1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * Copyright (c) 2018 Red Hat, Inc.
5 * All rights reserved.
6 */
7
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_bit.h"
14 #include "xfs_sb.h"
15 #include "xfs_mount.h"
16 #include "xfs_btree.h"
17 #include "xfs_alloc_btree.h"
18 #include "xfs_rmap_btree.h"
19 #include "xfs_alloc.h"
20 #include "xfs_ialloc.h"
21 #include "xfs_rmap.h"
22 #include "xfs_ag.h"
23 #include "xfs_ag_resv.h"
24 #include "xfs_health.h"
25 #include "xfs_error.h"
26 #include "xfs_bmap.h"
27 #include "xfs_defer.h"
28 #include "xfs_log_format.h"
29 #include "xfs_trans.h"
30 #include "xfs_trace.h"
31 #include "xfs_inode.h"
32 #include "xfs_icache.h"
33
34
35 /*
36 * Passive reference counting access wrappers to the perag structures. If the
37 * per-ag structure is to be freed, the freeing code is responsible for cleaning
38 * up objects with passive references before freeing the structure. This is
39 * things like cached buffers.
40 */
41 struct xfs_perag *
xfs_perag_get(struct xfs_mount * mp,xfs_agnumber_t agno)42 xfs_perag_get(
43 struct xfs_mount *mp,
44 xfs_agnumber_t agno)
45 {
46 struct xfs_perag *pag;
47
48 rcu_read_lock();
49 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
50 if (pag) {
51 trace_xfs_perag_get(pag, _RET_IP_);
52 ASSERT(atomic_read(&pag->pag_ref) >= 0);
53 atomic_inc(&pag->pag_ref);
54 }
55 rcu_read_unlock();
56 return pag;
57 }
58
59 /*
60 * search from @first to find the next perag with the given tag set.
61 */
62 struct xfs_perag *
xfs_perag_get_tag(struct xfs_mount * mp,xfs_agnumber_t first,unsigned int tag)63 xfs_perag_get_tag(
64 struct xfs_mount *mp,
65 xfs_agnumber_t first,
66 unsigned int tag)
67 {
68 struct xfs_perag *pag;
69 int found;
70
71 rcu_read_lock();
72 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
73 (void **)&pag, first, 1, tag);
74 if (found <= 0) {
75 rcu_read_unlock();
76 return NULL;
77 }
78 trace_xfs_perag_get_tag(pag, _RET_IP_);
79 atomic_inc(&pag->pag_ref);
80 rcu_read_unlock();
81 return pag;
82 }
83
84 /* Get a passive reference to the given perag. */
85 struct xfs_perag *
xfs_perag_hold(struct xfs_perag * pag)86 xfs_perag_hold(
87 struct xfs_perag *pag)
88 {
89 ASSERT(atomic_read(&pag->pag_ref) > 0 ||
90 atomic_read(&pag->pag_active_ref) > 0);
91
92 trace_xfs_perag_hold(pag, _RET_IP_);
93 atomic_inc(&pag->pag_ref);
94 return pag;
95 }
96
97 void
xfs_perag_put(struct xfs_perag * pag)98 xfs_perag_put(
99 struct xfs_perag *pag)
100 {
101 trace_xfs_perag_put(pag, _RET_IP_);
102 ASSERT(atomic_read(&pag->pag_ref) > 0);
103 atomic_dec(&pag->pag_ref);
104 }
105
106 /*
107 * Active references for perag structures. This is for short term access to the
108 * per ag structures for walking trees or accessing state. If an AG is being
109 * shrunk or is offline, then this will fail to find that AG and return NULL
110 * instead.
111 */
112 struct xfs_perag *
xfs_perag_grab(struct xfs_mount * mp,xfs_agnumber_t agno)113 xfs_perag_grab(
114 struct xfs_mount *mp,
115 xfs_agnumber_t agno)
116 {
117 struct xfs_perag *pag;
118
119 rcu_read_lock();
120 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
121 if (pag) {
122 trace_xfs_perag_grab(pag, _RET_IP_);
123 if (!atomic_inc_not_zero(&pag->pag_active_ref))
124 pag = NULL;
125 }
126 rcu_read_unlock();
127 return pag;
128 }
129
130 /*
131 * search from @first to find the next perag with the given tag set.
132 */
133 struct xfs_perag *
xfs_perag_grab_tag(struct xfs_mount * mp,xfs_agnumber_t first,int tag)134 xfs_perag_grab_tag(
135 struct xfs_mount *mp,
136 xfs_agnumber_t first,
137 int tag)
138 {
139 struct xfs_perag *pag;
140 int found;
141
142 rcu_read_lock();
143 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
144 (void **)&pag, first, 1, tag);
145 if (found <= 0) {
146 rcu_read_unlock();
147 return NULL;
148 }
149 trace_xfs_perag_grab_tag(pag, _RET_IP_);
150 if (!atomic_inc_not_zero(&pag->pag_active_ref))
151 pag = NULL;
152 rcu_read_unlock();
153 return pag;
154 }
155
156 void
xfs_perag_rele(struct xfs_perag * pag)157 xfs_perag_rele(
158 struct xfs_perag *pag)
159 {
160 trace_xfs_perag_rele(pag, _RET_IP_);
161 if (atomic_dec_and_test(&pag->pag_active_ref))
162 wake_up(&pag->pag_active_wq);
163 }
164
165 /*
166 * xfs_initialize_perag_data
167 *
168 * Read in each per-ag structure so we can count up the number of
169 * allocated inodes, free inodes and used filesystem blocks as this
170 * information is no longer persistent in the superblock. Once we have
171 * this information, write it into the in-core superblock structure.
172 */
173 int
xfs_initialize_perag_data(struct xfs_mount * mp,xfs_agnumber_t agcount)174 xfs_initialize_perag_data(
175 struct xfs_mount *mp,
176 xfs_agnumber_t agcount)
177 {
178 xfs_agnumber_t index;
179 struct xfs_perag *pag;
180 struct xfs_sb *sbp = &mp->m_sb;
181 uint64_t ifree = 0;
182 uint64_t ialloc = 0;
183 uint64_t bfree = 0;
184 uint64_t bfreelst = 0;
185 uint64_t btree = 0;
186 uint64_t fdblocks;
187 int error = 0;
188
189 for (index = 0; index < agcount; index++) {
190 /*
191 * Read the AGF and AGI buffers to populate the per-ag
192 * structures for us.
193 */
194 pag = xfs_perag_get(mp, index);
195 error = xfs_alloc_read_agf(pag, NULL, 0, NULL);
196 if (!error)
197 error = xfs_ialloc_read_agi(pag, NULL, NULL);
198 if (error) {
199 xfs_perag_put(pag);
200 return error;
201 }
202
203 ifree += pag->pagi_freecount;
204 ialloc += pag->pagi_count;
205 bfree += pag->pagf_freeblks;
206 bfreelst += pag->pagf_flcount;
207 btree += pag->pagf_btreeblks;
208 xfs_perag_put(pag);
209 }
210 fdblocks = bfree + bfreelst + btree;
211
212 /*
213 * If the new summary counts are obviously incorrect, fail the
214 * mount operation because that implies the AGFs are also corrupt.
215 * Clear FS_COUNTERS so that we don't unmount with a dirty log, which
216 * will prevent xfs_repair from fixing anything.
217 */
218 if (fdblocks > sbp->sb_dblocks || ifree > ialloc) {
219 xfs_alert(mp, "AGF corruption. Please run xfs_repair.");
220 error = -EFSCORRUPTED;
221 goto out;
222 }
223
224 /* Overwrite incore superblock counters with just-read data */
225 spin_lock(&mp->m_sb_lock);
226 sbp->sb_ifree = ifree;
227 sbp->sb_icount = ialloc;
228 sbp->sb_fdblocks = fdblocks;
229 spin_unlock(&mp->m_sb_lock);
230
231 xfs_reinit_percpu_counters(mp);
232 out:
233 xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS);
234 return error;
235 }
236
237 STATIC void
__xfs_free_perag(struct rcu_head * head)238 __xfs_free_perag(
239 struct rcu_head *head)
240 {
241 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
242
243 ASSERT(!delayed_work_pending(&pag->pag_blockgc_work));
244 kmem_free(pag);
245 }
246
247 /*
248 * Free up the per-ag resources associated with the mount structure.
249 */
250 void
xfs_free_perag(struct xfs_mount * mp)251 xfs_free_perag(
252 struct xfs_mount *mp)
253 {
254 struct xfs_perag *pag;
255 xfs_agnumber_t agno;
256
257 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
258 spin_lock(&mp->m_perag_lock);
259 pag = radix_tree_delete(&mp->m_perag_tree, agno);
260 spin_unlock(&mp->m_perag_lock);
261 ASSERT(pag);
262 XFS_IS_CORRUPT(pag->pag_mount, atomic_read(&pag->pag_ref) != 0);
263 xfs_defer_drain_free(&pag->pag_intents_drain);
264
265 cancel_delayed_work_sync(&pag->pag_blockgc_work);
266 xfs_buf_hash_destroy(pag);
267
268 /* drop the mount's active reference */
269 xfs_perag_rele(pag);
270 XFS_IS_CORRUPT(pag->pag_mount,
271 atomic_read(&pag->pag_active_ref) != 0);
272 call_rcu(&pag->rcu_head, __xfs_free_perag);
273 }
274 }
275
276 /* Find the size of the AG, in blocks. */
277 static xfs_agblock_t
__xfs_ag_block_count(struct xfs_mount * mp,xfs_agnumber_t agno,xfs_agnumber_t agcount,xfs_rfsblock_t dblocks)278 __xfs_ag_block_count(
279 struct xfs_mount *mp,
280 xfs_agnumber_t agno,
281 xfs_agnumber_t agcount,
282 xfs_rfsblock_t dblocks)
283 {
284 ASSERT(agno < agcount);
285
286 if (agno < agcount - 1)
287 return mp->m_sb.sb_agblocks;
288 return dblocks - (agno * mp->m_sb.sb_agblocks);
289 }
290
291 xfs_agblock_t
xfs_ag_block_count(struct xfs_mount * mp,xfs_agnumber_t agno)292 xfs_ag_block_count(
293 struct xfs_mount *mp,
294 xfs_agnumber_t agno)
295 {
296 return __xfs_ag_block_count(mp, agno, mp->m_sb.sb_agcount,
297 mp->m_sb.sb_dblocks);
298 }
299
300 /* Calculate the first and last possible inode number in an AG. */
301 static void
__xfs_agino_range(struct xfs_mount * mp,xfs_agblock_t eoag,xfs_agino_t * first,xfs_agino_t * last)302 __xfs_agino_range(
303 struct xfs_mount *mp,
304 xfs_agblock_t eoag,
305 xfs_agino_t *first,
306 xfs_agino_t *last)
307 {
308 xfs_agblock_t bno;
309
310 /*
311 * Calculate the first inode, which will be in the first
312 * cluster-aligned block after the AGFL.
313 */
314 bno = round_up(XFS_AGFL_BLOCK(mp) + 1, M_IGEO(mp)->cluster_align);
315 *first = XFS_AGB_TO_AGINO(mp, bno);
316
317 /*
318 * Calculate the last inode, which will be at the end of the
319 * last (aligned) cluster that can be allocated in the AG.
320 */
321 bno = round_down(eoag, M_IGEO(mp)->cluster_align);
322 *last = XFS_AGB_TO_AGINO(mp, bno) - 1;
323 }
324
325 void
xfs_agino_range(struct xfs_mount * mp,xfs_agnumber_t agno,xfs_agino_t * first,xfs_agino_t * last)326 xfs_agino_range(
327 struct xfs_mount *mp,
328 xfs_agnumber_t agno,
329 xfs_agino_t *first,
330 xfs_agino_t *last)
331 {
332 return __xfs_agino_range(mp, xfs_ag_block_count(mp, agno), first, last);
333 }
334
335 /*
336 * Free perag within the specified AG range, it is only used to free unused
337 * perags under the error handling path.
338 */
339 void
xfs_free_unused_perag_range(struct xfs_mount * mp,xfs_agnumber_t agstart,xfs_agnumber_t agend)340 xfs_free_unused_perag_range(
341 struct xfs_mount *mp,
342 xfs_agnumber_t agstart,
343 xfs_agnumber_t agend)
344 {
345 struct xfs_perag *pag;
346 xfs_agnumber_t index;
347
348 for (index = agstart; index < agend; index++) {
349 spin_lock(&mp->m_perag_lock);
350 pag = radix_tree_delete(&mp->m_perag_tree, index);
351 spin_unlock(&mp->m_perag_lock);
352 if (!pag)
353 break;
354 xfs_buf_hash_destroy(pag);
355 xfs_defer_drain_free(&pag->pag_intents_drain);
356 kmem_free(pag);
357 }
358 }
359
360 int
xfs_initialize_perag(struct xfs_mount * mp,xfs_agnumber_t agcount,xfs_rfsblock_t dblocks,xfs_agnumber_t * maxagi)361 xfs_initialize_perag(
362 struct xfs_mount *mp,
363 xfs_agnumber_t agcount,
364 xfs_rfsblock_t dblocks,
365 xfs_agnumber_t *maxagi)
366 {
367 struct xfs_perag *pag;
368 xfs_agnumber_t index;
369 xfs_agnumber_t first_initialised = NULLAGNUMBER;
370 int error;
371
372 /*
373 * Walk the current per-ag tree so we don't try to initialise AGs
374 * that already exist (growfs case). Allocate and insert all the
375 * AGs we don't find ready for initialisation.
376 */
377 for (index = 0; index < agcount; index++) {
378 pag = xfs_perag_get(mp, index);
379 if (pag) {
380 xfs_perag_put(pag);
381 continue;
382 }
383
384 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
385 if (!pag) {
386 error = -ENOMEM;
387 goto out_unwind_new_pags;
388 }
389 pag->pag_agno = index;
390 pag->pag_mount = mp;
391
392 error = radix_tree_preload(GFP_NOFS);
393 if (error)
394 goto out_free_pag;
395
396 spin_lock(&mp->m_perag_lock);
397 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
398 WARN_ON_ONCE(1);
399 spin_unlock(&mp->m_perag_lock);
400 radix_tree_preload_end();
401 error = -EEXIST;
402 goto out_free_pag;
403 }
404 spin_unlock(&mp->m_perag_lock);
405 radix_tree_preload_end();
406
407 #ifdef __KERNEL__
408 /* Place kernel structure only init below this point. */
409 spin_lock_init(&pag->pag_ici_lock);
410 spin_lock_init(&pag->pagb_lock);
411 spin_lock_init(&pag->pag_state_lock);
412 INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker);
413 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
414 xfs_defer_drain_init(&pag->pag_intents_drain);
415 init_waitqueue_head(&pag->pagb_wait);
416 init_waitqueue_head(&pag->pag_active_wq);
417 pag->pagb_count = 0;
418 pag->pagb_tree = RB_ROOT;
419 #endif /* __KERNEL__ */
420
421 error = xfs_buf_hash_init(pag);
422 if (error)
423 goto out_remove_pag;
424
425 /* Active ref owned by mount indicates AG is online. */
426 atomic_set(&pag->pag_active_ref, 1);
427
428 /* first new pag is fully initialized */
429 if (first_initialised == NULLAGNUMBER)
430 first_initialised = index;
431
432 /*
433 * Pre-calculated geometry
434 */
435 pag->block_count = __xfs_ag_block_count(mp, index, agcount,
436 dblocks);
437 pag->min_block = XFS_AGFL_BLOCK(mp);
438 __xfs_agino_range(mp, pag->block_count, &pag->agino_min,
439 &pag->agino_max);
440 }
441
442 index = xfs_set_inode_alloc(mp, agcount);
443
444 if (maxagi)
445 *maxagi = index;
446
447 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
448 return 0;
449
450 out_remove_pag:
451 xfs_defer_drain_free(&pag->pag_intents_drain);
452 spin_lock(&mp->m_perag_lock);
453 radix_tree_delete(&mp->m_perag_tree, index);
454 spin_unlock(&mp->m_perag_lock);
455 out_free_pag:
456 kmem_free(pag);
457 out_unwind_new_pags:
458 /* unwind any prior newly initialized pags */
459 xfs_free_unused_perag_range(mp, first_initialised, agcount);
460 return error;
461 }
462
463 static int
xfs_get_aghdr_buf(struct xfs_mount * mp,xfs_daddr_t blkno,size_t numblks,struct xfs_buf ** bpp,const struct xfs_buf_ops * ops)464 xfs_get_aghdr_buf(
465 struct xfs_mount *mp,
466 xfs_daddr_t blkno,
467 size_t numblks,
468 struct xfs_buf **bpp,
469 const struct xfs_buf_ops *ops)
470 {
471 struct xfs_buf *bp;
472 int error;
473
474 error = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, 0, &bp);
475 if (error)
476 return error;
477
478 bp->b_maps[0].bm_bn = blkno;
479 bp->b_ops = ops;
480
481 *bpp = bp;
482 return 0;
483 }
484
485 /*
486 * Generic btree root block init function
487 */
488 static void
xfs_btroot_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)489 xfs_btroot_init(
490 struct xfs_mount *mp,
491 struct xfs_buf *bp,
492 struct aghdr_init_data *id)
493 {
494 xfs_btree_init_block(mp, bp, id->type, 0, 0, id->agno);
495 }
496
497 /* Finish initializing a free space btree. */
498 static void
xfs_freesp_init_recs(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)499 xfs_freesp_init_recs(
500 struct xfs_mount *mp,
501 struct xfs_buf *bp,
502 struct aghdr_init_data *id)
503 {
504 struct xfs_alloc_rec *arec;
505 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
506
507 arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1);
508 arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks);
509
510 if (xfs_ag_contains_log(mp, id->agno)) {
511 struct xfs_alloc_rec *nrec;
512 xfs_agblock_t start = XFS_FSB_TO_AGBNO(mp,
513 mp->m_sb.sb_logstart);
514
515 ASSERT(start >= mp->m_ag_prealloc_blocks);
516 if (start != mp->m_ag_prealloc_blocks) {
517 /*
518 * Modify first record to pad stripe align of log and
519 * bump the record count.
520 */
521 arec->ar_blockcount = cpu_to_be32(start -
522 mp->m_ag_prealloc_blocks);
523 be16_add_cpu(&block->bb_numrecs, 1);
524 nrec = arec + 1;
525
526 /*
527 * Insert second record at start of internal log
528 * which then gets trimmed.
529 */
530 nrec->ar_startblock = cpu_to_be32(
531 be32_to_cpu(arec->ar_startblock) +
532 be32_to_cpu(arec->ar_blockcount));
533 arec = nrec;
534 }
535 /*
536 * Change record start to after the internal log
537 */
538 be32_add_cpu(&arec->ar_startblock, mp->m_sb.sb_logblocks);
539 }
540
541 /*
542 * Calculate the block count of this record; if it is nonzero,
543 * increment the record count.
544 */
545 arec->ar_blockcount = cpu_to_be32(id->agsize -
546 be32_to_cpu(arec->ar_startblock));
547 if (arec->ar_blockcount)
548 be16_add_cpu(&block->bb_numrecs, 1);
549 }
550
551 /*
552 * Alloc btree root block init functions
553 */
554 static void
xfs_bnoroot_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)555 xfs_bnoroot_init(
556 struct xfs_mount *mp,
557 struct xfs_buf *bp,
558 struct aghdr_init_data *id)
559 {
560 xfs_btree_init_block(mp, bp, XFS_BTNUM_BNO, 0, 0, id->agno);
561 xfs_freesp_init_recs(mp, bp, id);
562 }
563
564 static void
xfs_cntroot_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)565 xfs_cntroot_init(
566 struct xfs_mount *mp,
567 struct xfs_buf *bp,
568 struct aghdr_init_data *id)
569 {
570 xfs_btree_init_block(mp, bp, XFS_BTNUM_CNT, 0, 0, id->agno);
571 xfs_freesp_init_recs(mp, bp, id);
572 }
573
574 /*
575 * Reverse map root block init
576 */
577 static void
xfs_rmaproot_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)578 xfs_rmaproot_init(
579 struct xfs_mount *mp,
580 struct xfs_buf *bp,
581 struct aghdr_init_data *id)
582 {
583 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
584 struct xfs_rmap_rec *rrec;
585
586 xfs_btree_init_block(mp, bp, XFS_BTNUM_RMAP, 0, 4, id->agno);
587
588 /*
589 * mark the AG header regions as static metadata The BNO
590 * btree block is the first block after the headers, so
591 * it's location defines the size of region the static
592 * metadata consumes.
593 *
594 * Note: unlike mkfs, we never have to account for log
595 * space when growing the data regions
596 */
597 rrec = XFS_RMAP_REC_ADDR(block, 1);
598 rrec->rm_startblock = 0;
599 rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp));
600 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS);
601 rrec->rm_offset = 0;
602
603 /* account freespace btree root blocks */
604 rrec = XFS_RMAP_REC_ADDR(block, 2);
605 rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp));
606 rrec->rm_blockcount = cpu_to_be32(2);
607 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
608 rrec->rm_offset = 0;
609
610 /* account inode btree root blocks */
611 rrec = XFS_RMAP_REC_ADDR(block, 3);
612 rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp));
613 rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) -
614 XFS_IBT_BLOCK(mp));
615 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT);
616 rrec->rm_offset = 0;
617
618 /* account for rmap btree root */
619 rrec = XFS_RMAP_REC_ADDR(block, 4);
620 rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp));
621 rrec->rm_blockcount = cpu_to_be32(1);
622 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
623 rrec->rm_offset = 0;
624
625 /* account for refc btree root */
626 if (xfs_has_reflink(mp)) {
627 rrec = XFS_RMAP_REC_ADDR(block, 5);
628 rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp));
629 rrec->rm_blockcount = cpu_to_be32(1);
630 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC);
631 rrec->rm_offset = 0;
632 be16_add_cpu(&block->bb_numrecs, 1);
633 }
634
635 /* account for the log space */
636 if (xfs_ag_contains_log(mp, id->agno)) {
637 rrec = XFS_RMAP_REC_ADDR(block,
638 be16_to_cpu(block->bb_numrecs) + 1);
639 rrec->rm_startblock = cpu_to_be32(
640 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart));
641 rrec->rm_blockcount = cpu_to_be32(mp->m_sb.sb_logblocks);
642 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_LOG);
643 rrec->rm_offset = 0;
644 be16_add_cpu(&block->bb_numrecs, 1);
645 }
646 }
647
648 /*
649 * Initialise new secondary superblocks with the pre-grow geometry, but mark
650 * them as "in progress" so we know they haven't yet been activated. This will
651 * get cleared when the update with the new geometry information is done after
652 * changes to the primary are committed. This isn't strictly necessary, but we
653 * get it for free with the delayed buffer write lists and it means we can tell
654 * if a grow operation didn't complete properly after the fact.
655 */
656 static void
xfs_sbblock_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)657 xfs_sbblock_init(
658 struct xfs_mount *mp,
659 struct xfs_buf *bp,
660 struct aghdr_init_data *id)
661 {
662 struct xfs_dsb *dsb = bp->b_addr;
663
664 xfs_sb_to_disk(dsb, &mp->m_sb);
665 dsb->sb_inprogress = 1;
666 }
667
668 static void
xfs_agfblock_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)669 xfs_agfblock_init(
670 struct xfs_mount *mp,
671 struct xfs_buf *bp,
672 struct aghdr_init_data *id)
673 {
674 struct xfs_agf *agf = bp->b_addr;
675 xfs_extlen_t tmpsize;
676
677 agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC);
678 agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION);
679 agf->agf_seqno = cpu_to_be32(id->agno);
680 agf->agf_length = cpu_to_be32(id->agsize);
681 agf->agf_roots[XFS_BTNUM_BNOi] = cpu_to_be32(XFS_BNO_BLOCK(mp));
682 agf->agf_roots[XFS_BTNUM_CNTi] = cpu_to_be32(XFS_CNT_BLOCK(mp));
683 agf->agf_levels[XFS_BTNUM_BNOi] = cpu_to_be32(1);
684 agf->agf_levels[XFS_BTNUM_CNTi] = cpu_to_be32(1);
685 if (xfs_has_rmapbt(mp)) {
686 agf->agf_roots[XFS_BTNUM_RMAPi] =
687 cpu_to_be32(XFS_RMAP_BLOCK(mp));
688 agf->agf_levels[XFS_BTNUM_RMAPi] = cpu_to_be32(1);
689 agf->agf_rmap_blocks = cpu_to_be32(1);
690 }
691
692 agf->agf_flfirst = cpu_to_be32(1);
693 agf->agf_fllast = 0;
694 agf->agf_flcount = 0;
695 tmpsize = id->agsize - mp->m_ag_prealloc_blocks;
696 agf->agf_freeblks = cpu_to_be32(tmpsize);
697 agf->agf_longest = cpu_to_be32(tmpsize);
698 if (xfs_has_crc(mp))
699 uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid);
700 if (xfs_has_reflink(mp)) {
701 agf->agf_refcount_root = cpu_to_be32(
702 xfs_refc_block(mp));
703 agf->agf_refcount_level = cpu_to_be32(1);
704 agf->agf_refcount_blocks = cpu_to_be32(1);
705 }
706
707 if (xfs_ag_contains_log(mp, id->agno)) {
708 int64_t logblocks = mp->m_sb.sb_logblocks;
709
710 be32_add_cpu(&agf->agf_freeblks, -logblocks);
711 agf->agf_longest = cpu_to_be32(id->agsize -
712 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart) - logblocks);
713 }
714 }
715
716 static void
xfs_agflblock_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)717 xfs_agflblock_init(
718 struct xfs_mount *mp,
719 struct xfs_buf *bp,
720 struct aghdr_init_data *id)
721 {
722 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp);
723 __be32 *agfl_bno;
724 int bucket;
725
726 if (xfs_has_crc(mp)) {
727 agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC);
728 agfl->agfl_seqno = cpu_to_be32(id->agno);
729 uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid);
730 }
731
732 agfl_bno = xfs_buf_to_agfl_bno(bp);
733 for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++)
734 agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK);
735 }
736
737 static void
xfs_agiblock_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)738 xfs_agiblock_init(
739 struct xfs_mount *mp,
740 struct xfs_buf *bp,
741 struct aghdr_init_data *id)
742 {
743 struct xfs_agi *agi = bp->b_addr;
744 int bucket;
745
746 agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC);
747 agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION);
748 agi->agi_seqno = cpu_to_be32(id->agno);
749 agi->agi_length = cpu_to_be32(id->agsize);
750 agi->agi_count = 0;
751 agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp));
752 agi->agi_level = cpu_to_be32(1);
753 agi->agi_freecount = 0;
754 agi->agi_newino = cpu_to_be32(NULLAGINO);
755 agi->agi_dirino = cpu_to_be32(NULLAGINO);
756 if (xfs_has_crc(mp))
757 uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid);
758 if (xfs_has_finobt(mp)) {
759 agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp));
760 agi->agi_free_level = cpu_to_be32(1);
761 }
762 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++)
763 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
764 if (xfs_has_inobtcounts(mp)) {
765 agi->agi_iblocks = cpu_to_be32(1);
766 if (xfs_has_finobt(mp))
767 agi->agi_fblocks = cpu_to_be32(1);
768 }
769 }
770
771 typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp,
772 struct aghdr_init_data *id);
773 static int
xfs_ag_init_hdr(struct xfs_mount * mp,struct aghdr_init_data * id,aghdr_init_work_f work,const struct xfs_buf_ops * ops)774 xfs_ag_init_hdr(
775 struct xfs_mount *mp,
776 struct aghdr_init_data *id,
777 aghdr_init_work_f work,
778 const struct xfs_buf_ops *ops)
779 {
780 struct xfs_buf *bp;
781 int error;
782
783 error = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, &bp, ops);
784 if (error)
785 return error;
786
787 (*work)(mp, bp, id);
788
789 xfs_buf_delwri_queue(bp, &id->buffer_list);
790 xfs_buf_relse(bp);
791 return 0;
792 }
793
794 struct xfs_aghdr_grow_data {
795 xfs_daddr_t daddr;
796 size_t numblks;
797 const struct xfs_buf_ops *ops;
798 aghdr_init_work_f work;
799 xfs_btnum_t type;
800 bool need_init;
801 };
802
803 /*
804 * Prepare new AG headers to be written to disk. We use uncached buffers here,
805 * as it is assumed these new AG headers are currently beyond the currently
806 * valid filesystem address space. Using cached buffers would trip over EOFS
807 * corruption detection alogrithms in the buffer cache lookup routines.
808 *
809 * This is a non-transactional function, but the prepared buffers are added to a
810 * delayed write buffer list supplied by the caller so they can submit them to
811 * disk and wait on them as required.
812 */
813 int
xfs_ag_init_headers(struct xfs_mount * mp,struct aghdr_init_data * id)814 xfs_ag_init_headers(
815 struct xfs_mount *mp,
816 struct aghdr_init_data *id)
817
818 {
819 struct xfs_aghdr_grow_data aghdr_data[] = {
820 { /* SB */
821 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR),
822 .numblks = XFS_FSS_TO_BB(mp, 1),
823 .ops = &xfs_sb_buf_ops,
824 .work = &xfs_sbblock_init,
825 .need_init = true
826 },
827 { /* AGF */
828 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)),
829 .numblks = XFS_FSS_TO_BB(mp, 1),
830 .ops = &xfs_agf_buf_ops,
831 .work = &xfs_agfblock_init,
832 .need_init = true
833 },
834 { /* AGFL */
835 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)),
836 .numblks = XFS_FSS_TO_BB(mp, 1),
837 .ops = &xfs_agfl_buf_ops,
838 .work = &xfs_agflblock_init,
839 .need_init = true
840 },
841 { /* AGI */
842 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)),
843 .numblks = XFS_FSS_TO_BB(mp, 1),
844 .ops = &xfs_agi_buf_ops,
845 .work = &xfs_agiblock_init,
846 .need_init = true
847 },
848 { /* BNO root block */
849 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)),
850 .numblks = BTOBB(mp->m_sb.sb_blocksize),
851 .ops = &xfs_bnobt_buf_ops,
852 .work = &xfs_bnoroot_init,
853 .need_init = true
854 },
855 { /* CNT root block */
856 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)),
857 .numblks = BTOBB(mp->m_sb.sb_blocksize),
858 .ops = &xfs_cntbt_buf_ops,
859 .work = &xfs_cntroot_init,
860 .need_init = true
861 },
862 { /* INO root block */
863 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)),
864 .numblks = BTOBB(mp->m_sb.sb_blocksize),
865 .ops = &xfs_inobt_buf_ops,
866 .work = &xfs_btroot_init,
867 .type = XFS_BTNUM_INO,
868 .need_init = true
869 },
870 { /* FINO root block */
871 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)),
872 .numblks = BTOBB(mp->m_sb.sb_blocksize),
873 .ops = &xfs_finobt_buf_ops,
874 .work = &xfs_btroot_init,
875 .type = XFS_BTNUM_FINO,
876 .need_init = xfs_has_finobt(mp)
877 },
878 { /* RMAP root block */
879 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)),
880 .numblks = BTOBB(mp->m_sb.sb_blocksize),
881 .ops = &xfs_rmapbt_buf_ops,
882 .work = &xfs_rmaproot_init,
883 .need_init = xfs_has_rmapbt(mp)
884 },
885 { /* REFC root block */
886 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)),
887 .numblks = BTOBB(mp->m_sb.sb_blocksize),
888 .ops = &xfs_refcountbt_buf_ops,
889 .work = &xfs_btroot_init,
890 .type = XFS_BTNUM_REFC,
891 .need_init = xfs_has_reflink(mp)
892 },
893 { /* NULL terminating block */
894 .daddr = XFS_BUF_DADDR_NULL,
895 }
896 };
897 struct xfs_aghdr_grow_data *dp;
898 int error = 0;
899
900 /* Account for AG free space in new AG */
901 id->nfree += id->agsize - mp->m_ag_prealloc_blocks;
902 for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) {
903 if (!dp->need_init)
904 continue;
905
906 id->daddr = dp->daddr;
907 id->numblks = dp->numblks;
908 id->type = dp->type;
909 error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops);
910 if (error)
911 break;
912 }
913 return error;
914 }
915
916 int
xfs_ag_shrink_space(struct xfs_perag * pag,struct xfs_trans ** tpp,xfs_extlen_t delta)917 xfs_ag_shrink_space(
918 struct xfs_perag *pag,
919 struct xfs_trans **tpp,
920 xfs_extlen_t delta)
921 {
922 struct xfs_mount *mp = pag->pag_mount;
923 struct xfs_alloc_arg args = {
924 .tp = *tpp,
925 .mp = mp,
926 .pag = pag,
927 .minlen = delta,
928 .maxlen = delta,
929 .oinfo = XFS_RMAP_OINFO_SKIP_UPDATE,
930 .resv = XFS_AG_RESV_NONE,
931 .prod = 1
932 };
933 struct xfs_buf *agibp, *agfbp;
934 struct xfs_agi *agi;
935 struct xfs_agf *agf;
936 xfs_agblock_t aglen;
937 int error, err2;
938
939 ASSERT(pag->pag_agno == mp->m_sb.sb_agcount - 1);
940 error = xfs_ialloc_read_agi(pag, *tpp, &agibp);
941 if (error)
942 return error;
943
944 agi = agibp->b_addr;
945
946 error = xfs_alloc_read_agf(pag, *tpp, 0, &agfbp);
947 if (error)
948 return error;
949
950 agf = agfbp->b_addr;
951 aglen = be32_to_cpu(agi->agi_length);
952 /* some extra paranoid checks before we shrink the ag */
953 if (XFS_IS_CORRUPT(mp, agf->agf_length != agi->agi_length))
954 return -EFSCORRUPTED;
955 if (delta >= aglen)
956 return -EINVAL;
957
958 /*
959 * Make sure that the last inode cluster cannot overlap with the new
960 * end of the AG, even if it's sparse.
961 */
962 error = xfs_ialloc_check_shrink(pag, *tpp, agibp, aglen - delta);
963 if (error)
964 return error;
965
966 /*
967 * Disable perag reservations so it doesn't cause the allocation request
968 * to fail. We'll reestablish reservation before we return.
969 */
970 error = xfs_ag_resv_free(pag);
971 if (error)
972 return error;
973
974 /* internal log shouldn't also show up in the free space btrees */
975 error = xfs_alloc_vextent_exact_bno(&args,
976 XFS_AGB_TO_FSB(mp, pag->pag_agno, aglen - delta));
977 if (!error && args.agbno == NULLAGBLOCK)
978 error = -ENOSPC;
979
980 if (error) {
981 /*
982 * If extent allocation fails, need to roll the transaction to
983 * ensure that the AGFL fixup has been committed anyway.
984 *
985 * We need to hold the AGF across the roll to ensure nothing can
986 * access the AG for allocation until the shrink is fully
987 * cleaned up. And due to the resetting of the AG block
988 * reservation space needing to lock the AGI, we also have to
989 * hold that so we don't get AGI/AGF lock order inversions in
990 * the error handling path.
991 */
992 xfs_trans_bhold(*tpp, agfbp);
993 xfs_trans_bhold(*tpp, agibp);
994 err2 = xfs_trans_roll(tpp);
995 if (err2)
996 return err2;
997 xfs_trans_bjoin(*tpp, agfbp);
998 xfs_trans_bjoin(*tpp, agibp);
999 goto resv_init_out;
1000 }
1001
1002 /*
1003 * if successfully deleted from freespace btrees, need to confirm
1004 * per-AG reservation works as expected.
1005 */
1006 be32_add_cpu(&agi->agi_length, -delta);
1007 be32_add_cpu(&agf->agf_length, -delta);
1008
1009 err2 = xfs_ag_resv_init(pag, *tpp);
1010 if (err2) {
1011 be32_add_cpu(&agi->agi_length, delta);
1012 be32_add_cpu(&agf->agf_length, delta);
1013 if (err2 != -ENOSPC)
1014 goto resv_err;
1015
1016 err2 = __xfs_free_extent_later(*tpp, args.fsbno, delta, NULL,
1017 XFS_AG_RESV_NONE, true);
1018 if (err2)
1019 goto resv_err;
1020
1021 /*
1022 * Roll the transaction before trying to re-init the per-ag
1023 * reservation. The new transaction is clean so it will cancel
1024 * without any side effects.
1025 */
1026 error = xfs_defer_finish(tpp);
1027 if (error)
1028 return error;
1029
1030 error = -ENOSPC;
1031 goto resv_init_out;
1032 }
1033
1034 /* Update perag geometry */
1035 pag->block_count -= delta;
1036 __xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min,
1037 &pag->agino_max);
1038
1039 xfs_ialloc_log_agi(*tpp, agibp, XFS_AGI_LENGTH);
1040 xfs_alloc_log_agf(*tpp, agfbp, XFS_AGF_LENGTH);
1041 return 0;
1042
1043 resv_init_out:
1044 err2 = xfs_ag_resv_init(pag, *tpp);
1045 if (!err2)
1046 return error;
1047 resv_err:
1048 xfs_warn(mp, "Error %d reserving per-AG metadata reserve pool.", err2);
1049 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1050 return err2;
1051 }
1052
1053 /*
1054 * Extent the AG indicated by the @id by the length passed in
1055 */
1056 int
xfs_ag_extend_space(struct xfs_perag * pag,struct xfs_trans * tp,xfs_extlen_t len)1057 xfs_ag_extend_space(
1058 struct xfs_perag *pag,
1059 struct xfs_trans *tp,
1060 xfs_extlen_t len)
1061 {
1062 struct xfs_buf *bp;
1063 struct xfs_agi *agi;
1064 struct xfs_agf *agf;
1065 int error;
1066
1067 ASSERT(pag->pag_agno == pag->pag_mount->m_sb.sb_agcount - 1);
1068
1069 error = xfs_ialloc_read_agi(pag, tp, &bp);
1070 if (error)
1071 return error;
1072
1073 agi = bp->b_addr;
1074 be32_add_cpu(&agi->agi_length, len);
1075 xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH);
1076
1077 /*
1078 * Change agf length.
1079 */
1080 error = xfs_alloc_read_agf(pag, tp, 0, &bp);
1081 if (error)
1082 return error;
1083
1084 agf = bp->b_addr;
1085 be32_add_cpu(&agf->agf_length, len);
1086 ASSERT(agf->agf_length == agi->agi_length);
1087 xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH);
1088
1089 /*
1090 * Free the new space.
1091 *
1092 * XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that
1093 * this doesn't actually exist in the rmap btree.
1094 */
1095 error = xfs_rmap_free(tp, bp, pag, be32_to_cpu(agf->agf_length) - len,
1096 len, &XFS_RMAP_OINFO_SKIP_UPDATE);
1097 if (error)
1098 return error;
1099
1100 error = xfs_free_extent(tp, pag, be32_to_cpu(agf->agf_length) - len,
1101 len, &XFS_RMAP_OINFO_SKIP_UPDATE, XFS_AG_RESV_NONE);
1102 if (error)
1103 return error;
1104
1105 /* Update perag geometry */
1106 pag->block_count = be32_to_cpu(agf->agf_length);
1107 __xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min,
1108 &pag->agino_max);
1109 return 0;
1110 }
1111
1112 /* Retrieve AG geometry. */
1113 int
xfs_ag_get_geometry(struct xfs_perag * pag,struct xfs_ag_geometry * ageo)1114 xfs_ag_get_geometry(
1115 struct xfs_perag *pag,
1116 struct xfs_ag_geometry *ageo)
1117 {
1118 struct xfs_buf *agi_bp;
1119 struct xfs_buf *agf_bp;
1120 struct xfs_agi *agi;
1121 struct xfs_agf *agf;
1122 unsigned int freeblks;
1123 int error;
1124
1125 /* Lock the AG headers. */
1126 error = xfs_ialloc_read_agi(pag, NULL, &agi_bp);
1127 if (error)
1128 return error;
1129 error = xfs_alloc_read_agf(pag, NULL, 0, &agf_bp);
1130 if (error)
1131 goto out_agi;
1132
1133 /* Fill out form. */
1134 memset(ageo, 0, sizeof(*ageo));
1135 ageo->ag_number = pag->pag_agno;
1136
1137 agi = agi_bp->b_addr;
1138 ageo->ag_icount = be32_to_cpu(agi->agi_count);
1139 ageo->ag_ifree = be32_to_cpu(agi->agi_freecount);
1140
1141 agf = agf_bp->b_addr;
1142 ageo->ag_length = be32_to_cpu(agf->agf_length);
1143 freeblks = pag->pagf_freeblks +
1144 pag->pagf_flcount +
1145 pag->pagf_btreeblks -
1146 xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE);
1147 ageo->ag_freeblks = freeblks;
1148 xfs_ag_geom_health(pag, ageo);
1149
1150 /* Release resources. */
1151 xfs_buf_relse(agf_bp);
1152 out_agi:
1153 xfs_buf_relse(agi_bp);
1154 return error;
1155 }
1156