1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/sched/mm.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31 * Check whether the given nid is within node id range.
32 */
f2fs_check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40 return -EFSCORRUPTED;
41 }
42 return 0;
43 }
44
f2fs_available_free_memory(struct f2fs_sb_info * sbi,int type)45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47 struct f2fs_nm_info *nm_i = NM_I(sbi);
48 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49 struct sysinfo val;
50 unsigned long avail_ram;
51 unsigned long mem_size = 0;
52 bool res = false;
53
54 if (!nm_i)
55 return true;
56
57 si_meminfo(&val);
58
59 /* only uses low memory */
60 avail_ram = val.totalram - val.totalhigh;
61
62 /*
63 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
64 */
65 if (type == FREE_NIDS) {
66 mem_size = (nm_i->nid_cnt[FREE_NID] *
67 sizeof(struct free_nid)) >> PAGE_SHIFT;
68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 } else if (type == NAT_ENTRIES) {
70 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71 sizeof(struct nat_entry)) >> PAGE_SHIFT;
72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73 if (excess_cached_nats(sbi))
74 res = false;
75 } else if (type == DIRTY_DENTS) {
76 if (sbi->sb->s_bdi->wb.dirty_exceeded)
77 return false;
78 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80 } else if (type == INO_ENTRIES) {
81 int i;
82
83 for (i = 0; i < MAX_INO_ENTRY; i++)
84 mem_size += sbi->im[i].ino_num *
85 sizeof(struct ino_entry);
86 mem_size >>= PAGE_SHIFT;
87 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88 } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
89 enum extent_type etype = type == READ_EXTENT_CACHE ?
90 EX_READ : EX_BLOCK_AGE;
91 struct extent_tree_info *eti = &sbi->extent_tree[etype];
92
93 mem_size = (atomic_read(&eti->total_ext_tree) *
94 sizeof(struct extent_tree) +
95 atomic_read(&eti->total_ext_node) *
96 sizeof(struct extent_node)) >> PAGE_SHIFT;
97 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
98 } else if (type == DISCARD_CACHE) {
99 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
100 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
101 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
102 } else if (type == COMPRESS_PAGE) {
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104 unsigned long free_ram = val.freeram;
105
106 /*
107 * free memory is lower than watermark or cached page count
108 * exceed threshold, deny caching compress page.
109 */
110 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
111 (COMPRESS_MAPPING(sbi)->nrpages <
112 free_ram * sbi->compress_percent / 100);
113 #else
114 res = false;
115 #endif
116 } else {
117 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
118 return true;
119 }
120 return res;
121 }
122
clear_node_page_dirty(struct page * page)123 static void clear_node_page_dirty(struct page *page)
124 {
125 if (PageDirty(page)) {
126 f2fs_clear_page_cache_dirty_tag(page);
127 clear_page_dirty_for_io(page);
128 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
129 }
130 ClearPageUptodate(page);
131 }
132
get_current_nat_page(struct f2fs_sb_info * sbi,nid_t nid)133 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
134 {
135 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
136 }
137
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140 struct page *src_page;
141 struct page *dst_page;
142 pgoff_t dst_off;
143 void *src_addr;
144 void *dst_addr;
145 struct f2fs_nm_info *nm_i = NM_I(sbi);
146
147 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
148
149 /* get current nat block page with lock */
150 src_page = get_current_nat_page(sbi, nid);
151 if (IS_ERR(src_page))
152 return src_page;
153 dst_page = f2fs_grab_meta_page(sbi, dst_off);
154 f2fs_bug_on(sbi, PageDirty(src_page));
155
156 src_addr = page_address(src_page);
157 dst_addr = page_address(dst_page);
158 memcpy(dst_addr, src_addr, PAGE_SIZE);
159 set_page_dirty(dst_page);
160 f2fs_put_page(src_page, 1);
161
162 set_to_next_nat(nm_i, nid);
163
164 return dst_page;
165 }
166
__alloc_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,bool no_fail)167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
168 nid_t nid, bool no_fail)
169 {
170 struct nat_entry *new;
171
172 new = f2fs_kmem_cache_alloc(nat_entry_slab,
173 GFP_F2FS_ZERO, no_fail, sbi);
174 if (new) {
175 nat_set_nid(new, nid);
176 nat_reset_flag(new);
177 }
178 return new;
179 }
180
__free_nat_entry(struct nat_entry * e)181 static void __free_nat_entry(struct nat_entry *e)
182 {
183 kmem_cache_free(nat_entry_slab, e);
184 }
185
186 /* must be locked by nat_tree_lock */
__init_nat_entry(struct f2fs_nm_info * nm_i,struct nat_entry * ne,struct f2fs_nat_entry * raw_ne,bool no_fail)187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
188 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
189 {
190 if (no_fail)
191 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
192 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
193 return NULL;
194
195 if (raw_ne)
196 node_info_from_raw_nat(&ne->ni, raw_ne);
197
198 spin_lock(&nm_i->nat_list_lock);
199 list_add_tail(&ne->list, &nm_i->nat_entries);
200 spin_unlock(&nm_i->nat_list_lock);
201
202 nm_i->nat_cnt[TOTAL_NAT]++;
203 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
204 return ne;
205 }
206
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
208 {
209 struct nat_entry *ne;
210
211 ne = radix_tree_lookup(&nm_i->nat_root, n);
212
213 /* for recent accessed nat entry, move it to tail of lru list */
214 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
215 spin_lock(&nm_i->nat_list_lock);
216 if (!list_empty(&ne->list))
217 list_move_tail(&ne->list, &nm_i->nat_entries);
218 spin_unlock(&nm_i->nat_list_lock);
219 }
220
221 return ne;
222 }
223
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
225 nid_t start, unsigned int nr, struct nat_entry **ep)
226 {
227 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
228 }
229
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
231 {
232 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
233 nm_i->nat_cnt[TOTAL_NAT]--;
234 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
235 __free_nat_entry(e);
236 }
237
__grab_nat_entry_set(struct f2fs_nm_info * nm_i,struct nat_entry * ne)238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
239 struct nat_entry *ne)
240 {
241 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
242 struct nat_entry_set *head;
243
244 head = radix_tree_lookup(&nm_i->nat_set_root, set);
245 if (!head) {
246 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
247 GFP_NOFS, true, NULL);
248
249 INIT_LIST_HEAD(&head->entry_list);
250 INIT_LIST_HEAD(&head->set_list);
251 head->set = set;
252 head->entry_cnt = 0;
253 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
254 }
255 return head;
256 }
257
__set_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry * ne)258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
259 struct nat_entry *ne)
260 {
261 struct nat_entry_set *head;
262 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
263
264 if (!new_ne)
265 head = __grab_nat_entry_set(nm_i, ne);
266
267 /*
268 * update entry_cnt in below condition:
269 * 1. update NEW_ADDR to valid block address;
270 * 2. update old block address to new one;
271 */
272 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
273 !get_nat_flag(ne, IS_DIRTY)))
274 head->entry_cnt++;
275
276 set_nat_flag(ne, IS_PREALLOC, new_ne);
277
278 if (get_nat_flag(ne, IS_DIRTY))
279 goto refresh_list;
280
281 nm_i->nat_cnt[DIRTY_NAT]++;
282 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
283 set_nat_flag(ne, IS_DIRTY, true);
284 refresh_list:
285 spin_lock(&nm_i->nat_list_lock);
286 if (new_ne)
287 list_del_init(&ne->list);
288 else
289 list_move_tail(&ne->list, &head->entry_list);
290 spin_unlock(&nm_i->nat_list_lock);
291 }
292
__clear_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry_set * set,struct nat_entry * ne)293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
294 struct nat_entry_set *set, struct nat_entry *ne)
295 {
296 spin_lock(&nm_i->nat_list_lock);
297 list_move_tail(&ne->list, &nm_i->nat_entries);
298 spin_unlock(&nm_i->nat_list_lock);
299
300 set_nat_flag(ne, IS_DIRTY, false);
301 set->entry_cnt--;
302 nm_i->nat_cnt[DIRTY_NAT]--;
303 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
304 }
305
__gang_lookup_nat_set(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry_set ** ep)306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
307 nid_t start, unsigned int nr, struct nat_entry_set **ep)
308 {
309 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
310 start, nr);
311 }
312
f2fs_in_warm_node_list(struct f2fs_sb_info * sbi,struct page * page)313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
314 {
315 return NODE_MAPPING(sbi) == page->mapping &&
316 IS_DNODE(page) && is_cold_node(page);
317 }
318
f2fs_init_fsync_node_info(struct f2fs_sb_info * sbi)319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
320 {
321 spin_lock_init(&sbi->fsync_node_lock);
322 INIT_LIST_HEAD(&sbi->fsync_node_list);
323 sbi->fsync_seg_id = 0;
324 sbi->fsync_node_num = 0;
325 }
326
f2fs_add_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
328 struct page *page)
329 {
330 struct fsync_node_entry *fn;
331 unsigned long flags;
332 unsigned int seq_id;
333
334 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
335 GFP_NOFS, true, NULL);
336
337 get_page(page);
338 fn->page = page;
339 INIT_LIST_HEAD(&fn->list);
340
341 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
342 list_add_tail(&fn->list, &sbi->fsync_node_list);
343 fn->seq_id = sbi->fsync_seg_id++;
344 seq_id = fn->seq_id;
345 sbi->fsync_node_num++;
346 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
347
348 return seq_id;
349 }
350
f2fs_del_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
352 {
353 struct fsync_node_entry *fn;
354 unsigned long flags;
355
356 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
357 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
358 if (fn->page == page) {
359 list_del(&fn->list);
360 sbi->fsync_node_num--;
361 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
362 kmem_cache_free(fsync_node_entry_slab, fn);
363 put_page(page);
364 return;
365 }
366 }
367 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
368 f2fs_bug_on(sbi, 1);
369 }
370
f2fs_reset_fsync_node_info(struct f2fs_sb_info * sbi)371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
372 {
373 unsigned long flags;
374
375 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
376 sbi->fsync_seg_id = 0;
377 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
378 }
379
f2fs_need_dentry_mark(struct f2fs_sb_info * sbi,nid_t nid)380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
381 {
382 struct f2fs_nm_info *nm_i = NM_I(sbi);
383 struct nat_entry *e;
384 bool need = false;
385
386 f2fs_down_read(&nm_i->nat_tree_lock);
387 e = __lookup_nat_cache(nm_i, nid);
388 if (e) {
389 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
390 !get_nat_flag(e, HAS_FSYNCED_INODE))
391 need = true;
392 }
393 f2fs_up_read(&nm_i->nat_tree_lock);
394 return need;
395 }
396
f2fs_is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
398 {
399 struct f2fs_nm_info *nm_i = NM_I(sbi);
400 struct nat_entry *e;
401 bool is_cp = true;
402
403 f2fs_down_read(&nm_i->nat_tree_lock);
404 e = __lookup_nat_cache(nm_i, nid);
405 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
406 is_cp = false;
407 f2fs_up_read(&nm_i->nat_tree_lock);
408 return is_cp;
409 }
410
f2fs_need_inode_block_update(struct f2fs_sb_info * sbi,nid_t ino)411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
412 {
413 struct f2fs_nm_info *nm_i = NM_I(sbi);
414 struct nat_entry *e;
415 bool need_update = true;
416
417 f2fs_down_read(&nm_i->nat_tree_lock);
418 e = __lookup_nat_cache(nm_i, ino);
419 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
420 (get_nat_flag(e, IS_CHECKPOINTED) ||
421 get_nat_flag(e, HAS_FSYNCED_INODE)))
422 need_update = false;
423 f2fs_up_read(&nm_i->nat_tree_lock);
424 return need_update;
425 }
426
427 /* must be locked by nat_tree_lock */
cache_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * ne)428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
429 struct f2fs_nat_entry *ne)
430 {
431 struct f2fs_nm_info *nm_i = NM_I(sbi);
432 struct nat_entry *new, *e;
433
434 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
435 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
436 return;
437
438 new = __alloc_nat_entry(sbi, nid, false);
439 if (!new)
440 return;
441
442 f2fs_down_write(&nm_i->nat_tree_lock);
443 e = __lookup_nat_cache(nm_i, nid);
444 if (!e)
445 e = __init_nat_entry(nm_i, new, ne, false);
446 else
447 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
448 nat_get_blkaddr(e) !=
449 le32_to_cpu(ne->block_addr) ||
450 nat_get_version(e) != ne->version);
451 f2fs_up_write(&nm_i->nat_tree_lock);
452 if (e != new)
453 __free_nat_entry(new);
454 }
455
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr,bool fsync_done)456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
457 block_t new_blkaddr, bool fsync_done)
458 {
459 struct f2fs_nm_info *nm_i = NM_I(sbi);
460 struct nat_entry *e;
461 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
462
463 f2fs_down_write(&nm_i->nat_tree_lock);
464 e = __lookup_nat_cache(nm_i, ni->nid);
465 if (!e) {
466 e = __init_nat_entry(nm_i, new, NULL, true);
467 copy_node_info(&e->ni, ni);
468 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
469 } else if (new_blkaddr == NEW_ADDR) {
470 /*
471 * when nid is reallocated,
472 * previous nat entry can be remained in nat cache.
473 * So, reinitialize it with new information.
474 */
475 copy_node_info(&e->ni, ni);
476 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
477 }
478 /* let's free early to reduce memory consumption */
479 if (e != new)
480 __free_nat_entry(new);
481
482 /* sanity check */
483 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
484 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
485 new_blkaddr == NULL_ADDR);
486 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
487 new_blkaddr == NEW_ADDR);
488 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
489 new_blkaddr == NEW_ADDR);
490
491 /* increment version no as node is removed */
492 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
493 unsigned char version = nat_get_version(e);
494
495 nat_set_version(e, inc_node_version(version));
496 }
497
498 /* change address */
499 nat_set_blkaddr(e, new_blkaddr);
500 if (!__is_valid_data_blkaddr(new_blkaddr))
501 set_nat_flag(e, IS_CHECKPOINTED, false);
502 __set_nat_cache_dirty(nm_i, e);
503
504 /* update fsync_mark if its inode nat entry is still alive */
505 if (ni->nid != ni->ino)
506 e = __lookup_nat_cache(nm_i, ni->ino);
507 if (e) {
508 if (fsync_done && ni->nid == ni->ino)
509 set_nat_flag(e, HAS_FSYNCED_INODE, true);
510 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
511 }
512 f2fs_up_write(&nm_i->nat_tree_lock);
513 }
514
f2fs_try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
516 {
517 struct f2fs_nm_info *nm_i = NM_I(sbi);
518 int nr = nr_shrink;
519
520 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
521 return 0;
522
523 spin_lock(&nm_i->nat_list_lock);
524 while (nr_shrink) {
525 struct nat_entry *ne;
526
527 if (list_empty(&nm_i->nat_entries))
528 break;
529
530 ne = list_first_entry(&nm_i->nat_entries,
531 struct nat_entry, list);
532 list_del(&ne->list);
533 spin_unlock(&nm_i->nat_list_lock);
534
535 __del_from_nat_cache(nm_i, ne);
536 nr_shrink--;
537
538 spin_lock(&nm_i->nat_list_lock);
539 }
540 spin_unlock(&nm_i->nat_list_lock);
541
542 f2fs_up_write(&nm_i->nat_tree_lock);
543 return nr - nr_shrink;
544 }
545
f2fs_get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni,bool checkpoint_context)546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
547 struct node_info *ni, bool checkpoint_context)
548 {
549 struct f2fs_nm_info *nm_i = NM_I(sbi);
550 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
551 struct f2fs_journal *journal = curseg->journal;
552 nid_t start_nid = START_NID(nid);
553 struct f2fs_nat_block *nat_blk;
554 struct page *page = NULL;
555 struct f2fs_nat_entry ne;
556 struct nat_entry *e;
557 pgoff_t index;
558 block_t blkaddr;
559 int i;
560
561 ni->nid = nid;
562 retry:
563 /* Check nat cache */
564 f2fs_down_read(&nm_i->nat_tree_lock);
565 e = __lookup_nat_cache(nm_i, nid);
566 if (e) {
567 ni->ino = nat_get_ino(e);
568 ni->blk_addr = nat_get_blkaddr(e);
569 ni->version = nat_get_version(e);
570 f2fs_up_read(&nm_i->nat_tree_lock);
571 return 0;
572 }
573
574 /*
575 * Check current segment summary by trying to grab journal_rwsem first.
576 * This sem is on the critical path on the checkpoint requiring the above
577 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
578 * while not bothering checkpoint.
579 */
580 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
581 down_read(&curseg->journal_rwsem);
582 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
583 !down_read_trylock(&curseg->journal_rwsem)) {
584 f2fs_up_read(&nm_i->nat_tree_lock);
585 goto retry;
586 }
587
588 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
589 if (i >= 0) {
590 ne = nat_in_journal(journal, i);
591 node_info_from_raw_nat(ni, &ne);
592 }
593 up_read(&curseg->journal_rwsem);
594 if (i >= 0) {
595 f2fs_up_read(&nm_i->nat_tree_lock);
596 goto cache;
597 }
598
599 /* Fill node_info from nat page */
600 index = current_nat_addr(sbi, nid);
601 f2fs_up_read(&nm_i->nat_tree_lock);
602
603 page = f2fs_get_meta_page(sbi, index);
604 if (IS_ERR(page))
605 return PTR_ERR(page);
606
607 nat_blk = (struct f2fs_nat_block *)page_address(page);
608 ne = nat_blk->entries[nid - start_nid];
609 node_info_from_raw_nat(ni, &ne);
610 f2fs_put_page(page, 1);
611 cache:
612 blkaddr = le32_to_cpu(ne.block_addr);
613 if (__is_valid_data_blkaddr(blkaddr) &&
614 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
615 return -EFAULT;
616
617 /* cache nat entry */
618 cache_nat_entry(sbi, nid, &ne);
619 return 0;
620 }
621
622 /*
623 * readahead MAX_RA_NODE number of node pages.
624 */
f2fs_ra_node_pages(struct page * parent,int start,int n)625 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
626 {
627 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
628 struct blk_plug plug;
629 int i, end;
630 nid_t nid;
631
632 blk_start_plug(&plug);
633
634 /* Then, try readahead for siblings of the desired node */
635 end = start + n;
636 end = min(end, (int)NIDS_PER_BLOCK);
637 for (i = start; i < end; i++) {
638 nid = get_nid(parent, i, false);
639 f2fs_ra_node_page(sbi, nid);
640 }
641
642 blk_finish_plug(&plug);
643 }
644
f2fs_get_next_page_offset(struct dnode_of_data * dn,pgoff_t pgofs)645 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
646 {
647 const long direct_index = ADDRS_PER_INODE(dn->inode);
648 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
649 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
650 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
651 int cur_level = dn->cur_level;
652 int max_level = dn->max_level;
653 pgoff_t base = 0;
654
655 if (!dn->max_level)
656 return pgofs + 1;
657
658 while (max_level-- > cur_level)
659 skipped_unit *= NIDS_PER_BLOCK;
660
661 switch (dn->max_level) {
662 case 3:
663 base += 2 * indirect_blks;
664 fallthrough;
665 case 2:
666 base += 2 * direct_blks;
667 fallthrough;
668 case 1:
669 base += direct_index;
670 break;
671 default:
672 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
673 }
674
675 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
676 }
677
678 /*
679 * The maximum depth is four.
680 * Offset[0] will have raw inode offset.
681 */
get_node_path(struct inode * inode,long block,int offset[4],unsigned int noffset[4])682 static int get_node_path(struct inode *inode, long block,
683 int offset[4], unsigned int noffset[4])
684 {
685 const long direct_index = ADDRS_PER_INODE(inode);
686 const long direct_blks = ADDRS_PER_BLOCK(inode);
687 const long dptrs_per_blk = NIDS_PER_BLOCK;
688 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
689 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
690 int n = 0;
691 int level = 0;
692
693 noffset[0] = 0;
694
695 if (block < direct_index) {
696 offset[n] = block;
697 goto got;
698 }
699 block -= direct_index;
700 if (block < direct_blks) {
701 offset[n++] = NODE_DIR1_BLOCK;
702 noffset[n] = 1;
703 offset[n] = block;
704 level = 1;
705 goto got;
706 }
707 block -= direct_blks;
708 if (block < direct_blks) {
709 offset[n++] = NODE_DIR2_BLOCK;
710 noffset[n] = 2;
711 offset[n] = block;
712 level = 1;
713 goto got;
714 }
715 block -= direct_blks;
716 if (block < indirect_blks) {
717 offset[n++] = NODE_IND1_BLOCK;
718 noffset[n] = 3;
719 offset[n++] = block / direct_blks;
720 noffset[n] = 4 + offset[n - 1];
721 offset[n] = block % direct_blks;
722 level = 2;
723 goto got;
724 }
725 block -= indirect_blks;
726 if (block < indirect_blks) {
727 offset[n++] = NODE_IND2_BLOCK;
728 noffset[n] = 4 + dptrs_per_blk;
729 offset[n++] = block / direct_blks;
730 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
731 offset[n] = block % direct_blks;
732 level = 2;
733 goto got;
734 }
735 block -= indirect_blks;
736 if (block < dindirect_blks) {
737 offset[n++] = NODE_DIND_BLOCK;
738 noffset[n] = 5 + (dptrs_per_blk * 2);
739 offset[n++] = block / indirect_blks;
740 noffset[n] = 6 + (dptrs_per_blk * 2) +
741 offset[n - 1] * (dptrs_per_blk + 1);
742 offset[n++] = (block / direct_blks) % dptrs_per_blk;
743 noffset[n] = 7 + (dptrs_per_blk * 2) +
744 offset[n - 2] * (dptrs_per_blk + 1) +
745 offset[n - 1];
746 offset[n] = block % direct_blks;
747 level = 3;
748 goto got;
749 } else {
750 return -E2BIG;
751 }
752 got:
753 return level;
754 }
755
756 /*
757 * Caller should call f2fs_put_dnode(dn).
758 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
759 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
760 */
f2fs_get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)761 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
762 {
763 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
764 struct page *npage[4];
765 struct page *parent = NULL;
766 int offset[4];
767 unsigned int noffset[4];
768 nid_t nids[4];
769 int level, i = 0;
770 int err = 0;
771
772 level = get_node_path(dn->inode, index, offset, noffset);
773 if (level < 0)
774 return level;
775
776 nids[0] = dn->inode->i_ino;
777 npage[0] = dn->inode_page;
778
779 if (!npage[0]) {
780 npage[0] = f2fs_get_node_page(sbi, nids[0]);
781 if (IS_ERR(npage[0]))
782 return PTR_ERR(npage[0]);
783 }
784
785 /* if inline_data is set, should not report any block indices */
786 if (f2fs_has_inline_data(dn->inode) && index) {
787 err = -ENOENT;
788 f2fs_put_page(npage[0], 1);
789 goto release_out;
790 }
791
792 parent = npage[0];
793 if (level != 0)
794 nids[1] = get_nid(parent, offset[0], true);
795 dn->inode_page = npage[0];
796 dn->inode_page_locked = true;
797
798 /* get indirect or direct nodes */
799 for (i = 1; i <= level; i++) {
800 bool done = false;
801
802 if (!nids[i] && mode == ALLOC_NODE) {
803 /* alloc new node */
804 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
805 err = -ENOSPC;
806 goto release_pages;
807 }
808
809 dn->nid = nids[i];
810 npage[i] = f2fs_new_node_page(dn, noffset[i]);
811 if (IS_ERR(npage[i])) {
812 f2fs_alloc_nid_failed(sbi, nids[i]);
813 err = PTR_ERR(npage[i]);
814 goto release_pages;
815 }
816
817 set_nid(parent, offset[i - 1], nids[i], i == 1);
818 f2fs_alloc_nid_done(sbi, nids[i]);
819 done = true;
820 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
821 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
822 if (IS_ERR(npage[i])) {
823 err = PTR_ERR(npage[i]);
824 goto release_pages;
825 }
826 done = true;
827 }
828 if (i == 1) {
829 dn->inode_page_locked = false;
830 unlock_page(parent);
831 } else {
832 f2fs_put_page(parent, 1);
833 }
834
835 if (!done) {
836 npage[i] = f2fs_get_node_page(sbi, nids[i]);
837 if (IS_ERR(npage[i])) {
838 err = PTR_ERR(npage[i]);
839 f2fs_put_page(npage[0], 0);
840 goto release_out;
841 }
842 }
843 if (i < level) {
844 parent = npage[i];
845 nids[i + 1] = get_nid(parent, offset[i], false);
846 }
847 }
848 dn->nid = nids[level];
849 dn->ofs_in_node = offset[level];
850 dn->node_page = npage[level];
851 dn->data_blkaddr = f2fs_data_blkaddr(dn);
852
853 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
854 f2fs_sb_has_readonly(sbi)) {
855 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
856 unsigned int ofs_in_node = dn->ofs_in_node;
857 pgoff_t fofs = index;
858 unsigned int c_len;
859 block_t blkaddr;
860
861 /* should align fofs and ofs_in_node to cluster_size */
862 if (fofs % cluster_size) {
863 fofs = round_down(fofs, cluster_size);
864 ofs_in_node = round_down(ofs_in_node, cluster_size);
865 }
866
867 c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node);
868 if (!c_len)
869 goto out;
870
871 blkaddr = data_blkaddr(dn->inode, dn->node_page, ofs_in_node);
872 if (blkaddr == COMPRESS_ADDR)
873 blkaddr = data_blkaddr(dn->inode, dn->node_page,
874 ofs_in_node + 1);
875
876 f2fs_update_read_extent_tree_range_compressed(dn->inode,
877 fofs, blkaddr, cluster_size, c_len);
878 }
879 out:
880 return 0;
881
882 release_pages:
883 f2fs_put_page(parent, 1);
884 if (i > 1)
885 f2fs_put_page(npage[0], 0);
886 release_out:
887 dn->inode_page = NULL;
888 dn->node_page = NULL;
889 if (err == -ENOENT) {
890 dn->cur_level = i;
891 dn->max_level = level;
892 dn->ofs_in_node = offset[level];
893 }
894 return err;
895 }
896
truncate_node(struct dnode_of_data * dn)897 static int truncate_node(struct dnode_of_data *dn)
898 {
899 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
900 struct node_info ni;
901 int err;
902 pgoff_t index;
903
904 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
905 if (err)
906 return err;
907
908 /* Deallocate node address */
909 f2fs_invalidate_blocks(sbi, ni.blk_addr);
910 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
911 set_node_addr(sbi, &ni, NULL_ADDR, false);
912
913 if (dn->nid == dn->inode->i_ino) {
914 f2fs_remove_orphan_inode(sbi, dn->nid);
915 dec_valid_inode_count(sbi);
916 f2fs_inode_synced(dn->inode);
917 }
918
919 clear_node_page_dirty(dn->node_page);
920 set_sbi_flag(sbi, SBI_IS_DIRTY);
921
922 index = dn->node_page->index;
923 f2fs_put_page(dn->node_page, 1);
924
925 invalidate_mapping_pages(NODE_MAPPING(sbi),
926 index, index);
927
928 dn->node_page = NULL;
929 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
930
931 return 0;
932 }
933
truncate_dnode(struct dnode_of_data * dn)934 static int truncate_dnode(struct dnode_of_data *dn)
935 {
936 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
937 struct page *page;
938 int err;
939
940 if (dn->nid == 0)
941 return 1;
942
943 /* get direct node */
944 page = f2fs_get_node_page(sbi, dn->nid);
945 if (PTR_ERR(page) == -ENOENT)
946 return 1;
947 else if (IS_ERR(page))
948 return PTR_ERR(page);
949
950 if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) {
951 f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
952 dn->inode->i_ino, dn->nid, ino_of_node(page));
953 set_sbi_flag(sbi, SBI_NEED_FSCK);
954 f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
955 f2fs_put_page(page, 1);
956 return -EFSCORRUPTED;
957 }
958
959 /* Make dnode_of_data for parameter */
960 dn->node_page = page;
961 dn->ofs_in_node = 0;
962 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
963 err = truncate_node(dn);
964 if (err) {
965 f2fs_put_page(page, 1);
966 return err;
967 }
968
969 return 1;
970 }
971
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)972 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
973 int ofs, int depth)
974 {
975 struct dnode_of_data rdn = *dn;
976 struct page *page;
977 struct f2fs_node *rn;
978 nid_t child_nid;
979 unsigned int child_nofs;
980 int freed = 0;
981 int i, ret;
982
983 if (dn->nid == 0)
984 return NIDS_PER_BLOCK + 1;
985
986 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
987
988 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
989 if (IS_ERR(page)) {
990 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
991 return PTR_ERR(page);
992 }
993
994 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
995
996 rn = F2FS_NODE(page);
997 if (depth < 3) {
998 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
999 child_nid = le32_to_cpu(rn->in.nid[i]);
1000 if (child_nid == 0)
1001 continue;
1002 rdn.nid = child_nid;
1003 ret = truncate_dnode(&rdn);
1004 if (ret < 0)
1005 goto out_err;
1006 if (set_nid(page, i, 0, false))
1007 dn->node_changed = true;
1008 }
1009 } else {
1010 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1011 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1012 child_nid = le32_to_cpu(rn->in.nid[i]);
1013 if (child_nid == 0) {
1014 child_nofs += NIDS_PER_BLOCK + 1;
1015 continue;
1016 }
1017 rdn.nid = child_nid;
1018 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1019 if (ret == (NIDS_PER_BLOCK + 1)) {
1020 if (set_nid(page, i, 0, false))
1021 dn->node_changed = true;
1022 child_nofs += ret;
1023 } else if (ret < 0 && ret != -ENOENT) {
1024 goto out_err;
1025 }
1026 }
1027 freed = child_nofs;
1028 }
1029
1030 if (!ofs) {
1031 /* remove current indirect node */
1032 dn->node_page = page;
1033 ret = truncate_node(dn);
1034 if (ret)
1035 goto out_err;
1036 freed++;
1037 } else {
1038 f2fs_put_page(page, 1);
1039 }
1040 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1041 return freed;
1042
1043 out_err:
1044 f2fs_put_page(page, 1);
1045 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1046 return ret;
1047 }
1048
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)1049 static int truncate_partial_nodes(struct dnode_of_data *dn,
1050 struct f2fs_inode *ri, int *offset, int depth)
1051 {
1052 struct page *pages[2];
1053 nid_t nid[3];
1054 nid_t child_nid;
1055 int err = 0;
1056 int i;
1057 int idx = depth - 2;
1058
1059 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1060 if (!nid[0])
1061 return 0;
1062
1063 /* get indirect nodes in the path */
1064 for (i = 0; i < idx + 1; i++) {
1065 /* reference count'll be increased */
1066 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1067 if (IS_ERR(pages[i])) {
1068 err = PTR_ERR(pages[i]);
1069 idx = i - 1;
1070 goto fail;
1071 }
1072 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1073 }
1074
1075 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1076
1077 /* free direct nodes linked to a partial indirect node */
1078 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1079 child_nid = get_nid(pages[idx], i, false);
1080 if (!child_nid)
1081 continue;
1082 dn->nid = child_nid;
1083 err = truncate_dnode(dn);
1084 if (err < 0)
1085 goto fail;
1086 if (set_nid(pages[idx], i, 0, false))
1087 dn->node_changed = true;
1088 }
1089
1090 if (offset[idx + 1] == 0) {
1091 dn->node_page = pages[idx];
1092 dn->nid = nid[idx];
1093 err = truncate_node(dn);
1094 if (err)
1095 goto fail;
1096 } else {
1097 f2fs_put_page(pages[idx], 1);
1098 }
1099 offset[idx]++;
1100 offset[idx + 1] = 0;
1101 idx--;
1102 fail:
1103 for (i = idx; i >= 0; i--)
1104 f2fs_put_page(pages[i], 1);
1105
1106 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1107
1108 return err;
1109 }
1110
1111 /*
1112 * All the block addresses of data and nodes should be nullified.
1113 */
f2fs_truncate_inode_blocks(struct inode * inode,pgoff_t from)1114 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1115 {
1116 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1117 int err = 0, cont = 1;
1118 int level, offset[4], noffset[4];
1119 unsigned int nofs = 0;
1120 struct f2fs_inode *ri;
1121 struct dnode_of_data dn;
1122 struct page *page;
1123
1124 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1125
1126 level = get_node_path(inode, from, offset, noffset);
1127 if (level < 0) {
1128 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1129 return level;
1130 }
1131
1132 page = f2fs_get_node_page(sbi, inode->i_ino);
1133 if (IS_ERR(page)) {
1134 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1135 return PTR_ERR(page);
1136 }
1137
1138 set_new_dnode(&dn, inode, page, NULL, 0);
1139 unlock_page(page);
1140
1141 ri = F2FS_INODE(page);
1142 switch (level) {
1143 case 0:
1144 case 1:
1145 nofs = noffset[1];
1146 break;
1147 case 2:
1148 nofs = noffset[1];
1149 if (!offset[level - 1])
1150 goto skip_partial;
1151 err = truncate_partial_nodes(&dn, ri, offset, level);
1152 if (err < 0 && err != -ENOENT)
1153 goto fail;
1154 nofs += 1 + NIDS_PER_BLOCK;
1155 break;
1156 case 3:
1157 nofs = 5 + 2 * NIDS_PER_BLOCK;
1158 if (!offset[level - 1])
1159 goto skip_partial;
1160 err = truncate_partial_nodes(&dn, ri, offset, level);
1161 if (err < 0 && err != -ENOENT)
1162 goto fail;
1163 break;
1164 default:
1165 BUG();
1166 }
1167
1168 skip_partial:
1169 while (cont) {
1170 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1171 switch (offset[0]) {
1172 case NODE_DIR1_BLOCK:
1173 case NODE_DIR2_BLOCK:
1174 err = truncate_dnode(&dn);
1175 break;
1176
1177 case NODE_IND1_BLOCK:
1178 case NODE_IND2_BLOCK:
1179 err = truncate_nodes(&dn, nofs, offset[1], 2);
1180 break;
1181
1182 case NODE_DIND_BLOCK:
1183 err = truncate_nodes(&dn, nofs, offset[1], 3);
1184 cont = 0;
1185 break;
1186
1187 default:
1188 BUG();
1189 }
1190 if (err == -ENOENT) {
1191 set_sbi_flag(F2FS_P_SB(page), SBI_NEED_FSCK);
1192 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1193 f2fs_err_ratelimited(sbi,
1194 "truncate node fail, ino:%lu, nid:%u, "
1195 "offset[0]:%d, offset[1]:%d, nofs:%d",
1196 inode->i_ino, dn.nid, offset[0],
1197 offset[1], nofs);
1198 err = 0;
1199 }
1200 if (err < 0)
1201 goto fail;
1202 if (offset[1] == 0 &&
1203 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1204 lock_page(page);
1205 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1206 f2fs_wait_on_page_writeback(page, NODE, true, true);
1207 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1208 set_page_dirty(page);
1209 unlock_page(page);
1210 }
1211 offset[1] = 0;
1212 offset[0]++;
1213 nofs += err;
1214 }
1215 fail:
1216 f2fs_put_page(page, 0);
1217 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1218 return err > 0 ? 0 : err;
1219 }
1220
1221 /* caller must lock inode page */
f2fs_truncate_xattr_node(struct inode * inode)1222 int f2fs_truncate_xattr_node(struct inode *inode)
1223 {
1224 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1225 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1226 struct dnode_of_data dn;
1227 struct page *npage;
1228 int err;
1229
1230 if (!nid)
1231 return 0;
1232
1233 npage = f2fs_get_node_page(sbi, nid);
1234 if (IS_ERR(npage))
1235 return PTR_ERR(npage);
1236
1237 set_new_dnode(&dn, inode, NULL, npage, nid);
1238 err = truncate_node(&dn);
1239 if (err) {
1240 f2fs_put_page(npage, 1);
1241 return err;
1242 }
1243
1244 f2fs_i_xnid_write(inode, 0);
1245
1246 return 0;
1247 }
1248
1249 /*
1250 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1251 * f2fs_unlock_op().
1252 */
f2fs_remove_inode_page(struct inode * inode)1253 int f2fs_remove_inode_page(struct inode *inode)
1254 {
1255 struct dnode_of_data dn;
1256 int err;
1257
1258 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1259 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1260 if (err)
1261 return err;
1262
1263 err = f2fs_truncate_xattr_node(inode);
1264 if (err) {
1265 f2fs_put_dnode(&dn);
1266 return err;
1267 }
1268
1269 /* remove potential inline_data blocks */
1270 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1271 S_ISLNK(inode->i_mode))
1272 f2fs_truncate_data_blocks_range(&dn, 1);
1273
1274 /* 0 is possible, after f2fs_new_inode() has failed */
1275 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1276 f2fs_put_dnode(&dn);
1277 return -EIO;
1278 }
1279
1280 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1281 f2fs_warn(F2FS_I_SB(inode),
1282 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1283 inode->i_ino, (unsigned long long)inode->i_blocks);
1284 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1285 }
1286
1287 /* will put inode & node pages */
1288 err = truncate_node(&dn);
1289 if (err) {
1290 f2fs_put_dnode(&dn);
1291 return err;
1292 }
1293 return 0;
1294 }
1295
f2fs_new_inode_page(struct inode * inode)1296 struct page *f2fs_new_inode_page(struct inode *inode)
1297 {
1298 struct dnode_of_data dn;
1299
1300 /* allocate inode page for new inode */
1301 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1302
1303 /* caller should f2fs_put_page(page, 1); */
1304 return f2fs_new_node_page(&dn, 0);
1305 }
1306
f2fs_new_node_page(struct dnode_of_data * dn,unsigned int ofs)1307 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1308 {
1309 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1310 struct node_info new_ni;
1311 struct page *page;
1312 int err;
1313
1314 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1315 return ERR_PTR(-EPERM);
1316
1317 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1318 if (!page)
1319 return ERR_PTR(-ENOMEM);
1320
1321 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1322 goto fail;
1323
1324 #ifdef CONFIG_F2FS_CHECK_FS
1325 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1326 if (err) {
1327 dec_valid_node_count(sbi, dn->inode, !ofs);
1328 goto fail;
1329 }
1330 if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1331 err = -EFSCORRUPTED;
1332 dec_valid_node_count(sbi, dn->inode, !ofs);
1333 set_sbi_flag(sbi, SBI_NEED_FSCK);
1334 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1335 goto fail;
1336 }
1337 #endif
1338 new_ni.nid = dn->nid;
1339 new_ni.ino = dn->inode->i_ino;
1340 new_ni.blk_addr = NULL_ADDR;
1341 new_ni.flag = 0;
1342 new_ni.version = 0;
1343 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1344
1345 f2fs_wait_on_page_writeback(page, NODE, true, true);
1346 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1347 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1348 if (!PageUptodate(page))
1349 SetPageUptodate(page);
1350 if (set_page_dirty(page))
1351 dn->node_changed = true;
1352
1353 if (f2fs_has_xattr_block(ofs))
1354 f2fs_i_xnid_write(dn->inode, dn->nid);
1355
1356 if (ofs == 0)
1357 inc_valid_inode_count(sbi);
1358 return page;
1359 fail:
1360 clear_node_page_dirty(page);
1361 f2fs_put_page(page, 1);
1362 return ERR_PTR(err);
1363 }
1364
1365 /*
1366 * Caller should do after getting the following values.
1367 * 0: f2fs_put_page(page, 0)
1368 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1369 */
read_node_page(struct page * page,blk_opf_t op_flags)1370 static int read_node_page(struct page *page, blk_opf_t op_flags)
1371 {
1372 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1373 struct node_info ni;
1374 struct f2fs_io_info fio = {
1375 .sbi = sbi,
1376 .type = NODE,
1377 .op = REQ_OP_READ,
1378 .op_flags = op_flags,
1379 .page = page,
1380 .encrypted_page = NULL,
1381 };
1382 int err;
1383
1384 if (PageUptodate(page)) {
1385 if (!f2fs_inode_chksum_verify(sbi, page)) {
1386 ClearPageUptodate(page);
1387 return -EFSBADCRC;
1388 }
1389 return LOCKED_PAGE;
1390 }
1391
1392 err = f2fs_get_node_info(sbi, page->index, &ni, false);
1393 if (err)
1394 return err;
1395
1396 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1397 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1398 ClearPageUptodate(page);
1399 return -ENOENT;
1400 }
1401
1402 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1403
1404 err = f2fs_submit_page_bio(&fio);
1405
1406 if (!err)
1407 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1408
1409 return err;
1410 }
1411
1412 /*
1413 * Readahead a node page
1414 */
f2fs_ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)1415 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1416 {
1417 struct page *apage;
1418 int err;
1419
1420 if (!nid)
1421 return;
1422 if (f2fs_check_nid_range(sbi, nid))
1423 return;
1424
1425 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1426 if (apage)
1427 return;
1428
1429 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1430 if (!apage)
1431 return;
1432
1433 err = read_node_page(apage, REQ_RAHEAD);
1434 f2fs_put_page(apage, err ? 1 : 0);
1435 }
1436
__get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid,struct page * parent,int start)1437 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1438 struct page *parent, int start)
1439 {
1440 struct page *page;
1441 int err;
1442
1443 if (!nid)
1444 return ERR_PTR(-ENOENT);
1445 if (f2fs_check_nid_range(sbi, nid))
1446 return ERR_PTR(-EINVAL);
1447 repeat:
1448 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1449 if (!page)
1450 return ERR_PTR(-ENOMEM);
1451
1452 err = read_node_page(page, 0);
1453 if (err < 0) {
1454 goto out_put_err;
1455 } else if (err == LOCKED_PAGE) {
1456 err = 0;
1457 goto page_hit;
1458 }
1459
1460 if (parent)
1461 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1462
1463 lock_page(page);
1464
1465 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1466 f2fs_put_page(page, 1);
1467 goto repeat;
1468 }
1469
1470 if (unlikely(!PageUptodate(page))) {
1471 err = -EIO;
1472 goto out_err;
1473 }
1474
1475 if (!f2fs_inode_chksum_verify(sbi, page)) {
1476 err = -EFSBADCRC;
1477 goto out_err;
1478 }
1479 page_hit:
1480 if (likely(nid == nid_of_node(page)))
1481 return page;
1482
1483 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1484 nid, nid_of_node(page), ino_of_node(page),
1485 ofs_of_node(page), cpver_of_node(page),
1486 next_blkaddr_of_node(page));
1487 set_sbi_flag(sbi, SBI_NEED_FSCK);
1488 f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
1489 err = -EFSCORRUPTED;
1490 out_err:
1491 ClearPageUptodate(page);
1492 out_put_err:
1493 /* ENOENT comes from read_node_page which is not an error. */
1494 if (err != -ENOENT)
1495 f2fs_handle_page_eio(sbi, page->index, NODE);
1496 f2fs_put_page(page, 1);
1497 return ERR_PTR(err);
1498 }
1499
f2fs_get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid)1500 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1501 {
1502 return __get_node_page(sbi, nid, NULL, 0);
1503 }
1504
f2fs_get_node_page_ra(struct page * parent,int start)1505 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1506 {
1507 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1508 nid_t nid = get_nid(parent, start, false);
1509
1510 return __get_node_page(sbi, nid, parent, start);
1511 }
1512
flush_inline_data(struct f2fs_sb_info * sbi,nid_t ino)1513 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1514 {
1515 struct inode *inode;
1516 struct page *page;
1517 int ret;
1518
1519 /* should flush inline_data before evict_inode */
1520 inode = ilookup(sbi->sb, ino);
1521 if (!inode)
1522 return;
1523
1524 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1525 FGP_LOCK|FGP_NOWAIT, 0);
1526 if (!page)
1527 goto iput_out;
1528
1529 if (!PageUptodate(page))
1530 goto page_out;
1531
1532 if (!PageDirty(page))
1533 goto page_out;
1534
1535 if (!clear_page_dirty_for_io(page))
1536 goto page_out;
1537
1538 ret = f2fs_write_inline_data(inode, page);
1539 inode_dec_dirty_pages(inode);
1540 f2fs_remove_dirty_inode(inode);
1541 if (ret)
1542 set_page_dirty(page);
1543 page_out:
1544 f2fs_put_page(page, 1);
1545 iput_out:
1546 iput(inode);
1547 }
1548
last_fsync_dnode(struct f2fs_sb_info * sbi,nid_t ino)1549 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1550 {
1551 pgoff_t index;
1552 struct folio_batch fbatch;
1553 struct page *last_page = NULL;
1554 int nr_folios;
1555
1556 folio_batch_init(&fbatch);
1557 index = 0;
1558
1559 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1560 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1561 &fbatch))) {
1562 int i;
1563
1564 for (i = 0; i < nr_folios; i++) {
1565 struct page *page = &fbatch.folios[i]->page;
1566
1567 if (unlikely(f2fs_cp_error(sbi))) {
1568 f2fs_put_page(last_page, 0);
1569 folio_batch_release(&fbatch);
1570 return ERR_PTR(-EIO);
1571 }
1572
1573 if (!IS_DNODE(page) || !is_cold_node(page))
1574 continue;
1575 if (ino_of_node(page) != ino)
1576 continue;
1577
1578 lock_page(page);
1579
1580 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1581 continue_unlock:
1582 unlock_page(page);
1583 continue;
1584 }
1585 if (ino_of_node(page) != ino)
1586 goto continue_unlock;
1587
1588 if (!PageDirty(page)) {
1589 /* someone wrote it for us */
1590 goto continue_unlock;
1591 }
1592
1593 if (last_page)
1594 f2fs_put_page(last_page, 0);
1595
1596 get_page(page);
1597 last_page = page;
1598 unlock_page(page);
1599 }
1600 folio_batch_release(&fbatch);
1601 cond_resched();
1602 }
1603 return last_page;
1604 }
1605
__write_node_page(struct page * page,bool atomic,bool * submitted,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type,unsigned int * seq_id)1606 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1607 struct writeback_control *wbc, bool do_balance,
1608 enum iostat_type io_type, unsigned int *seq_id)
1609 {
1610 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1611 nid_t nid;
1612 struct node_info ni;
1613 struct f2fs_io_info fio = {
1614 .sbi = sbi,
1615 .ino = ino_of_node(page),
1616 .type = NODE,
1617 .op = REQ_OP_WRITE,
1618 .op_flags = wbc_to_write_flags(wbc),
1619 .page = page,
1620 .encrypted_page = NULL,
1621 .submitted = 0,
1622 .io_type = io_type,
1623 .io_wbc = wbc,
1624 };
1625 unsigned int seq;
1626
1627 trace_f2fs_writepage(page_folio(page), NODE);
1628
1629 if (unlikely(f2fs_cp_error(sbi))) {
1630 /* keep node pages in remount-ro mode */
1631 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1632 goto redirty_out;
1633 ClearPageUptodate(page);
1634 dec_page_count(sbi, F2FS_DIRTY_NODES);
1635 unlock_page(page);
1636 return 0;
1637 }
1638
1639 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1640 goto redirty_out;
1641
1642 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1643 wbc->sync_mode == WB_SYNC_NONE &&
1644 IS_DNODE(page) && is_cold_node(page))
1645 goto redirty_out;
1646
1647 /* get old block addr of this node page */
1648 nid = nid_of_node(page);
1649 f2fs_bug_on(sbi, page->index != nid);
1650
1651 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1652 goto redirty_out;
1653
1654 if (wbc->for_reclaim) {
1655 if (!f2fs_down_read_trylock(&sbi->node_write))
1656 goto redirty_out;
1657 } else {
1658 f2fs_down_read(&sbi->node_write);
1659 }
1660
1661 /* This page is already truncated */
1662 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1663 ClearPageUptodate(page);
1664 dec_page_count(sbi, F2FS_DIRTY_NODES);
1665 f2fs_up_read(&sbi->node_write);
1666 unlock_page(page);
1667 return 0;
1668 }
1669
1670 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1671 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1672 DATA_GENERIC_ENHANCE)) {
1673 f2fs_up_read(&sbi->node_write);
1674 goto redirty_out;
1675 }
1676
1677 if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1678 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1679
1680 /* should add to global list before clearing PAGECACHE status */
1681 if (f2fs_in_warm_node_list(sbi, page)) {
1682 seq = f2fs_add_fsync_node_entry(sbi, page);
1683 if (seq_id)
1684 *seq_id = seq;
1685 }
1686
1687 set_page_writeback(page);
1688
1689 fio.old_blkaddr = ni.blk_addr;
1690 f2fs_do_write_node_page(nid, &fio);
1691 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1692 dec_page_count(sbi, F2FS_DIRTY_NODES);
1693 f2fs_up_read(&sbi->node_write);
1694
1695 if (wbc->for_reclaim) {
1696 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1697 submitted = NULL;
1698 }
1699
1700 unlock_page(page);
1701
1702 if (unlikely(f2fs_cp_error(sbi))) {
1703 f2fs_submit_merged_write(sbi, NODE);
1704 submitted = NULL;
1705 }
1706 if (submitted)
1707 *submitted = fio.submitted;
1708
1709 if (do_balance)
1710 f2fs_balance_fs(sbi, false);
1711 return 0;
1712
1713 redirty_out:
1714 redirty_page_for_writepage(wbc, page);
1715 return AOP_WRITEPAGE_ACTIVATE;
1716 }
1717
f2fs_move_node_page(struct page * node_page,int gc_type)1718 int f2fs_move_node_page(struct page *node_page, int gc_type)
1719 {
1720 int err = 0;
1721
1722 if (gc_type == FG_GC) {
1723 struct writeback_control wbc = {
1724 .sync_mode = WB_SYNC_ALL,
1725 .nr_to_write = 1,
1726 .for_reclaim = 0,
1727 };
1728
1729 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1730
1731 set_page_dirty(node_page);
1732
1733 if (!clear_page_dirty_for_io(node_page)) {
1734 err = -EAGAIN;
1735 goto out_page;
1736 }
1737
1738 if (__write_node_page(node_page, false, NULL,
1739 &wbc, false, FS_GC_NODE_IO, NULL)) {
1740 err = -EAGAIN;
1741 unlock_page(node_page);
1742 }
1743 goto release_page;
1744 } else {
1745 /* set page dirty and write it */
1746 if (!folio_test_writeback(page_folio(node_page)))
1747 set_page_dirty(node_page);
1748 }
1749 out_page:
1750 unlock_page(node_page);
1751 release_page:
1752 f2fs_put_page(node_page, 0);
1753 return err;
1754 }
1755
f2fs_write_node_page(struct page * page,struct writeback_control * wbc)1756 static int f2fs_write_node_page(struct page *page,
1757 struct writeback_control *wbc)
1758 {
1759 return __write_node_page(page, false, NULL, wbc, false,
1760 FS_NODE_IO, NULL);
1761 }
1762
f2fs_fsync_node_pages(struct f2fs_sb_info * sbi,struct inode * inode,struct writeback_control * wbc,bool atomic,unsigned int * seq_id)1763 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1764 struct writeback_control *wbc, bool atomic,
1765 unsigned int *seq_id)
1766 {
1767 pgoff_t index;
1768 struct folio_batch fbatch;
1769 int ret = 0;
1770 struct page *last_page = NULL;
1771 bool marked = false;
1772 nid_t ino = inode->i_ino;
1773 int nr_folios;
1774 int nwritten = 0;
1775
1776 if (atomic) {
1777 last_page = last_fsync_dnode(sbi, ino);
1778 if (IS_ERR_OR_NULL(last_page))
1779 return PTR_ERR_OR_ZERO(last_page);
1780 }
1781 retry:
1782 folio_batch_init(&fbatch);
1783 index = 0;
1784
1785 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1786 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1787 &fbatch))) {
1788 int i;
1789
1790 for (i = 0; i < nr_folios; i++) {
1791 struct page *page = &fbatch.folios[i]->page;
1792 bool submitted = false;
1793
1794 if (unlikely(f2fs_cp_error(sbi))) {
1795 f2fs_put_page(last_page, 0);
1796 folio_batch_release(&fbatch);
1797 ret = -EIO;
1798 goto out;
1799 }
1800
1801 if (!IS_DNODE(page) || !is_cold_node(page))
1802 continue;
1803 if (ino_of_node(page) != ino)
1804 continue;
1805
1806 lock_page(page);
1807
1808 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1809 continue_unlock:
1810 unlock_page(page);
1811 continue;
1812 }
1813 if (ino_of_node(page) != ino)
1814 goto continue_unlock;
1815
1816 if (!PageDirty(page) && page != last_page) {
1817 /* someone wrote it for us */
1818 goto continue_unlock;
1819 }
1820
1821 f2fs_wait_on_page_writeback(page, NODE, true, true);
1822
1823 set_fsync_mark(page, 0);
1824 set_dentry_mark(page, 0);
1825
1826 if (!atomic || page == last_page) {
1827 set_fsync_mark(page, 1);
1828 percpu_counter_inc(&sbi->rf_node_block_count);
1829 if (IS_INODE(page)) {
1830 if (is_inode_flag_set(inode,
1831 FI_DIRTY_INODE))
1832 f2fs_update_inode(inode, page);
1833 set_dentry_mark(page,
1834 f2fs_need_dentry_mark(sbi, ino));
1835 }
1836 /* may be written by other thread */
1837 if (!PageDirty(page))
1838 set_page_dirty(page);
1839 }
1840
1841 if (!clear_page_dirty_for_io(page))
1842 goto continue_unlock;
1843
1844 ret = __write_node_page(page, atomic &&
1845 page == last_page,
1846 &submitted, wbc, true,
1847 FS_NODE_IO, seq_id);
1848 if (ret) {
1849 unlock_page(page);
1850 f2fs_put_page(last_page, 0);
1851 break;
1852 } else if (submitted) {
1853 nwritten++;
1854 }
1855
1856 if (page == last_page) {
1857 f2fs_put_page(page, 0);
1858 marked = true;
1859 break;
1860 }
1861 }
1862 folio_batch_release(&fbatch);
1863 cond_resched();
1864
1865 if (ret || marked)
1866 break;
1867 }
1868 if (!ret && atomic && !marked) {
1869 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1870 ino, last_page->index);
1871 lock_page(last_page);
1872 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1873 set_page_dirty(last_page);
1874 unlock_page(last_page);
1875 goto retry;
1876 }
1877 out:
1878 if (nwritten)
1879 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1880 return ret ? -EIO : 0;
1881 }
1882
f2fs_match_ino(struct inode * inode,unsigned long ino,void * data)1883 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1884 {
1885 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1886 bool clean;
1887
1888 if (inode->i_ino != ino)
1889 return 0;
1890
1891 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1892 return 0;
1893
1894 spin_lock(&sbi->inode_lock[DIRTY_META]);
1895 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1896 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1897
1898 if (clean)
1899 return 0;
1900
1901 inode = igrab(inode);
1902 if (!inode)
1903 return 0;
1904 return 1;
1905 }
1906
flush_dirty_inode(struct page * page)1907 static bool flush_dirty_inode(struct page *page)
1908 {
1909 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1910 struct inode *inode;
1911 nid_t ino = ino_of_node(page);
1912
1913 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1914 if (!inode)
1915 return false;
1916
1917 f2fs_update_inode(inode, page);
1918 unlock_page(page);
1919
1920 iput(inode);
1921 return true;
1922 }
1923
f2fs_flush_inline_data(struct f2fs_sb_info * sbi)1924 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1925 {
1926 pgoff_t index = 0;
1927 struct folio_batch fbatch;
1928 int nr_folios;
1929
1930 folio_batch_init(&fbatch);
1931
1932 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1933 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1934 &fbatch))) {
1935 int i;
1936
1937 for (i = 0; i < nr_folios; i++) {
1938 struct page *page = &fbatch.folios[i]->page;
1939
1940 if (!IS_INODE(page))
1941 continue;
1942
1943 lock_page(page);
1944
1945 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1946 continue_unlock:
1947 unlock_page(page);
1948 continue;
1949 }
1950
1951 if (!PageDirty(page)) {
1952 /* someone wrote it for us */
1953 goto continue_unlock;
1954 }
1955
1956 /* flush inline_data, if it's async context. */
1957 if (page_private_inline(page)) {
1958 clear_page_private_inline(page);
1959 unlock_page(page);
1960 flush_inline_data(sbi, ino_of_node(page));
1961 continue;
1962 }
1963 unlock_page(page);
1964 }
1965 folio_batch_release(&fbatch);
1966 cond_resched();
1967 }
1968 }
1969
f2fs_sync_node_pages(struct f2fs_sb_info * sbi,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)1970 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1971 struct writeback_control *wbc,
1972 bool do_balance, enum iostat_type io_type)
1973 {
1974 pgoff_t index;
1975 struct folio_batch fbatch;
1976 int step = 0;
1977 int nwritten = 0;
1978 int ret = 0;
1979 int nr_folios, done = 0;
1980
1981 folio_batch_init(&fbatch);
1982
1983 next_step:
1984 index = 0;
1985
1986 while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
1987 &index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1988 &fbatch))) {
1989 int i;
1990
1991 for (i = 0; i < nr_folios; i++) {
1992 struct page *page = &fbatch.folios[i]->page;
1993 bool submitted = false;
1994
1995 /* give a priority to WB_SYNC threads */
1996 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1997 wbc->sync_mode == WB_SYNC_NONE) {
1998 done = 1;
1999 break;
2000 }
2001
2002 /*
2003 * flushing sequence with step:
2004 * 0. indirect nodes
2005 * 1. dentry dnodes
2006 * 2. file dnodes
2007 */
2008 if (step == 0 && IS_DNODE(page))
2009 continue;
2010 if (step == 1 && (!IS_DNODE(page) ||
2011 is_cold_node(page)))
2012 continue;
2013 if (step == 2 && (!IS_DNODE(page) ||
2014 !is_cold_node(page)))
2015 continue;
2016 lock_node:
2017 if (wbc->sync_mode == WB_SYNC_ALL)
2018 lock_page(page);
2019 else if (!trylock_page(page))
2020 continue;
2021
2022 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
2023 continue_unlock:
2024 unlock_page(page);
2025 continue;
2026 }
2027
2028 if (!PageDirty(page)) {
2029 /* someone wrote it for us */
2030 goto continue_unlock;
2031 }
2032
2033 /* flush inline_data/inode, if it's async context. */
2034 if (!do_balance)
2035 goto write_node;
2036
2037 /* flush inline_data */
2038 if (page_private_inline(page)) {
2039 clear_page_private_inline(page);
2040 unlock_page(page);
2041 flush_inline_data(sbi, ino_of_node(page));
2042 goto lock_node;
2043 }
2044
2045 /* flush dirty inode */
2046 if (IS_INODE(page) && flush_dirty_inode(page))
2047 goto lock_node;
2048 write_node:
2049 f2fs_wait_on_page_writeback(page, NODE, true, true);
2050
2051 if (!clear_page_dirty_for_io(page))
2052 goto continue_unlock;
2053
2054 set_fsync_mark(page, 0);
2055 set_dentry_mark(page, 0);
2056
2057 ret = __write_node_page(page, false, &submitted,
2058 wbc, do_balance, io_type, NULL);
2059 if (ret)
2060 unlock_page(page);
2061 else if (submitted)
2062 nwritten++;
2063
2064 if (--wbc->nr_to_write == 0)
2065 break;
2066 }
2067 folio_batch_release(&fbatch);
2068 cond_resched();
2069
2070 if (wbc->nr_to_write == 0) {
2071 step = 2;
2072 break;
2073 }
2074 }
2075
2076 if (step < 2) {
2077 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2078 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2079 goto out;
2080 step++;
2081 goto next_step;
2082 }
2083 out:
2084 if (nwritten)
2085 f2fs_submit_merged_write(sbi, NODE);
2086
2087 if (unlikely(f2fs_cp_error(sbi)))
2088 return -EIO;
2089 return ret;
2090 }
2091
f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info * sbi,unsigned int seq_id)2092 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2093 unsigned int seq_id)
2094 {
2095 struct fsync_node_entry *fn;
2096 struct page *page;
2097 struct list_head *head = &sbi->fsync_node_list;
2098 unsigned long flags;
2099 unsigned int cur_seq_id = 0;
2100
2101 while (seq_id && cur_seq_id < seq_id) {
2102 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2103 if (list_empty(head)) {
2104 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2105 break;
2106 }
2107 fn = list_first_entry(head, struct fsync_node_entry, list);
2108 if (fn->seq_id > seq_id) {
2109 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2110 break;
2111 }
2112 cur_seq_id = fn->seq_id;
2113 page = fn->page;
2114 get_page(page);
2115 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2116
2117 f2fs_wait_on_page_writeback(page, NODE, true, false);
2118
2119 put_page(page);
2120 }
2121
2122 return filemap_check_errors(NODE_MAPPING(sbi));
2123 }
2124
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)2125 static int f2fs_write_node_pages(struct address_space *mapping,
2126 struct writeback_control *wbc)
2127 {
2128 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2129 struct blk_plug plug;
2130 long diff;
2131
2132 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2133 goto skip_write;
2134
2135 /* balancing f2fs's metadata in background */
2136 f2fs_balance_fs_bg(sbi, true);
2137
2138 /* collect a number of dirty node pages and write together */
2139 if (wbc->sync_mode != WB_SYNC_ALL &&
2140 get_pages(sbi, F2FS_DIRTY_NODES) <
2141 nr_pages_to_skip(sbi, NODE))
2142 goto skip_write;
2143
2144 if (wbc->sync_mode == WB_SYNC_ALL)
2145 atomic_inc(&sbi->wb_sync_req[NODE]);
2146 else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2147 /* to avoid potential deadlock */
2148 if (current->plug)
2149 blk_finish_plug(current->plug);
2150 goto skip_write;
2151 }
2152
2153 trace_f2fs_writepages(mapping->host, wbc, NODE);
2154
2155 diff = nr_pages_to_write(sbi, NODE, wbc);
2156 blk_start_plug(&plug);
2157 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2158 blk_finish_plug(&plug);
2159 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2160
2161 if (wbc->sync_mode == WB_SYNC_ALL)
2162 atomic_dec(&sbi->wb_sync_req[NODE]);
2163 return 0;
2164
2165 skip_write:
2166 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2167 trace_f2fs_writepages(mapping->host, wbc, NODE);
2168 return 0;
2169 }
2170
f2fs_dirty_node_folio(struct address_space * mapping,struct folio * folio)2171 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2172 struct folio *folio)
2173 {
2174 trace_f2fs_set_page_dirty(folio, NODE);
2175
2176 if (!folio_test_uptodate(folio))
2177 folio_mark_uptodate(folio);
2178 #ifdef CONFIG_F2FS_CHECK_FS
2179 if (IS_INODE(&folio->page))
2180 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2181 #endif
2182 if (filemap_dirty_folio(mapping, folio)) {
2183 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2184 set_page_private_reference(&folio->page);
2185 return true;
2186 }
2187 return false;
2188 }
2189
2190 /*
2191 * Structure of the f2fs node operations
2192 */
2193 const struct address_space_operations f2fs_node_aops = {
2194 .writepage = f2fs_write_node_page,
2195 .writepages = f2fs_write_node_pages,
2196 .dirty_folio = f2fs_dirty_node_folio,
2197 .invalidate_folio = f2fs_invalidate_folio,
2198 .release_folio = f2fs_release_folio,
2199 .migrate_folio = filemap_migrate_folio,
2200 };
2201
__lookup_free_nid_list(struct f2fs_nm_info * nm_i,nid_t n)2202 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2203 nid_t n)
2204 {
2205 return radix_tree_lookup(&nm_i->free_nid_root, n);
2206 }
2207
__insert_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i)2208 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2209 struct free_nid *i)
2210 {
2211 struct f2fs_nm_info *nm_i = NM_I(sbi);
2212 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2213
2214 if (err)
2215 return err;
2216
2217 nm_i->nid_cnt[FREE_NID]++;
2218 list_add_tail(&i->list, &nm_i->free_nid_list);
2219 return 0;
2220 }
2221
__remove_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)2222 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2223 struct free_nid *i, enum nid_state state)
2224 {
2225 struct f2fs_nm_info *nm_i = NM_I(sbi);
2226
2227 f2fs_bug_on(sbi, state != i->state);
2228 nm_i->nid_cnt[state]--;
2229 if (state == FREE_NID)
2230 list_del(&i->list);
2231 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2232 }
2233
__move_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state org_state,enum nid_state dst_state)2234 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2235 enum nid_state org_state, enum nid_state dst_state)
2236 {
2237 struct f2fs_nm_info *nm_i = NM_I(sbi);
2238
2239 f2fs_bug_on(sbi, org_state != i->state);
2240 i->state = dst_state;
2241 nm_i->nid_cnt[org_state]--;
2242 nm_i->nid_cnt[dst_state]++;
2243
2244 switch (dst_state) {
2245 case PREALLOC_NID:
2246 list_del(&i->list);
2247 break;
2248 case FREE_NID:
2249 list_add_tail(&i->list, &nm_i->free_nid_list);
2250 break;
2251 default:
2252 BUG_ON(1);
2253 }
2254 }
2255
f2fs_nat_bitmap_enabled(struct f2fs_sb_info * sbi)2256 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2257 {
2258 struct f2fs_nm_info *nm_i = NM_I(sbi);
2259 unsigned int i;
2260 bool ret = true;
2261
2262 f2fs_down_read(&nm_i->nat_tree_lock);
2263 for (i = 0; i < nm_i->nat_blocks; i++) {
2264 if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2265 ret = false;
2266 break;
2267 }
2268 }
2269 f2fs_up_read(&nm_i->nat_tree_lock);
2270
2271 return ret;
2272 }
2273
update_free_nid_bitmap(struct f2fs_sb_info * sbi,nid_t nid,bool set,bool build)2274 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2275 bool set, bool build)
2276 {
2277 struct f2fs_nm_info *nm_i = NM_I(sbi);
2278 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2279 unsigned int nid_ofs = nid - START_NID(nid);
2280
2281 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2282 return;
2283
2284 if (set) {
2285 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2286 return;
2287 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2288 nm_i->free_nid_count[nat_ofs]++;
2289 } else {
2290 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2291 return;
2292 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2293 if (!build)
2294 nm_i->free_nid_count[nat_ofs]--;
2295 }
2296 }
2297
2298 /* return if the nid is recognized as free */
add_free_nid(struct f2fs_sb_info * sbi,nid_t nid,bool build,bool update)2299 static bool add_free_nid(struct f2fs_sb_info *sbi,
2300 nid_t nid, bool build, bool update)
2301 {
2302 struct f2fs_nm_info *nm_i = NM_I(sbi);
2303 struct free_nid *i, *e;
2304 struct nat_entry *ne;
2305 int err = -EINVAL;
2306 bool ret = false;
2307
2308 /* 0 nid should not be used */
2309 if (unlikely(nid == 0))
2310 return false;
2311
2312 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2313 return false;
2314
2315 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2316 i->nid = nid;
2317 i->state = FREE_NID;
2318
2319 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2320
2321 spin_lock(&nm_i->nid_list_lock);
2322
2323 if (build) {
2324 /*
2325 * Thread A Thread B
2326 * - f2fs_create
2327 * - f2fs_new_inode
2328 * - f2fs_alloc_nid
2329 * - __insert_nid_to_list(PREALLOC_NID)
2330 * - f2fs_balance_fs_bg
2331 * - f2fs_build_free_nids
2332 * - __f2fs_build_free_nids
2333 * - scan_nat_page
2334 * - add_free_nid
2335 * - __lookup_nat_cache
2336 * - f2fs_add_link
2337 * - f2fs_init_inode_metadata
2338 * - f2fs_new_inode_page
2339 * - f2fs_new_node_page
2340 * - set_node_addr
2341 * - f2fs_alloc_nid_done
2342 * - __remove_nid_from_list(PREALLOC_NID)
2343 * - __insert_nid_to_list(FREE_NID)
2344 */
2345 ne = __lookup_nat_cache(nm_i, nid);
2346 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2347 nat_get_blkaddr(ne) != NULL_ADDR))
2348 goto err_out;
2349
2350 e = __lookup_free_nid_list(nm_i, nid);
2351 if (e) {
2352 if (e->state == FREE_NID)
2353 ret = true;
2354 goto err_out;
2355 }
2356 }
2357 ret = true;
2358 err = __insert_free_nid(sbi, i);
2359 err_out:
2360 if (update) {
2361 update_free_nid_bitmap(sbi, nid, ret, build);
2362 if (!build)
2363 nm_i->available_nids++;
2364 }
2365 spin_unlock(&nm_i->nid_list_lock);
2366 radix_tree_preload_end();
2367
2368 if (err)
2369 kmem_cache_free(free_nid_slab, i);
2370 return ret;
2371 }
2372
remove_free_nid(struct f2fs_sb_info * sbi,nid_t nid)2373 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2374 {
2375 struct f2fs_nm_info *nm_i = NM_I(sbi);
2376 struct free_nid *i;
2377 bool need_free = false;
2378
2379 spin_lock(&nm_i->nid_list_lock);
2380 i = __lookup_free_nid_list(nm_i, nid);
2381 if (i && i->state == FREE_NID) {
2382 __remove_free_nid(sbi, i, FREE_NID);
2383 need_free = true;
2384 }
2385 spin_unlock(&nm_i->nid_list_lock);
2386
2387 if (need_free)
2388 kmem_cache_free(free_nid_slab, i);
2389 }
2390
scan_nat_page(struct f2fs_sb_info * sbi,struct page * nat_page,nid_t start_nid)2391 static int scan_nat_page(struct f2fs_sb_info *sbi,
2392 struct page *nat_page, nid_t start_nid)
2393 {
2394 struct f2fs_nm_info *nm_i = NM_I(sbi);
2395 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2396 block_t blk_addr;
2397 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2398 int i;
2399
2400 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2401
2402 i = start_nid % NAT_ENTRY_PER_BLOCK;
2403
2404 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2405 if (unlikely(start_nid >= nm_i->max_nid))
2406 break;
2407
2408 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2409
2410 if (blk_addr == NEW_ADDR)
2411 return -EFSCORRUPTED;
2412
2413 if (blk_addr == NULL_ADDR) {
2414 add_free_nid(sbi, start_nid, true, true);
2415 } else {
2416 spin_lock(&NM_I(sbi)->nid_list_lock);
2417 update_free_nid_bitmap(sbi, start_nid, false, true);
2418 spin_unlock(&NM_I(sbi)->nid_list_lock);
2419 }
2420 }
2421
2422 return 0;
2423 }
2424
scan_curseg_cache(struct f2fs_sb_info * sbi)2425 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2426 {
2427 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2428 struct f2fs_journal *journal = curseg->journal;
2429 int i;
2430
2431 down_read(&curseg->journal_rwsem);
2432 for (i = 0; i < nats_in_cursum(journal); i++) {
2433 block_t addr;
2434 nid_t nid;
2435
2436 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2437 nid = le32_to_cpu(nid_in_journal(journal, i));
2438 if (addr == NULL_ADDR)
2439 add_free_nid(sbi, nid, true, false);
2440 else
2441 remove_free_nid(sbi, nid);
2442 }
2443 up_read(&curseg->journal_rwsem);
2444 }
2445
scan_free_nid_bits(struct f2fs_sb_info * sbi)2446 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2447 {
2448 struct f2fs_nm_info *nm_i = NM_I(sbi);
2449 unsigned int i, idx;
2450 nid_t nid;
2451
2452 f2fs_down_read(&nm_i->nat_tree_lock);
2453
2454 for (i = 0; i < nm_i->nat_blocks; i++) {
2455 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2456 continue;
2457 if (!nm_i->free_nid_count[i])
2458 continue;
2459 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2460 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2461 NAT_ENTRY_PER_BLOCK, idx);
2462 if (idx >= NAT_ENTRY_PER_BLOCK)
2463 break;
2464
2465 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2466 add_free_nid(sbi, nid, true, false);
2467
2468 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2469 goto out;
2470 }
2471 }
2472 out:
2473 scan_curseg_cache(sbi);
2474
2475 f2fs_up_read(&nm_i->nat_tree_lock);
2476 }
2477
__f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2478 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2479 bool sync, bool mount)
2480 {
2481 struct f2fs_nm_info *nm_i = NM_I(sbi);
2482 int i = 0, ret;
2483 nid_t nid = nm_i->next_scan_nid;
2484
2485 if (unlikely(nid >= nm_i->max_nid))
2486 nid = 0;
2487
2488 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2489 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2490
2491 /* Enough entries */
2492 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2493 return 0;
2494
2495 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2496 return 0;
2497
2498 if (!mount) {
2499 /* try to find free nids in free_nid_bitmap */
2500 scan_free_nid_bits(sbi);
2501
2502 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2503 return 0;
2504 }
2505
2506 /* readahead nat pages to be scanned */
2507 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2508 META_NAT, true);
2509
2510 f2fs_down_read(&nm_i->nat_tree_lock);
2511
2512 while (1) {
2513 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2514 nm_i->nat_block_bitmap)) {
2515 struct page *page = get_current_nat_page(sbi, nid);
2516
2517 if (IS_ERR(page)) {
2518 ret = PTR_ERR(page);
2519 } else {
2520 ret = scan_nat_page(sbi, page, nid);
2521 f2fs_put_page(page, 1);
2522 }
2523
2524 if (ret) {
2525 f2fs_up_read(&nm_i->nat_tree_lock);
2526
2527 if (ret == -EFSCORRUPTED) {
2528 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2529 set_sbi_flag(sbi, SBI_NEED_FSCK);
2530 f2fs_handle_error(sbi,
2531 ERROR_INCONSISTENT_NAT);
2532 }
2533
2534 return ret;
2535 }
2536 }
2537
2538 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2539 if (unlikely(nid >= nm_i->max_nid))
2540 nid = 0;
2541
2542 if (++i >= FREE_NID_PAGES)
2543 break;
2544 }
2545
2546 /* go to the next free nat pages to find free nids abundantly */
2547 nm_i->next_scan_nid = nid;
2548
2549 /* find free nids from current sum_pages */
2550 scan_curseg_cache(sbi);
2551
2552 f2fs_up_read(&nm_i->nat_tree_lock);
2553
2554 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2555 nm_i->ra_nid_pages, META_NAT, false);
2556
2557 return 0;
2558 }
2559
f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2560 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2561 {
2562 int ret;
2563
2564 mutex_lock(&NM_I(sbi)->build_lock);
2565 ret = __f2fs_build_free_nids(sbi, sync, mount);
2566 mutex_unlock(&NM_I(sbi)->build_lock);
2567
2568 return ret;
2569 }
2570
2571 /*
2572 * If this function returns success, caller can obtain a new nid
2573 * from second parameter of this function.
2574 * The returned nid could be used ino as well as nid when inode is created.
2575 */
f2fs_alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)2576 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2577 {
2578 struct f2fs_nm_info *nm_i = NM_I(sbi);
2579 struct free_nid *i = NULL;
2580 retry:
2581 if (time_to_inject(sbi, FAULT_ALLOC_NID))
2582 return false;
2583
2584 spin_lock(&nm_i->nid_list_lock);
2585
2586 if (unlikely(nm_i->available_nids == 0)) {
2587 spin_unlock(&nm_i->nid_list_lock);
2588 return false;
2589 }
2590
2591 /* We should not use stale free nids created by f2fs_build_free_nids */
2592 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2593 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2594 i = list_first_entry(&nm_i->free_nid_list,
2595 struct free_nid, list);
2596 *nid = i->nid;
2597
2598 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2599 nm_i->available_nids--;
2600
2601 update_free_nid_bitmap(sbi, *nid, false, false);
2602
2603 spin_unlock(&nm_i->nid_list_lock);
2604 return true;
2605 }
2606 spin_unlock(&nm_i->nid_list_lock);
2607
2608 /* Let's scan nat pages and its caches to get free nids */
2609 if (!f2fs_build_free_nids(sbi, true, false))
2610 goto retry;
2611 return false;
2612 }
2613
2614 /*
2615 * f2fs_alloc_nid() should be called prior to this function.
2616 */
f2fs_alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)2617 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2618 {
2619 struct f2fs_nm_info *nm_i = NM_I(sbi);
2620 struct free_nid *i;
2621
2622 spin_lock(&nm_i->nid_list_lock);
2623 i = __lookup_free_nid_list(nm_i, nid);
2624 f2fs_bug_on(sbi, !i);
2625 __remove_free_nid(sbi, i, PREALLOC_NID);
2626 spin_unlock(&nm_i->nid_list_lock);
2627
2628 kmem_cache_free(free_nid_slab, i);
2629 }
2630
2631 /*
2632 * f2fs_alloc_nid() should be called prior to this function.
2633 */
f2fs_alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)2634 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2635 {
2636 struct f2fs_nm_info *nm_i = NM_I(sbi);
2637 struct free_nid *i;
2638 bool need_free = false;
2639
2640 if (!nid)
2641 return;
2642
2643 spin_lock(&nm_i->nid_list_lock);
2644 i = __lookup_free_nid_list(nm_i, nid);
2645 f2fs_bug_on(sbi, !i);
2646
2647 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2648 __remove_free_nid(sbi, i, PREALLOC_NID);
2649 need_free = true;
2650 } else {
2651 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2652 }
2653
2654 nm_i->available_nids++;
2655
2656 update_free_nid_bitmap(sbi, nid, true, false);
2657
2658 spin_unlock(&nm_i->nid_list_lock);
2659
2660 if (need_free)
2661 kmem_cache_free(free_nid_slab, i);
2662 }
2663
f2fs_try_to_free_nids(struct f2fs_sb_info * sbi,int nr_shrink)2664 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2665 {
2666 struct f2fs_nm_info *nm_i = NM_I(sbi);
2667 int nr = nr_shrink;
2668
2669 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2670 return 0;
2671
2672 if (!mutex_trylock(&nm_i->build_lock))
2673 return 0;
2674
2675 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2676 struct free_nid *i, *next;
2677 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2678
2679 spin_lock(&nm_i->nid_list_lock);
2680 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2681 if (!nr_shrink || !batch ||
2682 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2683 break;
2684 __remove_free_nid(sbi, i, FREE_NID);
2685 kmem_cache_free(free_nid_slab, i);
2686 nr_shrink--;
2687 batch--;
2688 }
2689 spin_unlock(&nm_i->nid_list_lock);
2690 }
2691
2692 mutex_unlock(&nm_i->build_lock);
2693
2694 return nr - nr_shrink;
2695 }
2696
f2fs_recover_inline_xattr(struct inode * inode,struct page * page)2697 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2698 {
2699 void *src_addr, *dst_addr;
2700 size_t inline_size;
2701 struct page *ipage;
2702 struct f2fs_inode *ri;
2703
2704 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2705 if (IS_ERR(ipage))
2706 return PTR_ERR(ipage);
2707
2708 ri = F2FS_INODE(page);
2709 if (ri->i_inline & F2FS_INLINE_XATTR) {
2710 if (!f2fs_has_inline_xattr(inode)) {
2711 set_inode_flag(inode, FI_INLINE_XATTR);
2712 stat_inc_inline_xattr(inode);
2713 }
2714 } else {
2715 if (f2fs_has_inline_xattr(inode)) {
2716 stat_dec_inline_xattr(inode);
2717 clear_inode_flag(inode, FI_INLINE_XATTR);
2718 }
2719 goto update_inode;
2720 }
2721
2722 dst_addr = inline_xattr_addr(inode, ipage);
2723 src_addr = inline_xattr_addr(inode, page);
2724 inline_size = inline_xattr_size(inode);
2725
2726 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2727 memcpy(dst_addr, src_addr, inline_size);
2728 update_inode:
2729 f2fs_update_inode(inode, ipage);
2730 f2fs_put_page(ipage, 1);
2731 return 0;
2732 }
2733
f2fs_recover_xattr_data(struct inode * inode,struct page * page)2734 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2735 {
2736 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2737 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2738 nid_t new_xnid;
2739 struct dnode_of_data dn;
2740 struct node_info ni;
2741 struct page *xpage;
2742 int err;
2743
2744 if (!prev_xnid)
2745 goto recover_xnid;
2746
2747 /* 1: invalidate the previous xattr nid */
2748 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2749 if (err)
2750 return err;
2751
2752 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2753 dec_valid_node_count(sbi, inode, false);
2754 set_node_addr(sbi, &ni, NULL_ADDR, false);
2755
2756 recover_xnid:
2757 /* 2: update xattr nid in inode */
2758 if (!f2fs_alloc_nid(sbi, &new_xnid))
2759 return -ENOSPC;
2760
2761 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2762 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2763 if (IS_ERR(xpage)) {
2764 f2fs_alloc_nid_failed(sbi, new_xnid);
2765 return PTR_ERR(xpage);
2766 }
2767
2768 f2fs_alloc_nid_done(sbi, new_xnid);
2769 f2fs_update_inode_page(inode);
2770
2771 /* 3: update and set xattr node page dirty */
2772 if (page) {
2773 memcpy(F2FS_NODE(xpage), F2FS_NODE(page),
2774 VALID_XATTR_BLOCK_SIZE);
2775 set_page_dirty(xpage);
2776 }
2777 f2fs_put_page(xpage, 1);
2778
2779 return 0;
2780 }
2781
f2fs_recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)2782 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2783 {
2784 struct f2fs_inode *src, *dst;
2785 nid_t ino = ino_of_node(page);
2786 struct node_info old_ni, new_ni;
2787 struct page *ipage;
2788 int err;
2789
2790 err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2791 if (err)
2792 return err;
2793
2794 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2795 return -EINVAL;
2796 retry:
2797 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2798 if (!ipage) {
2799 memalloc_retry_wait(GFP_NOFS);
2800 goto retry;
2801 }
2802
2803 /* Should not use this inode from free nid list */
2804 remove_free_nid(sbi, ino);
2805
2806 if (!PageUptodate(ipage))
2807 SetPageUptodate(ipage);
2808 fill_node_footer(ipage, ino, ino, 0, true);
2809 set_cold_node(ipage, false);
2810
2811 src = F2FS_INODE(page);
2812 dst = F2FS_INODE(ipage);
2813
2814 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2815 dst->i_size = 0;
2816 dst->i_blocks = cpu_to_le64(1);
2817 dst->i_links = cpu_to_le32(1);
2818 dst->i_xattr_nid = 0;
2819 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2820 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2821 dst->i_extra_isize = src->i_extra_isize;
2822
2823 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2824 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2825 i_inline_xattr_size))
2826 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2827
2828 if (f2fs_sb_has_project_quota(sbi) &&
2829 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2830 i_projid))
2831 dst->i_projid = src->i_projid;
2832
2833 if (f2fs_sb_has_inode_crtime(sbi) &&
2834 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2835 i_crtime_nsec)) {
2836 dst->i_crtime = src->i_crtime;
2837 dst->i_crtime_nsec = src->i_crtime_nsec;
2838 }
2839 }
2840
2841 new_ni = old_ni;
2842 new_ni.ino = ino;
2843
2844 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2845 WARN_ON(1);
2846 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2847 inc_valid_inode_count(sbi);
2848 set_page_dirty(ipage);
2849 f2fs_put_page(ipage, 1);
2850 return 0;
2851 }
2852
f2fs_restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)2853 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2854 unsigned int segno, struct f2fs_summary_block *sum)
2855 {
2856 struct f2fs_node *rn;
2857 struct f2fs_summary *sum_entry;
2858 block_t addr;
2859 int i, idx, last_offset, nrpages;
2860
2861 /* scan the node segment */
2862 last_offset = BLKS_PER_SEG(sbi);
2863 addr = START_BLOCK(sbi, segno);
2864 sum_entry = &sum->entries[0];
2865
2866 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2867 nrpages = bio_max_segs(last_offset - i);
2868
2869 /* readahead node pages */
2870 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2871
2872 for (idx = addr; idx < addr + nrpages; idx++) {
2873 struct page *page = f2fs_get_tmp_page(sbi, idx);
2874
2875 if (IS_ERR(page))
2876 return PTR_ERR(page);
2877
2878 rn = F2FS_NODE(page);
2879 sum_entry->nid = rn->footer.nid;
2880 sum_entry->version = 0;
2881 sum_entry->ofs_in_node = 0;
2882 sum_entry++;
2883 f2fs_put_page(page, 1);
2884 }
2885
2886 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2887 addr + nrpages);
2888 }
2889 return 0;
2890 }
2891
remove_nats_in_journal(struct f2fs_sb_info * sbi)2892 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2893 {
2894 struct f2fs_nm_info *nm_i = NM_I(sbi);
2895 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2896 struct f2fs_journal *journal = curseg->journal;
2897 int i;
2898
2899 down_write(&curseg->journal_rwsem);
2900 for (i = 0; i < nats_in_cursum(journal); i++) {
2901 struct nat_entry *ne;
2902 struct f2fs_nat_entry raw_ne;
2903 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2904
2905 if (f2fs_check_nid_range(sbi, nid))
2906 continue;
2907
2908 raw_ne = nat_in_journal(journal, i);
2909
2910 ne = __lookup_nat_cache(nm_i, nid);
2911 if (!ne) {
2912 ne = __alloc_nat_entry(sbi, nid, true);
2913 __init_nat_entry(nm_i, ne, &raw_ne, true);
2914 }
2915
2916 /*
2917 * if a free nat in journal has not been used after last
2918 * checkpoint, we should remove it from available nids,
2919 * since later we will add it again.
2920 */
2921 if (!get_nat_flag(ne, IS_DIRTY) &&
2922 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2923 spin_lock(&nm_i->nid_list_lock);
2924 nm_i->available_nids--;
2925 spin_unlock(&nm_i->nid_list_lock);
2926 }
2927
2928 __set_nat_cache_dirty(nm_i, ne);
2929 }
2930 update_nats_in_cursum(journal, -i);
2931 up_write(&curseg->journal_rwsem);
2932 }
2933
__adjust_nat_entry_set(struct nat_entry_set * nes,struct list_head * head,int max)2934 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2935 struct list_head *head, int max)
2936 {
2937 struct nat_entry_set *cur;
2938
2939 if (nes->entry_cnt >= max)
2940 goto add_out;
2941
2942 list_for_each_entry(cur, head, set_list) {
2943 if (cur->entry_cnt >= nes->entry_cnt) {
2944 list_add(&nes->set_list, cur->set_list.prev);
2945 return;
2946 }
2947 }
2948 add_out:
2949 list_add_tail(&nes->set_list, head);
2950 }
2951
__update_nat_bits(struct f2fs_nm_info * nm_i,unsigned int nat_ofs,unsigned int valid)2952 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2953 unsigned int valid)
2954 {
2955 if (valid == 0) {
2956 __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2957 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2958 return;
2959 }
2960
2961 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2962 if (valid == NAT_ENTRY_PER_BLOCK)
2963 __set_bit_le(nat_ofs, nm_i->full_nat_bits);
2964 else
2965 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2966 }
2967
update_nat_bits(struct f2fs_sb_info * sbi,nid_t start_nid,struct page * page)2968 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2969 struct page *page)
2970 {
2971 struct f2fs_nm_info *nm_i = NM_I(sbi);
2972 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2973 struct f2fs_nat_block *nat_blk = page_address(page);
2974 int valid = 0;
2975 int i = 0;
2976
2977 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2978 return;
2979
2980 if (nat_index == 0) {
2981 valid = 1;
2982 i = 1;
2983 }
2984 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2985 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2986 valid++;
2987 }
2988
2989 __update_nat_bits(nm_i, nat_index, valid);
2990 }
2991
f2fs_enable_nat_bits(struct f2fs_sb_info * sbi)2992 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2993 {
2994 struct f2fs_nm_info *nm_i = NM_I(sbi);
2995 unsigned int nat_ofs;
2996
2997 f2fs_down_read(&nm_i->nat_tree_lock);
2998
2999 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
3000 unsigned int valid = 0, nid_ofs = 0;
3001
3002 /* handle nid zero due to it should never be used */
3003 if (unlikely(nat_ofs == 0)) {
3004 valid = 1;
3005 nid_ofs = 1;
3006 }
3007
3008 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
3009 if (!test_bit_le(nid_ofs,
3010 nm_i->free_nid_bitmap[nat_ofs]))
3011 valid++;
3012 }
3013
3014 __update_nat_bits(nm_i, nat_ofs, valid);
3015 }
3016
3017 f2fs_up_read(&nm_i->nat_tree_lock);
3018 }
3019
__flush_nat_entry_set(struct f2fs_sb_info * sbi,struct nat_entry_set * set,struct cp_control * cpc)3020 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
3021 struct nat_entry_set *set, struct cp_control *cpc)
3022 {
3023 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3024 struct f2fs_journal *journal = curseg->journal;
3025 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
3026 bool to_journal = true;
3027 struct f2fs_nat_block *nat_blk;
3028 struct nat_entry *ne, *cur;
3029 struct page *page = NULL;
3030
3031 /*
3032 * there are two steps to flush nat entries:
3033 * #1, flush nat entries to journal in current hot data summary block.
3034 * #2, flush nat entries to nat page.
3035 */
3036 if ((cpc->reason & CP_UMOUNT) ||
3037 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3038 to_journal = false;
3039
3040 if (to_journal) {
3041 down_write(&curseg->journal_rwsem);
3042 } else {
3043 page = get_next_nat_page(sbi, start_nid);
3044 if (IS_ERR(page))
3045 return PTR_ERR(page);
3046
3047 nat_blk = page_address(page);
3048 f2fs_bug_on(sbi, !nat_blk);
3049 }
3050
3051 /* flush dirty nats in nat entry set */
3052 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3053 struct f2fs_nat_entry *raw_ne;
3054 nid_t nid = nat_get_nid(ne);
3055 int offset;
3056
3057 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3058
3059 if (to_journal) {
3060 offset = f2fs_lookup_journal_in_cursum(journal,
3061 NAT_JOURNAL, nid, 1);
3062 f2fs_bug_on(sbi, offset < 0);
3063 raw_ne = &nat_in_journal(journal, offset);
3064 nid_in_journal(journal, offset) = cpu_to_le32(nid);
3065 } else {
3066 raw_ne = &nat_blk->entries[nid - start_nid];
3067 }
3068 raw_nat_from_node_info(raw_ne, &ne->ni);
3069 nat_reset_flag(ne);
3070 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3071 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3072 add_free_nid(sbi, nid, false, true);
3073 } else {
3074 spin_lock(&NM_I(sbi)->nid_list_lock);
3075 update_free_nid_bitmap(sbi, nid, false, false);
3076 spin_unlock(&NM_I(sbi)->nid_list_lock);
3077 }
3078 }
3079
3080 if (to_journal) {
3081 up_write(&curseg->journal_rwsem);
3082 } else {
3083 update_nat_bits(sbi, start_nid, page);
3084 f2fs_put_page(page, 1);
3085 }
3086
3087 /* Allow dirty nats by node block allocation in write_begin */
3088 if (!set->entry_cnt) {
3089 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3090 kmem_cache_free(nat_entry_set_slab, set);
3091 }
3092 return 0;
3093 }
3094
3095 /*
3096 * This function is called during the checkpointing process.
3097 */
f2fs_flush_nat_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)3098 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3099 {
3100 struct f2fs_nm_info *nm_i = NM_I(sbi);
3101 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3102 struct f2fs_journal *journal = curseg->journal;
3103 struct nat_entry_set *setvec[NAT_VEC_SIZE];
3104 struct nat_entry_set *set, *tmp;
3105 unsigned int found;
3106 nid_t set_idx = 0;
3107 LIST_HEAD(sets);
3108 int err = 0;
3109
3110 /*
3111 * during unmount, let's flush nat_bits before checking
3112 * nat_cnt[DIRTY_NAT].
3113 */
3114 if (cpc->reason & CP_UMOUNT) {
3115 f2fs_down_write(&nm_i->nat_tree_lock);
3116 remove_nats_in_journal(sbi);
3117 f2fs_up_write(&nm_i->nat_tree_lock);
3118 }
3119
3120 if (!nm_i->nat_cnt[DIRTY_NAT])
3121 return 0;
3122
3123 f2fs_down_write(&nm_i->nat_tree_lock);
3124
3125 /*
3126 * if there are no enough space in journal to store dirty nat
3127 * entries, remove all entries from journal and merge them
3128 * into nat entry set.
3129 */
3130 if (cpc->reason & CP_UMOUNT ||
3131 !__has_cursum_space(journal,
3132 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3133 remove_nats_in_journal(sbi);
3134
3135 while ((found = __gang_lookup_nat_set(nm_i,
3136 set_idx, NAT_VEC_SIZE, setvec))) {
3137 unsigned idx;
3138
3139 set_idx = setvec[found - 1]->set + 1;
3140 for (idx = 0; idx < found; idx++)
3141 __adjust_nat_entry_set(setvec[idx], &sets,
3142 MAX_NAT_JENTRIES(journal));
3143 }
3144
3145 /* flush dirty nats in nat entry set */
3146 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3147 err = __flush_nat_entry_set(sbi, set, cpc);
3148 if (err)
3149 break;
3150 }
3151
3152 f2fs_up_write(&nm_i->nat_tree_lock);
3153 /* Allow dirty nats by node block allocation in write_begin */
3154
3155 return err;
3156 }
3157
__get_nat_bitmaps(struct f2fs_sb_info * sbi)3158 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3159 {
3160 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3161 struct f2fs_nm_info *nm_i = NM_I(sbi);
3162 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3163 unsigned int i;
3164 __u64 cp_ver = cur_cp_version(ckpt);
3165 block_t nat_bits_addr;
3166
3167 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3168 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3169 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3170 if (!nm_i->nat_bits)
3171 return -ENOMEM;
3172
3173 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3174 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3175
3176 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3177 return 0;
3178
3179 nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) -
3180 nm_i->nat_bits_blocks;
3181 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3182 struct page *page;
3183
3184 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3185 if (IS_ERR(page))
3186 return PTR_ERR(page);
3187
3188 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3189 page_address(page), F2FS_BLKSIZE);
3190 f2fs_put_page(page, 1);
3191 }
3192
3193 cp_ver |= (cur_cp_crc(ckpt) << 32);
3194 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3195 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3196 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3197 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3198 return 0;
3199 }
3200
3201 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3202 return 0;
3203 }
3204
load_free_nid_bitmap(struct f2fs_sb_info * sbi)3205 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3206 {
3207 struct f2fs_nm_info *nm_i = NM_I(sbi);
3208 unsigned int i = 0;
3209 nid_t nid, last_nid;
3210
3211 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3212 return;
3213
3214 for (i = 0; i < nm_i->nat_blocks; i++) {
3215 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3216 if (i >= nm_i->nat_blocks)
3217 break;
3218
3219 __set_bit_le(i, nm_i->nat_block_bitmap);
3220
3221 nid = i * NAT_ENTRY_PER_BLOCK;
3222 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3223
3224 spin_lock(&NM_I(sbi)->nid_list_lock);
3225 for (; nid < last_nid; nid++)
3226 update_free_nid_bitmap(sbi, nid, true, true);
3227 spin_unlock(&NM_I(sbi)->nid_list_lock);
3228 }
3229
3230 for (i = 0; i < nm_i->nat_blocks; i++) {
3231 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3232 if (i >= nm_i->nat_blocks)
3233 break;
3234
3235 __set_bit_le(i, nm_i->nat_block_bitmap);
3236 }
3237 }
3238
init_node_manager(struct f2fs_sb_info * sbi)3239 static int init_node_manager(struct f2fs_sb_info *sbi)
3240 {
3241 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3242 struct f2fs_nm_info *nm_i = NM_I(sbi);
3243 unsigned char *version_bitmap;
3244 unsigned int nat_segs;
3245 int err;
3246
3247 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3248
3249 /* segment_count_nat includes pair segment so divide to 2. */
3250 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3251 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3252 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3253
3254 /* not used nids: 0, node, meta, (and root counted as valid node) */
3255 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3256 F2FS_RESERVED_NODE_NUM;
3257 nm_i->nid_cnt[FREE_NID] = 0;
3258 nm_i->nid_cnt[PREALLOC_NID] = 0;
3259 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3260 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3261 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3262 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3263
3264 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3265 INIT_LIST_HEAD(&nm_i->free_nid_list);
3266 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3267 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3268 INIT_LIST_HEAD(&nm_i->nat_entries);
3269 spin_lock_init(&nm_i->nat_list_lock);
3270
3271 mutex_init(&nm_i->build_lock);
3272 spin_lock_init(&nm_i->nid_list_lock);
3273 init_f2fs_rwsem(&nm_i->nat_tree_lock);
3274
3275 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3276 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3277 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3278 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3279 GFP_KERNEL);
3280 if (!nm_i->nat_bitmap)
3281 return -ENOMEM;
3282
3283 err = __get_nat_bitmaps(sbi);
3284 if (err)
3285 return err;
3286
3287 #ifdef CONFIG_F2FS_CHECK_FS
3288 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3289 GFP_KERNEL);
3290 if (!nm_i->nat_bitmap_mir)
3291 return -ENOMEM;
3292 #endif
3293
3294 return 0;
3295 }
3296
init_free_nid_cache(struct f2fs_sb_info * sbi)3297 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3298 {
3299 struct f2fs_nm_info *nm_i = NM_I(sbi);
3300 int i;
3301
3302 nm_i->free_nid_bitmap =
3303 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3304 nm_i->nat_blocks),
3305 GFP_KERNEL);
3306 if (!nm_i->free_nid_bitmap)
3307 return -ENOMEM;
3308
3309 for (i = 0; i < nm_i->nat_blocks; i++) {
3310 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3311 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3312 if (!nm_i->free_nid_bitmap[i])
3313 return -ENOMEM;
3314 }
3315
3316 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3317 GFP_KERNEL);
3318 if (!nm_i->nat_block_bitmap)
3319 return -ENOMEM;
3320
3321 nm_i->free_nid_count =
3322 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3323 nm_i->nat_blocks),
3324 GFP_KERNEL);
3325 if (!nm_i->free_nid_count)
3326 return -ENOMEM;
3327 return 0;
3328 }
3329
f2fs_build_node_manager(struct f2fs_sb_info * sbi)3330 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3331 {
3332 int err;
3333
3334 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3335 GFP_KERNEL);
3336 if (!sbi->nm_info)
3337 return -ENOMEM;
3338
3339 err = init_node_manager(sbi);
3340 if (err)
3341 return err;
3342
3343 err = init_free_nid_cache(sbi);
3344 if (err)
3345 return err;
3346
3347 /* load free nid status from nat_bits table */
3348 load_free_nid_bitmap(sbi);
3349
3350 return f2fs_build_free_nids(sbi, true, true);
3351 }
3352
f2fs_destroy_node_manager(struct f2fs_sb_info * sbi)3353 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3354 {
3355 struct f2fs_nm_info *nm_i = NM_I(sbi);
3356 struct free_nid *i, *next_i;
3357 void *vec[NAT_VEC_SIZE];
3358 struct nat_entry **natvec = (struct nat_entry **)vec;
3359 struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3360 nid_t nid = 0;
3361 unsigned int found;
3362
3363 if (!nm_i)
3364 return;
3365
3366 /* destroy free nid list */
3367 spin_lock(&nm_i->nid_list_lock);
3368 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3369 __remove_free_nid(sbi, i, FREE_NID);
3370 spin_unlock(&nm_i->nid_list_lock);
3371 kmem_cache_free(free_nid_slab, i);
3372 spin_lock(&nm_i->nid_list_lock);
3373 }
3374 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3375 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3376 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3377 spin_unlock(&nm_i->nid_list_lock);
3378
3379 /* destroy nat cache */
3380 f2fs_down_write(&nm_i->nat_tree_lock);
3381 while ((found = __gang_lookup_nat_cache(nm_i,
3382 nid, NAT_VEC_SIZE, natvec))) {
3383 unsigned idx;
3384
3385 nid = nat_get_nid(natvec[found - 1]) + 1;
3386 for (idx = 0; idx < found; idx++) {
3387 spin_lock(&nm_i->nat_list_lock);
3388 list_del(&natvec[idx]->list);
3389 spin_unlock(&nm_i->nat_list_lock);
3390
3391 __del_from_nat_cache(nm_i, natvec[idx]);
3392 }
3393 }
3394 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3395
3396 /* destroy nat set cache */
3397 nid = 0;
3398 memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3399 while ((found = __gang_lookup_nat_set(nm_i,
3400 nid, NAT_VEC_SIZE, setvec))) {
3401 unsigned idx;
3402
3403 nid = setvec[found - 1]->set + 1;
3404 for (idx = 0; idx < found; idx++) {
3405 /* entry_cnt is not zero, when cp_error was occurred */
3406 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3407 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3408 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3409 }
3410 }
3411 f2fs_up_write(&nm_i->nat_tree_lock);
3412
3413 kvfree(nm_i->nat_block_bitmap);
3414 if (nm_i->free_nid_bitmap) {
3415 int i;
3416
3417 for (i = 0; i < nm_i->nat_blocks; i++)
3418 kvfree(nm_i->free_nid_bitmap[i]);
3419 kvfree(nm_i->free_nid_bitmap);
3420 }
3421 kvfree(nm_i->free_nid_count);
3422
3423 kvfree(nm_i->nat_bitmap);
3424 kvfree(nm_i->nat_bits);
3425 #ifdef CONFIG_F2FS_CHECK_FS
3426 kvfree(nm_i->nat_bitmap_mir);
3427 #endif
3428 sbi->nm_info = NULL;
3429 kfree(nm_i);
3430 }
3431
f2fs_create_node_manager_caches(void)3432 int __init f2fs_create_node_manager_caches(void)
3433 {
3434 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3435 sizeof(struct nat_entry));
3436 if (!nat_entry_slab)
3437 goto fail;
3438
3439 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3440 sizeof(struct free_nid));
3441 if (!free_nid_slab)
3442 goto destroy_nat_entry;
3443
3444 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3445 sizeof(struct nat_entry_set));
3446 if (!nat_entry_set_slab)
3447 goto destroy_free_nid;
3448
3449 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3450 sizeof(struct fsync_node_entry));
3451 if (!fsync_node_entry_slab)
3452 goto destroy_nat_entry_set;
3453 return 0;
3454
3455 destroy_nat_entry_set:
3456 kmem_cache_destroy(nat_entry_set_slab);
3457 destroy_free_nid:
3458 kmem_cache_destroy(free_nid_slab);
3459 destroy_nat_entry:
3460 kmem_cache_destroy(nat_entry_slab);
3461 fail:
3462 return -ENOMEM;
3463 }
3464
f2fs_destroy_node_manager_caches(void)3465 void f2fs_destroy_node_manager_caches(void)
3466 {
3467 kmem_cache_destroy(fsync_node_entry_slab);
3468 kmem_cache_destroy(nat_entry_set_slab);
3469 kmem_cache_destroy(free_nid_slab);
3470 kmem_cache_destroy(nat_entry_slab);
3471 }
3472