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
3754 goto fail;
3755
3756 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3757 attrs->affn_scope = WQ_AFFN_DFL;
3758 return attrs;
3759 fail:
3760 free_workqueue_attrs(attrs);
3761 return NULL;
3762 }
3763 EXPORT_SYMBOL_GPL(alloc_workqueue_attrs);
3764
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)3765 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3766 const struct workqueue_attrs *from)
3767 {
3768 to->nice = from->nice;
3769 cpumask_copy(to->cpumask, from->cpumask);
3770 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
3771 to->affn_strict = from->affn_strict;
3772
3773 /*
3774 * Unlike hash and equality test, copying shouldn't ignore wq-only
3775 * fields as copying is used for both pool and wq attrs. Instead,
3776 * get_unbound_pool() explicitly clears the fields.
3777 */
3778 to->affn_scope = from->affn_scope;
3779 to->ordered = from->ordered;
3780 }
3781
3782 /*
3783 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
3784 * comments in 'struct workqueue_attrs' definition.
3785 */
wqattrs_clear_for_pool(struct workqueue_attrs * attrs)3786 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
3787 {
3788 attrs->affn_scope = WQ_AFFN_NR_TYPES;
3789 attrs->ordered = false;
3790 }
3791
3792 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)3793 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3794 {
3795 u32 hash = 0;
3796
3797 hash = jhash_1word(attrs->nice, hash);
3798 hash = jhash(cpumask_bits(attrs->cpumask),
3799 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3800 hash = jhash(cpumask_bits(attrs->__pod_cpumask),
3801 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3802 hash = jhash_1word(attrs->affn_strict, hash);
3803 return hash;
3804 }
3805
3806 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)3807 static bool wqattrs_equal(const struct workqueue_attrs *a,
3808 const struct workqueue_attrs *b)
3809 {
3810 if (a->nice != b->nice)
3811 return false;
3812 if (!cpumask_equal(a->cpumask, b->cpumask))
3813 return false;
3814 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
3815 return false;
3816 if (a->affn_strict != b->affn_strict)
3817 return false;
3818 return true;
3819 }
3820
3821 /* Update @attrs with actually available CPUs */
wqattrs_actualize_cpumask(struct workqueue_attrs * attrs,const cpumask_t * unbound_cpumask)3822 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
3823 const cpumask_t *unbound_cpumask)
3824 {
3825 /*
3826 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
3827 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
3828 * @unbound_cpumask.
3829 */
3830 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
3831 if (unlikely(cpumask_empty(attrs->cpumask)))
3832 cpumask_copy(attrs->cpumask, unbound_cpumask);
3833 }
3834
3835 /* find wq_pod_type to use for @attrs */
3836 static const struct wq_pod_type *
wqattrs_pod_type(const struct workqueue_attrs * attrs)3837 wqattrs_pod_type(const struct workqueue_attrs *attrs)
3838 {
3839 enum wq_affn_scope scope;
3840 struct wq_pod_type *pt;
3841
3842 /* to synchronize access to wq_affn_dfl */
3843 lockdep_assert_held(&wq_pool_mutex);
3844
3845 if (attrs->affn_scope == WQ_AFFN_DFL)
3846 scope = wq_affn_dfl;
3847 else
3848 scope = attrs->affn_scope;
3849
3850 pt = &wq_pod_types[scope];
3851
3852 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
3853 likely(pt->nr_pods))
3854 return pt;
3855
3856 /*
3857 * Before workqueue_init_topology(), only SYSTEM is available which is
3858 * initialized in workqueue_init_early().
3859 */
3860 pt = &wq_pod_types[WQ_AFFN_SYSTEM];
3861 BUG_ON(!pt->nr_pods);
3862 return pt;
3863 }
3864
3865 /**
3866 * init_worker_pool - initialize a newly zalloc'd worker_pool
3867 * @pool: worker_pool to initialize
3868 *
3869 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3870 *
3871 * Return: 0 on success, -errno on failure. Even on failure, all fields
3872 * inside @pool proper are initialized and put_unbound_pool() can be called
3873 * on @pool safely to release it.
3874 */
init_worker_pool(struct worker_pool * pool)3875 static int init_worker_pool(struct worker_pool *pool)
3876 {
3877 raw_spin_lock_init(&pool->lock);
3878 pool->id = -1;
3879 pool->cpu = -1;
3880 pool->node = NUMA_NO_NODE;
3881 pool->flags |= POOL_DISASSOCIATED;
3882 pool->watchdog_ts = jiffies;
3883 INIT_LIST_HEAD(&pool->worklist);
3884 INIT_LIST_HEAD(&pool->idle_list);
3885 hash_init(pool->busy_hash);
3886
3887 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3888 INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
3889
3890 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3891
3892 INIT_LIST_HEAD(&pool->workers);
3893 INIT_LIST_HEAD(&pool->dying_workers);
3894
3895 ida_init(&pool->worker_ida);
3896 INIT_HLIST_NODE(&pool->hash_node);
3897 pool->refcnt = 1;
3898
3899 /* shouldn't fail above this point */
3900 pool->attrs = alloc_workqueue_attrs();
3901 if (!pool->attrs)
3902 return -ENOMEM;
3903
3904 wqattrs_clear_for_pool(pool->attrs);
3905
3906 return 0;
3907 }
3908
3909 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)3910 static void wq_init_lockdep(struct workqueue_struct *wq)
3911 {
3912 char *lock_name;
3913
3914 lockdep_register_key(&wq->key);
3915 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3916 if (!lock_name)
3917 lock_name = wq->name;
3918
3919 wq->lock_name = lock_name;
3920 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3921 }
3922
wq_unregister_lockdep(struct workqueue_struct * wq)3923 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3924 {
3925 lockdep_unregister_key(&wq->key);
3926 }
3927
wq_free_lockdep(struct workqueue_struct * wq)3928 static void wq_free_lockdep(struct workqueue_struct *wq)
3929 {
3930 if (wq->lock_name != wq->name)
3931 kfree(wq->lock_name);
3932 }
3933 #else
wq_init_lockdep(struct workqueue_struct * wq)3934 static void wq_init_lockdep(struct workqueue_struct *wq)
3935 {
3936 }
3937
wq_unregister_lockdep(struct workqueue_struct * wq)3938 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3939 {
3940 }
3941
wq_free_lockdep(struct workqueue_struct * wq)3942 static void wq_free_lockdep(struct workqueue_struct *wq)
3943 {
3944 }
3945 #endif
3946
rcu_free_wq(struct rcu_head * rcu)3947 static void rcu_free_wq(struct rcu_head *rcu)
3948 {
3949 struct workqueue_struct *wq =
3950 container_of(rcu, struct workqueue_struct, rcu);
3951
3952 wq_free_lockdep(wq);
3953 free_percpu(wq->cpu_pwq);
3954 free_workqueue_attrs(wq->unbound_attrs);
3955 kfree(wq);
3956 }
3957
rcu_free_pool(struct rcu_head * rcu)3958 static void rcu_free_pool(struct rcu_head *rcu)
3959 {
3960 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3961
3962 ida_destroy(&pool->worker_ida);
3963 free_workqueue_attrs(pool->attrs);
3964 kfree(pool);
3965 }
3966
3967 /**
3968 * put_unbound_pool - put a worker_pool
3969 * @pool: worker_pool to put
3970 *
3971 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
3972 * safe manner. get_unbound_pool() calls this function on its failure path
3973 * and this function should be able to release pools which went through,
3974 * successfully or not, init_worker_pool().
3975 *
3976 * Should be called with wq_pool_mutex held.
3977 */
put_unbound_pool(struct worker_pool * pool)3978 static void put_unbound_pool(struct worker_pool *pool)
3979 {
3980 DECLARE_COMPLETION_ONSTACK(detach_completion);
3981 struct worker *worker;
3982 LIST_HEAD(cull_list);
3983
3984 lockdep_assert_held(&wq_pool_mutex);
3985
3986 if (--pool->refcnt)
3987 return;
3988
3989 /* sanity checks */
3990 if (WARN_ON(!(pool->cpu < 0)) ||
3991 WARN_ON(!list_empty(&pool->worklist)))
3992 return;
3993
3994 /* release id and unhash */
3995 if (pool->id >= 0)
3996 idr_remove(&worker_pool_idr, pool->id);
3997 hash_del(&pool->hash_node);
3998
3999 /*
4000 * Become the manager and destroy all workers. This prevents
4001 * @pool's workers from blocking on attach_mutex. We're the last
4002 * manager and @pool gets freed with the flag set.
4003 *
4004 * Having a concurrent manager is quite unlikely to happen as we can
4005 * only get here with
4006 * pwq->refcnt == pool->refcnt == 0
4007 * which implies no work queued to the pool, which implies no worker can
4008 * become the manager. However a worker could have taken the role of
4009 * manager before the refcnts dropped to 0, since maybe_create_worker()
4010 * drops pool->lock
4011 */
4012 while (true) {
4013 rcuwait_wait_event(&manager_wait,
4014 !(pool->flags & POOL_MANAGER_ACTIVE),
4015 TASK_UNINTERRUPTIBLE);
4016
4017 mutex_lock(&wq_pool_attach_mutex);
4018 raw_spin_lock_irq(&pool->lock);
4019 if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4020 pool->flags |= POOL_MANAGER_ACTIVE;
4021 break;
4022 }
4023 raw_spin_unlock_irq(&pool->lock);
4024 mutex_unlock(&wq_pool_attach_mutex);
4025 }
4026
4027 while ((worker = first_idle_worker(pool)))
4028 set_worker_dying(worker, &cull_list);
4029 WARN_ON(pool->nr_workers || pool->nr_idle);
4030 raw_spin_unlock_irq(&pool->lock);
4031
4032 wake_dying_workers(&cull_list);
4033
4034 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
4035 pool->detach_completion = &detach_completion;
4036 mutex_unlock(&wq_pool_attach_mutex);
4037
4038 if (pool->detach_completion)
4039 wait_for_completion(pool->detach_completion);
4040
4041 /* shut down the timers */
4042 del_timer_sync(&pool->idle_timer);
4043 cancel_work_sync(&pool->idle_cull_work);
4044 del_timer_sync(&pool->mayday_timer);
4045
4046 /* RCU protected to allow dereferences from get_work_pool() */
4047 call_rcu(&pool->rcu, rcu_free_pool);
4048 }
4049
4050 /**
4051 * get_unbound_pool - get a worker_pool with the specified attributes
4052 * @attrs: the attributes of the worker_pool to get
4053 *
4054 * Obtain a worker_pool which has the same attributes as @attrs, bump the
4055 * reference count and return it. If there already is a matching
4056 * worker_pool, it will be used; otherwise, this function attempts to
4057 * create a new one.
4058 *
4059 * Should be called with wq_pool_mutex held.
4060 *
4061 * Return: On success, a worker_pool with the same attributes as @attrs.
4062 * On failure, %NULL.
4063 */
get_unbound_pool(const struct workqueue_attrs * attrs)4064 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4065 {
4066 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4067 u32 hash = wqattrs_hash(attrs);
4068 struct worker_pool *pool;
4069 int pod, node = NUMA_NO_NODE;
4070
4071 lockdep_assert_held(&wq_pool_mutex);
4072
4073 /* do we already have a matching pool? */
4074 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4075 if (wqattrs_equal(pool->attrs, attrs)) {
4076 pool->refcnt++;
4077 return pool;
4078 }
4079 }
4080
4081 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */
4082 for (pod = 0; pod < pt->nr_pods; pod++) {
4083 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
4084 node = pt->pod_node[pod];
4085 break;
4086 }
4087 }
4088
4089 /* nope, create a new one */
4090 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
4091 if (!pool || init_worker_pool(pool) < 0)
4092 goto fail;
4093
4094 pool->node = node;
4095 copy_workqueue_attrs(pool->attrs, attrs);
4096 wqattrs_clear_for_pool(pool->attrs);
4097
4098 if (worker_pool_assign_id(pool) < 0)
4099 goto fail;
4100
4101 /* create and start the initial worker */
4102 if (wq_online && !create_worker(pool))
4103 goto fail;
4104
4105 /* install */
4106 hash_add(unbound_pool_hash, &pool->hash_node, hash);
4107
4108 return pool;
4109 fail:
4110 if (pool)
4111 put_unbound_pool(pool);
4112 return NULL;
4113 }
4114
rcu_free_pwq(struct rcu_head * rcu)4115 static void rcu_free_pwq(struct rcu_head *rcu)
4116 {
4117 kmem_cache_free(pwq_cache,
4118 container_of(rcu, struct pool_workqueue, rcu));
4119 }
4120
4121 /*
4122 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
4123 * refcnt and needs to be destroyed.
4124 */
pwq_release_workfn(struct kthread_work * work)4125 static void pwq_release_workfn(struct kthread_work *work)
4126 {
4127 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
4128 release_work);
4129 struct workqueue_struct *wq = pwq->wq;
4130 struct worker_pool *pool = pwq->pool;
4131 bool is_last = false;
4132
4133 /*
4134 * When @pwq is not linked, it doesn't hold any reference to the
4135 * @wq, and @wq is invalid to access.
4136 */
4137 if (!list_empty(&pwq->pwqs_node)) {
4138 mutex_lock(&wq->mutex);
4139 list_del_rcu(&pwq->pwqs_node);
4140 is_last = list_empty(&wq->pwqs);
4141 mutex_unlock(&wq->mutex);
4142 }
4143
4144 if (wq->flags & WQ_UNBOUND) {
4145 mutex_lock(&wq_pool_mutex);
4146 put_unbound_pool(pool);
4147 mutex_unlock(&wq_pool_mutex);
4148 }
4149
4150 call_rcu(&pwq->rcu, rcu_free_pwq);
4151
4152 /*
4153 * If we're the last pwq going away, @wq is already dead and no one
4154 * is gonna access it anymore. Schedule RCU free.
4155 */
4156 if (is_last) {
4157 wq_unregister_lockdep(wq);
4158 call_rcu(&wq->rcu, rcu_free_wq);
4159 }
4160 }
4161
4162 /**
4163 * pwq_adjust_max_active - update a pwq's max_active to the current setting
4164 * @pwq: target pool_workqueue
4165 *
4166 * If @pwq isn't freezing, set @pwq->max_active to the associated
4167 * workqueue's saved_max_active and activate inactive work items
4168 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
4169 */
pwq_adjust_max_active(struct pool_workqueue * pwq)4170 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4171 {
4172 struct workqueue_struct *wq = pwq->wq;
4173 bool freezable = wq->flags & WQ_FREEZABLE;
4174 unsigned long flags;
4175
4176 /* for @wq->saved_max_active */
4177 lockdep_assert_held(&wq->mutex);
4178
4179 /* fast exit for non-freezable wqs */
4180 if (!freezable && pwq->max_active == wq->saved_max_active)
4181 return;
4182
4183 /* this function can be called during early boot w/ irq disabled */
4184 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4185
4186 /*
4187 * During [un]freezing, the caller is responsible for ensuring that
4188 * this function is called at least once after @workqueue_freezing
4189 * is updated and visible.
4190 */
4191 if (!freezable || !workqueue_freezing) {
4192 pwq->max_active = wq->saved_max_active;
4193
4194 while (!list_empty(&pwq->inactive_works) &&
4195 pwq->nr_active < pwq->max_active)
4196 pwq_activate_first_inactive(pwq);
4197
4198 kick_pool(pwq->pool);
4199 } else {
4200 pwq->max_active = 0;
4201 }
4202
4203 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4204 }
4205
4206 /* initialize newly allocated @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)4207 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
4208 struct worker_pool *pool)
4209 {
4210 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
4211
4212 memset(pwq, 0, sizeof(*pwq));
4213
4214 pwq->pool = pool;
4215 pwq->wq = wq;
4216 pwq->flush_color = -1;
4217 pwq->refcnt = 1;
4218 INIT_LIST_HEAD(&pwq->inactive_works);
4219 INIT_LIST_HEAD(&pwq->pwqs_node);
4220 INIT_LIST_HEAD(&pwq->mayday_node);
4221 kthread_init_work(&pwq->release_work, pwq_release_workfn);
4222 }
4223
4224 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)4225 static void link_pwq(struct pool_workqueue *pwq)
4226 {
4227 struct workqueue_struct *wq = pwq->wq;
4228
4229 lockdep_assert_held(&wq->mutex);
4230
4231 /* may be called multiple times, ignore if already linked */
4232 if (!list_empty(&pwq->pwqs_node))
4233 return;
4234
4235 /* set the matching work_color */
4236 pwq->work_color = wq->work_color;
4237
4238 /* sync max_active to the current setting */
4239 pwq_adjust_max_active(pwq);
4240
4241 /* link in @pwq */
4242 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
4243 }
4244
4245 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4246 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
4247 const struct workqueue_attrs *attrs)
4248 {
4249 struct worker_pool *pool;
4250 struct pool_workqueue *pwq;
4251
4252 lockdep_assert_held(&wq_pool_mutex);
4253
4254 pool = get_unbound_pool(attrs);
4255 if (!pool)
4256 return NULL;
4257
4258 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
4259 if (!pwq) {
4260 put_unbound_pool(pool);
4261 return NULL;
4262 }
4263
4264 init_pwq(pwq, wq, pool);
4265 return pwq;
4266 }
4267
4268 /**
4269 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
4270 * @attrs: the wq_attrs of the default pwq of the target workqueue
4271 * @cpu: the target CPU
4272 * @cpu_going_down: if >= 0, the CPU to consider as offline
4273 *
4274 * Calculate the cpumask a workqueue with @attrs should use on @pod. If
4275 * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
4276 * The result is stored in @attrs->__pod_cpumask.
4277 *
4278 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
4279 * and @pod has online CPUs requested by @attrs, the returned cpumask is the
4280 * intersection of the possible CPUs of @pod and @attrs->cpumask.
4281 *
4282 * The caller is responsible for ensuring that the cpumask of @pod stays stable.
4283 */
wq_calc_pod_cpumask(struct workqueue_attrs * attrs,int cpu,int cpu_going_down)4284 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
4285 int cpu_going_down)
4286 {
4287 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
4288 int pod = pt->cpu_pod[cpu];
4289
4290 /* does @pod have any online CPUs @attrs wants? */
4291 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
4292 cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask);
4293 if (cpu_going_down >= 0)
4294 cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask);
4295
4296 if (cpumask_empty(attrs->__pod_cpumask)) {
4297 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
4298 return;
4299 }
4300
4301 /* yeap, return possible CPUs in @pod that @attrs wants */
4302 cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]);
4303
4304 if (cpumask_empty(attrs->__pod_cpumask))
4305 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
4306 "possible intersect\n");
4307 }
4308
4309 /* install @pwq into @wq's cpu_pwq and return the old pwq */
install_unbound_pwq(struct workqueue_struct * wq,int cpu,struct pool_workqueue * pwq)4310 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
4311 int cpu, struct pool_workqueue *pwq)
4312 {
4313 struct pool_workqueue *old_pwq;
4314
4315 lockdep_assert_held(&wq_pool_mutex);
4316 lockdep_assert_held(&wq->mutex);
4317
4318 /* link_pwq() can handle duplicate calls */
4319 link_pwq(pwq);
4320
4321 old_pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu));
4322 rcu_assign_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu), pwq);
4323 return old_pwq;
4324 }
4325
4326 /* context to store the prepared attrs & pwqs before applying */
4327 struct apply_wqattrs_ctx {
4328 struct workqueue_struct *wq; /* target workqueue */
4329 struct workqueue_attrs *attrs; /* attrs to apply */
4330 struct list_head list; /* queued for batching commit */
4331 struct pool_workqueue *dfl_pwq;
4332 struct pool_workqueue *pwq_tbl[];
4333 };
4334
4335 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)4336 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
4337 {
4338 if (ctx) {
4339 int cpu;
4340
4341 for_each_possible_cpu(cpu)
4342 put_pwq_unlocked(ctx->pwq_tbl[cpu]);
4343 put_pwq_unlocked(ctx->dfl_pwq);
4344
4345 free_workqueue_attrs(ctx->attrs);
4346
4347 kfree(ctx);
4348 }
4349 }
4350
4351 /* allocate the attrs and pwqs for later installation */
4352 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs,const cpumask_var_t unbound_cpumask)4353 apply_wqattrs_prepare(struct workqueue_struct *wq,
4354 const struct workqueue_attrs *attrs,
4355 const cpumask_var_t unbound_cpumask)
4356 {
4357 struct apply_wqattrs_ctx *ctx;
4358 struct workqueue_attrs *new_attrs;
4359 int cpu;
4360
4361 lockdep_assert_held(&wq_pool_mutex);
4362
4363 if (WARN_ON(attrs->affn_scope < 0 ||
4364 attrs->affn_scope >= WQ_AFFN_NR_TYPES))
4365 return ERR_PTR(-EINVAL);
4366
4367 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
4368
4369 new_attrs = alloc_workqueue_attrs();
4370 if (!ctx || !new_attrs)
4371 goto out_free;
4372
4373 /*
4374 * If something goes wrong during CPU up/down, we'll fall back to
4375 * the default pwq covering whole @attrs->cpumask. Always create
4376 * it even if we don't use it immediately.
4377 */
4378 copy_workqueue_attrs(new_attrs, attrs);
4379 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
4380 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
4381 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4382 if (!ctx->dfl_pwq)
4383 goto out_free;
4384
4385 for_each_possible_cpu(cpu) {
4386 if (new_attrs->ordered) {
4387 ctx->dfl_pwq->refcnt++;
4388 ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
4389 } else {
4390 wq_calc_pod_cpumask(new_attrs, cpu, -1);
4391 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
4392 if (!ctx->pwq_tbl[cpu])
4393 goto out_free;
4394 }
4395 }
4396
4397 /* save the user configured attrs and sanitize it. */
4398 copy_workqueue_attrs(new_attrs, attrs);
4399 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4400 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
4401 ctx->attrs = new_attrs;
4402
4403 ctx->wq = wq;
4404 return ctx;
4405
4406 out_free:
4407 free_workqueue_attrs(new_attrs);
4408 apply_wqattrs_cleanup(ctx);
4409 return ERR_PTR(-ENOMEM);
4410 }
4411
4412 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)4413 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4414 {
4415 int cpu;
4416
4417 /* all pwqs have been created successfully, let's install'em */
4418 mutex_lock(&ctx->wq->mutex);
4419
4420 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4421
4422 /* save the previous pwq and install the new one */
4423 for_each_possible_cpu(cpu)
4424 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
4425 ctx->pwq_tbl[cpu]);
4426
4427 /* @dfl_pwq might not have been used, ensure it's linked */
4428 link_pwq(ctx->dfl_pwq);
4429 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4430
4431 mutex_unlock(&ctx->wq->mutex);
4432 }
4433
apply_wqattrs_lock(void)4434 static void apply_wqattrs_lock(void)
4435 {
4436 /* CPUs should stay stable across pwq creations and installations */
4437 cpus_read_lock();
4438 mutex_lock(&wq_pool_mutex);
4439 }
4440
apply_wqattrs_unlock(void)4441 static void apply_wqattrs_unlock(void)
4442 {
4443 mutex_unlock(&wq_pool_mutex);
4444 cpus_read_unlock();
4445 }
4446
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4447 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4448 const struct workqueue_attrs *attrs)
4449 {
4450 struct apply_wqattrs_ctx *ctx;
4451
4452 /* only unbound workqueues can change attributes */
4453 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4454 return -EINVAL;
4455
4456 /* creating multiple pwqs breaks ordering guarantee */
4457 if (!list_empty(&wq->pwqs)) {
4458 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4459 return -EINVAL;
4460
4461 wq->flags &= ~__WQ_ORDERED;
4462 }
4463
4464 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
4465 if (IS_ERR(ctx))
4466 return PTR_ERR(ctx);
4467
4468 /* the ctx has been prepared successfully, let's commit it */
4469 apply_wqattrs_commit(ctx);
4470 apply_wqattrs_cleanup(ctx);
4471
4472 return 0;
4473 }
4474
4475 /**
4476 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4477 * @wq: the target workqueue
4478 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4479 *
4480 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
4481 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
4482 * work items are affine to the pod it was issued on. Older pwqs are released as
4483 * in-flight work items finish. Note that a work item which repeatedly requeues
4484 * itself back-to-back will stay on its current pwq.
4485 *
4486 * Performs GFP_KERNEL allocations.
4487 *
4488 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4489 *
4490 * Return: 0 on success and -errno on failure.
4491 */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4492 int apply_workqueue_attrs(struct workqueue_struct *wq,
4493 const struct workqueue_attrs *attrs)
4494 {
4495 int ret;
4496
4497 lockdep_assert_cpus_held();
4498
4499 mutex_lock(&wq_pool_mutex);
4500 ret = apply_workqueue_attrs_locked(wq, attrs);
4501 mutex_unlock(&wq_pool_mutex);
4502
4503 return ret;
4504 }
4505 EXPORT_SYMBOL_GPL(apply_workqueue_attrs);
4506
4507 /**
4508 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
4509 * @wq: the target workqueue
4510 * @cpu: the CPU to update pool association for
4511 * @hotplug_cpu: the CPU coming up or going down
4512 * @online: whether @cpu is coming up or going down
4513 *
4514 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4515 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update pod affinity of
4516 * @wq accordingly.
4517 *
4518 *
4519 * If pod affinity can't be adjusted due to memory allocation failure, it falls
4520 * back to @wq->dfl_pwq which may not be optimal but is always correct.
4521 *
4522 * Note that when the last allowed CPU of a pod goes offline for a workqueue
4523 * with a cpumask spanning multiple pods, the workers which were already
4524 * executing the work items for the workqueue will lose their CPU affinity and
4525 * may execute on any CPU. This is similar to how per-cpu workqueues behave on
4526 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
4527 * responsibility to flush the work item from CPU_DOWN_PREPARE.
4528 */
wq_update_pod(struct workqueue_struct * wq,int cpu,int hotplug_cpu,bool online)4529 static void wq_update_pod(struct workqueue_struct *wq, int cpu,
4530 int hotplug_cpu, bool online)
4531 {
4532 int off_cpu = online ? -1 : hotplug_cpu;
4533 struct pool_workqueue *old_pwq = NULL, *pwq;
4534 struct workqueue_attrs *target_attrs;
4535
4536 lockdep_assert_held(&wq_pool_mutex);
4537
4538 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
4539 return;
4540
4541 /*
4542 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4543 * Let's use a preallocated one. The following buf is protected by
4544 * CPU hotplug exclusion.
4545 */
4546 target_attrs = wq_update_pod_attrs_buf;
4547
4548 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4549 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
4550
4551 /* nothing to do if the target cpumask matches the current pwq */
4552 wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
4553 pwq = rcu_dereference_protected(*per_cpu_ptr(wq->cpu_pwq, cpu),
4554 lockdep_is_held(&wq_pool_mutex));
4555 if (wqattrs_equal(target_attrs, pwq->pool->attrs))
4556 return;
4557
4558 /* create a new pwq */
4559 pwq = alloc_unbound_pwq(wq, target_attrs);
4560 if (!pwq) {
4561 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
4562 wq->name);
4563 goto use_dfl_pwq;
4564 }
4565
4566 /* Install the new pwq. */
4567 mutex_lock(&wq->mutex);
4568 old_pwq = install_unbound_pwq(wq, cpu, pwq);
4569 goto out_unlock;
4570
4571 use_dfl_pwq:
4572 mutex_lock(&wq->mutex);
4573 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4574 get_pwq(wq->dfl_pwq);
4575 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4576 old_pwq = install_unbound_pwq(wq, cpu, wq->dfl_pwq);
4577 out_unlock:
4578 mutex_unlock(&wq->mutex);
4579 put_pwq_unlocked(old_pwq);
4580 }
4581
alloc_and_link_pwqs(struct workqueue_struct * wq)4582 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4583 {
4584 bool highpri = wq->flags & WQ_HIGHPRI;
4585 int cpu, ret;
4586 bool skip = false;
4587
4588 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
4589 if (!wq->cpu_pwq)
4590 goto enomem;
4591
4592 if (!(wq->flags & WQ_UNBOUND)) {
4593 for_each_possible_cpu(cpu) {
4594 struct pool_workqueue **pwq_p =
4595 per_cpu_ptr(wq->cpu_pwq, cpu);
4596 struct worker_pool *pool =
4597 &(per_cpu_ptr(cpu_worker_pools, cpu)[highpri]);
4598
4599 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
4600 pool->node);
4601 if (!*pwq_p)
4602 goto enomem;
4603
4604 init_pwq(*pwq_p, wq, pool);
4605
4606 mutex_lock(&wq->mutex);
4607 link_pwq(*pwq_p);
4608 mutex_unlock(&wq->mutex);
4609 }
4610 return 0;
4611 }
4612
4613 trace_android_rvh_alloc_and_link_pwqs(wq, &ret, &skip);
4614 if (skip)
4615 goto oem_skip;
4616
4617 cpus_read_lock();
4618 if (wq->flags & __WQ_ORDERED) {
4619 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4620 /* there should only be single pwq for ordering guarantee */
4621 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4622 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4623 "ordering guarantee broken for workqueue %s\n", wq->name);
4624 } else {
4625 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4626 }
4627 cpus_read_unlock();
4628
4629 oem_skip:
4630 /* for unbound pwq, flush the pwq_release_worker ensures that the
4631 * pwq_release_workfn() completes before calling kfree(wq).
4632 */
4633 if (ret)
4634 kthread_flush_worker(pwq_release_worker);
4635
4636 return ret;
4637
4638 enomem:
4639 if (wq->cpu_pwq) {
4640 for_each_possible_cpu(cpu) {
4641 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
4642
4643 if (pwq)
4644 kmem_cache_free(pwq_cache, pwq);
4645 }
4646 free_percpu(wq->cpu_pwq);
4647 wq->cpu_pwq = NULL;
4648 }
4649 return -ENOMEM;
4650 }
4651
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)4652 static int wq_clamp_max_active(int max_active, unsigned int flags,
4653 const char *name)
4654 {
4655 if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
4656 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4657 max_active, name, 1, WQ_MAX_ACTIVE);
4658
4659 return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
4660 }
4661
4662 /*
4663 * Workqueues which may be used during memory reclaim should have a rescuer
4664 * to guarantee forward progress.
4665 */
init_rescuer(struct workqueue_struct * wq)4666 static int init_rescuer(struct workqueue_struct *wq)
4667 {
4668 struct worker *rescuer;
4669 int ret;
4670
4671 if (!(wq->flags & WQ_MEM_RECLAIM))
4672 return 0;
4673
4674 rescuer = alloc_worker(NUMA_NO_NODE);
4675 if (!rescuer) {
4676 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
4677 wq->name);
4678 return -ENOMEM;
4679 }
4680
4681 rescuer->rescue_wq = wq;
4682 rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
4683 if (IS_ERR(rescuer->task)) {
4684 ret = PTR_ERR(rescuer->task);
4685 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
4686 wq->name, ERR_PTR(ret));
4687 kfree(rescuer);
4688 return ret;
4689 }
4690
4691 wq->rescuer = rescuer;
4692 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4693 wake_up_process(rescuer->task);
4694
4695 return 0;
4696 }
4697
4698 __printf(1, 4)
alloc_workqueue(const char * fmt,unsigned int flags,int max_active,...)4699 struct workqueue_struct *alloc_workqueue(const char *fmt,
4700 unsigned int flags,
4701 int max_active, ...)
4702 {
4703 va_list args;
4704 struct workqueue_struct *wq;
4705 struct pool_workqueue *pwq;
4706
4707 /*
4708 * Unbound && max_active == 1 used to imply ordered, which is no longer
4709 * the case on many machines due to per-pod pools. While
4710 * alloc_ordered_workqueue() is the right way to create an ordered
4711 * workqueue, keep the previous behavior to avoid subtle breakages.
4712 */
4713 if ((flags & WQ_UNBOUND) && max_active == 1)
4714 flags |= __WQ_ORDERED;
4715
4716 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4717 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4718 flags |= WQ_UNBOUND;
4719
4720 /* allocate wq and format name */
4721 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
4722 if (!wq)
4723 return NULL;
4724
4725 if (flags & WQ_UNBOUND) {
4726 wq->unbound_attrs = alloc_workqueue_attrs();
4727 if (!wq->unbound_attrs)
4728 goto err_free_wq;
4729 }
4730
4731 va_start(args, max_active);
4732 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4733 va_end(args);
4734
4735 max_active = max_active ?: WQ_DFL_ACTIVE;
4736 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4737
4738 /* init wq */
4739 wq->flags = flags;
4740 wq->saved_max_active = max_active;
4741 mutex_init(&wq->mutex);
4742 atomic_set(&wq->nr_pwqs_to_flush, 0);
4743 INIT_LIST_HEAD(&wq->pwqs);
4744 INIT_LIST_HEAD(&wq->flusher_queue);
4745 INIT_LIST_HEAD(&wq->flusher_overflow);
4746 INIT_LIST_HEAD(&wq->maydays);
4747
4748 wq_init_lockdep(wq);
4749 INIT_LIST_HEAD(&wq->list);
4750
4751 if (alloc_and_link_pwqs(wq) < 0)
4752 goto err_unreg_lockdep;
4753
4754 if (wq_online && init_rescuer(wq) < 0)
4755 goto err_destroy;
4756
4757 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4758 goto err_destroy;
4759
4760 /*
4761 * wq_pool_mutex protects global freeze state and workqueues list.
4762 * Grab it, adjust max_active and add the new @wq to workqueues
4763 * list.
4764 */
4765 mutex_lock(&wq_pool_mutex);
4766
4767 mutex_lock(&wq->mutex);
4768 for_each_pwq(pwq, wq)
4769 pwq_adjust_max_active(pwq);
4770 mutex_unlock(&wq->mutex);
4771
4772 list_add_tail_rcu(&wq->list, &workqueues);
4773
4774 mutex_unlock(&wq_pool_mutex);
4775
4776 return wq;
4777
4778 err_unreg_lockdep:
4779 wq_unregister_lockdep(wq);
4780 wq_free_lockdep(wq);
4781 err_free_wq:
4782 free_workqueue_attrs(wq->unbound_attrs);
4783 kfree(wq);
4784 return NULL;
4785 err_destroy:
4786 destroy_workqueue(wq);
4787 return NULL;
4788 }
4789 EXPORT_SYMBOL_GPL(alloc_workqueue);
4790
pwq_busy(struct pool_workqueue * pwq)4791 static bool pwq_busy(struct pool_workqueue *pwq)
4792 {
4793 int i;
4794
4795 for (i = 0; i < WORK_NR_COLORS; i++)
4796 if (pwq->nr_in_flight[i])
4797 return true;
4798
4799 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4800 return true;
4801 if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4802 return true;
4803
4804 return false;
4805 }
4806
4807 /**
4808 * destroy_workqueue - safely terminate a workqueue
4809 * @wq: target workqueue
4810 *
4811 * Safely destroy a workqueue. All work currently pending will be done first.
4812 */
destroy_workqueue(struct workqueue_struct * wq)4813 void destroy_workqueue(struct workqueue_struct *wq)
4814 {
4815 struct pool_workqueue *pwq;
4816 int cpu;
4817
4818 /*
4819 * Remove it from sysfs first so that sanity check failure doesn't
4820 * lead to sysfs name conflicts.
4821 */
4822 workqueue_sysfs_unregister(wq);
4823
4824 /* mark the workqueue destruction is in progress */
4825 mutex_lock(&wq->mutex);
4826 wq->flags |= __WQ_DESTROYING;
4827 mutex_unlock(&wq->mutex);
4828
4829 /* drain it before proceeding with destruction */
4830 drain_workqueue(wq);
4831
4832 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4833 if (wq->rescuer) {
4834 struct worker *rescuer = wq->rescuer;
4835
4836 /* this prevents new queueing */
4837 raw_spin_lock_irq(&wq_mayday_lock);
4838 wq->rescuer = NULL;
4839 raw_spin_unlock_irq(&wq_mayday_lock);
4840
4841 /* rescuer will empty maydays list before exiting */
4842 kthread_stop(rescuer->task);
4843 kfree(rescuer);
4844 }
4845
4846 /*
4847 * Sanity checks - grab all the locks so that we wait for all
4848 * in-flight operations which may do put_pwq().
4849 */
4850 mutex_lock(&wq_pool_mutex);
4851 mutex_lock(&wq->mutex);
4852 for_each_pwq(pwq, wq) {
4853 raw_spin_lock_irq(&pwq->pool->lock);
4854 if (WARN_ON(pwq_busy(pwq))) {
4855 pr_warn("%s: %s has the following busy pwq\n",
4856 __func__, wq->name);
4857 show_pwq(pwq);
4858 raw_spin_unlock_irq(&pwq->pool->lock);
4859 mutex_unlock(&wq->mutex);
4860 mutex_unlock(&wq_pool_mutex);
4861 show_one_workqueue(wq);
4862 return;
4863 }
4864 raw_spin_unlock_irq(&pwq->pool->lock);
4865 }
4866 mutex_unlock(&wq->mutex);
4867
4868 /*
4869 * wq list is used to freeze wq, remove from list after
4870 * flushing is complete in case freeze races us.
4871 */
4872 list_del_rcu(&wq->list);
4873 mutex_unlock(&wq_pool_mutex);
4874
4875 /*
4876 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
4877 * to put the base refs. @wq will be auto-destroyed from the last
4878 * pwq_put. RCU read lock prevents @wq from going away from under us.
4879 */
4880 rcu_read_lock();
4881
4882 for_each_possible_cpu(cpu) {
4883 pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu));
4884 RCU_INIT_POINTER(*per_cpu_ptr(wq->cpu_pwq, cpu), NULL);
4885 put_pwq_unlocked(pwq);
4886 }
4887
4888 put_pwq_unlocked(wq->dfl_pwq);
4889 wq->dfl_pwq = NULL;
4890
4891 rcu_read_unlock();
4892 }
4893 EXPORT_SYMBOL_GPL(destroy_workqueue);
4894
4895 /**
4896 * workqueue_set_max_active - adjust max_active of a workqueue
4897 * @wq: target workqueue
4898 * @max_active: new max_active value.
4899 *
4900 * Set max_active of @wq to @max_active.
4901 *
4902 * CONTEXT:
4903 * Don't call from IRQ context.
4904 */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)4905 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4906 {
4907 struct pool_workqueue *pwq;
4908
4909 /* disallow meddling with max_active for ordered workqueues */
4910 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4911 return;
4912
4913 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4914
4915 mutex_lock(&wq->mutex);
4916
4917 wq->flags &= ~__WQ_ORDERED;
4918 wq->saved_max_active = max_active;
4919
4920 for_each_pwq(pwq, wq)
4921 pwq_adjust_max_active(pwq);
4922
4923 mutex_unlock(&wq->mutex);
4924 }
4925 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4926
4927 /**
4928 * current_work - retrieve %current task's work struct
4929 *
4930 * Determine if %current task is a workqueue worker and what it's working on.
4931 * Useful to find out the context that the %current task is running in.
4932 *
4933 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4934 */
current_work(void)4935 struct work_struct *current_work(void)
4936 {
4937 struct worker *worker = current_wq_worker();
4938
4939 return worker ? worker->current_work : NULL;
4940 }
4941 EXPORT_SYMBOL(current_work);
4942
4943 /**
4944 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4945 *
4946 * Determine whether %current is a workqueue rescuer. Can be used from
4947 * work functions to determine whether it's being run off the rescuer task.
4948 *
4949 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4950 */
current_is_workqueue_rescuer(void)4951 bool current_is_workqueue_rescuer(void)
4952 {
4953 struct worker *worker = current_wq_worker();
4954
4955 return worker && worker->rescue_wq;
4956 }
4957
4958 /**
4959 * workqueue_congested - test whether a workqueue is congested
4960 * @cpu: CPU in question
4961 * @wq: target workqueue
4962 *
4963 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4964 * no synchronization around this function and the test result is
4965 * unreliable and only useful as advisory hints or for debugging.
4966 *
4967 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4968 *
4969 * With the exception of ordered workqueues, all workqueues have per-cpu
4970 * pool_workqueues, each with its own congested state. A workqueue being
4971 * congested on one CPU doesn't mean that the workqueue is contested on any
4972 * other CPUs.
4973 *
4974 * Return:
4975 * %true if congested, %false otherwise.
4976 */
workqueue_congested(int cpu,struct workqueue_struct * wq)4977 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4978 {
4979 struct pool_workqueue *pwq;
4980 bool ret;
4981
4982 rcu_read_lock();
4983 preempt_disable();
4984
4985 if (cpu == WORK_CPU_UNBOUND)
4986 cpu = smp_processor_id();
4987
4988 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
4989 ret = !list_empty(&pwq->inactive_works);
4990
4991 preempt_enable();
4992 rcu_read_unlock();
4993
4994 return ret;
4995 }
4996 EXPORT_SYMBOL_GPL(workqueue_congested);
4997
4998 /**
4999 * work_busy - test whether a work is currently pending or running
5000 * @work: the work to be tested
5001 *
5002 * Test whether @work is currently pending or running. There is no
5003 * synchronization around this function and the test result is
5004 * unreliable and only useful as advisory hints or for debugging.
5005 *
5006 * Return:
5007 * OR'd bitmask of WORK_BUSY_* bits.
5008 */
work_busy(struct work_struct * work)5009 unsigned int work_busy(struct work_struct *work)
5010 {
5011 struct worker_pool *pool;
5012 unsigned long flags;
5013 unsigned int ret = 0;
5014
5015 if (work_pending(work))
5016 ret |= WORK_BUSY_PENDING;
5017
5018 rcu_read_lock();
5019 pool = get_work_pool(work);
5020 if (pool) {
5021 raw_spin_lock_irqsave(&pool->lock, flags);
5022 if (find_worker_executing_work(pool, work))
5023 ret |= WORK_BUSY_RUNNING;
5024 raw_spin_unlock_irqrestore(&pool->lock, flags);
5025 }
5026 rcu_read_unlock();
5027
5028 return ret;
5029 }
5030 EXPORT_SYMBOL_GPL(work_busy);
5031
5032 /**
5033 * set_worker_desc - set description for the current work item
5034 * @fmt: printf-style format string
5035 * @...: arguments for the format string
5036 *
5037 * This function can be called by a running work function to describe what
5038 * the work item is about. If the worker task gets dumped, this
5039 * information will be printed out together to help debugging. The
5040 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
5041 */
set_worker_desc(const char * fmt,...)5042 void set_worker_desc(const char *fmt, ...)
5043 {
5044 struct worker *worker = current_wq_worker();
5045 va_list args;
5046
5047 if (worker) {
5048 va_start(args, fmt);
5049 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
5050 va_end(args);
5051 }
5052 }
5053 EXPORT_SYMBOL_GPL(set_worker_desc);
5054
5055 /**
5056 * print_worker_info - print out worker information and description
5057 * @log_lvl: the log level to use when printing
5058 * @task: target task
5059 *
5060 * If @task is a worker and currently executing a work item, print out the
5061 * name of the workqueue being serviced and worker description set with
5062 * set_worker_desc() by the currently executing work item.
5063 *
5064 * This function can be safely called on any task as long as the
5065 * task_struct itself is accessible. While safe, this function isn't
5066 * synchronized and may print out mixups or garbages of limited length.
5067 */
print_worker_info(const char * log_lvl,struct task_struct * task)5068 void print_worker_info(const char *log_lvl, struct task_struct *task)
5069 {
5070 work_func_t *fn = NULL;
5071 char name[WQ_NAME_LEN] = { };
5072 char desc[WORKER_DESC_LEN] = { };
5073 struct pool_workqueue *pwq = NULL;
5074 struct workqueue_struct *wq = NULL;
5075 struct worker *worker;
5076
5077 if (!(task->flags & PF_WQ_WORKER))
5078 return;
5079
5080 /*
5081 * This function is called without any synchronization and @task
5082 * could be in any state. Be careful with dereferences.
5083 */
5084 worker = kthread_probe_data(task);
5085
5086 /*
5087 * Carefully copy the associated workqueue's workfn, name and desc.
5088 * Keep the original last '\0' in case the original is garbage.
5089 */
5090 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
5091 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
5092 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
5093 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
5094 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
5095
5096 if (fn || name[0] || desc[0]) {
5097 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
5098 if (strcmp(name, desc))
5099 pr_cont(" (%s)", desc);
5100 pr_cont("\n");
5101 }
5102 }
5103
pr_cont_pool_info(struct worker_pool * pool)5104 static void pr_cont_pool_info(struct worker_pool *pool)
5105 {
5106 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
5107 if (pool->node != NUMA_NO_NODE)
5108 pr_cont(" node=%d", pool->node);
5109 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
5110 }
5111
5112 struct pr_cont_work_struct {
5113 bool comma;
5114 work_func_t func;
5115 long ctr;
5116 };
5117
pr_cont_work_flush(bool comma,work_func_t func,struct pr_cont_work_struct * pcwsp)5118 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
5119 {
5120 if (!pcwsp->ctr)
5121 goto out_record;
5122 if (func == pcwsp->func) {
5123 pcwsp->ctr++;
5124 return;
5125 }
5126 if (pcwsp->ctr == 1)
5127 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
5128 else
5129 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
5130 pcwsp->ctr = 0;
5131 out_record:
5132 if ((long)func == -1L)
5133 return;
5134 pcwsp->comma = comma;
5135 pcwsp->func = func;
5136 pcwsp->ctr = 1;
5137 }
5138
pr_cont_work(bool comma,struct work_struct * work,struct pr_cont_work_struct * pcwsp)5139 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
5140 {
5141 if (work->func == wq_barrier_func) {
5142 struct wq_barrier *barr;
5143
5144 barr = container_of(work, struct wq_barrier, work);
5145
5146 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5147 pr_cont("%s BAR(%d)", comma ? "," : "",
5148 task_pid_nr(barr->task));
5149 } else {
5150 if (!comma)
5151 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5152 pr_cont_work_flush(comma, work->func, pcwsp);
5153 }
5154 }
5155
show_pwq(struct pool_workqueue * pwq)5156 static void show_pwq(struct pool_workqueue *pwq)
5157 {
5158 struct pr_cont_work_struct pcws = { .ctr = 0, };
5159 struct worker_pool *pool = pwq->pool;
5160 struct work_struct *work;
5161 struct worker *worker;
5162 bool has_in_flight = false, has_pending = false;
5163 int bkt;
5164
5165 pr_info(" pwq %d:", pool->id);
5166 pr_cont_pool_info(pool);
5167
5168 pr_cont(" active=%d/%d refcnt=%d%s\n",
5169 pwq->nr_active, pwq->max_active, pwq->refcnt,
5170 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
5171
5172 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5173 if (worker->current_pwq == pwq) {
5174 has_in_flight = true;
5175 break;
5176 }
5177 }
5178 if (has_in_flight) {
5179 bool comma = false;
5180
5181 pr_info(" in-flight:");
5182 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5183 if (worker->current_pwq != pwq)
5184 continue;
5185
5186 pr_cont("%s %d%s:%ps", comma ? "," : "",
5187 task_pid_nr(worker->task),
5188 worker->rescue_wq ? "(RESCUER)" : "",
5189 worker->current_func);
5190 list_for_each_entry(work, &worker->scheduled, entry)
5191 pr_cont_work(false, work, &pcws);
5192 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5193 comma = true;
5194 }
5195 pr_cont("\n");
5196 }
5197
5198 list_for_each_entry(work, &pool->worklist, entry) {
5199 if (get_work_pwq(work) == pwq) {
5200 has_pending = true;
5201 break;
5202 }
5203 }
5204 if (has_pending) {
5205 bool comma = false;
5206
5207 pr_info(" pending:");
5208 list_for_each_entry(work, &pool->worklist, entry) {
5209 if (get_work_pwq(work) != pwq)
5210 continue;
5211
5212 pr_cont_work(comma, work, &pcws);
5213 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5214 }
5215 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5216 pr_cont("\n");
5217 }
5218
5219 if (!list_empty(&pwq->inactive_works)) {
5220 bool comma = false;
5221
5222 pr_info(" inactive:");
5223 list_for_each_entry(work, &pwq->inactive_works, entry) {
5224 pr_cont_work(comma, work, &pcws);
5225 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5226 }
5227 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5228 pr_cont("\n");
5229 }
5230 }
5231
5232 /**
5233 * show_one_workqueue - dump state of specified workqueue
5234 * @wq: workqueue whose state will be printed
5235 */
show_one_workqueue(struct workqueue_struct * wq)5236 void show_one_workqueue(struct workqueue_struct *wq)
5237 {
5238 struct pool_workqueue *pwq;
5239 bool idle = true;
5240 unsigned long flags;
5241
5242 for_each_pwq(pwq, wq) {
5243 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
5244 idle = false;
5245 break;
5246 }
5247 }
5248 if (idle) /* Nothing to print for idle workqueue */
5249 return;
5250
5251 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
5252
5253 for_each_pwq(pwq, wq) {
5254 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
5255 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
5256 /*
5257 * Defer printing to avoid deadlocks in console
5258 * drivers that queue work while holding locks
5259 * also taken in their write paths.
5260 */
5261 printk_deferred_enter();
5262 show_pwq(pwq);
5263 printk_deferred_exit();
5264 }
5265 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
5266 /*
5267 * We could be printing a lot from atomic context, e.g.
5268 * sysrq-t -> show_all_workqueues(). Avoid triggering
5269 * hard lockup.
5270 */
5271 touch_nmi_watchdog();
5272 }
5273
5274 }
5275
5276 /**
5277 * show_one_worker_pool - dump state of specified worker pool
5278 * @pool: worker pool whose state will be printed
5279 */
show_one_worker_pool(struct worker_pool * pool)5280 static void show_one_worker_pool(struct worker_pool *pool)
5281 {
5282 struct worker *worker;
5283 bool first = true;
5284 unsigned long flags;
5285 unsigned long hung = 0;
5286
5287 raw_spin_lock_irqsave(&pool->lock, flags);
5288 if (pool->nr_workers == pool->nr_idle)
5289 goto next_pool;
5290
5291 /* How long the first pending work is waiting for a worker. */
5292 if (!list_empty(&pool->worklist))
5293 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
5294
5295 /*
5296 * Defer printing to avoid deadlocks in console drivers that
5297 * queue work while holding locks also taken in their write
5298 * paths.
5299 */
5300 printk_deferred_enter();
5301 pr_info("pool %d:", pool->id);
5302 pr_cont_pool_info(pool);
5303 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
5304 if (pool->manager)
5305 pr_cont(" manager: %d",
5306 task_pid_nr(pool->manager->task));
5307 list_for_each_entry(worker, &pool->idle_list, entry) {
5308 pr_cont(" %s%d", first ? "idle: " : "",
5309 task_pid_nr(worker->task));
5310 first = false;
5311 }
5312 pr_cont("\n");
5313 printk_deferred_exit();
5314 next_pool:
5315 raw_spin_unlock_irqrestore(&pool->lock, flags);
5316 /*
5317 * We could be printing a lot from atomic context, e.g.
5318 * sysrq-t -> show_all_workqueues(). Avoid triggering
5319 * hard lockup.
5320 */
5321 touch_nmi_watchdog();
5322
5323 }
5324
5325 /**
5326 * show_all_workqueues - dump workqueue state
5327 *
5328 * Called from a sysrq handler and prints out all busy workqueues and pools.
5329 */
show_all_workqueues(void)5330 void show_all_workqueues(void)
5331 {
5332 struct workqueue_struct *wq;
5333 struct worker_pool *pool;
5334 int pi;
5335
5336 rcu_read_lock();
5337
5338 pr_info("Showing busy workqueues and worker pools:\n");
5339
5340 list_for_each_entry_rcu(wq, &workqueues, list)
5341 show_one_workqueue(wq);
5342
5343 for_each_pool(pool, pi)
5344 show_one_worker_pool(pool);
5345
5346 rcu_read_unlock();
5347 }
5348
5349 /**
5350 * show_freezable_workqueues - dump freezable workqueue state
5351 *
5352 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
5353 * still busy.
5354 */
show_freezable_workqueues(void)5355 void show_freezable_workqueues(void)
5356 {
5357 struct workqueue_struct *wq;
5358
5359 rcu_read_lock();
5360
5361 pr_info("Showing freezable workqueues that are still busy:\n");
5362
5363 list_for_each_entry_rcu(wq, &workqueues, list) {
5364 if (!(wq->flags & WQ_FREEZABLE))
5365 continue;
5366 show_one_workqueue(wq);
5367 }
5368
5369 rcu_read_unlock();
5370 }
5371
5372 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)5373 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
5374 {
5375 int off;
5376
5377 /* always show the actual comm */
5378 off = strscpy(buf, task->comm, size);
5379 if (off < 0)
5380 return;
5381
5382 /* stabilize PF_WQ_WORKER and worker pool association */
5383 mutex_lock(&wq_pool_attach_mutex);
5384
5385 if (task->flags & PF_WQ_WORKER) {
5386 struct worker *worker = kthread_data(task);
5387 struct worker_pool *pool = worker->pool;
5388
5389 if (pool) {
5390 raw_spin_lock_irq(&pool->lock);
5391 /*
5392 * ->desc tracks information (wq name or
5393 * set_worker_desc()) for the latest execution. If
5394 * current, prepend '+', otherwise '-'.
5395 */
5396 if (worker->desc[0] != '\0') {
5397 if (worker->current_work)
5398 scnprintf(buf + off, size - off, "+%s",
5399 worker->desc);
5400 else
5401 scnprintf(buf + off, size - off, "-%s",
5402 worker->desc);
5403 }
5404 raw_spin_unlock_irq(&pool->lock);
5405 }
5406 }
5407
5408 mutex_unlock(&wq_pool_attach_mutex);
5409 }
5410 EXPORT_SYMBOL_GPL(wq_worker_comm);
5411
5412 #ifdef CONFIG_SMP
5413
5414 /*
5415 * CPU hotplug.
5416 *
5417 * There are two challenges in supporting CPU hotplug. Firstly, there
5418 * are a lot of assumptions on strong associations among work, pwq and
5419 * pool which make migrating pending and scheduled works very
5420 * difficult to implement without impacting hot paths. Secondly,
5421 * worker pools serve mix of short, long and very long running works making
5422 * blocked draining impractical.
5423 *
5424 * This is solved by allowing the pools to be disassociated from the CPU
5425 * running as an unbound one and allowing it to be reattached later if the
5426 * cpu comes back online.
5427 */
5428
unbind_workers(int cpu)5429 static void unbind_workers(int cpu)
5430 {
5431 struct worker_pool *pool;
5432 struct worker *worker;
5433
5434 for_each_cpu_worker_pool(pool, cpu) {
5435 mutex_lock(&wq_pool_attach_mutex);
5436 raw_spin_lock_irq(&pool->lock);
5437
5438 /*
5439 * We've blocked all attach/detach operations. Make all workers
5440 * unbound and set DISASSOCIATED. Before this, all workers
5441 * must be on the cpu. After this, they may become diasporas.
5442 * And the preemption disabled section in their sched callbacks
5443 * are guaranteed to see WORKER_UNBOUND since the code here
5444 * is on the same cpu.
5445 */
5446 for_each_pool_worker(worker, pool)
5447 worker->flags |= WORKER_UNBOUND;
5448
5449 pool->flags |= POOL_DISASSOCIATED;
5450
5451 /*
5452 * The handling of nr_running in sched callbacks are disabled
5453 * now. Zap nr_running. After this, nr_running stays zero and
5454 * need_more_worker() and keep_working() are always true as
5455 * long as the worklist is not empty. This pool now behaves as
5456 * an unbound (in terms of concurrency management) pool which
5457 * are served by workers tied to the pool.
5458 */
5459 pool->nr_running = 0;
5460
5461 /*
5462 * With concurrency management just turned off, a busy
5463 * worker blocking could lead to lengthy stalls. Kick off
5464 * unbound chain execution of currently pending work items.
5465 */
5466 kick_pool(pool);
5467
5468 raw_spin_unlock_irq(&pool->lock);
5469
5470 for_each_pool_worker(worker, pool)
5471 unbind_worker(worker);
5472
5473 mutex_unlock(&wq_pool_attach_mutex);
5474 }
5475 }
5476
5477 /**
5478 * rebind_workers - rebind all workers of a pool to the associated CPU
5479 * @pool: pool of interest
5480 *
5481 * @pool->cpu is coming online. Rebind all workers to the CPU.
5482 */
rebind_workers(struct worker_pool * pool)5483 static void rebind_workers(struct worker_pool *pool)
5484 {
5485 struct worker *worker;
5486
5487 lockdep_assert_held(&wq_pool_attach_mutex);
5488
5489 /*
5490 * Restore CPU affinity of all workers. As all idle workers should
5491 * be on the run-queue of the associated CPU before any local
5492 * wake-ups for concurrency management happen, restore CPU affinity
5493 * of all workers first and then clear UNBOUND. As we're called
5494 * from CPU_ONLINE, the following shouldn't fail.
5495 */
5496 for_each_pool_worker(worker, pool) {
5497 kthread_set_per_cpu(worker->task, pool->cpu);
5498 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5499 pool_allowed_cpus(pool)) < 0);
5500 }
5501
5502 raw_spin_lock_irq(&pool->lock);
5503
5504 pool->flags &= ~POOL_DISASSOCIATED;
5505
5506 for_each_pool_worker(worker, pool) {
5507 unsigned int worker_flags = worker->flags;
5508
5509 /*
5510 * We want to clear UNBOUND but can't directly call
5511 * worker_clr_flags() or adjust nr_running. Atomically
5512 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5513 * @worker will clear REBOUND using worker_clr_flags() when
5514 * it initiates the next execution cycle thus restoring
5515 * concurrency management. Note that when or whether
5516 * @worker clears REBOUND doesn't affect correctness.
5517 *
5518 * WRITE_ONCE() is necessary because @worker->flags may be
5519 * tested without holding any lock in
5520 * wq_worker_running(). Without it, NOT_RUNNING test may
5521 * fail incorrectly leading to premature concurrency
5522 * management operations.
5523 */
5524 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5525 worker_flags |= WORKER_REBOUND;
5526 worker_flags &= ~WORKER_UNBOUND;
5527 WRITE_ONCE(worker->flags, worker_flags);
5528 }
5529
5530 raw_spin_unlock_irq(&pool->lock);
5531 }
5532
5533 /**
5534 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5535 * @pool: unbound pool of interest
5536 * @cpu: the CPU which is coming up
5537 *
5538 * An unbound pool may end up with a cpumask which doesn't have any online
5539 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5540 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5541 * online CPU before, cpus_allowed of all its workers should be restored.
5542 */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)5543 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5544 {
5545 static cpumask_t cpumask;
5546 struct worker *worker;
5547
5548 lockdep_assert_held(&wq_pool_attach_mutex);
5549
5550 /* is @cpu allowed for @pool? */
5551 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5552 return;
5553
5554 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5555
5556 /* as we're called from CPU_ONLINE, the following shouldn't fail */
5557 for_each_pool_worker(worker, pool)
5558 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5559 }
5560
workqueue_prepare_cpu(unsigned int cpu)5561 int workqueue_prepare_cpu(unsigned int cpu)
5562 {
5563 struct worker_pool *pool;
5564
5565 for_each_cpu_worker_pool(pool, cpu) {
5566 if (pool->nr_workers)
5567 continue;
5568 if (!create_worker(pool))
5569 return -ENOMEM;
5570 }
5571 return 0;
5572 }
5573
workqueue_online_cpu(unsigned int cpu)5574 int workqueue_online_cpu(unsigned int cpu)
5575 {
5576 struct worker_pool *pool;
5577 struct workqueue_struct *wq;
5578 int pi;
5579
5580 mutex_lock(&wq_pool_mutex);
5581
5582 for_each_pool(pool, pi) {
5583 mutex_lock(&wq_pool_attach_mutex);
5584
5585 if (pool->cpu == cpu)
5586 rebind_workers(pool);
5587 else if (pool->cpu < 0)
5588 restore_unbound_workers_cpumask(pool, cpu);
5589
5590 mutex_unlock(&wq_pool_attach_mutex);
5591 }
5592
5593 /* update pod affinity of unbound workqueues */
5594 list_for_each_entry(wq, &workqueues, list) {
5595 struct workqueue_attrs *attrs = wq->unbound_attrs;
5596
5597 if (attrs) {
5598 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5599 int tcpu;
5600
5601 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
5602 wq_update_pod(wq, tcpu, cpu, true);
5603 }
5604 }
5605
5606 mutex_unlock(&wq_pool_mutex);
5607 return 0;
5608 }
5609
workqueue_offline_cpu(unsigned int cpu)5610 int workqueue_offline_cpu(unsigned int cpu)
5611 {
5612 struct workqueue_struct *wq;
5613
5614 /* unbinding per-cpu workers should happen on the local CPU */
5615 if (WARN_ON(cpu != smp_processor_id()))
5616 return -1;
5617
5618 unbind_workers(cpu);
5619
5620 /* update pod affinity of unbound workqueues */
5621 mutex_lock(&wq_pool_mutex);
5622 list_for_each_entry(wq, &workqueues, list) {
5623 struct workqueue_attrs *attrs = wq->unbound_attrs;
5624
5625 if (attrs) {
5626 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5627 int tcpu;
5628
5629 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
5630 wq_update_pod(wq, tcpu, cpu, false);
5631 }
5632 }
5633 mutex_unlock(&wq_pool_mutex);
5634
5635 return 0;
5636 }
5637
5638 struct work_for_cpu {
5639 struct work_struct work;
5640 long (*fn)(void *);
5641 void *arg;
5642 long ret;
5643 };
5644
work_for_cpu_fn(struct work_struct * work)5645 static void work_for_cpu_fn(struct work_struct *work)
5646 {
5647 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5648
5649 wfc->ret = wfc->fn(wfc->arg);
5650 }
5651
5652 /**
5653 * work_on_cpu_key - run a function in thread context on a particular cpu
5654 * @cpu: the cpu to run on
5655 * @fn: the function to run
5656 * @arg: the function arg
5657 * @key: The lock class key for lock debugging purposes
5658 *
5659 * It is up to the caller to ensure that the cpu doesn't go offline.
5660 * The caller must not hold any locks which would prevent @fn from completing.
5661 *
5662 * Return: The value @fn returns.
5663 */
work_on_cpu_key(int cpu,long (* fn)(void *),void * arg,struct lock_class_key * key)5664 long work_on_cpu_key(int cpu, long (*fn)(void *),
5665 void *arg, struct lock_class_key *key)
5666 {
5667 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5668
5669 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
5670 schedule_work_on(cpu, &wfc.work);
5671 flush_work(&wfc.work);
5672 destroy_work_on_stack(&wfc.work);
5673 return wfc.ret;
5674 }
5675 EXPORT_SYMBOL_GPL(work_on_cpu_key);
5676
5677 /**
5678 * work_on_cpu_safe_key - run a function in thread context on a particular cpu
5679 * @cpu: the cpu to run on
5680 * @fn: the function to run
5681 * @arg: the function argument
5682 * @key: The lock class key for lock debugging purposes
5683 *
5684 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5685 * any locks which would prevent @fn from completing.
5686 *
5687 * Return: The value @fn returns.
5688 */
work_on_cpu_safe_key(int cpu,long (* fn)(void *),void * arg,struct lock_class_key * key)5689 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
5690 void *arg, struct lock_class_key *key)
5691 {
5692 long ret = -ENODEV;
5693
5694 cpus_read_lock();
5695 if (cpu_online(cpu))
5696 ret = work_on_cpu_key(cpu, fn, arg, key);
5697 cpus_read_unlock();
5698 return ret;
5699 }
5700 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
5701 #endif /* CONFIG_SMP */
5702
5703 #ifdef CONFIG_FREEZER
5704
5705 /**
5706 * freeze_workqueues_begin - begin freezing workqueues
5707 *
5708 * Start freezing workqueues. After this function returns, all freezable
5709 * workqueues will queue new works to their inactive_works list instead of
5710 * pool->worklist.
5711 *
5712 * CONTEXT:
5713 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5714 */
freeze_workqueues_begin(void)5715 void freeze_workqueues_begin(void)
5716 {
5717 struct workqueue_struct *wq;
5718 struct pool_workqueue *pwq;
5719
5720 mutex_lock(&wq_pool_mutex);
5721
5722 WARN_ON_ONCE(workqueue_freezing);
5723 workqueue_freezing = true;
5724
5725 list_for_each_entry(wq, &workqueues, list) {
5726 mutex_lock(&wq->mutex);
5727 for_each_pwq(pwq, wq)
5728 pwq_adjust_max_active(pwq);
5729 mutex_unlock(&wq->mutex);
5730 }
5731
5732 mutex_unlock(&wq_pool_mutex);
5733 }
5734
5735 /**
5736 * freeze_workqueues_busy - are freezable workqueues still busy?
5737 *
5738 * Check whether freezing is complete. This function must be called
5739 * between freeze_workqueues_begin() and thaw_workqueues().
5740 *
5741 * CONTEXT:
5742 * Grabs and releases wq_pool_mutex.
5743 *
5744 * Return:
5745 * %true if some freezable workqueues are still busy. %false if freezing
5746 * is complete.
5747 */
freeze_workqueues_busy(void)5748 bool freeze_workqueues_busy(void)
5749 {
5750 bool busy = false;
5751 struct workqueue_struct *wq;
5752 struct pool_workqueue *pwq;
5753
5754 mutex_lock(&wq_pool_mutex);
5755
5756 WARN_ON_ONCE(!workqueue_freezing);
5757
5758 list_for_each_entry(wq, &workqueues, list) {
5759 if (!(wq->flags & WQ_FREEZABLE))
5760 continue;
5761 /*
5762 * nr_active is monotonically decreasing. It's safe
5763 * to peek without lock.
5764 */
5765 rcu_read_lock();
5766 for_each_pwq(pwq, wq) {
5767 WARN_ON_ONCE(pwq->nr_active < 0);
5768 if (pwq->nr_active) {
5769 busy = true;
5770 rcu_read_unlock();
5771 goto out_unlock;
5772 }
5773 }
5774 rcu_read_unlock();
5775 }
5776 out_unlock:
5777 mutex_unlock(&wq_pool_mutex);
5778 return busy;
5779 }
5780
5781 /**
5782 * thaw_workqueues - thaw workqueues
5783 *
5784 * Thaw workqueues. Normal queueing is restored and all collected
5785 * frozen works are transferred to their respective pool worklists.
5786 *
5787 * CONTEXT:
5788 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5789 */
thaw_workqueues(void)5790 void thaw_workqueues(void)
5791 {
5792 struct workqueue_struct *wq;
5793 struct pool_workqueue *pwq;
5794
5795 mutex_lock(&wq_pool_mutex);
5796
5797 if (!workqueue_freezing)
5798 goto out_unlock;
5799
5800 workqueue_freezing = false;
5801
5802 /* restore max_active and repopulate worklist */
5803 list_for_each_entry(wq, &workqueues, list) {
5804 mutex_lock(&wq->mutex);
5805 for_each_pwq(pwq, wq)
5806 pwq_adjust_max_active(pwq);
5807 mutex_unlock(&wq->mutex);
5808 }
5809
5810 out_unlock:
5811 mutex_unlock(&wq_pool_mutex);
5812 }
5813 #endif /* CONFIG_FREEZER */
5814
workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)5815 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
5816 {
5817 LIST_HEAD(ctxs);
5818 int ret = 0;
5819 struct workqueue_struct *wq;
5820 struct apply_wqattrs_ctx *ctx, *n;
5821
5822 lockdep_assert_held(&wq_pool_mutex);
5823
5824 list_for_each_entry(wq, &workqueues, list) {
5825 if (!(wq->flags & WQ_UNBOUND))
5826 continue;
5827 /* creating multiple pwqs breaks ordering guarantee */
5828 if (wq->flags & __WQ_ORDERED)
5829 continue;
5830
5831 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
5832 if (IS_ERR(ctx)) {
5833 ret = PTR_ERR(ctx);
5834 break;
5835 }
5836
5837 list_add_tail(&ctx->list, &ctxs);
5838 }
5839
5840 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5841 if (!ret)
5842 apply_wqattrs_commit(ctx);
5843 apply_wqattrs_cleanup(ctx);
5844 }
5845
5846 if (!ret) {
5847 mutex_lock(&wq_pool_attach_mutex);
5848 cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
5849 mutex_unlock(&wq_pool_attach_mutex);
5850 }
5851 return ret;
5852 }
5853
5854 /**
5855 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5856 * @cpumask: the cpumask to set
5857 *
5858 * The low-level workqueues cpumask is a global cpumask that limits
5859 * the affinity of all unbound workqueues. This function check the @cpumask
5860 * and apply it to all unbound workqueues and updates all pwqs of them.
5861 *
5862 * Return: 0 - Success
5863 * -EINVAL - Invalid @cpumask
5864 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5865 */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)5866 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5867 {
5868 int ret = -EINVAL;
5869
5870 /*
5871 * Not excluding isolated cpus on purpose.
5872 * If the user wishes to include them, we allow that.
5873 */
5874 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5875 if (!cpumask_empty(cpumask)) {
5876 apply_wqattrs_lock();
5877 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5878 ret = 0;
5879 goto out_unlock;
5880 }
5881
5882 ret = workqueue_apply_unbound_cpumask(cpumask);
5883
5884 out_unlock:
5885 apply_wqattrs_unlock();
5886 }
5887
5888 return ret;
5889 }
5890
parse_affn_scope(const char * val)5891 static int parse_affn_scope(const char *val)
5892 {
5893 int i;
5894
5895 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
5896 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
5897 return i;
5898 }
5899 return -EINVAL;
5900 }
5901
wq_affn_dfl_set(const char * val,const struct kernel_param * kp)5902 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
5903 {
5904 struct workqueue_struct *wq;
5905 int affn, cpu;
5906
5907 affn = parse_affn_scope(val);
5908 if (affn < 0)
5909 return affn;
5910 if (affn == WQ_AFFN_DFL)
5911 return -EINVAL;
5912
5913 cpus_read_lock();
5914 mutex_lock(&wq_pool_mutex);
5915
5916 wq_affn_dfl = affn;
5917
5918 list_for_each_entry(wq, &workqueues, list) {
5919 for_each_online_cpu(cpu) {
5920 wq_update_pod(wq, cpu, cpu, true);
5921 }
5922 }
5923
5924 mutex_unlock(&wq_pool_mutex);
5925 cpus_read_unlock();
5926
5927 return 0;
5928 }
5929
wq_affn_dfl_get(char * buffer,const struct kernel_param * kp)5930 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
5931 {
5932 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
5933 }
5934
5935 static const struct kernel_param_ops wq_affn_dfl_ops = {
5936 .set = wq_affn_dfl_set,
5937 .get = wq_affn_dfl_get,
5938 };
5939
5940 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
5941
5942 #ifdef CONFIG_SYSFS
5943 /*
5944 * Workqueues with WQ_SYSFS flag set is visible to userland via
5945 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5946 * following attributes.
5947 *
5948 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5949 * max_active RW int : maximum number of in-flight work items
5950 *
5951 * Unbound workqueues have the following extra attributes.
5952 *
5953 * nice RW int : nice value of the workers
5954 * cpumask RW mask : bitmask of allowed CPUs for the workers
5955 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none)
5956 * affinity_strict RW bool : worker CPU affinity is strict
5957 */
5958 struct wq_device {
5959 struct workqueue_struct *wq;
5960 struct device dev;
5961 };
5962
dev_to_wq(struct device * dev)5963 static struct workqueue_struct *dev_to_wq(struct device *dev)
5964 {
5965 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5966
5967 return wq_dev->wq;
5968 }
5969
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)5970 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5971 char *buf)
5972 {
5973 struct workqueue_struct *wq = dev_to_wq(dev);
5974
5975 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5976 }
5977 static DEVICE_ATTR_RO(per_cpu);
5978
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)5979 static ssize_t max_active_show(struct device *dev,
5980 struct device_attribute *attr, char *buf)
5981 {
5982 struct workqueue_struct *wq = dev_to_wq(dev);
5983
5984 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5985 }
5986
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5987 static ssize_t max_active_store(struct device *dev,
5988 struct device_attribute *attr, const char *buf,
5989 size_t count)
5990 {
5991 struct workqueue_struct *wq = dev_to_wq(dev);
5992 int val;
5993
5994 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5995 return -EINVAL;
5996
5997 workqueue_set_max_active(wq, val);
5998 return count;
5999 }
6000 static DEVICE_ATTR_RW(max_active);
6001
6002 static struct attribute *wq_sysfs_attrs[] = {
6003 &dev_attr_per_cpu.attr,
6004 &dev_attr_max_active.attr,
6005 NULL,
6006 };
6007 ATTRIBUTE_GROUPS(wq_sysfs);
6008
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)6009 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
6010 char *buf)
6011 {
6012 struct workqueue_struct *wq = dev_to_wq(dev);
6013 int written;
6014
6015 mutex_lock(&wq->mutex);
6016 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
6017 mutex_unlock(&wq->mutex);
6018
6019 return written;
6020 }
6021
6022 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)6023 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
6024 {
6025 struct workqueue_attrs *attrs;
6026
6027 lockdep_assert_held(&wq_pool_mutex);
6028
6029 attrs = alloc_workqueue_attrs();
6030 if (!attrs)
6031 return NULL;
6032
6033 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6034 return attrs;
6035 }
6036
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)6037 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
6038 const char *buf, size_t count)
6039 {
6040 struct workqueue_struct *wq = dev_to_wq(dev);
6041 struct workqueue_attrs *attrs;
6042 int ret = -ENOMEM;
6043
6044 apply_wqattrs_lock();
6045
6046 attrs = wq_sysfs_prep_attrs(wq);
6047 if (!attrs)
6048 goto out_unlock;
6049
6050 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
6051 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
6052 ret = apply_workqueue_attrs_locked(wq, attrs);
6053 else
6054 ret = -EINVAL;
6055
6056 out_unlock:
6057 apply_wqattrs_unlock();
6058 free_workqueue_attrs(attrs);
6059 return ret ?: count;
6060 }
6061
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)6062 static ssize_t wq_cpumask_show(struct device *dev,
6063 struct device_attribute *attr, char *buf)
6064 {
6065 struct workqueue_struct *wq = dev_to_wq(dev);
6066 int written;
6067
6068 mutex_lock(&wq->mutex);
6069 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6070 cpumask_pr_args(wq->unbound_attrs->cpumask));
6071 mutex_unlock(&wq->mutex);
6072 return written;
6073 }
6074
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)6075 static ssize_t wq_cpumask_store(struct device *dev,
6076 struct device_attribute *attr,
6077 const char *buf, size_t count)
6078 {
6079 struct workqueue_struct *wq = dev_to_wq(dev);
6080 struct workqueue_attrs *attrs;
6081 int ret = -ENOMEM;
6082
6083 apply_wqattrs_lock();
6084
6085 attrs = wq_sysfs_prep_attrs(wq);
6086 if (!attrs)
6087 goto out_unlock;
6088
6089 ret = cpumask_parse(buf, attrs->cpumask);
6090 if (!ret)
6091 ret = apply_workqueue_attrs_locked(wq, attrs);
6092
6093 out_unlock:
6094 apply_wqattrs_unlock();
6095 free_workqueue_attrs(attrs);
6096 return ret ?: count;
6097 }
6098
wq_affn_scope_show(struct device * dev,struct device_attribute * attr,char * buf)6099 static ssize_t wq_affn_scope_show(struct device *dev,
6100 struct device_attribute *attr, char *buf)
6101 {
6102 struct workqueue_struct *wq = dev_to_wq(dev);
6103 int written;
6104
6105 mutex_lock(&wq->mutex);
6106 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
6107 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
6108 wq_affn_names[WQ_AFFN_DFL],
6109 wq_affn_names[wq_affn_dfl]);
6110 else
6111 written = scnprintf(buf, PAGE_SIZE, "%s\n",
6112 wq_affn_names[wq->unbound_attrs->affn_scope]);
6113 mutex_unlock(&wq->mutex);
6114
6115 return written;
6116 }
6117
wq_affn_scope_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)6118 static ssize_t wq_affn_scope_store(struct device *dev,
6119 struct device_attribute *attr,
6120 const char *buf, size_t count)
6121 {
6122 struct workqueue_struct *wq = dev_to_wq(dev);
6123 struct workqueue_attrs *attrs;
6124 int affn, ret = -ENOMEM;
6125
6126 affn = parse_affn_scope(buf);
6127 if (affn < 0)
6128 return affn;
6129
6130 apply_wqattrs_lock();
6131 attrs = wq_sysfs_prep_attrs(wq);
6132 if (attrs) {
6133 attrs->affn_scope = affn;
6134 ret = apply_workqueue_attrs_locked(wq, attrs);
6135 }
6136 apply_wqattrs_unlock();
6137 free_workqueue_attrs(attrs);
6138 return ret ?: count;
6139 }
6140
wq_affinity_strict_show(struct device * dev,struct device_attribute * attr,char * buf)6141 static ssize_t wq_affinity_strict_show(struct device *dev,
6142 struct device_attribute *attr, char *buf)
6143 {
6144 struct workqueue_struct *wq = dev_to_wq(dev);
6145
6146 return scnprintf(buf, PAGE_SIZE, "%d\n",
6147 wq->unbound_attrs->affn_strict);
6148 }
6149
wq_affinity_strict_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)6150 static ssize_t wq_affinity_strict_store(struct device *dev,
6151 struct device_attribute *attr,
6152 const char *buf, size_t count)
6153 {
6154 struct workqueue_struct *wq = dev_to_wq(dev);
6155 struct workqueue_attrs *attrs;
6156 int v, ret = -ENOMEM;
6157
6158 if (sscanf(buf, "%d", &v) != 1)
6159 return -EINVAL;
6160
6161 apply_wqattrs_lock();
6162 attrs = wq_sysfs_prep_attrs(wq);
6163 if (attrs) {
6164 attrs->affn_strict = (bool)v;
6165 ret = apply_workqueue_attrs_locked(wq, attrs);
6166 }
6167 apply_wqattrs_unlock();
6168 free_workqueue_attrs(attrs);
6169 return ret ?: count;
6170 }
6171
6172 static struct device_attribute wq_sysfs_unbound_attrs[] = {
6173 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
6174 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
6175 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
6176 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
6177 __ATTR_NULL,
6178 };
6179
6180 static struct bus_type wq_subsys = {
6181 .name = "workqueue",
6182 .dev_groups = wq_sysfs_groups,
6183 };
6184
wq_unbound_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)6185 static ssize_t wq_unbound_cpumask_show(struct device *dev,
6186 struct device_attribute *attr, char *buf)
6187 {
6188 int written;
6189
6190 mutex_lock(&wq_pool_mutex);
6191 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6192 cpumask_pr_args(wq_unbound_cpumask));
6193 mutex_unlock(&wq_pool_mutex);
6194
6195 return written;
6196 }
6197
wq_unbound_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)6198 static ssize_t wq_unbound_cpumask_store(struct device *dev,
6199 struct device_attribute *attr, const char *buf, size_t count)
6200 {
6201 cpumask_var_t cpumask;
6202 int ret;
6203
6204 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6205 return -ENOMEM;
6206
6207 ret = cpumask_parse(buf, cpumask);
6208 if (!ret)
6209 ret = workqueue_set_unbound_cpumask(cpumask);
6210
6211 free_cpumask_var(cpumask);
6212 return ret ? ret : count;
6213 }
6214
6215 static struct device_attribute wq_sysfs_cpumask_attr =
6216 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
6217 wq_unbound_cpumask_store);
6218
wq_sysfs_init(void)6219 static int __init wq_sysfs_init(void)
6220 {
6221 struct device *dev_root;
6222 int err;
6223
6224 err = subsys_virtual_register(&wq_subsys, NULL);
6225 if (err)
6226 return err;
6227
6228 dev_root = bus_get_dev_root(&wq_subsys);
6229 if (dev_root) {
6230 err = device_create_file(dev_root, &wq_sysfs_cpumask_attr);
6231 put_device(dev_root);
6232 }
6233 return err;
6234 }
6235 core_initcall(wq_sysfs_init);
6236
wq_device_release(struct device * dev)6237 static void wq_device_release(struct device *dev)
6238 {
6239 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6240
6241 kfree(wq_dev);
6242 }
6243
6244 /**
6245 * workqueue_sysfs_register - make a workqueue visible in sysfs
6246 * @wq: the workqueue to register
6247 *
6248 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
6249 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
6250 * which is the preferred method.
6251 *
6252 * Workqueue user should use this function directly iff it wants to apply
6253 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
6254 * apply_workqueue_attrs() may race against userland updating the
6255 * attributes.
6256 *
6257 * Return: 0 on success, -errno on failure.
6258 */
workqueue_sysfs_register(struct workqueue_struct * wq)6259 int workqueue_sysfs_register(struct workqueue_struct *wq)
6260 {
6261 struct wq_device *wq_dev;
6262 int ret;
6263
6264 /*
6265 * Adjusting max_active or creating new pwqs by applying
6266 * attributes breaks ordering guarantee. Disallow exposing ordered
6267 * workqueues.
6268 */
6269 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6270 return -EINVAL;
6271
6272 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
6273 if (!wq_dev)
6274 return -ENOMEM;
6275
6276 wq_dev->wq = wq;
6277 wq_dev->dev.bus = &wq_subsys;
6278 wq_dev->dev.release = wq_device_release;
6279 dev_set_name(&wq_dev->dev, "%s", wq->name);
6280
6281 /*
6282 * unbound_attrs are created separately. Suppress uevent until
6283 * everything is ready.
6284 */
6285 dev_set_uevent_suppress(&wq_dev->dev, true);
6286
6287 ret = device_register(&wq_dev->dev);
6288 if (ret) {
6289 put_device(&wq_dev->dev);
6290 wq->wq_dev = NULL;
6291 return ret;
6292 }
6293
6294 if (wq->flags & WQ_UNBOUND) {
6295 struct device_attribute *attr;
6296
6297 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
6298 ret = device_create_file(&wq_dev->dev, attr);
6299 if (ret) {
6300 device_unregister(&wq_dev->dev);
6301 wq->wq_dev = NULL;
6302 return ret;
6303 }
6304 }
6305 }
6306
6307 dev_set_uevent_suppress(&wq_dev->dev, false);
6308 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
6309 return 0;
6310 }
6311
6312 /**
6313 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
6314 * @wq: the workqueue to unregister
6315 *
6316 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
6317 */
workqueue_sysfs_unregister(struct workqueue_struct * wq)6318 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
6319 {
6320 struct wq_device *wq_dev = wq->wq_dev;
6321
6322 if (!wq->wq_dev)
6323 return;
6324
6325 wq->wq_dev = NULL;
6326 device_unregister(&wq_dev->dev);
6327 }
6328 #else /* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)6329 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
6330 #endif /* CONFIG_SYSFS */
6331
6332 /*
6333 * Workqueue watchdog.
6334 *
6335 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
6336 * flush dependency, a concurrency managed work item which stays RUNNING
6337 * indefinitely. Workqueue stalls can be very difficult to debug as the
6338 * usual warning mechanisms don't trigger and internal workqueue state is
6339 * largely opaque.
6340 *
6341 * Workqueue watchdog monitors all worker pools periodically and dumps
6342 * state if some pools failed to make forward progress for a while where
6343 * forward progress is defined as the first item on ->worklist changing.
6344 *
6345 * This mechanism is controlled through the kernel parameter
6346 * "workqueue.watchdog_thresh" which can be updated at runtime through the
6347 * corresponding sysfs parameter file.
6348 */
6349 #ifdef CONFIG_WQ_WATCHDOG
6350
6351 static unsigned long wq_watchdog_thresh = 30;
6352 static struct timer_list wq_watchdog_timer;
6353
6354 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
6355 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
6356
6357 static unsigned int wq_panic_on_stall;
6358 module_param_named(panic_on_stall, wq_panic_on_stall, uint, 0644);
6359
6360 /*
6361 * Show workers that might prevent the processing of pending work items.
6362 * The only candidates are CPU-bound workers in the running state.
6363 * Pending work items should be handled by another idle worker
6364 * in all other situations.
6365 */
show_cpu_pool_hog(struct worker_pool * pool)6366 static void show_cpu_pool_hog(struct worker_pool *pool)
6367 {
6368 struct worker *worker;
6369 unsigned long flags;
6370 int bkt;
6371
6372 raw_spin_lock_irqsave(&pool->lock, flags);
6373
6374 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6375 if (task_is_running(worker->task)) {
6376 /*
6377 * Defer printing to avoid deadlocks in console
6378 * drivers that queue work while holding locks
6379 * also taken in their write paths.
6380 */
6381 printk_deferred_enter();
6382
6383 pr_info("pool %d:\n", pool->id);
6384 sched_show_task(worker->task);
6385
6386 printk_deferred_exit();
6387 }
6388 }
6389
6390 raw_spin_unlock_irqrestore(&pool->lock, flags);
6391 }
6392
show_cpu_pools_hogs(void)6393 static void show_cpu_pools_hogs(void)
6394 {
6395 struct worker_pool *pool;
6396 int pi;
6397
6398 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
6399
6400 rcu_read_lock();
6401
6402 for_each_pool(pool, pi) {
6403 if (pool->cpu_stall)
6404 show_cpu_pool_hog(pool);
6405
6406 }
6407
6408 rcu_read_unlock();
6409 }
6410
panic_on_wq_watchdog(void)6411 static void panic_on_wq_watchdog(void)
6412 {
6413 static unsigned int wq_stall;
6414
6415 if (wq_panic_on_stall) {
6416 wq_stall++;
6417 BUG_ON(wq_stall >= wq_panic_on_stall);
6418 }
6419 }
6420
wq_watchdog_reset_touched(void)6421 static void wq_watchdog_reset_touched(void)
6422 {
6423 int cpu;
6424
6425 wq_watchdog_touched = jiffies;
6426 for_each_possible_cpu(cpu)
6427 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6428 }
6429
wq_watchdog_timer_fn(struct timer_list * unused)6430 static void wq_watchdog_timer_fn(struct timer_list *unused)
6431 {
6432 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
6433 bool lockup_detected = false;
6434 bool cpu_pool_stall = false;
6435 unsigned long now = jiffies;
6436 struct worker_pool *pool;
6437 int pi;
6438
6439 if (!thresh)
6440 return;
6441
6442 rcu_read_lock();
6443
6444 for_each_pool(pool, pi) {
6445 unsigned long pool_ts, touched, ts;
6446
6447 pool->cpu_stall = false;
6448 if (list_empty(&pool->worklist))
6449 continue;
6450
6451 /*
6452 * If a virtual machine is stopped by the host it can look to
6453 * the watchdog like a stall.
6454 */
6455 kvm_check_and_clear_guest_paused();
6456
6457 /* get the latest of pool and touched timestamps */
6458 if (pool->cpu >= 0)
6459 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
6460 else
6461 touched = READ_ONCE(wq_watchdog_touched);
6462 pool_ts = READ_ONCE(pool->watchdog_ts);
6463
6464 if (time_after(pool_ts, touched))
6465 ts = pool_ts;
6466 else
6467 ts = touched;
6468
6469 /* did we stall? */
6470 if (time_after(now, ts + thresh)) {
6471 lockup_detected = true;
6472 if (pool->cpu >= 0) {
6473 pool->cpu_stall = true;
6474 cpu_pool_stall = true;
6475 }
6476 pr_emerg("BUG: workqueue lockup - pool");
6477 pr_cont_pool_info(pool);
6478 pr_cont(" stuck for %us!\n",
6479 jiffies_to_msecs(now - pool_ts) / 1000);
6480 trace_android_vh_wq_lockup_pool(pool->cpu, pool_ts);
6481 }
6482
6483
6484 }
6485
6486 rcu_read_unlock();
6487
6488 if (lockup_detected)
6489 show_all_workqueues();
6490
6491 if (cpu_pool_stall)
6492 show_cpu_pools_hogs();
6493
6494 if (lockup_detected)
6495 panic_on_wq_watchdog();
6496
6497 wq_watchdog_reset_touched();
6498 mod_timer(&wq_watchdog_timer, jiffies + thresh);
6499 }
6500
wq_watchdog_touch(int cpu)6501 notrace void wq_watchdog_touch(int cpu)
6502 {
6503 if (cpu >= 0)
6504 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6505
6506 wq_watchdog_touched = jiffies;
6507 }
6508
wq_watchdog_set_thresh(unsigned long thresh)6509 static void wq_watchdog_set_thresh(unsigned long thresh)
6510 {
6511 wq_watchdog_thresh = 0;
6512 del_timer_sync(&wq_watchdog_timer);
6513
6514 if (thresh) {
6515 wq_watchdog_thresh = thresh;
6516 wq_watchdog_reset_touched();
6517 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
6518 }
6519 }
6520
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)6521 static int wq_watchdog_param_set_thresh(const char *val,
6522 const struct kernel_param *kp)
6523 {
6524 unsigned long thresh;
6525 int ret;
6526
6527 ret = kstrtoul(val, 0, &thresh);
6528 if (ret)
6529 return ret;
6530
6531 if (system_wq)
6532 wq_watchdog_set_thresh(thresh);
6533 else
6534 wq_watchdog_thresh = thresh;
6535
6536 return 0;
6537 }
6538
6539 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
6540 .set = wq_watchdog_param_set_thresh,
6541 .get = param_get_ulong,
6542 };
6543
6544 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
6545 0644);
6546
wq_watchdog_init(void)6547 static void wq_watchdog_init(void)
6548 {
6549 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
6550 wq_watchdog_set_thresh(wq_watchdog_thresh);
6551 }
6552
6553 #else /* CONFIG_WQ_WATCHDOG */
6554
wq_watchdog_init(void)6555 static inline void wq_watchdog_init(void) { }
6556
6557 #endif /* CONFIG_WQ_WATCHDOG */
6558
restrict_unbound_cpumask(const char * name,const struct cpumask * mask)6559 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
6560 {
6561 if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
6562 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
6563 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
6564 return;
6565 }
6566
6567 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
6568 }
6569
6570 /**
6571 * workqueue_init_early - early init for workqueue subsystem
6572 *
6573 * This is the first step of three-staged workqueue subsystem initialization and
6574 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
6575 * up. It sets up all the data structures and system workqueues and allows early
6576 * boot code to create workqueues and queue/cancel work items. Actual work item
6577 * execution starts only after kthreads can be created and scheduled right
6578 * before early initcalls.
6579 */
workqueue_init_early(void)6580 void __init workqueue_init_early(void)
6581 {
6582 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
6583 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6584 int i, cpu;
6585
6586 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6587
6588 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6589 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
6590 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
6591 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
6592 if (!cpumask_empty(&wq_cmdline_cpumask))
6593 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
6594
6595 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6596
6597 wq_update_pod_attrs_buf = alloc_workqueue_attrs();
6598 BUG_ON(!wq_update_pod_attrs_buf);
6599
6600 /* initialize WQ_AFFN_SYSTEM pods */
6601 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
6602 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
6603 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
6604 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
6605
6606 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
6607
6608 pt->nr_pods = 1;
6609 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
6610 pt->pod_node[0] = NUMA_NO_NODE;
6611 pt->cpu_pod[0] = 0;
6612
6613 /* initialize CPU pools */
6614 for_each_possible_cpu(cpu) {
6615 struct worker_pool *pool;
6616
6617 i = 0;
6618 for_each_cpu_worker_pool(pool, cpu) {
6619 BUG_ON(init_worker_pool(pool));
6620 pool->cpu = cpu;
6621 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6622 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
6623 pool->attrs->nice = std_nice[i++];
6624 pool->attrs->affn_strict = true;
6625 pool->node = cpu_to_node(cpu);
6626
6627 /* alloc pool ID */
6628 mutex_lock(&wq_pool_mutex);
6629 BUG_ON(worker_pool_assign_id(pool));
6630 mutex_unlock(&wq_pool_mutex);
6631 }
6632 }
6633
6634 /* create default unbound and ordered wq attrs */
6635 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6636 struct workqueue_attrs *attrs;
6637
6638 BUG_ON(!(attrs = alloc_workqueue_attrs()));
6639 attrs->nice = std_nice[i];
6640 unbound_std_wq_attrs[i] = attrs;
6641
6642 /*
6643 * An ordered wq should have only one pwq as ordering is
6644 * guaranteed by max_active which is enforced by pwqs.
6645 */
6646 BUG_ON(!(attrs = alloc_workqueue_attrs()));
6647 attrs->nice = std_nice[i];
6648 attrs->ordered = true;
6649 ordered_wq_attrs[i] = attrs;
6650 }
6651
6652 system_wq = alloc_workqueue("events", 0, 0);
6653 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6654 system_long_wq = alloc_workqueue("events_long", 0, 0);
6655 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6656 WQ_MAX_ACTIVE);
6657 system_freezable_wq = alloc_workqueue("events_freezable",
6658 WQ_FREEZABLE, 0);
6659 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6660 WQ_POWER_EFFICIENT, 0);
6661 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6662 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6663 0);
6664 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6665 !system_unbound_wq || !system_freezable_wq ||
6666 !system_power_efficient_wq ||
6667 !system_freezable_power_efficient_wq);
6668 }
6669
wq_cpu_intensive_thresh_init(void)6670 static void __init wq_cpu_intensive_thresh_init(void)
6671 {
6672 unsigned long thresh;
6673 unsigned long bogo;
6674
6675 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
6676 BUG_ON(IS_ERR(pwq_release_worker));
6677
6678 /* if the user set it to a specific value, keep it */
6679 if (wq_cpu_intensive_thresh_us != ULONG_MAX)
6680 return;
6681
6682 /*
6683 * The default of 10ms is derived from the fact that most modern (as of
6684 * 2023) processors can do a lot in 10ms and that it's just below what
6685 * most consider human-perceivable. However, the kernel also runs on a
6686 * lot slower CPUs including microcontrollers where the threshold is way
6687 * too low.
6688 *
6689 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
6690 * This is by no means accurate but it doesn't have to be. The mechanism
6691 * is still useful even when the threshold is fully scaled up. Also, as
6692 * the reports would usually be applicable to everyone, some machines
6693 * operating on longer thresholds won't significantly diminish their
6694 * usefulness.
6695 */
6696 thresh = 10 * USEC_PER_MSEC;
6697
6698 /* see init/calibrate.c for lpj -> BogoMIPS calculation */
6699 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
6700 if (bogo < 4000)
6701 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
6702
6703 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
6704 loops_per_jiffy, bogo, thresh);
6705
6706 wq_cpu_intensive_thresh_us = thresh;
6707 }
6708
6709 /**
6710 * workqueue_init - bring workqueue subsystem fully online
6711 *
6712 * This is the second step of three-staged workqueue subsystem initialization
6713 * and invoked as soon as kthreads can be created and scheduled. Workqueues have
6714 * been created and work items queued on them, but there are no kworkers
6715 * executing the work items yet. Populate the worker pools with the initial
6716 * workers and enable future kworker creations.
6717 */
workqueue_init(void)6718 void __init workqueue_init(void)
6719 {
6720 struct workqueue_struct *wq;
6721 struct worker_pool *pool;
6722 int cpu, bkt;
6723
6724 wq_cpu_intensive_thresh_init();
6725
6726 mutex_lock(&wq_pool_mutex);
6727
6728 /*
6729 * Per-cpu pools created earlier could be missing node hint. Fix them
6730 * up. Also, create a rescuer for workqueues that requested it.
6731 */
6732 for_each_possible_cpu(cpu) {
6733 for_each_cpu_worker_pool(pool, cpu) {
6734 pool->node = cpu_to_node(cpu);
6735 }
6736 }
6737
6738 list_for_each_entry(wq, &workqueues, list) {
6739 WARN(init_rescuer(wq),
6740 "workqueue: failed to create early rescuer for %s",
6741 wq->name);
6742 }
6743
6744 mutex_unlock(&wq_pool_mutex);
6745
6746 /* create the initial workers */
6747 for_each_online_cpu(cpu) {
6748 for_each_cpu_worker_pool(pool, cpu) {
6749 pool->flags &= ~POOL_DISASSOCIATED;
6750 BUG_ON(!create_worker(pool));
6751 }
6752 }
6753
6754 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6755 BUG_ON(!create_worker(pool));
6756
6757 wq_online = true;
6758 wq_watchdog_init();
6759 }
6760
6761 /*
6762 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
6763 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
6764 * and consecutive pod ID. The rest of @pt is initialized accordingly.
6765 */
init_pod_type(struct wq_pod_type * pt,bool (* cpus_share_pod)(int,int))6766 static void __init init_pod_type(struct wq_pod_type *pt,
6767 bool (*cpus_share_pod)(int, int))
6768 {
6769 int cur, pre, cpu, pod;
6770
6771 pt->nr_pods = 0;
6772
6773 /* init @pt->cpu_pod[] according to @cpus_share_pod() */
6774 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
6775 BUG_ON(!pt->cpu_pod);
6776
6777 for_each_possible_cpu(cur) {
6778 for_each_possible_cpu(pre) {
6779 if (pre >= cur) {
6780 pt->cpu_pod[cur] = pt->nr_pods++;
6781 break;
6782 }
6783 if (cpus_share_pod(cur, pre)) {
6784 pt->cpu_pod[cur] = pt->cpu_pod[pre];
6785 break;
6786 }
6787 }
6788 }
6789
6790 /* init the rest to match @pt->cpu_pod[] */
6791 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
6792 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
6793 BUG_ON(!pt->pod_cpus || !pt->pod_node);
6794
6795 for (pod = 0; pod < pt->nr_pods; pod++)
6796 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
6797
6798 for_each_possible_cpu(cpu) {
6799 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
6800 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
6801 }
6802 }
6803
cpus_dont_share(int cpu0,int cpu1)6804 static bool __init cpus_dont_share(int cpu0, int cpu1)
6805 {
6806 return false;
6807 }
6808
cpus_share_smt(int cpu0,int cpu1)6809 static bool __init cpus_share_smt(int cpu0, int cpu1)
6810 {
6811 #ifdef CONFIG_SCHED_SMT
6812 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
6813 #else
6814 return false;
6815 #endif
6816 }
6817
cpus_share_numa(int cpu0,int cpu1)6818 static bool __init cpus_share_numa(int cpu0, int cpu1)
6819 {
6820 return cpu_to_node(cpu0) == cpu_to_node(cpu1);
6821 }
6822
6823 /**
6824 * workqueue_init_topology - initialize CPU pods for unbound workqueues
6825 *
6826 * This is the third step of there-staged workqueue subsystem initialization and
6827 * invoked after SMP and topology information are fully initialized. It
6828 * initializes the unbound CPU pods accordingly.
6829 */
workqueue_init_topology(void)6830 void __init workqueue_init_topology(void)
6831 {
6832 struct workqueue_struct *wq;
6833 int cpu;
6834
6835 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
6836 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
6837 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
6838 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
6839
6840 mutex_lock(&wq_pool_mutex);
6841
6842 /*
6843 * Workqueues allocated earlier would have all CPUs sharing the default
6844 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
6845 * combinations to apply per-pod sharing.
6846 */
6847 list_for_each_entry(wq, &workqueues, list) {
6848 for_each_online_cpu(cpu) {
6849 wq_update_pod(wq, cpu, cpu, true);
6850 }
6851 }
6852
6853 mutex_unlock(&wq_pool_mutex);
6854 }
6855
__warn_flushing_systemwide_wq(void)6856 void __warn_flushing_systemwide_wq(void)
6857 {
6858 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
6859 dump_stack();
6860 }
6861 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
6862
workqueue_unbound_cpus_setup(char * str)6863 static int __init workqueue_unbound_cpus_setup(char *str)
6864 {
6865 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
6866 cpumask_clear(&wq_cmdline_cpumask);
6867 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
6868 }
6869
6870 return 1;
6871 }
6872 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
6873