1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4 *
5 * started by Ingo Molnar and Thomas Gleixner.
6 *
7 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10 * Copyright (C) 2006 Esben Nielsen
11 * Adaptive Spinlocks:
12 * Copyright (C) 2008 Novell, Inc., Gregory Haskins, Sven Dietrich,
13 * and Peter Morreale,
14 * Adaptive Spinlocks simplification:
15 * Copyright (C) 2008 Red Hat, Inc., Steven Rostedt <srostedt@redhat.com>
16 *
17 * See Documentation/locking/rt-mutex-design.rst for details.
18 */
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/sched/deadline.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/rt.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/ww_mutex.h>
26
27 #include <trace/events/lock.h>
28 #include <trace/hooks/dtask.h>
29
30 #include "rtmutex_common.h"
31
32 #ifndef WW_RT
33 # define build_ww_mutex() (false)
34 # define ww_container_of(rtm) NULL
35
__ww_mutex_add_waiter(struct rt_mutex_waiter * waiter,struct rt_mutex * lock,struct ww_acquire_ctx * ww_ctx)36 static inline int __ww_mutex_add_waiter(struct rt_mutex_waiter *waiter,
37 struct rt_mutex *lock,
38 struct ww_acquire_ctx *ww_ctx)
39 {
40 return 0;
41 }
42
__ww_mutex_check_waiters(struct rt_mutex * lock,struct ww_acquire_ctx * ww_ctx)43 static inline void __ww_mutex_check_waiters(struct rt_mutex *lock,
44 struct ww_acquire_ctx *ww_ctx)
45 {
46 }
47
ww_mutex_lock_acquired(struct ww_mutex * lock,struct ww_acquire_ctx * ww_ctx)48 static inline void ww_mutex_lock_acquired(struct ww_mutex *lock,
49 struct ww_acquire_ctx *ww_ctx)
50 {
51 }
52
__ww_mutex_check_kill(struct rt_mutex * lock,struct rt_mutex_waiter * waiter,struct ww_acquire_ctx * ww_ctx)53 static inline int __ww_mutex_check_kill(struct rt_mutex *lock,
54 struct rt_mutex_waiter *waiter,
55 struct ww_acquire_ctx *ww_ctx)
56 {
57 return 0;
58 }
59
60 #else
61 # define build_ww_mutex() (true)
62 # define ww_container_of(rtm) container_of(rtm, struct ww_mutex, base)
63 # include "ww_mutex.h"
64 #endif
65
66 /*
67 * lock->owner state tracking:
68 *
69 * lock->owner holds the task_struct pointer of the owner. Bit 0
70 * is used to keep track of the "lock has waiters" state.
71 *
72 * owner bit0
73 * NULL 0 lock is free (fast acquire possible)
74 * NULL 1 lock is free and has waiters and the top waiter
75 * is going to take the lock*
76 * taskpointer 0 lock is held (fast release possible)
77 * taskpointer 1 lock is held and has waiters**
78 *
79 * The fast atomic compare exchange based acquire and release is only
80 * possible when bit 0 of lock->owner is 0.
81 *
82 * (*) It also can be a transitional state when grabbing the lock
83 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
84 * we need to set the bit0 before looking at the lock, and the owner may be
85 * NULL in this small time, hence this can be a transitional state.
86 *
87 * (**) There is a small time when bit 0 is set but there are no
88 * waiters. This can happen when grabbing the lock in the slow path.
89 * To prevent a cmpxchg of the owner releasing the lock, we need to
90 * set this bit before looking at the lock.
91 */
92
93 static __always_inline struct task_struct *
rt_mutex_owner_encode(struct rt_mutex_base * lock,struct task_struct * owner)94 rt_mutex_owner_encode(struct rt_mutex_base *lock, struct task_struct *owner)
95 {
96 unsigned long val = (unsigned long)owner;
97
98 if (rt_mutex_has_waiters(lock))
99 val |= RT_MUTEX_HAS_WAITERS;
100
101 return (struct task_struct *)val;
102 }
103
104 static __always_inline void
rt_mutex_set_owner(struct rt_mutex_base * lock,struct task_struct * owner)105 rt_mutex_set_owner(struct rt_mutex_base *lock, struct task_struct *owner)
106 {
107 /*
108 * lock->wait_lock is held but explicit acquire semantics are needed
109 * for a new lock owner so WRITE_ONCE is insufficient.
110 */
111 xchg_acquire(&lock->owner, rt_mutex_owner_encode(lock, owner));
112 }
113
rt_mutex_clear_owner(struct rt_mutex_base * lock)114 static __always_inline void rt_mutex_clear_owner(struct rt_mutex_base *lock)
115 {
116 /* lock->wait_lock is held so the unlock provides release semantics. */
117 WRITE_ONCE(lock->owner, rt_mutex_owner_encode(lock, NULL));
118 }
119
clear_rt_mutex_waiters(struct rt_mutex_base * lock)120 static __always_inline void clear_rt_mutex_waiters(struct rt_mutex_base *lock)
121 {
122 lock->owner = (struct task_struct *)
123 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
124 }
125
126 static __always_inline void
fixup_rt_mutex_waiters(struct rt_mutex_base * lock,bool acquire_lock)127 fixup_rt_mutex_waiters(struct rt_mutex_base *lock, bool acquire_lock)
128 {
129 unsigned long owner, *p = (unsigned long *) &lock->owner;
130
131 if (rt_mutex_has_waiters(lock))
132 return;
133
134 /*
135 * The rbtree has no waiters enqueued, now make sure that the
136 * lock->owner still has the waiters bit set, otherwise the
137 * following can happen:
138 *
139 * CPU 0 CPU 1 CPU2
140 * l->owner=T1
141 * rt_mutex_lock(l)
142 * lock(l->lock)
143 * l->owner = T1 | HAS_WAITERS;
144 * enqueue(T2)
145 * boost()
146 * unlock(l->lock)
147 * block()
148 *
149 * rt_mutex_lock(l)
150 * lock(l->lock)
151 * l->owner = T1 | HAS_WAITERS;
152 * enqueue(T3)
153 * boost()
154 * unlock(l->lock)
155 * block()
156 * signal(->T2) signal(->T3)
157 * lock(l->lock)
158 * dequeue(T2)
159 * deboost()
160 * unlock(l->lock)
161 * lock(l->lock)
162 * dequeue(T3)
163 * ==> wait list is empty
164 * deboost()
165 * unlock(l->lock)
166 * lock(l->lock)
167 * fixup_rt_mutex_waiters()
168 * if (wait_list_empty(l) {
169 * l->owner = owner
170 * owner = l->owner & ~HAS_WAITERS;
171 * ==> l->owner = T1
172 * }
173 * lock(l->lock)
174 * rt_mutex_unlock(l) fixup_rt_mutex_waiters()
175 * if (wait_list_empty(l) {
176 * owner = l->owner & ~HAS_WAITERS;
177 * cmpxchg(l->owner, T1, NULL)
178 * ===> Success (l->owner = NULL)
179 *
180 * l->owner = owner
181 * ==> l->owner = T1
182 * }
183 *
184 * With the check for the waiter bit in place T3 on CPU2 will not
185 * overwrite. All tasks fiddling with the waiters bit are
186 * serialized by l->lock, so nothing else can modify the waiters
187 * bit. If the bit is set then nothing can change l->owner either
188 * so the simple RMW is safe. The cmpxchg() will simply fail if it
189 * happens in the middle of the RMW because the waiters bit is
190 * still set.
191 */
192 owner = READ_ONCE(*p);
193 if (owner & RT_MUTEX_HAS_WAITERS) {
194 /*
195 * See rt_mutex_set_owner() and rt_mutex_clear_owner() on
196 * why xchg_acquire() is used for updating owner for
197 * locking and WRITE_ONCE() for unlocking.
198 *
199 * WRITE_ONCE() would work for the acquire case too, but
200 * in case that the lock acquisition failed it might
201 * force other lockers into the slow path unnecessarily.
202 */
203 if (acquire_lock)
204 xchg_acquire(p, owner & ~RT_MUTEX_HAS_WAITERS);
205 else
206 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
207 }
208 }
209
210 /*
211 * We can speed up the acquire/release, if there's no debugging state to be
212 * set up.
213 */
214 #ifndef CONFIG_DEBUG_RT_MUTEXES
rt_mutex_cmpxchg_acquire(struct rt_mutex_base * lock,struct task_struct * old,struct task_struct * new)215 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
216 struct task_struct *old,
217 struct task_struct *new)
218 {
219 return try_cmpxchg_acquire(&lock->owner, &old, new);
220 }
221
rt_mutex_cmpxchg_release(struct rt_mutex_base * lock,struct task_struct * old,struct task_struct * new)222 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
223 struct task_struct *old,
224 struct task_struct *new)
225 {
226 return try_cmpxchg_release(&lock->owner, &old, new);
227 }
228
229 /*
230 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
231 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
232 * relaxed semantics suffice.
233 */
mark_rt_mutex_waiters(struct rt_mutex_base * lock)234 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
235 {
236 unsigned long owner, *p = (unsigned long *) &lock->owner;
237
238 do {
239 owner = *p;
240 } while (cmpxchg_relaxed(p, owner,
241 owner | RT_MUTEX_HAS_WAITERS) != owner);
242
243 /*
244 * The cmpxchg loop above is relaxed to avoid back-to-back ACQUIRE
245 * operations in the event of contention. Ensure the successful
246 * cmpxchg is visible.
247 */
248 smp_mb__after_atomic();
249 }
250
251 /*
252 * Safe fastpath aware unlock:
253 * 1) Clear the waiters bit
254 * 2) Drop lock->wait_lock
255 * 3) Try to unlock the lock with cmpxchg
256 */
unlock_rt_mutex_safe(struct rt_mutex_base * lock,unsigned long flags)257 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
258 unsigned long flags)
259 __releases(lock->wait_lock)
260 {
261 struct task_struct *owner = rt_mutex_owner(lock);
262
263 clear_rt_mutex_waiters(lock);
264 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
265 /*
266 * If a new waiter comes in between the unlock and the cmpxchg
267 * we have two situations:
268 *
269 * unlock(wait_lock);
270 * lock(wait_lock);
271 * cmpxchg(p, owner, 0) == owner
272 * mark_rt_mutex_waiters(lock);
273 * acquire(lock);
274 * or:
275 *
276 * unlock(wait_lock);
277 * lock(wait_lock);
278 * mark_rt_mutex_waiters(lock);
279 *
280 * cmpxchg(p, owner, 0) != owner
281 * enqueue_waiter();
282 * unlock(wait_lock);
283 * lock(wait_lock);
284 * wake waiter();
285 * unlock(wait_lock);
286 * lock(wait_lock);
287 * acquire(lock);
288 */
289 return rt_mutex_cmpxchg_release(lock, owner, NULL);
290 }
291
292 #else
rt_mutex_cmpxchg_acquire(struct rt_mutex_base * lock,struct task_struct * old,struct task_struct * new)293 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
294 struct task_struct *old,
295 struct task_struct *new)
296 {
297 return false;
298
299 }
300
rt_mutex_cmpxchg_release(struct rt_mutex_base * lock,struct task_struct * old,struct task_struct * new)301 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
302 struct task_struct *old,
303 struct task_struct *new)
304 {
305 return false;
306 }
307
mark_rt_mutex_waiters(struct rt_mutex_base * lock)308 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
309 {
310 lock->owner = (struct task_struct *)
311 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
312 }
313
314 /*
315 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
316 */
unlock_rt_mutex_safe(struct rt_mutex_base * lock,unsigned long flags)317 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
318 unsigned long flags)
319 __releases(lock->wait_lock)
320 {
321 lock->owner = NULL;
322 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
323 return true;
324 }
325 #endif
326
__waiter_prio(struct task_struct * task)327 static __always_inline int __waiter_prio(struct task_struct *task)
328 {
329 int waiter_prio = 0;
330
331 trace_android_vh_rtmutex_waiter_prio(task, &waiter_prio);
332 if (waiter_prio > 0)
333 return waiter_prio;
334
335 return task->prio;
336 }
337
338 /*
339 * Update the waiter->tree copy of the sort keys.
340 */
341 static __always_inline void
waiter_update_prio(struct rt_mutex_waiter * waiter,struct task_struct * task)342 waiter_update_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
343 {
344 lockdep_assert_held(&waiter->lock->wait_lock);
345 lockdep_assert(RB_EMPTY_NODE(&waiter->tree.entry));
346
347 waiter->tree.prio = __waiter_prio(task);
348 waiter->tree.deadline = task->dl.deadline;
349 }
350
351 /*
352 * Update the waiter->pi_tree copy of the sort keys (from the tree copy).
353 */
354 static __always_inline void
waiter_clone_prio(struct rt_mutex_waiter * waiter,struct task_struct * task)355 waiter_clone_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
356 {
357 lockdep_assert_held(&waiter->lock->wait_lock);
358 lockdep_assert_held(&task->pi_lock);
359 lockdep_assert(RB_EMPTY_NODE(&waiter->pi_tree.entry));
360
361 waiter->pi_tree.prio = waiter->tree.prio;
362 waiter->pi_tree.deadline = waiter->tree.deadline;
363 }
364
365 /*
366 * Only use with rt_waiter_node_{less,equal}()
367 */
368 #define task_to_waiter_node(p) \
369 &(struct rt_waiter_node){ .prio = __waiter_prio(p), .deadline = (p)->dl.deadline }
370 #define task_to_waiter(p) \
371 &(struct rt_mutex_waiter){ .tree = *task_to_waiter_node(p) }
372
rt_waiter_node_less(struct rt_waiter_node * left,struct rt_waiter_node * right)373 static __always_inline int rt_waiter_node_less(struct rt_waiter_node *left,
374 struct rt_waiter_node *right)
375 {
376 if (left->prio < right->prio)
377 return 1;
378
379 /*
380 * If both waiters have dl_prio(), we check the deadlines of the
381 * associated tasks.
382 * If left waiter has a dl_prio(), and we didn't return 1 above,
383 * then right waiter has a dl_prio() too.
384 */
385 if (dl_prio(left->prio))
386 return dl_time_before(left->deadline, right->deadline);
387
388 return 0;
389 }
390
rt_waiter_node_equal(struct rt_waiter_node * left,struct rt_waiter_node * right)391 static __always_inline int rt_waiter_node_equal(struct rt_waiter_node *left,
392 struct rt_waiter_node *right)
393 {
394 if (left->prio != right->prio)
395 return 0;
396
397 /*
398 * If both waiters have dl_prio(), we check the deadlines of the
399 * associated tasks.
400 * If left waiter has a dl_prio(), and we didn't return 0 above,
401 * then right waiter has a dl_prio() too.
402 */
403 if (dl_prio(left->prio))
404 return left->deadline == right->deadline;
405
406 return 1;
407 }
408
rt_mutex_steal(struct rt_mutex_waiter * waiter,struct rt_mutex_waiter * top_waiter)409 static inline bool rt_mutex_steal(struct rt_mutex_waiter *waiter,
410 struct rt_mutex_waiter *top_waiter)
411 {
412 bool ret = false;
413
414 if (rt_waiter_node_less(&waiter->tree, &top_waiter->tree))
415 return true;
416
417 trace_android_vh_rt_mutex_steal(waiter->tree.prio, top_waiter->tree.prio, &ret);
418 if (ret)
419 return true;
420
421 #ifdef RT_MUTEX_BUILD_SPINLOCKS
422 /*
423 * Note that RT tasks are excluded from same priority (lateral)
424 * steals to prevent the introduction of an unbounded latency.
425 */
426 if (rt_prio(waiter->tree.prio) || dl_prio(waiter->tree.prio))
427 return false;
428
429 return rt_waiter_node_equal(&waiter->tree, &top_waiter->tree);
430 #else
431 return false;
432 #endif
433 }
434
435 #define __node_2_waiter(node) \
436 rb_entry((node), struct rt_mutex_waiter, tree.entry)
437
__waiter_less(struct rb_node * a,const struct rb_node * b)438 static __always_inline bool __waiter_less(struct rb_node *a, const struct rb_node *b)
439 {
440 struct rt_mutex_waiter *aw = __node_2_waiter(a);
441 struct rt_mutex_waiter *bw = __node_2_waiter(b);
442
443 if (rt_waiter_node_less(&aw->tree, &bw->tree))
444 return 1;
445
446 if (!build_ww_mutex())
447 return 0;
448
449 if (rt_waiter_node_less(&bw->tree, &aw->tree))
450 return 0;
451
452 /* NOTE: relies on waiter->ww_ctx being set before insertion */
453 if (aw->ww_ctx) {
454 if (!bw->ww_ctx)
455 return 1;
456
457 return (signed long)(aw->ww_ctx->stamp -
458 bw->ww_ctx->stamp) < 0;
459 }
460
461 return 0;
462 }
463
464 static __always_inline void
rt_mutex_enqueue(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter)465 rt_mutex_enqueue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
466 {
467 lockdep_assert_held(&lock->wait_lock);
468
469 rb_add_cached(&waiter->tree.entry, &lock->waiters, __waiter_less);
470 }
471
472 static __always_inline void
rt_mutex_dequeue(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter)473 rt_mutex_dequeue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
474 {
475 lockdep_assert_held(&lock->wait_lock);
476
477 if (RB_EMPTY_NODE(&waiter->tree.entry))
478 return;
479
480 rb_erase_cached(&waiter->tree.entry, &lock->waiters);
481 RB_CLEAR_NODE(&waiter->tree.entry);
482 }
483
484 #define __node_2_rt_node(node) \
485 rb_entry((node), struct rt_waiter_node, entry)
486
__pi_waiter_less(struct rb_node * a,const struct rb_node * b)487 static __always_inline bool __pi_waiter_less(struct rb_node *a, const struct rb_node *b)
488 {
489 return rt_waiter_node_less(__node_2_rt_node(a), __node_2_rt_node(b));
490 }
491
492 static __always_inline void
rt_mutex_enqueue_pi(struct task_struct * task,struct rt_mutex_waiter * waiter)493 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
494 {
495 lockdep_assert_held(&task->pi_lock);
496
497 rb_add_cached(&waiter->pi_tree.entry, &task->pi_waiters, __pi_waiter_less);
498 }
499
500 static __always_inline void
rt_mutex_dequeue_pi(struct task_struct * task,struct rt_mutex_waiter * waiter)501 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
502 {
503 lockdep_assert_held(&task->pi_lock);
504
505 if (RB_EMPTY_NODE(&waiter->pi_tree.entry))
506 return;
507
508 rb_erase_cached(&waiter->pi_tree.entry, &task->pi_waiters);
509 RB_CLEAR_NODE(&waiter->pi_tree.entry);
510 }
511
rt_mutex_adjust_prio(struct rt_mutex_base * lock,struct task_struct * p)512 static __always_inline void rt_mutex_adjust_prio(struct rt_mutex_base *lock,
513 struct task_struct *p)
514 {
515 struct task_struct *pi_task = NULL;
516
517 lockdep_assert_held(&lock->wait_lock);
518 lockdep_assert(rt_mutex_owner(lock) == p);
519 lockdep_assert_held(&p->pi_lock);
520
521 if (task_has_pi_waiters(p))
522 pi_task = task_top_pi_waiter(p)->task;
523
524 rt_mutex_setprio(p, pi_task);
525 }
526
527 /* RT mutex specific wake_q wrappers */
rt_mutex_wake_q_add_task(struct rt_wake_q_head * wqh,struct task_struct * task,unsigned int wake_state)528 static __always_inline void rt_mutex_wake_q_add_task(struct rt_wake_q_head *wqh,
529 struct task_struct *task,
530 unsigned int wake_state)
531 {
532 if (IS_ENABLED(CONFIG_PREEMPT_RT) && wake_state == TASK_RTLOCK_WAIT) {
533 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
534 WARN_ON_ONCE(wqh->rtlock_task);
535 get_task_struct(task);
536 wqh->rtlock_task = task;
537 } else {
538 wake_q_add(&wqh->head, task);
539 }
540 }
541
rt_mutex_wake_q_add(struct rt_wake_q_head * wqh,struct rt_mutex_waiter * w)542 static __always_inline void rt_mutex_wake_q_add(struct rt_wake_q_head *wqh,
543 struct rt_mutex_waiter *w)
544 {
545 rt_mutex_wake_q_add_task(wqh, w->task, w->wake_state);
546 }
547
rt_mutex_wake_up_q(struct rt_wake_q_head * wqh)548 static __always_inline void rt_mutex_wake_up_q(struct rt_wake_q_head *wqh)
549 {
550 if (IS_ENABLED(CONFIG_PREEMPT_RT) && wqh->rtlock_task) {
551 wake_up_state(wqh->rtlock_task, TASK_RTLOCK_WAIT);
552 put_task_struct(wqh->rtlock_task);
553 wqh->rtlock_task = NULL;
554 }
555
556 if (!wake_q_empty(&wqh->head))
557 wake_up_q(&wqh->head);
558
559 /* Pairs with preempt_disable() in mark_wakeup_next_waiter() */
560 preempt_enable();
561 }
562
563 /*
564 * Deadlock detection is conditional:
565 *
566 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
567 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
568 *
569 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
570 * conducted independent of the detect argument.
571 *
572 * If the waiter argument is NULL this indicates the deboost path and
573 * deadlock detection is disabled independent of the detect argument
574 * and the config settings.
575 */
576 static __always_inline bool
rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter * waiter,enum rtmutex_chainwalk chwalk)577 rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
578 enum rtmutex_chainwalk chwalk)
579 {
580 if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES))
581 return waiter != NULL;
582 return chwalk == RT_MUTEX_FULL_CHAINWALK;
583 }
584
task_blocked_on_lock(struct task_struct * p)585 static __always_inline struct rt_mutex_base *task_blocked_on_lock(struct task_struct *p)
586 {
587 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
588 }
589
590 /*
591 * Adjust the priority chain. Also used for deadlock detection.
592 * Decreases task's usage by one - may thus free the task.
593 *
594 * @task: the task owning the mutex (owner) for which a chain walk is
595 * probably needed
596 * @chwalk: do we have to carry out deadlock detection?
597 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
598 * things for a task that has just got its priority adjusted, and
599 * is waiting on a mutex)
600 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
601 * we dropped its pi_lock. Is never dereferenced, only used for
602 * comparison to detect lock chain changes.
603 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
604 * its priority to the mutex owner (can be NULL in the case
605 * depicted above or if the top waiter is gone away and we are
606 * actually deboosting the owner)
607 * @top_task: the current top waiter
608 *
609 * Returns 0 or -EDEADLK.
610 *
611 * Chain walk basics and protection scope
612 *
613 * [R] refcount on task
614 * [Pn] task->pi_lock held
615 * [L] rtmutex->wait_lock held
616 *
617 * Normal locking order:
618 *
619 * rtmutex->wait_lock
620 * task->pi_lock
621 *
622 * Step Description Protected by
623 * function arguments:
624 * @task [R]
625 * @orig_lock if != NULL @top_task is blocked on it
626 * @next_lock Unprotected. Cannot be
627 * dereferenced. Only used for
628 * comparison.
629 * @orig_waiter if != NULL @top_task is blocked on it
630 * @top_task current, or in case of proxy
631 * locking protected by calling
632 * code
633 * again:
634 * loop_sanity_check();
635 * retry:
636 * [1] lock(task->pi_lock); [R] acquire [P1]
637 * [2] waiter = task->pi_blocked_on; [P1]
638 * [3] check_exit_conditions_1(); [P1]
639 * [4] lock = waiter->lock; [P1]
640 * [5] if (!try_lock(lock->wait_lock)) { [P1] try to acquire [L]
641 * unlock(task->pi_lock); release [P1]
642 * goto retry;
643 * }
644 * [6] check_exit_conditions_2(); [P1] + [L]
645 * [7] requeue_lock_waiter(lock, waiter); [P1] + [L]
646 * [8] unlock(task->pi_lock); release [P1]
647 * put_task_struct(task); release [R]
648 * [9] check_exit_conditions_3(); [L]
649 * [10] task = owner(lock); [L]
650 * get_task_struct(task); [L] acquire [R]
651 * lock(task->pi_lock); [L] acquire [P2]
652 * [11] requeue_pi_waiter(tsk, waiters(lock));[P2] + [L]
653 * [12] check_exit_conditions_4(); [P2] + [L]
654 * [13] unlock(task->pi_lock); release [P2]
655 * unlock(lock->wait_lock); release [L]
656 * goto again;
657 *
658 * Where P1 is the blocking task and P2 is the lock owner; going up one step
659 * the owner becomes the next blocked task etc..
660 *
661 *
662 */
rt_mutex_adjust_prio_chain(struct task_struct * task,enum rtmutex_chainwalk chwalk,struct rt_mutex_base * orig_lock,struct rt_mutex_base * next_lock,struct rt_mutex_waiter * orig_waiter,struct task_struct * top_task)663 static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
664 enum rtmutex_chainwalk chwalk,
665 struct rt_mutex_base *orig_lock,
666 struct rt_mutex_base *next_lock,
667 struct rt_mutex_waiter *orig_waiter,
668 struct task_struct *top_task)
669 {
670 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
671 struct rt_mutex_waiter *prerequeue_top_waiter;
672 int ret = 0, depth = 0;
673 struct rt_mutex_base *lock;
674 bool detect_deadlock;
675 bool requeue = true;
676
677 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
678
679 /*
680 * The (de)boosting is a step by step approach with a lot of
681 * pitfalls. We want this to be preemptible and we want hold a
682 * maximum of two locks per step. So we have to check
683 * carefully whether things change under us.
684 */
685 again:
686 /*
687 * We limit the lock chain length for each invocation.
688 */
689 if (++depth > max_lock_depth) {
690 static int prev_max;
691
692 /*
693 * Print this only once. If the admin changes the limit,
694 * print a new message when reaching the limit again.
695 */
696 if (prev_max != max_lock_depth) {
697 prev_max = max_lock_depth;
698 printk(KERN_WARNING "Maximum lock depth %d reached "
699 "task: %s (%d)\n", max_lock_depth,
700 top_task->comm, task_pid_nr(top_task));
701 }
702 put_task_struct(task);
703
704 return -EDEADLK;
705 }
706
707 /*
708 * We are fully preemptible here and only hold the refcount on
709 * @task. So everything can have changed under us since the
710 * caller or our own code below (goto retry/again) dropped all
711 * locks.
712 */
713 retry:
714 /*
715 * [1] Task cannot go away as we did a get_task() before !
716 */
717 raw_spin_lock_irq(&task->pi_lock);
718
719 /*
720 * [2] Get the waiter on which @task is blocked on.
721 */
722 waiter = task->pi_blocked_on;
723
724 /*
725 * [3] check_exit_conditions_1() protected by task->pi_lock.
726 */
727
728 /*
729 * Check whether the end of the boosting chain has been
730 * reached or the state of the chain has changed while we
731 * dropped the locks.
732 */
733 if (!waiter)
734 goto out_unlock_pi;
735
736 /*
737 * Check the orig_waiter state. After we dropped the locks,
738 * the previous owner of the lock might have released the lock.
739 */
740 if (orig_waiter && !rt_mutex_owner(orig_lock))
741 goto out_unlock_pi;
742
743 /*
744 * We dropped all locks after taking a refcount on @task, so
745 * the task might have moved on in the lock chain or even left
746 * the chain completely and blocks now on an unrelated lock or
747 * on @orig_lock.
748 *
749 * We stored the lock on which @task was blocked in @next_lock,
750 * so we can detect the chain change.
751 */
752 if (next_lock != waiter->lock)
753 goto out_unlock_pi;
754
755 /*
756 * There could be 'spurious' loops in the lock graph due to ww_mutex,
757 * consider:
758 *
759 * P1: A, ww_A, ww_B
760 * P2: ww_B, ww_A
761 * P3: A
762 *
763 * P3 should not return -EDEADLK because it gets trapped in the cycle
764 * created by P1 and P2 (which will resolve -- and runs into
765 * max_lock_depth above). Therefore disable detect_deadlock such that
766 * the below termination condition can trigger once all relevant tasks
767 * are boosted.
768 *
769 * Even when we start with ww_mutex we can disable deadlock detection,
770 * since we would supress a ww_mutex induced deadlock at [6] anyway.
771 * Supressing it here however is not sufficient since we might still
772 * hit [6] due to adjustment driven iteration.
773 *
774 * NOTE: if someone were to create a deadlock between 2 ww_classes we'd
775 * utterly fail to report it; lockdep should.
776 */
777 if (IS_ENABLED(CONFIG_PREEMPT_RT) && waiter->ww_ctx && detect_deadlock)
778 detect_deadlock = false;
779
780 /*
781 * Drop out, when the task has no waiters. Note,
782 * top_waiter can be NULL, when we are in the deboosting
783 * mode!
784 */
785 if (top_waiter) {
786 if (!task_has_pi_waiters(task))
787 goto out_unlock_pi;
788 /*
789 * If deadlock detection is off, we stop here if we
790 * are not the top pi waiter of the task. If deadlock
791 * detection is enabled we continue, but stop the
792 * requeueing in the chain walk.
793 */
794 if (top_waiter != task_top_pi_waiter(task)) {
795 if (!detect_deadlock)
796 goto out_unlock_pi;
797 else
798 requeue = false;
799 }
800 }
801
802 /*
803 * If the waiter priority is the same as the task priority
804 * then there is no further priority adjustment necessary. If
805 * deadlock detection is off, we stop the chain walk. If its
806 * enabled we continue, but stop the requeueing in the chain
807 * walk.
808 */
809 if (rt_waiter_node_equal(&waiter->tree, task_to_waiter_node(task))) {
810 if (!detect_deadlock)
811 goto out_unlock_pi;
812 else
813 requeue = false;
814 }
815
816 /*
817 * [4] Get the next lock; per holding task->pi_lock we can't unblock
818 * and guarantee @lock's existence.
819 */
820 lock = waiter->lock;
821 /*
822 * [5] We need to trylock here as we are holding task->pi_lock,
823 * which is the reverse lock order versus the other rtmutex
824 * operations.
825 *
826 * Per the above, holding task->pi_lock guarantees lock exists, so
827 * inverting this lock order is infeasible from a life-time
828 * perspective.
829 */
830 if (!raw_spin_trylock(&lock->wait_lock)) {
831 raw_spin_unlock_irq(&task->pi_lock);
832 cpu_relax();
833 goto retry;
834 }
835
836 /*
837 * [6] check_exit_conditions_2() protected by task->pi_lock and
838 * lock->wait_lock.
839 *
840 * Deadlock detection. If the lock is the same as the original
841 * lock which caused us to walk the lock chain or if the
842 * current lock is owned by the task which initiated the chain
843 * walk, we detected a deadlock.
844 */
845 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
846 ret = -EDEADLK;
847
848 /*
849 * When the deadlock is due to ww_mutex; also see above. Don't
850 * report the deadlock and instead let the ww_mutex wound/die
851 * logic pick which of the contending threads gets -EDEADLK.
852 *
853 * NOTE: assumes the cycle only contains a single ww_class; any
854 * other configuration and we fail to report; also, see
855 * lockdep.
856 */
857 if (IS_ENABLED(CONFIG_PREEMPT_RT) && orig_waiter && orig_waiter->ww_ctx)
858 ret = 0;
859
860 raw_spin_unlock(&lock->wait_lock);
861 goto out_unlock_pi;
862 }
863
864 /*
865 * If we just follow the lock chain for deadlock detection, no
866 * need to do all the requeue operations. To avoid a truckload
867 * of conditionals around the various places below, just do the
868 * minimum chain walk checks.
869 */
870 if (!requeue) {
871 /*
872 * No requeue[7] here. Just release @task [8]
873 */
874 raw_spin_unlock(&task->pi_lock);
875 put_task_struct(task);
876
877 /*
878 * [9] check_exit_conditions_3 protected by lock->wait_lock.
879 * If there is no owner of the lock, end of chain.
880 */
881 if (!rt_mutex_owner(lock)) {
882 raw_spin_unlock_irq(&lock->wait_lock);
883 return 0;
884 }
885
886 /* [10] Grab the next task, i.e. owner of @lock */
887 task = get_task_struct(rt_mutex_owner(lock));
888 raw_spin_lock(&task->pi_lock);
889
890 /*
891 * No requeue [11] here. We just do deadlock detection.
892 *
893 * [12] Store whether owner is blocked
894 * itself. Decision is made after dropping the locks
895 */
896 next_lock = task_blocked_on_lock(task);
897 /*
898 * Get the top waiter for the next iteration
899 */
900 top_waiter = rt_mutex_top_waiter(lock);
901
902 /* [13] Drop locks */
903 raw_spin_unlock(&task->pi_lock);
904 raw_spin_unlock_irq(&lock->wait_lock);
905
906 /* If owner is not blocked, end of chain. */
907 if (!next_lock)
908 goto out_put_task;
909 goto again;
910 }
911
912 /*
913 * Store the current top waiter before doing the requeue
914 * operation on @lock. We need it for the boost/deboost
915 * decision below.
916 */
917 prerequeue_top_waiter = rt_mutex_top_waiter(lock);
918
919 /* [7] Requeue the waiter in the lock waiter tree. */
920 rt_mutex_dequeue(lock, waiter);
921
922 /*
923 * Update the waiter prio fields now that we're dequeued.
924 *
925 * These values can have changed through either:
926 *
927 * sys_sched_set_scheduler() / sys_sched_setattr()
928 *
929 * or
930 *
931 * DL CBS enforcement advancing the effective deadline.
932 */
933 waiter_update_prio(waiter, task);
934
935 rt_mutex_enqueue(lock, waiter);
936
937 /*
938 * [8] Release the (blocking) task in preparation for
939 * taking the owner task in [10].
940 *
941 * Since we hold lock->waiter_lock, task cannot unblock, even if we
942 * release task->pi_lock.
943 */
944 raw_spin_unlock(&task->pi_lock);
945 put_task_struct(task);
946
947 /*
948 * [9] check_exit_conditions_3 protected by lock->wait_lock.
949 *
950 * We must abort the chain walk if there is no lock owner even
951 * in the dead lock detection case, as we have nothing to
952 * follow here. This is the end of the chain we are walking.
953 */
954 if (!rt_mutex_owner(lock)) {
955 /*
956 * If the requeue [7] above changed the top waiter,
957 * then we need to wake the new top waiter up to try
958 * to get the lock.
959 */
960 top_waiter = rt_mutex_top_waiter(lock);
961 if (prerequeue_top_waiter != top_waiter)
962 wake_up_state(top_waiter->task, top_waiter->wake_state);
963 raw_spin_unlock_irq(&lock->wait_lock);
964 return 0;
965 }
966
967 /*
968 * [10] Grab the next task, i.e. the owner of @lock
969 *
970 * Per holding lock->wait_lock and checking for !owner above, there
971 * must be an owner and it cannot go away.
972 */
973 task = get_task_struct(rt_mutex_owner(lock));
974 raw_spin_lock(&task->pi_lock);
975
976 /* [11] requeue the pi waiters if necessary */
977 if (waiter == rt_mutex_top_waiter(lock)) {
978 /*
979 * The waiter became the new top (highest priority)
980 * waiter on the lock. Replace the previous top waiter
981 * in the owner tasks pi waiters tree with this waiter
982 * and adjust the priority of the owner.
983 */
984 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
985 waiter_clone_prio(waiter, task);
986 rt_mutex_enqueue_pi(task, waiter);
987 rt_mutex_adjust_prio(lock, task);
988
989 } else if (prerequeue_top_waiter == waiter) {
990 /*
991 * The waiter was the top waiter on the lock, but is
992 * no longer the top priority waiter. Replace waiter in
993 * the owner tasks pi waiters tree with the new top
994 * (highest priority) waiter and adjust the priority
995 * of the owner.
996 * The new top waiter is stored in @waiter so that
997 * @waiter == @top_waiter evaluates to true below and
998 * we continue to deboost the rest of the chain.
999 */
1000 rt_mutex_dequeue_pi(task, waiter);
1001 waiter = rt_mutex_top_waiter(lock);
1002 waiter_clone_prio(waiter, task);
1003 rt_mutex_enqueue_pi(task, waiter);
1004 rt_mutex_adjust_prio(lock, task);
1005 } else {
1006 /*
1007 * Nothing changed. No need to do any priority
1008 * adjustment.
1009 */
1010 }
1011
1012 /*
1013 * [12] check_exit_conditions_4() protected by task->pi_lock
1014 * and lock->wait_lock. The actual decisions are made after we
1015 * dropped the locks.
1016 *
1017 * Check whether the task which owns the current lock is pi
1018 * blocked itself. If yes we store a pointer to the lock for
1019 * the lock chain change detection above. After we dropped
1020 * task->pi_lock next_lock cannot be dereferenced anymore.
1021 */
1022 next_lock = task_blocked_on_lock(task);
1023 /*
1024 * Store the top waiter of @lock for the end of chain walk
1025 * decision below.
1026 */
1027 top_waiter = rt_mutex_top_waiter(lock);
1028
1029 /* [13] Drop the locks */
1030 raw_spin_unlock(&task->pi_lock);
1031 raw_spin_unlock_irq(&lock->wait_lock);
1032
1033 /*
1034 * Make the actual exit decisions [12], based on the stored
1035 * values.
1036 *
1037 * We reached the end of the lock chain. Stop right here. No
1038 * point to go back just to figure that out.
1039 */
1040 if (!next_lock)
1041 goto out_put_task;
1042
1043 /*
1044 * If the current waiter is not the top waiter on the lock,
1045 * then we can stop the chain walk here if we are not in full
1046 * deadlock detection mode.
1047 */
1048 if (!detect_deadlock && waiter != top_waiter)
1049 goto out_put_task;
1050
1051 goto again;
1052
1053 out_unlock_pi:
1054 raw_spin_unlock_irq(&task->pi_lock);
1055 out_put_task:
1056 put_task_struct(task);
1057
1058 return ret;
1059 }
1060
1061 /*
1062 * Try to take an rt-mutex
1063 *
1064 * Must be called with lock->wait_lock held and interrupts disabled
1065 *
1066 * @lock: The lock to be acquired.
1067 * @task: The task which wants to acquire the lock
1068 * @waiter: The waiter that is queued to the lock's wait tree if the
1069 * callsite called task_blocked_on_lock(), otherwise NULL
1070 */
1071 static int __sched
try_to_take_rt_mutex(struct rt_mutex_base * lock,struct task_struct * task,struct rt_mutex_waiter * waiter)1072 try_to_take_rt_mutex(struct rt_mutex_base *lock, struct task_struct *task,
1073 struct rt_mutex_waiter *waiter)
1074 {
1075 lockdep_assert_held(&lock->wait_lock);
1076
1077 /*
1078 * Before testing whether we can acquire @lock, we set the
1079 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
1080 * other tasks which try to modify @lock into the slow path
1081 * and they serialize on @lock->wait_lock.
1082 *
1083 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
1084 * as explained at the top of this file if and only if:
1085 *
1086 * - There is a lock owner. The caller must fixup the
1087 * transient state if it does a trylock or leaves the lock
1088 * function due to a signal or timeout.
1089 *
1090 * - @task acquires the lock and there are no other
1091 * waiters. This is undone in rt_mutex_set_owner(@task) at
1092 * the end of this function.
1093 */
1094 mark_rt_mutex_waiters(lock);
1095
1096 /*
1097 * If @lock has an owner, give up.
1098 */
1099 if (rt_mutex_owner(lock))
1100 return 0;
1101
1102 /*
1103 * If @waiter != NULL, @task has already enqueued the waiter
1104 * into @lock waiter tree. If @waiter == NULL then this is a
1105 * trylock attempt.
1106 */
1107 if (waiter) {
1108 struct rt_mutex_waiter *top_waiter = rt_mutex_top_waiter(lock);
1109
1110 /*
1111 * If waiter is the highest priority waiter of @lock,
1112 * or allowed to steal it, take it over.
1113 */
1114 if (waiter == top_waiter || rt_mutex_steal(waiter, top_waiter)) {
1115 /*
1116 * We can acquire the lock. Remove the waiter from the
1117 * lock waiters tree.
1118 */
1119 rt_mutex_dequeue(lock, waiter);
1120 } else {
1121 return 0;
1122 }
1123 } else {
1124 /*
1125 * If the lock has waiters already we check whether @task is
1126 * eligible to take over the lock.
1127 *
1128 * If there are no other waiters, @task can acquire
1129 * the lock. @task->pi_blocked_on is NULL, so it does
1130 * not need to be dequeued.
1131 */
1132 if (rt_mutex_has_waiters(lock)) {
1133 /* Check whether the trylock can steal it. */
1134 if (!rt_mutex_steal(task_to_waiter(task),
1135 rt_mutex_top_waiter(lock)))
1136 return 0;
1137
1138 /*
1139 * The current top waiter stays enqueued. We
1140 * don't have to change anything in the lock
1141 * waiters order.
1142 */
1143 } else {
1144 /*
1145 * No waiters. Take the lock without the
1146 * pi_lock dance.@task->pi_blocked_on is NULL
1147 * and we have no waiters to enqueue in @task
1148 * pi waiters tree.
1149 */
1150 goto takeit;
1151 }
1152 }
1153
1154 /*
1155 * Clear @task->pi_blocked_on. Requires protection by
1156 * @task->pi_lock. Redundant operation for the @waiter == NULL
1157 * case, but conditionals are more expensive than a redundant
1158 * store.
1159 */
1160 raw_spin_lock(&task->pi_lock);
1161 task->pi_blocked_on = NULL;
1162 /*
1163 * Finish the lock acquisition. @task is the new owner. If
1164 * other waiters exist we have to insert the highest priority
1165 * waiter into @task->pi_waiters tree.
1166 */
1167 if (rt_mutex_has_waiters(lock))
1168 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
1169 raw_spin_unlock(&task->pi_lock);
1170
1171 takeit:
1172 /*
1173 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
1174 * are still waiters or clears it.
1175 */
1176 rt_mutex_set_owner(lock, task);
1177
1178 return 1;
1179 }
1180
1181 /*
1182 * Task blocks on lock.
1183 *
1184 * Prepare waiter and propagate pi chain
1185 *
1186 * This must be called with lock->wait_lock held and interrupts disabled
1187 */
task_blocks_on_rt_mutex(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter,struct task_struct * task,struct ww_acquire_ctx * ww_ctx,enum rtmutex_chainwalk chwalk)1188 static int __sched task_blocks_on_rt_mutex(struct rt_mutex_base *lock,
1189 struct rt_mutex_waiter *waiter,
1190 struct task_struct *task,
1191 struct ww_acquire_ctx *ww_ctx,
1192 enum rtmutex_chainwalk chwalk)
1193 {
1194 struct task_struct *owner = rt_mutex_owner(lock);
1195 struct rt_mutex_waiter *top_waiter = waiter;
1196 struct rt_mutex_base *next_lock;
1197 int chain_walk = 0, res;
1198
1199 lockdep_assert_held(&lock->wait_lock);
1200
1201 /*
1202 * Early deadlock detection. We really don't want the task to
1203 * enqueue on itself just to untangle the mess later. It's not
1204 * only an optimization. We drop the locks, so another waiter
1205 * can come in before the chain walk detects the deadlock. So
1206 * the other will detect the deadlock and return -EDEADLOCK,
1207 * which is wrong, as the other waiter is not in a deadlock
1208 * situation.
1209 *
1210 * Except for ww_mutex, in that case the chain walk must already deal
1211 * with spurious cycles, see the comments at [3] and [6].
1212 */
1213 if (owner == task && !(build_ww_mutex() && ww_ctx))
1214 return -EDEADLK;
1215
1216 trace_android_vh_task_blocks_on_rtmutex(lock, waiter, task, ww_ctx, &chwalk);
1217 raw_spin_lock(&task->pi_lock);
1218 waiter->task = task;
1219 waiter->lock = lock;
1220 waiter_update_prio(waiter, task);
1221 waiter_clone_prio(waiter, task);
1222
1223 /* Get the top priority waiter on the lock */
1224 if (rt_mutex_has_waiters(lock))
1225 top_waiter = rt_mutex_top_waiter(lock);
1226 rt_mutex_enqueue(lock, waiter);
1227
1228 task->pi_blocked_on = waiter;
1229
1230 raw_spin_unlock(&task->pi_lock);
1231
1232 if (build_ww_mutex() && ww_ctx) {
1233 struct rt_mutex *rtm;
1234
1235 /* Check whether the waiter should back out immediately */
1236 rtm = container_of(lock, struct rt_mutex, rtmutex);
1237 res = __ww_mutex_add_waiter(waiter, rtm, ww_ctx);
1238 if (res) {
1239 raw_spin_lock(&task->pi_lock);
1240 rt_mutex_dequeue(lock, waiter);
1241 task->pi_blocked_on = NULL;
1242 raw_spin_unlock(&task->pi_lock);
1243 return res;
1244 }
1245 }
1246
1247 if (!owner)
1248 return 0;
1249
1250 raw_spin_lock(&owner->pi_lock);
1251 if (waiter == rt_mutex_top_waiter(lock)) {
1252 rt_mutex_dequeue_pi(owner, top_waiter);
1253 rt_mutex_enqueue_pi(owner, waiter);
1254
1255 rt_mutex_adjust_prio(lock, owner);
1256 if (owner->pi_blocked_on)
1257 chain_walk = 1;
1258 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
1259 chain_walk = 1;
1260 }
1261
1262 /* Store the lock on which owner is blocked or NULL */
1263 next_lock = task_blocked_on_lock(owner);
1264
1265 raw_spin_unlock(&owner->pi_lock);
1266 /*
1267 * Even if full deadlock detection is on, if the owner is not
1268 * blocked itself, we can avoid finding this out in the chain
1269 * walk.
1270 */
1271 if (!chain_walk || !next_lock)
1272 return 0;
1273
1274 /*
1275 * The owner can't disappear while holding a lock,
1276 * so the owner struct is protected by wait_lock.
1277 * Gets dropped in rt_mutex_adjust_prio_chain()!
1278 */
1279 get_task_struct(owner);
1280
1281 raw_spin_unlock_irq(&lock->wait_lock);
1282
1283 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1284 next_lock, waiter, task);
1285
1286 raw_spin_lock_irq(&lock->wait_lock);
1287
1288 return res;
1289 }
1290
1291 /*
1292 * Remove the top waiter from the current tasks pi waiter tree and
1293 * queue it up.
1294 *
1295 * Called with lock->wait_lock held and interrupts disabled.
1296 */
mark_wakeup_next_waiter(struct rt_wake_q_head * wqh,struct rt_mutex_base * lock)1297 static void __sched mark_wakeup_next_waiter(struct rt_wake_q_head *wqh,
1298 struct rt_mutex_base *lock)
1299 {
1300 struct rt_mutex_waiter *waiter;
1301
1302 lockdep_assert_held(&lock->wait_lock);
1303
1304 raw_spin_lock(¤t->pi_lock);
1305
1306 waiter = rt_mutex_top_waiter(lock);
1307
1308 /*
1309 * Remove it from current->pi_waiters and deboost.
1310 *
1311 * We must in fact deboost here in order to ensure we call
1312 * rt_mutex_setprio() to update p->pi_top_task before the
1313 * task unblocks.
1314 */
1315 rt_mutex_dequeue_pi(current, waiter);
1316 rt_mutex_adjust_prio(lock, current);
1317
1318 /*
1319 * As we are waking up the top waiter, and the waiter stays
1320 * queued on the lock until it gets the lock, this lock
1321 * obviously has waiters. Just set the bit here and this has
1322 * the added benefit of forcing all new tasks into the
1323 * slow path making sure no task of lower priority than
1324 * the top waiter can steal this lock.
1325 */
1326 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1327
1328 /*
1329 * We deboosted before waking the top waiter task such that we don't
1330 * run two tasks with the 'same' priority (and ensure the
1331 * p->pi_top_task pointer points to a blocked task). This however can
1332 * lead to priority inversion if we would get preempted after the
1333 * deboost but before waking our donor task, hence the preempt_disable()
1334 * before unlock.
1335 *
1336 * Pairs with preempt_enable() in rt_mutex_wake_up_q();
1337 */
1338 preempt_disable();
1339 rt_mutex_wake_q_add(wqh, waiter);
1340 raw_spin_unlock(¤t->pi_lock);
1341 }
1342
__rt_mutex_slowtrylock(struct rt_mutex_base * lock)1343 static int __sched __rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1344 {
1345 int ret = try_to_take_rt_mutex(lock, current, NULL);
1346
1347 /*
1348 * try_to_take_rt_mutex() sets the lock waiters bit
1349 * unconditionally. Clean this up.
1350 */
1351 fixup_rt_mutex_waiters(lock, true);
1352
1353 return ret;
1354 }
1355
1356 /*
1357 * Slow path try-lock function:
1358 */
rt_mutex_slowtrylock(struct rt_mutex_base * lock)1359 static int __sched rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1360 {
1361 unsigned long flags;
1362 int ret;
1363
1364 /*
1365 * If the lock already has an owner we fail to get the lock.
1366 * This can be done without taking the @lock->wait_lock as
1367 * it is only being read, and this is a trylock anyway.
1368 */
1369 if (rt_mutex_owner(lock))
1370 return 0;
1371
1372 /*
1373 * The mutex has currently no owner. Lock the wait lock and try to
1374 * acquire the lock. We use irqsave here to support early boot calls.
1375 */
1376 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1377
1378 ret = __rt_mutex_slowtrylock(lock);
1379
1380 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1381
1382 return ret;
1383 }
1384
__rt_mutex_trylock(struct rt_mutex_base * lock)1385 static __always_inline int __rt_mutex_trylock(struct rt_mutex_base *lock)
1386 {
1387 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1388 return 1;
1389
1390 return rt_mutex_slowtrylock(lock);
1391 }
1392
1393 /*
1394 * Slow path to release a rt-mutex.
1395 */
rt_mutex_slowunlock(struct rt_mutex_base * lock)1396 static void __sched rt_mutex_slowunlock(struct rt_mutex_base *lock)
1397 {
1398 DEFINE_RT_WAKE_Q(wqh);
1399 unsigned long flags;
1400
1401 /* irqsave required to support early boot calls */
1402 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1403
1404 debug_rt_mutex_unlock(lock);
1405
1406 /*
1407 * We must be careful here if the fast path is enabled. If we
1408 * have no waiters queued we cannot set owner to NULL here
1409 * because of:
1410 *
1411 * foo->lock->owner = NULL;
1412 * rtmutex_lock(foo->lock); <- fast path
1413 * free = atomic_dec_and_test(foo->refcnt);
1414 * rtmutex_unlock(foo->lock); <- fast path
1415 * if (free)
1416 * kfree(foo);
1417 * raw_spin_unlock(foo->lock->wait_lock);
1418 *
1419 * So for the fastpath enabled kernel:
1420 *
1421 * Nothing can set the waiters bit as long as we hold
1422 * lock->wait_lock. So we do the following sequence:
1423 *
1424 * owner = rt_mutex_owner(lock);
1425 * clear_rt_mutex_waiters(lock);
1426 * raw_spin_unlock(&lock->wait_lock);
1427 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1428 * return;
1429 * goto retry;
1430 *
1431 * The fastpath disabled variant is simple as all access to
1432 * lock->owner is serialized by lock->wait_lock:
1433 *
1434 * lock->owner = NULL;
1435 * raw_spin_unlock(&lock->wait_lock);
1436 */
1437 while (!rt_mutex_has_waiters(lock)) {
1438 /* Drops lock->wait_lock ! */
1439 if (unlock_rt_mutex_safe(lock, flags) == true)
1440 return;
1441 /* Relock the rtmutex and try again */
1442 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1443 }
1444
1445 /*
1446 * The wakeup next waiter path does not suffer from the above
1447 * race. See the comments there.
1448 *
1449 * Queue the next waiter for wakeup once we release the wait_lock.
1450 */
1451 mark_wakeup_next_waiter(&wqh, lock);
1452 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1453
1454 rt_mutex_wake_up_q(&wqh);
1455 }
1456
__rt_mutex_unlock(struct rt_mutex_base * lock)1457 static __always_inline void __rt_mutex_unlock(struct rt_mutex_base *lock)
1458 {
1459 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1460 return;
1461
1462 rt_mutex_slowunlock(lock);
1463 }
1464
1465 #ifdef CONFIG_SMP
rtmutex_spin_on_owner(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter,struct task_struct * owner)1466 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1467 struct rt_mutex_waiter *waiter,
1468 struct task_struct *owner)
1469 {
1470 bool res = true;
1471
1472 rcu_read_lock();
1473 for (;;) {
1474 /* If owner changed, trylock again. */
1475 if (owner != rt_mutex_owner(lock))
1476 break;
1477 /*
1478 * Ensure that @owner is dereferenced after checking that
1479 * the lock owner still matches @owner. If that fails,
1480 * @owner might point to freed memory. If it still matches,
1481 * the rcu_read_lock() ensures the memory stays valid.
1482 */
1483 barrier();
1484 /*
1485 * Stop spinning when:
1486 * - the lock owner has been scheduled out
1487 * - current is not longer the top waiter
1488 * - current is requested to reschedule (redundant
1489 * for CONFIG_PREEMPT_RCU=y)
1490 * - the VCPU on which owner runs is preempted
1491 */
1492 if (!owner_on_cpu(owner) || need_resched() ||
1493 !rt_mutex_waiter_is_top_waiter(lock, waiter)) {
1494 res = false;
1495 break;
1496 }
1497 cpu_relax();
1498 }
1499 rcu_read_unlock();
1500 return res;
1501 }
1502 #else
rtmutex_spin_on_owner(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter,struct task_struct * owner)1503 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1504 struct rt_mutex_waiter *waiter,
1505 struct task_struct *owner)
1506 {
1507 return false;
1508 }
1509 #endif
1510
1511 #ifdef RT_MUTEX_BUILD_MUTEX
1512 /*
1513 * Functions required for:
1514 * - rtmutex, futex on all kernels
1515 * - mutex and rwsem substitutions on RT kernels
1516 */
1517
1518 /*
1519 * Remove a waiter from a lock and give up
1520 *
1521 * Must be called with lock->wait_lock held and interrupts disabled. It must
1522 * have just failed to try_to_take_rt_mutex().
1523 */
remove_waiter(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter)1524 static void __sched remove_waiter(struct rt_mutex_base *lock,
1525 struct rt_mutex_waiter *waiter)
1526 {
1527 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1528 struct task_struct *owner = rt_mutex_owner(lock);
1529 struct rt_mutex_base *next_lock;
1530
1531 lockdep_assert_held(&lock->wait_lock);
1532
1533 raw_spin_lock(¤t->pi_lock);
1534 rt_mutex_dequeue(lock, waiter);
1535 current->pi_blocked_on = NULL;
1536 raw_spin_unlock(¤t->pi_lock);
1537
1538 /*
1539 * Only update priority if the waiter was the highest priority
1540 * waiter of the lock and there is an owner to update.
1541 */
1542 if (!owner || !is_top_waiter)
1543 return;
1544
1545 raw_spin_lock(&owner->pi_lock);
1546
1547 rt_mutex_dequeue_pi(owner, waiter);
1548
1549 if (rt_mutex_has_waiters(lock))
1550 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1551
1552 rt_mutex_adjust_prio(lock, owner);
1553
1554 /* Store the lock on which owner is blocked or NULL */
1555 next_lock = task_blocked_on_lock(owner);
1556
1557 raw_spin_unlock(&owner->pi_lock);
1558
1559 /*
1560 * Don't walk the chain, if the owner task is not blocked
1561 * itself.
1562 */
1563 if (!next_lock)
1564 return;
1565
1566 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1567 get_task_struct(owner);
1568
1569 raw_spin_unlock_irq(&lock->wait_lock);
1570
1571 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1572 next_lock, NULL, current);
1573
1574 raw_spin_lock_irq(&lock->wait_lock);
1575 }
1576
1577 /**
1578 * rt_mutex_slowlock_block() - Perform the wait-wake-try-to-take loop
1579 * @lock: the rt_mutex to take
1580 * @ww_ctx: WW mutex context pointer
1581 * @state: the state the task should block in (TASK_INTERRUPTIBLE
1582 * or TASK_UNINTERRUPTIBLE)
1583 * @timeout: the pre-initialized and started timer, or NULL for none
1584 * @waiter: the pre-initialized rt_mutex_waiter
1585 *
1586 * Must be called with lock->wait_lock held and interrupts disabled
1587 */
rt_mutex_slowlock_block(struct rt_mutex_base * lock,struct ww_acquire_ctx * ww_ctx,unsigned int state,struct hrtimer_sleeper * timeout,struct rt_mutex_waiter * waiter)1588 static int __sched rt_mutex_slowlock_block(struct rt_mutex_base *lock,
1589 struct ww_acquire_ctx *ww_ctx,
1590 unsigned int state,
1591 struct hrtimer_sleeper *timeout,
1592 struct rt_mutex_waiter *waiter)
1593 {
1594 struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1595 struct task_struct *owner;
1596 int ret = 0;
1597
1598 trace_android_vh_rtmutex_wait_start(lock);
1599 for (;;) {
1600 /* Try to acquire the lock: */
1601 if (try_to_take_rt_mutex(lock, current, waiter))
1602 break;
1603
1604 if (timeout && !timeout->task) {
1605 ret = -ETIMEDOUT;
1606 break;
1607 }
1608 if (signal_pending_state(state, current)) {
1609 ret = -EINTR;
1610 break;
1611 }
1612
1613 if (build_ww_mutex() && ww_ctx) {
1614 ret = __ww_mutex_check_kill(rtm, waiter, ww_ctx);
1615 if (ret)
1616 break;
1617 }
1618
1619 if (waiter == rt_mutex_top_waiter(lock))
1620 owner = rt_mutex_owner(lock);
1621 else
1622 owner = NULL;
1623 raw_spin_unlock_irq(&lock->wait_lock);
1624
1625 if (!owner || !rtmutex_spin_on_owner(lock, waiter, owner))
1626 schedule();
1627
1628 raw_spin_lock_irq(&lock->wait_lock);
1629 set_current_state(state);
1630 }
1631
1632 trace_android_vh_rtmutex_wait_finish(lock);
1633 __set_current_state(TASK_RUNNING);
1634 return ret;
1635 }
1636
rt_mutex_handle_deadlock(int res,int detect_deadlock,struct rt_mutex_waiter * w)1637 static void __sched rt_mutex_handle_deadlock(int res, int detect_deadlock,
1638 struct rt_mutex_waiter *w)
1639 {
1640 /*
1641 * If the result is not -EDEADLOCK or the caller requested
1642 * deadlock detection, nothing to do here.
1643 */
1644 if (res != -EDEADLOCK || detect_deadlock)
1645 return;
1646
1647 if (build_ww_mutex() && w->ww_ctx)
1648 return;
1649
1650 /*
1651 * Yell loudly and stop the task right here.
1652 */
1653 WARN(1, "rtmutex deadlock detected\n");
1654 while (1) {
1655 set_current_state(TASK_INTERRUPTIBLE);
1656 schedule();
1657 }
1658 }
1659
1660 /**
1661 * __rt_mutex_slowlock - Locking slowpath invoked with lock::wait_lock held
1662 * @lock: The rtmutex to block lock
1663 * @ww_ctx: WW mutex context pointer
1664 * @state: The task state for sleeping
1665 * @chwalk: Indicator whether full or partial chainwalk is requested
1666 * @waiter: Initializer waiter for blocking
1667 */
__rt_mutex_slowlock(struct rt_mutex_base * lock,struct ww_acquire_ctx * ww_ctx,unsigned int state,enum rtmutex_chainwalk chwalk,struct rt_mutex_waiter * waiter)1668 static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock,
1669 struct ww_acquire_ctx *ww_ctx,
1670 unsigned int state,
1671 enum rtmutex_chainwalk chwalk,
1672 struct rt_mutex_waiter *waiter)
1673 {
1674 struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1675 struct ww_mutex *ww = ww_container_of(rtm);
1676 int ret;
1677
1678 lockdep_assert_held(&lock->wait_lock);
1679
1680 /* Try to acquire the lock again: */
1681 if (try_to_take_rt_mutex(lock, current, NULL)) {
1682 if (build_ww_mutex() && ww_ctx) {
1683 __ww_mutex_check_waiters(rtm, ww_ctx);
1684 ww_mutex_lock_acquired(ww, ww_ctx);
1685 }
1686 return 0;
1687 }
1688
1689 set_current_state(state);
1690
1691 trace_contention_begin(lock, LCB_F_RT);
1692
1693 ret = task_blocks_on_rt_mutex(lock, waiter, current, ww_ctx, chwalk);
1694 if (likely(!ret))
1695 ret = rt_mutex_slowlock_block(lock, ww_ctx, state, NULL, waiter);
1696
1697 if (likely(!ret)) {
1698 /* acquired the lock */
1699 if (build_ww_mutex() && ww_ctx) {
1700 if (!ww_ctx->is_wait_die)
1701 __ww_mutex_check_waiters(rtm, ww_ctx);
1702 ww_mutex_lock_acquired(ww, ww_ctx);
1703 }
1704 } else {
1705 __set_current_state(TASK_RUNNING);
1706 remove_waiter(lock, waiter);
1707 rt_mutex_handle_deadlock(ret, chwalk, waiter);
1708 }
1709
1710 /*
1711 * try_to_take_rt_mutex() sets the waiter bit
1712 * unconditionally. We might have to fix that up.
1713 */
1714 fixup_rt_mutex_waiters(lock, true);
1715
1716 trace_contention_end(lock, ret);
1717
1718 return ret;
1719 }
1720
__rt_mutex_slowlock_locked(struct rt_mutex_base * lock,struct ww_acquire_ctx * ww_ctx,unsigned int state)1721 static inline int __rt_mutex_slowlock_locked(struct rt_mutex_base *lock,
1722 struct ww_acquire_ctx *ww_ctx,
1723 unsigned int state)
1724 {
1725 struct rt_mutex_waiter waiter;
1726 int ret;
1727
1728 rt_mutex_init_waiter(&waiter);
1729 waiter.ww_ctx = ww_ctx;
1730
1731 ret = __rt_mutex_slowlock(lock, ww_ctx, state, RT_MUTEX_MIN_CHAINWALK,
1732 &waiter);
1733
1734 debug_rt_mutex_free_waiter(&waiter);
1735 return ret;
1736 }
1737
1738 /*
1739 * rt_mutex_slowlock - Locking slowpath invoked when fast path fails
1740 * @lock: The rtmutex to block lock
1741 * @ww_ctx: WW mutex context pointer
1742 * @state: The task state for sleeping
1743 */
rt_mutex_slowlock(struct rt_mutex_base * lock,struct ww_acquire_ctx * ww_ctx,unsigned int state)1744 static int __sched rt_mutex_slowlock(struct rt_mutex_base *lock,
1745 struct ww_acquire_ctx *ww_ctx,
1746 unsigned int state)
1747 {
1748 unsigned long flags;
1749 int ret;
1750
1751 /*
1752 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1753 * be called in early boot if the cmpxchg() fast path is disabled
1754 * (debug, no architecture support). In this case we will acquire the
1755 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1756 * enable interrupts in that early boot case. So we need to use the
1757 * irqsave/restore variants.
1758 */
1759 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1760 ret = __rt_mutex_slowlock_locked(lock, ww_ctx, state);
1761 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1762
1763 return ret;
1764 }
1765
__rt_mutex_lock(struct rt_mutex_base * lock,unsigned int state)1766 static __always_inline int __rt_mutex_lock(struct rt_mutex_base *lock,
1767 unsigned int state)
1768 {
1769 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1770 return 0;
1771
1772 return rt_mutex_slowlock(lock, NULL, state);
1773 }
1774 #endif /* RT_MUTEX_BUILD_MUTEX */
1775
1776 #ifdef RT_MUTEX_BUILD_SPINLOCKS
1777 /*
1778 * Functions required for spin/rw_lock substitution on RT kernels
1779 */
1780
1781 /**
1782 * rtlock_slowlock_locked - Slow path lock acquisition for RT locks
1783 * @lock: The underlying RT mutex
1784 */
rtlock_slowlock_locked(struct rt_mutex_base * lock)1785 static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock)
1786 {
1787 struct rt_mutex_waiter waiter;
1788 struct task_struct *owner;
1789
1790 lockdep_assert_held(&lock->wait_lock);
1791
1792 if (try_to_take_rt_mutex(lock, current, NULL))
1793 return;
1794
1795 rt_mutex_init_rtlock_waiter(&waiter);
1796
1797 /* Save current state and set state to TASK_RTLOCK_WAIT */
1798 current_save_and_set_rtlock_wait_state();
1799
1800 trace_contention_begin(lock, LCB_F_RT);
1801
1802 task_blocks_on_rt_mutex(lock, &waiter, current, NULL, RT_MUTEX_MIN_CHAINWALK);
1803
1804 for (;;) {
1805 /* Try to acquire the lock again */
1806 if (try_to_take_rt_mutex(lock, current, &waiter))
1807 break;
1808
1809 if (&waiter == rt_mutex_top_waiter(lock))
1810 owner = rt_mutex_owner(lock);
1811 else
1812 owner = NULL;
1813 raw_spin_unlock_irq(&lock->wait_lock);
1814
1815 if (!owner || !rtmutex_spin_on_owner(lock, &waiter, owner))
1816 schedule_rtlock();
1817
1818 raw_spin_lock_irq(&lock->wait_lock);
1819 set_current_state(TASK_RTLOCK_WAIT);
1820 }
1821
1822 /* Restore the task state */
1823 current_restore_rtlock_saved_state();
1824
1825 /*
1826 * try_to_take_rt_mutex() sets the waiter bit unconditionally.
1827 * We might have to fix that up:
1828 */
1829 fixup_rt_mutex_waiters(lock, true);
1830 debug_rt_mutex_free_waiter(&waiter);
1831
1832 trace_contention_end(lock, 0);
1833 }
1834
rtlock_slowlock(struct rt_mutex_base * lock)1835 static __always_inline void __sched rtlock_slowlock(struct rt_mutex_base *lock)
1836 {
1837 unsigned long flags;
1838
1839 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1840 rtlock_slowlock_locked(lock);
1841 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1842 }
1843
1844 #endif /* RT_MUTEX_BUILD_SPINLOCKS */
1845