• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/usb.h>
12 #include <linux/overflow.h>
13 #include <linux/pci.h>
14 #include <linux/slab.h>
15 #include <linux/dmapool.h>
16 #include <linux/dma-mapping.h>
17 
18 #include "xhci.h"
19 #include "xhci-trace.h"
20 #include "xhci-debugfs.h"
21 
22 /*
23  * Allocates a generic ring segment from the ring pool, sets the dma address,
24  * initializes the segment to zero, and sets the private next pointer to NULL.
25  *
26  * Section 4.11.1.1:
27  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28  */
xhci_segment_alloc(struct xhci_hcd * xhci,unsigned int cycle_state,unsigned int max_packet,unsigned int num,gfp_t flags)29 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
30 					       unsigned int cycle_state,
31 					       unsigned int max_packet,
32 					       unsigned int num,
33 					       gfp_t flags)
34 {
35 	struct xhci_segment *seg;
36 	dma_addr_t	dma;
37 	int		i;
38 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
39 
40 	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
41 	if (!seg)
42 		return NULL;
43 
44 	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
45 	if (!seg->trbs) {
46 		kfree(seg);
47 		return NULL;
48 	}
49 
50 	if (max_packet) {
51 		seg->bounce_buf = kzalloc_node(max_packet, flags,
52 					dev_to_node(dev));
53 		if (!seg->bounce_buf) {
54 			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
55 			kfree(seg);
56 			return NULL;
57 		}
58 	}
59 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
60 	if (cycle_state == 0) {
61 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
62 			seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
63 	}
64 	seg->num = num;
65 	seg->dma = dma;
66 	seg->next = NULL;
67 
68 	return seg;
69 }
70 
xhci_segment_free(struct xhci_hcd * xhci,struct xhci_segment * seg)71 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
72 {
73 	if (seg->trbs) {
74 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
75 		seg->trbs = NULL;
76 	}
77 	kfree(seg->bounce_buf);
78 	kfree(seg);
79 }
80 
xhci_free_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment * first)81 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
82 				struct xhci_segment *first)
83 {
84 	struct xhci_segment *seg;
85 
86 	seg = first->next;
87 	while (seg != first) {
88 		struct xhci_segment *next = seg->next;
89 		xhci_segment_free(xhci, seg);
90 		seg = next;
91 	}
92 	xhci_segment_free(xhci, first);
93 }
94 
95 /*
96  * Make the prev segment point to the next segment.
97  *
98  * Change the last TRB in the prev segment to be a Link TRB which points to the
99  * DMA address of the next segment.  The caller needs to set any Link TRB
100  * related flags, such as End TRB, Toggle Cycle, and no snoop.
101  */
xhci_link_segments(struct xhci_segment * prev,struct xhci_segment * next,enum xhci_ring_type type,bool chain_links)102 static void xhci_link_segments(struct xhci_segment *prev,
103 			       struct xhci_segment *next,
104 			       enum xhci_ring_type type, bool chain_links)
105 {
106 	u32 val;
107 
108 	if (!prev || !next)
109 		return;
110 	prev->next = next;
111 	if (type != TYPE_EVENT) {
112 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
113 			cpu_to_le64(next->dma);
114 
115 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
116 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
117 		val &= ~TRB_TYPE_BITMASK;
118 		val |= TRB_TYPE(TRB_LINK);
119 		if (chain_links)
120 			val |= TRB_CHAIN;
121 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
122 	}
123 }
124 
125 /*
126  * Link the ring to the new segments.
127  * Set Toggle Cycle for the new ring if needed.
128  */
xhci_link_rings(struct xhci_hcd * xhci,struct xhci_ring * ring,struct xhci_segment * first,struct xhci_segment * last,unsigned int num_segs)129 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
130 		struct xhci_segment *first, struct xhci_segment *last,
131 		unsigned int num_segs)
132 {
133 	struct xhci_segment *next, *seg;
134 	bool chain_links;
135 
136 	if (!ring || !first || !last)
137 		return;
138 
139 	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
140 	chain_links = !!(xhci_link_trb_quirk(xhci) ||
141 			 (ring->type == TYPE_ISOC &&
142 			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
143 
144 	next = ring->enq_seg->next;
145 	xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
146 	xhci_link_segments(last, next, ring->type, chain_links);
147 	ring->num_segs += num_segs;
148 
149 	if (ring->enq_seg == ring->last_seg) {
150 		if (ring->type != TYPE_EVENT) {
151 			ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
152 				&= ~cpu_to_le32(LINK_TOGGLE);
153 			last->trbs[TRBS_PER_SEGMENT-1].link.control
154 				|= cpu_to_le32(LINK_TOGGLE);
155 		}
156 		ring->last_seg = last;
157 	}
158 
159 	for (seg = last; seg != ring->last_seg; seg = seg->next)
160 		seg->next->num = seg->num + 1;
161 }
162 
163 /*
164  * We need a radix tree for mapping physical addresses of TRBs to which stream
165  * ID they belong to.  We need to do this because the host controller won't tell
166  * us which stream ring the TRB came from.  We could store the stream ID in an
167  * event data TRB, but that doesn't help us for the cancellation case, since the
168  * endpoint may stop before it reaches that event data TRB.
169  *
170  * The radix tree maps the upper portion of the TRB DMA address to a ring
171  * segment that has the same upper portion of DMA addresses.  For example, say I
172  * have segments of size 1KB, that are always 1KB aligned.  A segment may
173  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
174  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
175  * pass the radix tree a key to get the right stream ID:
176  *
177  *	0x10c90fff >> 10 = 0x43243
178  *	0x10c912c0 >> 10 = 0x43244
179  *	0x10c91400 >> 10 = 0x43245
180  *
181  * Obviously, only those TRBs with DMA addresses that are within the segment
182  * will make the radix tree return the stream ID for that ring.
183  *
184  * Caveats for the radix tree:
185  *
186  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
187  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
188  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
189  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
190  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
191  * extended systems (where the DMA address can be bigger than 32-bits),
192  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
193  */
xhci_insert_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * seg,gfp_t mem_flags)194 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
195 		struct xhci_ring *ring,
196 		struct xhci_segment *seg,
197 		gfp_t mem_flags)
198 {
199 	unsigned long key;
200 	int ret;
201 
202 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
203 	/* Skip any segments that were already added. */
204 	if (radix_tree_lookup(trb_address_map, key))
205 		return 0;
206 
207 	ret = radix_tree_maybe_preload(mem_flags);
208 	if (ret)
209 		return ret;
210 	ret = radix_tree_insert(trb_address_map,
211 			key, ring);
212 	radix_tree_preload_end();
213 	return ret;
214 }
215 
xhci_remove_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_segment * seg)216 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
217 		struct xhci_segment *seg)
218 {
219 	unsigned long key;
220 
221 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
222 	if (radix_tree_lookup(trb_address_map, key))
223 		radix_tree_delete(trb_address_map, key);
224 }
225 
xhci_update_stream_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * first_seg,struct xhci_segment * last_seg,gfp_t mem_flags)226 static int xhci_update_stream_segment_mapping(
227 		struct radix_tree_root *trb_address_map,
228 		struct xhci_ring *ring,
229 		struct xhci_segment *first_seg,
230 		struct xhci_segment *last_seg,
231 		gfp_t mem_flags)
232 {
233 	struct xhci_segment *seg;
234 	struct xhci_segment *failed_seg;
235 	int ret;
236 
237 	if (WARN_ON_ONCE(trb_address_map == NULL))
238 		return 0;
239 
240 	seg = first_seg;
241 	do {
242 		ret = xhci_insert_segment_mapping(trb_address_map,
243 				ring, seg, mem_flags);
244 		if (ret)
245 			goto remove_streams;
246 		if (seg == last_seg)
247 			return 0;
248 		seg = seg->next;
249 	} while (seg != first_seg);
250 
251 	return 0;
252 
253 remove_streams:
254 	failed_seg = seg;
255 	seg = first_seg;
256 	do {
257 		xhci_remove_segment_mapping(trb_address_map, seg);
258 		if (seg == failed_seg)
259 			return ret;
260 		seg = seg->next;
261 	} while (seg != first_seg);
262 
263 	return ret;
264 }
265 
xhci_remove_stream_mapping(struct xhci_ring * ring)266 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
267 {
268 	struct xhci_segment *seg;
269 
270 	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
271 		return;
272 
273 	seg = ring->first_seg;
274 	do {
275 		xhci_remove_segment_mapping(ring->trb_address_map, seg);
276 		seg = seg->next;
277 	} while (seg != ring->first_seg);
278 }
279 
xhci_update_stream_mapping(struct xhci_ring * ring,gfp_t mem_flags)280 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
281 {
282 	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
283 			ring->first_seg, ring->last_seg, mem_flags);
284 }
285 
286 /* XXX: Do we need the hcd structure in all these functions? */
xhci_ring_free(struct xhci_hcd * xhci,struct xhci_ring * ring)287 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
288 {
289 	if (!ring)
290 		return;
291 
292 	trace_xhci_ring_free(ring);
293 
294 	if (ring->first_seg) {
295 		if (ring->type == TYPE_STREAM)
296 			xhci_remove_stream_mapping(ring);
297 		xhci_free_segments_for_ring(xhci, ring->first_seg);
298 	}
299 
300 	kfree(ring);
301 }
302 
xhci_initialize_ring_info(struct xhci_ring * ring,unsigned int cycle_state)303 void xhci_initialize_ring_info(struct xhci_ring *ring,
304 			       unsigned int cycle_state)
305 {
306 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
307 	ring->enqueue = ring->first_seg->trbs;
308 	ring->enq_seg = ring->first_seg;
309 	ring->dequeue = ring->enqueue;
310 	ring->deq_seg = ring->first_seg;
311 	/* The ring is initialized to 0. The producer must write 1 to the cycle
312 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
313 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
314 	 *
315 	 * New rings are initialized with cycle state equal to 1; if we are
316 	 * handling ring expansion, set the cycle state equal to the old ring.
317 	 */
318 	ring->cycle_state = cycle_state;
319 
320 	/*
321 	 * Each segment has a link TRB, and leave an extra TRB for SW
322 	 * accounting purpose
323 	 */
324 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
325 }
326 EXPORT_SYMBOL_GPL(xhci_initialize_ring_info);
327 
328 /* Allocate segments and link them for a ring */
xhci_alloc_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment ** first,struct xhci_segment ** last,unsigned int num_segs,unsigned int num,unsigned int cycle_state,enum xhci_ring_type type,unsigned int max_packet,gfp_t flags)329 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
330 		struct xhci_segment **first, struct xhci_segment **last,
331 		unsigned int num_segs, unsigned int num,
332 		unsigned int cycle_state, enum xhci_ring_type type,
333 		unsigned int max_packet, gfp_t flags)
334 {
335 	struct xhci_segment *prev;
336 	bool chain_links;
337 
338 	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
339 	chain_links = !!(xhci_link_trb_quirk(xhci) ||
340 			 (type == TYPE_ISOC &&
341 			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
342 
343 	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, num, flags);
344 	if (!prev)
345 		return -ENOMEM;
346 	num++;
347 
348 	*first = prev;
349 	while (num < num_segs) {
350 		struct xhci_segment	*next;
351 
352 		next = xhci_segment_alloc(xhci, cycle_state, max_packet, num,
353 					  flags);
354 		if (!next) {
355 			prev = *first;
356 			while (prev) {
357 				next = prev->next;
358 				xhci_segment_free(xhci, prev);
359 				prev = next;
360 			}
361 			return -ENOMEM;
362 		}
363 		xhci_link_segments(prev, next, type, chain_links);
364 
365 		prev = next;
366 		num++;
367 	}
368 	xhci_link_segments(prev, *first, type, chain_links);
369 	*last = prev;
370 
371 	return 0;
372 }
373 
374 /*
375  * Create a new ring with zero or more segments.
376  *
377  * Link each segment together into a ring.
378  * Set the end flag and the cycle toggle bit on the last segment.
379  * See section 4.9.1 and figures 15 and 16.
380  */
xhci_ring_alloc(struct xhci_hcd * xhci,unsigned int num_segs,unsigned int cycle_state,enum xhci_ring_type type,unsigned int max_packet,gfp_t flags)381 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
382 		unsigned int num_segs, unsigned int cycle_state,
383 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
384 {
385 	struct xhci_ring	*ring;
386 	int ret;
387 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
388 
389 	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
390 	if (!ring)
391 		return NULL;
392 
393 	ring->num_segs = num_segs;
394 	ring->bounce_buf_len = max_packet;
395 	INIT_LIST_HEAD(&ring->td_list);
396 	ring->type = type;
397 	if (num_segs == 0)
398 		return ring;
399 
400 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
401 			&ring->last_seg, num_segs, 0, cycle_state, type,
402 			max_packet, flags);
403 	if (ret)
404 		goto fail;
405 
406 	/* Only event ring does not use link TRB */
407 	if (type != TYPE_EVENT) {
408 		/* See section 4.9.2.1 and 6.4.4.1 */
409 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
410 			cpu_to_le32(LINK_TOGGLE);
411 	}
412 	xhci_initialize_ring_info(ring, cycle_state);
413 	trace_xhci_ring_alloc(ring);
414 	return ring;
415 
416 fail:
417 	kfree(ring);
418 	return NULL;
419 }
420 
xhci_free_endpoint_ring(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,unsigned int ep_index)421 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
422 		struct xhci_virt_device *virt_dev,
423 		unsigned int ep_index)
424 {
425 	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
426 	virt_dev->eps[ep_index].ring = NULL;
427 }
428 
429 /*
430  * Expand an existing ring.
431  * Allocate a new ring which has same segment numbers and link the two rings.
432  */
xhci_ring_expansion(struct xhci_hcd * xhci,struct xhci_ring * ring,unsigned int num_new_segs,gfp_t flags)433 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
434 				unsigned int num_new_segs, gfp_t flags)
435 {
436 	struct xhci_segment	*first;
437 	struct xhci_segment	*last;
438 	int			ret;
439 
440 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
441 			num_new_segs, ring->enq_seg->num + 1,
442 			ring->cycle_state, ring->type,
443 			ring->bounce_buf_len, flags);
444 	if (ret)
445 		return -ENOMEM;
446 
447 	if (ring->type == TYPE_STREAM)
448 		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
449 						ring, first, last, flags);
450 	if (ret) {
451 		struct xhci_segment *next;
452 		do {
453 			next = first->next;
454 			xhci_segment_free(xhci, first);
455 			if (first == last)
456 				break;
457 			first = next;
458 		} while (true);
459 		return ret;
460 	}
461 
462 	xhci_link_rings(xhci, ring, first, last, num_new_segs);
463 	trace_xhci_ring_expansion(ring);
464 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
465 			"ring expansion succeed, now has %d segments",
466 			ring->num_segs);
467 
468 	return 0;
469 }
470 
xhci_alloc_container_ctx(struct xhci_hcd * xhci,int type,gfp_t flags)471 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
472 						    int type, gfp_t flags)
473 {
474 	struct xhci_container_ctx *ctx;
475 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
476 
477 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
478 		return NULL;
479 
480 	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
481 	if (!ctx)
482 		return NULL;
483 
484 	ctx->type = type;
485 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
486 	if (type == XHCI_CTX_TYPE_INPUT)
487 		ctx->size += CTX_SIZE(xhci->hcc_params);
488 
489 	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
490 	if (!ctx->bytes) {
491 		kfree(ctx);
492 		return NULL;
493 	}
494 	return ctx;
495 }
496 
xhci_free_container_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)497 void xhci_free_container_ctx(struct xhci_hcd *xhci,
498 			     struct xhci_container_ctx *ctx)
499 {
500 	if (!ctx)
501 		return;
502 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
503 	kfree(ctx);
504 }
505 
xhci_get_input_control_ctx(struct xhci_container_ctx * ctx)506 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
507 					      struct xhci_container_ctx *ctx)
508 {
509 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
510 		return NULL;
511 
512 	return (struct xhci_input_control_ctx *)ctx->bytes;
513 }
514 
xhci_get_slot_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)515 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
516 					struct xhci_container_ctx *ctx)
517 {
518 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
519 		return (struct xhci_slot_ctx *)ctx->bytes;
520 
521 	return (struct xhci_slot_ctx *)
522 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
523 }
524 
xhci_get_ep_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,unsigned int ep_index)525 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
526 				    struct xhci_container_ctx *ctx,
527 				    unsigned int ep_index)
528 {
529 	/* increment ep index by offset of start of ep ctx array */
530 	ep_index++;
531 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
532 		ep_index++;
533 
534 	return (struct xhci_ep_ctx *)
535 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
536 }
537 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
538 
539 /***************** Streams structures manipulation *************************/
540 
xhci_free_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,struct xhci_stream_ctx * stream_ctx,dma_addr_t dma)541 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
542 		unsigned int num_stream_ctxs,
543 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
544 {
545 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
546 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
547 
548 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
549 		dma_free_coherent(dev, size, stream_ctx, dma);
550 	else if (size > SMALL_STREAM_ARRAY_SIZE)
551 		dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma);
552 	else
553 		dma_pool_free(xhci->small_streams_pool, stream_ctx, dma);
554 }
555 
556 /*
557  * The stream context array for each endpoint with bulk streams enabled can
558  * vary in size, based on:
559  *  - how many streams the endpoint supports,
560  *  - the maximum primary stream array size the host controller supports,
561  *  - and how many streams the device driver asks for.
562  *
563  * The stream context array must be a power of 2, and can be as small as
564  * 64 bytes or as large as 1MB.
565  */
xhci_alloc_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,dma_addr_t * dma,gfp_t mem_flags)566 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
567 		unsigned int num_stream_ctxs, dma_addr_t *dma,
568 		gfp_t mem_flags)
569 {
570 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
571 	size_t size = size_mul(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
572 
573 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
574 		return dma_alloc_coherent(dev, size, dma, mem_flags);
575 	if (size > SMALL_STREAM_ARRAY_SIZE)
576 		return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma);
577 	else
578 		return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma);
579 }
580 
xhci_dma_to_transfer_ring(struct xhci_virt_ep * ep,u64 address)581 struct xhci_ring *xhci_dma_to_transfer_ring(
582 		struct xhci_virt_ep *ep,
583 		u64 address)
584 {
585 	if (ep->ep_state & EP_HAS_STREAMS)
586 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
587 				address >> TRB_SEGMENT_SHIFT);
588 	return ep->ring;
589 }
590 
591 /*
592  * Change an endpoint's internal structure so it supports stream IDs.  The
593  * number of requested streams includes stream 0, which cannot be used by device
594  * drivers.
595  *
596  * The number of stream contexts in the stream context array may be bigger than
597  * the number of streams the driver wants to use.  This is because the number of
598  * stream context array entries must be a power of two.
599  */
xhci_alloc_stream_info(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,unsigned int num_streams,unsigned int max_packet,gfp_t mem_flags)600 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
601 		unsigned int num_stream_ctxs,
602 		unsigned int num_streams,
603 		unsigned int max_packet, gfp_t mem_flags)
604 {
605 	struct xhci_stream_info *stream_info;
606 	u32 cur_stream;
607 	struct xhci_ring *cur_ring;
608 	u64 addr;
609 	int ret;
610 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
611 
612 	xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n",
613 			num_streams, num_stream_ctxs);
614 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
615 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
616 		return NULL;
617 	}
618 	xhci->cmd_ring_reserved_trbs++;
619 
620 	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
621 			dev_to_node(dev));
622 	if (!stream_info)
623 		goto cleanup_trbs;
624 
625 	stream_info->num_streams = num_streams;
626 	stream_info->num_stream_ctxs = num_stream_ctxs;
627 
628 	/* Initialize the array of virtual pointers to stream rings. */
629 	stream_info->stream_rings = kcalloc_node(
630 			num_streams, sizeof(struct xhci_ring *), mem_flags,
631 			dev_to_node(dev));
632 	if (!stream_info->stream_rings)
633 		goto cleanup_info;
634 
635 	/* Initialize the array of DMA addresses for stream rings for the HW. */
636 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
637 			num_stream_ctxs, &stream_info->ctx_array_dma,
638 			mem_flags);
639 	if (!stream_info->stream_ctx_array)
640 		goto cleanup_ring_array;
641 
642 	/* Allocate everything needed to free the stream rings later */
643 	stream_info->free_streams_command =
644 		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
645 	if (!stream_info->free_streams_command)
646 		goto cleanup_ctx;
647 
648 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
649 
650 	/* Allocate rings for all the streams that the driver will use,
651 	 * and add their segment DMA addresses to the radix tree.
652 	 * Stream 0 is reserved.
653 	 */
654 
655 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
656 		stream_info->stream_rings[cur_stream] =
657 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
658 					mem_flags);
659 		cur_ring = stream_info->stream_rings[cur_stream];
660 		if (!cur_ring)
661 			goto cleanup_rings;
662 		cur_ring->stream_id = cur_stream;
663 		cur_ring->trb_address_map = &stream_info->trb_address_map;
664 		/* Set deq ptr, cycle bit, and stream context type */
665 		addr = cur_ring->first_seg->dma |
666 			SCT_FOR_CTX(SCT_PRI_TR) |
667 			cur_ring->cycle_state;
668 		stream_info->stream_ctx_array[cur_stream].stream_ring =
669 			cpu_to_le64(addr);
670 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr);
671 
672 		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
673 		if (ret) {
674 			xhci_ring_free(xhci, cur_ring);
675 			stream_info->stream_rings[cur_stream] = NULL;
676 			goto cleanup_rings;
677 		}
678 	}
679 	/* Leave the other unused stream ring pointers in the stream context
680 	 * array initialized to zero.  This will cause the xHC to give us an
681 	 * error if the device asks for a stream ID we don't have setup (if it
682 	 * was any other way, the host controller would assume the ring is
683 	 * "empty" and wait forever for data to be queued to that stream ID).
684 	 */
685 
686 	return stream_info;
687 
688 cleanup_rings:
689 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
690 		cur_ring = stream_info->stream_rings[cur_stream];
691 		if (cur_ring) {
692 			xhci_ring_free(xhci, cur_ring);
693 			stream_info->stream_rings[cur_stream] = NULL;
694 		}
695 	}
696 	xhci_free_command(xhci, stream_info->free_streams_command);
697 cleanup_ctx:
698 	xhci_free_stream_ctx(xhci,
699 		stream_info->num_stream_ctxs,
700 		stream_info->stream_ctx_array,
701 		stream_info->ctx_array_dma);
702 cleanup_ring_array:
703 	kfree(stream_info->stream_rings);
704 cleanup_info:
705 	kfree(stream_info);
706 cleanup_trbs:
707 	xhci->cmd_ring_reserved_trbs--;
708 	return NULL;
709 }
710 /*
711  * Sets the MaxPStreams field and the Linear Stream Array field.
712  * Sets the dequeue pointer to the stream context array.
713  */
xhci_setup_streams_ep_input_ctx(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,struct xhci_stream_info * stream_info)714 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
715 		struct xhci_ep_ctx *ep_ctx,
716 		struct xhci_stream_info *stream_info)
717 {
718 	u32 max_primary_streams;
719 	/* MaxPStreams is the number of stream context array entries, not the
720 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
721 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
722 	 */
723 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
724 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
725 			"Setting number of stream ctx array entries to %u",
726 			1 << (max_primary_streams + 1));
727 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
728 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
729 				       | EP_HAS_LSA);
730 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
731 }
732 
733 /*
734  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
735  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
736  * not at the beginning of the ring).
737  */
xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx * ep_ctx,struct xhci_virt_ep * ep)738 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
739 		struct xhci_virt_ep *ep)
740 {
741 	dma_addr_t addr;
742 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
743 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
744 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
745 }
746 
747 /* Frees all stream contexts associated with the endpoint,
748  *
749  * Caller should fix the endpoint context streams fields.
750  */
xhci_free_stream_info(struct xhci_hcd * xhci,struct xhci_stream_info * stream_info)751 void xhci_free_stream_info(struct xhci_hcd *xhci,
752 		struct xhci_stream_info *stream_info)
753 {
754 	int cur_stream;
755 	struct xhci_ring *cur_ring;
756 
757 	if (!stream_info)
758 		return;
759 
760 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
761 			cur_stream++) {
762 		cur_ring = stream_info->stream_rings[cur_stream];
763 		if (cur_ring) {
764 			xhci_ring_free(xhci, cur_ring);
765 			stream_info->stream_rings[cur_stream] = NULL;
766 		}
767 	}
768 	xhci_free_command(xhci, stream_info->free_streams_command);
769 	xhci->cmd_ring_reserved_trbs--;
770 	if (stream_info->stream_ctx_array)
771 		xhci_free_stream_ctx(xhci,
772 				stream_info->num_stream_ctxs,
773 				stream_info->stream_ctx_array,
774 				stream_info->ctx_array_dma);
775 
776 	kfree(stream_info->stream_rings);
777 	kfree(stream_info);
778 }
779 
780 
781 /***************** Device context manipulation *************************/
782 
xhci_free_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int slot_id)783 static void xhci_free_tt_info(struct xhci_hcd *xhci,
784 		struct xhci_virt_device *virt_dev,
785 		int slot_id)
786 {
787 	struct list_head *tt_list_head;
788 	struct xhci_tt_bw_info *tt_info, *next;
789 	bool slot_found = false;
790 
791 	/* If the device never made it past the Set Address stage,
792 	 * it may not have the real_port set correctly.
793 	 */
794 	if (virt_dev->real_port == 0 ||
795 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
796 		xhci_dbg(xhci, "Bad real port.\n");
797 		return;
798 	}
799 
800 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
801 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
802 		/* Multi-TT hubs will have more than one entry */
803 		if (tt_info->slot_id == slot_id) {
804 			slot_found = true;
805 			list_del(&tt_info->tt_list);
806 			kfree(tt_info);
807 		} else if (slot_found) {
808 			break;
809 		}
810 	}
811 }
812 
xhci_alloc_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)813 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
814 		struct xhci_virt_device *virt_dev,
815 		struct usb_device *hdev,
816 		struct usb_tt *tt, gfp_t mem_flags)
817 {
818 	struct xhci_tt_bw_info		*tt_info;
819 	unsigned int			num_ports;
820 	int				i, j;
821 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
822 
823 	if (!tt->multi)
824 		num_ports = 1;
825 	else
826 		num_ports = hdev->maxchild;
827 
828 	for (i = 0; i < num_ports; i++, tt_info++) {
829 		struct xhci_interval_bw_table *bw_table;
830 
831 		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
832 				dev_to_node(dev));
833 		if (!tt_info)
834 			goto free_tts;
835 		INIT_LIST_HEAD(&tt_info->tt_list);
836 		list_add(&tt_info->tt_list,
837 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
838 		tt_info->slot_id = virt_dev->udev->slot_id;
839 		if (tt->multi)
840 			tt_info->ttport = i+1;
841 		bw_table = &tt_info->bw_table;
842 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
843 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
844 	}
845 	return 0;
846 
847 free_tts:
848 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
849 	return -ENOMEM;
850 }
851 
852 
853 /* All the xhci_tds in the ring's TD list should be freed at this point.
854  * Should be called with xhci->lock held if there is any chance the TT lists
855  * will be manipulated by the configure endpoint, allocate device, or update
856  * hub functions while this function is removing the TT entries from the list.
857  */
xhci_free_virt_device(struct xhci_hcd * xhci,int slot_id)858 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
859 {
860 	struct xhci_virt_device *dev;
861 	int i;
862 	int old_active_eps = 0;
863 
864 	/* Slot ID 0 is reserved */
865 	if (slot_id == 0 || !xhci->devs[slot_id])
866 		return;
867 
868 	dev = xhci->devs[slot_id];
869 
870 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
871 	if (!dev)
872 		return;
873 
874 	trace_xhci_free_virt_device(dev);
875 
876 	if (dev->tt_info)
877 		old_active_eps = dev->tt_info->active_eps;
878 
879 	for (i = 0; i < 31; i++) {
880 		if (dev->eps[i].ring)
881 			xhci_ring_free(xhci, dev->eps[i].ring);
882 		if (dev->eps[i].stream_info)
883 			xhci_free_stream_info(xhci,
884 					dev->eps[i].stream_info);
885 		/*
886 		 * Endpoints are normally deleted from the bandwidth list when
887 		 * endpoints are dropped, before device is freed.
888 		 * If host is dying or being removed then endpoints aren't
889 		 * dropped cleanly, so delete the endpoint from list here.
890 		 * Only applicable for hosts with software bandwidth checking.
891 		 */
892 
893 		if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
894 			list_del_init(&dev->eps[i].bw_endpoint_list);
895 			xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
896 				 slot_id, i);
897 		}
898 	}
899 	/* If this is a hub, free the TT(s) from the TT list */
900 	xhci_free_tt_info(xhci, dev, slot_id);
901 	/* If necessary, update the number of active TTs on this root port */
902 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
903 
904 	if (dev->in_ctx)
905 		xhci_free_container_ctx(xhci, dev->in_ctx);
906 	if (dev->out_ctx)
907 		xhci_free_container_ctx(xhci, dev->out_ctx);
908 
909 	if (dev->udev && dev->udev->slot_id)
910 		dev->udev->slot_id = 0;
911 	kfree(xhci->devs[slot_id]);
912 	xhci->devs[slot_id] = NULL;
913 }
914 
915 /*
916  * Free a virt_device structure.
917  * If the virt_device added a tt_info (a hub) and has children pointing to
918  * that tt_info, then free the child first. Recursive.
919  * We can't rely on udev at this point to find child-parent relationships.
920  */
xhci_free_virt_devices_depth_first(struct xhci_hcd * xhci,int slot_id)921 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
922 {
923 	struct xhci_virt_device *vdev;
924 	struct list_head *tt_list_head;
925 	struct xhci_tt_bw_info *tt_info, *next;
926 	int i;
927 
928 	vdev = xhci->devs[slot_id];
929 	if (!vdev)
930 		return;
931 
932 	if (vdev->real_port == 0 ||
933 			vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
934 		xhci_dbg(xhci, "Bad vdev->real_port.\n");
935 		goto out;
936 	}
937 
938 	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
939 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
940 		/* is this a hub device that added a tt_info to the tts list */
941 		if (tt_info->slot_id == slot_id) {
942 			/* are any devices using this tt_info? */
943 			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
944 				vdev = xhci->devs[i];
945 				if (vdev && (vdev->tt_info == tt_info))
946 					xhci_free_virt_devices_depth_first(
947 						xhci, i);
948 			}
949 		}
950 	}
951 out:
952 	/* we are now at a leaf device */
953 	xhci_debugfs_remove_slot(xhci, slot_id);
954 	xhci_free_virt_device(xhci, slot_id);
955 }
956 
xhci_alloc_virt_device(struct xhci_hcd * xhci,int slot_id,struct usb_device * udev,gfp_t flags)957 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
958 		struct usb_device *udev, gfp_t flags)
959 {
960 	struct xhci_virt_device *dev;
961 	int i;
962 
963 	/* Slot ID 0 is reserved */
964 	if (slot_id == 0 || xhci->devs[slot_id]) {
965 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
966 		return 0;
967 	}
968 
969 	dev = kzalloc(sizeof(*dev), flags);
970 	if (!dev)
971 		return 0;
972 
973 	dev->slot_id = slot_id;
974 
975 	/* Allocate the (output) device context that will be used in the HC. */
976 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
977 	if (!dev->out_ctx)
978 		goto fail;
979 
980 	xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma);
981 
982 	/* Allocate the (input) device context for address device command */
983 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
984 	if (!dev->in_ctx)
985 		goto fail;
986 
987 	xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma);
988 
989 	/* Initialize the cancellation and bandwidth list for each ep */
990 	for (i = 0; i < 31; i++) {
991 		dev->eps[i].ep_index = i;
992 		dev->eps[i].vdev = dev;
993 		dev->eps[i].xhci = xhci;
994 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
995 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
996 	}
997 
998 	/* Allocate endpoint 0 ring */
999 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1000 	if (!dev->eps[0].ring)
1001 		goto fail;
1002 
1003 	dev->udev = udev;
1004 
1005 	/* Point to output device context in dcbaa. */
1006 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1007 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1008 		 slot_id,
1009 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1010 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1011 
1012 	trace_xhci_alloc_virt_device(dev);
1013 
1014 	xhci->devs[slot_id] = dev;
1015 
1016 	return 1;
1017 fail:
1018 
1019 	if (dev->in_ctx)
1020 		xhci_free_container_ctx(xhci, dev->in_ctx);
1021 	if (dev->out_ctx)
1022 		xhci_free_container_ctx(xhci, dev->out_ctx);
1023 	kfree(dev);
1024 
1025 	return 0;
1026 }
1027 
xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd * xhci,struct usb_device * udev)1028 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1029 		struct usb_device *udev)
1030 {
1031 	struct xhci_virt_device *virt_dev;
1032 	struct xhci_ep_ctx	*ep0_ctx;
1033 	struct xhci_ring	*ep_ring;
1034 
1035 	virt_dev = xhci->devs[udev->slot_id];
1036 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1037 	ep_ring = virt_dev->eps[0].ring;
1038 	/*
1039 	 * FIXME we don't keep track of the dequeue pointer very well after a
1040 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1041 	 * host to our enqueue pointer.  This should only be called after a
1042 	 * configured device has reset, so all control transfers should have
1043 	 * been completed or cancelled before the reset.
1044 	 */
1045 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1046 							ep_ring->enqueue)
1047 				   | ep_ring->cycle_state);
1048 }
1049 
1050 /*
1051  * The xHCI roothub may have ports of differing speeds in any order in the port
1052  * status registers.
1053  *
1054  * The xHCI hardware wants to know the roothub port number that the USB device
1055  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1056  * know is the index of that port under either the USB 2.0 or the USB 3.0
1057  * roothub, but that doesn't give us the real index into the HW port status
1058  * registers. Call xhci_find_raw_port_number() to get real index.
1059  */
xhci_find_real_port_number(struct xhci_hcd * xhci,struct usb_device * udev)1060 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1061 		struct usb_device *udev)
1062 {
1063 	struct usb_device *top_dev;
1064 	struct usb_hcd *hcd;
1065 
1066 	if (udev->speed >= USB_SPEED_SUPER)
1067 		hcd = xhci_get_usb3_hcd(xhci);
1068 	else
1069 		hcd = xhci->main_hcd;
1070 
1071 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1072 			top_dev = top_dev->parent)
1073 		/* Found device below root hub */;
1074 
1075 	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1076 }
1077 
1078 /* Setup an xHCI virtual device for a Set Address command */
xhci_setup_addressable_virt_dev(struct xhci_hcd * xhci,struct usb_device * udev)1079 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1080 {
1081 	struct xhci_virt_device *dev;
1082 	struct xhci_ep_ctx	*ep0_ctx;
1083 	struct xhci_slot_ctx    *slot_ctx;
1084 	u32			port_num;
1085 	u32			max_packets;
1086 	struct usb_device *top_dev;
1087 
1088 	dev = xhci->devs[udev->slot_id];
1089 	/* Slot ID 0 is reserved */
1090 	if (udev->slot_id == 0 || !dev) {
1091 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1092 				udev->slot_id);
1093 		return -EINVAL;
1094 	}
1095 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1096 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1097 
1098 	/* 3) Only the control endpoint is valid - one endpoint context */
1099 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1100 	switch (udev->speed) {
1101 	case USB_SPEED_SUPER_PLUS:
1102 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1103 		max_packets = MAX_PACKET(512);
1104 		break;
1105 	case USB_SPEED_SUPER:
1106 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1107 		max_packets = MAX_PACKET(512);
1108 		break;
1109 	case USB_SPEED_HIGH:
1110 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1111 		max_packets = MAX_PACKET(64);
1112 		break;
1113 	/* USB core guesses at a 64-byte max packet first for FS devices */
1114 	case USB_SPEED_FULL:
1115 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1116 		max_packets = MAX_PACKET(64);
1117 		break;
1118 	case USB_SPEED_LOW:
1119 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1120 		max_packets = MAX_PACKET(8);
1121 		break;
1122 	default:
1123 		/* Speed was set earlier, this shouldn't happen. */
1124 		return -EINVAL;
1125 	}
1126 	/* Find the root hub port this device is under */
1127 	port_num = xhci_find_real_port_number(xhci, udev);
1128 	if (!port_num)
1129 		return -EINVAL;
1130 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1131 	/* Set the port number in the virtual_device to the faked port number */
1132 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1133 			top_dev = top_dev->parent)
1134 		/* Found device below root hub */;
1135 	dev->fake_port = top_dev->portnum;
1136 	dev->real_port = port_num;
1137 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1138 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1139 
1140 	/* Find the right bandwidth table that this device will be a part of.
1141 	 * If this is a full speed device attached directly to a root port (or a
1142 	 * decendent of one), it counts as a primary bandwidth domain, not a
1143 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1144 	 * will never be created for the HS root hub.
1145 	 */
1146 	if (!udev->tt || !udev->tt->hub->parent) {
1147 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1148 	} else {
1149 		struct xhci_root_port_bw_info *rh_bw;
1150 		struct xhci_tt_bw_info *tt_bw;
1151 
1152 		rh_bw = &xhci->rh_bw[port_num - 1];
1153 		/* Find the right TT. */
1154 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1155 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1156 				continue;
1157 
1158 			if (!dev->udev->tt->multi ||
1159 					(udev->tt->multi &&
1160 					 tt_bw->ttport == dev->udev->ttport)) {
1161 				dev->bw_table = &tt_bw->bw_table;
1162 				dev->tt_info = tt_bw;
1163 				break;
1164 			}
1165 		}
1166 		if (!dev->tt_info)
1167 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1168 	}
1169 
1170 	/* Is this a LS/FS device under an external HS hub? */
1171 	if (udev->tt && udev->tt->hub->parent) {
1172 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1173 						(udev->ttport << 8));
1174 		if (udev->tt->multi)
1175 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1176 	}
1177 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1178 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1179 
1180 	/* Step 4 - ring already allocated */
1181 	/* Step 5 */
1182 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1183 
1184 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1185 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1186 					 max_packets);
1187 
1188 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1189 				   dev->eps[0].ring->cycle_state);
1190 
1191 	trace_xhci_setup_addressable_virt_device(dev);
1192 
1193 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1194 
1195 	return 0;
1196 }
1197 
1198 /*
1199  * Convert interval expressed as 2^(bInterval - 1) == interval into
1200  * straight exponent value 2^n == interval.
1201  *
1202  */
xhci_parse_exponent_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1203 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1204 		struct usb_host_endpoint *ep)
1205 {
1206 	unsigned int interval;
1207 
1208 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1209 	if (interval != ep->desc.bInterval - 1)
1210 		dev_warn(&udev->dev,
1211 			 "ep %#x - rounding interval to %d %sframes\n",
1212 			 ep->desc.bEndpointAddress,
1213 			 1 << interval,
1214 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1215 
1216 	if (udev->speed == USB_SPEED_FULL) {
1217 		/*
1218 		 * Full speed isoc endpoints specify interval in frames,
1219 		 * not microframes. We are using microframes everywhere,
1220 		 * so adjust accordingly.
1221 		 */
1222 		interval += 3;	/* 1 frame = 2^3 uframes */
1223 	}
1224 
1225 	return interval;
1226 }
1227 
1228 /*
1229  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1230  * microframes, rounded down to nearest power of 2.
1231  */
xhci_microframes_to_exponent(struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int desc_interval,unsigned int min_exponent,unsigned int max_exponent)1232 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1233 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1234 		unsigned int min_exponent, unsigned int max_exponent)
1235 {
1236 	unsigned int interval;
1237 
1238 	interval = fls(desc_interval) - 1;
1239 	interval = clamp_val(interval, min_exponent, max_exponent);
1240 	if ((1 << interval) != desc_interval)
1241 		dev_dbg(&udev->dev,
1242 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1243 			 ep->desc.bEndpointAddress,
1244 			 1 << interval,
1245 			 desc_interval);
1246 
1247 	return interval;
1248 }
1249 
xhci_parse_microframe_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1250 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1251 		struct usb_host_endpoint *ep)
1252 {
1253 	if (ep->desc.bInterval == 0)
1254 		return 0;
1255 	return xhci_microframes_to_exponent(udev, ep,
1256 			ep->desc.bInterval, 0, 15);
1257 }
1258 
1259 
xhci_parse_frame_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1260 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1261 		struct usb_host_endpoint *ep)
1262 {
1263 	return xhci_microframes_to_exponent(udev, ep,
1264 			ep->desc.bInterval * 8, 3, 10);
1265 }
1266 
1267 /* Return the polling or NAK interval.
1268  *
1269  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1270  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1271  *
1272  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1273  * is set to 0.
1274  */
xhci_get_endpoint_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1275 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1276 		struct usb_host_endpoint *ep)
1277 {
1278 	unsigned int interval = 0;
1279 
1280 	switch (udev->speed) {
1281 	case USB_SPEED_HIGH:
1282 		/* Max NAK rate */
1283 		if (usb_endpoint_xfer_control(&ep->desc) ||
1284 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1285 			interval = xhci_parse_microframe_interval(udev, ep);
1286 			break;
1287 		}
1288 		fallthrough;	/* SS and HS isoc/int have same decoding */
1289 
1290 	case USB_SPEED_SUPER_PLUS:
1291 	case USB_SPEED_SUPER:
1292 		if (usb_endpoint_xfer_int(&ep->desc) ||
1293 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1294 			interval = xhci_parse_exponent_interval(udev, ep);
1295 		}
1296 		break;
1297 
1298 	case USB_SPEED_FULL:
1299 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1300 			interval = xhci_parse_exponent_interval(udev, ep);
1301 			break;
1302 		}
1303 		/*
1304 		 * Fall through for interrupt endpoint interval decoding
1305 		 * since it uses the same rules as low speed interrupt
1306 		 * endpoints.
1307 		 */
1308 		fallthrough;
1309 
1310 	case USB_SPEED_LOW:
1311 		if (usb_endpoint_xfer_int(&ep->desc) ||
1312 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1313 
1314 			interval = xhci_parse_frame_interval(udev, ep);
1315 		}
1316 		break;
1317 
1318 	default:
1319 		BUG();
1320 	}
1321 	return interval;
1322 }
1323 
1324 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1325  * High speed endpoint descriptors can define "the number of additional
1326  * transaction opportunities per microframe", but that goes in the Max Burst
1327  * endpoint context field.
1328  */
xhci_get_endpoint_mult(struct usb_device * udev,struct usb_host_endpoint * ep)1329 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1330 		struct usb_host_endpoint *ep)
1331 {
1332 	if (udev->speed < USB_SPEED_SUPER ||
1333 			!usb_endpoint_xfer_isoc(&ep->desc))
1334 		return 0;
1335 	return ep->ss_ep_comp.bmAttributes;
1336 }
1337 
xhci_get_endpoint_max_burst(struct usb_device * udev,struct usb_host_endpoint * ep)1338 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1339 				       struct usb_host_endpoint *ep)
1340 {
1341 	/* Super speed and Plus have max burst in ep companion desc */
1342 	if (udev->speed >= USB_SPEED_SUPER)
1343 		return ep->ss_ep_comp.bMaxBurst;
1344 
1345 	if (udev->speed == USB_SPEED_HIGH &&
1346 	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1347 	     usb_endpoint_xfer_int(&ep->desc)))
1348 		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1349 
1350 	return 0;
1351 }
1352 
xhci_get_endpoint_type(struct usb_host_endpoint * ep)1353 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1354 {
1355 	int in;
1356 
1357 	in = usb_endpoint_dir_in(&ep->desc);
1358 
1359 	switch (usb_endpoint_type(&ep->desc)) {
1360 	case USB_ENDPOINT_XFER_CONTROL:
1361 		return CTRL_EP;
1362 	case USB_ENDPOINT_XFER_BULK:
1363 		return in ? BULK_IN_EP : BULK_OUT_EP;
1364 	case USB_ENDPOINT_XFER_ISOC:
1365 		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1366 	case USB_ENDPOINT_XFER_INT:
1367 		return in ? INT_IN_EP : INT_OUT_EP;
1368 	}
1369 	return 0;
1370 }
1371 
1372 /* Return the maximum endpoint service interval time (ESIT) payload.
1373  * Basically, this is the maxpacket size, multiplied by the burst size
1374  * and mult size.
1375  */
xhci_get_max_esit_payload(struct usb_device * udev,struct usb_host_endpoint * ep)1376 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1377 		struct usb_host_endpoint *ep)
1378 {
1379 	int max_burst;
1380 	int max_packet;
1381 
1382 	/* Only applies for interrupt or isochronous endpoints */
1383 	if (usb_endpoint_xfer_control(&ep->desc) ||
1384 			usb_endpoint_xfer_bulk(&ep->desc))
1385 		return 0;
1386 
1387 	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1388 	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1389 	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1390 		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1391 
1392 	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1393 	if (udev->speed >= USB_SPEED_SUPER)
1394 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1395 
1396 	max_packet = usb_endpoint_maxp(&ep->desc);
1397 	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1398 	/* A 0 in max burst means 1 transfer per ESIT */
1399 	return max_packet * max_burst;
1400 }
1401 
1402 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1403  * Drivers will have to call usb_alloc_streams() to do that.
1404  */
xhci_endpoint_init(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * udev,struct usb_host_endpoint * ep,gfp_t mem_flags)1405 int xhci_endpoint_init(struct xhci_hcd *xhci,
1406 		struct xhci_virt_device *virt_dev,
1407 		struct usb_device *udev,
1408 		struct usb_host_endpoint *ep,
1409 		gfp_t mem_flags)
1410 {
1411 	unsigned int ep_index;
1412 	struct xhci_ep_ctx *ep_ctx;
1413 	struct xhci_ring *ep_ring;
1414 	unsigned int max_packet;
1415 	enum xhci_ring_type ring_type;
1416 	u32 max_esit_payload;
1417 	u32 endpoint_type;
1418 	unsigned int max_burst;
1419 	unsigned int interval;
1420 	unsigned int mult;
1421 	unsigned int avg_trb_len;
1422 	unsigned int err_count = 0;
1423 
1424 	ep_index = xhci_get_endpoint_index(&ep->desc);
1425 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1426 
1427 	endpoint_type = xhci_get_endpoint_type(ep);
1428 	if (!endpoint_type)
1429 		return -EINVAL;
1430 
1431 	ring_type = usb_endpoint_type(&ep->desc);
1432 
1433 	/*
1434 	 * Get values to fill the endpoint context, mostly from ep descriptor.
1435 	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1436 	 * have no clue on scatter gather list entry size. For Isoc and Int,
1437 	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1438 	 */
1439 	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1440 	interval = xhci_get_endpoint_interval(udev, ep);
1441 
1442 	/* Periodic endpoint bInterval limit quirk */
1443 	if (usb_endpoint_xfer_int(&ep->desc) ||
1444 	    usb_endpoint_xfer_isoc(&ep->desc)) {
1445 		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1446 		    udev->speed >= USB_SPEED_HIGH &&
1447 		    interval >= 7) {
1448 			interval = 6;
1449 		}
1450 	}
1451 
1452 	mult = xhci_get_endpoint_mult(udev, ep);
1453 	max_packet = usb_endpoint_maxp(&ep->desc);
1454 	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1455 	avg_trb_len = max_esit_payload;
1456 
1457 	/* FIXME dig Mult and streams info out of ep companion desc */
1458 
1459 	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1460 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1461 		err_count = 3;
1462 	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1463 	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1464 		if (udev->speed == USB_SPEED_HIGH)
1465 			max_packet = 512;
1466 		if (udev->speed == USB_SPEED_FULL) {
1467 			max_packet = rounddown_pow_of_two(max_packet);
1468 			max_packet = clamp_val(max_packet, 8, 64);
1469 		}
1470 	}
1471 	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1472 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1473 		avg_trb_len = 8;
1474 	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1475 	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1476 		mult = 0;
1477 
1478 	/* Set up the endpoint ring */
1479 	virt_dev->eps[ep_index].new_ring =
1480 		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1481 	if (!virt_dev->eps[ep_index].new_ring)
1482 		return -ENOMEM;
1483 
1484 	virt_dev->eps[ep_index].skip = false;
1485 	ep_ring = virt_dev->eps[ep_index].new_ring;
1486 
1487 	/* Fill the endpoint context */
1488 	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1489 				      EP_INTERVAL(interval) |
1490 				      EP_MULT(mult));
1491 	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1492 				       MAX_PACKET(max_packet) |
1493 				       MAX_BURST(max_burst) |
1494 				       ERROR_COUNT(err_count));
1495 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1496 				  ep_ring->cycle_state);
1497 
1498 	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1499 				      EP_AVG_TRB_LENGTH(avg_trb_len));
1500 
1501 	return 0;
1502 }
1503 
xhci_endpoint_zero(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_host_endpoint * ep)1504 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1505 		struct xhci_virt_device *virt_dev,
1506 		struct usb_host_endpoint *ep)
1507 {
1508 	unsigned int ep_index;
1509 	struct xhci_ep_ctx *ep_ctx;
1510 
1511 	ep_index = xhci_get_endpoint_index(&ep->desc);
1512 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1513 
1514 	ep_ctx->ep_info = 0;
1515 	ep_ctx->ep_info2 = 0;
1516 	ep_ctx->deq = 0;
1517 	ep_ctx->tx_info = 0;
1518 	/* Don't free the endpoint ring until the set interface or configuration
1519 	 * request succeeds.
1520 	 */
1521 }
1522 
xhci_clear_endpoint_bw_info(struct xhci_bw_info * bw_info)1523 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1524 {
1525 	bw_info->ep_interval = 0;
1526 	bw_info->mult = 0;
1527 	bw_info->num_packets = 0;
1528 	bw_info->max_packet_size = 0;
1529 	bw_info->type = 0;
1530 	bw_info->max_esit_payload = 0;
1531 }
1532 
xhci_update_bw_info(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_input_control_ctx * ctrl_ctx,struct xhci_virt_device * virt_dev)1533 void xhci_update_bw_info(struct xhci_hcd *xhci,
1534 		struct xhci_container_ctx *in_ctx,
1535 		struct xhci_input_control_ctx *ctrl_ctx,
1536 		struct xhci_virt_device *virt_dev)
1537 {
1538 	struct xhci_bw_info *bw_info;
1539 	struct xhci_ep_ctx *ep_ctx;
1540 	unsigned int ep_type;
1541 	int i;
1542 
1543 	for (i = 1; i < 31; i++) {
1544 		bw_info = &virt_dev->eps[i].bw_info;
1545 
1546 		/* We can't tell what endpoint type is being dropped, but
1547 		 * unconditionally clearing the bandwidth info for non-periodic
1548 		 * endpoints should be harmless because the info will never be
1549 		 * set in the first place.
1550 		 */
1551 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1552 			/* Dropped endpoint */
1553 			xhci_clear_endpoint_bw_info(bw_info);
1554 			continue;
1555 		}
1556 
1557 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1558 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1559 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1560 
1561 			/* Ignore non-periodic endpoints */
1562 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1563 					ep_type != ISOC_IN_EP &&
1564 					ep_type != INT_IN_EP)
1565 				continue;
1566 
1567 			/* Added or changed endpoint */
1568 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1569 					le32_to_cpu(ep_ctx->ep_info));
1570 			/* Number of packets and mult are zero-based in the
1571 			 * input context, but we want one-based for the
1572 			 * interval table.
1573 			 */
1574 			bw_info->mult = CTX_TO_EP_MULT(
1575 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1576 			bw_info->num_packets = CTX_TO_MAX_BURST(
1577 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1578 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1579 					le32_to_cpu(ep_ctx->ep_info2));
1580 			bw_info->type = ep_type;
1581 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1582 					le32_to_cpu(ep_ctx->tx_info));
1583 		}
1584 	}
1585 }
1586 
1587 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1588  * Useful when you want to change one particular aspect of the endpoint and then
1589  * issue a configure endpoint command.
1590  */
xhci_endpoint_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,unsigned int ep_index)1591 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1592 		struct xhci_container_ctx *in_ctx,
1593 		struct xhci_container_ctx *out_ctx,
1594 		unsigned int ep_index)
1595 {
1596 	struct xhci_ep_ctx *out_ep_ctx;
1597 	struct xhci_ep_ctx *in_ep_ctx;
1598 
1599 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1600 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1601 
1602 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1603 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1604 	in_ep_ctx->deq = out_ep_ctx->deq;
1605 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1606 	if (xhci->quirks & XHCI_MTK_HOST) {
1607 		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1608 		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1609 	}
1610 }
1611 
1612 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1613  * Useful when you want to change one particular aspect of the endpoint and then
1614  * issue a configure endpoint command.  Only the context entries field matters,
1615  * but we'll copy the whole thing anyway.
1616  */
xhci_slot_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx)1617 void xhci_slot_copy(struct xhci_hcd *xhci,
1618 		struct xhci_container_ctx *in_ctx,
1619 		struct xhci_container_ctx *out_ctx)
1620 {
1621 	struct xhci_slot_ctx *in_slot_ctx;
1622 	struct xhci_slot_ctx *out_slot_ctx;
1623 
1624 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1625 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1626 
1627 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1628 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1629 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1630 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1631 }
1632 
1633 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
scratchpad_alloc(struct xhci_hcd * xhci,gfp_t flags)1634 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1635 {
1636 	int i;
1637 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1638 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1639 
1640 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1641 			"Allocating %d scratchpad buffers", num_sp);
1642 
1643 	if (!num_sp)
1644 		return 0;
1645 
1646 	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1647 				dev_to_node(dev));
1648 	if (!xhci->scratchpad)
1649 		goto fail_sp;
1650 
1651 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1652 				     size_mul(sizeof(u64), num_sp),
1653 				     &xhci->scratchpad->sp_dma, flags);
1654 	if (!xhci->scratchpad->sp_array)
1655 		goto fail_sp2;
1656 
1657 	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1658 					flags, dev_to_node(dev));
1659 	if (!xhci->scratchpad->sp_buffers)
1660 		goto fail_sp3;
1661 
1662 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1663 	for (i = 0; i < num_sp; i++) {
1664 		dma_addr_t dma;
1665 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1666 					       flags);
1667 		if (!buf)
1668 			goto fail_sp4;
1669 
1670 		xhci->scratchpad->sp_array[i] = dma;
1671 		xhci->scratchpad->sp_buffers[i] = buf;
1672 	}
1673 
1674 	return 0;
1675 
1676  fail_sp4:
1677 	while (i--)
1678 		dma_free_coherent(dev, xhci->page_size,
1679 				    xhci->scratchpad->sp_buffers[i],
1680 				    xhci->scratchpad->sp_array[i]);
1681 
1682 	kfree(xhci->scratchpad->sp_buffers);
1683 
1684  fail_sp3:
1685 	dma_free_coherent(dev, num_sp * sizeof(u64),
1686 			    xhci->scratchpad->sp_array,
1687 			    xhci->scratchpad->sp_dma);
1688 
1689  fail_sp2:
1690 	kfree(xhci->scratchpad);
1691 	xhci->scratchpad = NULL;
1692 
1693  fail_sp:
1694 	return -ENOMEM;
1695 }
1696 
scratchpad_free(struct xhci_hcd * xhci)1697 static void scratchpad_free(struct xhci_hcd *xhci)
1698 {
1699 	int num_sp;
1700 	int i;
1701 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1702 
1703 	if (!xhci->scratchpad)
1704 		return;
1705 
1706 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1707 
1708 	for (i = 0; i < num_sp; i++) {
1709 		dma_free_coherent(dev, xhci->page_size,
1710 				    xhci->scratchpad->sp_buffers[i],
1711 				    xhci->scratchpad->sp_array[i]);
1712 	}
1713 	kfree(xhci->scratchpad->sp_buffers);
1714 	dma_free_coherent(dev, num_sp * sizeof(u64),
1715 			    xhci->scratchpad->sp_array,
1716 			    xhci->scratchpad->sp_dma);
1717 	kfree(xhci->scratchpad);
1718 	xhci->scratchpad = NULL;
1719 }
1720 
xhci_alloc_command(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1721 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1722 		bool allocate_completion, gfp_t mem_flags)
1723 {
1724 	struct xhci_command *command;
1725 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1726 
1727 	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1728 	if (!command)
1729 		return NULL;
1730 
1731 	if (allocate_completion) {
1732 		command->completion =
1733 			kzalloc_node(sizeof(struct completion), mem_flags,
1734 				dev_to_node(dev));
1735 		if (!command->completion) {
1736 			kfree(command);
1737 			return NULL;
1738 		}
1739 		init_completion(command->completion);
1740 	}
1741 
1742 	command->status = 0;
1743 	/* set default timeout to 5000 ms */
1744 	command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT;
1745 	INIT_LIST_HEAD(&command->cmd_list);
1746 	return command;
1747 }
1748 
xhci_alloc_command_with_ctx(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1749 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1750 		bool allocate_completion, gfp_t mem_flags)
1751 {
1752 	struct xhci_command *command;
1753 
1754 	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1755 	if (!command)
1756 		return NULL;
1757 
1758 	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1759 						   mem_flags);
1760 	if (!command->in_ctx) {
1761 		kfree(command->completion);
1762 		kfree(command);
1763 		return NULL;
1764 	}
1765 	return command;
1766 }
1767 
xhci_urb_free_priv(struct urb_priv * urb_priv)1768 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1769 {
1770 	kfree(urb_priv);
1771 }
1772 
xhci_free_command(struct xhci_hcd * xhci,struct xhci_command * command)1773 void xhci_free_command(struct xhci_hcd *xhci,
1774 		struct xhci_command *command)
1775 {
1776 	xhci_free_container_ctx(xhci,
1777 			command->in_ctx);
1778 	kfree(command->completion);
1779 	kfree(command);
1780 }
1781 
xhci_alloc_erst(struct xhci_hcd * xhci,struct xhci_ring * evt_ring,struct xhci_erst * erst,gfp_t flags)1782 static int xhci_alloc_erst(struct xhci_hcd *xhci,
1783 		    struct xhci_ring *evt_ring,
1784 		    struct xhci_erst *erst,
1785 		    gfp_t flags)
1786 {
1787 	size_t size;
1788 	unsigned int val;
1789 	struct xhci_segment *seg;
1790 	struct xhci_erst_entry *entry;
1791 
1792 	size = size_mul(sizeof(struct xhci_erst_entry), evt_ring->num_segs);
1793 	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1794 					   size, &erst->erst_dma_addr, flags);
1795 	if (!erst->entries)
1796 		return -ENOMEM;
1797 
1798 	erst->num_entries = evt_ring->num_segs;
1799 
1800 	seg = evt_ring->first_seg;
1801 	for (val = 0; val < evt_ring->num_segs; val++) {
1802 		entry = &erst->entries[val];
1803 		entry->seg_addr = cpu_to_le64(seg->dma);
1804 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1805 		entry->rsvd = 0;
1806 		seg = seg->next;
1807 	}
1808 
1809 	return 0;
1810 }
1811 
1812 static void
xhci_remove_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir)1813 xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1814 {
1815 	u32 tmp;
1816 
1817 	if (!ir)
1818 		return;
1819 
1820 	/*
1821 	 * Clean out interrupter registers except ERSTBA. Clearing either the
1822 	 * low or high 32 bits of ERSTBA immediately causes the controller to
1823 	 * dereference the partially cleared 64 bit address, causing IOMMU error.
1824 	 */
1825 	if (ir->ir_set) {
1826 		tmp = readl(&ir->ir_set->erst_size);
1827 		tmp &= ERST_SIZE_MASK;
1828 		writel(tmp, &ir->ir_set->erst_size);
1829 
1830 		xhci_update_erst_dequeue(xhci, ir, true);
1831 	}
1832 }
1833 
1834 static void
xhci_free_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir)1835 xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1836 {
1837 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1838 	size_t erst_size;
1839 
1840 	if (!ir)
1841 		return;
1842 
1843 	erst_size = sizeof(struct xhci_erst_entry) * ir->erst.num_entries;
1844 	if (ir->erst.entries)
1845 		dma_free_coherent(dev, erst_size,
1846 				  ir->erst.entries,
1847 				  ir->erst.erst_dma_addr);
1848 	ir->erst.entries = NULL;
1849 
1850 	/* free interrupter event ring */
1851 	if (ir->event_ring)
1852 		xhci_ring_free(xhci, ir->event_ring);
1853 
1854 	ir->event_ring = NULL;
1855 
1856 	kfree(ir);
1857 }
1858 
xhci_remove_secondary_interrupter(struct usb_hcd * hcd,struct xhci_interrupter * ir)1859 void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir)
1860 {
1861 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1862 	unsigned int intr_num;
1863 
1864 	spin_lock_irq(&xhci->lock);
1865 
1866 	/* interrupter 0 is primary interrupter, don't touch it */
1867 	if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) {
1868 		xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n");
1869 		spin_unlock_irq(&xhci->lock);
1870 		return;
1871 	}
1872 
1873 	/*
1874 	 * Cleanup secondary interrupter to ensure there are no pending events.
1875 	 * This also updates event ring dequeue pointer back to the start.
1876 	 */
1877 	xhci_skip_sec_intr_events(xhci, ir->event_ring, ir);
1878 	intr_num = ir->intr_num;
1879 
1880 	xhci_remove_interrupter(xhci, ir);
1881 	xhci->interrupters[intr_num] = NULL;
1882 
1883 	spin_unlock_irq(&xhci->lock);
1884 
1885 	xhci_free_interrupter(xhci, ir);
1886 }
1887 EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter);
1888 
xhci_mem_cleanup(struct xhci_hcd * xhci)1889 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1890 {
1891 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1892 	int i, j, num_ports;
1893 
1894 	cancel_delayed_work_sync(&xhci->cmd_timer);
1895 
1896 	for (i = 0; i < xhci->max_interrupters; i++) {
1897 		if (xhci->interrupters[i]) {
1898 			xhci_remove_interrupter(xhci, xhci->interrupters[i]);
1899 			xhci_free_interrupter(xhci, xhci->interrupters[i]);
1900 			xhci->interrupters[i] = NULL;
1901 		}
1902 	}
1903 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed interrupters");
1904 
1905 	if (xhci->cmd_ring)
1906 		xhci_ring_free(xhci, xhci->cmd_ring);
1907 	xhci->cmd_ring = NULL;
1908 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1909 	xhci_cleanup_command_queue(xhci);
1910 
1911 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1912 	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1913 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1914 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1915 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1916 			while (!list_empty(ep))
1917 				list_del_init(ep->next);
1918 		}
1919 	}
1920 
1921 	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1922 		xhci_free_virt_devices_depth_first(xhci, i);
1923 
1924 	dma_pool_destroy(xhci->segment_pool);
1925 	xhci->segment_pool = NULL;
1926 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1927 
1928 	dma_pool_destroy(xhci->device_pool);
1929 	xhci->device_pool = NULL;
1930 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1931 
1932 	dma_pool_destroy(xhci->small_streams_pool);
1933 	xhci->small_streams_pool = NULL;
1934 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1935 			"Freed small stream array pool");
1936 
1937 	dma_pool_destroy(xhci->medium_streams_pool);
1938 	xhci->medium_streams_pool = NULL;
1939 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1940 			"Freed medium stream array pool");
1941 
1942 	if (xhci->dcbaa)
1943 		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1944 				xhci->dcbaa, xhci->dcbaa->dma);
1945 	xhci->dcbaa = NULL;
1946 
1947 	scratchpad_free(xhci);
1948 
1949 	if (!xhci->rh_bw)
1950 		goto no_bw;
1951 
1952 	for (i = 0; i < num_ports; i++) {
1953 		struct xhci_tt_bw_info *tt, *n;
1954 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1955 			list_del(&tt->tt_list);
1956 			kfree(tt);
1957 		}
1958 	}
1959 
1960 no_bw:
1961 	xhci->cmd_ring_reserved_trbs = 0;
1962 	xhci->usb2_rhub.num_ports = 0;
1963 	xhci->usb3_rhub.num_ports = 0;
1964 	xhci->num_active_eps = 0;
1965 	kfree(xhci->usb2_rhub.ports);
1966 	kfree(xhci->usb3_rhub.ports);
1967 	kfree(xhci->hw_ports);
1968 	kfree(xhci->rh_bw);
1969 	kfree(xhci->ext_caps);
1970 	for (i = 0; i < xhci->num_port_caps; i++)
1971 		kfree(xhci->port_caps[i].psi);
1972 	kfree(xhci->port_caps);
1973 	kfree(xhci->interrupters);
1974 	xhci->num_port_caps = 0;
1975 
1976 	xhci->usb2_rhub.ports = NULL;
1977 	xhci->usb3_rhub.ports = NULL;
1978 	xhci->hw_ports = NULL;
1979 	xhci->rh_bw = NULL;
1980 	xhci->ext_caps = NULL;
1981 	xhci->port_caps = NULL;
1982 	xhci->interrupters = NULL;
1983 
1984 	xhci->page_size = 0;
1985 	xhci->page_shift = 0;
1986 	xhci->usb2_rhub.bus_state.bus_suspended = 0;
1987 	xhci->usb3_rhub.bus_state.bus_suspended = 0;
1988 }
1989 
xhci_set_hc_event_deq(struct xhci_hcd * xhci,struct xhci_interrupter * ir)1990 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1991 {
1992 	dma_addr_t deq;
1993 
1994 	deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
1995 			ir->event_ring->dequeue);
1996 	if (!deq)
1997 		xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n");
1998 	/* Update HC event ring dequeue pointer */
1999 	/* Don't clear the EHB bit (which is RW1C) because
2000 	 * there might be more events to service.
2001 	 */
2002 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2003 		       "// Write event ring dequeue pointer, preserving EHB bit");
2004 	xhci_write_64(xhci, deq & ERST_PTR_MASK, &ir->ir_set->erst_dequeue);
2005 }
2006 
xhci_add_in_port(struct xhci_hcd * xhci,unsigned int num_ports,__le32 __iomem * addr,int max_caps)2007 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2008 		__le32 __iomem *addr, int max_caps)
2009 {
2010 	u32 temp, port_offset, port_count;
2011 	int i;
2012 	u8 major_revision, minor_revision, tmp_minor_revision;
2013 	struct xhci_hub *rhub;
2014 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2015 	struct xhci_port_cap *port_cap;
2016 
2017 	temp = readl(addr);
2018 	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2019 	minor_revision = XHCI_EXT_PORT_MINOR(temp);
2020 
2021 	if (major_revision == 0x03) {
2022 		rhub = &xhci->usb3_rhub;
2023 		/*
2024 		 * Some hosts incorrectly use sub-minor version for minor
2025 		 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2026 		 * for bcdUSB 0x310). Since there is no USB release with sub
2027 		 * minor version 0x301 to 0x309, we can assume that they are
2028 		 * incorrect and fix it here.
2029 		 */
2030 		if (minor_revision > 0x00 && minor_revision < 0x10)
2031 			minor_revision <<= 4;
2032 		/*
2033 		 * Some zhaoxin's xHCI controller that follow usb3.1 spec
2034 		 * but only support Gen1.
2035 		 */
2036 		if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2037 			tmp_minor_revision = minor_revision;
2038 			minor_revision = 0;
2039 		}
2040 
2041 	} else if (major_revision <= 0x02) {
2042 		rhub = &xhci->usb2_rhub;
2043 	} else {
2044 		xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n",
2045 				addr, major_revision);
2046 		/* Ignoring port protocol we can't understand. FIXME */
2047 		return;
2048 	}
2049 
2050 	/* Port offset and count in the third dword, see section 7.2 */
2051 	temp = readl(addr + 2);
2052 	port_offset = XHCI_EXT_PORT_OFF(temp);
2053 	port_count = XHCI_EXT_PORT_COUNT(temp);
2054 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2055 		       "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
2056 		       addr, port_offset, port_count, major_revision);
2057 	/* Port count includes the current port offset */
2058 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2059 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2060 		return;
2061 
2062 	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2063 	if (xhci->num_port_caps > max_caps)
2064 		return;
2065 
2066 	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2067 
2068 	if (port_cap->psi_count) {
2069 		port_cap->psi = kcalloc_node(port_cap->psi_count,
2070 					     sizeof(*port_cap->psi),
2071 					     GFP_KERNEL, dev_to_node(dev));
2072 		if (!port_cap->psi)
2073 			port_cap->psi_count = 0;
2074 
2075 		port_cap->psi_uid_count++;
2076 		for (i = 0; i < port_cap->psi_count; i++) {
2077 			port_cap->psi[i] = readl(addr + 4 + i);
2078 
2079 			/* count unique ID values, two consecutive entries can
2080 			 * have the same ID if link is assymetric
2081 			 */
2082 			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2083 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2084 				port_cap->psi_uid_count++;
2085 
2086 			if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2087 			    major_revision == 0x03 &&
2088 			    XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2089 				minor_revision = tmp_minor_revision;
2090 
2091 			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2092 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2093 				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2094 				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2095 				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2096 				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2097 				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2098 		}
2099 	}
2100 
2101 	rhub->maj_rev = major_revision;
2102 
2103 	if (rhub->min_rev < minor_revision)
2104 		rhub->min_rev = minor_revision;
2105 
2106 	port_cap->maj_rev = major_revision;
2107 	port_cap->min_rev = minor_revision;
2108 
2109 	/* cache usb2 port capabilities */
2110 	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2111 		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2112 
2113 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2114 		 (temp & XHCI_HLC)) {
2115 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2116 			       "xHCI 1.0: support USB2 hardware lpm");
2117 		xhci->hw_lpm_support = 1;
2118 	}
2119 
2120 	port_offset--;
2121 	for (i = port_offset; i < (port_offset + port_count); i++) {
2122 		struct xhci_port *hw_port = &xhci->hw_ports[i];
2123 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2124 		if (hw_port->rhub) {
2125 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i);
2126 			xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n",
2127 					hw_port->rhub->maj_rev, major_revision);
2128 			/* Only adjust the roothub port counts if we haven't
2129 			 * found a similar duplicate.
2130 			 */
2131 			if (hw_port->rhub != rhub &&
2132 				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2133 				hw_port->rhub->num_ports--;
2134 				hw_port->hcd_portnum = DUPLICATE_ENTRY;
2135 			}
2136 			continue;
2137 		}
2138 		hw_port->rhub = rhub;
2139 		hw_port->port_cap = port_cap;
2140 		rhub->num_ports++;
2141 	}
2142 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2143 }
2144 
xhci_create_rhub_port_array(struct xhci_hcd * xhci,struct xhci_hub * rhub,gfp_t flags)2145 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2146 					struct xhci_hub *rhub, gfp_t flags)
2147 {
2148 	int port_index = 0;
2149 	int i;
2150 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2151 
2152 	if (!rhub->num_ports)
2153 		return;
2154 	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2155 			flags, dev_to_node(dev));
2156 	if (!rhub->ports)
2157 		return;
2158 
2159 	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2160 		if (xhci->hw_ports[i].rhub != rhub ||
2161 		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2162 			continue;
2163 		xhci->hw_ports[i].hcd_portnum = port_index;
2164 		rhub->ports[port_index] = &xhci->hw_ports[i];
2165 		port_index++;
2166 		if (port_index == rhub->num_ports)
2167 			break;
2168 	}
2169 }
2170 
2171 /*
2172  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2173  * specify what speeds each port is supposed to be.  We can't count on the port
2174  * speed bits in the PORTSC register being correct until a device is connected,
2175  * but we need to set up the two fake roothubs with the correct number of USB
2176  * 3.0 and USB 2.0 ports at host controller initialization time.
2177  */
xhci_setup_port_arrays(struct xhci_hcd * xhci,gfp_t flags)2178 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2179 {
2180 	void __iomem *base;
2181 	u32 offset;
2182 	unsigned int num_ports;
2183 	int i, j;
2184 	int cap_count = 0;
2185 	u32 cap_start;
2186 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2187 
2188 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2189 	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2190 				flags, dev_to_node(dev));
2191 	if (!xhci->hw_ports)
2192 		return -ENOMEM;
2193 
2194 	for (i = 0; i < num_ports; i++) {
2195 		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2196 			NUM_PORT_REGS * i;
2197 		xhci->hw_ports[i].hw_portnum = i;
2198 
2199 		init_completion(&xhci->hw_ports[i].rexit_done);
2200 		init_completion(&xhci->hw_ports[i].u3exit_done);
2201 	}
2202 
2203 	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2204 				   dev_to_node(dev));
2205 	if (!xhci->rh_bw)
2206 		return -ENOMEM;
2207 	for (i = 0; i < num_ports; i++) {
2208 		struct xhci_interval_bw_table *bw_table;
2209 
2210 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2211 		bw_table = &xhci->rh_bw[i].bw_table;
2212 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2213 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2214 	}
2215 	base = &xhci->cap_regs->hc_capbase;
2216 
2217 	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2218 	if (!cap_start) {
2219 		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2220 		return -ENODEV;
2221 	}
2222 
2223 	offset = cap_start;
2224 	/* count extended protocol capability entries for later caching */
2225 	while (offset) {
2226 		cap_count++;
2227 		offset = xhci_find_next_ext_cap(base, offset,
2228 						      XHCI_EXT_CAPS_PROTOCOL);
2229 	}
2230 
2231 	xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2232 				flags, dev_to_node(dev));
2233 	if (!xhci->ext_caps)
2234 		return -ENOMEM;
2235 
2236 	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2237 				flags, dev_to_node(dev));
2238 	if (!xhci->port_caps)
2239 		return -ENOMEM;
2240 
2241 	offset = cap_start;
2242 
2243 	while (offset) {
2244 		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2245 		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2246 		    num_ports)
2247 			break;
2248 		offset = xhci_find_next_ext_cap(base, offset,
2249 						XHCI_EXT_CAPS_PROTOCOL);
2250 	}
2251 	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2252 		xhci_warn(xhci, "No ports on the roothubs?\n");
2253 		return -ENODEV;
2254 	}
2255 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2256 		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2257 		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2258 
2259 	/* Place limits on the number of roothub ports so that the hub
2260 	 * descriptors aren't longer than the USB core will allocate.
2261 	 */
2262 	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2263 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2264 				"Limiting USB 3.0 roothub ports to %u.",
2265 				USB_SS_MAXPORTS);
2266 		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2267 	}
2268 	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2269 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2270 				"Limiting USB 2.0 roothub ports to %u.",
2271 				USB_MAXCHILDREN);
2272 		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2273 	}
2274 
2275 	if (!xhci->usb2_rhub.num_ports)
2276 		xhci_info(xhci, "USB2 root hub has no ports\n");
2277 
2278 	if (!xhci->usb3_rhub.num_ports)
2279 		xhci_info(xhci, "USB3 root hub has no ports\n");
2280 
2281 	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2282 	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2283 
2284 	return 0;
2285 }
2286 
2287 static struct xhci_interrupter *
xhci_alloc_interrupter(struct xhci_hcd * xhci,int segs,gfp_t flags)2288 xhci_alloc_interrupter(struct xhci_hcd *xhci, int segs, gfp_t flags)
2289 {
2290 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2291 	struct xhci_interrupter *ir;
2292 	unsigned int num_segs = segs;
2293 	int ret;
2294 
2295 	ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev));
2296 	if (!ir)
2297 		return NULL;
2298 
2299 	/* number of ring segments should be greater than 0 */
2300 	if (segs <= 0)
2301 		num_segs = min_t(unsigned int, 1 << HCS_ERST_MAX(xhci->hcs_params2),
2302 			 ERST_MAX_SEGS);
2303 
2304 	ir->event_ring = xhci_ring_alloc(xhci, num_segs, 1, TYPE_EVENT, 0,
2305 					 flags);
2306 	if (!ir->event_ring) {
2307 		xhci_warn(xhci, "Failed to allocate interrupter event ring\n");
2308 		kfree(ir);
2309 		return NULL;
2310 	}
2311 
2312 	ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags);
2313 	if (ret) {
2314 		xhci_warn(xhci, "Failed to allocate interrupter erst\n");
2315 		xhci_ring_free(xhci, ir->event_ring);
2316 		kfree(ir);
2317 		return NULL;
2318 	}
2319 
2320 	return ir;
2321 }
2322 
2323 static int
xhci_add_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir,unsigned int intr_num)2324 xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir,
2325 		     unsigned int intr_num)
2326 {
2327 	u64 erst_base;
2328 	u32 erst_size;
2329 
2330 	if (intr_num >= xhci->max_interrupters) {
2331 		xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n",
2332 			  intr_num, xhci->max_interrupters);
2333 		return -EINVAL;
2334 	}
2335 
2336 	if (xhci->interrupters[intr_num]) {
2337 		xhci_warn(xhci, "Interrupter %d\n already set up", intr_num);
2338 		return -EINVAL;
2339 	}
2340 
2341 	xhci->interrupters[intr_num] = ir;
2342 	ir->intr_num = intr_num;
2343 	ir->ir_set = &xhci->run_regs->ir_set[intr_num];
2344 
2345 	/* set ERST count with the number of entries in the segment table */
2346 	erst_size = readl(&ir->ir_set->erst_size);
2347 	erst_size &= ERST_SIZE_MASK;
2348 	erst_size |= ir->event_ring->num_segs;
2349 	writel(erst_size, &ir->ir_set->erst_size);
2350 
2351 	erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
2352 	erst_base &= ERST_BASE_RSVDP;
2353 	erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP;
2354 	if (xhci->quirks & XHCI_WRITE_64_HI_LO)
2355 		hi_lo_writeq(erst_base, &ir->ir_set->erst_base);
2356 	else
2357 		xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base);
2358 
2359 	/* Set the event ring dequeue address of this interrupter */
2360 	xhci_set_hc_event_deq(xhci, ir);
2361 
2362 	return 0;
2363 }
2364 
2365 struct xhci_interrupter *
xhci_create_secondary_interrupter(struct usb_hcd * hcd,int num_seg,int intr_num)2366 xhci_create_secondary_interrupter(struct usb_hcd *hcd, int num_seg, int intr_num)
2367 {
2368 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2369 	struct xhci_interrupter *ir;
2370 	unsigned int i;
2371 	int err = -ENOSPC;
2372 
2373 	if (!xhci->interrupters || xhci->max_interrupters <= 1)
2374 		return NULL;
2375 
2376 	ir = xhci_alloc_interrupter(xhci, num_seg, GFP_KERNEL);
2377 	if (!ir)
2378 		return NULL;
2379 
2380 	spin_lock_irq(&xhci->lock);
2381 	/* Find available secondary interrupter, interrupter 0 is reserverd for primary */
2382 	for (i = 1; i < xhci->max_interrupters; i++) {
2383 		if ((intr_num > 0 && i == intr_num) || intr_num <= 0) {
2384 			if (xhci->interrupters[i] == NULL) {
2385 				err = xhci_add_interrupter(xhci, ir, i);
2386 				if (err) {
2387 					spin_unlock_irq(&xhci->lock);
2388 					goto free_ir;
2389 				}
2390 				break;
2391 			}
2392 		}
2393 	}
2394 	spin_unlock_irq(&xhci->lock);
2395 
2396 	xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n",
2397 		 i, xhci->max_interrupters);
2398 
2399 	return ir;
2400 
2401 free_ir:
2402 	xhci_free_interrupter(xhci, ir);
2403 
2404 	return NULL;
2405 }
2406 EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter);
2407 
xhci_mem_init(struct xhci_hcd * xhci,gfp_t flags)2408 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2409 {
2410 	struct xhci_interrupter *ir;
2411 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2412 	dma_addr_t	dma;
2413 	unsigned int	val, val2;
2414 	u64		val_64;
2415 	u32		page_size, temp;
2416 	int		i;
2417 
2418 	INIT_LIST_HEAD(&xhci->cmd_list);
2419 
2420 	/* init command timeout work */
2421 	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2422 	init_completion(&xhci->cmd_ring_stop_completion);
2423 
2424 	page_size = readl(&xhci->op_regs->page_size);
2425 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2426 			"Supported page size register = 0x%x", page_size);
2427 	i = ffs(page_size);
2428 	if (i < 16)
2429 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2430 			"Supported page size of %iK", (1 << (i+12)) / 1024);
2431 	else
2432 		xhci_warn(xhci, "WARN: no supported page size\n");
2433 	/* Use 4K pages, since that's common and the minimum the HC supports */
2434 	xhci->page_shift = 12;
2435 	xhci->page_size = 1 << xhci->page_shift;
2436 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2437 			"HCD page size set to %iK", xhci->page_size / 1024);
2438 
2439 	/*
2440 	 * Program the Number of Device Slots Enabled field in the CONFIG
2441 	 * register with the max value of slots the HC can handle.
2442 	 */
2443 	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2444 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2445 			"// xHC can handle at most %d device slots.", val);
2446 	val2 = readl(&xhci->op_regs->config_reg);
2447 	val |= (val2 & ~HCS_SLOTS_MASK);
2448 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2449 			"// Setting Max device slots reg = 0x%x.", val);
2450 	writel(val, &xhci->op_regs->config_reg);
2451 
2452 	/*
2453 	 * xHCI section 5.4.6 - Device Context array must be
2454 	 * "physically contiguous and 64-byte (cache line) aligned".
2455 	 */
2456 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2457 			flags);
2458 	if (!xhci->dcbaa)
2459 		goto fail;
2460 	xhci->dcbaa->dma = dma;
2461 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2462 			"// Device context base array address = 0x%pad (DMA), %p (virt)",
2463 			&xhci->dcbaa->dma, xhci->dcbaa);
2464 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2465 
2466 	/*
2467 	 * Initialize the ring segment pool.  The ring must be a contiguous
2468 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2469 	 * however, the command ring segment needs 64-byte aligned segments
2470 	 * and our use of dma addresses in the trb_address_map radix tree needs
2471 	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2472 	 */
2473 	if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH)
2474 		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2475 				TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2476 	else
2477 		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2478 				TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2479 
2480 	/* See Table 46 and Note on Figure 55 */
2481 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2482 			2112, 64, xhci->page_size);
2483 	if (!xhci->segment_pool || !xhci->device_pool)
2484 		goto fail;
2485 
2486 	/* Linear stream context arrays don't have any boundary restrictions,
2487 	 * and only need to be 16-byte aligned.
2488 	 */
2489 	xhci->small_streams_pool =
2490 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2491 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2492 	xhci->medium_streams_pool =
2493 		dma_pool_create("xHCI 1KB stream ctx arrays",
2494 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2495 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2496 	 * will be allocated with dma_alloc_coherent()
2497 	 */
2498 
2499 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2500 		goto fail;
2501 
2502 	/* Set up the command ring to have one segments for now. */
2503 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2504 	if (!xhci->cmd_ring)
2505 		goto fail;
2506 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2507 			"Allocated command ring at %p", xhci->cmd_ring);
2508 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad",
2509 			&xhci->cmd_ring->first_seg->dma);
2510 
2511 	/* Set the address in the Command Ring Control register */
2512 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2513 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2514 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2515 		xhci->cmd_ring->cycle_state;
2516 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2517 			"// Setting command ring address to 0x%016llx", val_64);
2518 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2519 
2520 	/* Reserve one command ring TRB for disabling LPM.
2521 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2522 	 * disabling LPM, we only need to reserve one TRB for all devices.
2523 	 */
2524 	xhci->cmd_ring_reserved_trbs++;
2525 
2526 	val = readl(&xhci->cap_regs->db_off);
2527 	val &= DBOFF_MASK;
2528 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2529 		       "// Doorbell array is located at offset 0x%x from cap regs base addr",
2530 		       val);
2531 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2532 
2533 	/* Allocate and set up primary interrupter 0 with an event ring. */
2534 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2535 		       "Allocating primary event ring");
2536 	xhci->interrupters = kcalloc_node(xhci->max_interrupters, sizeof(*xhci->interrupters),
2537 					  flags, dev_to_node(dev));
2538 
2539 	ir = xhci_alloc_interrupter(xhci, 0, flags);
2540 	if (!ir)
2541 		goto fail;
2542 
2543 	if (xhci_add_interrupter(xhci, ir, 0))
2544 		goto fail;
2545 
2546 	ir->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2547 
2548 	/*
2549 	 * XXX: Might need to set the Interrupter Moderation Register to
2550 	 * something other than the default (~1ms minimum between interrupts).
2551 	 * See section 5.5.1.2.
2552 	 */
2553 	for (i = 0; i < MAX_HC_SLOTS; i++)
2554 		xhci->devs[i] = NULL;
2555 
2556 	if (scratchpad_alloc(xhci, flags))
2557 		goto fail;
2558 	if (xhci_setup_port_arrays(xhci, flags))
2559 		goto fail;
2560 
2561 	/* Enable USB 3.0 device notifications for function remote wake, which
2562 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2563 	 * U3 (device suspend).
2564 	 */
2565 	temp = readl(&xhci->op_regs->dev_notification);
2566 	temp &= ~DEV_NOTE_MASK;
2567 	temp |= DEV_NOTE_FWAKE;
2568 	writel(temp, &xhci->op_regs->dev_notification);
2569 
2570 	return 0;
2571 
2572 fail:
2573 	xhci_halt(xhci);
2574 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2575 	xhci_mem_cleanup(xhci);
2576 	return -ENOMEM;
2577 }
2578