1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
4
5 #include <linux/pfn.h>
6 #include <asm/pgtable.h>
7
8 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
9 #define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT)
10
11 #ifndef __ASSEMBLY__
12 #ifdef CONFIG_MMU
13
14 #include <linux/mm_types.h>
15 #include <linux/bug.h>
16 #include <linux/errno.h>
17 #include <asm-generic/pgtable_uffd.h>
18 #include <linux/page_table_check.h>
19
20 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
21 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
22 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
23 #endif
24
25 /*
26 * On almost all architectures and configurations, 0 can be used as the
27 * upper ceiling to free_pgtables(): on many architectures it has the same
28 * effect as using TASK_SIZE. However, there is one configuration which
29 * must impose a more careful limit, to avoid freeing kernel pgtables.
30 */
31 #ifndef USER_PGTABLES_CEILING
32 #define USER_PGTABLES_CEILING 0UL
33 #endif
34
35 /*
36 * This defines the first usable user address. Platforms
37 * can override its value with custom FIRST_USER_ADDRESS
38 * defined in their respective <asm/pgtable.h>.
39 */
40 #ifndef FIRST_USER_ADDRESS
41 #define FIRST_USER_ADDRESS 0UL
42 #endif
43
44 /*
45 * This defines the generic helper for accessing PMD page
46 * table page. Although platforms can still override this
47 * via their respective <asm/pgtable.h>.
48 */
49 #ifndef pmd_pgtable
50 #define pmd_pgtable(pmd) pmd_page(pmd)
51 #endif
52
53 /*
54 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
55 *
56 * The pXx_index() functions return the index of the entry in the page
57 * table page which would control the given virtual address
58 *
59 * As these functions may be used by the same code for different levels of
60 * the page table folding, they are always available, regardless of
61 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
62 * because in such cases PTRS_PER_PxD equals 1.
63 */
64
pte_index(unsigned long address)65 static inline unsigned long pte_index(unsigned long address)
66 {
67 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
68 }
69
70 #ifndef pmd_index
pmd_index(unsigned long address)71 static inline unsigned long pmd_index(unsigned long address)
72 {
73 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
74 }
75 #define pmd_index pmd_index
76 #endif
77
78 #ifndef pud_index
pud_index(unsigned long address)79 static inline unsigned long pud_index(unsigned long address)
80 {
81 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
82 }
83 #define pud_index pud_index
84 #endif
85
86 #ifndef pgd_index
87 /* Must be a compile-time constant, so implement it as a macro */
88 #define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
89 #endif
90
91 #ifndef pte_offset_kernel
pte_offset_kernel(pmd_t * pmd,unsigned long address)92 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
93 {
94 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
95 }
96 #define pte_offset_kernel pte_offset_kernel
97 #endif
98
99 #ifdef CONFIG_HIGHPTE
100 #define __pte_map(pmd, address) \
101 ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
102 #define pte_unmap(pte) do { \
103 kunmap_local((pte)); \
104 rcu_read_unlock(); \
105 } while (0)
106 #else
__pte_map(pmd_t * pmd,unsigned long address)107 static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
108 {
109 return pte_offset_kernel(pmd, address);
110 }
pte_unmap(pte_t * pte)111 static inline void pte_unmap(pte_t *pte)
112 {
113 rcu_read_unlock();
114 }
115 #endif
116
117 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable);
118
119 /* Find an entry in the second-level page table.. */
120 #ifndef pmd_offset
pmd_offset(pud_t * pud,unsigned long address)121 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
122 {
123 return pud_pgtable(*pud) + pmd_index(address);
124 }
125 #define pmd_offset pmd_offset
126 #endif
127
128 #ifndef pud_offset
pud_offset(p4d_t * p4d,unsigned long address)129 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
130 {
131 return p4d_pgtable(*p4d) + pud_index(address);
132 }
133 #define pud_offset pud_offset
134 #endif
135
pgd_offset_pgd(pgd_t * pgd,unsigned long address)136 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
137 {
138 return (pgd + pgd_index(address));
139 };
140
141 /*
142 * a shortcut to get a pgd_t in a given mm
143 */
144 #ifndef pgd_offset
145 #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
146 #endif
147
148 /*
149 * a shortcut which implies the use of the kernel's pgd, instead
150 * of a process's
151 */
152 #ifndef pgd_offset_k
153 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
154 #endif
155
156 /*
157 * In many cases it is known that a virtual address is mapped at PMD or PTE
158 * level, so instead of traversing all the page table levels, we can get a
159 * pointer to the PMD entry in user or kernel page table or translate a virtual
160 * address to the pointer in the PTE in the kernel page tables with simple
161 * helpers.
162 */
pmd_off(struct mm_struct * mm,unsigned long va)163 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
164 {
165 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
166 }
167
pmd_off_k(unsigned long va)168 static inline pmd_t *pmd_off_k(unsigned long va)
169 {
170 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
171 }
172
virt_to_kpte(unsigned long vaddr)173 static inline pte_t *virt_to_kpte(unsigned long vaddr)
174 {
175 pmd_t *pmd = pmd_off_k(vaddr);
176
177 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
178 }
179
180 #ifndef pmd_young
pmd_young(pmd_t pmd)181 static inline int pmd_young(pmd_t pmd)
182 {
183 return 0;
184 }
185 #endif
186
187 /*
188 * A facility to provide lazy MMU batching. This allows PTE updates and
189 * page invalidations to be delayed until a call to leave lazy MMU mode
190 * is issued. Some architectures may benefit from doing this, and it is
191 * beneficial for both shadow and direct mode hypervisors, which may batch
192 * the PTE updates which happen during this window. Note that using this
193 * interface requires that read hazards be removed from the code. A read
194 * hazard could result in the direct mode hypervisor case, since the actual
195 * write to the page tables may not yet have taken place, so reads though
196 * a raw PTE pointer after it has been modified are not guaranteed to be
197 * up to date. This mode can only be entered and left under the protection of
198 * the page table locks for all page tables which may be modified. In the UP
199 * case, this is required so that preemption is disabled, and in the SMP case,
200 * it must synchronize the delayed page table writes properly on other CPUs.
201 */
202 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
203 #define arch_enter_lazy_mmu_mode() do {} while (0)
204 #define arch_leave_lazy_mmu_mode() do {} while (0)
205 #define arch_flush_lazy_mmu_mode() do {} while (0)
206 #endif
207
208 #ifndef pte_batch_hint
209 /**
210 * pte_batch_hint - Number of pages that can be added to batch without scanning.
211 * @ptep: Page table pointer for the entry.
212 * @pte: Page table entry.
213 *
214 * Some architectures know that a set of contiguous ptes all map the same
215 * contiguous memory with the same permissions. In this case, it can provide a
216 * hint to aid pte batching without the core code needing to scan every pte.
217 *
218 * An architecture implementation may ignore the PTE accessed state. Further,
219 * the dirty state must apply atomically to all the PTEs described by the hint.
220 *
221 * May be overridden by the architecture, else pte_batch_hint is always 1.
222 */
pte_batch_hint(pte_t * ptep,pte_t pte)223 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
224 {
225 return 1;
226 }
227 #endif
228
229 #ifndef pte_advance_pfn
pte_advance_pfn(pte_t pte,unsigned long nr)230 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
231 {
232 return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
233 }
234 #endif
235
236 #define pte_next_pfn(pte) pte_advance_pfn(pte, 1)
237
238 #ifndef set_ptes
239 /**
240 * set_ptes - Map consecutive pages to a contiguous range of addresses.
241 * @mm: Address space to map the pages into.
242 * @addr: Address to map the first page at.
243 * @ptep: Page table pointer for the first entry.
244 * @pte: Page table entry for the first page.
245 * @nr: Number of pages to map.
246 *
247 * When nr==1, initial state of pte may be present or not present, and new state
248 * may be present or not present. When nr>1, initial state of all ptes must be
249 * not present, and new state must be present.
250 *
251 * May be overridden by the architecture, or the architecture can define
252 * set_pte() and PFN_PTE_SHIFT.
253 *
254 * Context: The caller holds the page table lock. The pages all belong
255 * to the same folio. The PTEs are all in the same PMD.
256 */
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,unsigned int nr)257 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
258 pte_t *ptep, pte_t pte, unsigned int nr)
259 {
260 page_table_check_ptes_set(mm, ptep, pte, nr);
261
262 arch_enter_lazy_mmu_mode();
263 for (;;) {
264 set_pte(ptep, pte);
265 if (--nr == 0)
266 break;
267 ptep++;
268 pte = pte_next_pfn(pte);
269 }
270 arch_leave_lazy_mmu_mode();
271 }
272 #endif
273 #define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1)
274
275 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
276 extern int ptep_set_access_flags(struct vm_area_struct *vma,
277 unsigned long address, pte_t *ptep,
278 pte_t entry, int dirty);
279 #endif
280
281 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
282 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
283 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
284 unsigned long address, pmd_t *pmdp,
285 pmd_t entry, int dirty);
286 extern int pudp_set_access_flags(struct vm_area_struct *vma,
287 unsigned long address, pud_t *pudp,
288 pud_t entry, int dirty);
289 #else
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)290 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
291 unsigned long address, pmd_t *pmdp,
292 pmd_t entry, int dirty)
293 {
294 BUILD_BUG();
295 return 0;
296 }
pudp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t entry,int dirty)297 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
298 unsigned long address, pud_t *pudp,
299 pud_t entry, int dirty)
300 {
301 BUILD_BUG();
302 return 0;
303 }
304 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
305 #endif
306
307 #ifndef ptep_get
ptep_get(pte_t * ptep)308 static inline pte_t ptep_get(pte_t *ptep)
309 {
310 return READ_ONCE(*ptep);
311 }
312 #endif
313
314 #ifndef pmdp_get
pmdp_get(pmd_t * pmdp)315 static inline pmd_t pmdp_get(pmd_t *pmdp)
316 {
317 return READ_ONCE(*pmdp);
318 }
319 #endif
320
321 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)322 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
323 unsigned long address,
324 pte_t *ptep)
325 {
326 pte_t pte = ptep_get(ptep);
327 int r = 1;
328 if (!pte_young(pte))
329 r = 0;
330 else
331 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
332 return r;
333 }
334 #endif
335
336 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
337 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)338 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
339 unsigned long address,
340 pmd_t *pmdp)
341 {
342 pmd_t pmd = *pmdp;
343 int r = 1;
344 if (!pmd_young(pmd))
345 r = 0;
346 else
347 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
348 return r;
349 }
350 #else
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)351 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
352 unsigned long address,
353 pmd_t *pmdp)
354 {
355 BUILD_BUG();
356 return 0;
357 }
358 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
359 #endif
360
361 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
362 int ptep_clear_flush_young(struct vm_area_struct *vma,
363 unsigned long address, pte_t *ptep);
364 #endif
365
366 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
367 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
368 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
369 unsigned long address, pmd_t *pmdp);
370 #else
371 /*
372 * Despite relevant to THP only, this API is called from generic rmap code
373 * under PageTransHuge(), hence needs a dummy implementation for !THP
374 */
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)375 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
376 unsigned long address, pmd_t *pmdp)
377 {
378 BUILD_BUG();
379 return 0;
380 }
381 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
382 #endif
383
384 #ifndef arch_has_hw_nonleaf_pmd_young
385 /*
386 * Return whether the accessed bit in non-leaf PMD entries is supported on the
387 * local CPU.
388 */
arch_has_hw_nonleaf_pmd_young(void)389 static inline bool arch_has_hw_nonleaf_pmd_young(void)
390 {
391 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
392 }
393 #endif
394
395 #ifndef arch_has_hw_pte_young
396 /*
397 * Return whether the accessed bit is supported on the local CPU.
398 *
399 * This stub assumes accessing through an old PTE triggers a page fault.
400 * Architectures that automatically set the access bit should overwrite it.
401 */
arch_has_hw_pte_young(void)402 static inline bool arch_has_hw_pte_young(void)
403 {
404 return false;
405 }
406 #endif
407
408 #ifndef arch_check_zapped_pte
arch_check_zapped_pte(struct vm_area_struct * vma,pte_t pte)409 static inline void arch_check_zapped_pte(struct vm_area_struct *vma,
410 pte_t pte)
411 {
412 }
413 #endif
414
415 #ifndef arch_check_zapped_pmd
arch_check_zapped_pmd(struct vm_area_struct * vma,pmd_t pmd)416 static inline void arch_check_zapped_pmd(struct vm_area_struct *vma,
417 pmd_t pmd)
418 {
419 }
420 #endif
421
422 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)423 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
424 unsigned long address,
425 pte_t *ptep)
426 {
427 pte_t pte = ptep_get(ptep);
428 pte_clear(mm, address, ptep);
429 page_table_check_pte_clear(mm, pte);
430 return pte;
431 }
432 #endif
433
434 #ifndef clear_young_dirty_ptes
435 /**
436 * clear_young_dirty_ptes - Mark PTEs that map consecutive pages of the
437 * same folio as old/clean.
438 * @mm: Address space the pages are mapped into.
439 * @addr: Address the first page is mapped at.
440 * @ptep: Page table pointer for the first entry.
441 * @nr: Number of entries to mark old/clean.
442 * @flags: Flags to modify the PTE batch semantics.
443 *
444 * May be overridden by the architecture; otherwise, implemented by
445 * get_and_clear/modify/set for each pte in the range.
446 *
447 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
448 * some PTEs might be write-protected.
449 *
450 * Context: The caller holds the page table lock. The PTEs map consecutive
451 * pages that belong to the same folio. The PTEs are all in the same PMD.
452 */
clear_young_dirty_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr,cydp_t flags)453 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
454 unsigned long addr, pte_t *ptep,
455 unsigned int nr, cydp_t flags)
456 {
457 pte_t pte;
458
459 for (;;) {
460 if (flags == CYDP_CLEAR_YOUNG)
461 ptep_test_and_clear_young(vma, addr, ptep);
462 else {
463 pte = ptep_get_and_clear(vma->vm_mm, addr, ptep);
464 if (flags & CYDP_CLEAR_YOUNG)
465 pte = pte_mkold(pte);
466 if (flags & CYDP_CLEAR_DIRTY)
467 pte = pte_mkclean(pte);
468 set_pte_at(vma->vm_mm, addr, ptep, pte);
469 }
470 if (--nr == 0)
471 break;
472 ptep++;
473 addr += PAGE_SIZE;
474 }
475 }
476 #endif
477
ptep_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)478 static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
479 pte_t *ptep)
480 {
481 ptep_get_and_clear(mm, addr, ptep);
482 }
483
484 #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
485 /*
486 * For walking the pagetables without holding any locks. Some architectures
487 * (eg x86-32 PAE) cannot load the entries atomically without using expensive
488 * instructions. We are guaranteed that a PTE will only either go from not
489 * present to present, or present to not present -- it will not switch to a
490 * completely different present page without a TLB flush inbetween; which we
491 * are blocking by holding interrupts off.
492 *
493 * Setting ptes from not present to present goes:
494 *
495 * ptep->pte_high = h;
496 * smp_wmb();
497 * ptep->pte_low = l;
498 *
499 * And present to not present goes:
500 *
501 * ptep->pte_low = 0;
502 * smp_wmb();
503 * ptep->pte_high = 0;
504 *
505 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
506 * We load pte_high *after* loading pte_low, which ensures we don't see an older
507 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
508 * picked up a changed pte high. We might have gotten rubbish values from
509 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
510 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
511 * operates on present ptes we're safe.
512 */
ptep_get_lockless(pte_t * ptep)513 static inline pte_t ptep_get_lockless(pte_t *ptep)
514 {
515 pte_t pte;
516
517 do {
518 pte.pte_low = ptep->pte_low;
519 smp_rmb();
520 pte.pte_high = ptep->pte_high;
521 smp_rmb();
522 } while (unlikely(pte.pte_low != ptep->pte_low));
523
524 return pte;
525 }
526 #define ptep_get_lockless ptep_get_lockless
527
528 #if CONFIG_PGTABLE_LEVELS > 2
pmdp_get_lockless(pmd_t * pmdp)529 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
530 {
531 pmd_t pmd;
532
533 do {
534 pmd.pmd_low = pmdp->pmd_low;
535 smp_rmb();
536 pmd.pmd_high = pmdp->pmd_high;
537 smp_rmb();
538 } while (unlikely(pmd.pmd_low != pmdp->pmd_low));
539
540 return pmd;
541 }
542 #define pmdp_get_lockless pmdp_get_lockless
543 #define pmdp_get_lockless_sync() tlb_remove_table_sync_one()
544 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
545 #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
546
547 /*
548 * We require that the PTE can be read atomically.
549 */
550 #ifndef ptep_get_lockless
ptep_get_lockless(pte_t * ptep)551 static inline pte_t ptep_get_lockless(pte_t *ptep)
552 {
553 return ptep_get(ptep);
554 }
555 #endif
556
557 #ifndef pmdp_get_lockless
pmdp_get_lockless(pmd_t * pmdp)558 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
559 {
560 return pmdp_get(pmdp);
561 }
pmdp_get_lockless_sync(void)562 static inline void pmdp_get_lockless_sync(void)
563 {
564 }
565 #endif
566
567 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
568 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)569 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
570 unsigned long address,
571 pmd_t *pmdp)
572 {
573 pmd_t pmd = *pmdp;
574
575 pmd_clear(pmdp);
576 page_table_check_pmd_clear(mm, pmd);
577
578 return pmd;
579 }
580 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
581 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
pudp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pud_t * pudp)582 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
583 unsigned long address,
584 pud_t *pudp)
585 {
586 pud_t pud = *pudp;
587
588 pud_clear(pudp);
589 page_table_check_pud_clear(mm, pud);
590
591 return pud;
592 }
593 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
594 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
595
596 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
597 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,int full)598 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
599 unsigned long address, pmd_t *pmdp,
600 int full)
601 {
602 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
603 }
604 #endif
605
606 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
pudp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,int full)607 static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
608 unsigned long address, pud_t *pudp,
609 int full)
610 {
611 return pudp_huge_get_and_clear(vma->vm_mm, address, pudp);
612 }
613 #endif
614 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
615
616 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)617 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
618 unsigned long address, pte_t *ptep,
619 int full)
620 {
621 return ptep_get_and_clear(mm, address, ptep);
622 }
623 #endif
624
625 #ifndef get_and_clear_full_ptes
626 /**
627 * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of
628 * the same folio, collecting dirty/accessed bits.
629 * @mm: Address space the pages are mapped into.
630 * @addr: Address the first page is mapped at.
631 * @ptep: Page table pointer for the first entry.
632 * @nr: Number of entries to clear.
633 * @full: Whether we are clearing a full mm.
634 *
635 * May be overridden by the architecture; otherwise, implemented as a simple
636 * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the
637 * returned PTE.
638 *
639 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
640 * some PTEs might be write-protected.
641 *
642 * Context: The caller holds the page table lock. The PTEs map consecutive
643 * pages that belong to the same folio. The PTEs are all in the same PMD.
644 */
get_and_clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)645 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
646 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
647 {
648 pte_t pte, tmp_pte;
649
650 pte = ptep_get_and_clear_full(mm, addr, ptep, full);
651 while (--nr) {
652 ptep++;
653 addr += PAGE_SIZE;
654 tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full);
655 if (pte_dirty(tmp_pte))
656 pte = pte_mkdirty(pte);
657 if (pte_young(tmp_pte))
658 pte = pte_mkyoung(pte);
659 }
660 return pte;
661 }
662 #endif
663
664 #ifndef clear_full_ptes
665 /**
666 * clear_full_ptes - Clear present PTEs that map consecutive pages of the same
667 * folio.
668 * @mm: Address space the pages are mapped into.
669 * @addr: Address the first page is mapped at.
670 * @ptep: Page table pointer for the first entry.
671 * @nr: Number of entries to clear.
672 * @full: Whether we are clearing a full mm.
673 *
674 * May be overridden by the architecture; otherwise, implemented as a simple
675 * loop over ptep_get_and_clear_full().
676 *
677 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
678 * some PTEs might be write-protected.
679 *
680 * Context: The caller holds the page table lock. The PTEs map consecutive
681 * pages that belong to the same folio. The PTEs are all in the same PMD.
682 */
clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)683 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
684 pte_t *ptep, unsigned int nr, int full)
685 {
686 for (;;) {
687 ptep_get_and_clear_full(mm, addr, ptep, full);
688 if (--nr == 0)
689 break;
690 ptep++;
691 addr += PAGE_SIZE;
692 }
693 }
694 #endif
695
696 /*
697 * If two threads concurrently fault at the same page, the thread that
698 * won the race updates the PTE and its local TLB/Cache. The other thread
699 * gives up, simply does nothing, and continues; on architectures where
700 * software can update TLB, local TLB can be updated here to avoid next page
701 * fault. This function updates TLB only, do nothing with cache or others.
702 * It is the difference with function update_mmu_cache.
703 */
704 #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
update_mmu_tlb(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)705 static inline void update_mmu_tlb(struct vm_area_struct *vma,
706 unsigned long address, pte_t *ptep)
707 {
708 }
709 #define __HAVE_ARCH_UPDATE_MMU_TLB
710 #endif
711
712 /*
713 * Some architectures may be able to avoid expensive synchronization
714 * primitives when modifications are made to PTE's which are already
715 * not present, or in the process of an address space destruction.
716 */
717 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
pte_clear_not_present_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)718 static inline void pte_clear_not_present_full(struct mm_struct *mm,
719 unsigned long address,
720 pte_t *ptep,
721 int full)
722 {
723 pte_clear(mm, address, ptep);
724 }
725 #endif
726
727 #ifndef clear_not_present_full_ptes
728 /**
729 * clear_not_present_full_ptes - Clear multiple not present PTEs which are
730 * consecutive in the pgtable.
731 * @mm: Address space the ptes represent.
732 * @addr: Address of the first pte.
733 * @ptep: Page table pointer for the first entry.
734 * @nr: Number of entries to clear.
735 * @full: Whether we are clearing a full mm.
736 *
737 * May be overridden by the architecture; otherwise, implemented as a simple
738 * loop over pte_clear_not_present_full().
739 *
740 * Context: The caller holds the page table lock. The PTEs are all not present.
741 * The PTEs are all in the same PMD.
742 */
clear_not_present_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)743 static inline void clear_not_present_full_ptes(struct mm_struct *mm,
744 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
745 {
746 for (;;) {
747 pte_clear_not_present_full(mm, addr, ptep, full);
748 if (--nr == 0)
749 break;
750 ptep++;
751 addr += PAGE_SIZE;
752 }
753 }
754 #endif
755
756 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
757 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
758 unsigned long address,
759 pte_t *ptep);
760 #endif
761
762 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
763 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
764 unsigned long address,
765 pmd_t *pmdp);
766 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
767 unsigned long address,
768 pud_t *pudp);
769 #endif
770
771 #ifndef pte_mkwrite
pte_mkwrite(pte_t pte,struct vm_area_struct * vma)772 static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
773 {
774 return pte_mkwrite_novma(pte);
775 }
776 #endif
777
778 #if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite)
pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)779 static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
780 {
781 return pmd_mkwrite_novma(pmd);
782 }
783 #endif
784
785 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
786 struct mm_struct;
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)787 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
788 {
789 pte_t old_pte = ptep_get(ptep);
790 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
791 }
792 #endif
793
794 #ifndef wrprotect_ptes
795 /**
796 * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same
797 * folio.
798 * @mm: Address space the pages are mapped into.
799 * @addr: Address the first page is mapped at.
800 * @ptep: Page table pointer for the first entry.
801 * @nr: Number of entries to write-protect.
802 *
803 * May be overridden by the architecture; otherwise, implemented as a simple
804 * loop over ptep_set_wrprotect().
805 *
806 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
807 * some PTEs might be write-protected.
808 *
809 * Context: The caller holds the page table lock. The PTEs map consecutive
810 * pages that belong to the same folio. The PTEs are all in the same PMD.
811 */
wrprotect_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr)812 static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
813 pte_t *ptep, unsigned int nr)
814 {
815 for (;;) {
816 ptep_set_wrprotect(mm, addr, ptep);
817 if (--nr == 0)
818 break;
819 ptep++;
820 addr += PAGE_SIZE;
821 }
822 }
823 #endif
824
825 /*
826 * On some architectures hardware does not set page access bit when accessing
827 * memory page, it is responsibility of software setting this bit. It brings
828 * out extra page fault penalty to track page access bit. For optimization page
829 * access bit can be set during all page fault flow on these arches.
830 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
831 * where software maintains page access bit.
832 */
833 #ifndef pte_sw_mkyoung
pte_sw_mkyoung(pte_t pte)834 static inline pte_t pte_sw_mkyoung(pte_t pte)
835 {
836 return pte;
837 }
838 #define pte_sw_mkyoung pte_sw_mkyoung
839 #endif
840
841 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
842 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)843 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
844 unsigned long address, pmd_t *pmdp)
845 {
846 pmd_t old_pmd = *pmdp;
847 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
848 }
849 #else
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)850 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
851 unsigned long address, pmd_t *pmdp)
852 {
853 BUILD_BUG();
854 }
855 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
856 #endif
857 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
858 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
859 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)860 static inline void pudp_set_wrprotect(struct mm_struct *mm,
861 unsigned long address, pud_t *pudp)
862 {
863 pud_t old_pud = *pudp;
864
865 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
866 }
867 #else
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)868 static inline void pudp_set_wrprotect(struct mm_struct *mm,
869 unsigned long address, pud_t *pudp)
870 {
871 BUILD_BUG();
872 }
873 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
874 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
875 #endif
876
877 #ifndef pmdp_collapse_flush
878 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
879 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
880 unsigned long address, pmd_t *pmdp);
881 #else
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)882 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
883 unsigned long address,
884 pmd_t *pmdp)
885 {
886 BUILD_BUG();
887 return *pmdp;
888 }
889 #define pmdp_collapse_flush pmdp_collapse_flush
890 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
891 #endif
892
893 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
894 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
895 pgtable_t pgtable);
896 #endif
897
898 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
899 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
900 #endif
901
902 #ifndef arch_needs_pgtable_deposit
903 #define arch_needs_pgtable_deposit() (false)
904 #endif
905
906 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
907 /*
908 * This is an implementation of pmdp_establish() that is only suitable for an
909 * architecture that doesn't have hardware dirty/accessed bits. In this case we
910 * can't race with CPU which sets these bits and non-atomic approach is fine.
911 */
generic_pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)912 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
913 unsigned long address, pmd_t *pmdp, pmd_t pmd)
914 {
915 pmd_t old_pmd = *pmdp;
916 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
917 return old_pmd;
918 }
919 #endif
920
921 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
922 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
923 pmd_t *pmdp);
924 #endif
925
926 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
927
928 /*
929 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
930 * hugepage mapping in the page tables. This function is similar to
931 * pmdp_invalidate(), but should only be used if the access and dirty bits would
932 * not be cleared by the software in the new PMD value. The function ensures
933 * that hardware changes of the access and dirty bits updates would not be lost.
934 *
935 * Doing so can allow in certain architectures to avoid a TLB flush in most
936 * cases. Yet, another TLB flush might be necessary later if the PMD update
937 * itself requires such flush (e.g., if protection was set to be stricter). Yet,
938 * even when a TLB flush is needed because of the update, the caller may be able
939 * to batch these TLB flushing operations, so fewer TLB flush operations are
940 * needed.
941 */
942 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
943 unsigned long address, pmd_t *pmdp);
944 #endif
945
946 #ifndef __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)947 static inline int pte_same(pte_t pte_a, pte_t pte_b)
948 {
949 return pte_val(pte_a) == pte_val(pte_b);
950 }
951 #endif
952
953 #ifndef __HAVE_ARCH_PTE_UNUSED
954 /*
955 * Some architectures provide facilities to virtualization guests
956 * so that they can flag allocated pages as unused. This allows the
957 * host to transparently reclaim unused pages. This function returns
958 * whether the pte's page is unused.
959 */
pte_unused(pte_t pte)960 static inline int pte_unused(pte_t pte)
961 {
962 return 0;
963 }
964 #endif
965
966 #ifndef pte_access_permitted
967 #define pte_access_permitted(pte, write) \
968 (pte_present(pte) && (!(write) || pte_write(pte)))
969 #endif
970
971 #ifndef pmd_access_permitted
972 #define pmd_access_permitted(pmd, write) \
973 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
974 #endif
975
976 #ifndef pud_access_permitted
977 #define pud_access_permitted(pud, write) \
978 (pud_present(pud) && (!(write) || pud_write(pud)))
979 #endif
980
981 #ifndef p4d_access_permitted
982 #define p4d_access_permitted(p4d, write) \
983 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
984 #endif
985
986 #ifndef pgd_access_permitted
987 #define pgd_access_permitted(pgd, write) \
988 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
989 #endif
990
991 #ifndef __HAVE_ARCH_PMD_SAME
pmd_same(pmd_t pmd_a,pmd_t pmd_b)992 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
993 {
994 return pmd_val(pmd_a) == pmd_val(pmd_b);
995 }
996 #endif
997
998 #ifndef pud_same
pud_same(pud_t pud_a,pud_t pud_b)999 static inline int pud_same(pud_t pud_a, pud_t pud_b)
1000 {
1001 return pud_val(pud_a) == pud_val(pud_b);
1002 }
1003 #define pud_same pud_same
1004 #endif
1005
1006 #ifndef __HAVE_ARCH_P4D_SAME
p4d_same(p4d_t p4d_a,p4d_t p4d_b)1007 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
1008 {
1009 return p4d_val(p4d_a) == p4d_val(p4d_b);
1010 }
1011 #endif
1012
1013 #ifndef __HAVE_ARCH_PGD_SAME
pgd_same(pgd_t pgd_a,pgd_t pgd_b)1014 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
1015 {
1016 return pgd_val(pgd_a) == pgd_val(pgd_b);
1017 }
1018 #endif
1019
1020 /*
1021 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
1022 * TLB flush will be required as a result of the "set". For example, use
1023 * in scenarios where it is known ahead of time that the routine is
1024 * setting non-present entries, or re-setting an existing entry to the
1025 * same value. Otherwise, use the typical "set" helpers and flush the
1026 * TLB.
1027 */
1028 #define set_pte_safe(ptep, pte) \
1029 ({ \
1030 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
1031 set_pte(ptep, pte); \
1032 })
1033
1034 #define set_pmd_safe(pmdp, pmd) \
1035 ({ \
1036 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
1037 set_pmd(pmdp, pmd); \
1038 })
1039
1040 #define set_pud_safe(pudp, pud) \
1041 ({ \
1042 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
1043 set_pud(pudp, pud); \
1044 })
1045
1046 #define set_p4d_safe(p4dp, p4d) \
1047 ({ \
1048 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
1049 set_p4d(p4dp, p4d); \
1050 })
1051
1052 #define set_pgd_safe(pgdp, pgd) \
1053 ({ \
1054 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
1055 set_pgd(pgdp, pgd); \
1056 })
1057
1058 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
arch_do_swap_page_nr(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t pte,pte_t oldpte,int nr)1059 static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1060 struct vm_area_struct *vma,
1061 unsigned long addr,
1062 pte_t pte, pte_t oldpte,
1063 int nr)
1064 {
1065
1066 }
1067 #else
1068 /*
1069 * Some architectures support metadata associated with a page. When a
1070 * page is being swapped out, this metadata must be saved so it can be
1071 * restored when the page is swapped back in. SPARC M7 and newer
1072 * processors support an ADI (Application Data Integrity) tag for the
1073 * page as metadata for the page. arch_do_swap_page() can restore this
1074 * metadata when a page is swapped back in.
1075 */
arch_do_swap_page_nr(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t pte,pte_t oldpte,int nr)1076 static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1077 struct vm_area_struct *vma,
1078 unsigned long addr,
1079 pte_t pte, pte_t oldpte,
1080 int nr)
1081 {
1082 for (int i = 0; i < nr; i++) {
1083 arch_do_swap_page(vma->vm_mm, vma, addr + i * PAGE_SIZE,
1084 pte_advance_pfn(pte, i),
1085 pte_advance_pfn(oldpte, i));
1086 }
1087 }
1088 #endif
1089
1090 #ifndef __HAVE_ARCH_UNMAP_ONE
1091 /*
1092 * Some architectures support metadata associated with a page. When a
1093 * page is being swapped out, this metadata must be saved so it can be
1094 * restored when the page is swapped back in. SPARC M7 and newer
1095 * processors support an ADI (Application Data Integrity) tag for the
1096 * page as metadata for the page. arch_unmap_one() can save this
1097 * metadata on a swap-out of a page.
1098 */
arch_unmap_one(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t orig_pte)1099 static inline int arch_unmap_one(struct mm_struct *mm,
1100 struct vm_area_struct *vma,
1101 unsigned long addr,
1102 pte_t orig_pte)
1103 {
1104 return 0;
1105 }
1106 #endif
1107
1108 /*
1109 * Allow architectures to preserve additional metadata associated with
1110 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
1111 * prototypes must be defined in the arch-specific asm/pgtable.h file.
1112 */
1113 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
arch_prepare_to_swap(struct folio * folio)1114 static inline int arch_prepare_to_swap(struct folio *folio)
1115 {
1116 return 0;
1117 }
1118 #endif
1119
1120 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
arch_swap_invalidate_page(int type,pgoff_t offset)1121 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1122 {
1123 }
1124
arch_swap_invalidate_area(int type)1125 static inline void arch_swap_invalidate_area(int type)
1126 {
1127 }
1128 #endif
1129
1130 #ifndef __HAVE_ARCH_SWAP_RESTORE
arch_swap_restore(swp_entry_t entry,struct folio * folio)1131 static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
1132 {
1133 }
1134 #endif
1135
1136 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
1137 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
1138 #endif
1139
1140 #ifndef __HAVE_ARCH_MOVE_PTE
1141 #define move_pte(pte, prot, old_addr, new_addr) (pte)
1142 #endif
1143
1144 #ifndef pte_accessible
1145 # define pte_accessible(mm, pte) ((void)(pte), 1)
1146 #endif
1147
1148 #ifndef flush_tlb_fix_spurious_fault
1149 #define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
1150 #endif
1151
1152 /*
1153 * When walking page tables, get the address of the next boundary,
1154 * or the end address of the range if that comes earlier. Although no
1155 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1156 */
1157
1158 #define pgd_addr_end(addr, end) \
1159 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
1160 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1161 })
1162
1163 #ifndef p4d_addr_end
1164 #define p4d_addr_end(addr, end) \
1165 ({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
1166 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1167 })
1168 #endif
1169
1170 #ifndef pud_addr_end
1171 #define pud_addr_end(addr, end) \
1172 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
1173 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1174 })
1175 #endif
1176
1177 #ifndef pmd_addr_end
1178 #define pmd_addr_end(addr, end) \
1179 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
1180 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1181 })
1182 #endif
1183
1184 /*
1185 * When walking page tables, we usually want to skip any p?d_none entries;
1186 * and any p?d_bad entries - reporting the error before resetting to none.
1187 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
1188 */
1189 void pgd_clear_bad(pgd_t *);
1190
1191 #ifndef __PAGETABLE_P4D_FOLDED
1192 void p4d_clear_bad(p4d_t *);
1193 #else
1194 #define p4d_clear_bad(p4d) do { } while (0)
1195 #endif
1196
1197 #ifndef __PAGETABLE_PUD_FOLDED
1198 void pud_clear_bad(pud_t *);
1199 #else
1200 #define pud_clear_bad(p4d) do { } while (0)
1201 #endif
1202
1203 void pmd_clear_bad(pmd_t *);
1204
pgd_none_or_clear_bad(pgd_t * pgd)1205 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
1206 {
1207 if (pgd_none(*pgd))
1208 return 1;
1209 if (unlikely(pgd_bad(*pgd))) {
1210 pgd_clear_bad(pgd);
1211 return 1;
1212 }
1213 return 0;
1214 }
1215
p4d_none_or_clear_bad(p4d_t * p4d)1216 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
1217 {
1218 if (p4d_none(*p4d))
1219 return 1;
1220 if (unlikely(p4d_bad(*p4d))) {
1221 p4d_clear_bad(p4d);
1222 return 1;
1223 }
1224 return 0;
1225 }
1226
pud_none_or_clear_bad(pud_t * pud)1227 static inline int pud_none_or_clear_bad(pud_t *pud)
1228 {
1229 if (pud_none(*pud))
1230 return 1;
1231 if (unlikely(pud_bad(*pud))) {
1232 pud_clear_bad(pud);
1233 return 1;
1234 }
1235 return 0;
1236 }
1237
pmd_none_or_clear_bad(pmd_t * pmd)1238 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
1239 {
1240 if (pmd_none(*pmd))
1241 return 1;
1242 if (unlikely(pmd_bad(*pmd))) {
1243 pmd_clear_bad(pmd);
1244 return 1;
1245 }
1246 return 0;
1247 }
1248
__ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1249 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
1250 unsigned long addr,
1251 pte_t *ptep)
1252 {
1253 /*
1254 * Get the current pte state, but zero it out to make it
1255 * non-present, preventing the hardware from asynchronously
1256 * updating it.
1257 */
1258 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1259 }
1260
__ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte)1261 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
1262 unsigned long addr,
1263 pte_t *ptep, pte_t pte)
1264 {
1265 /*
1266 * The pte is non-present, so there's no hardware state to
1267 * preserve.
1268 */
1269 set_pte_at(vma->vm_mm, addr, ptep, pte);
1270 }
1271
1272 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1273 /*
1274 * Start a pte protection read-modify-write transaction, which
1275 * protects against asynchronous hardware modifications to the pte.
1276 * The intention is not to prevent the hardware from making pte
1277 * updates, but to prevent any updates it may make from being lost.
1278 *
1279 * This does not protect against other software modifications of the
1280 * pte; the appropriate pte lock must be held over the transaction.
1281 *
1282 * Note that this interface is intended to be batchable, meaning that
1283 * ptep_modify_prot_commit may not actually update the pte, but merely
1284 * queue the update to be done at some later time. The update must be
1285 * actually committed before the pte lock is released, however.
1286 */
ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1287 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1288 unsigned long addr,
1289 pte_t *ptep)
1290 {
1291 return __ptep_modify_prot_start(vma, addr, ptep);
1292 }
1293
1294 /*
1295 * Commit an update to a pte, leaving any hardware-controlled bits in
1296 * the PTE unmodified.
1297 */
ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)1298 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
1299 unsigned long addr,
1300 pte_t *ptep, pte_t old_pte, pte_t pte)
1301 {
1302 __ptep_modify_prot_commit(vma, addr, ptep, pte);
1303 }
1304 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
1305 #endif /* CONFIG_MMU */
1306
1307 /*
1308 * No-op macros that just return the current protection value. Defined here
1309 * because these macros can be used even if CONFIG_MMU is not defined.
1310 */
1311
1312 #ifndef pgprot_nx
1313 #define pgprot_nx(prot) (prot)
1314 #endif
1315
1316 #ifndef pgprot_noncached
1317 #define pgprot_noncached(prot) (prot)
1318 #endif
1319
1320 #ifndef pgprot_writecombine
1321 #define pgprot_writecombine pgprot_noncached
1322 #endif
1323
1324 #ifndef pgprot_writethrough
1325 #define pgprot_writethrough pgprot_noncached
1326 #endif
1327
1328 #ifndef pgprot_device
1329 #define pgprot_device pgprot_noncached
1330 #endif
1331
1332 #ifndef pgprot_mhp
1333 #define pgprot_mhp(prot) (prot)
1334 #endif
1335
1336 #ifdef CONFIG_MMU
1337 #ifndef pgprot_modify
1338 #define pgprot_modify pgprot_modify
pgprot_modify(pgprot_t oldprot,pgprot_t newprot)1339 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1340 {
1341 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1342 newprot = pgprot_noncached(newprot);
1343 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1344 newprot = pgprot_writecombine(newprot);
1345 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1346 newprot = pgprot_device(newprot);
1347 return newprot;
1348 }
1349 #endif
1350 #endif /* CONFIG_MMU */
1351
1352 #ifndef pgprot_encrypted
1353 #define pgprot_encrypted(prot) (prot)
1354 #endif
1355
1356 #ifndef pgprot_decrypted
1357 #define pgprot_decrypted(prot) (prot)
1358 #endif
1359
1360 /*
1361 * A facility to provide batching of the reload of page tables and
1362 * other process state with the actual context switch code for
1363 * paravirtualized guests. By convention, only one of the batched
1364 * update (lazy) modes (CPU, MMU) should be active at any given time,
1365 * entry should never be nested, and entry and exits should always be
1366 * paired. This is for sanity of maintaining and reasoning about the
1367 * kernel code. In this case, the exit (end of the context switch) is
1368 * in architecture-specific code, and so doesn't need a generic
1369 * definition.
1370 */
1371 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1372 #define arch_start_context_switch(prev) do {} while (0)
1373 #endif
1374
1375 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1376 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_swp_mksoft_dirty(pmd_t pmd)1377 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1378 {
1379 return pmd;
1380 }
1381
pmd_swp_soft_dirty(pmd_t pmd)1382 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1383 {
1384 return 0;
1385 }
1386
pmd_swp_clear_soft_dirty(pmd_t pmd)1387 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1388 {
1389 return pmd;
1390 }
1391 #endif
1392 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
pte_soft_dirty(pte_t pte)1393 static inline int pte_soft_dirty(pte_t pte)
1394 {
1395 return 0;
1396 }
1397
pmd_soft_dirty(pmd_t pmd)1398 static inline int pmd_soft_dirty(pmd_t pmd)
1399 {
1400 return 0;
1401 }
1402
pte_mksoft_dirty(pte_t pte)1403 static inline pte_t pte_mksoft_dirty(pte_t pte)
1404 {
1405 return pte;
1406 }
1407
pmd_mksoft_dirty(pmd_t pmd)1408 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1409 {
1410 return pmd;
1411 }
1412
pte_clear_soft_dirty(pte_t pte)1413 static inline pte_t pte_clear_soft_dirty(pte_t pte)
1414 {
1415 return pte;
1416 }
1417
pmd_clear_soft_dirty(pmd_t pmd)1418 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1419 {
1420 return pmd;
1421 }
1422
pte_swp_mksoft_dirty(pte_t pte)1423 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1424 {
1425 return pte;
1426 }
1427
pte_swp_soft_dirty(pte_t pte)1428 static inline int pte_swp_soft_dirty(pte_t pte)
1429 {
1430 return 0;
1431 }
1432
pte_swp_clear_soft_dirty(pte_t pte)1433 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1434 {
1435 return pte;
1436 }
1437
pmd_swp_mksoft_dirty(pmd_t pmd)1438 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1439 {
1440 return pmd;
1441 }
1442
pmd_swp_soft_dirty(pmd_t pmd)1443 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1444 {
1445 return 0;
1446 }
1447
pmd_swp_clear_soft_dirty(pmd_t pmd)1448 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1449 {
1450 return pmd;
1451 }
1452 #endif
1453
1454 #ifndef __HAVE_PFNMAP_TRACKING
1455 /*
1456 * Interfaces that can be used by architecture code to keep track of
1457 * memory type of pfn mappings specified by the remap_pfn_range,
1458 * vmf_insert_pfn.
1459 */
1460
1461 /*
1462 * track_pfn_remap is called when a _new_ pfn mapping is being established
1463 * by remap_pfn_range() for physical range indicated by pfn and size.
1464 */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)1465 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1466 unsigned long pfn, unsigned long addr,
1467 unsigned long size)
1468 {
1469 return 0;
1470 }
1471
1472 /*
1473 * track_pfn_insert is called when a _new_ single pfn is established
1474 * by vmf_insert_pfn().
1475 */
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,pfn_t pfn)1476 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1477 pfn_t pfn)
1478 {
1479 }
1480
1481 /*
1482 * track_pfn_copy is called when vma that is covering the pfnmap gets
1483 * copied through copy_page_range().
1484 */
track_pfn_copy(struct vm_area_struct * vma)1485 static inline int track_pfn_copy(struct vm_area_struct *vma)
1486 {
1487 return 0;
1488 }
1489
1490 /*
1491 * untrack_pfn is called while unmapping a pfnmap for a region.
1492 * untrack can be called for a specific region indicated by pfn and size or
1493 * can be for the entire vma (in which case pfn, size are zero).
1494 */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size,bool mm_wr_locked)1495 static inline void untrack_pfn(struct vm_area_struct *vma,
1496 unsigned long pfn, unsigned long size,
1497 bool mm_wr_locked)
1498 {
1499 }
1500
1501 /*
1502 * untrack_pfn_clear is called while mremapping a pfnmap for a new region
1503 * or fails to copy pgtable during duplicate vm area.
1504 */
untrack_pfn_clear(struct vm_area_struct * vma)1505 static inline void untrack_pfn_clear(struct vm_area_struct *vma)
1506 {
1507 }
1508 #else
1509 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1510 unsigned long pfn, unsigned long addr,
1511 unsigned long size);
1512 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1513 pfn_t pfn);
1514 extern int track_pfn_copy(struct vm_area_struct *vma);
1515 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1516 unsigned long size, bool mm_wr_locked);
1517 extern void untrack_pfn_clear(struct vm_area_struct *vma);
1518 #endif
1519
1520 #ifdef CONFIG_MMU
1521 #ifdef __HAVE_COLOR_ZERO_PAGE
is_zero_pfn(unsigned long pfn)1522 static inline int is_zero_pfn(unsigned long pfn)
1523 {
1524 extern unsigned long zero_pfn;
1525 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1526 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1527 }
1528
1529 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1530
1531 #else
is_zero_pfn(unsigned long pfn)1532 static inline int is_zero_pfn(unsigned long pfn)
1533 {
1534 extern unsigned long zero_pfn;
1535 return pfn == zero_pfn;
1536 }
1537
my_zero_pfn(unsigned long addr)1538 static inline unsigned long my_zero_pfn(unsigned long addr)
1539 {
1540 extern unsigned long zero_pfn;
1541 return zero_pfn;
1542 }
1543 #endif
1544 #else
is_zero_pfn(unsigned long pfn)1545 static inline int is_zero_pfn(unsigned long pfn)
1546 {
1547 return 0;
1548 }
1549
my_zero_pfn(unsigned long addr)1550 static inline unsigned long my_zero_pfn(unsigned long addr)
1551 {
1552 return 0;
1553 }
1554 #endif /* CONFIG_MMU */
1555
1556 #ifdef CONFIG_MMU
1557
1558 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)1559 static inline int pmd_trans_huge(pmd_t pmd)
1560 {
1561 return 0;
1562 }
1563 #ifndef pmd_write
pmd_write(pmd_t pmd)1564 static inline int pmd_write(pmd_t pmd)
1565 {
1566 BUG();
1567 return 0;
1568 }
1569 #endif /* pmd_write */
1570 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1571
1572 #ifndef pud_write
pud_write(pud_t pud)1573 static inline int pud_write(pud_t pud)
1574 {
1575 BUG();
1576 return 0;
1577 }
1578 #endif /* pud_write */
1579
1580 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
pmd_devmap(pmd_t pmd)1581 static inline int pmd_devmap(pmd_t pmd)
1582 {
1583 return 0;
1584 }
pud_devmap(pud_t pud)1585 static inline int pud_devmap(pud_t pud)
1586 {
1587 return 0;
1588 }
pgd_devmap(pgd_t pgd)1589 static inline int pgd_devmap(pgd_t pgd)
1590 {
1591 return 0;
1592 }
1593 #endif
1594
1595 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1596 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
pud_trans_huge(pud_t pud)1597 static inline int pud_trans_huge(pud_t pud)
1598 {
1599 return 0;
1600 }
1601 #endif
1602
pud_trans_unstable(pud_t * pud)1603 static inline int pud_trans_unstable(pud_t *pud)
1604 {
1605 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1606 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1607 pud_t pudval = READ_ONCE(*pud);
1608
1609 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1610 return 1;
1611 if (unlikely(pud_bad(pudval))) {
1612 pud_clear_bad(pud);
1613 return 1;
1614 }
1615 #endif
1616 return 0;
1617 }
1618
1619 #ifndef CONFIG_NUMA_BALANCING
1620 /*
1621 * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is
1622 * perfectly valid to indicate "no" in that case, which is why our default
1623 * implementation defaults to "always no".
1624 *
1625 * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE
1626 * page protection due to NUMA hinting. NUMA hinting faults only apply in
1627 * accessible VMAs.
1628 *
1629 * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault,
1630 * looking at the VMA accessibility is sufficient.
1631 */
pte_protnone(pte_t pte)1632 static inline int pte_protnone(pte_t pte)
1633 {
1634 return 0;
1635 }
1636
pmd_protnone(pmd_t pmd)1637 static inline int pmd_protnone(pmd_t pmd)
1638 {
1639 return 0;
1640 }
1641 #endif /* CONFIG_NUMA_BALANCING */
1642
1643 #endif /* CONFIG_MMU */
1644
1645 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1646
1647 #ifndef __PAGETABLE_P4D_FOLDED
1648 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1649 void p4d_clear_huge(p4d_t *p4d);
1650 #else
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1651 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1652 {
1653 return 0;
1654 }
p4d_clear_huge(p4d_t * p4d)1655 static inline void p4d_clear_huge(p4d_t *p4d) { }
1656 #endif /* !__PAGETABLE_P4D_FOLDED */
1657
1658 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1659 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1660 int pud_clear_huge(pud_t *pud);
1661 int pmd_clear_huge(pmd_t *pmd);
1662 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1663 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1664 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1665 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1666 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1667 {
1668 return 0;
1669 }
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)1670 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1671 {
1672 return 0;
1673 }
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)1674 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1675 {
1676 return 0;
1677 }
p4d_clear_huge(p4d_t * p4d)1678 static inline void p4d_clear_huge(p4d_t *p4d) { }
pud_clear_huge(pud_t * pud)1679 static inline int pud_clear_huge(pud_t *pud)
1680 {
1681 return 0;
1682 }
pmd_clear_huge(pmd_t * pmd)1683 static inline int pmd_clear_huge(pmd_t *pmd)
1684 {
1685 return 0;
1686 }
p4d_free_pud_page(p4d_t * p4d,unsigned long addr)1687 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1688 {
1689 return 0;
1690 }
pud_free_pmd_page(pud_t * pud,unsigned long addr)1691 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1692 {
1693 return 0;
1694 }
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)1695 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1696 {
1697 return 0;
1698 }
1699 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1700
1701 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1702 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1703 /*
1704 * ARCHes with special requirements for evicting THP backing TLB entries can
1705 * implement this. Otherwise also, it can help optimize normal TLB flush in
1706 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1707 * entire TLB if flush span is greater than a threshold, which will
1708 * likely be true for a single huge page. Thus a single THP flush will
1709 * invalidate the entire TLB which is not desirable.
1710 * e.g. see arch/arc: flush_pmd_tlb_range
1711 */
1712 #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1713 #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1714 #else
1715 #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1716 #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1717 #endif
1718 #endif
1719
1720 struct file;
1721 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1722 unsigned long size, pgprot_t *vma_prot);
1723
1724 #ifndef CONFIG_X86_ESPFIX64
init_espfix_bsp(void)1725 static inline void init_espfix_bsp(void) { }
1726 #endif
1727
1728 extern void __init pgtable_cache_init(void);
1729
1730 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
pfn_modify_allowed(unsigned long pfn,pgprot_t prot)1731 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1732 {
1733 return true;
1734 }
1735
arch_has_pfn_modify_check(void)1736 static inline bool arch_has_pfn_modify_check(void)
1737 {
1738 return false;
1739 }
1740 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1741
1742 /*
1743 * Architecture PAGE_KERNEL_* fallbacks
1744 *
1745 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1746 * because they really don't support them, or the port needs to be updated to
1747 * reflect the required functionality. Below are a set of relatively safe
1748 * fallbacks, as best effort, which we can count on in lieu of the architectures
1749 * not defining them on their own yet.
1750 */
1751
1752 #ifndef PAGE_KERNEL_RO
1753 # define PAGE_KERNEL_RO PAGE_KERNEL
1754 #endif
1755
1756 #ifndef PAGE_KERNEL_EXEC
1757 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1758 #endif
1759
1760 /*
1761 * Page Table Modification bits for pgtbl_mod_mask.
1762 *
1763 * These are used by the p?d_alloc_track*() set of functions an in the generic
1764 * vmalloc/ioremap code to track at which page-table levels entries have been
1765 * modified. Based on that the code can better decide when vmalloc and ioremap
1766 * mapping changes need to be synchronized to other page-tables in the system.
1767 */
1768 #define __PGTBL_PGD_MODIFIED 0
1769 #define __PGTBL_P4D_MODIFIED 1
1770 #define __PGTBL_PUD_MODIFIED 2
1771 #define __PGTBL_PMD_MODIFIED 3
1772 #define __PGTBL_PTE_MODIFIED 4
1773
1774 #define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1775 #define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1776 #define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1777 #define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1778 #define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1779
1780 /* Page-Table Modification Mask */
1781 typedef unsigned int pgtbl_mod_mask;
1782
1783 #endif /* !__ASSEMBLY__ */
1784
1785 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1786 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1787 /*
1788 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1789 * with physical address space extension, but falls back to
1790 * BITS_PER_LONG otherwise.
1791 */
1792 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1793 #else
1794 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1795 #endif
1796 #endif
1797
1798 #ifndef has_transparent_hugepage
1799 #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1800 #endif
1801
1802 #ifndef has_transparent_pud_hugepage
1803 #define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1804 #endif
1805 /*
1806 * On some architectures it depends on the mm if the p4d/pud or pmd
1807 * layer of the page table hierarchy is folded or not.
1808 */
1809 #ifndef mm_p4d_folded
1810 #define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1811 #endif
1812
1813 #ifndef mm_pud_folded
1814 #define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1815 #endif
1816
1817 #ifndef mm_pmd_folded
1818 #define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1819 #endif
1820
1821 #ifndef p4d_offset_lockless
1822 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1823 #endif
1824 #ifndef pud_offset_lockless
1825 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1826 #endif
1827 #ifndef pmd_offset_lockless
1828 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1829 #endif
1830
1831 /*
1832 * p?d_leaf() - true if this entry is a final mapping to a physical address.
1833 * This differs from p?d_huge() by the fact that they are always available (if
1834 * the architecture supports large pages at the appropriate level) even
1835 * if CONFIG_HUGETLB_PAGE is not defined.
1836 * Only meaningful when called on a valid entry.
1837 */
1838 #ifndef pgd_leaf
1839 #define pgd_leaf(x) 0
1840 #endif
1841 #ifndef p4d_leaf
1842 #define p4d_leaf(x) 0
1843 #endif
1844 #ifndef pud_leaf
1845 #define pud_leaf(x) 0
1846 #endif
1847 #ifndef pmd_leaf
1848 #define pmd_leaf(x) 0
1849 #endif
1850
1851 #ifndef pgd_leaf_size
1852 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1853 #endif
1854 #ifndef p4d_leaf_size
1855 #define p4d_leaf_size(x) P4D_SIZE
1856 #endif
1857 #ifndef pud_leaf_size
1858 #define pud_leaf_size(x) PUD_SIZE
1859 #endif
1860 #ifndef pmd_leaf_size
1861 #define pmd_leaf_size(x) PMD_SIZE
1862 #endif
1863 #ifndef pte_leaf_size
1864 #define pte_leaf_size(x) PAGE_SIZE
1865 #endif
1866
1867 /*
1868 * Some architectures have MMUs that are configurable or selectable at boot
1869 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1870 * helps to have a static maximum value.
1871 */
1872
1873 #ifndef MAX_PTRS_PER_PTE
1874 #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1875 #endif
1876
1877 #ifndef MAX_PTRS_PER_PMD
1878 #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1879 #endif
1880
1881 #ifndef MAX_PTRS_PER_PUD
1882 #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1883 #endif
1884
1885 #ifndef MAX_PTRS_PER_P4D
1886 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1887 #endif
1888
1889 /* description of effects of mapping type and prot in current implementation.
1890 * this is due to the limited x86 page protection hardware. The expected
1891 * behavior is in parens:
1892 *
1893 * map_type prot
1894 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
1895 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1896 * w: (no) no w: (no) no w: (yes) yes w: (no) no
1897 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1898 *
1899 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1900 * w: (no) no w: (no) no w: (copy) copy w: (no) no
1901 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1902 *
1903 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1904 * MAP_PRIVATE (with Enhanced PAN supported):
1905 * r: (no) no
1906 * w: (no) no
1907 * x: (yes) yes
1908 */
1909 #define DECLARE_VM_GET_PAGE_PROT \
1910 pgprot_t vm_get_page_prot(unsigned long vm_flags) \
1911 { \
1912 return protection_map[vm_flags & \
1913 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \
1914 } \
1915 EXPORT_SYMBOL(vm_get_page_prot);
1916
1917 #endif /* _LINUX_PGTABLE_H */
1918