• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
40 #include <linux/compat.h>
41 
42 #include <asm/tlb.h>
43 #include <asm/pgalloc.h>
44 #include "internal.h"
45 #include "swap.h"
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/thp.h>
49 
50 /*
51  * By default, transparent hugepage support is disabled in order to avoid
52  * risking an increased memory footprint for applications that are not
53  * guaranteed to benefit from it. When transparent hugepage support is
54  * enabled, it is for all mappings, and khugepaged scans all mappings.
55  * Defrag is invoked by khugepaged hugepage allocations and by page faults
56  * for all hugepage allocations.
57  */
58 unsigned long transparent_hugepage_flags __read_mostly =
59 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
60 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
61 #endif
62 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
63 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
64 #endif
65 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
66 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
67 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
68 
69 static struct shrinker deferred_split_shrinker;
70 
71 static atomic_t huge_zero_refcount;
72 struct page *huge_zero_page __read_mostly;
73 unsigned long huge_zero_pfn __read_mostly = ~0UL;
74 unsigned long huge_anon_orders_always __read_mostly;
75 unsigned long huge_anon_orders_madvise __read_mostly;
76 unsigned long huge_anon_orders_inherit __read_mostly;
77 
__thp_vma_allowable_orders(struct vm_area_struct * vma,unsigned long vm_flags,unsigned long tva_flags,unsigned long orders)78 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
79 					 unsigned long vm_flags,
80 					 unsigned long tva_flags,
81 					 unsigned long orders)
82 {
83 	bool smaps = tva_flags & TVA_SMAPS;
84 	bool in_pf = tva_flags & TVA_IN_PF;
85 	bool enforce_sysfs = tva_flags & TVA_ENFORCE_SYSFS;
86 	/* Check the intersection of requested and supported orders. */
87 	orders &= vma_is_anonymous(vma) ?
88 			THP_ORDERS_ALL_ANON : THP_ORDERS_ALL_FILE;
89 	if (!orders)
90 		return 0;
91 
92 	if (!vma->vm_mm)		/* vdso */
93 		return 0;
94 
95 	/*
96 	 * Explicitly disabled through madvise or prctl, or some
97 	 * architectures may disable THP for some mappings, for
98 	 * example, s390 kvm.
99 	 * */
100 	if ((vm_flags & VM_NOHUGEPAGE) ||
101 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
102 		return 0;
103 	/*
104 	 * If the hardware/firmware marked hugepage support disabled.
105 	 */
106 	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
107 		return 0;
108 
109 	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
110 	if (vma_is_dax(vma))
111 		return in_pf ? orders : 0;
112 
113 	/*
114 	 * khugepaged special VMA and hugetlb VMA.
115 	 * Must be checked after dax since some dax mappings may have
116 	 * VM_MIXEDMAP set.
117 	 */
118 	if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
119 		return 0;
120 
121 	/*
122 	 * Check alignment for file vma and size for both file and anon vma by
123 	 * filtering out the unsuitable orders.
124 	 *
125 	 * Skip the check for page fault. Huge fault does the check in fault
126 	 * handlers.
127 	 */
128 	if (!in_pf) {
129 		int order = highest_order(orders);
130 		unsigned long addr;
131 
132 		while (orders) {
133 			addr = vma->vm_end - (PAGE_SIZE << order);
134 			if (thp_vma_suitable_order(vma, addr, order))
135 				break;
136 			order = next_order(&orders, order);
137 		}
138 
139 		if (!orders)
140 			return 0;
141 	}
142 
143 	/*
144 	 * Enabled via shmem mount options or sysfs settings.
145 	 * Must be done before hugepage flags check since shmem has its
146 	 * own flags.
147 	 */
148 	if (!in_pf && shmem_file(vma->vm_file))
149 		return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
150 				     !enforce_sysfs, vma->vm_mm, vm_flags)
151 			? orders : 0;
152 
153 	if (!vma_is_anonymous(vma)) {
154 		/*
155 		 * Enforce sysfs THP requirements as necessary. Anonymous vmas
156 		 * were already handled in thp_vma_allowable_orders().
157 		 */
158 		if (enforce_sysfs &&
159 		    (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
160 						    !hugepage_global_always())))
161 			return 0;
162 
163 		/*
164 		 * Trust that ->huge_fault() handlers know what they are doing
165 		 * in fault path.
166 		 */
167 		if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
168 			return orders;
169 		/* Only regular file is valid in collapse path */
170 		if (((!in_pf || smaps)) && file_thp_enabled(vma))
171 			return orders;
172 		return 0;
173 	}
174 
175 	if (vma_is_temporary_stack(vma))
176 		return 0;
177 
178 	/*
179 	 * THPeligible bit of smaps should show 1 for proper VMAs even
180 	 * though anon_vma is not initialized yet.
181 	 *
182 	 * Allow page fault since anon_vma may be not initialized until
183 	 * the first page fault.
184 	 */
185 	if (!vma->anon_vma)
186 		return (smaps || in_pf) ? orders : 0;
187 
188 	return orders;
189 }
190 
get_huge_zero_page(void)191 static bool get_huge_zero_page(void)
192 {
193 	struct page *zero_page;
194 retry:
195 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
196 		return true;
197 
198 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
199 			HPAGE_PMD_ORDER);
200 	if (!zero_page) {
201 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
202 		return false;
203 	}
204 	preempt_disable();
205 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
206 		preempt_enable();
207 		__free_pages(zero_page, compound_order(zero_page));
208 		goto retry;
209 	}
210 	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
211 
212 	/* We take additional reference here. It will be put back by shrinker */
213 	atomic_set(&huge_zero_refcount, 2);
214 	preempt_enable();
215 	count_vm_event(THP_ZERO_PAGE_ALLOC);
216 	return true;
217 }
218 
put_huge_zero_page(void)219 static void put_huge_zero_page(void)
220 {
221 	/*
222 	 * Counter should never go to zero here. Only shrinker can put
223 	 * last reference.
224 	 */
225 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
226 }
227 
mm_get_huge_zero_page(struct mm_struct * mm)228 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
229 {
230 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
231 		return READ_ONCE(huge_zero_page);
232 
233 	if (!get_huge_zero_page())
234 		return NULL;
235 
236 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
237 		put_huge_zero_page();
238 
239 	return READ_ONCE(huge_zero_page);
240 }
241 
mm_put_huge_zero_page(struct mm_struct * mm)242 void mm_put_huge_zero_page(struct mm_struct *mm)
243 {
244 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
245 		put_huge_zero_page();
246 }
247 
shrink_huge_zero_page_count(struct shrinker * shrink,struct shrink_control * sc)248 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
249 					struct shrink_control *sc)
250 {
251 	/* we can free zero page only if last reference remains */
252 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
253 }
254 
shrink_huge_zero_page_scan(struct shrinker * shrink,struct shrink_control * sc)255 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
256 				       struct shrink_control *sc)
257 {
258 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
259 		struct page *zero_page = xchg(&huge_zero_page, NULL);
260 		BUG_ON(zero_page == NULL);
261 		WRITE_ONCE(huge_zero_pfn, ~0UL);
262 		__free_pages(zero_page, compound_order(zero_page));
263 		return HPAGE_PMD_NR;
264 	}
265 
266 	return 0;
267 }
268 
269 static struct shrinker huge_zero_page_shrinker = {
270 	.count_objects = shrink_huge_zero_page_count,
271 	.scan_objects = shrink_huge_zero_page_scan,
272 	.seeks = DEFAULT_SEEKS,
273 };
274 
275 #ifdef CONFIG_SYSFS
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)276 static ssize_t enabled_show(struct kobject *kobj,
277 			    struct kobj_attribute *attr, char *buf)
278 {
279 	const char *output;
280 
281 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
282 		output = "[always] madvise never";
283 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
284 			  &transparent_hugepage_flags))
285 		output = "always [madvise] never";
286 	else
287 		output = "always madvise [never]";
288 
289 	return sysfs_emit(buf, "%s\n", output);
290 }
291 
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)292 static ssize_t enabled_store(struct kobject *kobj,
293 			     struct kobj_attribute *attr,
294 			     const char *buf, size_t count)
295 {
296 	ssize_t ret = count;
297 
298 	if (sysfs_streq(buf, "always")) {
299 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
300 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
301 	} else if (sysfs_streq(buf, "madvise")) {
302 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
303 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
304 	} else if (sysfs_streq(buf, "never")) {
305 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
306 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
307 	} else
308 		ret = -EINVAL;
309 
310 	if (ret > 0) {
311 		int err = start_stop_khugepaged();
312 		if (err)
313 			ret = err;
314 	}
315 	return ret;
316 }
317 
318 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
319 
single_hugepage_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag flag)320 ssize_t single_hugepage_flag_show(struct kobject *kobj,
321 				  struct kobj_attribute *attr, char *buf,
322 				  enum transparent_hugepage_flag flag)
323 {
324 	return sysfs_emit(buf, "%d\n",
325 			  !!test_bit(flag, &transparent_hugepage_flags));
326 }
327 
single_hugepage_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag flag)328 ssize_t single_hugepage_flag_store(struct kobject *kobj,
329 				 struct kobj_attribute *attr,
330 				 const char *buf, size_t count,
331 				 enum transparent_hugepage_flag flag)
332 {
333 	unsigned long value;
334 	int ret;
335 
336 	ret = kstrtoul(buf, 10, &value);
337 	if (ret < 0)
338 		return ret;
339 	if (value > 1)
340 		return -EINVAL;
341 
342 	if (value)
343 		set_bit(flag, &transparent_hugepage_flags);
344 	else
345 		clear_bit(flag, &transparent_hugepage_flags);
346 
347 	return count;
348 }
349 
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)350 static ssize_t defrag_show(struct kobject *kobj,
351 			   struct kobj_attribute *attr, char *buf)
352 {
353 	const char *output;
354 
355 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
356 		     &transparent_hugepage_flags))
357 		output = "[always] defer defer+madvise madvise never";
358 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
359 			  &transparent_hugepage_flags))
360 		output = "always [defer] defer+madvise madvise never";
361 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
362 			  &transparent_hugepage_flags))
363 		output = "always defer [defer+madvise] madvise never";
364 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
365 			  &transparent_hugepage_flags))
366 		output = "always defer defer+madvise [madvise] never";
367 	else
368 		output = "always defer defer+madvise madvise [never]";
369 
370 	return sysfs_emit(buf, "%s\n", output);
371 }
372 
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)373 static ssize_t defrag_store(struct kobject *kobj,
374 			    struct kobj_attribute *attr,
375 			    const char *buf, size_t count)
376 {
377 	if (sysfs_streq(buf, "always")) {
378 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
379 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
380 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
381 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
382 	} else if (sysfs_streq(buf, "defer+madvise")) {
383 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
384 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
385 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
386 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
387 	} else if (sysfs_streq(buf, "defer")) {
388 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
389 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
390 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
391 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
392 	} else if (sysfs_streq(buf, "madvise")) {
393 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
394 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
395 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
396 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
397 	} else if (sysfs_streq(buf, "never")) {
398 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
399 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
400 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
401 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
402 	} else
403 		return -EINVAL;
404 
405 	return count;
406 }
407 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
408 
use_zero_page_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)409 static ssize_t use_zero_page_show(struct kobject *kobj,
410 				  struct kobj_attribute *attr, char *buf)
411 {
412 	return single_hugepage_flag_show(kobj, attr, buf,
413 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
414 }
use_zero_page_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)415 static ssize_t use_zero_page_store(struct kobject *kobj,
416 		struct kobj_attribute *attr, const char *buf, size_t count)
417 {
418 	return single_hugepage_flag_store(kobj, attr, buf, count,
419 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
420 }
421 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
422 
hpage_pmd_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)423 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
424 				   struct kobj_attribute *attr, char *buf)
425 {
426 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
427 }
428 static struct kobj_attribute hpage_pmd_size_attr =
429 	__ATTR_RO(hpage_pmd_size);
430 
431 static struct attribute *hugepage_attr[] = {
432 	&enabled_attr.attr,
433 	&defrag_attr.attr,
434 	&use_zero_page_attr.attr,
435 	&hpage_pmd_size_attr.attr,
436 #ifdef CONFIG_SHMEM
437 	&shmem_enabled_attr.attr,
438 #endif
439 	NULL,
440 };
441 
442 static const struct attribute_group hugepage_attr_group = {
443 	.attrs = hugepage_attr,
444 };
445 
446 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
447 static void thpsize_release(struct kobject *kobj);
448 static DEFINE_SPINLOCK(huge_anon_orders_lock);
449 static LIST_HEAD(thpsize_list);
450 
451 struct thpsize {
452 	struct kobject kobj;
453 	struct list_head node;
454 	int order;
455 };
456 
457 #define to_thpsize(kobj) container_of(kobj, struct thpsize, kobj)
458 
thpsize_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)459 static ssize_t thpsize_enabled_show(struct kobject *kobj,
460 				    struct kobj_attribute *attr, char *buf)
461 {
462 	int order = to_thpsize(kobj)->order;
463 	const char *output;
464 
465 	if (test_bit(order, &huge_anon_orders_always))
466 		output = "[always] inherit madvise never";
467 	else if (test_bit(order, &huge_anon_orders_inherit))
468 		output = "always [inherit] madvise never";
469 	else if (test_bit(order, &huge_anon_orders_madvise))
470 		output = "always inherit [madvise] never";
471 	else
472 		output = "always inherit madvise [never]";
473 
474 	return sysfs_emit(buf, "%s\n", output);
475 }
476 
thpsize_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)477 static ssize_t thpsize_enabled_store(struct kobject *kobj,
478 				     struct kobj_attribute *attr,
479 				     const char *buf, size_t count)
480 {
481 	int order = to_thpsize(kobj)->order;
482 	ssize_t ret = count;
483 
484 	if (sysfs_streq(buf, "always")) {
485 		spin_lock(&huge_anon_orders_lock);
486 		clear_bit(order, &huge_anon_orders_inherit);
487 		clear_bit(order, &huge_anon_orders_madvise);
488 		set_bit(order, &huge_anon_orders_always);
489 		spin_unlock(&huge_anon_orders_lock);
490 	} else if (sysfs_streq(buf, "inherit")) {
491 		spin_lock(&huge_anon_orders_lock);
492 		clear_bit(order, &huge_anon_orders_always);
493 		clear_bit(order, &huge_anon_orders_madvise);
494 		set_bit(order, &huge_anon_orders_inherit);
495 		spin_unlock(&huge_anon_orders_lock);
496 	} else if (sysfs_streq(buf, "madvise")) {
497 		spin_lock(&huge_anon_orders_lock);
498 		clear_bit(order, &huge_anon_orders_always);
499 		clear_bit(order, &huge_anon_orders_inherit);
500 		set_bit(order, &huge_anon_orders_madvise);
501 		spin_unlock(&huge_anon_orders_lock);
502 	} else if (sysfs_streq(buf, "never")) {
503 		spin_lock(&huge_anon_orders_lock);
504 		clear_bit(order, &huge_anon_orders_always);
505 		clear_bit(order, &huge_anon_orders_inherit);
506 		clear_bit(order, &huge_anon_orders_madvise);
507 		spin_unlock(&huge_anon_orders_lock);
508 	} else
509 		ret = -EINVAL;
510 
511 	return ret;
512 }
513 
514 static struct kobj_attribute thpsize_enabled_attr =
515 	__ATTR(enabled, 0644, thpsize_enabled_show, thpsize_enabled_store);
516 
517 static struct attribute *thpsize_attrs[] = {
518 	&thpsize_enabled_attr.attr,
519 	NULL,
520 };
521 
522 static const struct attribute_group thpsize_attr_group = {
523 	.attrs = thpsize_attrs,
524 };
525 
526 static const struct kobj_type thpsize_ktype = {
527 	.release = &thpsize_release,
528 	.sysfs_ops = &kobj_sysfs_ops,
529 };
530 
531 DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}};
532 
sum_mthp_stat(int order,enum mthp_stat_item item)533 static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item)
534 {
535 	unsigned long sum = 0;
536 	int cpu;
537 
538 	for_each_possible_cpu(cpu) {
539 		struct mthp_stat *this = &per_cpu(mthp_stats, cpu);
540 
541 		sum += this->stats[order][item];
542 	}
543 
544 	return sum;
545 }
546 
547 #define DEFINE_MTHP_STAT_ATTR(_name, _index)				\
548 static ssize_t _name##_show(struct kobject *kobj,			\
549 			struct kobj_attribute *attr, char *buf)		\
550 {									\
551 	int order = to_thpsize(kobj)->order;				\
552 									\
553 	return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index));	\
554 }									\
555 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
556 
557 DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC);
558 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK);
559 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
560 DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT);
561 DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK);
562 
563 static struct attribute *stats_attrs[] = {
564 	&anon_fault_alloc_attr.attr,
565 	&anon_fault_fallback_attr.attr,
566 	&anon_fault_fallback_charge_attr.attr,
567 	&swpout_attr.attr,
568 	&swpout_fallback_attr.attr,
569 	NULL,
570 };
571 
572 static struct attribute_group stats_attr_group = {
573 	.name = "stats",
574 	.attrs = stats_attrs,
575 };
576 
thpsize_create(int order,struct kobject * parent)577 static struct thpsize *thpsize_create(int order, struct kobject *parent)
578 {
579 	unsigned long size = (PAGE_SIZE << order) / SZ_1K;
580 	struct thpsize *thpsize;
581 	int ret;
582 
583 	thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
584 	if (!thpsize)
585 		return ERR_PTR(-ENOMEM);
586 
587 	ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
588 				   "hugepages-%lukB", size);
589 	if (ret) {
590 		kfree(thpsize);
591 		return ERR_PTR(ret);
592 	}
593 
594 	ret = sysfs_create_group(&thpsize->kobj, &thpsize_attr_group);
595 	if (ret) {
596 		kobject_put(&thpsize->kobj);
597 		return ERR_PTR(ret);
598 	}
599 
600 	ret = sysfs_create_group(&thpsize->kobj, &stats_attr_group);
601 	if (ret) {
602 		kobject_put(&thpsize->kobj);
603 		return ERR_PTR(ret);
604 	}
605 
606 	thpsize->order = order;
607 	return thpsize;
608 }
609 
thpsize_release(struct kobject * kobj)610 static void thpsize_release(struct kobject *kobj)
611 {
612 	kfree(to_thpsize(kobj));
613 }
614 
hugepage_init_sysfs(struct kobject ** hugepage_kobj)615 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
616 {
617 	int err;
618 	struct thpsize *thpsize;
619 	unsigned long orders;
620 	int order;
621 
622 	/*
623 	 * Default to setting PMD-sized THP to inherit the global setting and
624 	 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
625 	 * constant so we have to do this here.
626 	 */
627 	huge_anon_orders_inherit = BIT(PMD_ORDER);
628 
629 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
630 	if (unlikely(!*hugepage_kobj)) {
631 		pr_err("failed to create transparent hugepage kobject\n");
632 		return -ENOMEM;
633 	}
634 
635 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
636 	if (err) {
637 		pr_err("failed to register transparent hugepage group\n");
638 		goto delete_obj;
639 	}
640 
641 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
642 	if (err) {
643 		pr_err("failed to register transparent hugepage group\n");
644 		goto remove_hp_group;
645 	}
646 
647 	orders = THP_ORDERS_ALL_ANON;
648 	order = highest_order(orders);
649 	while (orders) {
650 		thpsize = thpsize_create(order, *hugepage_kobj);
651 		if (IS_ERR(thpsize)) {
652 			pr_err("failed to create thpsize for order %d\n", order);
653 			err = PTR_ERR(thpsize);
654 			goto remove_all;
655 		}
656 		list_add(&thpsize->node, &thpsize_list);
657 		order = next_order(&orders, order);
658 	}
659 
660 	return 0;
661 
662 remove_all:
663 	hugepage_exit_sysfs(*hugepage_kobj);
664 	return err;
665 remove_hp_group:
666 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
667 delete_obj:
668 	kobject_put(*hugepage_kobj);
669 	return err;
670 }
671 
hugepage_exit_sysfs(struct kobject * hugepage_kobj)672 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
673 {
674 	struct thpsize *thpsize, *tmp;
675 
676 	list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
677 		list_del(&thpsize->node);
678 		kobject_put(&thpsize->kobj);
679 	}
680 
681 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
682 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
683 	kobject_put(hugepage_kobj);
684 }
685 #else
hugepage_init_sysfs(struct kobject ** hugepage_kobj)686 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
687 {
688 	return 0;
689 }
690 
hugepage_exit_sysfs(struct kobject * hugepage_kobj)691 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
692 {
693 }
694 #endif /* CONFIG_SYSFS */
695 
hugepage_init(void)696 static int __init hugepage_init(void)
697 {
698 	int err;
699 	struct kobject *hugepage_kobj;
700 
701 	if (!has_transparent_hugepage()) {
702 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
703 		return -EINVAL;
704 	}
705 
706 	/*
707 	 * hugepages can't be allocated by the buddy allocator
708 	 */
709 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_ORDER);
710 	/*
711 	 * we use page->mapping and page->index in second tail page
712 	 * as list_head: assuming THP order >= 2
713 	 */
714 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
715 
716 	err = hugepage_init_sysfs(&hugepage_kobj);
717 	if (err)
718 		goto err_sysfs;
719 
720 	err = khugepaged_init();
721 	if (err)
722 		goto err_slab;
723 
724 	err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
725 	if (err)
726 		goto err_hzp_shrinker;
727 	err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
728 	if (err)
729 		goto err_split_shrinker;
730 
731 	/*
732 	 * By default disable transparent hugepages on smaller systems,
733 	 * where the extra memory used could hurt more than TLB overhead
734 	 * is likely to save.  The admin can still enable it through /sys.
735 	 */
736 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
737 		transparent_hugepage_flags = 0;
738 		return 0;
739 	}
740 
741 	err = start_stop_khugepaged();
742 	if (err)
743 		goto err_khugepaged;
744 
745 	return 0;
746 err_khugepaged:
747 	unregister_shrinker(&deferred_split_shrinker);
748 err_split_shrinker:
749 	unregister_shrinker(&huge_zero_page_shrinker);
750 err_hzp_shrinker:
751 	khugepaged_destroy();
752 err_slab:
753 	hugepage_exit_sysfs(hugepage_kobj);
754 err_sysfs:
755 	return err;
756 }
757 subsys_initcall(hugepage_init);
758 
setup_transparent_hugepage(char * str)759 static int __init setup_transparent_hugepage(char *str)
760 {
761 	int ret = 0;
762 	if (!str)
763 		goto out;
764 	if (!strcmp(str, "always")) {
765 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
766 			&transparent_hugepage_flags);
767 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
768 			  &transparent_hugepage_flags);
769 		ret = 1;
770 	} else if (!strcmp(str, "madvise")) {
771 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
772 			  &transparent_hugepage_flags);
773 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
774 			&transparent_hugepage_flags);
775 		ret = 1;
776 	} else if (!strcmp(str, "never")) {
777 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
778 			  &transparent_hugepage_flags);
779 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
780 			  &transparent_hugepage_flags);
781 		ret = 1;
782 	}
783 out:
784 	if (!ret)
785 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
786 	return ret;
787 }
788 __setup("transparent_hugepage=", setup_transparent_hugepage);
789 
maybe_pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)790 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
791 {
792 	if (likely(vma->vm_flags & VM_WRITE))
793 		pmd = pmd_mkwrite(pmd, vma);
794 	return pmd;
795 }
796 
797 #ifdef CONFIG_MEMCG
798 static inline
get_deferred_split_queue(struct folio * folio)799 struct deferred_split *get_deferred_split_queue(struct folio *folio)
800 {
801 	struct mem_cgroup *memcg = folio_memcg(folio);
802 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
803 
804 	if (memcg)
805 		return &memcg->deferred_split_queue;
806 	else
807 		return &pgdat->deferred_split_queue;
808 }
809 #else
810 static inline
get_deferred_split_queue(struct folio * folio)811 struct deferred_split *get_deferred_split_queue(struct folio *folio)
812 {
813 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
814 
815 	return &pgdat->deferred_split_queue;
816 }
817 #endif
818 
folio_prep_large_rmappable(struct folio * folio)819 void folio_prep_large_rmappable(struct folio *folio)
820 {
821 	VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
822 	INIT_LIST_HEAD(&folio->_deferred_list);
823 	folio_set_large_rmappable(folio);
824 }
825 
is_transparent_hugepage(struct folio * folio)826 static inline bool is_transparent_hugepage(struct folio *folio)
827 {
828 	if (!folio_test_large(folio))
829 		return false;
830 
831 	return is_huge_zero_page(&folio->page) ||
832 		folio_test_large_rmappable(folio);
833 }
834 
__thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,loff_t off,unsigned long flags,unsigned long size)835 static unsigned long __thp_get_unmapped_area(struct file *filp,
836 		unsigned long addr, unsigned long len,
837 		loff_t off, unsigned long flags, unsigned long size)
838 {
839 	loff_t off_end = off + len;
840 	loff_t off_align = round_up(off, size);
841 	unsigned long len_pad, ret;
842 
843 	if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall())
844 		return 0;
845 
846 	if (off_end <= off_align || (off_end - off_align) < size)
847 		return 0;
848 
849 	len_pad = len + size;
850 	if (len_pad < len || (off + len_pad) < off)
851 		return 0;
852 
853 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
854 					      off >> PAGE_SHIFT, flags);
855 
856 	/*
857 	 * The failure might be due to length padding. The caller will retry
858 	 * without the padding.
859 	 */
860 	if (IS_ERR_VALUE(ret))
861 		return 0;
862 
863 	/*
864 	 * Do not try to align to THP boundary if allocation at the address
865 	 * hint succeeds.
866 	 */
867 	if (ret == addr)
868 		return addr;
869 
870 	ret += (off - ret) & (size - 1);
871 	return ret;
872 }
873 
thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)874 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
875 		unsigned long len, unsigned long pgoff, unsigned long flags)
876 {
877 	unsigned long ret;
878 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
879 
880 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
881 	if (ret)
882 		return ret;
883 
884 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
885 }
886 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
887 
__do_huge_pmd_anonymous_page(struct vm_fault * vmf,struct page * page,gfp_t gfp)888 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
889 			struct page *page, gfp_t gfp)
890 {
891 	struct vm_area_struct *vma = vmf->vma;
892 	struct folio *folio = page_folio(page);
893 	pgtable_t pgtable;
894 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
895 	vm_fault_t ret = 0;
896 
897 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
898 
899 	if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
900 		folio_put(folio);
901 		count_vm_event(THP_FAULT_FALLBACK);
902 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
903 		count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK);
904 		count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
905 		return VM_FAULT_FALLBACK;
906 	}
907 	folio_throttle_swaprate(folio, gfp);
908 
909 	pgtable = pte_alloc_one(vma->vm_mm);
910 	if (unlikely(!pgtable)) {
911 		ret = VM_FAULT_OOM;
912 		goto release;
913 	}
914 
915 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
916 	/*
917 	 * The memory barrier inside __folio_mark_uptodate makes sure that
918 	 * clear_huge_page writes become visible before the set_pmd_at()
919 	 * write.
920 	 */
921 	__folio_mark_uptodate(folio);
922 
923 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
924 	if (unlikely(!pmd_none(*vmf->pmd))) {
925 		goto unlock_release;
926 	} else {
927 		pmd_t entry;
928 
929 		ret = check_stable_address_space(vma->vm_mm);
930 		if (ret)
931 			goto unlock_release;
932 
933 		/* Deliver the page fault to userland */
934 		if (userfaultfd_missing(vma)) {
935 			spin_unlock(vmf->ptl);
936 			folio_put(folio);
937 			pte_free(vma->vm_mm, pgtable);
938 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
939 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
940 			return ret;
941 		}
942 
943 		entry = mk_huge_pmd(page, vma->vm_page_prot);
944 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
945 		folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE);
946 		folio_add_lru_vma(folio, vma);
947 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
948 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
949 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
950 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
951 		mm_inc_nr_ptes(vma->vm_mm);
952 		spin_unlock(vmf->ptl);
953 		count_vm_event(THP_FAULT_ALLOC);
954 		count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC);
955 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
956 	}
957 
958 	return 0;
959 unlock_release:
960 	spin_unlock(vmf->ptl);
961 release:
962 	if (pgtable)
963 		pte_free(vma->vm_mm, pgtable);
964 	folio_put(folio);
965 	return ret;
966 
967 }
968 
969 /*
970  * always: directly stall for all thp allocations
971  * defer: wake kswapd and fail if not immediately available
972  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
973  *		  fail if not immediately available
974  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
975  *	    available
976  * never: never stall for any thp allocation
977  */
vma_thp_gfp_mask(struct vm_area_struct * vma)978 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
979 {
980 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
981 
982 	/* Always do synchronous compaction */
983 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
984 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
985 
986 	/* Kick kcompactd and fail quickly */
987 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
988 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
989 
990 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
991 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
992 		return GFP_TRANSHUGE_LIGHT |
993 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
994 					__GFP_KSWAPD_RECLAIM);
995 
996 	/* Only do synchronous compaction if madvised */
997 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
998 		return GFP_TRANSHUGE_LIGHT |
999 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
1000 
1001 	return GFP_TRANSHUGE_LIGHT;
1002 }
1003 
1004 /* Caller must hold page table lock. */
set_huge_zero_page(pgtable_t pgtable,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,struct page * zero_page)1005 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
1006 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
1007 		struct page *zero_page)
1008 {
1009 	pmd_t entry;
1010 	if (!pmd_none(*pmd))
1011 		return;
1012 	entry = mk_pmd(zero_page, vma->vm_page_prot);
1013 	entry = pmd_mkhuge(entry);
1014 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1015 	set_pmd_at(mm, haddr, pmd, entry);
1016 	mm_inc_nr_ptes(mm);
1017 }
1018 
do_huge_pmd_anonymous_page(struct vm_fault * vmf)1019 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1020 {
1021 	struct vm_area_struct *vma = vmf->vma;
1022 	gfp_t gfp;
1023 	struct folio *folio;
1024 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1025 	vm_fault_t ret;
1026 
1027 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
1028 		return VM_FAULT_FALLBACK;
1029 	ret = vmf_anon_prepare(vmf);
1030 	if (ret)
1031 		return ret;
1032 	khugepaged_enter_vma(vma, vma->vm_flags);
1033 
1034 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
1035 			!mm_forbids_zeropage(vma->vm_mm) &&
1036 			transparent_hugepage_use_zero_page()) {
1037 		pgtable_t pgtable;
1038 		struct page *zero_page;
1039 		vm_fault_t ret;
1040 		pgtable = pte_alloc_one(vma->vm_mm);
1041 		if (unlikely(!pgtable))
1042 			return VM_FAULT_OOM;
1043 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
1044 		if (unlikely(!zero_page)) {
1045 			pte_free(vma->vm_mm, pgtable);
1046 			count_vm_event(THP_FAULT_FALLBACK);
1047 			return VM_FAULT_FALLBACK;
1048 		}
1049 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1050 		ret = 0;
1051 		if (pmd_none(*vmf->pmd)) {
1052 			ret = check_stable_address_space(vma->vm_mm);
1053 			if (ret) {
1054 				spin_unlock(vmf->ptl);
1055 				pte_free(vma->vm_mm, pgtable);
1056 			} else if (userfaultfd_missing(vma)) {
1057 				spin_unlock(vmf->ptl);
1058 				pte_free(vma->vm_mm, pgtable);
1059 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
1060 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1061 			} else {
1062 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
1063 						   haddr, vmf->pmd, zero_page);
1064 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1065 				spin_unlock(vmf->ptl);
1066 			}
1067 		} else {
1068 			spin_unlock(vmf->ptl);
1069 			pte_free(vma->vm_mm, pgtable);
1070 		}
1071 		return ret;
1072 	}
1073 	gfp = vma_thp_gfp_mask(vma);
1074 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
1075 	if (unlikely(!folio)) {
1076 		count_vm_event(THP_FAULT_FALLBACK);
1077 		count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK);
1078 		return VM_FAULT_FALLBACK;
1079 	}
1080 	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
1081 }
1082 
insert_pfn_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,pfn_t pfn,pgprot_t prot,bool write,pgtable_t pgtable)1083 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1084 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
1085 		pgtable_t pgtable)
1086 {
1087 	struct mm_struct *mm = vma->vm_mm;
1088 	pmd_t entry;
1089 	spinlock_t *ptl;
1090 
1091 	ptl = pmd_lock(mm, pmd);
1092 	if (!pmd_none(*pmd)) {
1093 		if (write) {
1094 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
1095 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1096 				goto out_unlock;
1097 			}
1098 			entry = pmd_mkyoung(*pmd);
1099 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1100 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1101 				update_mmu_cache_pmd(vma, addr, pmd);
1102 		}
1103 
1104 		goto out_unlock;
1105 	}
1106 
1107 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1108 	if (pfn_t_devmap(pfn))
1109 		entry = pmd_mkdevmap(entry);
1110 	if (write) {
1111 		entry = pmd_mkyoung(pmd_mkdirty(entry));
1112 		entry = maybe_pmd_mkwrite(entry, vma);
1113 	}
1114 
1115 	if (pgtable) {
1116 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
1117 		mm_inc_nr_ptes(mm);
1118 		pgtable = NULL;
1119 	}
1120 
1121 	set_pmd_at(mm, addr, pmd, entry);
1122 	update_mmu_cache_pmd(vma, addr, pmd);
1123 
1124 out_unlock:
1125 	spin_unlock(ptl);
1126 	if (pgtable)
1127 		pte_free(mm, pgtable);
1128 }
1129 
1130 /**
1131  * vmf_insert_pfn_pmd - insert a pmd size pfn
1132  * @vmf: Structure describing the fault
1133  * @pfn: pfn to insert
1134  * @write: whether it's a write fault
1135  *
1136  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1137  *
1138  * Return: vm_fault_t value.
1139  */
vmf_insert_pfn_pmd(struct vm_fault * vmf,pfn_t pfn,bool write)1140 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
1141 {
1142 	unsigned long addr = vmf->address & PMD_MASK;
1143 	struct vm_area_struct *vma = vmf->vma;
1144 	pgprot_t pgprot = vma->vm_page_prot;
1145 	pgtable_t pgtable = NULL;
1146 
1147 	/*
1148 	 * If we had pmd_special, we could avoid all these restrictions,
1149 	 * but we need to be consistent with PTEs and architectures that
1150 	 * can't support a 'special' bit.
1151 	 */
1152 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1153 			!pfn_t_devmap(pfn));
1154 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1155 						(VM_PFNMAP|VM_MIXEDMAP));
1156 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1157 
1158 	if (addr < vma->vm_start || addr >= vma->vm_end)
1159 		return VM_FAULT_SIGBUS;
1160 
1161 	if (arch_needs_pgtable_deposit()) {
1162 		pgtable = pte_alloc_one(vma->vm_mm);
1163 		if (!pgtable)
1164 			return VM_FAULT_OOM;
1165 	}
1166 
1167 	track_pfn_insert(vma, &pgprot, pfn);
1168 
1169 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
1170 	return VM_FAULT_NOPAGE;
1171 }
1172 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1173 
1174 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
maybe_pud_mkwrite(pud_t pud,struct vm_area_struct * vma)1175 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
1176 {
1177 	if (likely(vma->vm_flags & VM_WRITE))
1178 		pud = pud_mkwrite(pud);
1179 	return pud;
1180 }
1181 
insert_pfn_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,pfn_t pfn,bool write)1182 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
1183 		pud_t *pud, pfn_t pfn, bool write)
1184 {
1185 	struct mm_struct *mm = vma->vm_mm;
1186 	pgprot_t prot = vma->vm_page_prot;
1187 	pud_t entry;
1188 	spinlock_t *ptl;
1189 
1190 	ptl = pud_lock(mm, pud);
1191 	if (!pud_none(*pud)) {
1192 		if (write) {
1193 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
1194 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
1195 				goto out_unlock;
1196 			}
1197 			entry = pud_mkyoung(*pud);
1198 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1199 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1200 				update_mmu_cache_pud(vma, addr, pud);
1201 		}
1202 		goto out_unlock;
1203 	}
1204 
1205 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
1206 	if (pfn_t_devmap(pfn))
1207 		entry = pud_mkdevmap(entry);
1208 	if (write) {
1209 		entry = pud_mkyoung(pud_mkdirty(entry));
1210 		entry = maybe_pud_mkwrite(entry, vma);
1211 	}
1212 	set_pud_at(mm, addr, pud, entry);
1213 	update_mmu_cache_pud(vma, addr, pud);
1214 
1215 out_unlock:
1216 	spin_unlock(ptl);
1217 }
1218 
1219 /**
1220  * vmf_insert_pfn_pud - insert a pud size pfn
1221  * @vmf: Structure describing the fault
1222  * @pfn: pfn to insert
1223  * @write: whether it's a write fault
1224  *
1225  * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1226  *
1227  * Return: vm_fault_t value.
1228  */
vmf_insert_pfn_pud(struct vm_fault * vmf,pfn_t pfn,bool write)1229 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
1230 {
1231 	unsigned long addr = vmf->address & PUD_MASK;
1232 	struct vm_area_struct *vma = vmf->vma;
1233 	pgprot_t pgprot = vma->vm_page_prot;
1234 
1235 	/*
1236 	 * If we had pud_special, we could avoid all these restrictions,
1237 	 * but we need to be consistent with PTEs and architectures that
1238 	 * can't support a 'special' bit.
1239 	 */
1240 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1241 			!pfn_t_devmap(pfn));
1242 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1243 						(VM_PFNMAP|VM_MIXEDMAP));
1244 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1245 
1246 	if (addr < vma->vm_start || addr >= vma->vm_end)
1247 		return VM_FAULT_SIGBUS;
1248 
1249 	track_pfn_insert(vma, &pgprot, pfn);
1250 
1251 	insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1252 	return VM_FAULT_NOPAGE;
1253 }
1254 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1255 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1256 
touch_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,bool write)1257 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1258 		      pmd_t *pmd, bool write)
1259 {
1260 	pmd_t _pmd;
1261 
1262 	_pmd = pmd_mkyoung(*pmd);
1263 	if (write)
1264 		_pmd = pmd_mkdirty(_pmd);
1265 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1266 				  pmd, _pmd, write))
1267 		update_mmu_cache_pmd(vma, addr, pmd);
1268 }
1269 
follow_devmap_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags,struct dev_pagemap ** pgmap)1270 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1271 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1272 {
1273 	unsigned long pfn = pmd_pfn(*pmd);
1274 	struct mm_struct *mm = vma->vm_mm;
1275 	struct page *page;
1276 	int ret;
1277 
1278 	assert_spin_locked(pmd_lockptr(mm, pmd));
1279 
1280 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1281 		return NULL;
1282 
1283 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1284 		/* pass */;
1285 	else
1286 		return NULL;
1287 
1288 	if (flags & FOLL_TOUCH)
1289 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1290 
1291 	/*
1292 	 * device mapped pages can only be returned if the
1293 	 * caller will manage the page reference count.
1294 	 */
1295 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1296 		return ERR_PTR(-EEXIST);
1297 
1298 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1299 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1300 	if (!*pgmap)
1301 		return ERR_PTR(-EFAULT);
1302 	page = pfn_to_page(pfn);
1303 	ret = try_grab_folio(page_folio(page), 1, flags);
1304 	if (ret)
1305 		page = ERR_PTR(ret);
1306 
1307 	return page;
1308 }
1309 
copy_huge_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1310 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1311 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1312 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1313 {
1314 	spinlock_t *dst_ptl, *src_ptl;
1315 	struct page *src_page;
1316 	struct folio *src_folio;
1317 	pmd_t pmd;
1318 	pgtable_t pgtable = NULL;
1319 	int ret = -ENOMEM;
1320 
1321 	/* Skip if can be re-fill on fault */
1322 	if (!vma_is_anonymous(dst_vma))
1323 		return 0;
1324 
1325 	pgtable = pte_alloc_one(dst_mm);
1326 	if (unlikely(!pgtable))
1327 		goto out;
1328 
1329 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1330 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1331 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1332 
1333 	ret = -EAGAIN;
1334 	pmd = *src_pmd;
1335 
1336 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1337 	if (unlikely(is_swap_pmd(pmd))) {
1338 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1339 
1340 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1341 		if (!is_readable_migration_entry(entry)) {
1342 			entry = make_readable_migration_entry(
1343 							swp_offset(entry));
1344 			pmd = swp_entry_to_pmd(entry);
1345 			if (pmd_swp_soft_dirty(*src_pmd))
1346 				pmd = pmd_swp_mksoft_dirty(pmd);
1347 			if (pmd_swp_uffd_wp(*src_pmd))
1348 				pmd = pmd_swp_mkuffd_wp(pmd);
1349 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1350 		}
1351 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1352 		mm_inc_nr_ptes(dst_mm);
1353 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1354 		if (!userfaultfd_wp(dst_vma))
1355 			pmd = pmd_swp_clear_uffd_wp(pmd);
1356 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1357 		ret = 0;
1358 		goto out_unlock;
1359 	}
1360 #endif
1361 
1362 	if (unlikely(!pmd_trans_huge(pmd))) {
1363 		pte_free(dst_mm, pgtable);
1364 		goto out_unlock;
1365 	}
1366 	/*
1367 	 * When page table lock is held, the huge zero pmd should not be
1368 	 * under splitting since we don't split the page itself, only pmd to
1369 	 * a page table.
1370 	 */
1371 	if (is_huge_zero_pmd(pmd)) {
1372 		/*
1373 		 * get_huge_zero_page() will never allocate a new page here,
1374 		 * since we already have a zero page to copy. It just takes a
1375 		 * reference.
1376 		 */
1377 		mm_get_huge_zero_page(dst_mm);
1378 		goto out_zero_page;
1379 	}
1380 
1381 	src_page = pmd_page(pmd);
1382 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1383 	src_folio = page_folio(src_page);
1384 
1385 	folio_get(src_folio);
1386 	if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) {
1387 		/* Page maybe pinned: split and retry the fault on PTEs. */
1388 		folio_put(src_folio);
1389 		pte_free(dst_mm, pgtable);
1390 		spin_unlock(src_ptl);
1391 		spin_unlock(dst_ptl);
1392 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1393 		return -EAGAIN;
1394 	}
1395 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1396 out_zero_page:
1397 	mm_inc_nr_ptes(dst_mm);
1398 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1399 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1400 	if (!userfaultfd_wp(dst_vma))
1401 		pmd = pmd_clear_uffd_wp(pmd);
1402 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1403 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1404 
1405 	ret = 0;
1406 out_unlock:
1407 	spin_unlock(src_ptl);
1408 	spin_unlock(dst_ptl);
1409 out:
1410 	return ret;
1411 }
1412 
1413 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
touch_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,bool write)1414 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1415 		      pud_t *pud, bool write)
1416 {
1417 	pud_t _pud;
1418 
1419 	_pud = pud_mkyoung(*pud);
1420 	if (write)
1421 		_pud = pud_mkdirty(_pud);
1422 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1423 				  pud, _pud, write))
1424 		update_mmu_cache_pud(vma, addr, pud);
1425 }
1426 
follow_devmap_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,int flags,struct dev_pagemap ** pgmap)1427 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1428 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1429 {
1430 	unsigned long pfn = pud_pfn(*pud);
1431 	struct mm_struct *mm = vma->vm_mm;
1432 	struct page *page;
1433 	int ret;
1434 
1435 	assert_spin_locked(pud_lockptr(mm, pud));
1436 
1437 	if (flags & FOLL_WRITE && !pud_write(*pud))
1438 		return NULL;
1439 
1440 	if (pud_present(*pud) && pud_devmap(*pud))
1441 		/* pass */;
1442 	else
1443 		return NULL;
1444 
1445 	if (flags & FOLL_TOUCH)
1446 		touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1447 
1448 	/*
1449 	 * device mapped pages can only be returned if the
1450 	 * caller will manage the page reference count.
1451 	 *
1452 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1453 	 */
1454 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1455 		return ERR_PTR(-EEXIST);
1456 
1457 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1458 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1459 	if (!*pgmap)
1460 		return ERR_PTR(-EFAULT);
1461 	page = pfn_to_page(pfn);
1462 
1463 	ret = try_grab_folio(page_folio(page), 1, flags);
1464 	if (ret)
1465 		page = ERR_PTR(ret);
1466 
1467 	return page;
1468 }
1469 
copy_huge_pud(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,struct vm_area_struct * vma)1470 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1471 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1472 		  struct vm_area_struct *vma)
1473 {
1474 	spinlock_t *dst_ptl, *src_ptl;
1475 	pud_t pud;
1476 	int ret;
1477 
1478 	dst_ptl = pud_lock(dst_mm, dst_pud);
1479 	src_ptl = pud_lockptr(src_mm, src_pud);
1480 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1481 
1482 	ret = -EAGAIN;
1483 	pud = *src_pud;
1484 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1485 		goto out_unlock;
1486 
1487 	/*
1488 	 * When page table lock is held, the huge zero pud should not be
1489 	 * under splitting since we don't split the page itself, only pud to
1490 	 * a page table.
1491 	 */
1492 	if (is_huge_zero_pud(pud)) {
1493 		/* No huge zero pud yet */
1494 	}
1495 
1496 	/*
1497 	 * TODO: once we support anonymous pages, use
1498 	 * folio_try_dup_anon_rmap_*() and split if duplicating fails.
1499 	 */
1500 	pudp_set_wrprotect(src_mm, addr, src_pud);
1501 	pud = pud_mkold(pud_wrprotect(pud));
1502 	set_pud_at(dst_mm, addr, dst_pud, pud);
1503 
1504 	ret = 0;
1505 out_unlock:
1506 	spin_unlock(src_ptl);
1507 	spin_unlock(dst_ptl);
1508 	return ret;
1509 }
1510 
huge_pud_set_accessed(struct vm_fault * vmf,pud_t orig_pud)1511 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1512 {
1513 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1514 
1515 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1516 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1517 		goto unlock;
1518 
1519 	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1520 unlock:
1521 	spin_unlock(vmf->ptl);
1522 }
1523 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1524 
huge_pmd_set_accessed(struct vm_fault * vmf)1525 void huge_pmd_set_accessed(struct vm_fault *vmf)
1526 {
1527 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1528 
1529 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1530 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1531 		goto unlock;
1532 
1533 	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1534 
1535 unlock:
1536 	spin_unlock(vmf->ptl);
1537 }
1538 
do_huge_pmd_wp_page(struct vm_fault * vmf)1539 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1540 {
1541 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1542 	struct vm_area_struct *vma = vmf->vma;
1543 	struct folio *folio;
1544 	struct page *page;
1545 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1546 	pmd_t orig_pmd = vmf->orig_pmd;
1547 
1548 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1549 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1550 
1551 	if (is_huge_zero_pmd(orig_pmd))
1552 		goto fallback;
1553 
1554 	spin_lock(vmf->ptl);
1555 
1556 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1557 		spin_unlock(vmf->ptl);
1558 		return 0;
1559 	}
1560 
1561 	page = pmd_page(orig_pmd);
1562 	folio = page_folio(page);
1563 	VM_BUG_ON_PAGE(!PageHead(page), page);
1564 
1565 	/* Early check when only holding the PT lock. */
1566 	if (PageAnonExclusive(page))
1567 		goto reuse;
1568 
1569 	if (!folio_trylock(folio)) {
1570 		folio_get(folio);
1571 		spin_unlock(vmf->ptl);
1572 		folio_lock(folio);
1573 		spin_lock(vmf->ptl);
1574 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1575 			spin_unlock(vmf->ptl);
1576 			folio_unlock(folio);
1577 			folio_put(folio);
1578 			return 0;
1579 		}
1580 		folio_put(folio);
1581 	}
1582 
1583 	/* Recheck after temporarily dropping the PT lock. */
1584 	if (PageAnonExclusive(page)) {
1585 		folio_unlock(folio);
1586 		goto reuse;
1587 	}
1588 
1589 	/*
1590 	 * See do_wp_page(): we can only reuse the folio exclusively if
1591 	 * there are no additional references. Note that we always drain
1592 	 * the LRU cache immediately after adding a THP.
1593 	 */
1594 	if (folio_ref_count(folio) >
1595 			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1596 		goto unlock_fallback;
1597 	if (folio_test_swapcache(folio))
1598 		folio_free_swap(folio);
1599 	if (folio_ref_count(folio) == 1) {
1600 		pmd_t entry;
1601 
1602 		folio_move_anon_rmap(folio, vma);
1603 		SetPageAnonExclusive(page);
1604 		folio_unlock(folio);
1605 reuse:
1606 		if (unlikely(unshare)) {
1607 			spin_unlock(vmf->ptl);
1608 			return 0;
1609 		}
1610 		entry = pmd_mkyoung(orig_pmd);
1611 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1612 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1613 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1614 		spin_unlock(vmf->ptl);
1615 		return 0;
1616 	}
1617 
1618 unlock_fallback:
1619 	folio_unlock(folio);
1620 	spin_unlock(vmf->ptl);
1621 fallback:
1622 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1623 	return VM_FAULT_FALLBACK;
1624 }
1625 
can_change_pmd_writable(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)1626 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1627 					   unsigned long addr, pmd_t pmd)
1628 {
1629 	struct page *page;
1630 
1631 	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1632 		return false;
1633 
1634 	/* Don't touch entries that are not even readable (NUMA hinting). */
1635 	if (pmd_protnone(pmd))
1636 		return false;
1637 
1638 	/* Do we need write faults for softdirty tracking? */
1639 	if (pmd_needs_soft_dirty_wp(vma, pmd))
1640 		return false;
1641 
1642 	/* Do we need write faults for uffd-wp tracking? */
1643 	if (userfaultfd_huge_pmd_wp(vma, pmd))
1644 		return false;
1645 
1646 	if (!(vma->vm_flags & VM_SHARED)) {
1647 		/* See can_change_pte_writable(). */
1648 		page = vm_normal_page_pmd(vma, addr, pmd);
1649 		return page && PageAnon(page) && PageAnonExclusive(page);
1650 	}
1651 
1652 	/* See can_change_pte_writable(). */
1653 	return pmd_dirty(pmd);
1654 }
1655 
1656 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
can_follow_write_pmd(pmd_t pmd,struct page * page,struct vm_area_struct * vma,unsigned int flags)1657 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1658 					struct vm_area_struct *vma,
1659 					unsigned int flags)
1660 {
1661 	/* If the pmd is writable, we can write to the page. */
1662 	if (pmd_write(pmd))
1663 		return true;
1664 
1665 	/* Maybe FOLL_FORCE is set to override it? */
1666 	if (!(flags & FOLL_FORCE))
1667 		return false;
1668 
1669 	/* But FOLL_FORCE has no effect on shared mappings */
1670 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1671 		return false;
1672 
1673 	/* ... or read-only private ones */
1674 	if (!(vma->vm_flags & VM_MAYWRITE))
1675 		return false;
1676 
1677 	/* ... or already writable ones that just need to take a write fault */
1678 	if (vma->vm_flags & VM_WRITE)
1679 		return false;
1680 
1681 	/*
1682 	 * See can_change_pte_writable(): we broke COW and could map the page
1683 	 * writable if we have an exclusive anonymous page ...
1684 	 */
1685 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1686 		return false;
1687 
1688 	/* ... and a write-fault isn't required for other reasons. */
1689 	if (pmd_needs_soft_dirty_wp(vma, pmd))
1690 		return false;
1691 	return !userfaultfd_huge_pmd_wp(vma, pmd);
1692 }
1693 
follow_trans_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags)1694 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1695 				   unsigned long addr,
1696 				   pmd_t *pmd,
1697 				   unsigned int flags)
1698 {
1699 	struct mm_struct *mm = vma->vm_mm;
1700 	struct page *page;
1701 	int ret;
1702 
1703 	assert_spin_locked(pmd_lockptr(mm, pmd));
1704 
1705 	page = pmd_page(*pmd);
1706 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1707 
1708 	if ((flags & FOLL_WRITE) &&
1709 	    !can_follow_write_pmd(*pmd, page, vma, flags))
1710 		return NULL;
1711 
1712 	/* Avoid dumping huge zero page */
1713 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1714 		return ERR_PTR(-EFAULT);
1715 
1716 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
1717 		return NULL;
1718 
1719 	if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1720 		return ERR_PTR(-EMLINK);
1721 
1722 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1723 			!PageAnonExclusive(page), page);
1724 
1725 	ret = try_grab_folio(page_folio(page), 1, flags);
1726 	if (ret)
1727 		return ERR_PTR(ret);
1728 
1729 	if (flags & FOLL_TOUCH)
1730 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1731 
1732 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1733 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1734 
1735 	return page;
1736 }
1737 
1738 /* NUMA hinting page fault entry point for trans huge pmds */
do_huge_pmd_numa_page(struct vm_fault * vmf)1739 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1740 {
1741 	struct vm_area_struct *vma = vmf->vma;
1742 	pmd_t oldpmd = vmf->orig_pmd;
1743 	pmd_t pmd;
1744 	struct folio *folio;
1745 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1746 	int nid = NUMA_NO_NODE;
1747 	int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1748 	bool migrated = false, writable = false;
1749 	int flags = 0;
1750 
1751 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1752 	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1753 		spin_unlock(vmf->ptl);
1754 		return 0;
1755 	}
1756 
1757 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1758 
1759 	/*
1760 	 * Detect now whether the PMD could be writable; this information
1761 	 * is only valid while holding the PT lock.
1762 	 */
1763 	writable = pmd_write(pmd);
1764 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1765 	    can_change_pmd_writable(vma, vmf->address, pmd))
1766 		writable = true;
1767 
1768 	folio = vm_normal_folio_pmd(vma, haddr, pmd);
1769 	if (!folio)
1770 		goto out_map;
1771 
1772 	/* See similar comment in do_numa_page for explanation */
1773 	if (!writable)
1774 		flags |= TNF_NO_GROUP;
1775 
1776 	nid = folio_nid(folio);
1777 	/*
1778 	 * For memory tiering mode, cpupid of slow memory page is used
1779 	 * to record page access time.  So use default value.
1780 	 */
1781 	if (node_is_toptier(nid))
1782 		last_cpupid = page_cpupid_last(&folio->page);
1783 	target_nid = numa_migrate_prep(folio, vma, haddr, nid, &flags);
1784 	if (target_nid == NUMA_NO_NODE) {
1785 		folio_put(folio);
1786 		goto out_map;
1787 	}
1788 
1789 	spin_unlock(vmf->ptl);
1790 	writable = false;
1791 
1792 	migrated = migrate_misplaced_folio(folio, vma, target_nid);
1793 	if (migrated) {
1794 		flags |= TNF_MIGRATED;
1795 		nid = target_nid;
1796 		task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
1797 		return 0;
1798 	}
1799 
1800 	flags |= TNF_MIGRATE_FAIL;
1801 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1802 	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1803 		spin_unlock(vmf->ptl);
1804 		return 0;
1805 	}
1806 out_map:
1807 	/* Restore the PMD */
1808 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1809 	pmd = pmd_mkyoung(pmd);
1810 	if (writable)
1811 		pmd = pmd_mkwrite(pmd, vma);
1812 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1813 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1814 	spin_unlock(vmf->ptl);
1815 
1816 	if (nid != NUMA_NO_NODE)
1817 		task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
1818 	return 0;
1819 }
1820 
1821 /*
1822  * Return true if we do MADV_FREE successfully on entire pmd page.
1823  * Otherwise, return false.
1824  */
madvise_free_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long next)1825 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1826 		pmd_t *pmd, unsigned long addr, unsigned long next)
1827 {
1828 	spinlock_t *ptl;
1829 	pmd_t orig_pmd;
1830 	struct folio *folio;
1831 	struct mm_struct *mm = tlb->mm;
1832 	bool ret = false;
1833 
1834 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1835 
1836 	ptl = pmd_trans_huge_lock(pmd, vma);
1837 	if (!ptl)
1838 		goto out_unlocked;
1839 
1840 	orig_pmd = *pmd;
1841 	if (is_huge_zero_pmd(orig_pmd))
1842 		goto out;
1843 
1844 	if (unlikely(!pmd_present(orig_pmd))) {
1845 		VM_BUG_ON(thp_migration_supported() &&
1846 				  !is_pmd_migration_entry(orig_pmd));
1847 		goto out;
1848 	}
1849 
1850 	folio = pfn_folio(pmd_pfn(orig_pmd));
1851 	/*
1852 	 * If other processes are mapping this folio, we couldn't discard
1853 	 * the folio unless they all do MADV_FREE so let's skip the folio.
1854 	 */
1855 	if (folio_likely_mapped_shared(folio))
1856 		goto out;
1857 
1858 	if (!folio_trylock(folio))
1859 		goto out;
1860 
1861 	/*
1862 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1863 	 * will deactivate only them.
1864 	 */
1865 	if (next - addr != HPAGE_PMD_SIZE) {
1866 		folio_get(folio);
1867 		spin_unlock(ptl);
1868 		split_folio(folio);
1869 		folio_unlock(folio);
1870 		folio_put(folio);
1871 		goto out_unlocked;
1872 	}
1873 
1874 	if (folio_test_dirty(folio))
1875 		folio_clear_dirty(folio);
1876 	folio_unlock(folio);
1877 
1878 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1879 		pmdp_invalidate(vma, addr, pmd);
1880 		orig_pmd = pmd_mkold(orig_pmd);
1881 		orig_pmd = pmd_mkclean(orig_pmd);
1882 
1883 		set_pmd_at(mm, addr, pmd, orig_pmd);
1884 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1885 	}
1886 
1887 	folio_mark_lazyfree(folio);
1888 	ret = true;
1889 out:
1890 	spin_unlock(ptl);
1891 out_unlocked:
1892 	return ret;
1893 }
1894 
zap_deposited_table(struct mm_struct * mm,pmd_t * pmd)1895 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1896 {
1897 	pgtable_t pgtable;
1898 
1899 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1900 	pte_free(mm, pgtable);
1901 	mm_dec_nr_ptes(mm);
1902 }
1903 
zap_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr)1904 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1905 		 pmd_t *pmd, unsigned long addr)
1906 {
1907 	pmd_t orig_pmd;
1908 	spinlock_t *ptl;
1909 
1910 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1911 
1912 	ptl = __pmd_trans_huge_lock(pmd, vma);
1913 	if (!ptl)
1914 		return 0;
1915 	/*
1916 	 * For architectures like ppc64 we look at deposited pgtable
1917 	 * when calling pmdp_huge_get_and_clear. So do the
1918 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1919 	 * operations.
1920 	 */
1921 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1922 						tlb->fullmm);
1923 	arch_check_zapped_pmd(vma, orig_pmd);
1924 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1925 	if (vma_is_special_huge(vma)) {
1926 		if (arch_needs_pgtable_deposit())
1927 			zap_deposited_table(tlb->mm, pmd);
1928 		spin_unlock(ptl);
1929 	} else if (is_huge_zero_pmd(orig_pmd)) {
1930 		zap_deposited_table(tlb->mm, pmd);
1931 		spin_unlock(ptl);
1932 	} else {
1933 		struct folio *folio = NULL;
1934 		int flush_needed = 1;
1935 
1936 		if (pmd_present(orig_pmd)) {
1937 			struct page *page = pmd_page(orig_pmd);
1938 
1939 			folio = page_folio(page);
1940 			folio_remove_rmap_pmd(folio, page, vma);
1941 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1942 			VM_BUG_ON_PAGE(!PageHead(page), page);
1943 		} else if (thp_migration_supported()) {
1944 			swp_entry_t entry;
1945 
1946 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1947 			entry = pmd_to_swp_entry(orig_pmd);
1948 			folio = pfn_swap_entry_folio(entry);
1949 			flush_needed = 0;
1950 		} else
1951 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1952 
1953 		if (folio_test_anon(folio)) {
1954 			zap_deposited_table(tlb->mm, pmd);
1955 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1956 		} else {
1957 			if (arch_needs_pgtable_deposit())
1958 				zap_deposited_table(tlb->mm, pmd);
1959 			add_mm_counter(tlb->mm, mm_counter_file(folio),
1960 				       -HPAGE_PMD_NR);
1961 		}
1962 
1963 		spin_unlock(ptl);
1964 		if (flush_needed)
1965 			tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE);
1966 	}
1967 	return 1;
1968 }
1969 
1970 #ifndef pmd_move_must_withdraw
pmd_move_must_withdraw(spinlock_t * new_pmd_ptl,spinlock_t * old_pmd_ptl,struct vm_area_struct * vma)1971 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1972 					 spinlock_t *old_pmd_ptl,
1973 					 struct vm_area_struct *vma)
1974 {
1975 	/*
1976 	 * With split pmd lock we also need to move preallocated
1977 	 * PTE page table if new_pmd is on different PMD page table.
1978 	 *
1979 	 * We also don't deposit and withdraw tables for file pages.
1980 	 */
1981 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1982 }
1983 #endif
1984 
move_soft_dirty_pmd(pmd_t pmd)1985 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1986 {
1987 #ifdef CONFIG_MEM_SOFT_DIRTY
1988 	if (unlikely(is_pmd_migration_entry(pmd)))
1989 		pmd = pmd_swp_mksoft_dirty(pmd);
1990 	else if (pmd_present(pmd))
1991 		pmd = pmd_mksoft_dirty(pmd);
1992 #endif
1993 	return pmd;
1994 }
1995 
move_huge_pmd(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pmd_t * old_pmd,pmd_t * new_pmd)1996 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1997 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1998 {
1999 	spinlock_t *old_ptl, *new_ptl;
2000 	pmd_t pmd;
2001 	struct mm_struct *mm = vma->vm_mm;
2002 	bool force_flush = false;
2003 
2004 	/*
2005 	 * The destination pmd shouldn't be established, free_pgtables()
2006 	 * should have released it; but move_page_tables() might have already
2007 	 * inserted a page table, if racing against shmem/file collapse.
2008 	 */
2009 	if (!pmd_none(*new_pmd)) {
2010 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
2011 		return false;
2012 	}
2013 
2014 	/*
2015 	 * We don't have to worry about the ordering of src and dst
2016 	 * ptlocks because exclusive mmap_lock prevents deadlock.
2017 	 */
2018 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
2019 	if (old_ptl) {
2020 		new_ptl = pmd_lockptr(mm, new_pmd);
2021 		if (new_ptl != old_ptl)
2022 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
2023 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
2024 		if (pmd_present(pmd))
2025 			force_flush = true;
2026 		VM_BUG_ON(!pmd_none(*new_pmd));
2027 
2028 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
2029 			pgtable_t pgtable;
2030 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
2031 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
2032 		}
2033 		pmd = move_soft_dirty_pmd(pmd);
2034 		set_pmd_at(mm, new_addr, new_pmd, pmd);
2035 		if (force_flush)
2036 			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
2037 		if (new_ptl != old_ptl)
2038 			spin_unlock(new_ptl);
2039 		spin_unlock(old_ptl);
2040 		return true;
2041 	}
2042 	return false;
2043 }
2044 
2045 /*
2046  * Returns
2047  *  - 0 if PMD could not be locked
2048  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
2049  *      or if prot_numa but THP migration is not supported
2050  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
2051  */
change_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)2052 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2053 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
2054 		    unsigned long cp_flags)
2055 {
2056 	struct mm_struct *mm = vma->vm_mm;
2057 	spinlock_t *ptl;
2058 	pmd_t oldpmd, entry;
2059 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
2060 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
2061 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
2062 	int ret = 1;
2063 
2064 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2065 
2066 	if (prot_numa && !thp_migration_supported())
2067 		return 1;
2068 
2069 	ptl = __pmd_trans_huge_lock(pmd, vma);
2070 	if (!ptl)
2071 		return 0;
2072 
2073 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2074 	if (is_swap_pmd(*pmd)) {
2075 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
2076 		struct page *page = pfn_swap_entry_to_page(entry);
2077 		pmd_t newpmd;
2078 
2079 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2080 		if (is_writable_migration_entry(entry)) {
2081 			/*
2082 			 * A protection check is difficult so
2083 			 * just be safe and disable write
2084 			 */
2085 			if (PageAnon(page))
2086 				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
2087 			else
2088 				entry = make_readable_migration_entry(swp_offset(entry));
2089 			newpmd = swp_entry_to_pmd(entry);
2090 			if (pmd_swp_soft_dirty(*pmd))
2091 				newpmd = pmd_swp_mksoft_dirty(newpmd);
2092 		} else {
2093 			newpmd = *pmd;
2094 		}
2095 
2096 		if (uffd_wp)
2097 			newpmd = pmd_swp_mkuffd_wp(newpmd);
2098 		else if (uffd_wp_resolve)
2099 			newpmd = pmd_swp_clear_uffd_wp(newpmd);
2100 		if (!pmd_same(*pmd, newpmd))
2101 			set_pmd_at(mm, addr, pmd, newpmd);
2102 		goto unlock;
2103 	}
2104 #endif
2105 
2106 	if (prot_numa) {
2107 		struct page *page;
2108 		bool toptier;
2109 		/*
2110 		 * Avoid trapping faults against the zero page. The read-only
2111 		 * data is likely to be read-cached on the local CPU and
2112 		 * local/remote hits to the zero page are not interesting.
2113 		 */
2114 		if (is_huge_zero_pmd(*pmd))
2115 			goto unlock;
2116 
2117 		if (pmd_protnone(*pmd))
2118 			goto unlock;
2119 
2120 		page = pmd_page(*pmd);
2121 		toptier = node_is_toptier(page_to_nid(page));
2122 		/*
2123 		 * Skip scanning top tier node if normal numa
2124 		 * balancing is disabled
2125 		 */
2126 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
2127 		    toptier)
2128 			goto unlock;
2129 
2130 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
2131 		    !toptier)
2132 			xchg_page_access_time(page, jiffies_to_msecs(jiffies));
2133 	}
2134 	/*
2135 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
2136 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2137 	 * which is also under mmap_read_lock(mm):
2138 	 *
2139 	 *	CPU0:				CPU1:
2140 	 *				change_huge_pmd(prot_numa=1)
2141 	 *				 pmdp_huge_get_and_clear_notify()
2142 	 * madvise_dontneed()
2143 	 *  zap_pmd_range()
2144 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
2145 	 *   // skip the pmd
2146 	 *				 set_pmd_at();
2147 	 *				 // pmd is re-established
2148 	 *
2149 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2150 	 * which may break userspace.
2151 	 *
2152 	 * pmdp_invalidate_ad() is required to make sure we don't miss
2153 	 * dirty/young flags set by hardware.
2154 	 */
2155 	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2156 
2157 	entry = pmd_modify(oldpmd, newprot);
2158 	if (uffd_wp)
2159 		entry = pmd_mkuffd_wp(entry);
2160 	else if (uffd_wp_resolve)
2161 		/*
2162 		 * Leave the write bit to be handled by PF interrupt
2163 		 * handler, then things like COW could be properly
2164 		 * handled.
2165 		 */
2166 		entry = pmd_clear_uffd_wp(entry);
2167 
2168 	/* See change_pte_range(). */
2169 	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2170 	    can_change_pmd_writable(vma, addr, entry))
2171 		entry = pmd_mkwrite(entry, vma);
2172 
2173 	ret = HPAGE_PMD_NR;
2174 	set_pmd_at(mm, addr, pmd, entry);
2175 
2176 	if (huge_pmd_needs_flush(oldpmd, entry))
2177 		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2178 unlock:
2179 	spin_unlock(ptl);
2180 	return ret;
2181 }
2182 
2183 #ifdef CONFIG_USERFAULTFD
2184 /*
2185  * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by
2186  * the caller, but it must return after releasing the page_table_lock.
2187  * Just move the page from src_pmd to dst_pmd if possible.
2188  * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2189  * repeated by the caller, or other errors in case of failure.
2190  */
move_pages_huge_pmd(struct mm_struct * mm,pmd_t * dst_pmd,pmd_t * src_pmd,pmd_t dst_pmdval,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long dst_addr,unsigned long src_addr)2191 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2192 			struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2193 			unsigned long dst_addr, unsigned long src_addr)
2194 {
2195 	pmd_t _dst_pmd, src_pmdval;
2196 	struct page *src_page;
2197 	struct folio *src_folio;
2198 	struct anon_vma *src_anon_vma;
2199 	spinlock_t *src_ptl, *dst_ptl;
2200 	pgtable_t src_pgtable;
2201 	struct mmu_notifier_range range;
2202 	int err = 0;
2203 
2204 	src_pmdval = *src_pmd;
2205 	src_ptl = pmd_lockptr(mm, src_pmd);
2206 
2207 	lockdep_assert_held(src_ptl);
2208 	vma_assert_locked(src_vma);
2209 	vma_assert_locked(dst_vma);
2210 
2211 	/* Sanity checks before the operation */
2212 	if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2213 	    WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2214 		spin_unlock(src_ptl);
2215 		return -EINVAL;
2216 	}
2217 
2218 	if (!pmd_trans_huge(src_pmdval)) {
2219 		spin_unlock(src_ptl);
2220 		if (is_pmd_migration_entry(src_pmdval)) {
2221 			pmd_migration_entry_wait(mm, &src_pmdval);
2222 			return -EAGAIN;
2223 		}
2224 		return -ENOENT;
2225 	}
2226 
2227 	src_page = pmd_page(src_pmdval);
2228 
2229 	if (!is_huge_zero_pmd(src_pmdval)) {
2230 		if (unlikely(!PageAnonExclusive(src_page))) {
2231 			spin_unlock(src_ptl);
2232 			return -EBUSY;
2233 		}
2234 
2235 		src_folio = page_folio(src_page);
2236 		folio_get(src_folio);
2237 	} else
2238 		src_folio = NULL;
2239 
2240 	spin_unlock(src_ptl);
2241 
2242 	flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2243 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2244 				src_addr + HPAGE_PMD_SIZE);
2245 	mmu_notifier_invalidate_range_start(&range);
2246 
2247 	if (src_folio) {
2248 		folio_lock(src_folio);
2249 
2250 		/*
2251 		 * split_huge_page walks the anon_vma chain without the page
2252 		 * lock. Serialize against it with the anon_vma lock, the page
2253 		 * lock is not enough.
2254 		 */
2255 		src_anon_vma = folio_get_anon_vma(src_folio);
2256 		if (!src_anon_vma) {
2257 			err = -EAGAIN;
2258 			goto unlock_folio;
2259 		}
2260 		anon_vma_lock_write(src_anon_vma);
2261 	} else
2262 		src_anon_vma = NULL;
2263 
2264 	dst_ptl = pmd_lockptr(mm, dst_pmd);
2265 	double_pt_lock(src_ptl, dst_ptl);
2266 	if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2267 		     !pmd_same(*dst_pmd, dst_pmdval))) {
2268 		err = -EAGAIN;
2269 		goto unlock_ptls;
2270 	}
2271 	if (src_folio) {
2272 		if (folio_maybe_dma_pinned(src_folio) ||
2273 		    !PageAnonExclusive(&src_folio->page)) {
2274 			err = -EBUSY;
2275 			goto unlock_ptls;
2276 		}
2277 
2278 		if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2279 		    WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2280 			err = -EBUSY;
2281 			goto unlock_ptls;
2282 		}
2283 
2284 		src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2285 		/* Folio got pinned from under us. Put it back and fail the move. */
2286 		if (folio_maybe_dma_pinned(src_folio)) {
2287 			set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2288 			err = -EBUSY;
2289 			goto unlock_ptls;
2290 		}
2291 
2292 		folio_move_anon_rmap(src_folio, dst_vma);
2293 		WRITE_ONCE(src_folio->index, linear_page_index(dst_vma, dst_addr));
2294 
2295 		_dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot);
2296 		/* Follow mremap() behavior and treat the entry dirty after the move */
2297 		_dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2298 	} else {
2299 		src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2300 		_dst_pmd = mk_huge_pmd(src_page, dst_vma->vm_page_prot);
2301 	}
2302 	set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2303 
2304 	src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2305 	pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2306 unlock_ptls:
2307 	double_pt_unlock(src_ptl, dst_ptl);
2308 	if (src_anon_vma) {
2309 		anon_vma_unlock_write(src_anon_vma);
2310 		put_anon_vma(src_anon_vma);
2311 	}
2312 unlock_folio:
2313 	/* unblock rmap walks */
2314 	if (src_folio)
2315 		folio_unlock(src_folio);
2316 	mmu_notifier_invalidate_range_end(&range);
2317 	if (src_folio)
2318 		folio_put(src_folio);
2319 	return err;
2320 }
2321 #endif /* CONFIG_USERFAULTFD */
2322 
2323 /*
2324  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2325  *
2326  * Note that if it returns page table lock pointer, this routine returns without
2327  * unlocking page table lock. So callers must unlock it.
2328  */
__pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)2329 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2330 {
2331 	spinlock_t *ptl;
2332 	ptl = pmd_lock(vma->vm_mm, pmd);
2333 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2334 			pmd_devmap(*pmd)))
2335 		return ptl;
2336 	spin_unlock(ptl);
2337 	return NULL;
2338 }
2339 EXPORT_SYMBOL_GPL(__pmd_trans_huge_lock);
2340 
2341 /*
2342  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2343  *
2344  * Note that if it returns page table lock pointer, this routine returns without
2345  * unlocking page table lock. So callers must unlock it.
2346  */
__pud_trans_huge_lock(pud_t * pud,struct vm_area_struct * vma)2347 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2348 {
2349 	spinlock_t *ptl;
2350 
2351 	ptl = pud_lock(vma->vm_mm, pud);
2352 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2353 		return ptl;
2354 	spin_unlock(ptl);
2355 	return NULL;
2356 }
2357 
2358 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
zap_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr)2359 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2360 		 pud_t *pud, unsigned long addr)
2361 {
2362 	spinlock_t *ptl;
2363 
2364 	ptl = __pud_trans_huge_lock(pud, vma);
2365 	if (!ptl)
2366 		return 0;
2367 
2368 	pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2369 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2370 	if (vma_is_special_huge(vma)) {
2371 		spin_unlock(ptl);
2372 		/* No zero page support yet */
2373 	} else {
2374 		/* No support for anonymous PUD pages yet */
2375 		BUG();
2376 	}
2377 	return 1;
2378 }
2379 
__split_huge_pud_locked(struct vm_area_struct * vma,pud_t * pud,unsigned long haddr)2380 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2381 		unsigned long haddr)
2382 {
2383 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2384 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2385 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2386 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2387 
2388 	count_vm_event(THP_SPLIT_PUD);
2389 
2390 	pudp_huge_clear_flush(vma, haddr, pud);
2391 }
2392 
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)2393 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2394 		unsigned long address)
2395 {
2396 	spinlock_t *ptl;
2397 	struct mmu_notifier_range range;
2398 
2399 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2400 				address & HPAGE_PUD_MASK,
2401 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2402 	mmu_notifier_invalidate_range_start(&range);
2403 	ptl = pud_lock(vma->vm_mm, pud);
2404 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2405 		goto out;
2406 	__split_huge_pud_locked(vma, pud, range.start);
2407 
2408 out:
2409 	spin_unlock(ptl);
2410 	mmu_notifier_invalidate_range_end(&range);
2411 }
2412 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2413 
__split_huge_zero_page_pmd(struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd)2414 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2415 		unsigned long haddr, pmd_t *pmd)
2416 {
2417 	struct mm_struct *mm = vma->vm_mm;
2418 	pgtable_t pgtable;
2419 	pmd_t _pmd, old_pmd;
2420 	unsigned long addr;
2421 	pte_t *pte;
2422 	int i;
2423 
2424 	/*
2425 	 * Leave pmd empty until pte is filled note that it is fine to delay
2426 	 * notification until mmu_notifier_invalidate_range_end() as we are
2427 	 * replacing a zero pmd write protected page with a zero pte write
2428 	 * protected page.
2429 	 *
2430 	 * See Documentation/mm/mmu_notifier.rst
2431 	 */
2432 	old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2433 
2434 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2435 	pmd_populate(mm, &_pmd, pgtable);
2436 
2437 	pte = pte_offset_map(&_pmd, haddr);
2438 	VM_BUG_ON(!pte);
2439 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2440 		pte_t entry;
2441 
2442 		entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2443 		entry = pte_mkspecial(entry);
2444 		if (pmd_uffd_wp(old_pmd))
2445 			entry = pte_mkuffd_wp(entry);
2446 		VM_BUG_ON(!pte_none(ptep_get(pte)));
2447 		set_pte_at(mm, addr, pte, entry);
2448 		pte++;
2449 	}
2450 	pte_unmap(pte - 1);
2451 	smp_wmb(); /* make pte visible before pmd */
2452 	pmd_populate(mm, pmd, pgtable);
2453 }
2454 
__split_huge_pmd_locked(struct vm_area_struct * vma,pmd_t * pmd,unsigned long haddr,bool freeze)2455 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2456 		unsigned long haddr, bool freeze)
2457 {
2458 	struct mm_struct *mm = vma->vm_mm;
2459 	struct folio *folio;
2460 	struct page *page;
2461 	pgtable_t pgtable;
2462 	pmd_t old_pmd, _pmd;
2463 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2464 	bool anon_exclusive = false, dirty = false;
2465 	unsigned long addr;
2466 	pte_t *pte;
2467 	int i;
2468 
2469 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2470 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2471 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2472 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2473 				&& !pmd_devmap(*pmd));
2474 
2475 	count_vm_event(THP_SPLIT_PMD);
2476 
2477 	if (!vma_is_anonymous(vma)) {
2478 		old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2479 		/*
2480 		 * We are going to unmap this huge page. So
2481 		 * just go ahead and zap it
2482 		 */
2483 		if (arch_needs_pgtable_deposit())
2484 			zap_deposited_table(mm, pmd);
2485 		if (vma_is_special_huge(vma))
2486 			return;
2487 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2488 			swp_entry_t entry;
2489 
2490 			entry = pmd_to_swp_entry(old_pmd);
2491 			folio = pfn_swap_entry_folio(entry);
2492 		} else {
2493 			page = pmd_page(old_pmd);
2494 			folio = page_folio(page);
2495 			if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
2496 				folio_mark_dirty(folio);
2497 			if (!folio_test_referenced(folio) && pmd_young(old_pmd))
2498 				folio_set_referenced(folio);
2499 			folio_remove_rmap_pmd(folio, page, vma);
2500 			folio_put(folio);
2501 		}
2502 		add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR);
2503 		return;
2504 	}
2505 
2506 	if (is_huge_zero_pmd(*pmd)) {
2507 		/*
2508 		 * FIXME: Do we want to invalidate secondary mmu by calling
2509 		 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2510 		 * inside __split_huge_pmd() ?
2511 		 *
2512 		 * We are going from a zero huge page write protected to zero
2513 		 * small page also write protected so it does not seems useful
2514 		 * to invalidate secondary mmu at this time.
2515 		 */
2516 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2517 	}
2518 
2519 	pmd_migration = is_pmd_migration_entry(*pmd);
2520 	if (unlikely(pmd_migration)) {
2521 		swp_entry_t entry;
2522 
2523 		old_pmd = *pmd;
2524 		entry = pmd_to_swp_entry(old_pmd);
2525 		page = pfn_swap_entry_to_page(entry);
2526 		write = is_writable_migration_entry(entry);
2527 		if (PageAnon(page))
2528 			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2529 		young = is_migration_entry_young(entry);
2530 		dirty = is_migration_entry_dirty(entry);
2531 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2532 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2533 	} else {
2534 		/*
2535 		 * Up to this point the pmd is present and huge and userland has
2536 		 * the whole access to the hugepage during the split (which
2537 		 * happens in place). If we overwrite the pmd with the not-huge
2538 		 * version pointing to the pte here (which of course we could if
2539 		 * all CPUs were bug free), userland could trigger a small page
2540 		 * size TLB miss on the small sized TLB while the hugepage TLB
2541 		 * entry is still established in the huge TLB. Some CPU doesn't
2542 		 * like that. See
2543 		 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2544 		 * 383 on page 105. Intel should be safe but is also warns that
2545 		 * it's only safe if the permission and cache attributes of the
2546 		 * two entries loaded in the two TLB is identical (which should
2547 		 * be the case here). But it is generally safer to never allow
2548 		 * small and huge TLB entries for the same virtual address to be
2549 		 * loaded simultaneously. So instead of doing "pmd_populate();
2550 		 * flush_pmd_tlb_range();" we first mark the current pmd
2551 		 * notpresent (atomically because here the pmd_trans_huge must
2552 		 * remain set at all times on the pmd until the split is
2553 		 * complete for this pmd), then we flush the SMP TLB and finally
2554 		 * we write the non-huge version of the pmd entry with
2555 		 * pmd_populate.
2556 		 */
2557 		old_pmd = pmdp_invalidate(vma, haddr, pmd);
2558 		page = pmd_page(old_pmd);
2559 		folio = page_folio(page);
2560 		if (pmd_dirty(old_pmd)) {
2561 			dirty = true;
2562 			folio_set_dirty(folio);
2563 		}
2564 		write = pmd_write(old_pmd);
2565 		young = pmd_young(old_pmd);
2566 		soft_dirty = pmd_soft_dirty(old_pmd);
2567 		uffd_wp = pmd_uffd_wp(old_pmd);
2568 
2569 		VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
2570 		VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2571 
2572 		/*
2573 		 * Without "freeze", we'll simply split the PMD, propagating the
2574 		 * PageAnonExclusive() flag for each PTE by setting it for
2575 		 * each subpage -- no need to (temporarily) clear.
2576 		 *
2577 		 * With "freeze" we want to replace mapped pages by
2578 		 * migration entries right away. This is only possible if we
2579 		 * managed to clear PageAnonExclusive() -- see
2580 		 * set_pmd_migration_entry().
2581 		 *
2582 		 * In case we cannot clear PageAnonExclusive(), split the PMD
2583 		 * only and let try_to_migrate_one() fail later.
2584 		 *
2585 		 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
2586 		 */
2587 		anon_exclusive = PageAnonExclusive(page);
2588 		if (freeze && anon_exclusive &&
2589 		    folio_try_share_anon_rmap_pmd(folio, page))
2590 			freeze = false;
2591 		if (!freeze) {
2592 			rmap_t rmap_flags = RMAP_NONE;
2593 
2594 			folio_ref_add(folio, HPAGE_PMD_NR - 1);
2595 			if (anon_exclusive)
2596 				rmap_flags |= RMAP_EXCLUSIVE;
2597 			folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
2598 						 vma, haddr, rmap_flags);
2599 		}
2600 	}
2601 
2602 	/*
2603 	 * Withdraw the table only after we mark the pmd entry invalid.
2604 	 * This's critical for some architectures (Power).
2605 	 */
2606 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2607 	pmd_populate(mm, &_pmd, pgtable);
2608 
2609 	pte = pte_offset_map(&_pmd, haddr);
2610 	VM_BUG_ON(!pte);
2611 
2612 	/*
2613 	 * Note that NUMA hinting access restrictions are not transferred to
2614 	 * avoid any possibility of altering permissions across VMAs.
2615 	 */
2616 	if (freeze || pmd_migration) {
2617 		for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2618 			pte_t entry;
2619 			swp_entry_t swp_entry;
2620 
2621 			if (write)
2622 				swp_entry = make_writable_migration_entry(
2623 							page_to_pfn(page + i));
2624 			else if (anon_exclusive)
2625 				swp_entry = make_readable_exclusive_migration_entry(
2626 							page_to_pfn(page + i));
2627 			else
2628 				swp_entry = make_readable_migration_entry(
2629 							page_to_pfn(page + i));
2630 			if (young)
2631 				swp_entry = make_migration_entry_young(swp_entry);
2632 			if (dirty)
2633 				swp_entry = make_migration_entry_dirty(swp_entry);
2634 			entry = swp_entry_to_pte(swp_entry);
2635 			if (soft_dirty)
2636 				entry = pte_swp_mksoft_dirty(entry);
2637 			if (uffd_wp)
2638 				entry = pte_swp_mkuffd_wp(entry);
2639 			if (vma->vm_flags & VM_LOCKED)
2640 				set_src_usage(page + i, SRC_PAGE_MLOCKED);
2641 			else
2642 				set_src_usage(page + i, SRC_PAGE_MAPPED);
2643 
2644 			VM_WARN_ON(!pte_none(ptep_get(pte + i)));
2645 			set_pte_at(mm, addr, pte + i, entry);
2646 		}
2647 	} else {
2648 		pte_t entry;
2649 
2650 		entry = mk_pte(page, READ_ONCE(vma->vm_page_prot));
2651 		if (write)
2652 			entry = pte_mkwrite(entry, vma);
2653 		if (!young)
2654 			entry = pte_mkold(entry);
2655 		/* NOTE: this may set soft-dirty too on some archs */
2656 		if (dirty)
2657 			entry = pte_mkdirty(entry);
2658 		if (soft_dirty)
2659 			entry = pte_mksoft_dirty(entry);
2660 		if (uffd_wp)
2661 			entry = pte_mkuffd_wp(entry);
2662 
2663 		for (i = 0; i < HPAGE_PMD_NR; i++)
2664 			VM_WARN_ON(!pte_none(ptep_get(pte + i)));
2665 
2666 		set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR);
2667 	}
2668 	pte_unmap(pte);
2669 
2670 	if (!pmd_migration)
2671 		folio_remove_rmap_pmd(folio, page, vma);
2672 	if (freeze)
2673 		put_page(page);
2674 
2675 	smp_wmb(); /* make pte visible before pmd */
2676 	pmd_populate(mm, pmd, pgtable);
2677 }
2678 
__split_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long address,bool freeze,struct folio * folio)2679 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2680 		unsigned long address, bool freeze, struct folio *folio)
2681 {
2682 	spinlock_t *ptl;
2683 	struct mmu_notifier_range range;
2684 
2685 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2686 				address & HPAGE_PMD_MASK,
2687 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2688 	mmu_notifier_invalidate_range_start(&range);
2689 	ptl = pmd_lock(vma->vm_mm, pmd);
2690 
2691 	/*
2692 	 * If caller asks to setup a migration entry, we need a folio to check
2693 	 * pmd against. Otherwise we can end up replacing wrong folio.
2694 	 */
2695 	VM_BUG_ON(freeze && !folio);
2696 	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2697 
2698 	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2699 	    is_pmd_migration_entry(*pmd)) {
2700 		/*
2701 		 * It's safe to call pmd_page when folio is set because it's
2702 		 * guaranteed that pmd is present.
2703 		 */
2704 		if (folio && folio != page_folio(pmd_page(*pmd)))
2705 			goto out;
2706 		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2707 	}
2708 
2709 out:
2710 	spin_unlock(ptl);
2711 	mmu_notifier_invalidate_range_end(&range);
2712 }
2713 
split_huge_pmd_address(struct vm_area_struct * vma,unsigned long address,bool freeze,struct folio * folio)2714 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2715 		bool freeze, struct folio *folio)
2716 {
2717 	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2718 
2719 	if (!pmd)
2720 		return;
2721 
2722 	__split_huge_pmd(vma, pmd, address, freeze, folio);
2723 }
2724 
split_huge_pmd_if_needed(struct vm_area_struct * vma,unsigned long address)2725 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2726 {
2727 	/*
2728 	 * If the new address isn't hpage aligned and it could previously
2729 	 * contain an hugepage: check if we need to split an huge pmd.
2730 	 */
2731 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2732 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2733 			 ALIGN(address, HPAGE_PMD_SIZE)))
2734 		split_huge_pmd_address(vma, address, false, NULL);
2735 }
2736 
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,long adjust_next)2737 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2738 			     unsigned long start,
2739 			     unsigned long end,
2740 			     long adjust_next)
2741 {
2742 	/* Check if we need to split start first. */
2743 	split_huge_pmd_if_needed(vma, start);
2744 
2745 	/* Check if we need to split end next. */
2746 	split_huge_pmd_if_needed(vma, end);
2747 
2748 	/*
2749 	 * If we're also updating the next vma vm_start,
2750 	 * check if we need to split it.
2751 	 */
2752 	if (adjust_next > 0) {
2753 		struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2754 		unsigned long nstart = next->vm_start;
2755 		nstart += adjust_next;
2756 		split_huge_pmd_if_needed(next, nstart);
2757 	}
2758 }
2759 
unmap_folio(struct folio * folio)2760 static void unmap_folio(struct folio *folio)
2761 {
2762 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2763 		TTU_SYNC;
2764 
2765 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2766 
2767 	/*
2768 	 * Anon pages need migration entries to preserve them, but file
2769 	 * pages can simply be left unmapped, then faulted back on demand.
2770 	 * If that is ever changed (perhaps for mlock), update remap_page().
2771 	 */
2772 	if (folio_test_anon(folio))
2773 		try_to_migrate(folio, ttu_flags);
2774 	else
2775 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2776 }
2777 
remap_page(struct folio * folio,unsigned long nr)2778 static void remap_page(struct folio *folio, unsigned long nr)
2779 {
2780 	int i = 0;
2781 
2782 	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
2783 	if (!folio_test_anon(folio))
2784 		return;
2785 	for (;;) {
2786 		remove_migration_ptes(folio, folio, true);
2787 		i += folio_nr_pages(folio);
2788 		if (i >= nr)
2789 			break;
2790 		folio = folio_next(folio);
2791 	}
2792 }
2793 
prep_to_unmap(struct folio * src)2794 static int prep_to_unmap(struct folio *src)
2795 {
2796 	int nr_pages = folio_nr_pages(src);
2797 
2798 	if (folio_can_split(src))
2799 		return 0;
2800 
2801 	WARN_ON_ONCE(src->_dst_pp);
2802 
2803 	src->_dst_pp = kcalloc(nr_pages, sizeof(struct page *), GFP_ATOMIC);
2804 
2805 	return src->_dst_pp ? 0 : -ENOMEM;
2806 }
2807 
try_to_discard(struct folio * src,int i)2808 static bool try_to_discard(struct folio *src, int i)
2809 {
2810 	int usage;
2811 	void *addr;
2812 	struct page *page = folio_page(src, i);
2813 
2814 	if (!folio_test_anon(src))
2815 		return false;
2816 
2817 	if (folio_test_swapcache(src))
2818 		return false;
2819 
2820 	usage = src_page_usage(page);
2821 	if (usage & SRC_PAGE_MLOCKED)
2822 		return false;
2823 
2824 	if (!(usage & SRC_PAGE_MAPPED))
2825 		return true;
2826 
2827 	addr = kmap_local_page(page);
2828 	if (!memchr_inv(addr, 0, PAGE_SIZE))
2829 		set_src_usage(page, SRC_PAGE_CLEAN);
2830 	kunmap_local(addr);
2831 
2832 	return can_discard_src(page);
2833 }
2834 
prep_dst_pages(struct folio * src)2835 static int prep_dst_pages(struct folio *src)
2836 {
2837 	int i;
2838 	int nr_pages = folio_nr_pages(src);
2839 
2840 	if (folio_can_split(src))
2841 		return 0;
2842 
2843 	if (WARN_ON_ONCE(!src->_dst_pp))
2844 		return -ENOMEM;
2845 
2846 	for (i = 0; i < nr_pages; i++) {
2847 		struct page *dst = NULL;
2848 
2849 		if (try_to_discard(src, i)) {
2850 			count_vm_event(THP_SHATTER_PAGE_DISCARDED);
2851 			continue;
2852 		}
2853 
2854 		do {
2855 			int nid = folio_nid(src);
2856 			gfp_t gfp = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
2857 				    GFP_NOWAIT | __GFP_THISNODE;
2858 
2859 			if (dst)
2860 				__free_page(dst);
2861 
2862 			dst = alloc_pages_node(nid, gfp, 0);
2863 			if (!dst)
2864 				return -ENOMEM;
2865 		} while (!page_ref_freeze(dst, 1));
2866 
2867 		copy_highpage(dst, folio_page(src, i));
2868 		src->_dst_ul[i] |= (unsigned long)dst;
2869 
2870 		cond_resched();
2871 	}
2872 
2873 	return 0;
2874 }
2875 
free_dst_pages(struct folio * src)2876 static void free_dst_pages(struct folio *src)
2877 {
2878 	int i;
2879 	int nr_pages = folio_nr_pages(src);
2880 
2881 	if (folio_can_split(src))
2882 		return;
2883 
2884 	for (i = 0; i < nr_pages; i++) {
2885 		struct page *dst = folio_dst_page(src, i);
2886 
2887 		if (!dst)
2888 			continue;
2889 
2890 		page_ref_unfreeze(dst, 1);
2891 		__free_page(dst);
2892 	}
2893 
2894 	kfree(src->_dst_pp);
2895 	src->_dst_pp = NULL;
2896 }
2897 
reset_src_folio(struct folio * src)2898 static void reset_src_folio(struct folio *src)
2899 {
2900 	if (folio_can_split(src))
2901 		return;
2902 
2903 	if (WARN_ON_ONCE(!src->_dst_pp))
2904 		return;
2905 
2906 	if (!folio_mapping_flags(src))
2907 		src->mapping = NULL;
2908 
2909 	if (folio_test_anon(src) && folio_test_swapcache(src)) {
2910 		folio_clear_swapcache(src);
2911 		src->swap.val = 0;
2912 	}
2913 
2914 	kfree(src->_dst_pp);
2915 	src->_dst_pp = NULL;
2916 }
2917 
lru_add_dst(struct lruvec * lruvec,struct folio * src,struct folio * dst)2918 static bool lru_add_dst(struct lruvec *lruvec, struct folio *src, struct folio *dst)
2919 {
2920 	if (folio_can_split(src))
2921 		return false;
2922 
2923 	VM_WARN_ON_ONCE_FOLIO(!folio_test_lru(src), src);
2924 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(dst), dst);
2925 	VM_WARN_ON_ONCE_FOLIO(folio_lruvec(dst) != folio_lruvec(src), dst);
2926 
2927 	if (!lru_gen_add_dst(lruvec, dst)) {
2928 		enum lru_list lru = folio_lru_list(dst);
2929 		int zone = folio_zonenum(dst);
2930 		int delta = folio_nr_pages(dst);
2931 
2932 		if (folio_test_unevictable(dst))
2933 			dst->mlock_count = 0;
2934 		else
2935 			list_add_tail(&dst->lru, &src->lru);
2936 		update_lru_size(lruvec, lru, zone, delta);
2937 	}
2938 
2939 	folio_set_lru(dst);
2940 
2941 	return true;
2942 }
2943 
lru_add_page_tail(struct page * head,struct page * tail,struct lruvec * lruvec,struct list_head * list)2944 static void lru_add_page_tail(struct page *head, struct page *tail,
2945 		struct lruvec *lruvec, struct list_head *list)
2946 {
2947 	VM_BUG_ON_PAGE(!PageHead(head), head);
2948 	VM_BUG_ON_PAGE(PageCompound(tail), head);
2949 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2950 	lockdep_assert_held(&lruvec->lru_lock);
2951 
2952 	if (list) {
2953 		/* page reclaim is reclaiming a huge page */
2954 		VM_WARN_ON(PageLRU(head));
2955 		get_page(tail);
2956 		list_add_tail(&tail->lru, list);
2957 	} else if (!lru_add_dst(lruvec, page_folio(head), page_folio(tail))) {
2958 		/* head is still on lru (and we have it frozen) */
2959 		VM_WARN_ON(!PageLRU(head));
2960 		if (PageUnevictable(tail))
2961 			tail->mlock_count = 0;
2962 		else
2963 			list_add_tail(&tail->lru, &head->lru);
2964 		SetPageLRU(tail);
2965 	}
2966 }
2967 
__split_huge_page_tail(struct folio * folio,int tail,struct lruvec * lruvec,struct list_head * list)2968 static void __split_huge_page_tail(struct folio *folio, int tail,
2969 		struct lruvec *lruvec, struct list_head *list)
2970 {
2971 	struct page *head = &folio->page;
2972 	struct page *page_tail = folio_dst_page(folio, tail);
2973 	/*
2974 	 * Careful: new_folio is not a "real" folio before we cleared PageTail.
2975 	 * Don't pass it around before clear_compound_head().
2976 	 */
2977 	struct folio *new_folio = (struct folio *)page_tail;
2978 
2979 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2980 
2981 	/*
2982 	 * Clone page flags before unfreezing refcount.
2983 	 *
2984 	 * After successful get_page_unless_zero() might follow flags change,
2985 	 * for example lock_page() which set PG_waiters.
2986 	 *
2987 	 * Note that for mapped sub-pages of an anonymous THP,
2988 	 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2989 	 * the migration entry instead from where remap_page() will restore it.
2990 	 * We can still have PG_anon_exclusive set on effectively unmapped and
2991 	 * unreferenced sub-pages of an anonymous THP: we can simply drop
2992 	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2993 	 */
2994 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2995 	page_tail->flags |= (head->flags &
2996 			((1L << PG_referenced) |
2997 			 (1L << PG_swapbacked) |
2998 			 (1L << PG_swapcache) |
2999 			 (1L << PG_mlocked) |
3000 			 (1L << PG_uptodate) |
3001 			 (1L << PG_active) |
3002 			 (1L << PG_workingset) |
3003 			 (1L << PG_locked) |
3004 			 (1L << PG_unevictable) |
3005 #ifdef CONFIG_ARCH_USES_PG_ARCH_X
3006 			 (1L << PG_arch_2) |
3007 			 (1L << PG_arch_3) |
3008 #endif
3009 			 (1L << PG_dirty) |
3010 			 LRU_GEN_MASK | LRU_REFS_MASK));
3011 
3012 	/* ->mapping in first and second tail page is replaced by other uses */
3013 	VM_BUG_ON_PAGE(folio_can_split(folio) && tail > 2 &&
3014 		       page_tail->mapping != TAIL_MAPPING, page_tail);
3015 	page_tail->mapping = head->mapping;
3016 	page_tail->index = head->index + tail;
3017 
3018 	/*
3019 	 * page->private should not be set in tail pages. Fix up and warn once
3020 	 * if private is unexpectedly set.
3021 	 */
3022 	if (unlikely(page_tail->private)) {
3023 		VM_WARN_ON_ONCE_PAGE(true, page_tail);
3024 		page_tail->private = 0;
3025 	}
3026 	if (folio_test_swapcache(folio))
3027 		new_folio->swap.val = folio->swap.val + tail;
3028 
3029 	/* Page flags must be visible before we make the page non-compound. */
3030 	smp_wmb();
3031 
3032 	/*
3033 	 * Clear PageTail before unfreezing page refcount.
3034 	 *
3035 	 * After successful get_page_unless_zero() might follow put_page()
3036 	 * which needs correct compound_head().
3037 	 */
3038 	clear_compound_head(page_tail);
3039 
3040 	/* Finally unfreeze refcount. Additional reference from page cache. */
3041 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
3042 					  PageSwapCache(head)));
3043 
3044 	if (page_is_young(head))
3045 		set_page_young(page_tail);
3046 	if (page_is_idle(head))
3047 		set_page_idle(page_tail);
3048 
3049 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3050 
3051 	/*
3052 	 * always add to the tail because some iterators expect new
3053 	 * pages to show after the currently processed elements - e.g.
3054 	 * migrate_pages
3055 	 */
3056 	lru_add_page_tail(head, page_tail, lruvec, list);
3057 }
3058 
__split_huge_page(struct page * page,struct list_head * list,pgoff_t end)3059 static void __split_huge_page(struct page *page, struct list_head *list,
3060 		pgoff_t end)
3061 {
3062 	struct folio *folio = page_folio(page);
3063 	struct page *head = &folio->page;
3064 	struct lruvec *lruvec;
3065 	struct address_space *swap_cache = NULL;
3066 	unsigned long offset = 0;
3067 	unsigned int nr = thp_nr_pages(head);
3068 	int i, nr_dropped = 0;
3069 	bool can_split = folio_can_split(folio);
3070 
3071 	/* complete memcg works before add pages to LRU */
3072 	if (can_split)
3073 		split_page_memcg(head, nr);
3074 	else
3075 		folio_copy_memcg(folio);
3076 
3077 	if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
3078 		offset = swp_offset(folio->swap);
3079 		swap_cache = swap_address_space(folio->swap);
3080 		xa_lock(&swap_cache->i_pages);
3081 	}
3082 
3083 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
3084 	lruvec = folio_lruvec_lock(folio);
3085 
3086 	ClearPageHasHWPoisoned(head);
3087 
3088 	for (i = nr - 1; i >= can_split; i--) {
3089 		struct page *dst = folio_dst_page(folio, i);
3090 
3091 		if (!dst)
3092 			continue;
3093 
3094 		__split_huge_page_tail(folio, i, lruvec, list);
3095 		/* Some pages can be beyond EOF: drop them from page cache */
3096 		if (dst->index >= end) {
3097 			struct folio *tail = page_folio(dst);
3098 
3099 			if (shmem_mapping(tail->mapping))
3100 				nr_dropped++;
3101 			else if (folio_test_clear_dirty(tail))
3102 				folio_account_cleaned(tail,
3103 					inode_to_wb(tail->mapping->host));
3104 			__filemap_remove_folio(tail, NULL);
3105 			folio_put(tail);
3106 		} else if (!PageAnon(dst)) {
3107 			__xa_store(&dst->mapping->i_pages, dst->index, dst, 0);
3108 		} else if (swap_cache) {
3109 			__xa_store(&swap_cache->i_pages, offset + i, dst, 0);
3110 		}
3111 	}
3112 
3113 	if (can_split)
3114 		ClearPageCompound(head);
3115 	unlock_page_lruvec(lruvec);
3116 	/* Caller disabled irqs, so they are still disabled here */
3117 
3118 	if (can_split)
3119 		split_page_owner(head, nr);
3120 
3121 	/* See comment in __split_huge_page_tail() */
3122 	if (PageAnon(head)) {
3123 		/* Additional pin to swap cache */
3124 		if (PageSwapCache(head)) {
3125 			page_ref_add(head, 2 - !can_split);
3126 			xa_unlock(&swap_cache->i_pages);
3127 		} else {
3128 			page_ref_inc(head);
3129 		}
3130 	} else {
3131 		/* Additional pin to page cache */
3132 		page_ref_add(head, 2 - !can_split);
3133 		xa_unlock(&head->mapping->i_pages);
3134 	}
3135 	local_irq_enable();
3136 
3137 	if (nr_dropped)
3138 		shmem_uncharge(head->mapping->host, nr_dropped);
3139 	remap_page(folio, nr);
3140 
3141 	for (i = 0; i < nr; i++) {
3142 		struct page *subpage = folio_dst_page(folio, i);
3143 
3144 		if (!subpage || subpage == page)
3145 			continue;
3146 		unlock_page(subpage);
3147 
3148 		/*
3149 		 * Subpages may be freed if there wasn't any mapping
3150 		 * like if add_to_swap() is running on a lru page that
3151 		 * had its mapping zapped. And freeing these pages
3152 		 * requires taking the lru_lock so we do the put_page
3153 		 * of the tail pages after the split is complete.
3154 		 */
3155 		free_page_and_swap_cache(subpage);
3156 	}
3157 
3158 	reset_src_folio(folio);
3159 }
3160 
3161 /* Racy check whether the huge page can be split */
can_split_folio(struct folio * folio,int * pextra_pins)3162 static bool can_split_folio(struct folio *folio, int *pextra_pins)
3163 {
3164 	int extra_pins;
3165 
3166 	/* Additional pins from page cache */
3167 	if (folio_test_anon(folio))
3168 		extra_pins = folio_test_swapcache(folio) ?
3169 				folio_nr_pages(folio) : 0;
3170 	else
3171 		extra_pins = folio_nr_pages(folio);
3172 	if (pextra_pins)
3173 		*pextra_pins = extra_pins;
3174 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
3175 }
3176 
3177 /*
3178  * This function splits huge page into normal pages. @page can point to any
3179  * subpage of huge page to split. Split doesn't change the position of @page.
3180  *
3181  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3182  * The huge page must be locked.
3183  *
3184  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3185  *
3186  * Both head page and tail pages will inherit mapping, flags, and so on from
3187  * the hugepage.
3188  *
3189  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3190  * they are not mapped.
3191  *
3192  * Returns 0 if the hugepage is split successfully.
3193  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3194  * us.
3195  */
split_huge_page_to_list(struct page * page,struct list_head * list)3196 int split_huge_page_to_list(struct page *page, struct list_head *list)
3197 {
3198 	struct folio *folio = page_folio(page);
3199 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3200 	XA_STATE(xas, &folio->mapping->i_pages, folio->index);
3201 	struct anon_vma *anon_vma = NULL;
3202 	struct address_space *mapping = NULL;
3203 	int extra_pins, ret;
3204 	pgoff_t end;
3205 	bool is_hzp;
3206 
3207 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3208 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3209 
3210 	is_hzp = is_huge_zero_page(&folio->page);
3211 	if (is_hzp) {
3212 		pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
3213 		return -EBUSY;
3214 	}
3215 
3216 	if (folio_test_writeback(folio))
3217 		return -EBUSY;
3218 
3219 	if (folio_test_anon(folio)) {
3220 		/*
3221 		 * The caller does not necessarily hold an mmap_lock that would
3222 		 * prevent the anon_vma disappearing so we first we take a
3223 		 * reference to it and then lock the anon_vma for write. This
3224 		 * is similar to folio_lock_anon_vma_read except the write lock
3225 		 * is taken to serialise against parallel split or collapse
3226 		 * operations.
3227 		 */
3228 		anon_vma = folio_get_anon_vma(folio);
3229 		if (!anon_vma) {
3230 			ret = -EBUSY;
3231 			goto out;
3232 		}
3233 		end = -1;
3234 		mapping = NULL;
3235 		anon_vma_lock_write(anon_vma);
3236 	} else {
3237 		gfp_t gfp;
3238 
3239 		mapping = folio->mapping;
3240 
3241 		/* Truncated ? */
3242 		if (!mapping) {
3243 			ret = -EBUSY;
3244 			goto out;
3245 		}
3246 
3247 		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3248 							GFP_RECLAIM_MASK);
3249 
3250 		if (!filemap_release_folio(folio, gfp)) {
3251 			ret = -EBUSY;
3252 			goto out;
3253 		}
3254 
3255 		xas_split_alloc(&xas, folio, folio_order(folio), gfp);
3256 		if (xas_error(&xas)) {
3257 			ret = xas_error(&xas);
3258 			goto out;
3259 		}
3260 
3261 		anon_vma = NULL;
3262 		i_mmap_lock_read(mapping);
3263 
3264 		/*
3265 		 *__split_huge_page() may need to trim off pages beyond EOF:
3266 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
3267 		 * which cannot be nested inside the page tree lock. So note
3268 		 * end now: i_size itself may be changed at any moment, but
3269 		 * folio lock is good enough to serialize the trimming.
3270 		 */
3271 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3272 		if (shmem_mapping(mapping))
3273 			end = shmem_fallocend(mapping->host, end);
3274 	}
3275 
3276 	/*
3277 	 * Racy check if we can split the page, before unmap_folio() will
3278 	 * split PMDs
3279 	 */
3280 	if (!can_split_folio(folio, &extra_pins)) {
3281 		ret = -EAGAIN;
3282 		goto out_unlock;
3283 	}
3284 
3285 	ret = prep_to_unmap(folio);
3286 	if (ret)
3287 		goto out_unlock;
3288 
3289 	unmap_folio(folio);
3290 
3291 	if (!folio_ref_freeze(folio, 1 + extra_pins)) {
3292 		ret = -EAGAIN;
3293 		goto remap;
3294 	}
3295 
3296 	ret = prep_dst_pages(folio);
3297 	if (ret)
3298 		goto unfreeze;
3299 
3300 	/* block interrupt reentry in xa_lock and spinlock */
3301 	local_irq_disable();
3302 	if (mapping) {
3303 		/*
3304 		 * Check if the folio is present in page cache.
3305 		 * We assume all tail are present too, if folio is there.
3306 		 */
3307 		xas_lock(&xas);
3308 		xas_reset(&xas);
3309 		if (xas_load(&xas) != folio) {
3310 			ret = -EAGAIN;
3311 			goto fail;
3312 		}
3313 	}
3314 
3315 	/* Prevent deferred_split_scan() touching ->_refcount */
3316 	spin_lock(&ds_queue->split_queue_lock);
3317 	if (!list_empty(&folio->_deferred_list)) {
3318 		ds_queue->split_queue_len--;
3319 		list_del_init(&folio->_deferred_list);
3320 	}
3321 	spin_unlock(&ds_queue->split_queue_lock);
3322 	if (mapping) {
3323 		int nr = folio_nr_pages(folio);
3324 
3325 		xas_split(&xas, folio, folio_order(folio));
3326 		if (folio_test_pmd_mappable(folio)) {
3327 			if (folio_test_swapbacked(folio)) {
3328 				__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
3329 			} else {
3330 				__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
3331 				filemap_nr_thps_dec(mapping);
3332 			}
3333 		}
3334 	}
3335 
3336 	__split_huge_page(page, list, end);
3337 	if (ret) {
3338 fail:
3339 		if (mapping)
3340 			xas_unlock(&xas);
3341 		local_irq_enable();
3342 unfreeze:
3343 		folio_ref_unfreeze(folio, 1 + extra_pins);
3344 remap:
3345 		free_dst_pages(folio);
3346 		remap_page(folio, folio_nr_pages(folio));
3347 	}
3348 
3349 out_unlock:
3350 	if (anon_vma) {
3351 		anon_vma_unlock_write(anon_vma);
3352 		put_anon_vma(anon_vma);
3353 	}
3354 	if (mapping)
3355 		i_mmap_unlock_read(mapping);
3356 out:
3357 	xas_destroy(&xas);
3358 
3359 	if (!folio_can_split(folio)) {
3360 		count_vm_event(!ret ? THP_SHATTER_PAGE : THP_SHATTER_PAGE_FAILED);
3361 		return ret ? : 1;
3362 	}
3363 
3364 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3365 	return ret;
3366 }
3367 
folio_undo_large_rmappable(struct folio * folio)3368 void folio_undo_large_rmappable(struct folio *folio)
3369 {
3370 	struct deferred_split *ds_queue;
3371 	unsigned long flags;
3372 
3373 	/*
3374 	 * At this point, there is no one trying to add the folio to
3375 	 * deferred_list. If folio is not in deferred_list, it's safe
3376 	 * to check without acquiring the split_queue_lock.
3377 	 */
3378 	if (data_race(list_empty(&folio->_deferred_list)))
3379 		return;
3380 
3381 	ds_queue = get_deferred_split_queue(folio);
3382 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3383 	if (!list_empty(&folio->_deferred_list)) {
3384 		ds_queue->split_queue_len--;
3385 		list_del(&folio->_deferred_list);
3386 	}
3387 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3388 }
3389 
deferred_split_folio(struct folio * folio)3390 void deferred_split_folio(struct folio *folio)
3391 {
3392 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3393 #ifdef CONFIG_MEMCG
3394 	struct mem_cgroup *memcg = folio_memcg(folio);
3395 #endif
3396 	unsigned long flags;
3397 
3398 	VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
3399 
3400 	/*
3401 	 * The try_to_unmap() in page reclaim path might reach here too,
3402 	 * this may cause a race condition to corrupt deferred split queue.
3403 	 * And, if page reclaim is already handling the same folio, it is
3404 	 * unnecessary to handle it again in shrinker.
3405 	 *
3406 	 * Check the swapcache flag to determine if the folio is being
3407 	 * handled by page reclaim since THP swap would add the folio into
3408 	 * swap cache before calling try_to_unmap().
3409 	 */
3410 	if (folio_test_swapcache(folio))
3411 		return;
3412 
3413 	if (!list_empty(&folio->_deferred_list))
3414 		return;
3415 
3416 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3417 	if (list_empty(&folio->_deferred_list)) {
3418 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3419 		list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
3420 		ds_queue->split_queue_len++;
3421 #ifdef CONFIG_MEMCG
3422 		if (memcg)
3423 			set_shrinker_bit(memcg, folio_nid(folio),
3424 					 deferred_split_shrinker.id);
3425 #endif
3426 	}
3427 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3428 }
3429 
deferred_split_count(struct shrinker * shrink,struct shrink_control * sc)3430 static unsigned long deferred_split_count(struct shrinker *shrink,
3431 		struct shrink_control *sc)
3432 {
3433 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3434 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3435 	bool bypass = false;
3436 
3437 	trace_android_vh_split_large_folio_bypass(&bypass);
3438 	if (bypass)
3439 		return 0;
3440 #ifdef CONFIG_MEMCG
3441 	if (sc->memcg)
3442 		ds_queue = &sc->memcg->deferred_split_queue;
3443 #endif
3444 	return READ_ONCE(ds_queue->split_queue_len);
3445 }
3446 
deferred_split_scan(struct shrinker * shrink,struct shrink_control * sc)3447 static unsigned long deferred_split_scan(struct shrinker *shrink,
3448 		struct shrink_control *sc)
3449 {
3450 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3451 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3452 	unsigned long flags;
3453 	LIST_HEAD(list);
3454 	struct folio *folio, *next;
3455 	int split = 0;
3456 
3457 #ifdef CONFIG_MEMCG
3458 	if (sc->memcg)
3459 		ds_queue = &sc->memcg->deferred_split_queue;
3460 #endif
3461 
3462 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3463 	/* Take pin on all head pages to avoid freeing them under us */
3464 	list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
3465 							_deferred_list) {
3466 		if (folio_try_get(folio)) {
3467 			list_move(&folio->_deferred_list, &list);
3468 		} else {
3469 			/* We lost race with folio_put() */
3470 			list_del_init(&folio->_deferred_list);
3471 			ds_queue->split_queue_len--;
3472 		}
3473 		if (!--sc->nr_to_scan)
3474 			break;
3475 	}
3476 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3477 
3478 	list_for_each_entry_safe(folio, next, &list, _deferred_list) {
3479 		if (!folio_trylock(folio))
3480 			goto next;
3481 		/* split_huge_page() removes page from list on success */
3482 		if (!split_folio(folio))
3483 			split++;
3484 		folio_unlock(folio);
3485 next:
3486 		folio_put(folio);
3487 	}
3488 
3489 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3490 	list_splice_tail(&list, &ds_queue->split_queue);
3491 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3492 
3493 	/*
3494 	 * Stop shrinker if we didn't split any page, but the queue is empty.
3495 	 * This can happen if pages were freed under us.
3496 	 */
3497 	if (!split && list_empty(&ds_queue->split_queue))
3498 		return SHRINK_STOP;
3499 	return split;
3500 }
3501 
3502 static struct shrinker deferred_split_shrinker = {
3503 	.count_objects = deferred_split_count,
3504 	.scan_objects = deferred_split_scan,
3505 	.seeks = DEFAULT_SEEKS,
3506 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
3507 		 SHRINKER_NONSLAB,
3508 };
3509 
3510 #ifdef CONFIG_DEBUG_FS
split_huge_pages_all(void)3511 static void split_huge_pages_all(void)
3512 {
3513 	struct zone *zone;
3514 	struct page *page;
3515 	struct folio *folio;
3516 	unsigned long pfn, max_zone_pfn;
3517 	unsigned long total = 0, split = 0;
3518 
3519 	pr_debug("Split all THPs\n");
3520 	for_each_zone(zone) {
3521 		if (!managed_zone(zone))
3522 			continue;
3523 		max_zone_pfn = zone_end_pfn(zone);
3524 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3525 			int nr_pages;
3526 
3527 			page = pfn_to_online_page(pfn);
3528 			if (!page || PageTail(page))
3529 				continue;
3530 			folio = page_folio(page);
3531 			if (!folio_try_get(folio))
3532 				continue;
3533 
3534 			if (unlikely(page_folio(page) != folio))
3535 				goto next;
3536 
3537 			if (zone != folio_zone(folio))
3538 				goto next;
3539 
3540 			if (!folio_test_large(folio)
3541 				|| folio_test_hugetlb(folio)
3542 				|| !folio_test_lru(folio))
3543 				goto next;
3544 
3545 			total++;
3546 			folio_lock(folio);
3547 			nr_pages = folio_nr_pages(folio);
3548 			if (!split_folio(folio))
3549 				split++;
3550 			pfn += nr_pages - 1;
3551 			folio_unlock(folio);
3552 next:
3553 			folio_put(folio);
3554 			cond_resched();
3555 		}
3556 	}
3557 
3558 	pr_debug("%lu of %lu THP split\n", split, total);
3559 }
3560 
vma_not_suitable_for_thp_split(struct vm_area_struct * vma)3561 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
3562 {
3563 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
3564 		    is_vm_hugetlb_page(vma);
3565 }
3566 
split_huge_pages_pid(int pid,unsigned long vaddr_start,unsigned long vaddr_end)3567 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
3568 				unsigned long vaddr_end)
3569 {
3570 	int ret = 0;
3571 	struct task_struct *task;
3572 	struct mm_struct *mm;
3573 	unsigned long total = 0, split = 0;
3574 	unsigned long addr;
3575 
3576 	vaddr_start &= PAGE_MASK;
3577 	vaddr_end &= PAGE_MASK;
3578 
3579 	/* Find the task_struct from pid */
3580 	rcu_read_lock();
3581 	task = find_task_by_vpid(pid);
3582 	if (!task) {
3583 		rcu_read_unlock();
3584 		ret = -ESRCH;
3585 		goto out;
3586 	}
3587 	get_task_struct(task);
3588 	rcu_read_unlock();
3589 
3590 	/* Find the mm_struct */
3591 	mm = get_task_mm(task);
3592 	put_task_struct(task);
3593 
3594 	if (!mm) {
3595 		ret = -EINVAL;
3596 		goto out;
3597 	}
3598 
3599 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3600 		 pid, vaddr_start, vaddr_end);
3601 
3602 	mmap_read_lock(mm);
3603 	/*
3604 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
3605 	 * table filled with PTE-mapped THPs, each of which is distinct.
3606 	 */
3607 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3608 		struct vm_area_struct *vma = vma_lookup(mm, addr);
3609 		struct page *page;
3610 		struct folio *folio;
3611 
3612 		if (!vma)
3613 			break;
3614 
3615 		/* skip special VMA and hugetlb VMA */
3616 		if (vma_not_suitable_for_thp_split(vma)) {
3617 			addr = vma->vm_end;
3618 			continue;
3619 		}
3620 
3621 		/* FOLL_DUMP to ignore special (like zero) pages */
3622 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3623 
3624 		if (IS_ERR_OR_NULL(page))
3625 			continue;
3626 
3627 		folio = page_folio(page);
3628 		if (!is_transparent_hugepage(folio))
3629 			goto next;
3630 
3631 		total++;
3632 		if (!can_split_folio(folio, NULL))
3633 			goto next;
3634 
3635 		if (!folio_trylock(folio))
3636 			goto next;
3637 
3638 		if (!split_folio(folio))
3639 			split++;
3640 
3641 		folio_unlock(folio);
3642 next:
3643 		folio_put(folio);
3644 		cond_resched();
3645 	}
3646 	mmap_read_unlock(mm);
3647 	mmput(mm);
3648 
3649 	pr_debug("%lu of %lu THP split\n", split, total);
3650 
3651 out:
3652 	return ret;
3653 }
3654 
split_huge_pages_in_file(const char * file_path,pgoff_t off_start,pgoff_t off_end)3655 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3656 				pgoff_t off_end)
3657 {
3658 	struct filename *file;
3659 	struct file *candidate;
3660 	struct address_space *mapping;
3661 	int ret = -EINVAL;
3662 	pgoff_t index;
3663 	int nr_pages = 1;
3664 	unsigned long total = 0, split = 0;
3665 
3666 	file = getname_kernel(file_path);
3667 	if (IS_ERR(file))
3668 		return ret;
3669 
3670 	candidate = file_open_name(file, O_RDONLY, 0);
3671 	if (IS_ERR(candidate))
3672 		goto out;
3673 
3674 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3675 		 file_path, off_start, off_end);
3676 
3677 	mapping = candidate->f_mapping;
3678 
3679 	for (index = off_start; index < off_end; index += nr_pages) {
3680 		struct folio *folio = filemap_get_folio(mapping, index);
3681 
3682 		nr_pages = 1;
3683 		if (IS_ERR(folio))
3684 			continue;
3685 
3686 		if (!folio_test_large(folio))
3687 			goto next;
3688 
3689 		total++;
3690 		nr_pages = folio_nr_pages(folio);
3691 
3692 		if (!folio_trylock(folio))
3693 			goto next;
3694 
3695 		if (!split_folio(folio))
3696 			split++;
3697 
3698 		folio_unlock(folio);
3699 next:
3700 		folio_put(folio);
3701 		cond_resched();
3702 	}
3703 
3704 	filp_close(candidate, NULL);
3705 	ret = 0;
3706 
3707 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3708 out:
3709 	putname(file);
3710 	return ret;
3711 }
3712 
3713 #define MAX_INPUT_BUF_SZ 255
3714 
split_huge_pages_write(struct file * file,const char __user * buf,size_t count,loff_t * ppops)3715 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3716 				size_t count, loff_t *ppops)
3717 {
3718 	static DEFINE_MUTEX(split_debug_mutex);
3719 	ssize_t ret;
3720 	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3721 	char input_buf[MAX_INPUT_BUF_SZ];
3722 	int pid;
3723 	unsigned long vaddr_start, vaddr_end;
3724 
3725 	ret = mutex_lock_interruptible(&split_debug_mutex);
3726 	if (ret)
3727 		return ret;
3728 
3729 	ret = -EFAULT;
3730 
3731 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3732 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3733 		goto out;
3734 
3735 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3736 
3737 	if (input_buf[0] == '/') {
3738 		char *tok;
3739 		char *buf = input_buf;
3740 		char file_path[MAX_INPUT_BUF_SZ];
3741 		pgoff_t off_start = 0, off_end = 0;
3742 		size_t input_len = strlen(input_buf);
3743 
3744 		tok = strsep(&buf, ",");
3745 		if (tok) {
3746 			strcpy(file_path, tok);
3747 		} else {
3748 			ret = -EINVAL;
3749 			goto out;
3750 		}
3751 
3752 		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3753 		if (ret != 2) {
3754 			ret = -EINVAL;
3755 			goto out;
3756 		}
3757 		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3758 		if (!ret)
3759 			ret = input_len;
3760 
3761 		goto out;
3762 	}
3763 
3764 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3765 	if (ret == 1 && pid == 1) {
3766 		split_huge_pages_all();
3767 		ret = strlen(input_buf);
3768 		goto out;
3769 	} else if (ret != 3) {
3770 		ret = -EINVAL;
3771 		goto out;
3772 	}
3773 
3774 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3775 	if (!ret)
3776 		ret = strlen(input_buf);
3777 out:
3778 	mutex_unlock(&split_debug_mutex);
3779 	return ret;
3780 
3781 }
3782 
3783 static const struct file_operations split_huge_pages_fops = {
3784 	.owner	 = THIS_MODULE,
3785 	.write	 = split_huge_pages_write,
3786 	.llseek  = no_llseek,
3787 };
3788 
split_huge_pages_debugfs(void)3789 static int __init split_huge_pages_debugfs(void)
3790 {
3791 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3792 			    &split_huge_pages_fops);
3793 	return 0;
3794 }
3795 late_initcall(split_huge_pages_debugfs);
3796 #endif
3797 
3798 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
set_pmd_migration_entry(struct page_vma_mapped_walk * pvmw,struct page * page)3799 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3800 		struct page *page)
3801 {
3802 	struct folio *folio = page_folio(page);
3803 	struct vm_area_struct *vma = pvmw->vma;
3804 	struct mm_struct *mm = vma->vm_mm;
3805 	unsigned long address = pvmw->address;
3806 	bool anon_exclusive;
3807 	pmd_t pmdval;
3808 	swp_entry_t entry;
3809 	pmd_t pmdswp;
3810 
3811 	if (!(pvmw->pmd && !pvmw->pte))
3812 		return 0;
3813 
3814 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3815 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3816 
3817 	/* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
3818 	anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
3819 	if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
3820 		set_pmd_at(mm, address, pvmw->pmd, pmdval);
3821 		return -EBUSY;
3822 	}
3823 
3824 	if (pmd_dirty(pmdval))
3825 		folio_mark_dirty(folio);
3826 	if (pmd_write(pmdval))
3827 		entry = make_writable_migration_entry(page_to_pfn(page));
3828 	else if (anon_exclusive)
3829 		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3830 	else
3831 		entry = make_readable_migration_entry(page_to_pfn(page));
3832 	if (pmd_young(pmdval))
3833 		entry = make_migration_entry_young(entry);
3834 	if (pmd_dirty(pmdval))
3835 		entry = make_migration_entry_dirty(entry);
3836 	pmdswp = swp_entry_to_pmd(entry);
3837 	if (pmd_soft_dirty(pmdval))
3838 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3839 	if (pmd_uffd_wp(pmdval))
3840 		pmdswp = pmd_swp_mkuffd_wp(pmdswp);
3841 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3842 	folio_remove_rmap_pmd(folio, page, vma);
3843 	folio_put(folio);
3844 	trace_set_migration_pmd(address, pmd_val(pmdswp));
3845 
3846 	return 0;
3847 }
3848 
remove_migration_pmd(struct page_vma_mapped_walk * pvmw,struct page * new)3849 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3850 {
3851 	struct folio *folio = page_folio(new);
3852 	struct vm_area_struct *vma = pvmw->vma;
3853 	struct mm_struct *mm = vma->vm_mm;
3854 	unsigned long address = pvmw->address;
3855 	unsigned long haddr = address & HPAGE_PMD_MASK;
3856 	pmd_t pmde;
3857 	swp_entry_t entry;
3858 
3859 	if (!(pvmw->pmd && !pvmw->pte))
3860 		return;
3861 
3862 	entry = pmd_to_swp_entry(*pvmw->pmd);
3863 	folio_get(folio);
3864 	pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3865 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3866 		pmde = pmd_mksoft_dirty(pmde);
3867 	if (is_writable_migration_entry(entry))
3868 		pmde = pmd_mkwrite(pmde, vma);
3869 	if (pmd_swp_uffd_wp(*pvmw->pmd))
3870 		pmde = pmd_mkuffd_wp(pmde);
3871 	if (!is_migration_entry_young(entry))
3872 		pmde = pmd_mkold(pmde);
3873 	/* NOTE: this may contain setting soft-dirty on some archs */
3874 	if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
3875 		pmde = pmd_mkdirty(pmde);
3876 
3877 	if (folio_test_anon(folio)) {
3878 		rmap_t rmap_flags = RMAP_NONE;
3879 
3880 		if (!is_readable_migration_entry(entry))
3881 			rmap_flags |= RMAP_EXCLUSIVE;
3882 
3883 		folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
3884 	} else {
3885 		folio_add_file_rmap_pmd(folio, new, vma);
3886 	}
3887 	VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
3888 	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3889 
3890 	/* No need to invalidate - it was non-present before */
3891 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3892 	trace_remove_migration_pmd(address, pmd_val(pmde));
3893 }
3894 #endif
3895