1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/usb.h>
12 #include <linux/overflow.h>
13 #include <linux/pci.h>
14 #include <linux/slab.h>
15 #include <linux/dmapool.h>
16 #include <linux/dma-mapping.h>
17
18 #include "xhci.h"
19 #include "xhci-trace.h"
20 #include "xhci-debugfs.h"
21
22 /*
23 * Allocates a generic ring segment from the ring pool, sets the dma address,
24 * initializes the segment to zero, and sets the private next pointer to NULL.
25 *
26 * Section 4.11.1.1:
27 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28 */
xhci_segment_alloc(struct xhci_hcd * xhci,unsigned int cycle_state,unsigned int max_packet,unsigned int num,gfp_t flags)29 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
30 unsigned int cycle_state,
31 unsigned int max_packet,
32 unsigned int num,
33 gfp_t flags)
34 {
35 struct xhci_segment *seg;
36 dma_addr_t dma;
37 int i;
38 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
39
40 seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
41 if (!seg)
42 return NULL;
43
44 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
45 if (!seg->trbs) {
46 kfree(seg);
47 return NULL;
48 }
49
50 if (max_packet) {
51 seg->bounce_buf = kzalloc_node(max_packet, flags,
52 dev_to_node(dev));
53 if (!seg->bounce_buf) {
54 dma_pool_free(xhci->segment_pool, seg->trbs, dma);
55 kfree(seg);
56 return NULL;
57 }
58 }
59 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
60 if (cycle_state == 0) {
61 for (i = 0; i < TRBS_PER_SEGMENT; i++)
62 seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
63 }
64 seg->num = num;
65 seg->dma = dma;
66 seg->next = NULL;
67
68 return seg;
69 }
70
xhci_segment_free(struct xhci_hcd * xhci,struct xhci_segment * seg)71 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
72 {
73 if (seg->trbs) {
74 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
75 seg->trbs = NULL;
76 }
77 kfree(seg->bounce_buf);
78 kfree(seg);
79 }
80
xhci_free_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment * first)81 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
82 struct xhci_segment *first)
83 {
84 struct xhci_segment *seg;
85
86 seg = first->next;
87 while (seg != first) {
88 struct xhci_segment *next = seg->next;
89 xhci_segment_free(xhci, seg);
90 seg = next;
91 }
92 xhci_segment_free(xhci, first);
93 }
94
95 /*
96 * Make the prev segment point to the next segment.
97 *
98 * Change the last TRB in the prev segment to be a Link TRB which points to the
99 * DMA address of the next segment. The caller needs to set any Link TRB
100 * related flags, such as End TRB, Toggle Cycle, and no snoop.
101 */
xhci_link_segments(struct xhci_segment * prev,struct xhci_segment * next,enum xhci_ring_type type,bool chain_links)102 static void xhci_link_segments(struct xhci_segment *prev,
103 struct xhci_segment *next,
104 enum xhci_ring_type type, bool chain_links)
105 {
106 u32 val;
107
108 if (!prev || !next)
109 return;
110 prev->next = next;
111 if (type != TYPE_EVENT) {
112 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
113 cpu_to_le64(next->dma);
114
115 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
116 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
117 val &= ~TRB_TYPE_BITMASK;
118 val |= TRB_TYPE(TRB_LINK);
119 if (chain_links)
120 val |= TRB_CHAIN;
121 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
122 }
123 }
124
125 /*
126 * Link the ring to the new segments.
127 * Set Toggle Cycle for the new ring if needed.
128 */
xhci_link_rings(struct xhci_hcd * xhci,struct xhci_ring * ring,struct xhci_segment * first,struct xhci_segment * last,unsigned int num_segs)129 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
130 struct xhci_segment *first, struct xhci_segment *last,
131 unsigned int num_segs)
132 {
133 struct xhci_segment *next, *seg;
134 bool chain_links;
135
136 if (!ring || !first || !last)
137 return;
138
139 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
140 chain_links = !!(xhci_link_trb_quirk(xhci) ||
141 (ring->type == TYPE_ISOC &&
142 (xhci->quirks & XHCI_AMD_0x96_HOST)));
143
144 next = ring->enq_seg->next;
145 xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
146 xhci_link_segments(last, next, ring->type, chain_links);
147 ring->num_segs += num_segs;
148
149 if (ring->enq_seg == ring->last_seg) {
150 if (ring->type != TYPE_EVENT) {
151 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
152 &= ~cpu_to_le32(LINK_TOGGLE);
153 last->trbs[TRBS_PER_SEGMENT-1].link.control
154 |= cpu_to_le32(LINK_TOGGLE);
155 }
156 ring->last_seg = last;
157 }
158
159 for (seg = last; seg != ring->last_seg; seg = seg->next)
160 seg->next->num = seg->num + 1;
161 }
162
163 /*
164 * We need a radix tree for mapping physical addresses of TRBs to which stream
165 * ID they belong to. We need to do this because the host controller won't tell
166 * us which stream ring the TRB came from. We could store the stream ID in an
167 * event data TRB, but that doesn't help us for the cancellation case, since the
168 * endpoint may stop before it reaches that event data TRB.
169 *
170 * The radix tree maps the upper portion of the TRB DMA address to a ring
171 * segment that has the same upper portion of DMA addresses. For example, say I
172 * have segments of size 1KB, that are always 1KB aligned. A segment may
173 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
174 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
175 * pass the radix tree a key to get the right stream ID:
176 *
177 * 0x10c90fff >> 10 = 0x43243
178 * 0x10c912c0 >> 10 = 0x43244
179 * 0x10c91400 >> 10 = 0x43245
180 *
181 * Obviously, only those TRBs with DMA addresses that are within the segment
182 * will make the radix tree return the stream ID for that ring.
183 *
184 * Caveats for the radix tree:
185 *
186 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
187 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
188 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
189 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
190 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
191 * extended systems (where the DMA address can be bigger than 32-bits),
192 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
193 */
xhci_insert_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * seg,gfp_t mem_flags)194 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
195 struct xhci_ring *ring,
196 struct xhci_segment *seg,
197 gfp_t mem_flags)
198 {
199 unsigned long key;
200 int ret;
201
202 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
203 /* Skip any segments that were already added. */
204 if (radix_tree_lookup(trb_address_map, key))
205 return 0;
206
207 ret = radix_tree_maybe_preload(mem_flags);
208 if (ret)
209 return ret;
210 ret = radix_tree_insert(trb_address_map,
211 key, ring);
212 radix_tree_preload_end();
213 return ret;
214 }
215
xhci_remove_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_segment * seg)216 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
217 struct xhci_segment *seg)
218 {
219 unsigned long key;
220
221 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
222 if (radix_tree_lookup(trb_address_map, key))
223 radix_tree_delete(trb_address_map, key);
224 }
225
xhci_update_stream_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * first_seg,struct xhci_segment * last_seg,gfp_t mem_flags)226 static int xhci_update_stream_segment_mapping(
227 struct radix_tree_root *trb_address_map,
228 struct xhci_ring *ring,
229 struct xhci_segment *first_seg,
230 struct xhci_segment *last_seg,
231 gfp_t mem_flags)
232 {
233 struct xhci_segment *seg;
234 struct xhci_segment *failed_seg;
235 int ret;
236
237 if (WARN_ON_ONCE(trb_address_map == NULL))
238 return 0;
239
240 seg = first_seg;
241 do {
242 ret = xhci_insert_segment_mapping(trb_address_map,
243 ring, seg, mem_flags);
244 if (ret)
245 goto remove_streams;
246 if (seg == last_seg)
247 return 0;
248 seg = seg->next;
249 } while (seg != first_seg);
250
251 return 0;
252
253 remove_streams:
254 failed_seg = seg;
255 seg = first_seg;
256 do {
257 xhci_remove_segment_mapping(trb_address_map, seg);
258 if (seg == failed_seg)
259 return ret;
260 seg = seg->next;
261 } while (seg != first_seg);
262
263 return ret;
264 }
265
xhci_remove_stream_mapping(struct xhci_ring * ring)266 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
267 {
268 struct xhci_segment *seg;
269
270 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
271 return;
272
273 seg = ring->first_seg;
274 do {
275 xhci_remove_segment_mapping(ring->trb_address_map, seg);
276 seg = seg->next;
277 } while (seg != ring->first_seg);
278 }
279
xhci_update_stream_mapping(struct xhci_ring * ring,gfp_t mem_flags)280 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
281 {
282 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
283 ring->first_seg, ring->last_seg, mem_flags);
284 }
285
286 /* XXX: Do we need the hcd structure in all these functions? */
xhci_ring_free(struct xhci_hcd * xhci,struct xhci_ring * ring)287 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
288 {
289 if (!ring)
290 return;
291
292 trace_xhci_ring_free(ring);
293
294 if (ring->first_seg) {
295 if (ring->type == TYPE_STREAM)
296 xhci_remove_stream_mapping(ring);
297 xhci_free_segments_for_ring(xhci, ring->first_seg);
298 }
299
300 kfree(ring);
301 }
302
xhci_initialize_ring_info(struct xhci_ring * ring,unsigned int cycle_state)303 void xhci_initialize_ring_info(struct xhci_ring *ring,
304 unsigned int cycle_state)
305 {
306 /* The ring is empty, so the enqueue pointer == dequeue pointer */
307 ring->enqueue = ring->first_seg->trbs;
308 ring->enq_seg = ring->first_seg;
309 ring->dequeue = ring->enqueue;
310 ring->deq_seg = ring->first_seg;
311 /* The ring is initialized to 0. The producer must write 1 to the cycle
312 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
313 * compare CCS to the cycle bit to check ownership, so CCS = 1.
314 *
315 * New rings are initialized with cycle state equal to 1; if we are
316 * handling ring expansion, set the cycle state equal to the old ring.
317 */
318 ring->cycle_state = cycle_state;
319
320 /*
321 * Each segment has a link TRB, and leave an extra TRB for SW
322 * accounting purpose
323 */
324 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
325 }
326 EXPORT_SYMBOL_GPL(xhci_initialize_ring_info);
327
328 /* Allocate segments and link them for a ring */
xhci_alloc_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment ** first,struct xhci_segment ** last,unsigned int num_segs,unsigned int num,unsigned int cycle_state,enum xhci_ring_type type,unsigned int max_packet,gfp_t flags)329 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
330 struct xhci_segment **first, struct xhci_segment **last,
331 unsigned int num_segs, unsigned int num,
332 unsigned int cycle_state, enum xhci_ring_type type,
333 unsigned int max_packet, gfp_t flags)
334 {
335 struct xhci_segment *prev;
336 bool chain_links;
337
338 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
339 chain_links = !!(xhci_link_trb_quirk(xhci) ||
340 (type == TYPE_ISOC &&
341 (xhci->quirks & XHCI_AMD_0x96_HOST)));
342
343 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, num, flags);
344 if (!prev)
345 return -ENOMEM;
346 num++;
347
348 *first = prev;
349 while (num < num_segs) {
350 struct xhci_segment *next;
351
352 next = xhci_segment_alloc(xhci, cycle_state, max_packet, num,
353 flags);
354 if (!next) {
355 prev = *first;
356 while (prev) {
357 next = prev->next;
358 xhci_segment_free(xhci, prev);
359 prev = next;
360 }
361 return -ENOMEM;
362 }
363 xhci_link_segments(prev, next, type, chain_links);
364
365 prev = next;
366 num++;
367 }
368 xhci_link_segments(prev, *first, type, chain_links);
369 *last = prev;
370
371 return 0;
372 }
373
374 /*
375 * Create a new ring with zero or more segments.
376 *
377 * Link each segment together into a ring.
378 * Set the end flag and the cycle toggle bit on the last segment.
379 * See section 4.9.1 and figures 15 and 16.
380 */
xhci_ring_alloc(struct xhci_hcd * xhci,unsigned int num_segs,unsigned int cycle_state,enum xhci_ring_type type,unsigned int max_packet,gfp_t flags)381 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
382 unsigned int num_segs, unsigned int cycle_state,
383 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
384 {
385 struct xhci_ring *ring;
386 int ret;
387 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
388
389 ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
390 if (!ring)
391 return NULL;
392
393 ring->num_segs = num_segs;
394 ring->bounce_buf_len = max_packet;
395 INIT_LIST_HEAD(&ring->td_list);
396 ring->type = type;
397 if (num_segs == 0)
398 return ring;
399
400 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
401 &ring->last_seg, num_segs, 0, cycle_state, type,
402 max_packet, flags);
403 if (ret)
404 goto fail;
405
406 /* Only event ring does not use link TRB */
407 if (type != TYPE_EVENT) {
408 /* See section 4.9.2.1 and 6.4.4.1 */
409 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
410 cpu_to_le32(LINK_TOGGLE);
411 }
412 xhci_initialize_ring_info(ring, cycle_state);
413 trace_xhci_ring_alloc(ring);
414 return ring;
415
416 fail:
417 kfree(ring);
418 return NULL;
419 }
420
xhci_free_endpoint_ring(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,unsigned int ep_index)421 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
422 struct xhci_virt_device *virt_dev,
423 unsigned int ep_index)
424 {
425 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
426 virt_dev->eps[ep_index].ring = NULL;
427 }
428
429 /*
430 * Expand an existing ring.
431 * Allocate a new ring which has same segment numbers and link the two rings.
432 */
xhci_ring_expansion(struct xhci_hcd * xhci,struct xhci_ring * ring,unsigned int num_new_segs,gfp_t flags)433 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
434 unsigned int num_new_segs, gfp_t flags)
435 {
436 struct xhci_segment *first;
437 struct xhci_segment *last;
438 int ret;
439
440 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
441 num_new_segs, ring->enq_seg->num + 1,
442 ring->cycle_state, ring->type,
443 ring->bounce_buf_len, flags);
444 if (ret)
445 return -ENOMEM;
446
447 if (ring->type == TYPE_STREAM)
448 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
449 ring, first, last, flags);
450 if (ret) {
451 struct xhci_segment *next;
452 do {
453 next = first->next;
454 xhci_segment_free(xhci, first);
455 if (first == last)
456 break;
457 first = next;
458 } while (true);
459 return ret;
460 }
461
462 xhci_link_rings(xhci, ring, first, last, num_new_segs);
463 trace_xhci_ring_expansion(ring);
464 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
465 "ring expansion succeed, now has %d segments",
466 ring->num_segs);
467
468 return 0;
469 }
470
xhci_alloc_container_ctx(struct xhci_hcd * xhci,int type,gfp_t flags)471 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
472 int type, gfp_t flags)
473 {
474 struct xhci_container_ctx *ctx;
475 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
476
477 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
478 return NULL;
479
480 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
481 if (!ctx)
482 return NULL;
483
484 ctx->type = type;
485 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
486 if (type == XHCI_CTX_TYPE_INPUT)
487 ctx->size += CTX_SIZE(xhci->hcc_params);
488
489 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
490 if (!ctx->bytes) {
491 kfree(ctx);
492 return NULL;
493 }
494 return ctx;
495 }
496
xhci_free_container_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)497 void xhci_free_container_ctx(struct xhci_hcd *xhci,
498 struct xhci_container_ctx *ctx)
499 {
500 if (!ctx)
501 return;
502 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
503 kfree(ctx);
504 }
505
xhci_get_input_control_ctx(struct xhci_container_ctx * ctx)506 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
507 struct xhci_container_ctx *ctx)
508 {
509 if (ctx->type != XHCI_CTX_TYPE_INPUT)
510 return NULL;
511
512 return (struct xhci_input_control_ctx *)ctx->bytes;
513 }
514
xhci_get_slot_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)515 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
516 struct xhci_container_ctx *ctx)
517 {
518 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
519 return (struct xhci_slot_ctx *)ctx->bytes;
520
521 return (struct xhci_slot_ctx *)
522 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
523 }
524
xhci_get_ep_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,unsigned int ep_index)525 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
526 struct xhci_container_ctx *ctx,
527 unsigned int ep_index)
528 {
529 /* increment ep index by offset of start of ep ctx array */
530 ep_index++;
531 if (ctx->type == XHCI_CTX_TYPE_INPUT)
532 ep_index++;
533
534 return (struct xhci_ep_ctx *)
535 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
536 }
537 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
538
539 /***************** Streams structures manipulation *************************/
540
xhci_free_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,struct xhci_stream_ctx * stream_ctx,dma_addr_t dma)541 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
542 unsigned int num_stream_ctxs,
543 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
544 {
545 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
546 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
547
548 if (size > MEDIUM_STREAM_ARRAY_SIZE)
549 dma_free_coherent(dev, size, stream_ctx, dma);
550 else if (size > SMALL_STREAM_ARRAY_SIZE)
551 dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma);
552 else
553 dma_pool_free(xhci->small_streams_pool, stream_ctx, dma);
554 }
555
556 /*
557 * The stream context array for each endpoint with bulk streams enabled can
558 * vary in size, based on:
559 * - how many streams the endpoint supports,
560 * - the maximum primary stream array size the host controller supports,
561 * - and how many streams the device driver asks for.
562 *
563 * The stream context array must be a power of 2, and can be as small as
564 * 64 bytes or as large as 1MB.
565 */
xhci_alloc_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,dma_addr_t * dma,gfp_t mem_flags)566 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
567 unsigned int num_stream_ctxs, dma_addr_t *dma,
568 gfp_t mem_flags)
569 {
570 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
571 size_t size = size_mul(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
572
573 if (size > MEDIUM_STREAM_ARRAY_SIZE)
574 return dma_alloc_coherent(dev, size, dma, mem_flags);
575 if (size > SMALL_STREAM_ARRAY_SIZE)
576 return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma);
577 else
578 return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma);
579 }
580
xhci_dma_to_transfer_ring(struct xhci_virt_ep * ep,u64 address)581 struct xhci_ring *xhci_dma_to_transfer_ring(
582 struct xhci_virt_ep *ep,
583 u64 address)
584 {
585 if (ep->ep_state & EP_HAS_STREAMS)
586 return radix_tree_lookup(&ep->stream_info->trb_address_map,
587 address >> TRB_SEGMENT_SHIFT);
588 return ep->ring;
589 }
590
591 /*
592 * Change an endpoint's internal structure so it supports stream IDs. The
593 * number of requested streams includes stream 0, which cannot be used by device
594 * drivers.
595 *
596 * The number of stream contexts in the stream context array may be bigger than
597 * the number of streams the driver wants to use. This is because the number of
598 * stream context array entries must be a power of two.
599 */
xhci_alloc_stream_info(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,unsigned int num_streams,unsigned int max_packet,gfp_t mem_flags)600 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
601 unsigned int num_stream_ctxs,
602 unsigned int num_streams,
603 unsigned int max_packet, gfp_t mem_flags)
604 {
605 struct xhci_stream_info *stream_info;
606 u32 cur_stream;
607 struct xhci_ring *cur_ring;
608 u64 addr;
609 int ret;
610 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
611
612 xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n",
613 num_streams, num_stream_ctxs);
614 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
615 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
616 return NULL;
617 }
618 xhci->cmd_ring_reserved_trbs++;
619
620 stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
621 dev_to_node(dev));
622 if (!stream_info)
623 goto cleanup_trbs;
624
625 stream_info->num_streams = num_streams;
626 stream_info->num_stream_ctxs = num_stream_ctxs;
627
628 /* Initialize the array of virtual pointers to stream rings. */
629 stream_info->stream_rings = kcalloc_node(
630 num_streams, sizeof(struct xhci_ring *), mem_flags,
631 dev_to_node(dev));
632 if (!stream_info->stream_rings)
633 goto cleanup_info;
634
635 /* Initialize the array of DMA addresses for stream rings for the HW. */
636 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
637 num_stream_ctxs, &stream_info->ctx_array_dma,
638 mem_flags);
639 if (!stream_info->stream_ctx_array)
640 goto cleanup_ring_array;
641
642 /* Allocate everything needed to free the stream rings later */
643 stream_info->free_streams_command =
644 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
645 if (!stream_info->free_streams_command)
646 goto cleanup_ctx;
647
648 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
649
650 /* Allocate rings for all the streams that the driver will use,
651 * and add their segment DMA addresses to the radix tree.
652 * Stream 0 is reserved.
653 */
654
655 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
656 stream_info->stream_rings[cur_stream] =
657 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
658 mem_flags);
659 cur_ring = stream_info->stream_rings[cur_stream];
660 if (!cur_ring)
661 goto cleanup_rings;
662 cur_ring->stream_id = cur_stream;
663 cur_ring->trb_address_map = &stream_info->trb_address_map;
664 /* Set deq ptr, cycle bit, and stream context type */
665 addr = cur_ring->first_seg->dma |
666 SCT_FOR_CTX(SCT_PRI_TR) |
667 cur_ring->cycle_state;
668 stream_info->stream_ctx_array[cur_stream].stream_ring =
669 cpu_to_le64(addr);
670 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr);
671
672 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
673 if (ret) {
674 xhci_ring_free(xhci, cur_ring);
675 stream_info->stream_rings[cur_stream] = NULL;
676 goto cleanup_rings;
677 }
678 }
679 /* Leave the other unused stream ring pointers in the stream context
680 * array initialized to zero. This will cause the xHC to give us an
681 * error if the device asks for a stream ID we don't have setup (if it
682 * was any other way, the host controller would assume the ring is
683 * "empty" and wait forever for data to be queued to that stream ID).
684 */
685
686 return stream_info;
687
688 cleanup_rings:
689 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
690 cur_ring = stream_info->stream_rings[cur_stream];
691 if (cur_ring) {
692 xhci_ring_free(xhci, cur_ring);
693 stream_info->stream_rings[cur_stream] = NULL;
694 }
695 }
696 xhci_free_command(xhci, stream_info->free_streams_command);
697 cleanup_ctx:
698 xhci_free_stream_ctx(xhci,
699 stream_info->num_stream_ctxs,
700 stream_info->stream_ctx_array,
701 stream_info->ctx_array_dma);
702 cleanup_ring_array:
703 kfree(stream_info->stream_rings);
704 cleanup_info:
705 kfree(stream_info);
706 cleanup_trbs:
707 xhci->cmd_ring_reserved_trbs--;
708 return NULL;
709 }
710 /*
711 * Sets the MaxPStreams field and the Linear Stream Array field.
712 * Sets the dequeue pointer to the stream context array.
713 */
xhci_setup_streams_ep_input_ctx(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,struct xhci_stream_info * stream_info)714 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
715 struct xhci_ep_ctx *ep_ctx,
716 struct xhci_stream_info *stream_info)
717 {
718 u32 max_primary_streams;
719 /* MaxPStreams is the number of stream context array entries, not the
720 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
721 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
722 */
723 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
724 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
725 "Setting number of stream ctx array entries to %u",
726 1 << (max_primary_streams + 1));
727 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
728 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
729 | EP_HAS_LSA);
730 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
731 }
732
733 /*
734 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
735 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
736 * not at the beginning of the ring).
737 */
xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx * ep_ctx,struct xhci_virt_ep * ep)738 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
739 struct xhci_virt_ep *ep)
740 {
741 dma_addr_t addr;
742 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
743 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
744 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
745 }
746
747 /* Frees all stream contexts associated with the endpoint,
748 *
749 * Caller should fix the endpoint context streams fields.
750 */
xhci_free_stream_info(struct xhci_hcd * xhci,struct xhci_stream_info * stream_info)751 void xhci_free_stream_info(struct xhci_hcd *xhci,
752 struct xhci_stream_info *stream_info)
753 {
754 int cur_stream;
755 struct xhci_ring *cur_ring;
756
757 if (!stream_info)
758 return;
759
760 for (cur_stream = 1; cur_stream < stream_info->num_streams;
761 cur_stream++) {
762 cur_ring = stream_info->stream_rings[cur_stream];
763 if (cur_ring) {
764 xhci_ring_free(xhci, cur_ring);
765 stream_info->stream_rings[cur_stream] = NULL;
766 }
767 }
768 xhci_free_command(xhci, stream_info->free_streams_command);
769 xhci->cmd_ring_reserved_trbs--;
770 if (stream_info->stream_ctx_array)
771 xhci_free_stream_ctx(xhci,
772 stream_info->num_stream_ctxs,
773 stream_info->stream_ctx_array,
774 stream_info->ctx_array_dma);
775
776 kfree(stream_info->stream_rings);
777 kfree(stream_info);
778 }
779
780
781 /***************** Device context manipulation *************************/
782
xhci_free_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int slot_id)783 static void xhci_free_tt_info(struct xhci_hcd *xhci,
784 struct xhci_virt_device *virt_dev,
785 int slot_id)
786 {
787 struct list_head *tt_list_head;
788 struct xhci_tt_bw_info *tt_info, *next;
789 bool slot_found = false;
790
791 /* If the device never made it past the Set Address stage,
792 * it may not have the real_port set correctly.
793 */
794 if (virt_dev->real_port == 0 ||
795 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
796 xhci_dbg(xhci, "Bad real port.\n");
797 return;
798 }
799
800 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
801 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
802 /* Multi-TT hubs will have more than one entry */
803 if (tt_info->slot_id == slot_id) {
804 slot_found = true;
805 list_del(&tt_info->tt_list);
806 kfree(tt_info);
807 } else if (slot_found) {
808 break;
809 }
810 }
811 }
812
xhci_alloc_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)813 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
814 struct xhci_virt_device *virt_dev,
815 struct usb_device *hdev,
816 struct usb_tt *tt, gfp_t mem_flags)
817 {
818 struct xhci_tt_bw_info *tt_info;
819 unsigned int num_ports;
820 int i, j;
821 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
822
823 if (!tt->multi)
824 num_ports = 1;
825 else
826 num_ports = hdev->maxchild;
827
828 for (i = 0; i < num_ports; i++, tt_info++) {
829 struct xhci_interval_bw_table *bw_table;
830
831 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
832 dev_to_node(dev));
833 if (!tt_info)
834 goto free_tts;
835 INIT_LIST_HEAD(&tt_info->tt_list);
836 list_add(&tt_info->tt_list,
837 &xhci->rh_bw[virt_dev->real_port - 1].tts);
838 tt_info->slot_id = virt_dev->udev->slot_id;
839 if (tt->multi)
840 tt_info->ttport = i+1;
841 bw_table = &tt_info->bw_table;
842 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
843 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
844 }
845 return 0;
846
847 free_tts:
848 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
849 return -ENOMEM;
850 }
851
852
853 /* All the xhci_tds in the ring's TD list should be freed at this point.
854 * Should be called with xhci->lock held if there is any chance the TT lists
855 * will be manipulated by the configure endpoint, allocate device, or update
856 * hub functions while this function is removing the TT entries from the list.
857 */
xhci_free_virt_device(struct xhci_hcd * xhci,int slot_id)858 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
859 {
860 struct xhci_virt_device *dev;
861 int i;
862 int old_active_eps = 0;
863
864 /* Slot ID 0 is reserved */
865 if (slot_id == 0 || !xhci->devs[slot_id])
866 return;
867
868 dev = xhci->devs[slot_id];
869
870 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
871 if (!dev)
872 return;
873
874 trace_xhci_free_virt_device(dev);
875
876 if (dev->tt_info)
877 old_active_eps = dev->tt_info->active_eps;
878
879 for (i = 0; i < 31; i++) {
880 if (dev->eps[i].ring)
881 xhci_ring_free(xhci, dev->eps[i].ring);
882 if (dev->eps[i].stream_info)
883 xhci_free_stream_info(xhci,
884 dev->eps[i].stream_info);
885 /*
886 * Endpoints are normally deleted from the bandwidth list when
887 * endpoints are dropped, before device is freed.
888 * If host is dying or being removed then endpoints aren't
889 * dropped cleanly, so delete the endpoint from list here.
890 * Only applicable for hosts with software bandwidth checking.
891 */
892
893 if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
894 list_del_init(&dev->eps[i].bw_endpoint_list);
895 xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
896 slot_id, i);
897 }
898 }
899 /* If this is a hub, free the TT(s) from the TT list */
900 xhci_free_tt_info(xhci, dev, slot_id);
901 /* If necessary, update the number of active TTs on this root port */
902 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
903
904 if (dev->in_ctx)
905 xhci_free_container_ctx(xhci, dev->in_ctx);
906 if (dev->out_ctx)
907 xhci_free_container_ctx(xhci, dev->out_ctx);
908
909 if (dev->udev && dev->udev->slot_id)
910 dev->udev->slot_id = 0;
911 kfree(xhci->devs[slot_id]);
912 xhci->devs[slot_id] = NULL;
913 }
914
915 /*
916 * Free a virt_device structure.
917 * If the virt_device added a tt_info (a hub) and has children pointing to
918 * that tt_info, then free the child first. Recursive.
919 * We can't rely on udev at this point to find child-parent relationships.
920 */
xhci_free_virt_devices_depth_first(struct xhci_hcd * xhci,int slot_id)921 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
922 {
923 struct xhci_virt_device *vdev;
924 struct list_head *tt_list_head;
925 struct xhci_tt_bw_info *tt_info, *next;
926 int i;
927
928 vdev = xhci->devs[slot_id];
929 if (!vdev)
930 return;
931
932 if (vdev->real_port == 0 ||
933 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
934 xhci_dbg(xhci, "Bad vdev->real_port.\n");
935 goto out;
936 }
937
938 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
939 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
940 /* is this a hub device that added a tt_info to the tts list */
941 if (tt_info->slot_id == slot_id) {
942 /* are any devices using this tt_info? */
943 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
944 vdev = xhci->devs[i];
945 if (vdev && (vdev->tt_info == tt_info))
946 xhci_free_virt_devices_depth_first(
947 xhci, i);
948 }
949 }
950 }
951 out:
952 /* we are now at a leaf device */
953 xhci_debugfs_remove_slot(xhci, slot_id);
954 xhci_free_virt_device(xhci, slot_id);
955 }
956
xhci_alloc_virt_device(struct xhci_hcd * xhci,int slot_id,struct usb_device * udev,gfp_t flags)957 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
958 struct usb_device *udev, gfp_t flags)
959 {
960 struct xhci_virt_device *dev;
961 int i;
962
963 /* Slot ID 0 is reserved */
964 if (slot_id == 0 || xhci->devs[slot_id]) {
965 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
966 return 0;
967 }
968
969 dev = kzalloc(sizeof(*dev), flags);
970 if (!dev)
971 return 0;
972
973 dev->slot_id = slot_id;
974
975 /* Allocate the (output) device context that will be used in the HC. */
976 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
977 if (!dev->out_ctx)
978 goto fail;
979
980 xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma);
981
982 /* Allocate the (input) device context for address device command */
983 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
984 if (!dev->in_ctx)
985 goto fail;
986
987 xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma);
988
989 /* Initialize the cancellation and bandwidth list for each ep */
990 for (i = 0; i < 31; i++) {
991 dev->eps[i].ep_index = i;
992 dev->eps[i].vdev = dev;
993 dev->eps[i].xhci = xhci;
994 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
995 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
996 }
997
998 /* Allocate endpoint 0 ring */
999 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1000 if (!dev->eps[0].ring)
1001 goto fail;
1002
1003 dev->udev = udev;
1004
1005 /* Point to output device context in dcbaa. */
1006 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1007 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1008 slot_id,
1009 &xhci->dcbaa->dev_context_ptrs[slot_id],
1010 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1011
1012 trace_xhci_alloc_virt_device(dev);
1013
1014 xhci->devs[slot_id] = dev;
1015
1016 return 1;
1017 fail:
1018
1019 if (dev->in_ctx)
1020 xhci_free_container_ctx(xhci, dev->in_ctx);
1021 if (dev->out_ctx)
1022 xhci_free_container_ctx(xhci, dev->out_ctx);
1023 kfree(dev);
1024
1025 return 0;
1026 }
1027
xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd * xhci,struct usb_device * udev)1028 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1029 struct usb_device *udev)
1030 {
1031 struct xhci_virt_device *virt_dev;
1032 struct xhci_ep_ctx *ep0_ctx;
1033 struct xhci_ring *ep_ring;
1034
1035 virt_dev = xhci->devs[udev->slot_id];
1036 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1037 ep_ring = virt_dev->eps[0].ring;
1038 /*
1039 * FIXME we don't keep track of the dequeue pointer very well after a
1040 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1041 * host to our enqueue pointer. This should only be called after a
1042 * configured device has reset, so all control transfers should have
1043 * been completed or cancelled before the reset.
1044 */
1045 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1046 ep_ring->enqueue)
1047 | ep_ring->cycle_state);
1048 }
1049
1050 /*
1051 * The xHCI roothub may have ports of differing speeds in any order in the port
1052 * status registers.
1053 *
1054 * The xHCI hardware wants to know the roothub port number that the USB device
1055 * is attached to (or the roothub port its ancestor hub is attached to). All we
1056 * know is the index of that port under either the USB 2.0 or the USB 3.0
1057 * roothub, but that doesn't give us the real index into the HW port status
1058 * registers. Call xhci_find_raw_port_number() to get real index.
1059 */
xhci_find_real_port_number(struct xhci_hcd * xhci,struct usb_device * udev)1060 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1061 struct usb_device *udev)
1062 {
1063 struct usb_device *top_dev;
1064 struct usb_hcd *hcd;
1065
1066 if (udev->speed >= USB_SPEED_SUPER)
1067 hcd = xhci_get_usb3_hcd(xhci);
1068 else
1069 hcd = xhci->main_hcd;
1070
1071 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1072 top_dev = top_dev->parent)
1073 /* Found device below root hub */;
1074
1075 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1076 }
1077
1078 /* Setup an xHCI virtual device for a Set Address command */
xhci_setup_addressable_virt_dev(struct xhci_hcd * xhci,struct usb_device * udev)1079 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1080 {
1081 struct xhci_virt_device *dev;
1082 struct xhci_ep_ctx *ep0_ctx;
1083 struct xhci_slot_ctx *slot_ctx;
1084 u32 port_num;
1085 u32 max_packets;
1086 struct usb_device *top_dev;
1087
1088 dev = xhci->devs[udev->slot_id];
1089 /* Slot ID 0 is reserved */
1090 if (udev->slot_id == 0 || !dev) {
1091 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1092 udev->slot_id);
1093 return -EINVAL;
1094 }
1095 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1096 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1097
1098 /* 3) Only the control endpoint is valid - one endpoint context */
1099 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1100 switch (udev->speed) {
1101 case USB_SPEED_SUPER_PLUS:
1102 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1103 max_packets = MAX_PACKET(512);
1104 break;
1105 case USB_SPEED_SUPER:
1106 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1107 max_packets = MAX_PACKET(512);
1108 break;
1109 case USB_SPEED_HIGH:
1110 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1111 max_packets = MAX_PACKET(64);
1112 break;
1113 /* USB core guesses at a 64-byte max packet first for FS devices */
1114 case USB_SPEED_FULL:
1115 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1116 max_packets = MAX_PACKET(64);
1117 break;
1118 case USB_SPEED_LOW:
1119 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1120 max_packets = MAX_PACKET(8);
1121 break;
1122 default:
1123 /* Speed was set earlier, this shouldn't happen. */
1124 return -EINVAL;
1125 }
1126 /* Find the root hub port this device is under */
1127 port_num = xhci_find_real_port_number(xhci, udev);
1128 if (!port_num)
1129 return -EINVAL;
1130 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1131 /* Set the port number in the virtual_device to the faked port number */
1132 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1133 top_dev = top_dev->parent)
1134 /* Found device below root hub */;
1135 dev->fake_port = top_dev->portnum;
1136 dev->real_port = port_num;
1137 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1138 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1139
1140 /* Find the right bandwidth table that this device will be a part of.
1141 * If this is a full speed device attached directly to a root port (or a
1142 * decendent of one), it counts as a primary bandwidth domain, not a
1143 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1144 * will never be created for the HS root hub.
1145 */
1146 if (!udev->tt || !udev->tt->hub->parent) {
1147 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1148 } else {
1149 struct xhci_root_port_bw_info *rh_bw;
1150 struct xhci_tt_bw_info *tt_bw;
1151
1152 rh_bw = &xhci->rh_bw[port_num - 1];
1153 /* Find the right TT. */
1154 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1155 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1156 continue;
1157
1158 if (!dev->udev->tt->multi ||
1159 (udev->tt->multi &&
1160 tt_bw->ttport == dev->udev->ttport)) {
1161 dev->bw_table = &tt_bw->bw_table;
1162 dev->tt_info = tt_bw;
1163 break;
1164 }
1165 }
1166 if (!dev->tt_info)
1167 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1168 }
1169
1170 /* Is this a LS/FS device under an external HS hub? */
1171 if (udev->tt && udev->tt->hub->parent) {
1172 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1173 (udev->ttport << 8));
1174 if (udev->tt->multi)
1175 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1176 }
1177 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1178 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1179
1180 /* Step 4 - ring already allocated */
1181 /* Step 5 */
1182 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1183
1184 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1185 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1186 max_packets);
1187
1188 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1189 dev->eps[0].ring->cycle_state);
1190
1191 trace_xhci_setup_addressable_virt_device(dev);
1192
1193 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1194
1195 return 0;
1196 }
1197
1198 /*
1199 * Convert interval expressed as 2^(bInterval - 1) == interval into
1200 * straight exponent value 2^n == interval.
1201 *
1202 */
xhci_parse_exponent_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1203 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1204 struct usb_host_endpoint *ep)
1205 {
1206 unsigned int interval;
1207
1208 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1209 if (interval != ep->desc.bInterval - 1)
1210 dev_warn(&udev->dev,
1211 "ep %#x - rounding interval to %d %sframes\n",
1212 ep->desc.bEndpointAddress,
1213 1 << interval,
1214 udev->speed == USB_SPEED_FULL ? "" : "micro");
1215
1216 if (udev->speed == USB_SPEED_FULL) {
1217 /*
1218 * Full speed isoc endpoints specify interval in frames,
1219 * not microframes. We are using microframes everywhere,
1220 * so adjust accordingly.
1221 */
1222 interval += 3; /* 1 frame = 2^3 uframes */
1223 }
1224
1225 return interval;
1226 }
1227
1228 /*
1229 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1230 * microframes, rounded down to nearest power of 2.
1231 */
xhci_microframes_to_exponent(struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int desc_interval,unsigned int min_exponent,unsigned int max_exponent)1232 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1233 struct usb_host_endpoint *ep, unsigned int desc_interval,
1234 unsigned int min_exponent, unsigned int max_exponent)
1235 {
1236 unsigned int interval;
1237
1238 interval = fls(desc_interval) - 1;
1239 interval = clamp_val(interval, min_exponent, max_exponent);
1240 if ((1 << interval) != desc_interval)
1241 dev_dbg(&udev->dev,
1242 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1243 ep->desc.bEndpointAddress,
1244 1 << interval,
1245 desc_interval);
1246
1247 return interval;
1248 }
1249
xhci_parse_microframe_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1250 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1251 struct usb_host_endpoint *ep)
1252 {
1253 if (ep->desc.bInterval == 0)
1254 return 0;
1255 return xhci_microframes_to_exponent(udev, ep,
1256 ep->desc.bInterval, 0, 15);
1257 }
1258
1259
xhci_parse_frame_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1260 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1261 struct usb_host_endpoint *ep)
1262 {
1263 return xhci_microframes_to_exponent(udev, ep,
1264 ep->desc.bInterval * 8, 3, 10);
1265 }
1266
1267 /* Return the polling or NAK interval.
1268 *
1269 * The polling interval is expressed in "microframes". If xHCI's Interval field
1270 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1271 *
1272 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1273 * is set to 0.
1274 */
xhci_get_endpoint_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1275 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1276 struct usb_host_endpoint *ep)
1277 {
1278 unsigned int interval = 0;
1279
1280 switch (udev->speed) {
1281 case USB_SPEED_HIGH:
1282 /* Max NAK rate */
1283 if (usb_endpoint_xfer_control(&ep->desc) ||
1284 usb_endpoint_xfer_bulk(&ep->desc)) {
1285 interval = xhci_parse_microframe_interval(udev, ep);
1286 break;
1287 }
1288 fallthrough; /* SS and HS isoc/int have same decoding */
1289
1290 case USB_SPEED_SUPER_PLUS:
1291 case USB_SPEED_SUPER:
1292 if (usb_endpoint_xfer_int(&ep->desc) ||
1293 usb_endpoint_xfer_isoc(&ep->desc)) {
1294 interval = xhci_parse_exponent_interval(udev, ep);
1295 }
1296 break;
1297
1298 case USB_SPEED_FULL:
1299 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1300 interval = xhci_parse_exponent_interval(udev, ep);
1301 break;
1302 }
1303 /*
1304 * Fall through for interrupt endpoint interval decoding
1305 * since it uses the same rules as low speed interrupt
1306 * endpoints.
1307 */
1308 fallthrough;
1309
1310 case USB_SPEED_LOW:
1311 if (usb_endpoint_xfer_int(&ep->desc) ||
1312 usb_endpoint_xfer_isoc(&ep->desc)) {
1313
1314 interval = xhci_parse_frame_interval(udev, ep);
1315 }
1316 break;
1317
1318 default:
1319 BUG();
1320 }
1321 return interval;
1322 }
1323
1324 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1325 * High speed endpoint descriptors can define "the number of additional
1326 * transaction opportunities per microframe", but that goes in the Max Burst
1327 * endpoint context field.
1328 */
xhci_get_endpoint_mult(struct usb_device * udev,struct usb_host_endpoint * ep)1329 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1330 struct usb_host_endpoint *ep)
1331 {
1332 if (udev->speed < USB_SPEED_SUPER ||
1333 !usb_endpoint_xfer_isoc(&ep->desc))
1334 return 0;
1335 return ep->ss_ep_comp.bmAttributes;
1336 }
1337
xhci_get_endpoint_max_burst(struct usb_device * udev,struct usb_host_endpoint * ep)1338 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1339 struct usb_host_endpoint *ep)
1340 {
1341 /* Super speed and Plus have max burst in ep companion desc */
1342 if (udev->speed >= USB_SPEED_SUPER)
1343 return ep->ss_ep_comp.bMaxBurst;
1344
1345 if (udev->speed == USB_SPEED_HIGH &&
1346 (usb_endpoint_xfer_isoc(&ep->desc) ||
1347 usb_endpoint_xfer_int(&ep->desc)))
1348 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1349
1350 return 0;
1351 }
1352
xhci_get_endpoint_type(struct usb_host_endpoint * ep)1353 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1354 {
1355 int in;
1356
1357 in = usb_endpoint_dir_in(&ep->desc);
1358
1359 switch (usb_endpoint_type(&ep->desc)) {
1360 case USB_ENDPOINT_XFER_CONTROL:
1361 return CTRL_EP;
1362 case USB_ENDPOINT_XFER_BULK:
1363 return in ? BULK_IN_EP : BULK_OUT_EP;
1364 case USB_ENDPOINT_XFER_ISOC:
1365 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1366 case USB_ENDPOINT_XFER_INT:
1367 return in ? INT_IN_EP : INT_OUT_EP;
1368 }
1369 return 0;
1370 }
1371
1372 /* Return the maximum endpoint service interval time (ESIT) payload.
1373 * Basically, this is the maxpacket size, multiplied by the burst size
1374 * and mult size.
1375 */
xhci_get_max_esit_payload(struct usb_device * udev,struct usb_host_endpoint * ep)1376 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1377 struct usb_host_endpoint *ep)
1378 {
1379 int max_burst;
1380 int max_packet;
1381
1382 /* Only applies for interrupt or isochronous endpoints */
1383 if (usb_endpoint_xfer_control(&ep->desc) ||
1384 usb_endpoint_xfer_bulk(&ep->desc))
1385 return 0;
1386
1387 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1388 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1389 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1390 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1391
1392 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1393 if (udev->speed >= USB_SPEED_SUPER)
1394 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1395
1396 max_packet = usb_endpoint_maxp(&ep->desc);
1397 max_burst = usb_endpoint_maxp_mult(&ep->desc);
1398 /* A 0 in max burst means 1 transfer per ESIT */
1399 return max_packet * max_burst;
1400 }
1401
1402 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1403 * Drivers will have to call usb_alloc_streams() to do that.
1404 */
xhci_endpoint_init(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * udev,struct usb_host_endpoint * ep,gfp_t mem_flags)1405 int xhci_endpoint_init(struct xhci_hcd *xhci,
1406 struct xhci_virt_device *virt_dev,
1407 struct usb_device *udev,
1408 struct usb_host_endpoint *ep,
1409 gfp_t mem_flags)
1410 {
1411 unsigned int ep_index;
1412 struct xhci_ep_ctx *ep_ctx;
1413 struct xhci_ring *ep_ring;
1414 unsigned int max_packet;
1415 enum xhci_ring_type ring_type;
1416 u32 max_esit_payload;
1417 u32 endpoint_type;
1418 unsigned int max_burst;
1419 unsigned int interval;
1420 unsigned int mult;
1421 unsigned int avg_trb_len;
1422 unsigned int err_count = 0;
1423
1424 ep_index = xhci_get_endpoint_index(&ep->desc);
1425 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1426
1427 endpoint_type = xhci_get_endpoint_type(ep);
1428 if (!endpoint_type)
1429 return -EINVAL;
1430
1431 ring_type = usb_endpoint_type(&ep->desc);
1432
1433 /*
1434 * Get values to fill the endpoint context, mostly from ep descriptor.
1435 * The average TRB buffer lengt for bulk endpoints is unclear as we
1436 * have no clue on scatter gather list entry size. For Isoc and Int,
1437 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1438 */
1439 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1440 interval = xhci_get_endpoint_interval(udev, ep);
1441
1442 /* Periodic endpoint bInterval limit quirk */
1443 if (usb_endpoint_xfer_int(&ep->desc) ||
1444 usb_endpoint_xfer_isoc(&ep->desc)) {
1445 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1446 udev->speed >= USB_SPEED_HIGH &&
1447 interval >= 7) {
1448 interval = 6;
1449 }
1450 }
1451
1452 mult = xhci_get_endpoint_mult(udev, ep);
1453 max_packet = usb_endpoint_maxp(&ep->desc);
1454 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1455 avg_trb_len = max_esit_payload;
1456
1457 /* FIXME dig Mult and streams info out of ep companion desc */
1458
1459 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1460 if (!usb_endpoint_xfer_isoc(&ep->desc))
1461 err_count = 3;
1462 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1463 if (usb_endpoint_xfer_bulk(&ep->desc)) {
1464 if (udev->speed == USB_SPEED_HIGH)
1465 max_packet = 512;
1466 if (udev->speed == USB_SPEED_FULL) {
1467 max_packet = rounddown_pow_of_two(max_packet);
1468 max_packet = clamp_val(max_packet, 8, 64);
1469 }
1470 }
1471 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1472 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1473 avg_trb_len = 8;
1474 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1475 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1476 mult = 0;
1477
1478 /* Set up the endpoint ring */
1479 virt_dev->eps[ep_index].new_ring =
1480 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1481 if (!virt_dev->eps[ep_index].new_ring)
1482 return -ENOMEM;
1483
1484 virt_dev->eps[ep_index].skip = false;
1485 ep_ring = virt_dev->eps[ep_index].new_ring;
1486
1487 /* Fill the endpoint context */
1488 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1489 EP_INTERVAL(interval) |
1490 EP_MULT(mult));
1491 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1492 MAX_PACKET(max_packet) |
1493 MAX_BURST(max_burst) |
1494 ERROR_COUNT(err_count));
1495 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1496 ep_ring->cycle_state);
1497
1498 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1499 EP_AVG_TRB_LENGTH(avg_trb_len));
1500
1501 return 0;
1502 }
1503
xhci_endpoint_zero(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_host_endpoint * ep)1504 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1505 struct xhci_virt_device *virt_dev,
1506 struct usb_host_endpoint *ep)
1507 {
1508 unsigned int ep_index;
1509 struct xhci_ep_ctx *ep_ctx;
1510
1511 ep_index = xhci_get_endpoint_index(&ep->desc);
1512 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1513
1514 ep_ctx->ep_info = 0;
1515 ep_ctx->ep_info2 = 0;
1516 ep_ctx->deq = 0;
1517 ep_ctx->tx_info = 0;
1518 /* Don't free the endpoint ring until the set interface or configuration
1519 * request succeeds.
1520 */
1521 }
1522
xhci_clear_endpoint_bw_info(struct xhci_bw_info * bw_info)1523 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1524 {
1525 bw_info->ep_interval = 0;
1526 bw_info->mult = 0;
1527 bw_info->num_packets = 0;
1528 bw_info->max_packet_size = 0;
1529 bw_info->type = 0;
1530 bw_info->max_esit_payload = 0;
1531 }
1532
xhci_update_bw_info(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_input_control_ctx * ctrl_ctx,struct xhci_virt_device * virt_dev)1533 void xhci_update_bw_info(struct xhci_hcd *xhci,
1534 struct xhci_container_ctx *in_ctx,
1535 struct xhci_input_control_ctx *ctrl_ctx,
1536 struct xhci_virt_device *virt_dev)
1537 {
1538 struct xhci_bw_info *bw_info;
1539 struct xhci_ep_ctx *ep_ctx;
1540 unsigned int ep_type;
1541 int i;
1542
1543 for (i = 1; i < 31; i++) {
1544 bw_info = &virt_dev->eps[i].bw_info;
1545
1546 /* We can't tell what endpoint type is being dropped, but
1547 * unconditionally clearing the bandwidth info for non-periodic
1548 * endpoints should be harmless because the info will never be
1549 * set in the first place.
1550 */
1551 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1552 /* Dropped endpoint */
1553 xhci_clear_endpoint_bw_info(bw_info);
1554 continue;
1555 }
1556
1557 if (EP_IS_ADDED(ctrl_ctx, i)) {
1558 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1559 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1560
1561 /* Ignore non-periodic endpoints */
1562 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1563 ep_type != ISOC_IN_EP &&
1564 ep_type != INT_IN_EP)
1565 continue;
1566
1567 /* Added or changed endpoint */
1568 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1569 le32_to_cpu(ep_ctx->ep_info));
1570 /* Number of packets and mult are zero-based in the
1571 * input context, but we want one-based for the
1572 * interval table.
1573 */
1574 bw_info->mult = CTX_TO_EP_MULT(
1575 le32_to_cpu(ep_ctx->ep_info)) + 1;
1576 bw_info->num_packets = CTX_TO_MAX_BURST(
1577 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1578 bw_info->max_packet_size = MAX_PACKET_DECODED(
1579 le32_to_cpu(ep_ctx->ep_info2));
1580 bw_info->type = ep_type;
1581 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1582 le32_to_cpu(ep_ctx->tx_info));
1583 }
1584 }
1585 }
1586
1587 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1588 * Useful when you want to change one particular aspect of the endpoint and then
1589 * issue a configure endpoint command.
1590 */
xhci_endpoint_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,unsigned int ep_index)1591 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1592 struct xhci_container_ctx *in_ctx,
1593 struct xhci_container_ctx *out_ctx,
1594 unsigned int ep_index)
1595 {
1596 struct xhci_ep_ctx *out_ep_ctx;
1597 struct xhci_ep_ctx *in_ep_ctx;
1598
1599 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1600 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1601
1602 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1603 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1604 in_ep_ctx->deq = out_ep_ctx->deq;
1605 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1606 if (xhci->quirks & XHCI_MTK_HOST) {
1607 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1608 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1609 }
1610 }
1611
1612 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1613 * Useful when you want to change one particular aspect of the endpoint and then
1614 * issue a configure endpoint command. Only the context entries field matters,
1615 * but we'll copy the whole thing anyway.
1616 */
xhci_slot_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx)1617 void xhci_slot_copy(struct xhci_hcd *xhci,
1618 struct xhci_container_ctx *in_ctx,
1619 struct xhci_container_ctx *out_ctx)
1620 {
1621 struct xhci_slot_ctx *in_slot_ctx;
1622 struct xhci_slot_ctx *out_slot_ctx;
1623
1624 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1625 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1626
1627 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1628 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1629 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1630 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1631 }
1632
1633 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
scratchpad_alloc(struct xhci_hcd * xhci,gfp_t flags)1634 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1635 {
1636 int i;
1637 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1638 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1639
1640 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1641 "Allocating %d scratchpad buffers", num_sp);
1642
1643 if (!num_sp)
1644 return 0;
1645
1646 xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1647 dev_to_node(dev));
1648 if (!xhci->scratchpad)
1649 goto fail_sp;
1650
1651 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1652 size_mul(sizeof(u64), num_sp),
1653 &xhci->scratchpad->sp_dma, flags);
1654 if (!xhci->scratchpad->sp_array)
1655 goto fail_sp2;
1656
1657 xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1658 flags, dev_to_node(dev));
1659 if (!xhci->scratchpad->sp_buffers)
1660 goto fail_sp3;
1661
1662 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1663 for (i = 0; i < num_sp; i++) {
1664 dma_addr_t dma;
1665 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1666 flags);
1667 if (!buf)
1668 goto fail_sp4;
1669
1670 xhci->scratchpad->sp_array[i] = dma;
1671 xhci->scratchpad->sp_buffers[i] = buf;
1672 }
1673
1674 return 0;
1675
1676 fail_sp4:
1677 while (i--)
1678 dma_free_coherent(dev, xhci->page_size,
1679 xhci->scratchpad->sp_buffers[i],
1680 xhci->scratchpad->sp_array[i]);
1681
1682 kfree(xhci->scratchpad->sp_buffers);
1683
1684 fail_sp3:
1685 dma_free_coherent(dev, num_sp * sizeof(u64),
1686 xhci->scratchpad->sp_array,
1687 xhci->scratchpad->sp_dma);
1688
1689 fail_sp2:
1690 kfree(xhci->scratchpad);
1691 xhci->scratchpad = NULL;
1692
1693 fail_sp:
1694 return -ENOMEM;
1695 }
1696
scratchpad_free(struct xhci_hcd * xhci)1697 static void scratchpad_free(struct xhci_hcd *xhci)
1698 {
1699 int num_sp;
1700 int i;
1701 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1702
1703 if (!xhci->scratchpad)
1704 return;
1705
1706 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1707
1708 for (i = 0; i < num_sp; i++) {
1709 dma_free_coherent(dev, xhci->page_size,
1710 xhci->scratchpad->sp_buffers[i],
1711 xhci->scratchpad->sp_array[i]);
1712 }
1713 kfree(xhci->scratchpad->sp_buffers);
1714 dma_free_coherent(dev, num_sp * sizeof(u64),
1715 xhci->scratchpad->sp_array,
1716 xhci->scratchpad->sp_dma);
1717 kfree(xhci->scratchpad);
1718 xhci->scratchpad = NULL;
1719 }
1720
xhci_alloc_command(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1721 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1722 bool allocate_completion, gfp_t mem_flags)
1723 {
1724 struct xhci_command *command;
1725 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1726
1727 command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1728 if (!command)
1729 return NULL;
1730
1731 if (allocate_completion) {
1732 command->completion =
1733 kzalloc_node(sizeof(struct completion), mem_flags,
1734 dev_to_node(dev));
1735 if (!command->completion) {
1736 kfree(command);
1737 return NULL;
1738 }
1739 init_completion(command->completion);
1740 }
1741
1742 command->status = 0;
1743 /* set default timeout to 5000 ms */
1744 command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT;
1745 INIT_LIST_HEAD(&command->cmd_list);
1746 return command;
1747 }
1748
xhci_alloc_command_with_ctx(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1749 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1750 bool allocate_completion, gfp_t mem_flags)
1751 {
1752 struct xhci_command *command;
1753
1754 command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1755 if (!command)
1756 return NULL;
1757
1758 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1759 mem_flags);
1760 if (!command->in_ctx) {
1761 kfree(command->completion);
1762 kfree(command);
1763 return NULL;
1764 }
1765 return command;
1766 }
1767
xhci_urb_free_priv(struct urb_priv * urb_priv)1768 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1769 {
1770 kfree(urb_priv);
1771 }
1772
xhci_free_command(struct xhci_hcd * xhci,struct xhci_command * command)1773 void xhci_free_command(struct xhci_hcd *xhci,
1774 struct xhci_command *command)
1775 {
1776 xhci_free_container_ctx(xhci,
1777 command->in_ctx);
1778 kfree(command->completion);
1779 kfree(command);
1780 }
1781
xhci_alloc_erst(struct xhci_hcd * xhci,struct xhci_ring * evt_ring,struct xhci_erst * erst,gfp_t flags)1782 static int xhci_alloc_erst(struct xhci_hcd *xhci,
1783 struct xhci_ring *evt_ring,
1784 struct xhci_erst *erst,
1785 gfp_t flags)
1786 {
1787 size_t size;
1788 unsigned int val;
1789 struct xhci_segment *seg;
1790 struct xhci_erst_entry *entry;
1791
1792 size = size_mul(sizeof(struct xhci_erst_entry), evt_ring->num_segs);
1793 erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1794 size, &erst->erst_dma_addr, flags);
1795 if (!erst->entries)
1796 return -ENOMEM;
1797
1798 erst->num_entries = evt_ring->num_segs;
1799
1800 seg = evt_ring->first_seg;
1801 for (val = 0; val < evt_ring->num_segs; val++) {
1802 entry = &erst->entries[val];
1803 entry->seg_addr = cpu_to_le64(seg->dma);
1804 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1805 entry->rsvd = 0;
1806 seg = seg->next;
1807 }
1808
1809 return 0;
1810 }
1811
1812 static void
xhci_remove_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir)1813 xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1814 {
1815 u32 tmp;
1816
1817 if (!ir)
1818 return;
1819
1820 /*
1821 * Clean out interrupter registers except ERSTBA. Clearing either the
1822 * low or high 32 bits of ERSTBA immediately causes the controller to
1823 * dereference the partially cleared 64 bit address, causing IOMMU error.
1824 */
1825 if (ir->ir_set) {
1826 tmp = readl(&ir->ir_set->erst_size);
1827 tmp &= ERST_SIZE_MASK;
1828 writel(tmp, &ir->ir_set->erst_size);
1829
1830 xhci_update_erst_dequeue(xhci, ir, true);
1831 }
1832 }
1833
1834 static void
xhci_free_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir)1835 xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1836 {
1837 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1838 size_t erst_size;
1839
1840 if (!ir)
1841 return;
1842
1843 erst_size = sizeof(struct xhci_erst_entry) * ir->erst.num_entries;
1844 if (ir->erst.entries)
1845 dma_free_coherent(dev, erst_size,
1846 ir->erst.entries,
1847 ir->erst.erst_dma_addr);
1848 ir->erst.entries = NULL;
1849
1850 /* free interrupter event ring */
1851 if (ir->event_ring)
1852 xhci_ring_free(xhci, ir->event_ring);
1853
1854 ir->event_ring = NULL;
1855
1856 kfree(ir);
1857 }
1858
xhci_remove_secondary_interrupter(struct usb_hcd * hcd,struct xhci_interrupter * ir)1859 void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir)
1860 {
1861 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1862 unsigned int intr_num;
1863
1864 spin_lock_irq(&xhci->lock);
1865
1866 /* interrupter 0 is primary interrupter, don't touch it */
1867 if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) {
1868 xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n");
1869 spin_unlock_irq(&xhci->lock);
1870 return;
1871 }
1872
1873 /*
1874 * Cleanup secondary interrupter to ensure there are no pending events.
1875 * This also updates event ring dequeue pointer back to the start.
1876 */
1877 xhci_skip_sec_intr_events(xhci, ir->event_ring, ir);
1878 intr_num = ir->intr_num;
1879
1880 xhci_remove_interrupter(xhci, ir);
1881 xhci->interrupters[intr_num] = NULL;
1882
1883 spin_unlock_irq(&xhci->lock);
1884
1885 xhci_free_interrupter(xhci, ir);
1886 }
1887 EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter);
1888
xhci_mem_cleanup(struct xhci_hcd * xhci)1889 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1890 {
1891 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1892 int i, j, num_ports;
1893
1894 cancel_delayed_work_sync(&xhci->cmd_timer);
1895
1896 for (i = 0; i < xhci->max_interrupters; i++) {
1897 if (xhci->interrupters[i]) {
1898 xhci_remove_interrupter(xhci, xhci->interrupters[i]);
1899 xhci_free_interrupter(xhci, xhci->interrupters[i]);
1900 xhci->interrupters[i] = NULL;
1901 }
1902 }
1903 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed interrupters");
1904
1905 if (xhci->cmd_ring)
1906 xhci_ring_free(xhci, xhci->cmd_ring);
1907 xhci->cmd_ring = NULL;
1908 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1909 xhci_cleanup_command_queue(xhci);
1910
1911 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1912 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1913 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1914 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1915 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1916 while (!list_empty(ep))
1917 list_del_init(ep->next);
1918 }
1919 }
1920
1921 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1922 xhci_free_virt_devices_depth_first(xhci, i);
1923
1924 dma_pool_destroy(xhci->segment_pool);
1925 xhci->segment_pool = NULL;
1926 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1927
1928 dma_pool_destroy(xhci->device_pool);
1929 xhci->device_pool = NULL;
1930 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1931
1932 dma_pool_destroy(xhci->small_streams_pool);
1933 xhci->small_streams_pool = NULL;
1934 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1935 "Freed small stream array pool");
1936
1937 dma_pool_destroy(xhci->medium_streams_pool);
1938 xhci->medium_streams_pool = NULL;
1939 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1940 "Freed medium stream array pool");
1941
1942 if (xhci->dcbaa)
1943 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1944 xhci->dcbaa, xhci->dcbaa->dma);
1945 xhci->dcbaa = NULL;
1946
1947 scratchpad_free(xhci);
1948
1949 if (!xhci->rh_bw)
1950 goto no_bw;
1951
1952 for (i = 0; i < num_ports; i++) {
1953 struct xhci_tt_bw_info *tt, *n;
1954 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1955 list_del(&tt->tt_list);
1956 kfree(tt);
1957 }
1958 }
1959
1960 no_bw:
1961 xhci->cmd_ring_reserved_trbs = 0;
1962 xhci->usb2_rhub.num_ports = 0;
1963 xhci->usb3_rhub.num_ports = 0;
1964 xhci->num_active_eps = 0;
1965 kfree(xhci->usb2_rhub.ports);
1966 kfree(xhci->usb3_rhub.ports);
1967 kfree(xhci->hw_ports);
1968 kfree(xhci->rh_bw);
1969 kfree(xhci->ext_caps);
1970 for (i = 0; i < xhci->num_port_caps; i++)
1971 kfree(xhci->port_caps[i].psi);
1972 kfree(xhci->port_caps);
1973 kfree(xhci->interrupters);
1974 xhci->num_port_caps = 0;
1975
1976 xhci->usb2_rhub.ports = NULL;
1977 xhci->usb3_rhub.ports = NULL;
1978 xhci->hw_ports = NULL;
1979 xhci->rh_bw = NULL;
1980 xhci->ext_caps = NULL;
1981 xhci->port_caps = NULL;
1982 xhci->interrupters = NULL;
1983
1984 xhci->page_size = 0;
1985 xhci->page_shift = 0;
1986 xhci->usb2_rhub.bus_state.bus_suspended = 0;
1987 xhci->usb3_rhub.bus_state.bus_suspended = 0;
1988 }
1989
xhci_set_hc_event_deq(struct xhci_hcd * xhci,struct xhci_interrupter * ir)1990 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1991 {
1992 dma_addr_t deq;
1993
1994 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
1995 ir->event_ring->dequeue);
1996 if (!deq)
1997 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n");
1998 /* Update HC event ring dequeue pointer */
1999 /* Don't clear the EHB bit (which is RW1C) because
2000 * there might be more events to service.
2001 */
2002 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2003 "// Write event ring dequeue pointer, preserving EHB bit");
2004 xhci_write_64(xhci, deq & ERST_PTR_MASK, &ir->ir_set->erst_dequeue);
2005 }
2006
xhci_add_in_port(struct xhci_hcd * xhci,unsigned int num_ports,__le32 __iomem * addr,int max_caps)2007 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2008 __le32 __iomem *addr, int max_caps)
2009 {
2010 u32 temp, port_offset, port_count;
2011 int i;
2012 u8 major_revision, minor_revision, tmp_minor_revision;
2013 struct xhci_hub *rhub;
2014 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2015 struct xhci_port_cap *port_cap;
2016
2017 temp = readl(addr);
2018 major_revision = XHCI_EXT_PORT_MAJOR(temp);
2019 minor_revision = XHCI_EXT_PORT_MINOR(temp);
2020
2021 if (major_revision == 0x03) {
2022 rhub = &xhci->usb3_rhub;
2023 /*
2024 * Some hosts incorrectly use sub-minor version for minor
2025 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2026 * for bcdUSB 0x310). Since there is no USB release with sub
2027 * minor version 0x301 to 0x309, we can assume that they are
2028 * incorrect and fix it here.
2029 */
2030 if (minor_revision > 0x00 && minor_revision < 0x10)
2031 minor_revision <<= 4;
2032 /*
2033 * Some zhaoxin's xHCI controller that follow usb3.1 spec
2034 * but only support Gen1.
2035 */
2036 if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2037 tmp_minor_revision = minor_revision;
2038 minor_revision = 0;
2039 }
2040
2041 } else if (major_revision <= 0x02) {
2042 rhub = &xhci->usb2_rhub;
2043 } else {
2044 xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n",
2045 addr, major_revision);
2046 /* Ignoring port protocol we can't understand. FIXME */
2047 return;
2048 }
2049
2050 /* Port offset and count in the third dword, see section 7.2 */
2051 temp = readl(addr + 2);
2052 port_offset = XHCI_EXT_PORT_OFF(temp);
2053 port_count = XHCI_EXT_PORT_COUNT(temp);
2054 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2055 "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
2056 addr, port_offset, port_count, major_revision);
2057 /* Port count includes the current port offset */
2058 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2059 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2060 return;
2061
2062 port_cap = &xhci->port_caps[xhci->num_port_caps++];
2063 if (xhci->num_port_caps > max_caps)
2064 return;
2065
2066 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2067
2068 if (port_cap->psi_count) {
2069 port_cap->psi = kcalloc_node(port_cap->psi_count,
2070 sizeof(*port_cap->psi),
2071 GFP_KERNEL, dev_to_node(dev));
2072 if (!port_cap->psi)
2073 port_cap->psi_count = 0;
2074
2075 port_cap->psi_uid_count++;
2076 for (i = 0; i < port_cap->psi_count; i++) {
2077 port_cap->psi[i] = readl(addr + 4 + i);
2078
2079 /* count unique ID values, two consecutive entries can
2080 * have the same ID if link is assymetric
2081 */
2082 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2083 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2084 port_cap->psi_uid_count++;
2085
2086 if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2087 major_revision == 0x03 &&
2088 XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2089 minor_revision = tmp_minor_revision;
2090
2091 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2092 XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2093 XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2094 XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2095 XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2096 XHCI_EXT_PORT_LP(port_cap->psi[i]),
2097 XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2098 }
2099 }
2100
2101 rhub->maj_rev = major_revision;
2102
2103 if (rhub->min_rev < minor_revision)
2104 rhub->min_rev = minor_revision;
2105
2106 port_cap->maj_rev = major_revision;
2107 port_cap->min_rev = minor_revision;
2108
2109 /* cache usb2 port capabilities */
2110 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2111 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2112
2113 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2114 (temp & XHCI_HLC)) {
2115 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2116 "xHCI 1.0: support USB2 hardware lpm");
2117 xhci->hw_lpm_support = 1;
2118 }
2119
2120 port_offset--;
2121 for (i = port_offset; i < (port_offset + port_count); i++) {
2122 struct xhci_port *hw_port = &xhci->hw_ports[i];
2123 /* Duplicate entry. Ignore the port if the revisions differ. */
2124 if (hw_port->rhub) {
2125 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i);
2126 xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n",
2127 hw_port->rhub->maj_rev, major_revision);
2128 /* Only adjust the roothub port counts if we haven't
2129 * found a similar duplicate.
2130 */
2131 if (hw_port->rhub != rhub &&
2132 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2133 hw_port->rhub->num_ports--;
2134 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2135 }
2136 continue;
2137 }
2138 hw_port->rhub = rhub;
2139 hw_port->port_cap = port_cap;
2140 rhub->num_ports++;
2141 }
2142 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2143 }
2144
xhci_create_rhub_port_array(struct xhci_hcd * xhci,struct xhci_hub * rhub,gfp_t flags)2145 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2146 struct xhci_hub *rhub, gfp_t flags)
2147 {
2148 int port_index = 0;
2149 int i;
2150 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2151
2152 if (!rhub->num_ports)
2153 return;
2154 rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2155 flags, dev_to_node(dev));
2156 if (!rhub->ports)
2157 return;
2158
2159 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2160 if (xhci->hw_ports[i].rhub != rhub ||
2161 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2162 continue;
2163 xhci->hw_ports[i].hcd_portnum = port_index;
2164 rhub->ports[port_index] = &xhci->hw_ports[i];
2165 port_index++;
2166 if (port_index == rhub->num_ports)
2167 break;
2168 }
2169 }
2170
2171 /*
2172 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2173 * specify what speeds each port is supposed to be. We can't count on the port
2174 * speed bits in the PORTSC register being correct until a device is connected,
2175 * but we need to set up the two fake roothubs with the correct number of USB
2176 * 3.0 and USB 2.0 ports at host controller initialization time.
2177 */
xhci_setup_port_arrays(struct xhci_hcd * xhci,gfp_t flags)2178 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2179 {
2180 void __iomem *base;
2181 u32 offset;
2182 unsigned int num_ports;
2183 int i, j;
2184 int cap_count = 0;
2185 u32 cap_start;
2186 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2187
2188 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2189 xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2190 flags, dev_to_node(dev));
2191 if (!xhci->hw_ports)
2192 return -ENOMEM;
2193
2194 for (i = 0; i < num_ports; i++) {
2195 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2196 NUM_PORT_REGS * i;
2197 xhci->hw_ports[i].hw_portnum = i;
2198
2199 init_completion(&xhci->hw_ports[i].rexit_done);
2200 init_completion(&xhci->hw_ports[i].u3exit_done);
2201 }
2202
2203 xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2204 dev_to_node(dev));
2205 if (!xhci->rh_bw)
2206 return -ENOMEM;
2207 for (i = 0; i < num_ports; i++) {
2208 struct xhci_interval_bw_table *bw_table;
2209
2210 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2211 bw_table = &xhci->rh_bw[i].bw_table;
2212 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2213 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2214 }
2215 base = &xhci->cap_regs->hc_capbase;
2216
2217 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2218 if (!cap_start) {
2219 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2220 return -ENODEV;
2221 }
2222
2223 offset = cap_start;
2224 /* count extended protocol capability entries for later caching */
2225 while (offset) {
2226 cap_count++;
2227 offset = xhci_find_next_ext_cap(base, offset,
2228 XHCI_EXT_CAPS_PROTOCOL);
2229 }
2230
2231 xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2232 flags, dev_to_node(dev));
2233 if (!xhci->ext_caps)
2234 return -ENOMEM;
2235
2236 xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2237 flags, dev_to_node(dev));
2238 if (!xhci->port_caps)
2239 return -ENOMEM;
2240
2241 offset = cap_start;
2242
2243 while (offset) {
2244 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2245 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2246 num_ports)
2247 break;
2248 offset = xhci_find_next_ext_cap(base, offset,
2249 XHCI_EXT_CAPS_PROTOCOL);
2250 }
2251 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2252 xhci_warn(xhci, "No ports on the roothubs?\n");
2253 return -ENODEV;
2254 }
2255 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2256 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2257 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2258
2259 /* Place limits on the number of roothub ports so that the hub
2260 * descriptors aren't longer than the USB core will allocate.
2261 */
2262 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2263 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2264 "Limiting USB 3.0 roothub ports to %u.",
2265 USB_SS_MAXPORTS);
2266 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2267 }
2268 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2269 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2270 "Limiting USB 2.0 roothub ports to %u.",
2271 USB_MAXCHILDREN);
2272 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2273 }
2274
2275 if (!xhci->usb2_rhub.num_ports)
2276 xhci_info(xhci, "USB2 root hub has no ports\n");
2277
2278 if (!xhci->usb3_rhub.num_ports)
2279 xhci_info(xhci, "USB3 root hub has no ports\n");
2280
2281 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2282 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2283
2284 return 0;
2285 }
2286
2287 static struct xhci_interrupter *
xhci_alloc_interrupter(struct xhci_hcd * xhci,int segs,gfp_t flags)2288 xhci_alloc_interrupter(struct xhci_hcd *xhci, int segs, gfp_t flags)
2289 {
2290 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2291 struct xhci_interrupter *ir;
2292 unsigned int num_segs = segs;
2293 int ret;
2294
2295 ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev));
2296 if (!ir)
2297 return NULL;
2298
2299 /* number of ring segments should be greater than 0 */
2300 if (segs <= 0)
2301 num_segs = min_t(unsigned int, 1 << HCS_ERST_MAX(xhci->hcs_params2),
2302 ERST_MAX_SEGS);
2303
2304 ir->event_ring = xhci_ring_alloc(xhci, num_segs, 1, TYPE_EVENT, 0,
2305 flags);
2306 if (!ir->event_ring) {
2307 xhci_warn(xhci, "Failed to allocate interrupter event ring\n");
2308 kfree(ir);
2309 return NULL;
2310 }
2311
2312 ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags);
2313 if (ret) {
2314 xhci_warn(xhci, "Failed to allocate interrupter erst\n");
2315 xhci_ring_free(xhci, ir->event_ring);
2316 kfree(ir);
2317 return NULL;
2318 }
2319
2320 return ir;
2321 }
2322
2323 static int
xhci_add_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir,unsigned int intr_num)2324 xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir,
2325 unsigned int intr_num)
2326 {
2327 u64 erst_base;
2328 u32 erst_size;
2329
2330 if (intr_num >= xhci->max_interrupters) {
2331 xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n",
2332 intr_num, xhci->max_interrupters);
2333 return -EINVAL;
2334 }
2335
2336 if (xhci->interrupters[intr_num]) {
2337 xhci_warn(xhci, "Interrupter %d\n already set up", intr_num);
2338 return -EINVAL;
2339 }
2340
2341 xhci->interrupters[intr_num] = ir;
2342 ir->intr_num = intr_num;
2343 ir->ir_set = &xhci->run_regs->ir_set[intr_num];
2344
2345 /* set ERST count with the number of entries in the segment table */
2346 erst_size = readl(&ir->ir_set->erst_size);
2347 erst_size &= ERST_SIZE_MASK;
2348 erst_size |= ir->event_ring->num_segs;
2349 writel(erst_size, &ir->ir_set->erst_size);
2350
2351 erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
2352 erst_base &= ERST_BASE_RSVDP;
2353 erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP;
2354 if (xhci->quirks & XHCI_WRITE_64_HI_LO)
2355 hi_lo_writeq(erst_base, &ir->ir_set->erst_base);
2356 else
2357 xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base);
2358
2359 /* Set the event ring dequeue address of this interrupter */
2360 xhci_set_hc_event_deq(xhci, ir);
2361
2362 return 0;
2363 }
2364
2365 struct xhci_interrupter *
xhci_create_secondary_interrupter(struct usb_hcd * hcd,int num_seg,int intr_num)2366 xhci_create_secondary_interrupter(struct usb_hcd *hcd, int num_seg, int intr_num)
2367 {
2368 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2369 struct xhci_interrupter *ir;
2370 unsigned int i;
2371 int err = -ENOSPC;
2372
2373 if (!xhci->interrupters || xhci->max_interrupters <= 1)
2374 return NULL;
2375
2376 ir = xhci_alloc_interrupter(xhci, num_seg, GFP_KERNEL);
2377 if (!ir)
2378 return NULL;
2379
2380 spin_lock_irq(&xhci->lock);
2381 /* Find available secondary interrupter, interrupter 0 is reserverd for primary */
2382 for (i = 1; i < xhci->max_interrupters; i++) {
2383 if ((intr_num > 0 && i == intr_num) || intr_num <= 0) {
2384 if (xhci->interrupters[i] == NULL) {
2385 err = xhci_add_interrupter(xhci, ir, i);
2386 if (err) {
2387 spin_unlock_irq(&xhci->lock);
2388 goto free_ir;
2389 }
2390 break;
2391 }
2392 }
2393 }
2394 spin_unlock_irq(&xhci->lock);
2395
2396 xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n",
2397 i, xhci->max_interrupters);
2398
2399 return ir;
2400
2401 free_ir:
2402 xhci_free_interrupter(xhci, ir);
2403
2404 return NULL;
2405 }
2406 EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter);
2407
xhci_mem_init(struct xhci_hcd * xhci,gfp_t flags)2408 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2409 {
2410 struct xhci_interrupter *ir;
2411 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2412 dma_addr_t dma;
2413 unsigned int val, val2;
2414 u64 val_64;
2415 u32 page_size, temp;
2416 int i;
2417
2418 INIT_LIST_HEAD(&xhci->cmd_list);
2419
2420 /* init command timeout work */
2421 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2422 init_completion(&xhci->cmd_ring_stop_completion);
2423
2424 page_size = readl(&xhci->op_regs->page_size);
2425 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2426 "Supported page size register = 0x%x", page_size);
2427 i = ffs(page_size);
2428 if (i < 16)
2429 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2430 "Supported page size of %iK", (1 << (i+12)) / 1024);
2431 else
2432 xhci_warn(xhci, "WARN: no supported page size\n");
2433 /* Use 4K pages, since that's common and the minimum the HC supports */
2434 xhci->page_shift = 12;
2435 xhci->page_size = 1 << xhci->page_shift;
2436 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2437 "HCD page size set to %iK", xhci->page_size / 1024);
2438
2439 /*
2440 * Program the Number of Device Slots Enabled field in the CONFIG
2441 * register with the max value of slots the HC can handle.
2442 */
2443 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2444 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2445 "// xHC can handle at most %d device slots.", val);
2446 val2 = readl(&xhci->op_regs->config_reg);
2447 val |= (val2 & ~HCS_SLOTS_MASK);
2448 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2449 "// Setting Max device slots reg = 0x%x.", val);
2450 writel(val, &xhci->op_regs->config_reg);
2451
2452 /*
2453 * xHCI section 5.4.6 - Device Context array must be
2454 * "physically contiguous and 64-byte (cache line) aligned".
2455 */
2456 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2457 flags);
2458 if (!xhci->dcbaa)
2459 goto fail;
2460 xhci->dcbaa->dma = dma;
2461 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2462 "// Device context base array address = 0x%pad (DMA), %p (virt)",
2463 &xhci->dcbaa->dma, xhci->dcbaa);
2464 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2465
2466 /*
2467 * Initialize the ring segment pool. The ring must be a contiguous
2468 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2469 * however, the command ring segment needs 64-byte aligned segments
2470 * and our use of dma addresses in the trb_address_map radix tree needs
2471 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2472 */
2473 if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH)
2474 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2475 TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2476 else
2477 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2478 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2479
2480 /* See Table 46 and Note on Figure 55 */
2481 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2482 2112, 64, xhci->page_size);
2483 if (!xhci->segment_pool || !xhci->device_pool)
2484 goto fail;
2485
2486 /* Linear stream context arrays don't have any boundary restrictions,
2487 * and only need to be 16-byte aligned.
2488 */
2489 xhci->small_streams_pool =
2490 dma_pool_create("xHCI 256 byte stream ctx arrays",
2491 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2492 xhci->medium_streams_pool =
2493 dma_pool_create("xHCI 1KB stream ctx arrays",
2494 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2495 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2496 * will be allocated with dma_alloc_coherent()
2497 */
2498
2499 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2500 goto fail;
2501
2502 /* Set up the command ring to have one segments for now. */
2503 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2504 if (!xhci->cmd_ring)
2505 goto fail;
2506 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2507 "Allocated command ring at %p", xhci->cmd_ring);
2508 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad",
2509 &xhci->cmd_ring->first_seg->dma);
2510
2511 /* Set the address in the Command Ring Control register */
2512 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2513 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2514 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2515 xhci->cmd_ring->cycle_state;
2516 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2517 "// Setting command ring address to 0x%016llx", val_64);
2518 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2519
2520 /* Reserve one command ring TRB for disabling LPM.
2521 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2522 * disabling LPM, we only need to reserve one TRB for all devices.
2523 */
2524 xhci->cmd_ring_reserved_trbs++;
2525
2526 val = readl(&xhci->cap_regs->db_off);
2527 val &= DBOFF_MASK;
2528 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2529 "// Doorbell array is located at offset 0x%x from cap regs base addr",
2530 val);
2531 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2532
2533 /* Allocate and set up primary interrupter 0 with an event ring. */
2534 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2535 "Allocating primary event ring");
2536 xhci->interrupters = kcalloc_node(xhci->max_interrupters, sizeof(*xhci->interrupters),
2537 flags, dev_to_node(dev));
2538
2539 ir = xhci_alloc_interrupter(xhci, 0, flags);
2540 if (!ir)
2541 goto fail;
2542
2543 if (xhci_add_interrupter(xhci, ir, 0))
2544 goto fail;
2545
2546 ir->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2547
2548 /*
2549 * XXX: Might need to set the Interrupter Moderation Register to
2550 * something other than the default (~1ms minimum between interrupts).
2551 * See section 5.5.1.2.
2552 */
2553 for (i = 0; i < MAX_HC_SLOTS; i++)
2554 xhci->devs[i] = NULL;
2555
2556 if (scratchpad_alloc(xhci, flags))
2557 goto fail;
2558 if (xhci_setup_port_arrays(xhci, flags))
2559 goto fail;
2560
2561 /* Enable USB 3.0 device notifications for function remote wake, which
2562 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2563 * U3 (device suspend).
2564 */
2565 temp = readl(&xhci->op_regs->dev_notification);
2566 temp &= ~DEV_NOTE_MASK;
2567 temp |= DEV_NOTE_FWAKE;
2568 writel(temp, &xhci->op_regs->dev_notification);
2569
2570 return 0;
2571
2572 fail:
2573 xhci_halt(xhci);
2574 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2575 xhci_mem_cleanup(xhci);
2576 return -ENOMEM;
2577 }
2578