• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24 #include <linux/android_kabi.h>
25 
26 struct mem_cgroup;
27 struct obj_cgroup;
28 struct page;
29 struct mm_struct;
30 struct kmem_cache;
31 
32 /* Cgroup-specific page state, on top of universal node page state */
33 enum memcg_stat_item {
34 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
35 	MEMCG_SOCK,
36 	MEMCG_PERCPU_B,
37 	MEMCG_VMALLOC,
38 	MEMCG_KMEM,
39 	MEMCG_ZSWAP_B,
40 	MEMCG_ZSWAPPED,
41 	MEMCG_NR_STAT,
42 };
43 
44 enum memcg_memory_event {
45 	MEMCG_LOW,
46 	MEMCG_HIGH,
47 	MEMCG_MAX,
48 	MEMCG_OOM,
49 	MEMCG_OOM_KILL,
50 	MEMCG_OOM_GROUP_KILL,
51 	MEMCG_SWAP_HIGH,
52 	MEMCG_SWAP_MAX,
53 	MEMCG_SWAP_FAIL,
54 	MEMCG_NR_MEMORY_EVENTS,
55 };
56 
57 struct mem_cgroup_reclaim_cookie {
58 	pg_data_t *pgdat;
59 	unsigned int generation;
60 };
61 
62 #ifdef CONFIG_MEMCG
63 
64 #define MEM_CGROUP_ID_SHIFT	16
65 
66 struct mem_cgroup_id {
67 	int id;
68 	refcount_t ref;
69 };
70 
71 /*
72  * Per memcg event counter is incremented at every pagein/pageout. With THP,
73  * it will be incremented by the number of pages. This counter is used
74  * to trigger some periodic events. This is straightforward and better
75  * than using jiffies etc. to handle periodic memcg event.
76  */
77 enum mem_cgroup_events_target {
78 	MEM_CGROUP_TARGET_THRESH,
79 	MEM_CGROUP_TARGET_SOFTLIMIT,
80 	MEM_CGROUP_NTARGETS,
81 };
82 
83 struct memcg_vmstats_percpu;
84 struct memcg_vmstats;
85 
86 struct mem_cgroup_reclaim_iter {
87 	struct mem_cgroup *position;
88 	/* scan generation, increased every round-trip */
89 	unsigned int generation;
90 };
91 
92 /*
93  * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
94  * shrinkers, which have elements charged to this memcg.
95  */
96 struct shrinker_info {
97 	struct rcu_head rcu;
98 	atomic_long_t *nr_deferred;
99 	unsigned long *map;
100 	int map_nr_max;
101 };
102 
103 struct lruvec_stats_percpu {
104 	/* Local (CPU and cgroup) state */
105 	long state[NR_VM_NODE_STAT_ITEMS];
106 
107 	/* Delta calculation for lockless upward propagation */
108 	long state_prev[NR_VM_NODE_STAT_ITEMS];
109 };
110 
111 struct lruvec_stats {
112 	/* Aggregated (CPU and subtree) state */
113 	long state[NR_VM_NODE_STAT_ITEMS];
114 
115 	/* Non-hierarchical (CPU aggregated) state */
116 	long state_local[NR_VM_NODE_STAT_ITEMS];
117 
118 	/* Pending child counts during tree propagation */
119 	long state_pending[NR_VM_NODE_STAT_ITEMS];
120 };
121 
122 /*
123  * per-node information in memory controller.
124  */
125 struct mem_cgroup_per_node {
126 	struct lruvec		lruvec;
127 
128 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
129 	struct lruvec_stats			lruvec_stats;
130 
131 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
132 
133 	struct mem_cgroup_reclaim_iter	iter;
134 
135 	struct shrinker_info __rcu	*shrinker_info;
136 
137 	struct rb_node		tree_node;	/* RB tree node */
138 	unsigned long		usage_in_excess;/* Set to the value by which */
139 						/* the soft limit is exceeded*/
140 	bool			on_tree;
141 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
142 						/* use container_of	   */
143 
144 	ANDROID_BACKPORT_RESERVE(1);
145 };
146 
147 struct mem_cgroup_threshold {
148 	struct eventfd_ctx *eventfd;
149 	unsigned long threshold;
150 };
151 
152 /* For threshold */
153 struct mem_cgroup_threshold_ary {
154 	/* An array index points to threshold just below or equal to usage. */
155 	int current_threshold;
156 	/* Size of entries[] */
157 	unsigned int size;
158 	/* Array of thresholds */
159 	struct mem_cgroup_threshold entries[];
160 };
161 
162 struct mem_cgroup_thresholds {
163 	/* Primary thresholds array */
164 	struct mem_cgroup_threshold_ary *primary;
165 	/*
166 	 * Spare threshold array.
167 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
168 	 * It must be able to store at least primary->size - 1 entries.
169 	 */
170 	struct mem_cgroup_threshold_ary *spare;
171 };
172 
173 /*
174  * Remember four most recent foreign writebacks with dirty pages in this
175  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
176  * one in a given round, we're likely to catch it later if it keeps
177  * foreign-dirtying, so a fairly low count should be enough.
178  *
179  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
180  */
181 #define MEMCG_CGWB_FRN_CNT	4
182 
183 struct memcg_cgwb_frn {
184 	u64 bdi_id;			/* bdi->id of the foreign inode */
185 	int memcg_id;			/* memcg->css.id of foreign inode */
186 	u64 at;				/* jiffies_64 at the time of dirtying */
187 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
188 };
189 
190 /*
191  * Bucket for arbitrarily byte-sized objects charged to a memory
192  * cgroup. The bucket can be reparented in one piece when the cgroup
193  * is destroyed, without having to round up the individual references
194  * of all live memory objects in the wild.
195  */
196 struct obj_cgroup {
197 	struct percpu_ref refcnt;
198 	struct mem_cgroup *memcg;
199 	atomic_t nr_charged_bytes;
200 	union {
201 		struct list_head list; /* protected by objcg_lock */
202 		struct rcu_head rcu;
203 	};
204 };
205 
206 /*
207  * The memory controller data structure. The memory controller controls both
208  * page cache and RSS per cgroup. We would eventually like to provide
209  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
210  * to help the administrator determine what knobs to tune.
211  */
212 struct mem_cgroup {
213 	struct cgroup_subsys_state css;
214 
215 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
216 	struct mem_cgroup_id id;
217 
218 	/* Accounted resources */
219 	struct page_counter memory;		/* Both v1 & v2 */
220 
221 	union {
222 		struct page_counter swap;	/* v2 only */
223 		struct page_counter memsw;	/* v1 only */
224 	};
225 
226 	/* Legacy consumer-oriented counters */
227 	struct page_counter kmem;		/* v1 only */
228 	struct page_counter tcpmem;		/* v1 only */
229 
230 	/* Range enforcement for interrupt charges */
231 	struct work_struct high_work;
232 
233 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
234 	unsigned long zswap_max;
235 #endif
236 
237 	unsigned long soft_limit;
238 
239 	/* vmpressure notifications */
240 	struct vmpressure vmpressure;
241 
242 	/*
243 	 * Should the OOM killer kill all belonging tasks, had it kill one?
244 	 */
245 	bool oom_group;
246 
247 	/* protected by memcg_oom_lock */
248 	bool		oom_lock;
249 	int		under_oom;
250 
251 	int	swappiness;
252 	/* OOM-Killer disable */
253 	int		oom_kill_disable;
254 
255 	/* memory.events and memory.events.local */
256 	struct cgroup_file events_file;
257 	struct cgroup_file events_local_file;
258 
259 	/* handle for "memory.swap.events" */
260 	struct cgroup_file swap_events_file;
261 
262 	/* protect arrays of thresholds */
263 	struct mutex thresholds_lock;
264 
265 	/* thresholds for memory usage. RCU-protected */
266 	struct mem_cgroup_thresholds thresholds;
267 
268 	/* thresholds for mem+swap usage. RCU-protected */
269 	struct mem_cgroup_thresholds memsw_thresholds;
270 
271 	/* For oom notifier event fd */
272 	struct list_head oom_notify;
273 
274 	/*
275 	 * Should we move charges of a task when a task is moved into this
276 	 * mem_cgroup ? And what type of charges should we move ?
277 	 */
278 	unsigned long move_charge_at_immigrate;
279 	/* taken only while moving_account > 0 */
280 	spinlock_t		move_lock;
281 	unsigned long		move_lock_flags;
282 
283 	CACHELINE_PADDING(_pad1_);
284 
285 	/* memory.stat */
286 	struct memcg_vmstats	*vmstats;
287 
288 	/* memory.events */
289 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
290 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
291 
292 	/*
293 	 * Hint of reclaim pressure for socket memroy management. Note
294 	 * that this indicator should NOT be used in legacy cgroup mode
295 	 * where socket memory is accounted/charged separately.
296 	 */
297 	unsigned long		socket_pressure;
298 
299 	/* Legacy tcp memory accounting */
300 	bool			tcpmem_active;
301 	int			tcpmem_pressure;
302 
303 #ifdef CONFIG_MEMCG_KMEM
304 	int kmemcg_id;
305 	struct obj_cgroup __rcu *objcg;
306 	/* list of inherited objcgs, protected by objcg_lock */
307 	struct list_head objcg_list;
308 #endif
309 
310 	CACHELINE_PADDING(_pad2_);
311 
312 	/*
313 	 * set > 0 if pages under this cgroup are moving to other cgroup.
314 	 */
315 	atomic_t		moving_account;
316 	struct task_struct	*move_lock_task;
317 
318 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
319 
320 #ifdef CONFIG_CGROUP_WRITEBACK
321 	struct list_head cgwb_list;
322 	struct wb_domain cgwb_domain;
323 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
324 #endif
325 
326 	/* List of events which userspace want to receive */
327 	struct list_head event_list;
328 	spinlock_t event_list_lock;
329 
330 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
331 	struct deferred_split deferred_split_queue;
332 #endif
333 
334 #ifdef CONFIG_LRU_GEN
335 	/* per-memcg mm_struct list */
336 	struct lru_gen_mm_list mm_list;
337 #endif
338 
339 	// These must be before the flexible array member nodeinfo below
340 	ANDROID_BACKPORT_RESERVE(1);
341 	ANDROID_BACKPORT_RESERVE(2);
342 	ANDROID_OEM_DATA_ARRAY(1, 2);
343 
344 	struct mem_cgroup_per_node *nodeinfo[];
345 };
346 
347 /*
348  * size of first charge trial.
349  * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
350  * workload.
351  */
352 #define MEMCG_CHARGE_BATCH 64U
353 
354 extern struct mem_cgroup *root_mem_cgroup;
355 
356 enum page_memcg_data_flags {
357 	/* page->memcg_data is a pointer to an objcgs vector */
358 	MEMCG_DATA_OBJCGS = (1UL << 0),
359 	/* page has been accounted as a non-slab kernel page */
360 	MEMCG_DATA_KMEM = (1UL << 1),
361 	/* the next bit after the last actual flag */
362 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
363 };
364 
365 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
366 
367 static inline bool folio_memcg_kmem(struct folio *folio);
368 
369 void do_traversal_all_lruvec(void);
370 
371 /*
372  * After the initialization objcg->memcg is always pointing at
373  * a valid memcg, but can be atomically swapped to the parent memcg.
374  *
375  * The caller must ensure that the returned memcg won't be released:
376  * e.g. acquire the rcu_read_lock or css_set_lock.
377  */
obj_cgroup_memcg(struct obj_cgroup * objcg)378 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
379 {
380 	return READ_ONCE(objcg->memcg);
381 }
382 
383 /*
384  * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
385  * @folio: Pointer to the folio.
386  *
387  * Returns a pointer to the memory cgroup associated with the folio,
388  * or NULL. This function assumes that the folio is known to have a
389  * proper memory cgroup pointer. It's not safe to call this function
390  * against some type of folios, e.g. slab folios or ex-slab folios or
391  * kmem folios.
392  */
__folio_memcg(struct folio * folio)393 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
394 {
395 	unsigned long memcg_data = folio->memcg_data;
396 
397 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
398 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
399 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
400 
401 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
402 }
403 
404 /*
405  * __folio_objcg - get the object cgroup associated with a kmem folio.
406  * @folio: Pointer to the folio.
407  *
408  * Returns a pointer to the object cgroup associated with the folio,
409  * or NULL. This function assumes that the folio is known to have a
410  * proper object cgroup pointer. It's not safe to call this function
411  * against some type of folios, e.g. slab folios or ex-slab folios or
412  * LRU folios.
413  */
__folio_objcg(struct folio * folio)414 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
415 {
416 	unsigned long memcg_data = folio->memcg_data;
417 
418 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
419 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
420 	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
421 
422 	return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
423 }
424 
425 /*
426  * folio_memcg - Get the memory cgroup associated with a folio.
427  * @folio: Pointer to the folio.
428  *
429  * Returns a pointer to the memory cgroup associated with the folio,
430  * or NULL. This function assumes that the folio is known to have a
431  * proper memory cgroup pointer. It's not safe to call this function
432  * against some type of folios, e.g. slab folios or ex-slab folios.
433  *
434  * For a non-kmem folio any of the following ensures folio and memcg binding
435  * stability:
436  *
437  * - the folio lock
438  * - LRU isolation
439  * - folio_memcg_lock()
440  * - exclusive reference
441  * - mem_cgroup_trylock_pages()
442  *
443  * For a kmem folio a caller should hold an rcu read lock to protect memcg
444  * associated with a kmem folio from being released.
445  */
folio_memcg(struct folio * folio)446 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
447 {
448 	if (folio_memcg_kmem(folio))
449 		return obj_cgroup_memcg(__folio_objcg(folio));
450 	return __folio_memcg(folio);
451 }
452 
page_memcg(struct page * page)453 static inline struct mem_cgroup *page_memcg(struct page *page)
454 {
455 	return folio_memcg(page_folio(page));
456 }
457 
458 /**
459  * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
460  * @folio: Pointer to the folio.
461  *
462  * This function assumes that the folio is known to have a
463  * proper memory cgroup pointer. It's not safe to call this function
464  * against some type of folios, e.g. slab folios or ex-slab folios.
465  *
466  * Return: A pointer to the memory cgroup associated with the folio,
467  * or NULL.
468  */
folio_memcg_rcu(struct folio * folio)469 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
470 {
471 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
472 
473 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
474 	WARN_ON_ONCE(!rcu_read_lock_held());
475 
476 	if (memcg_data & MEMCG_DATA_KMEM) {
477 		struct obj_cgroup *objcg;
478 
479 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
480 		return obj_cgroup_memcg(objcg);
481 	}
482 
483 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
484 }
485 
486 /*
487  * folio_memcg_check - Get the memory cgroup associated with a folio.
488  * @folio: Pointer to the folio.
489  *
490  * Returns a pointer to the memory cgroup associated with the folio,
491  * or NULL. This function unlike folio_memcg() can take any folio
492  * as an argument. It has to be used in cases when it's not known if a folio
493  * has an associated memory cgroup pointer or an object cgroups vector or
494  * an object cgroup.
495  *
496  * For a non-kmem folio any of the following ensures folio and memcg binding
497  * stability:
498  *
499  * - the folio lock
500  * - LRU isolation
501  * - lock_folio_memcg()
502  * - exclusive reference
503  * - mem_cgroup_trylock_pages()
504  *
505  * For a kmem folio a caller should hold an rcu read lock to protect memcg
506  * associated with a kmem folio from being released.
507  */
folio_memcg_check(struct folio * folio)508 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
509 {
510 	/*
511 	 * Because folio->memcg_data might be changed asynchronously
512 	 * for slabs, READ_ONCE() should be used here.
513 	 */
514 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
515 
516 	if (memcg_data & MEMCG_DATA_OBJCGS)
517 		return NULL;
518 
519 	if (memcg_data & MEMCG_DATA_KMEM) {
520 		struct obj_cgroup *objcg;
521 
522 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
523 		return obj_cgroup_memcg(objcg);
524 	}
525 
526 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
527 }
528 
page_memcg_check(struct page * page)529 static inline struct mem_cgroup *page_memcg_check(struct page *page)
530 {
531 	if (PageTail(page))
532 		return NULL;
533 	return folio_memcg_check((struct folio *)page);
534 }
535 
get_mem_cgroup_from_objcg(struct obj_cgroup * objcg)536 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
537 {
538 	struct mem_cgroup *memcg;
539 
540 	rcu_read_lock();
541 retry:
542 	memcg = obj_cgroup_memcg(objcg);
543 	if (unlikely(!css_tryget(&memcg->css)))
544 		goto retry;
545 	rcu_read_unlock();
546 
547 	return memcg;
548 }
549 
550 #ifdef CONFIG_MEMCG_KMEM
551 /*
552  * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
553  * @folio: Pointer to the folio.
554  *
555  * Checks if the folio has MemcgKmem flag set. The caller must ensure
556  * that the folio has an associated memory cgroup. It's not safe to call
557  * this function against some types of folios, e.g. slab folios.
558  */
folio_memcg_kmem(struct folio * folio)559 static inline bool folio_memcg_kmem(struct folio *folio)
560 {
561 	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
562 	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
563 	return folio->memcg_data & MEMCG_DATA_KMEM;
564 }
565 
566 
567 #else
folio_memcg_kmem(struct folio * folio)568 static inline bool folio_memcg_kmem(struct folio *folio)
569 {
570 	return false;
571 }
572 
573 #endif
574 
PageMemcgKmem(struct page * page)575 static inline bool PageMemcgKmem(struct page *page)
576 {
577 	return folio_memcg_kmem(page_folio(page));
578 }
579 
mem_cgroup_is_root(struct mem_cgroup * memcg)580 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
581 {
582 	return (memcg == root_mem_cgroup);
583 }
584 
mem_cgroup_disabled(void)585 static inline bool mem_cgroup_disabled(void)
586 {
587 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
588 }
589 
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)590 static inline void mem_cgroup_protection(struct mem_cgroup *root,
591 					 struct mem_cgroup *memcg,
592 					 unsigned long *min,
593 					 unsigned long *low)
594 {
595 	*min = *low = 0;
596 
597 	if (mem_cgroup_disabled())
598 		return;
599 
600 	/*
601 	 * There is no reclaim protection applied to a targeted reclaim.
602 	 * We are special casing this specific case here because
603 	 * mem_cgroup_calculate_protection is not robust enough to keep
604 	 * the protection invariant for calculated effective values for
605 	 * parallel reclaimers with different reclaim target. This is
606 	 * especially a problem for tail memcgs (as they have pages on LRU)
607 	 * which would want to have effective values 0 for targeted reclaim
608 	 * but a different value for external reclaim.
609 	 *
610 	 * Example
611 	 * Let's have global and A's reclaim in parallel:
612 	 *  |
613 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
614 	 *  |\
615 	 *  | C (low = 1G, usage = 2.5G)
616 	 *  B (low = 1G, usage = 0.5G)
617 	 *
618 	 * For the global reclaim
619 	 * A.elow = A.low
620 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
621 	 * C.elow = min(C.usage, C.low)
622 	 *
623 	 * With the effective values resetting we have A reclaim
624 	 * A.elow = 0
625 	 * B.elow = B.low
626 	 * C.elow = C.low
627 	 *
628 	 * If the global reclaim races with A's reclaim then
629 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
630 	 * is possible and reclaiming B would be violating the protection.
631 	 *
632 	 */
633 	if (root == memcg)
634 		return;
635 
636 	*min = READ_ONCE(memcg->memory.emin);
637 	*low = READ_ONCE(memcg->memory.elow);
638 }
639 
640 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
641 				     struct mem_cgroup *memcg);
642 
mem_cgroup_unprotected(struct mem_cgroup * target,struct mem_cgroup * memcg)643 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
644 					  struct mem_cgroup *memcg)
645 {
646 	/*
647 	 * The root memcg doesn't account charges, and doesn't support
648 	 * protection. The target memcg's protection is ignored, see
649 	 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
650 	 */
651 	return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
652 		memcg == target;
653 }
654 
mem_cgroup_below_low(struct mem_cgroup * target,struct mem_cgroup * memcg)655 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
656 					struct mem_cgroup *memcg)
657 {
658 	if (mem_cgroup_unprotected(target, memcg))
659 		return false;
660 
661 	return READ_ONCE(memcg->memory.elow) >=
662 		page_counter_read(&memcg->memory);
663 }
664 
mem_cgroup_below_min(struct mem_cgroup * target,struct mem_cgroup * memcg)665 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
666 					struct mem_cgroup *memcg)
667 {
668 	if (mem_cgroup_unprotected(target, memcg))
669 		return false;
670 
671 	return READ_ONCE(memcg->memory.emin) >=
672 		page_counter_read(&memcg->memory);
673 }
674 
675 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
676 
677 /**
678  * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
679  * @folio: Folio to charge.
680  * @mm: mm context of the allocating task.
681  * @gfp: Reclaim mode.
682  *
683  * Try to charge @folio to the memcg that @mm belongs to, reclaiming
684  * pages according to @gfp if necessary.  If @mm is NULL, try to
685  * charge to the active memcg.
686  *
687  * Do not use this for folios allocated for swapin.
688  *
689  * Return: 0 on success. Otherwise, an error code is returned.
690  */
mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)691 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
692 				    gfp_t gfp)
693 {
694 	if (mem_cgroup_disabled())
695 		return 0;
696 	return __mem_cgroup_charge(folio, mm, gfp);
697 }
698 
699 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
700 				  gfp_t gfp, swp_entry_t entry);
701 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
702 
703 void __mem_cgroup_uncharge(struct folio *folio);
704 
705 /**
706  * mem_cgroup_uncharge - Uncharge a folio.
707  * @folio: Folio to uncharge.
708  *
709  * Uncharge a folio previously charged with mem_cgroup_charge().
710  */
mem_cgroup_uncharge(struct folio * folio)711 static inline void mem_cgroup_uncharge(struct folio *folio)
712 {
713 	if (mem_cgroup_disabled())
714 		return;
715 	__mem_cgroup_uncharge(folio);
716 }
717 
718 void __mem_cgroup_uncharge_list(struct list_head *page_list);
mem_cgroup_uncharge_list(struct list_head * page_list)719 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
720 {
721 	if (mem_cgroup_disabled())
722 		return;
723 	__mem_cgroup_uncharge_list(page_list);
724 }
725 
726 void mem_cgroup_migrate(struct folio *old, struct folio *new);
727 
728 /**
729  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
730  * @memcg: memcg of the wanted lruvec
731  * @pgdat: pglist_data
732  *
733  * Returns the lru list vector holding pages for a given @memcg &
734  * @pgdat combination. This can be the node lruvec, if the memory
735  * controller is disabled.
736  */
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)737 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
738 					       struct pglist_data *pgdat)
739 {
740 	struct mem_cgroup_per_node *mz;
741 	struct lruvec *lruvec;
742 
743 	if (mem_cgroup_disabled()) {
744 		lruvec = &pgdat->__lruvec;
745 		goto out;
746 	}
747 
748 	if (!memcg)
749 		memcg = root_mem_cgroup;
750 
751 	mz = memcg->nodeinfo[pgdat->node_id];
752 	lruvec = &mz->lruvec;
753 out:
754 	/*
755 	 * Since a node can be onlined after the mem_cgroup was created,
756 	 * we have to be prepared to initialize lruvec->pgdat here;
757 	 * and if offlined then reonlined, we need to reinitialize it.
758 	 */
759 	if (unlikely(lruvec->pgdat != pgdat))
760 		lruvec->pgdat = pgdat;
761 	return lruvec;
762 }
763 
764 /**
765  * folio_lruvec - return lruvec for isolating/putting an LRU folio
766  * @folio: Pointer to the folio.
767  *
768  * This function relies on folio->mem_cgroup being stable.
769  */
folio_lruvec(struct folio * folio)770 static inline struct lruvec *folio_lruvec(struct folio *folio)
771 {
772 	struct mem_cgroup *memcg = folio_memcg(folio);
773 
774 	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
775 	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
776 }
777 
778 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
779 
780 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
781 
782 struct lruvec *folio_lruvec_lock(struct folio *folio);
783 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
784 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
785 						unsigned long *flags);
786 
787 #ifdef CONFIG_DEBUG_VM
788 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
789 #else
790 static inline
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)791 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
792 {
793 }
794 #endif
795 
796 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)797 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
798 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
799 }
800 
obj_cgroup_tryget(struct obj_cgroup * objcg)801 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
802 {
803 	return percpu_ref_tryget(&objcg->refcnt);
804 }
805 
obj_cgroup_get(struct obj_cgroup * objcg)806 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
807 {
808 	percpu_ref_get(&objcg->refcnt);
809 }
810 
obj_cgroup_get_many(struct obj_cgroup * objcg,unsigned long nr)811 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
812 				       unsigned long nr)
813 {
814 	percpu_ref_get_many(&objcg->refcnt, nr);
815 }
816 
obj_cgroup_put(struct obj_cgroup * objcg)817 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
818 {
819 	percpu_ref_put(&objcg->refcnt);
820 }
821 
mem_cgroup_tryget(struct mem_cgroup * memcg)822 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
823 {
824 	return !memcg || css_tryget(&memcg->css);
825 }
826 
mem_cgroup_put(struct mem_cgroup * memcg)827 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
828 {
829 	if (memcg)
830 		css_put(&memcg->css);
831 }
832 
833 #define mem_cgroup_from_counter(counter, member)	\
834 	container_of(counter, struct mem_cgroup, member)
835 
836 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
837 				   struct mem_cgroup *,
838 				   struct mem_cgroup_reclaim_cookie *);
839 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
840 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
841 			   int (*)(struct task_struct *, void *), void *arg);
842 
mem_cgroup_id(struct mem_cgroup * memcg)843 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
844 {
845 	if (mem_cgroup_disabled())
846 		return 0;
847 
848 	return memcg->id.id;
849 }
850 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
851 
852 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_ino(struct mem_cgroup * memcg)853 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
854 {
855 	return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
856 }
857 
858 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
859 #endif
860 
mem_cgroup_from_seq(struct seq_file * m)861 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
862 {
863 	return mem_cgroup_from_css(seq_css(m));
864 }
865 
lruvec_memcg(struct lruvec * lruvec)866 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
867 {
868 	struct mem_cgroup_per_node *mz;
869 
870 	if (mem_cgroup_disabled())
871 		return NULL;
872 
873 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
874 	return mz->memcg;
875 }
876 
877 /**
878  * parent_mem_cgroup - find the accounting parent of a memcg
879  * @memcg: memcg whose parent to find
880  *
881  * Returns the parent memcg, or NULL if this is the root.
882  */
parent_mem_cgroup(struct mem_cgroup * memcg)883 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
884 {
885 	return mem_cgroup_from_css(memcg->css.parent);
886 }
887 
mem_cgroup_is_descendant(struct mem_cgroup * memcg,struct mem_cgroup * root)888 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
889 			      struct mem_cgroup *root)
890 {
891 	if (root == memcg)
892 		return true;
893 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
894 }
895 
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)896 static inline bool mm_match_cgroup(struct mm_struct *mm,
897 				   struct mem_cgroup *memcg)
898 {
899 	struct mem_cgroup *task_memcg;
900 	bool match = false;
901 
902 	rcu_read_lock();
903 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
904 	if (task_memcg)
905 		match = mem_cgroup_is_descendant(task_memcg, memcg);
906 	rcu_read_unlock();
907 	return match;
908 }
909 
910 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
911 ino_t page_cgroup_ino(struct page *page);
912 
mem_cgroup_online(struct mem_cgroup * memcg)913 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
914 {
915 	if (mem_cgroup_disabled())
916 		return true;
917 	return !!(memcg->css.flags & CSS_ONLINE);
918 }
919 
920 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
921 		int zid, int nr_pages);
922 
923 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)924 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
925 		enum lru_list lru, int zone_idx)
926 {
927 	struct mem_cgroup_per_node *mz;
928 
929 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
930 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
931 }
932 
933 void mem_cgroup_handle_over_high(gfp_t gfp_mask);
934 
935 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
936 
937 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
938 
939 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
940 				struct task_struct *p);
941 
942 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
943 
mem_cgroup_enter_user_fault(void)944 static inline void mem_cgroup_enter_user_fault(void)
945 {
946 	WARN_ON(current->in_user_fault);
947 	current->in_user_fault = 1;
948 }
949 
mem_cgroup_exit_user_fault(void)950 static inline void mem_cgroup_exit_user_fault(void)
951 {
952 	WARN_ON(!current->in_user_fault);
953 	current->in_user_fault = 0;
954 }
955 
task_in_memcg_oom(struct task_struct * p)956 static inline bool task_in_memcg_oom(struct task_struct *p)
957 {
958 	return p->memcg_in_oom;
959 }
960 
961 bool mem_cgroup_oom_synchronize(bool wait);
962 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
963 					    struct mem_cgroup *oom_domain);
964 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
965 
966 void folio_memcg_lock(struct folio *folio);
967 void folio_memcg_unlock(struct folio *folio);
968 
969 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
970 
971 /* try to stablize folio_memcg() for all the pages in a memcg */
mem_cgroup_trylock_pages(struct mem_cgroup * memcg)972 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
973 {
974 	rcu_read_lock();
975 
976 	if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
977 		return true;
978 
979 	rcu_read_unlock();
980 	return false;
981 }
982 
mem_cgroup_unlock_pages(void)983 static inline void mem_cgroup_unlock_pages(void)
984 {
985 	rcu_read_unlock();
986 }
987 
988 /* idx can be of type enum memcg_stat_item or node_stat_item */
mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)989 static inline void mod_memcg_state(struct mem_cgroup *memcg,
990 				   int idx, int val)
991 {
992 	unsigned long flags;
993 
994 	local_irq_save(flags);
995 	__mod_memcg_state(memcg, idx, val);
996 	local_irq_restore(flags);
997 }
998 
mod_memcg_page_state(struct page * page,int idx,int val)999 static inline void mod_memcg_page_state(struct page *page,
1000 					int idx, int val)
1001 {
1002 	struct mem_cgroup *memcg;
1003 
1004 	if (mem_cgroup_disabled())
1005 		return;
1006 
1007 	rcu_read_lock();
1008 	memcg = page_memcg(page);
1009 	if (memcg)
1010 		mod_memcg_state(memcg, idx, val);
1011 	rcu_read_unlock();
1012 }
1013 
1014 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
1015 
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1016 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1017 					      enum node_stat_item idx)
1018 {
1019 	struct mem_cgroup_per_node *pn;
1020 	long x;
1021 
1022 	if (mem_cgroup_disabled())
1023 		return node_page_state(lruvec_pgdat(lruvec), idx);
1024 
1025 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1026 	x = READ_ONCE(pn->lruvec_stats.state[idx]);
1027 #ifdef CONFIG_SMP
1028 	if (x < 0)
1029 		x = 0;
1030 #endif
1031 	return x;
1032 }
1033 
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1034 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1035 						    enum node_stat_item idx)
1036 {
1037 	struct mem_cgroup_per_node *pn;
1038 	long x = 0;
1039 
1040 	if (mem_cgroup_disabled())
1041 		return node_page_state(lruvec_pgdat(lruvec), idx);
1042 
1043 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1044 	x = READ_ONCE(pn->lruvec_stats.state_local[idx]);
1045 #ifdef CONFIG_SMP
1046 	if (x < 0)
1047 		x = 0;
1048 #endif
1049 	return x;
1050 }
1051 
1052 void mem_cgroup_flush_stats(struct mem_cgroup *memcg);
1053 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg);
1054 
1055 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1056 			      int val);
1057 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1058 
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1059 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1060 					 int val)
1061 {
1062 	unsigned long flags;
1063 
1064 	local_irq_save(flags);
1065 	__mod_lruvec_kmem_state(p, idx, val);
1066 	local_irq_restore(flags);
1067 }
1068 
mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1069 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1070 					  enum node_stat_item idx, int val)
1071 {
1072 	unsigned long flags;
1073 
1074 	local_irq_save(flags);
1075 	__mod_memcg_lruvec_state(lruvec, idx, val);
1076 	local_irq_restore(flags);
1077 }
1078 
1079 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1080 			  unsigned long count);
1081 
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1082 static inline void count_memcg_events(struct mem_cgroup *memcg,
1083 				      enum vm_event_item idx,
1084 				      unsigned long count)
1085 {
1086 	unsigned long flags;
1087 
1088 	local_irq_save(flags);
1089 	__count_memcg_events(memcg, idx, count);
1090 	local_irq_restore(flags);
1091 }
1092 
count_memcg_folio_events(struct folio * folio,enum vm_event_item idx,unsigned long nr)1093 static inline void count_memcg_folio_events(struct folio *folio,
1094 		enum vm_event_item idx, unsigned long nr)
1095 {
1096 	struct mem_cgroup *memcg = folio_memcg(folio);
1097 
1098 	if (memcg)
1099 		count_memcg_events(memcg, idx, nr);
1100 }
1101 
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1102 static inline void count_memcg_event_mm(struct mm_struct *mm,
1103 					enum vm_event_item idx)
1104 {
1105 	struct mem_cgroup *memcg;
1106 
1107 	if (mem_cgroup_disabled())
1108 		return;
1109 
1110 	rcu_read_lock();
1111 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1112 	if (likely(memcg))
1113 		count_memcg_events(memcg, idx, 1);
1114 	rcu_read_unlock();
1115 }
1116 
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1117 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1118 				      enum memcg_memory_event event)
1119 {
1120 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1121 			  event == MEMCG_SWAP_FAIL;
1122 
1123 	atomic_long_inc(&memcg->memory_events_local[event]);
1124 	if (!swap_event)
1125 		cgroup_file_notify(&memcg->events_local_file);
1126 
1127 	do {
1128 		atomic_long_inc(&memcg->memory_events[event]);
1129 		if (swap_event)
1130 			cgroup_file_notify(&memcg->swap_events_file);
1131 		else
1132 			cgroup_file_notify(&memcg->events_file);
1133 
1134 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1135 			break;
1136 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1137 			break;
1138 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1139 		 !mem_cgroup_is_root(memcg));
1140 }
1141 
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1142 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1143 					 enum memcg_memory_event event)
1144 {
1145 	struct mem_cgroup *memcg;
1146 
1147 	if (mem_cgroup_disabled())
1148 		return;
1149 
1150 	rcu_read_lock();
1151 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1152 	if (likely(memcg))
1153 		memcg_memory_event(memcg, event);
1154 	rcu_read_unlock();
1155 }
1156 
1157 void split_page_memcg(struct page *head, unsigned int nr);
1158 void folio_copy_memcg(struct folio *folio);
1159 
1160 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1161 						gfp_t gfp_mask,
1162 						unsigned long *total_scanned);
1163 
1164 #else /* CONFIG_MEMCG */
1165 
1166 #define MEM_CGROUP_ID_SHIFT	0
1167 
folio_memcg(struct folio * folio)1168 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1169 {
1170 	return NULL;
1171 }
1172 
page_memcg(struct page * page)1173 static inline struct mem_cgroup *page_memcg(struct page *page)
1174 {
1175 	return NULL;
1176 }
1177 
folio_memcg_rcu(struct folio * folio)1178 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1179 {
1180 	WARN_ON_ONCE(!rcu_read_lock_held());
1181 	return NULL;
1182 }
1183 
folio_memcg_check(struct folio * folio)1184 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1185 {
1186 	return NULL;
1187 }
1188 
page_memcg_check(struct page * page)1189 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1190 {
1191 	return NULL;
1192 }
1193 
folio_memcg_kmem(struct folio * folio)1194 static inline bool folio_memcg_kmem(struct folio *folio)
1195 {
1196 	return false;
1197 }
1198 
PageMemcgKmem(struct page * page)1199 static inline bool PageMemcgKmem(struct page *page)
1200 {
1201 	return false;
1202 }
1203 
do_traversal_all_lruvec(void)1204 static inline void do_traversal_all_lruvec(void)
1205 {
1206 }
1207 
mem_cgroup_is_root(struct mem_cgroup * memcg)1208 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1209 {
1210 	return true;
1211 }
1212 
mem_cgroup_disabled(void)1213 static inline bool mem_cgroup_disabled(void)
1214 {
1215 	return true;
1216 }
1217 
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1218 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1219 				      enum memcg_memory_event event)
1220 {
1221 }
1222 
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1223 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1224 					 enum memcg_memory_event event)
1225 {
1226 }
1227 
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)1228 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1229 					 struct mem_cgroup *memcg,
1230 					 unsigned long *min,
1231 					 unsigned long *low)
1232 {
1233 	*min = *low = 0;
1234 }
1235 
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)1236 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1237 						   struct mem_cgroup *memcg)
1238 {
1239 }
1240 
mem_cgroup_unprotected(struct mem_cgroup * target,struct mem_cgroup * memcg)1241 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1242 					  struct mem_cgroup *memcg)
1243 {
1244 	return true;
1245 }
mem_cgroup_below_low(struct mem_cgroup * target,struct mem_cgroup * memcg)1246 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1247 					struct mem_cgroup *memcg)
1248 {
1249 	return false;
1250 }
1251 
mem_cgroup_below_min(struct mem_cgroup * target,struct mem_cgroup * memcg)1252 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1253 					struct mem_cgroup *memcg)
1254 {
1255 	return false;
1256 }
1257 
mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)1258 static inline int mem_cgroup_charge(struct folio *folio,
1259 		struct mm_struct *mm, gfp_t gfp)
1260 {
1261 	return 0;
1262 }
1263 
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)1264 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1265 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1266 {
1267 	return 0;
1268 }
1269 
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)1270 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1271 {
1272 }
1273 
mem_cgroup_uncharge(struct folio * folio)1274 static inline void mem_cgroup_uncharge(struct folio *folio)
1275 {
1276 }
1277 
mem_cgroup_uncharge_list(struct list_head * page_list)1278 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1279 {
1280 }
1281 
mem_cgroup_migrate(struct folio * old,struct folio * new)1282 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1283 {
1284 }
1285 
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)1286 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1287 					       struct pglist_data *pgdat)
1288 {
1289 	return &pgdat->__lruvec;
1290 }
1291 
folio_lruvec(struct folio * folio)1292 static inline struct lruvec *folio_lruvec(struct folio *folio)
1293 {
1294 	struct pglist_data *pgdat = folio_pgdat(folio);
1295 	return &pgdat->__lruvec;
1296 }
1297 
1298 static inline
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1299 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1300 {
1301 }
1302 
parent_mem_cgroup(struct mem_cgroup * memcg)1303 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1304 {
1305 	return NULL;
1306 }
1307 
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)1308 static inline bool mm_match_cgroup(struct mm_struct *mm,
1309 		struct mem_cgroup *memcg)
1310 {
1311 	return true;
1312 }
1313 
get_mem_cgroup_from_mm(struct mm_struct * mm)1314 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1315 {
1316 	return NULL;
1317 }
1318 
1319 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)1320 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1321 {
1322 	return NULL;
1323 }
1324 
obj_cgroup_put(struct obj_cgroup * objcg)1325 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1326 {
1327 }
1328 
mem_cgroup_tryget(struct mem_cgroup * memcg)1329 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1330 {
1331 	return true;
1332 }
1333 
mem_cgroup_put(struct mem_cgroup * memcg)1334 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1335 {
1336 }
1337 
folio_lruvec_lock(struct folio * folio)1338 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1339 {
1340 	struct pglist_data *pgdat = folio_pgdat(folio);
1341 
1342 	spin_lock(&pgdat->__lruvec.lru_lock);
1343 	return &pgdat->__lruvec;
1344 }
1345 
folio_lruvec_lock_irq(struct folio * folio)1346 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1347 {
1348 	struct pglist_data *pgdat = folio_pgdat(folio);
1349 
1350 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1351 	return &pgdat->__lruvec;
1352 }
1353 
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flagsp)1354 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1355 		unsigned long *flagsp)
1356 {
1357 	struct pglist_data *pgdat = folio_pgdat(folio);
1358 
1359 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1360 	return &pgdat->__lruvec;
1361 }
1362 
1363 static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1364 mem_cgroup_iter(struct mem_cgroup *root,
1365 		struct mem_cgroup *prev,
1366 		struct mem_cgroup_reclaim_cookie *reclaim)
1367 {
1368 	return NULL;
1369 }
1370 
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1371 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1372 					 struct mem_cgroup *prev)
1373 {
1374 }
1375 
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1376 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1377 		int (*fn)(struct task_struct *, void *), void *arg)
1378 {
1379 }
1380 
mem_cgroup_id(struct mem_cgroup * memcg)1381 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1382 {
1383 	return 0;
1384 }
1385 
mem_cgroup_from_id(unsigned short id)1386 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1387 {
1388 	WARN_ON_ONCE(id);
1389 	/* XXX: This should always return root_mem_cgroup */
1390 	return NULL;
1391 }
1392 
1393 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_ino(struct mem_cgroup * memcg)1394 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1395 {
1396 	return 0;
1397 }
1398 
mem_cgroup_get_from_ino(unsigned long ino)1399 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1400 {
1401 	return NULL;
1402 }
1403 #endif
1404 
mem_cgroup_from_seq(struct seq_file * m)1405 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1406 {
1407 	return NULL;
1408 }
1409 
lruvec_memcg(struct lruvec * lruvec)1410 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1411 {
1412 	return NULL;
1413 }
1414 
mem_cgroup_online(struct mem_cgroup * memcg)1415 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1416 {
1417 	return true;
1418 }
1419 
1420 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)1421 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1422 		enum lru_list lru, int zone_idx)
1423 {
1424 	return 0;
1425 }
1426 
mem_cgroup_get_max(struct mem_cgroup * memcg)1427 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1428 {
1429 	return 0;
1430 }
1431 
mem_cgroup_size(struct mem_cgroup * memcg)1432 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1433 {
1434 	return 0;
1435 }
1436 
1437 static inline void
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1438 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1439 {
1440 }
1441 
1442 static inline void
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1443 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1444 {
1445 }
1446 
folio_memcg_lock(struct folio * folio)1447 static inline void folio_memcg_lock(struct folio *folio)
1448 {
1449 }
1450 
folio_memcg_unlock(struct folio * folio)1451 static inline void folio_memcg_unlock(struct folio *folio)
1452 {
1453 }
1454 
mem_cgroup_trylock_pages(struct mem_cgroup * memcg)1455 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1456 {
1457 	/* to match folio_memcg_rcu() */
1458 	rcu_read_lock();
1459 	return true;
1460 }
1461 
mem_cgroup_unlock_pages(void)1462 static inline void mem_cgroup_unlock_pages(void)
1463 {
1464 	rcu_read_unlock();
1465 }
1466 
mem_cgroup_handle_over_high(gfp_t gfp_mask)1467 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1468 {
1469 }
1470 
mem_cgroup_enter_user_fault(void)1471 static inline void mem_cgroup_enter_user_fault(void)
1472 {
1473 }
1474 
mem_cgroup_exit_user_fault(void)1475 static inline void mem_cgroup_exit_user_fault(void)
1476 {
1477 }
1478 
task_in_memcg_oom(struct task_struct * p)1479 static inline bool task_in_memcg_oom(struct task_struct *p)
1480 {
1481 	return false;
1482 }
1483 
mem_cgroup_oom_synchronize(bool wait)1484 static inline bool mem_cgroup_oom_synchronize(bool wait)
1485 {
1486 	return false;
1487 }
1488 
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1489 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1490 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1491 {
1492 	return NULL;
1493 }
1494 
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1495 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1496 {
1497 }
1498 
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1499 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1500 				     int idx,
1501 				     int nr)
1502 {
1503 }
1504 
mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1505 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1506 				   int idx,
1507 				   int nr)
1508 {
1509 }
1510 
mod_memcg_page_state(struct page * page,int idx,int val)1511 static inline void mod_memcg_page_state(struct page *page,
1512 					int idx, int val)
1513 {
1514 }
1515 
memcg_page_state(struct mem_cgroup * memcg,int idx)1516 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1517 {
1518 	return 0;
1519 }
1520 
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1521 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1522 					      enum node_stat_item idx)
1523 {
1524 	return node_page_state(lruvec_pgdat(lruvec), idx);
1525 }
1526 
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1527 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1528 						    enum node_stat_item idx)
1529 {
1530 	return node_page_state(lruvec_pgdat(lruvec), idx);
1531 }
1532 
mem_cgroup_flush_stats(struct mem_cgroup * memcg)1533 static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
1534 {
1535 }
1536 
mem_cgroup_flush_stats_ratelimited(struct mem_cgroup * memcg)1537 static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
1538 {
1539 }
1540 
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1541 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1542 					    enum node_stat_item idx, int val)
1543 {
1544 }
1545 
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1546 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1547 					   int val)
1548 {
1549 	struct page *page = virt_to_head_page(p);
1550 
1551 	__mod_node_page_state(page_pgdat(page), idx, val);
1552 }
1553 
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1554 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1555 					 int val)
1556 {
1557 	struct page *page = virt_to_head_page(p);
1558 
1559 	mod_node_page_state(page_pgdat(page), idx, val);
1560 }
1561 
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1562 static inline void count_memcg_events(struct mem_cgroup *memcg,
1563 				      enum vm_event_item idx,
1564 				      unsigned long count)
1565 {
1566 }
1567 
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1568 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1569 					enum vm_event_item idx,
1570 					unsigned long count)
1571 {
1572 }
1573 
count_memcg_folio_events(struct folio * folio,enum vm_event_item idx,unsigned long nr)1574 static inline void count_memcg_folio_events(struct folio *folio,
1575 		enum vm_event_item idx, unsigned long nr)
1576 {
1577 }
1578 
1579 static inline
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1580 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1581 {
1582 }
1583 
split_page_memcg(struct page * head,unsigned int nr)1584 static inline void split_page_memcg(struct page *head, unsigned int nr)
1585 {
1586 }
1587 
folio_copy_memcg(struct folio * folio)1588 static inline void folio_copy_memcg(struct folio *folio)
1589 {
1590 }
1591 
1592 static inline
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)1593 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1594 					    gfp_t gfp_mask,
1595 					    unsigned long *total_scanned)
1596 {
1597 	return 0;
1598 }
1599 #endif /* CONFIG_MEMCG */
1600 
__inc_lruvec_kmem_state(void * p,enum node_stat_item idx)1601 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1602 {
1603 	__mod_lruvec_kmem_state(p, idx, 1);
1604 }
1605 
__dec_lruvec_kmem_state(void * p,enum node_stat_item idx)1606 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1607 {
1608 	__mod_lruvec_kmem_state(p, idx, -1);
1609 }
1610 
parent_lruvec(struct lruvec * lruvec)1611 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1612 {
1613 	struct mem_cgroup *memcg;
1614 
1615 	memcg = lruvec_memcg(lruvec);
1616 	if (!memcg)
1617 		return NULL;
1618 	memcg = parent_mem_cgroup(memcg);
1619 	if (!memcg)
1620 		return NULL;
1621 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1622 }
1623 
unlock_page_lruvec(struct lruvec * lruvec)1624 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1625 {
1626 	spin_unlock(&lruvec->lru_lock);
1627 }
1628 
unlock_page_lruvec_irq(struct lruvec * lruvec)1629 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1630 {
1631 	spin_unlock_irq(&lruvec->lru_lock);
1632 }
1633 
unlock_page_lruvec_irqrestore(struct lruvec * lruvec,unsigned long flags)1634 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1635 		unsigned long flags)
1636 {
1637 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1638 }
1639 
1640 /* Test requires a stable page->memcg binding, see page_memcg() */
folio_matches_lruvec(struct folio * folio,struct lruvec * lruvec)1641 static inline bool folio_matches_lruvec(struct folio *folio,
1642 		struct lruvec *lruvec)
1643 {
1644 	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1645 	       lruvec_memcg(lruvec) == folio_memcg(folio);
1646 }
1647 
1648 /* Don't lock again iff page's lruvec locked */
folio_lruvec_relock_irq(struct folio * folio,struct lruvec * locked_lruvec)1649 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1650 		struct lruvec *locked_lruvec)
1651 {
1652 	if (locked_lruvec) {
1653 		if (folio_matches_lruvec(folio, locked_lruvec))
1654 			return locked_lruvec;
1655 
1656 		unlock_page_lruvec_irq(locked_lruvec);
1657 	}
1658 
1659 	return folio_lruvec_lock_irq(folio);
1660 }
1661 
1662 /* Don't lock again iff page's lruvec locked */
folio_lruvec_relock_irqsave(struct folio * folio,struct lruvec * locked_lruvec,unsigned long * flags)1663 static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1664 		struct lruvec *locked_lruvec, unsigned long *flags)
1665 {
1666 	if (locked_lruvec) {
1667 		if (folio_matches_lruvec(folio, locked_lruvec))
1668 			return locked_lruvec;
1669 
1670 		unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1671 	}
1672 
1673 	return folio_lruvec_lock_irqsave(folio, flags);
1674 }
1675 
1676 #ifdef CONFIG_CGROUP_WRITEBACK
1677 
1678 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1679 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1680 			 unsigned long *pheadroom, unsigned long *pdirty,
1681 			 unsigned long *pwriteback);
1682 
1683 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1684 					     struct bdi_writeback *wb);
1685 
mem_cgroup_track_foreign_dirty(struct folio * folio,struct bdi_writeback * wb)1686 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1687 						  struct bdi_writeback *wb)
1688 {
1689 	struct mem_cgroup *memcg;
1690 
1691 	if (mem_cgroup_disabled())
1692 		return;
1693 
1694 	memcg = folio_memcg(folio);
1695 	if (unlikely(memcg && &memcg->css != wb->memcg_css))
1696 		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1697 }
1698 
1699 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1700 
1701 #else	/* CONFIG_CGROUP_WRITEBACK */
1702 
mem_cgroup_wb_domain(struct bdi_writeback * wb)1703 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1704 {
1705 	return NULL;
1706 }
1707 
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)1708 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1709 				       unsigned long *pfilepages,
1710 				       unsigned long *pheadroom,
1711 				       unsigned long *pdirty,
1712 				       unsigned long *pwriteback)
1713 {
1714 }
1715 
mem_cgroup_track_foreign_dirty(struct folio * folio,struct bdi_writeback * wb)1716 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1717 						  struct bdi_writeback *wb)
1718 {
1719 }
1720 
mem_cgroup_flush_foreign(struct bdi_writeback * wb)1721 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1722 {
1723 }
1724 
1725 #endif	/* CONFIG_CGROUP_WRITEBACK */
1726 
1727 struct sock;
1728 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1729 			     gfp_t gfp_mask);
1730 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1731 #ifdef CONFIG_MEMCG
1732 extern struct static_key_false memcg_sockets_enabled_key;
1733 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1734 void mem_cgroup_sk_alloc(struct sock *sk);
1735 void mem_cgroup_sk_free(struct sock *sk);
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1736 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1737 {
1738 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1739 		return !!memcg->tcpmem_pressure;
1740 	do {
1741 		if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1742 			return true;
1743 	} while ((memcg = parent_mem_cgroup(memcg)));
1744 	return false;
1745 }
1746 
1747 int alloc_shrinker_info(struct mem_cgroup *memcg);
1748 void free_shrinker_info(struct mem_cgroup *memcg);
1749 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1750 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1751 #else
1752 #define mem_cgroup_sockets_enabled 0
mem_cgroup_sk_alloc(struct sock * sk)1753 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
mem_cgroup_sk_free(struct sock * sk)1754 static inline void mem_cgroup_sk_free(struct sock *sk) { };
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1755 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1756 {
1757 	return false;
1758 }
1759 
set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)1760 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1761 				    int nid, int shrinker_id)
1762 {
1763 }
1764 #endif
1765 
1766 #ifdef CONFIG_MEMCG_KMEM
1767 bool mem_cgroup_kmem_disabled(void);
1768 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1769 void __memcg_kmem_uncharge_page(struct page *page, int order);
1770 
1771 struct obj_cgroup *get_obj_cgroup_from_current(void);
1772 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1773 
1774 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1775 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1776 
1777 extern struct static_key_false memcg_bpf_enabled_key;
memcg_bpf_enabled(void)1778 static inline bool memcg_bpf_enabled(void)
1779 {
1780 	return static_branch_likely(&memcg_bpf_enabled_key);
1781 }
1782 
1783 extern struct static_key_false memcg_kmem_online_key;
1784 
memcg_kmem_online(void)1785 static inline bool memcg_kmem_online(void)
1786 {
1787 	return static_branch_likely(&memcg_kmem_online_key);
1788 }
1789 
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1790 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1791 					 int order)
1792 {
1793 	if (memcg_kmem_online())
1794 		return __memcg_kmem_charge_page(page, gfp, order);
1795 	return 0;
1796 }
1797 
memcg_kmem_uncharge_page(struct page * page,int order)1798 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1799 {
1800 	if (memcg_kmem_online())
1801 		__memcg_kmem_uncharge_page(page, order);
1802 }
1803 
1804 /*
1805  * A helper for accessing memcg's kmem_id, used for getting
1806  * corresponding LRU lists.
1807  */
memcg_kmem_id(struct mem_cgroup * memcg)1808 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1809 {
1810 	return memcg ? memcg->kmemcg_id : -1;
1811 }
1812 
1813 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1814 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1815 
count_objcg_event(struct obj_cgroup * objcg,enum vm_event_item idx)1816 static inline void count_objcg_event(struct obj_cgroup *objcg,
1817 				     enum vm_event_item idx)
1818 {
1819 	struct mem_cgroup *memcg;
1820 
1821 	if (!memcg_kmem_online())
1822 		return;
1823 
1824 	rcu_read_lock();
1825 	memcg = obj_cgroup_memcg(objcg);
1826 	count_memcg_events(memcg, idx, 1);
1827 	rcu_read_unlock();
1828 }
1829 
1830 #else
mem_cgroup_kmem_disabled(void)1831 static inline bool mem_cgroup_kmem_disabled(void)
1832 {
1833 	return true;
1834 }
1835 
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1836 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1837 					 int order)
1838 {
1839 	return 0;
1840 }
1841 
memcg_kmem_uncharge_page(struct page * page,int order)1842 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1843 {
1844 }
1845 
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1846 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1847 					   int order)
1848 {
1849 	return 0;
1850 }
1851 
__memcg_kmem_uncharge_page(struct page * page,int order)1852 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1853 {
1854 }
1855 
get_obj_cgroup_from_folio(struct folio * folio)1856 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1857 {
1858 	return NULL;
1859 }
1860 
memcg_bpf_enabled(void)1861 static inline bool memcg_bpf_enabled(void)
1862 {
1863 	return false;
1864 }
1865 
memcg_kmem_online(void)1866 static inline bool memcg_kmem_online(void)
1867 {
1868 	return false;
1869 }
1870 
memcg_kmem_id(struct mem_cgroup * memcg)1871 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1872 {
1873 	return -1;
1874 }
1875 
mem_cgroup_from_obj(void * p)1876 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1877 {
1878 	return NULL;
1879 }
1880 
mem_cgroup_from_slab_obj(void * p)1881 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1882 {
1883 	return NULL;
1884 }
1885 
count_objcg_event(struct obj_cgroup * objcg,enum vm_event_item idx)1886 static inline void count_objcg_event(struct obj_cgroup *objcg,
1887 				     enum vm_event_item idx)
1888 {
1889 }
1890 
1891 #endif /* CONFIG_MEMCG_KMEM */
1892 
1893 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1894 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1895 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1896 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1897 #else
obj_cgroup_may_zswap(struct obj_cgroup * objcg)1898 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1899 {
1900 	return true;
1901 }
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)1902 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1903 					   size_t size)
1904 {
1905 }
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)1906 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1907 					     size_t size)
1908 {
1909 }
1910 #endif
1911 
1912 #endif /* _LINUX_MEMCONTROL_H */
1913