1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_ENERGY_MODEL_H
3 #define _LINUX_ENERGY_MODEL_H
4 #include <linux/cpumask.h>
5 #include <linux/device.h>
6 #include <linux/jump_label.h>
7 #include <linux/kobject.h>
8 #include <linux/kref.h>
9 #include <linux/rcupdate.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/topology.h>
12 #include <linux/types.h>
13
14 /**
15 * struct em_perf_state - Performance state of a performance domain
16 * @performance: CPU performance (capacity) at a given frequency
17 * @frequency: The frequency in KHz, for consistency with CPUFreq
18 * @power: The power consumed at this level (by 1 CPU or by a registered
19 * device). It can be a total power: static and dynamic.
20 * @cost: The cost coefficient associated with this level, used during
21 * energy calculation. Equal to: power * max_frequency / frequency
22 * @flags: see "em_perf_state flags" description below.
23 */
24 struct em_perf_state {
25 unsigned long performance;
26 unsigned long frequency;
27 unsigned long power;
28 unsigned long cost;
29 unsigned long flags;
30 };
31
32 /*
33 * em_perf_state flags:
34 *
35 * EM_PERF_STATE_INEFFICIENT: The performance state is inefficient. There is
36 * in this em_perf_domain, another performance state with a higher frequency
37 * but a lower or equal power cost. Such inefficient states are ignored when
38 * using em_pd_get_efficient_*() functions.
39 */
40 #define EM_PERF_STATE_INEFFICIENT BIT(0)
41
42 /**
43 * struct em_perf_table - Performance states table
44 * @rcu: RCU used for safe access and destruction
45 * @kref: Reference counter to track the users
46 * @state: List of performance states, in ascending order
47 */
48 struct em_perf_table {
49 struct rcu_head rcu;
50 struct kref kref;
51 struct em_perf_state state[];
52 };
53
54 /**
55 * struct em_perf_domain - Performance domain
56 * @em_table: Pointer to the runtime modifiable em_perf_table
57 * @nr_perf_states: Number of performance states
58 * @min_ps: Minimum available performance state index
59 * @max_ps: Maximum available performance state index
60 * @flags: See "em_perf_domain flags"
61 * @cpus: Cpumask covering the CPUs of the domain. It's here
62 * for performance reasons to avoid potential cache
63 * misses during energy calculations in the scheduler
64 * and simplifies allocating/freeing that memory region.
65 *
66 * In case of CPU device, a "performance domain" represents a group of CPUs
67 * whose performance is scaled together. All CPUs of a performance domain
68 * must have the same micro-architecture. Performance domains often have
69 * a 1-to-1 mapping with CPUFreq policies. In case of other devices the @cpus
70 * field is unused.
71 */
72 struct em_perf_domain {
73 struct em_perf_table __rcu *em_table;
74 int nr_perf_states;
75 int min_ps;
76 int max_ps;
77 unsigned long flags;
78 unsigned long cpus[];
79 };
80
81 /*
82 * em_perf_domain flags:
83 *
84 * EM_PERF_DOMAIN_MICROWATTS: The power values are in micro-Watts or some
85 * other scale.
86 *
87 * EM_PERF_DOMAIN_SKIP_INEFFICIENCIES: Skip inefficient states when estimating
88 * energy consumption.
89 *
90 * EM_PERF_DOMAIN_ARTIFICIAL: The power values are artificial and might be
91 * created by platform missing real power information
92 */
93 #define EM_PERF_DOMAIN_MICROWATTS BIT(0)
94 #define EM_PERF_DOMAIN_SKIP_INEFFICIENCIES BIT(1)
95 #define EM_PERF_DOMAIN_ARTIFICIAL BIT(2)
96
97 #define em_span_cpus(em) (to_cpumask((em)->cpus))
98 #define em_is_artificial(em) ((em)->flags & EM_PERF_DOMAIN_ARTIFICIAL)
99
100 #ifdef CONFIG_ENERGY_MODEL
101 /*
102 * The max power value in micro-Watts. The limit of 64 Watts is set as
103 * a safety net to not overflow multiplications on 32bit platforms. The
104 * 32bit value limit for total Perf Domain power implies a limit of
105 * maximum CPUs in such domain to 64.
106 */
107 #define EM_MAX_POWER (64000000) /* 64 Watts */
108
109 /*
110 * To avoid possible energy estimation overflow on 32bit machines add
111 * limits to number of CPUs in the Perf. Domain.
112 * We are safe on 64bit machine, thus some big number.
113 */
114 #ifdef CONFIG_64BIT
115 #define EM_MAX_NUM_CPUS 4096
116 #else
117 #define EM_MAX_NUM_CPUS 16
118 #endif
119
120 struct em_data_callback {
121 /**
122 * active_power() - Provide power at the next performance state of
123 * a device
124 * @dev : Device for which we do this operation (can be a CPU)
125 * @power : Active power at the performance state
126 * (modified)
127 * @freq : Frequency at the performance state in kHz
128 * (modified)
129 *
130 * active_power() must find the lowest performance state of 'dev' above
131 * 'freq' and update 'power' and 'freq' to the matching active power
132 * and frequency.
133 *
134 * In case of CPUs, the power is the one of a single CPU in the domain,
135 * expressed in micro-Watts or an abstract scale. It is expected to
136 * fit in the [0, EM_MAX_POWER] range.
137 *
138 * Return 0 on success.
139 */
140 int (*active_power)(struct device *dev, unsigned long *power,
141 unsigned long *freq);
142
143 /**
144 * get_cost() - Provide the cost at the given performance state of
145 * a device
146 * @dev : Device for which we do this operation (can be a CPU)
147 * @freq : Frequency at the performance state in kHz
148 * @cost : The cost value for the performance state
149 * (modified)
150 *
151 * In case of CPUs, the cost is the one of a single CPU in the domain.
152 * It is expected to fit in the [0, EM_MAX_POWER] range due to internal
153 * usage in EAS calculation.
154 *
155 * Return 0 on success, or appropriate error value in case of failure.
156 */
157 int (*get_cost)(struct device *dev, unsigned long freq,
158 unsigned long *cost);
159 };
160 #define EM_SET_ACTIVE_POWER_CB(em_cb, cb) ((em_cb).active_power = cb)
161 #define EM_ADV_DATA_CB(_active_power_cb, _cost_cb) \
162 { .active_power = _active_power_cb, \
163 .get_cost = _cost_cb }
164 #define EM_DATA_CB(_active_power_cb) \
165 EM_ADV_DATA_CB(_active_power_cb, NULL)
166
167 struct em_perf_domain *em_cpu_get(int cpu);
168 struct em_perf_domain *em_pd_get(struct device *dev);
169 int em_dev_update_perf_domain(struct device *dev,
170 struct em_perf_table __rcu *new_table);
171 int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
172 struct em_data_callback *cb, cpumask_t *span,
173 bool microwatts);
174 void em_dev_unregister_perf_domain(struct device *dev);
175 struct em_perf_table __rcu *em_table_alloc(struct em_perf_domain *pd);
176 void em_table_free(struct em_perf_table __rcu *table);
177 int em_dev_compute_costs(struct device *dev, struct em_perf_state *table,
178 int nr_states);
179 int em_dev_update_chip_binning(struct device *dev);
180 int em_update_performance_limits(struct em_perf_domain *pd,
181 unsigned long freq_min_khz, unsigned long freq_max_khz);
182
183 /**
184 * em_pd_get_efficient_state() - Get an efficient performance state from the EM
185 * @table: List of performance states, in ascending order
186 * @nr_perf_states: Number of performance states
187 * @max_util: Max utilization to map with the EM
188 * @pd_flags: Performance Domain flags
189 *
190 * It is called from the scheduler code quite frequently and as a consequence
191 * doesn't implement any check.
192 *
193 * Return: An efficient performance state id, high enough to meet @max_util
194 * requirement.
195 */
196 static inline int
em_pd_get_efficient_state(struct em_perf_state * table,int nr_perf_states,unsigned long max_util,unsigned long pd_flags,int min_ps,int max_ps)197 em_pd_get_efficient_state(struct em_perf_state *table, int nr_perf_states,
198 unsigned long max_util, unsigned long pd_flags,
199 int min_ps, int max_ps)
200 {
201 struct em_perf_state *ps;
202 int i;
203
204 for (i = min_ps; i <= max_ps; i++) {
205 ps = &table[i];
206 if (ps->performance >= max_util) {
207 if (pd_flags & EM_PERF_DOMAIN_SKIP_INEFFICIENCIES &&
208 ps->flags & EM_PERF_STATE_INEFFICIENT)
209 continue;
210 return i;
211 }
212 }
213
214 return max_ps;
215 }
216
217 /**
218 * em_cpu_energy() - Estimates the energy consumed by the CPUs of a
219 * performance domain
220 * @pd : performance domain for which energy has to be estimated
221 * @max_util : highest utilization among CPUs of the domain
222 * @sum_util : sum of the utilization of all CPUs in the domain
223 * @allowed_cpu_cap : maximum allowed CPU capacity for the @pd, which
224 * might reflect reduced frequency (due to thermal)
225 *
226 * This function must be used only for CPU devices. There is no validation,
227 * i.e. if the EM is a CPU type and has cpumask allocated. It is called from
228 * the scheduler code quite frequently and that is why there is not checks.
229 *
230 * Return: the sum of the energy consumed by the CPUs of the domain assuming
231 * a capacity state satisfying the max utilization of the domain.
232 */
em_cpu_energy(struct em_perf_domain * pd,unsigned long max_util,unsigned long sum_util,unsigned long allowed_cpu_cap)233 static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
234 unsigned long max_util, unsigned long sum_util,
235 unsigned long allowed_cpu_cap)
236 {
237 struct em_perf_table *em_table;
238 struct em_perf_state *ps;
239 int i;
240
241 #ifdef CONFIG_SCHED_DEBUG
242 WARN_ONCE(!rcu_read_lock_held(), "EM: rcu read lock needed\n");
243 #endif
244
245 if (!sum_util)
246 return 0;
247
248 /*
249 * In order to predict the performance state, map the utilization of
250 * the most utilized CPU of the performance domain to a requested
251 * performance, like schedutil. Take also into account that the real
252 * performance might be set lower (due to thermal capping). Thus, clamp
253 * max utilization to the allowed CPU capacity before calculating
254 * effective performance.
255 */
256 max_util = map_util_perf(max_util);
257 max_util = min(max_util, allowed_cpu_cap);
258
259 /*
260 * Find the lowest performance state of the Energy Model above the
261 * requested performance.
262 */
263 em_table = rcu_dereference(pd->em_table);
264 i = em_pd_get_efficient_state(em_table->state, pd->nr_perf_states,
265 max_util, pd->flags, pd->min_ps,
266 pd->max_ps);
267 ps = &em_table->state[i];
268
269 /*
270 * The performance (capacity) of a CPU in the domain at the performance
271 * state (ps) can be computed as:
272 *
273 * ps->freq * scale_cpu
274 * ps->performance = -------------------- (1)
275 * cpu_max_freq
276 *
277 * So, ignoring the costs of idle states (which are not available in
278 * the EM), the energy consumed by this CPU at that performance state
279 * is estimated as:
280 *
281 * ps->power * cpu_util
282 * cpu_nrg = -------------------- (2)
283 * ps->performance
284 *
285 * since 'cpu_util / ps->performance' represents its percentage of busy
286 * time.
287 *
288 * NOTE: Although the result of this computation actually is in
289 * units of power, it can be manipulated as an energy value
290 * over a scheduling period, since it is assumed to be
291 * constant during that interval.
292 *
293 * By injecting (1) in (2), 'cpu_nrg' can be re-expressed as a product
294 * of two terms:
295 *
296 * ps->power * cpu_max_freq
297 * cpu_nrg = ------------------------ * cpu_util (3)
298 * ps->freq * scale_cpu
299 *
300 * The first term is static, and is stored in the em_perf_state struct
301 * as 'ps->cost'.
302 *
303 * Since all CPUs of the domain have the same micro-architecture, they
304 * share the same 'ps->cost', and the same CPU capacity. Hence, the
305 * total energy of the domain (which is the simple sum of the energy of
306 * all of its CPUs) can be factorized as:
307 *
308 * pd_nrg = ps->cost * \Sum cpu_util (4)
309 */
310 return ps->cost * sum_util;
311 }
312
313 /**
314 * em_pd_nr_perf_states() - Get the number of performance states of a perf.
315 * domain
316 * @pd : performance domain for which this must be done
317 *
318 * Return: the number of performance states in the performance domain table
319 */
em_pd_nr_perf_states(struct em_perf_domain * pd)320 static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
321 {
322 return pd->nr_perf_states;
323 }
324
325 /**
326 * em_perf_state_from_pd() - Get the performance states table of perf.
327 * domain
328 * @pd : performance domain for which this must be done
329 *
330 * To use this function the rcu_read_lock() should be hold. After the usage
331 * of the performance states table is finished, the rcu_read_unlock() should
332 * be called.
333 *
334 * Return: the pointer to performance states table of the performance domain
335 */
336 static inline
em_perf_state_from_pd(struct em_perf_domain * pd)337 struct em_perf_state *em_perf_state_from_pd(struct em_perf_domain *pd)
338 {
339 return rcu_dereference(pd->em_table)->state;
340 }
341
342 #else
343 struct em_data_callback {};
344 #define EM_ADV_DATA_CB(_active_power_cb, _cost_cb) { }
345 #define EM_DATA_CB(_active_power_cb) { }
346 #define EM_SET_ACTIVE_POWER_CB(em_cb, cb) do { } while (0)
347
348 static inline
em_dev_register_perf_domain(struct device * dev,unsigned int nr_states,struct em_data_callback * cb,cpumask_t * span,bool microwatts)349 int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
350 struct em_data_callback *cb, cpumask_t *span,
351 bool microwatts)
352 {
353 return -EINVAL;
354 }
em_dev_unregister_perf_domain(struct device * dev)355 static inline void em_dev_unregister_perf_domain(struct device *dev)
356 {
357 }
em_cpu_get(int cpu)358 static inline struct em_perf_domain *em_cpu_get(int cpu)
359 {
360 return NULL;
361 }
em_pd_get(struct device * dev)362 static inline struct em_perf_domain *em_pd_get(struct device *dev)
363 {
364 return NULL;
365 }
em_cpu_energy(struct em_perf_domain * pd,unsigned long max_util,unsigned long sum_util,unsigned long allowed_cpu_cap)366 static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
367 unsigned long max_util, unsigned long sum_util,
368 unsigned long allowed_cpu_cap)
369 {
370 return 0;
371 }
em_pd_nr_perf_states(struct em_perf_domain * pd)372 static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
373 {
374 return 0;
375 }
376 static inline
em_table_alloc(struct em_perf_domain * pd)377 struct em_perf_table __rcu *em_table_alloc(struct em_perf_domain *pd)
378 {
379 return NULL;
380 }
em_table_free(struct em_perf_table __rcu * table)381 static inline void em_table_free(struct em_perf_table __rcu *table) {}
382 static inline
em_dev_update_perf_domain(struct device * dev,struct em_perf_table __rcu * new_table)383 int em_dev_update_perf_domain(struct device *dev,
384 struct em_perf_table __rcu *new_table)
385 {
386 return -EINVAL;
387 }
388 static inline
em_perf_state_from_pd(struct em_perf_domain * pd)389 struct em_perf_state *em_perf_state_from_pd(struct em_perf_domain *pd)
390 {
391 return NULL;
392 }
393 static inline
em_dev_compute_costs(struct device * dev,struct em_perf_state * table,int nr_states)394 int em_dev_compute_costs(struct device *dev, struct em_perf_state *table,
395 int nr_states)
396 {
397 return -EINVAL;
398 }
em_dev_update_chip_binning(struct device * dev)399 static inline int em_dev_update_chip_binning(struct device *dev)
400 {
401 return -EINVAL;
402 }
403 static inline
em_update_performance_limits(struct em_perf_domain * pd,unsigned long freq_min_khz,unsigned long freq_max_khz)404 int em_update_performance_limits(struct em_perf_domain *pd,
405 unsigned long freq_min_khz, unsigned long freq_max_khz)
406 {
407 return -EINVAL;
408 }
409 #endif
410
411 #endif
412