• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_ENERGY_MODEL_H
3 #define _LINUX_ENERGY_MODEL_H
4 #include <linux/cpumask.h>
5 #include <linux/device.h>
6 #include <linux/jump_label.h>
7 #include <linux/kobject.h>
8 #include <linux/kref.h>
9 #include <linux/rcupdate.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/topology.h>
12 #include <linux/types.h>
13 
14 /**
15  * struct em_perf_state - Performance state of a performance domain
16  * @performance:	CPU performance (capacity) at a given frequency
17  * @frequency:	The frequency in KHz, for consistency with CPUFreq
18  * @power:	The power consumed at this level (by 1 CPU or by a registered
19  *		device). It can be a total power: static and dynamic.
20  * @cost:	The cost coefficient associated with this level, used during
21  *		energy calculation. Equal to: power * max_frequency / frequency
22  * @flags:	see "em_perf_state flags" description below.
23  */
24 struct em_perf_state {
25 	unsigned long performance;
26 	unsigned long frequency;
27 	unsigned long power;
28 	unsigned long cost;
29 	unsigned long flags;
30 };
31 
32 /*
33  * em_perf_state flags:
34  *
35  * EM_PERF_STATE_INEFFICIENT: The performance state is inefficient. There is
36  * in this em_perf_domain, another performance state with a higher frequency
37  * but a lower or equal power cost. Such inefficient states are ignored when
38  * using em_pd_get_efficient_*() functions.
39  */
40 #define EM_PERF_STATE_INEFFICIENT BIT(0)
41 
42 /**
43  * struct em_perf_table - Performance states table
44  * @rcu:	RCU used for safe access and destruction
45  * @kref:	Reference counter to track the users
46  * @state:	List of performance states, in ascending order
47  */
48 struct em_perf_table {
49 	struct rcu_head rcu;
50 	struct kref kref;
51 	struct em_perf_state state[];
52 };
53 
54 /**
55  * struct em_perf_domain - Performance domain
56  * @em_table:		Pointer to the runtime modifiable em_perf_table
57  * @nr_perf_states:	Number of performance states
58  * @min_ps:		Minimum available performance state index
59  * @max_ps:		Maximum available performance state index
60  * @flags:		See "em_perf_domain flags"
61  * @cpus:		Cpumask covering the CPUs of the domain. It's here
62  *			for performance reasons to avoid potential cache
63  *			misses during energy calculations in the scheduler
64  *			and simplifies allocating/freeing that memory region.
65  *
66  * In case of CPU device, a "performance domain" represents a group of CPUs
67  * whose performance is scaled together. All CPUs of a performance domain
68  * must have the same micro-architecture. Performance domains often have
69  * a 1-to-1 mapping with CPUFreq policies. In case of other devices the @cpus
70  * field is unused.
71  */
72 struct em_perf_domain {
73 	struct em_perf_table __rcu *em_table;
74 	int nr_perf_states;
75 	int min_ps;
76 	int max_ps;
77 	unsigned long flags;
78 	unsigned long cpus[];
79 };
80 
81 /*
82  *  em_perf_domain flags:
83  *
84  *  EM_PERF_DOMAIN_MICROWATTS: The power values are in micro-Watts or some
85  *  other scale.
86  *
87  *  EM_PERF_DOMAIN_SKIP_INEFFICIENCIES: Skip inefficient states when estimating
88  *  energy consumption.
89  *
90  *  EM_PERF_DOMAIN_ARTIFICIAL: The power values are artificial and might be
91  *  created by platform missing real power information
92  */
93 #define EM_PERF_DOMAIN_MICROWATTS BIT(0)
94 #define EM_PERF_DOMAIN_SKIP_INEFFICIENCIES BIT(1)
95 #define EM_PERF_DOMAIN_ARTIFICIAL BIT(2)
96 
97 #define em_span_cpus(em) (to_cpumask((em)->cpus))
98 #define em_is_artificial(em) ((em)->flags & EM_PERF_DOMAIN_ARTIFICIAL)
99 
100 #ifdef CONFIG_ENERGY_MODEL
101 /*
102  * The max power value in micro-Watts. The limit of 64 Watts is set as
103  * a safety net to not overflow multiplications on 32bit platforms. The
104  * 32bit value limit for total Perf Domain power implies a limit of
105  * maximum CPUs in such domain to 64.
106  */
107 #define EM_MAX_POWER (64000000) /* 64 Watts */
108 
109 /*
110  * To avoid possible energy estimation overflow on 32bit machines add
111  * limits to number of CPUs in the Perf. Domain.
112  * We are safe on 64bit machine, thus some big number.
113  */
114 #ifdef CONFIG_64BIT
115 #define EM_MAX_NUM_CPUS 4096
116 #else
117 #define EM_MAX_NUM_CPUS 16
118 #endif
119 
120 struct em_data_callback {
121 	/**
122 	 * active_power() - Provide power at the next performance state of
123 	 *		a device
124 	 * @dev		: Device for which we do this operation (can be a CPU)
125 	 * @power	: Active power at the performance state
126 	 *		(modified)
127 	 * @freq	: Frequency at the performance state in kHz
128 	 *		(modified)
129 	 *
130 	 * active_power() must find the lowest performance state of 'dev' above
131 	 * 'freq' and update 'power' and 'freq' to the matching active power
132 	 * and frequency.
133 	 *
134 	 * In case of CPUs, the power is the one of a single CPU in the domain,
135 	 * expressed in micro-Watts or an abstract scale. It is expected to
136 	 * fit in the [0, EM_MAX_POWER] range.
137 	 *
138 	 * Return 0 on success.
139 	 */
140 	int (*active_power)(struct device *dev, unsigned long *power,
141 			    unsigned long *freq);
142 
143 	/**
144 	 * get_cost() - Provide the cost at the given performance state of
145 	 *		a device
146 	 * @dev		: Device for which we do this operation (can be a CPU)
147 	 * @freq	: Frequency at the performance state in kHz
148 	 * @cost	: The cost value for the performance state
149 	 *		(modified)
150 	 *
151 	 * In case of CPUs, the cost is the one of a single CPU in the domain.
152 	 * It is expected to fit in the [0, EM_MAX_POWER] range due to internal
153 	 * usage in EAS calculation.
154 	 *
155 	 * Return 0 on success, or appropriate error value in case of failure.
156 	 */
157 	int (*get_cost)(struct device *dev, unsigned long freq,
158 			unsigned long *cost);
159 };
160 #define EM_SET_ACTIVE_POWER_CB(em_cb, cb) ((em_cb).active_power = cb)
161 #define EM_ADV_DATA_CB(_active_power_cb, _cost_cb)	\
162 	{ .active_power = _active_power_cb,		\
163 	  .get_cost = _cost_cb }
164 #define EM_DATA_CB(_active_power_cb)			\
165 		EM_ADV_DATA_CB(_active_power_cb, NULL)
166 
167 struct em_perf_domain *em_cpu_get(int cpu);
168 struct em_perf_domain *em_pd_get(struct device *dev);
169 int em_dev_update_perf_domain(struct device *dev,
170 			      struct em_perf_table __rcu *new_table);
171 int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
172 				struct em_data_callback *cb, cpumask_t *span,
173 				bool microwatts);
174 void em_dev_unregister_perf_domain(struct device *dev);
175 struct em_perf_table __rcu *em_table_alloc(struct em_perf_domain *pd);
176 void em_table_free(struct em_perf_table __rcu *table);
177 int em_dev_compute_costs(struct device *dev, struct em_perf_state *table,
178 			 int nr_states);
179 int em_dev_update_chip_binning(struct device *dev);
180 int em_update_performance_limits(struct em_perf_domain *pd,
181 		unsigned long freq_min_khz, unsigned long freq_max_khz);
182 
183 /**
184  * em_pd_get_efficient_state() - Get an efficient performance state from the EM
185  * @table:		List of performance states, in ascending order
186  * @nr_perf_states:	Number of performance states
187  * @max_util:		Max utilization to map with the EM
188  * @pd_flags:		Performance Domain flags
189  *
190  * It is called from the scheduler code quite frequently and as a consequence
191  * doesn't implement any check.
192  *
193  * Return: An efficient performance state id, high enough to meet @max_util
194  * requirement.
195  */
196 static inline int
em_pd_get_efficient_state(struct em_perf_state * table,int nr_perf_states,unsigned long max_util,unsigned long pd_flags,int min_ps,int max_ps)197 em_pd_get_efficient_state(struct em_perf_state *table, int nr_perf_states,
198 			  unsigned long max_util, unsigned long pd_flags,
199 			  int min_ps, int max_ps)
200 {
201 	struct em_perf_state *ps;
202 	int i;
203 
204 	for (i = min_ps; i <= max_ps; i++) {
205 		ps = &table[i];
206 		if (ps->performance >= max_util) {
207 			if (pd_flags & EM_PERF_DOMAIN_SKIP_INEFFICIENCIES &&
208 			    ps->flags & EM_PERF_STATE_INEFFICIENT)
209 				continue;
210 			return i;
211 		}
212 	}
213 
214 	return max_ps;
215 }
216 
217 /**
218  * em_cpu_energy() - Estimates the energy consumed by the CPUs of a
219  *		performance domain
220  * @pd		: performance domain for which energy has to be estimated
221  * @max_util	: highest utilization among CPUs of the domain
222  * @sum_util	: sum of the utilization of all CPUs in the domain
223  * @allowed_cpu_cap	: maximum allowed CPU capacity for the @pd, which
224  *			  might reflect reduced frequency (due to thermal)
225  *
226  * This function must be used only for CPU devices. There is no validation,
227  * i.e. if the EM is a CPU type and has cpumask allocated. It is called from
228  * the scheduler code quite frequently and that is why there is not checks.
229  *
230  * Return: the sum of the energy consumed by the CPUs of the domain assuming
231  * a capacity state satisfying the max utilization of the domain.
232  */
em_cpu_energy(struct em_perf_domain * pd,unsigned long max_util,unsigned long sum_util,unsigned long allowed_cpu_cap)233 static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
234 				unsigned long max_util, unsigned long sum_util,
235 				unsigned long allowed_cpu_cap)
236 {
237 	struct em_perf_table *em_table;
238 	struct em_perf_state *ps;
239 	int i;
240 
241 #ifdef CONFIG_SCHED_DEBUG
242 	WARN_ONCE(!rcu_read_lock_held(), "EM: rcu read lock needed\n");
243 #endif
244 
245 	if (!sum_util)
246 		return 0;
247 
248 	/*
249 	 * In order to predict the performance state, map the utilization of
250 	 * the most utilized CPU of the performance domain to a requested
251 	 * performance, like schedutil. Take also into account that the real
252 	 * performance might be set lower (due to thermal capping). Thus, clamp
253 	 * max utilization to the allowed CPU capacity before calculating
254 	 * effective performance.
255 	 */
256 	max_util = map_util_perf(max_util);
257 	max_util = min(max_util, allowed_cpu_cap);
258 
259 	/*
260 	 * Find the lowest performance state of the Energy Model above the
261 	 * requested performance.
262 	 */
263 	em_table = rcu_dereference(pd->em_table);
264 	i = em_pd_get_efficient_state(em_table->state, pd->nr_perf_states,
265 				      max_util, pd->flags, pd->min_ps,
266 				      pd->max_ps);
267 	ps = &em_table->state[i];
268 
269 	/*
270 	 * The performance (capacity) of a CPU in the domain at the performance
271 	 * state (ps) can be computed as:
272 	 *
273 	 *                     ps->freq * scale_cpu
274 	 *   ps->performance = --------------------                  (1)
275 	 *                         cpu_max_freq
276 	 *
277 	 * So, ignoring the costs of idle states (which are not available in
278 	 * the EM), the energy consumed by this CPU at that performance state
279 	 * is estimated as:
280 	 *
281 	 *             ps->power * cpu_util
282 	 *   cpu_nrg = --------------------                          (2)
283 	 *               ps->performance
284 	 *
285 	 * since 'cpu_util / ps->performance' represents its percentage of busy
286 	 * time.
287 	 *
288 	 *   NOTE: Although the result of this computation actually is in
289 	 *         units of power, it can be manipulated as an energy value
290 	 *         over a scheduling period, since it is assumed to be
291 	 *         constant during that interval.
292 	 *
293 	 * By injecting (1) in (2), 'cpu_nrg' can be re-expressed as a product
294 	 * of two terms:
295 	 *
296 	 *             ps->power * cpu_max_freq
297 	 *   cpu_nrg = ------------------------ * cpu_util           (3)
298 	 *               ps->freq * scale_cpu
299 	 *
300 	 * The first term is static, and is stored in the em_perf_state struct
301 	 * as 'ps->cost'.
302 	 *
303 	 * Since all CPUs of the domain have the same micro-architecture, they
304 	 * share the same 'ps->cost', and the same CPU capacity. Hence, the
305 	 * total energy of the domain (which is the simple sum of the energy of
306 	 * all of its CPUs) can be factorized as:
307 	 *
308 	 *   pd_nrg = ps->cost * \Sum cpu_util                       (4)
309 	 */
310 	return ps->cost * sum_util;
311 }
312 
313 /**
314  * em_pd_nr_perf_states() - Get the number of performance states of a perf.
315  *				domain
316  * @pd		: performance domain for which this must be done
317  *
318  * Return: the number of performance states in the performance domain table
319  */
em_pd_nr_perf_states(struct em_perf_domain * pd)320 static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
321 {
322 	return pd->nr_perf_states;
323 }
324 
325 /**
326  * em_perf_state_from_pd() - Get the performance states table of perf.
327  *				domain
328  * @pd		: performance domain for which this must be done
329  *
330  * To use this function the rcu_read_lock() should be hold. After the usage
331  * of the performance states table is finished, the rcu_read_unlock() should
332  * be called.
333  *
334  * Return: the pointer to performance states table of the performance domain
335  */
336 static inline
em_perf_state_from_pd(struct em_perf_domain * pd)337 struct em_perf_state *em_perf_state_from_pd(struct em_perf_domain *pd)
338 {
339 	return rcu_dereference(pd->em_table)->state;
340 }
341 
342 #else
343 struct em_data_callback {};
344 #define EM_ADV_DATA_CB(_active_power_cb, _cost_cb) { }
345 #define EM_DATA_CB(_active_power_cb) { }
346 #define EM_SET_ACTIVE_POWER_CB(em_cb, cb) do { } while (0)
347 
348 static inline
em_dev_register_perf_domain(struct device * dev,unsigned int nr_states,struct em_data_callback * cb,cpumask_t * span,bool microwatts)349 int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
350 				struct em_data_callback *cb, cpumask_t *span,
351 				bool microwatts)
352 {
353 	return -EINVAL;
354 }
em_dev_unregister_perf_domain(struct device * dev)355 static inline void em_dev_unregister_perf_domain(struct device *dev)
356 {
357 }
em_cpu_get(int cpu)358 static inline struct em_perf_domain *em_cpu_get(int cpu)
359 {
360 	return NULL;
361 }
em_pd_get(struct device * dev)362 static inline struct em_perf_domain *em_pd_get(struct device *dev)
363 {
364 	return NULL;
365 }
em_cpu_energy(struct em_perf_domain * pd,unsigned long max_util,unsigned long sum_util,unsigned long allowed_cpu_cap)366 static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
367 			unsigned long max_util, unsigned long sum_util,
368 			unsigned long allowed_cpu_cap)
369 {
370 	return 0;
371 }
em_pd_nr_perf_states(struct em_perf_domain * pd)372 static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
373 {
374 	return 0;
375 }
376 static inline
em_table_alloc(struct em_perf_domain * pd)377 struct em_perf_table __rcu *em_table_alloc(struct em_perf_domain *pd)
378 {
379 	return NULL;
380 }
em_table_free(struct em_perf_table __rcu * table)381 static inline void em_table_free(struct em_perf_table __rcu *table) {}
382 static inline
em_dev_update_perf_domain(struct device * dev,struct em_perf_table __rcu * new_table)383 int em_dev_update_perf_domain(struct device *dev,
384 			      struct em_perf_table __rcu *new_table)
385 {
386 	return -EINVAL;
387 }
388 static inline
em_perf_state_from_pd(struct em_perf_domain * pd)389 struct em_perf_state *em_perf_state_from_pd(struct em_perf_domain *pd)
390 {
391 	return NULL;
392 }
393 static inline
em_dev_compute_costs(struct device * dev,struct em_perf_state * table,int nr_states)394 int em_dev_compute_costs(struct device *dev, struct em_perf_state *table,
395 			 int nr_states)
396 {
397 	return -EINVAL;
398 }
em_dev_update_chip_binning(struct device * dev)399 static inline int em_dev_update_chip_binning(struct device *dev)
400 {
401 	return -EINVAL;
402 }
403 static inline
em_update_performance_limits(struct em_perf_domain * pd,unsigned long freq_min_khz,unsigned long freq_max_khz)404 int em_update_performance_limits(struct em_perf_domain *pd,
405 		unsigned long freq_min_khz, unsigned long freq_max_khz)
406 {
407 	return -EINVAL;
408 }
409 #endif
410 
411 #endif
412