1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 * Internal non-public definitions that provide either classic
5 * or preemptible semantics.
6 *
7 * Copyright Red Hat, 2009
8 * Copyright IBM Corporation, 2009
9 * Copyright SUSE, 2021
10 *
11 * Author: Ingo Molnar <mingo@elte.hu>
12 * Paul E. McKenney <paulmck@linux.ibm.com>
13 * Frederic Weisbecker <frederic@kernel.org>
14 */
15
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
rcu_lockdep_is_held_nocb(struct rcu_data * rdp)19 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
20 {
21 return lockdep_is_held(&rdp->nocb_lock);
22 }
23
rcu_current_is_nocb_kthread(struct rcu_data * rdp)24 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
25 {
26 /* Race on early boot between thread creation and assignment */
27 if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
28 return true;
29
30 if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
31 if (in_task())
32 return true;
33 return false;
34 }
35
36 /*
37 * Offload callback processing from the boot-time-specified set of CPUs
38 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads
39 * created that pull the callbacks from the corresponding CPU, wait for
40 * a grace period to elapse, and invoke the callbacks. These kthreads
41 * are organized into GP kthreads, which manage incoming callbacks, wait for
42 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
43 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs
44 * do a wake_up() on their GP kthread when they insert a callback into any
45 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
46 * in which case each kthread actively polls its CPU. (Which isn't so great
47 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
48 *
49 * This is intended to be used in conjunction with Frederic Weisbecker's
50 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
51 * running CPU-bound user-mode computations.
52 *
53 * Offloading of callbacks can also be used as an energy-efficiency
54 * measure because CPUs with no RCU callbacks queued are more aggressive
55 * about entering dyntick-idle mode.
56 */
57
58
59 /*
60 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
61 * If the list is invalid, a warning is emitted and all CPUs are offloaded.
62 */
rcu_nocb_setup(char * str)63 static int __init rcu_nocb_setup(char *str)
64 {
65 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
66 if (*str == '=') {
67 if (cpulist_parse(++str, rcu_nocb_mask)) {
68 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
69 cpumask_setall(rcu_nocb_mask);
70 }
71 }
72 rcu_state.nocb_is_setup = true;
73 return 1;
74 }
75 __setup("rcu_nocbs", rcu_nocb_setup);
76
parse_rcu_nocb_poll(char * arg)77 static int __init parse_rcu_nocb_poll(char *arg)
78 {
79 rcu_nocb_poll = true;
80 return 1;
81 }
82 __setup("rcu_nocb_poll", parse_rcu_nocb_poll);
83
84 /*
85 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
86 * After all, the main point of bypassing is to avoid lock contention
87 * on ->nocb_lock, which only can happen at high call_rcu() rates.
88 */
89 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
90 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
91
92 /*
93 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the
94 * lock isn't immediately available, increment ->nocb_lock_contended to
95 * flag the contention.
96 */
rcu_nocb_bypass_lock(struct rcu_data * rdp)97 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
98 __acquires(&rdp->nocb_bypass_lock)
99 {
100 lockdep_assert_irqs_disabled();
101 if (raw_spin_trylock(&rdp->nocb_bypass_lock))
102 return;
103 atomic_inc(&rdp->nocb_lock_contended);
104 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
105 smp_mb__after_atomic(); /* atomic_inc() before lock. */
106 raw_spin_lock(&rdp->nocb_bypass_lock);
107 smp_mb__before_atomic(); /* atomic_dec() after lock. */
108 atomic_dec(&rdp->nocb_lock_contended);
109 }
110
111 /*
112 * Spinwait until the specified rcu_data structure's ->nocb_lock is
113 * not contended. Please note that this is extremely special-purpose,
114 * relying on the fact that at most two kthreads and one CPU contend for
115 * this lock, and also that the two kthreads are guaranteed to have frequent
116 * grace-period-duration time intervals between successive acquisitions
117 * of the lock. This allows us to use an extremely simple throttling
118 * mechanism, and further to apply it only to the CPU doing floods of
119 * call_rcu() invocations. Don't try this at home!
120 */
rcu_nocb_wait_contended(struct rcu_data * rdp)121 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
122 {
123 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
124 while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
125 cpu_relax();
126 }
127
128 /*
129 * Conditionally acquire the specified rcu_data structure's
130 * ->nocb_bypass_lock.
131 */
rcu_nocb_bypass_trylock(struct rcu_data * rdp)132 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
133 {
134 lockdep_assert_irqs_disabled();
135 return raw_spin_trylock(&rdp->nocb_bypass_lock);
136 }
137
138 /*
139 * Release the specified rcu_data structure's ->nocb_bypass_lock.
140 */
rcu_nocb_bypass_unlock(struct rcu_data * rdp)141 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
142 __releases(&rdp->nocb_bypass_lock)
143 {
144 lockdep_assert_irqs_disabled();
145 raw_spin_unlock(&rdp->nocb_bypass_lock);
146 }
147
148 /*
149 * Acquire the specified rcu_data structure's ->nocb_lock, but only
150 * if it corresponds to a no-CBs CPU.
151 */
rcu_nocb_lock(struct rcu_data * rdp)152 static void rcu_nocb_lock(struct rcu_data *rdp)
153 {
154 lockdep_assert_irqs_disabled();
155 if (!rcu_rdp_is_offloaded(rdp))
156 return;
157 raw_spin_lock(&rdp->nocb_lock);
158 }
159
160 /*
161 * Release the specified rcu_data structure's ->nocb_lock, but only
162 * if it corresponds to a no-CBs CPU.
163 */
rcu_nocb_unlock(struct rcu_data * rdp)164 static void rcu_nocb_unlock(struct rcu_data *rdp)
165 {
166 if (rcu_rdp_is_offloaded(rdp)) {
167 lockdep_assert_irqs_disabled();
168 raw_spin_unlock(&rdp->nocb_lock);
169 }
170 }
171
172 /*
173 * Release the specified rcu_data structure's ->nocb_lock and restore
174 * interrupts, but only if it corresponds to a no-CBs CPU.
175 */
rcu_nocb_unlock_irqrestore(struct rcu_data * rdp,unsigned long flags)176 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
177 unsigned long flags)
178 {
179 if (rcu_rdp_is_offloaded(rdp)) {
180 lockdep_assert_irqs_disabled();
181 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
182 } else {
183 local_irq_restore(flags);
184 }
185 }
186
187 /* Lockdep check that ->cblist may be safely accessed. */
rcu_lockdep_assert_cblist_protected(struct rcu_data * rdp)188 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
189 {
190 lockdep_assert_irqs_disabled();
191 if (rcu_rdp_is_offloaded(rdp))
192 lockdep_assert_held(&rdp->nocb_lock);
193 }
194
195 /*
196 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
197 * grace period.
198 */
rcu_nocb_gp_cleanup(struct swait_queue_head * sq)199 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
200 {
201 swake_up_all(sq);
202 }
203
rcu_nocb_gp_get(struct rcu_node * rnp)204 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
205 {
206 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
207 }
208
rcu_init_one_nocb(struct rcu_node * rnp)209 static void rcu_init_one_nocb(struct rcu_node *rnp)
210 {
211 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
212 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
213 }
214
__wake_nocb_gp(struct rcu_data * rdp_gp,struct rcu_data * rdp,bool force,unsigned long flags)215 static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
216 struct rcu_data *rdp,
217 bool force, unsigned long flags)
218 __releases(rdp_gp->nocb_gp_lock)
219 {
220 bool needwake = false;
221
222 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
223 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
224 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
225 TPS("AlreadyAwake"));
226 return false;
227 }
228
229 if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
230 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
231 del_timer(&rdp_gp->nocb_timer);
232 }
233
234 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
235 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
236 needwake = true;
237 }
238 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
239 if (needwake) {
240 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
241 if (cpu_is_offline(raw_smp_processor_id()))
242 swake_up_one_online(&rdp_gp->nocb_gp_wq);
243 else
244 wake_up_process(rdp_gp->nocb_gp_kthread);
245 }
246
247 return needwake;
248 }
249
250 /*
251 * Kick the GP kthread for this NOCB group.
252 */
wake_nocb_gp(struct rcu_data * rdp,bool force)253 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
254 {
255 unsigned long flags;
256 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
257
258 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
259 return __wake_nocb_gp(rdp_gp, rdp, force, flags);
260 }
261
262 /*
263 * LAZY_FLUSH_JIFFIES decides the maximum amount of time that
264 * can elapse before lazy callbacks are flushed. Lazy callbacks
265 * could be flushed much earlier for a number of other reasons
266 * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are
267 * left unsubmitted to RCU after those many jiffies.
268 */
269 #define LAZY_FLUSH_JIFFIES (10 * HZ)
270 static unsigned long jiffies_till_flush = LAZY_FLUSH_JIFFIES;
271
272 #ifdef CONFIG_RCU_LAZY
273 // To be called only from test code.
rcu_lazy_set_jiffies_till_flush(unsigned long jif)274 void rcu_lazy_set_jiffies_till_flush(unsigned long jif)
275 {
276 jiffies_till_flush = jif;
277 }
278 EXPORT_SYMBOL(rcu_lazy_set_jiffies_till_flush);
279
rcu_lazy_get_jiffies_till_flush(void)280 unsigned long rcu_lazy_get_jiffies_till_flush(void)
281 {
282 return jiffies_till_flush;
283 }
284 EXPORT_SYMBOL(rcu_lazy_get_jiffies_till_flush);
285 #endif
286
287 /*
288 * Arrange to wake the GP kthread for this NOCB group at some future
289 * time when it is safe to do so.
290 */
wake_nocb_gp_defer(struct rcu_data * rdp,int waketype,const char * reason)291 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
292 const char *reason)
293 {
294 unsigned long flags;
295 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
296
297 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
298
299 /*
300 * Bypass wakeup overrides previous deferments. In case of
301 * callback storms, no need to wake up too early.
302 */
303 if (waketype == RCU_NOCB_WAKE_LAZY &&
304 rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) {
305 mod_timer(&rdp_gp->nocb_timer, jiffies + jiffies_till_flush);
306 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
307 } else if (waketype == RCU_NOCB_WAKE_BYPASS) {
308 mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
309 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
310 } else {
311 if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
312 mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
313 if (rdp_gp->nocb_defer_wakeup < waketype)
314 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
315 }
316
317 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
318
319 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
320 }
321
322 /*
323 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
324 * However, if there is a callback to be enqueued and if ->nocb_bypass
325 * proves to be initially empty, just return false because the no-CB GP
326 * kthread may need to be awakened in this case.
327 *
328 * Return true if there was something to be flushed and it succeeded, otherwise
329 * false.
330 *
331 * Note that this function always returns true if rhp is NULL.
332 */
rcu_nocb_do_flush_bypass(struct rcu_data * rdp,struct rcu_head * rhp_in,unsigned long j,bool lazy)333 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in,
334 unsigned long j, bool lazy)
335 {
336 struct rcu_cblist rcl;
337 struct rcu_head *rhp = rhp_in;
338
339 WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
340 rcu_lockdep_assert_cblist_protected(rdp);
341 lockdep_assert_held(&rdp->nocb_bypass_lock);
342 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
343 raw_spin_unlock(&rdp->nocb_bypass_lock);
344 return false;
345 }
346 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
347 if (rhp)
348 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
349
350 /*
351 * If the new CB requested was a lazy one, queue it onto the main
352 * ->cblist so that we can take advantage of the grace-period that will
353 * happen regardless. But queue it onto the bypass list first so that
354 * the lazy CB is ordered with the existing CBs in the bypass list.
355 */
356 if (lazy && rhp) {
357 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
358 rhp = NULL;
359 }
360 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
361 WRITE_ONCE(rdp->lazy_len, 0);
362
363 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
364 WRITE_ONCE(rdp->nocb_bypass_first, j);
365 rcu_nocb_bypass_unlock(rdp);
366 return true;
367 }
368
369 /*
370 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
371 * However, if there is a callback to be enqueued and if ->nocb_bypass
372 * proves to be initially empty, just return false because the no-CB GP
373 * kthread may need to be awakened in this case.
374 *
375 * Note that this function always returns true if rhp is NULL.
376 */
rcu_nocb_flush_bypass(struct rcu_data * rdp,struct rcu_head * rhp,unsigned long j,bool lazy)377 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
378 unsigned long j, bool lazy)
379 {
380 if (!rcu_rdp_is_offloaded(rdp))
381 return true;
382 rcu_lockdep_assert_cblist_protected(rdp);
383 rcu_nocb_bypass_lock(rdp);
384 return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy);
385 }
386
387 /*
388 * If the ->nocb_bypass_lock is immediately available, flush the
389 * ->nocb_bypass queue into ->cblist.
390 */
rcu_nocb_try_flush_bypass(struct rcu_data * rdp,unsigned long j)391 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
392 {
393 rcu_lockdep_assert_cblist_protected(rdp);
394 if (!rcu_rdp_is_offloaded(rdp) ||
395 !rcu_nocb_bypass_trylock(rdp))
396 return;
397 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false));
398 }
399
400 /*
401 * See whether it is appropriate to use the ->nocb_bypass list in order
402 * to control contention on ->nocb_lock. A limited number of direct
403 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass
404 * is non-empty, further callbacks must be placed into ->nocb_bypass,
405 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch
406 * back to direct use of ->cblist. However, ->nocb_bypass should not be
407 * used if ->cblist is empty, because otherwise callbacks can be stranded
408 * on ->nocb_bypass because we cannot count on the current CPU ever again
409 * invoking call_rcu(). The general rule is that if ->nocb_bypass is
410 * non-empty, the corresponding no-CBs grace-period kthread must not be
411 * in an indefinite sleep state.
412 *
413 * Finally, it is not permitted to use the bypass during early boot,
414 * as doing so would confuse the auto-initialization code. Besides
415 * which, there is no point in worrying about lock contention while
416 * there is only one CPU in operation.
417 */
rcu_nocb_try_bypass(struct rcu_data * rdp,struct rcu_head * rhp,bool * was_alldone,unsigned long flags,bool lazy)418 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
419 bool *was_alldone, unsigned long flags,
420 bool lazy)
421 {
422 unsigned long c;
423 unsigned long cur_gp_seq;
424 unsigned long j = jiffies;
425 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
426 bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len));
427
428 lockdep_assert_irqs_disabled();
429
430 // Pure softirq/rcuc based processing: no bypassing, no
431 // locking.
432 if (!rcu_rdp_is_offloaded(rdp)) {
433 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
434 return false;
435 }
436
437 // In the process of (de-)offloading: no bypassing, but
438 // locking.
439 if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
440 rcu_nocb_lock(rdp);
441 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
442 return false; /* Not offloaded, no bypassing. */
443 }
444
445 // Don't use ->nocb_bypass during early boot.
446 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
447 rcu_nocb_lock(rdp);
448 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
449 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
450 return false;
451 }
452
453 // If we have advanced to a new jiffy, reset counts to allow
454 // moving back from ->nocb_bypass to ->cblist.
455 if (j == rdp->nocb_nobypass_last) {
456 c = rdp->nocb_nobypass_count + 1;
457 } else {
458 WRITE_ONCE(rdp->nocb_nobypass_last, j);
459 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
460 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
461 nocb_nobypass_lim_per_jiffy))
462 c = 0;
463 else if (c > nocb_nobypass_lim_per_jiffy)
464 c = nocb_nobypass_lim_per_jiffy;
465 }
466 WRITE_ONCE(rdp->nocb_nobypass_count, c);
467
468 // If there hasn't yet been all that many ->cblist enqueues
469 // this jiffy, tell the caller to enqueue onto ->cblist. But flush
470 // ->nocb_bypass first.
471 // Lazy CBs throttle this back and do immediate bypass queuing.
472 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) {
473 rcu_nocb_lock(rdp);
474 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
475 if (*was_alldone)
476 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
477 TPS("FirstQ"));
478
479 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false));
480 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
481 return false; // Caller must enqueue the callback.
482 }
483
484 // If ->nocb_bypass has been used too long or is too full,
485 // flush ->nocb_bypass to ->cblist.
486 if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) ||
487 (ncbs && bypass_is_lazy &&
488 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush))) ||
489 ncbs >= qhimark) {
490 rcu_nocb_lock(rdp);
491 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
492
493 if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) {
494 if (*was_alldone)
495 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
496 TPS("FirstQ"));
497 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
498 return false; // Caller must enqueue the callback.
499 }
500 if (j != rdp->nocb_gp_adv_time &&
501 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
502 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
503 rcu_advance_cbs_nowake(rdp->mynode, rdp);
504 rdp->nocb_gp_adv_time = j;
505 }
506
507 // The flush succeeded and we moved CBs into the regular list.
508 // Don't wait for the wake up timer as it may be too far ahead.
509 // Wake up the GP thread now instead, if the cblist was empty.
510 __call_rcu_nocb_wake(rdp, *was_alldone, flags);
511
512 return true; // Callback already enqueued.
513 }
514
515 // We need to use the bypass.
516 rcu_nocb_wait_contended(rdp);
517 rcu_nocb_bypass_lock(rdp);
518 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
519 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
520 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
521
522 if (lazy)
523 WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1);
524
525 if (!ncbs) {
526 WRITE_ONCE(rdp->nocb_bypass_first, j);
527 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
528 }
529 rcu_nocb_bypass_unlock(rdp);
530 smp_mb(); /* Order enqueue before wake. */
531 // A wake up of the grace period kthread or timer adjustment
532 // needs to be done only if:
533 // 1. Bypass list was fully empty before (this is the first
534 // bypass list entry), or:
535 // 2. Both of these conditions are met:
536 // a. The bypass list previously had only lazy CBs, and:
537 // b. The new CB is non-lazy.
538 if (ncbs && (!bypass_is_lazy || lazy)) {
539 local_irq_restore(flags);
540 } else {
541 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
542 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
543 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
544 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
545 TPS("FirstBQwake"));
546 __call_rcu_nocb_wake(rdp, true, flags);
547 } else {
548 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
549 TPS("FirstBQnoWake"));
550 rcu_nocb_unlock_irqrestore(rdp, flags);
551 }
552 }
553 return true; // Callback already enqueued.
554 }
555
556 /*
557 * Awaken the no-CBs grace-period kthread if needed, either due to it
558 * legitimately being asleep or due to overload conditions.
559 *
560 * If warranted, also wake up the kthread servicing this CPUs queues.
561 */
__call_rcu_nocb_wake(struct rcu_data * rdp,bool was_alldone,unsigned long flags)562 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
563 unsigned long flags)
564 __releases(rdp->nocb_lock)
565 {
566 long bypass_len;
567 unsigned long cur_gp_seq;
568 unsigned long j;
569 long lazy_len;
570 long len;
571 struct task_struct *t;
572
573 // If we are being polled or there is no kthread, just leave.
574 t = READ_ONCE(rdp->nocb_gp_kthread);
575 if (rcu_nocb_poll || !t) {
576 rcu_nocb_unlock_irqrestore(rdp, flags);
577 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
578 TPS("WakeNotPoll"));
579 return;
580 }
581 // Need to actually to a wakeup.
582 len = rcu_segcblist_n_cbs(&rdp->cblist);
583 bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass);
584 lazy_len = READ_ONCE(rdp->lazy_len);
585 if (was_alldone) {
586 rdp->qlen_last_fqs_check = len;
587 // Only lazy CBs in bypass list
588 if (lazy_len && bypass_len == lazy_len) {
589 rcu_nocb_unlock_irqrestore(rdp, flags);
590 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY,
591 TPS("WakeLazy"));
592 } else if (!irqs_disabled_flags(flags)) {
593 /* ... if queue was empty ... */
594 rcu_nocb_unlock_irqrestore(rdp, flags);
595 wake_nocb_gp(rdp, false);
596 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
597 TPS("WakeEmpty"));
598 } else {
599 rcu_nocb_unlock_irqrestore(rdp, flags);
600 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
601 TPS("WakeEmptyIsDeferred"));
602 }
603 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
604 /* ... or if many callbacks queued. */
605 rdp->qlen_last_fqs_check = len;
606 j = jiffies;
607 if (j != rdp->nocb_gp_adv_time &&
608 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
609 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
610 rcu_advance_cbs_nowake(rdp->mynode, rdp);
611 rdp->nocb_gp_adv_time = j;
612 }
613 smp_mb(); /* Enqueue before timer_pending(). */
614 if ((rdp->nocb_cb_sleep ||
615 !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
616 !timer_pending(&rdp->nocb_timer)) {
617 rcu_nocb_unlock_irqrestore(rdp, flags);
618 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
619 TPS("WakeOvfIsDeferred"));
620 } else {
621 rcu_nocb_unlock_irqrestore(rdp, flags);
622 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
623 }
624 } else {
625 rcu_nocb_unlock_irqrestore(rdp, flags);
626 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
627 }
628 }
629
nocb_gp_toggle_rdp(struct rcu_data * rdp,bool * wake_state)630 static int nocb_gp_toggle_rdp(struct rcu_data *rdp,
631 bool *wake_state)
632 {
633 struct rcu_segcblist *cblist = &rdp->cblist;
634 unsigned long flags;
635 int ret;
636
637 rcu_nocb_lock_irqsave(rdp, flags);
638 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) &&
639 !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
640 /*
641 * Offloading. Set our flag and notify the offload worker.
642 * We will handle this rdp until it ever gets de-offloaded.
643 */
644 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP);
645 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
646 *wake_state = true;
647 ret = 1;
648 } else if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) &&
649 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
650 /*
651 * De-offloading. Clear our flag and notify the de-offload worker.
652 * We will ignore this rdp until it ever gets re-offloaded.
653 */
654 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP);
655 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
656 *wake_state = true;
657 ret = 0;
658 } else {
659 WARN_ON_ONCE(1);
660 ret = -1;
661 }
662
663 rcu_nocb_unlock_irqrestore(rdp, flags);
664
665 return ret;
666 }
667
nocb_gp_sleep(struct rcu_data * my_rdp,int cpu)668 static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu)
669 {
670 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
671 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
672 !READ_ONCE(my_rdp->nocb_gp_sleep));
673 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
674 }
675
676 /*
677 * No-CBs GP kthreads come here to wait for additional callbacks to show up
678 * or for grace periods to end.
679 */
nocb_gp_wait(struct rcu_data * my_rdp)680 static void nocb_gp_wait(struct rcu_data *my_rdp)
681 {
682 bool bypass = false;
683 int __maybe_unused cpu = my_rdp->cpu;
684 unsigned long cur_gp_seq;
685 unsigned long flags;
686 bool gotcbs = false;
687 unsigned long j = jiffies;
688 bool lazy = false;
689 bool needwait_gp = false; // This prevents actual uninitialized use.
690 bool needwake;
691 bool needwake_gp;
692 struct rcu_data *rdp, *rdp_toggling = NULL;
693 struct rcu_node *rnp;
694 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
695 bool wasempty = false;
696
697 /*
698 * Each pass through the following loop checks for CBs and for the
699 * nearest grace period (if any) to wait for next. The CB kthreads
700 * and the global grace-period kthread are awakened if needed.
701 */
702 WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
703 /*
704 * An rcu_data structure is removed from the list after its
705 * CPU is de-offloaded and added to the list before that CPU is
706 * (re-)offloaded. If the following loop happens to be referencing
707 * that rcu_data structure during the time that the corresponding
708 * CPU is de-offloaded and then immediately re-offloaded, this
709 * loop's rdp pointer will be carried to the end of the list by
710 * the resulting pair of list operations. This can cause the loop
711 * to skip over some of the rcu_data structures that were supposed
712 * to have been scanned. Fortunately a new iteration through the
713 * entire loop is forced after a given CPU's rcu_data structure
714 * is added to the list, so the skipped-over rcu_data structures
715 * won't be ignored for long.
716 */
717 list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) {
718 long bypass_ncbs;
719 bool flush_bypass = false;
720 long lazy_ncbs;
721
722 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
723 rcu_nocb_lock_irqsave(rdp, flags);
724 lockdep_assert_held(&rdp->nocb_lock);
725 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
726 lazy_ncbs = READ_ONCE(rdp->lazy_len);
727
728 if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) &&
729 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush) ||
730 bypass_ncbs > 2 * qhimark)) {
731 flush_bypass = true;
732 } else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) &&
733 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
734 bypass_ncbs > 2 * qhimark)) {
735 flush_bypass = true;
736 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
737 rcu_nocb_unlock_irqrestore(rdp, flags);
738 continue; /* No callbacks here, try next. */
739 }
740
741 if (flush_bypass) {
742 // Bypass full or old, so flush it.
743 (void)rcu_nocb_try_flush_bypass(rdp, j);
744 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
745 lazy_ncbs = READ_ONCE(rdp->lazy_len);
746 }
747
748 if (bypass_ncbs) {
749 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
750 bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass"));
751 if (bypass_ncbs == lazy_ncbs)
752 lazy = true;
753 else
754 bypass = true;
755 }
756 rnp = rdp->mynode;
757
758 // Advance callbacks if helpful and low contention.
759 needwake_gp = false;
760 if (!rcu_segcblist_restempty(&rdp->cblist,
761 RCU_NEXT_READY_TAIL) ||
762 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
763 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
764 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
765 needwake_gp = rcu_advance_cbs(rnp, rdp);
766 wasempty = rcu_segcblist_restempty(&rdp->cblist,
767 RCU_NEXT_READY_TAIL);
768 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
769 }
770 // Need to wait on some grace period?
771 WARN_ON_ONCE(wasempty &&
772 !rcu_segcblist_restempty(&rdp->cblist,
773 RCU_NEXT_READY_TAIL));
774 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
775 if (!needwait_gp ||
776 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
777 wait_gp_seq = cur_gp_seq;
778 needwait_gp = true;
779 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
780 TPS("NeedWaitGP"));
781 }
782 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
783 needwake = rdp->nocb_cb_sleep;
784 WRITE_ONCE(rdp->nocb_cb_sleep, false);
785 smp_mb(); /* CB invocation -after- GP end. */
786 } else {
787 needwake = false;
788 }
789 rcu_nocb_unlock_irqrestore(rdp, flags);
790 if (needwake) {
791 swake_up_one(&rdp->nocb_cb_wq);
792 gotcbs = true;
793 }
794 if (needwake_gp)
795 rcu_gp_kthread_wake();
796 }
797
798 my_rdp->nocb_gp_bypass = bypass;
799 my_rdp->nocb_gp_gp = needwait_gp;
800 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
801
802 // At least one child with non-empty ->nocb_bypass, so set
803 // timer in order to avoid stranding its callbacks.
804 if (!rcu_nocb_poll) {
805 // If bypass list only has lazy CBs. Add a deferred lazy wake up.
806 if (lazy && !bypass) {
807 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY,
808 TPS("WakeLazyIsDeferred"));
809 // Otherwise add a deferred bypass wake up.
810 } else if (bypass) {
811 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
812 TPS("WakeBypassIsDeferred"));
813 }
814 }
815
816 if (rcu_nocb_poll) {
817 /* Polling, so trace if first poll in the series. */
818 if (gotcbs)
819 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
820 if (list_empty(&my_rdp->nocb_head_rdp)) {
821 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
822 if (!my_rdp->nocb_toggling_rdp)
823 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
824 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
825 /* Wait for any offloading rdp */
826 nocb_gp_sleep(my_rdp, cpu);
827 } else {
828 schedule_timeout_idle(1);
829 }
830 } else if (!needwait_gp) {
831 /* Wait for callbacks to appear. */
832 nocb_gp_sleep(my_rdp, cpu);
833 } else {
834 rnp = my_rdp->mynode;
835 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
836 swait_event_interruptible_exclusive(
837 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
838 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
839 !READ_ONCE(my_rdp->nocb_gp_sleep));
840 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
841 }
842
843 if (!rcu_nocb_poll) {
844 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
845 // (De-)queue an rdp to/from the group if its nocb state is changing
846 rdp_toggling = my_rdp->nocb_toggling_rdp;
847 if (rdp_toggling)
848 my_rdp->nocb_toggling_rdp = NULL;
849
850 if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
851 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
852 del_timer(&my_rdp->nocb_timer);
853 }
854 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
855 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
856 } else {
857 rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp);
858 if (rdp_toggling) {
859 /*
860 * Paranoid locking to make sure nocb_toggling_rdp is well
861 * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could
862 * race with another round of nocb toggling for this rdp.
863 * Nocb locking should prevent from that already but we stick
864 * to paranoia, especially in rare path.
865 */
866 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
867 my_rdp->nocb_toggling_rdp = NULL;
868 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
869 }
870 }
871
872 if (rdp_toggling) {
873 bool wake_state = false;
874 int ret;
875
876 ret = nocb_gp_toggle_rdp(rdp_toggling, &wake_state);
877 if (ret == 1)
878 list_add_tail(&rdp_toggling->nocb_entry_rdp, &my_rdp->nocb_head_rdp);
879 else if (ret == 0)
880 list_del(&rdp_toggling->nocb_entry_rdp);
881 if (wake_state)
882 swake_up_one(&rdp_toggling->nocb_state_wq);
883 }
884
885 my_rdp->nocb_gp_seq = -1;
886 WARN_ON(signal_pending(current));
887 }
888
889 /*
890 * No-CBs grace-period-wait kthread. There is one of these per group
891 * of CPUs, but only once at least one CPU in that group has come online
892 * at least once since boot. This kthread checks for newly posted
893 * callbacks from any of the CPUs it is responsible for, waits for a
894 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
895 * that then have callback-invocation work to do.
896 */
rcu_nocb_gp_kthread(void * arg)897 static int rcu_nocb_gp_kthread(void *arg)
898 {
899 struct rcu_data *rdp = arg;
900
901 for (;;) {
902 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
903 nocb_gp_wait(rdp);
904 cond_resched_tasks_rcu_qs();
905 }
906 return 0;
907 }
908
nocb_cb_can_run(struct rcu_data * rdp)909 static inline bool nocb_cb_can_run(struct rcu_data *rdp)
910 {
911 u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB;
912
913 return rcu_segcblist_test_flags(&rdp->cblist, flags);
914 }
915
nocb_cb_wait_cond(struct rcu_data * rdp)916 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
917 {
918 return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep);
919 }
920
921 /*
922 * Invoke any ready callbacks from the corresponding no-CBs CPU,
923 * then, if there are no more, wait for more to appear.
924 */
nocb_cb_wait(struct rcu_data * rdp)925 static void nocb_cb_wait(struct rcu_data *rdp)
926 {
927 struct rcu_segcblist *cblist = &rdp->cblist;
928 unsigned long cur_gp_seq;
929 unsigned long flags;
930 bool needwake_state = false;
931 bool needwake_gp = false;
932 bool can_sleep = true;
933 struct rcu_node *rnp = rdp->mynode;
934
935 do {
936 swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
937 nocb_cb_wait_cond(rdp));
938
939 // VVV Ensure CB invocation follows _sleep test.
940 if (smp_load_acquire(&rdp->nocb_cb_sleep)) { // ^^^
941 WARN_ON(signal_pending(current));
942 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
943 }
944 } while (!nocb_cb_can_run(rdp));
945
946
947 local_irq_save(flags);
948 rcu_momentary_dyntick_idle();
949 local_irq_restore(flags);
950 /*
951 * Disable BH to provide the expected environment. Also, when
952 * transitioning to/from NOCB mode, a self-requeuing callback might
953 * be invoked from softirq. A short grace period could cause both
954 * instances of this callback would execute concurrently.
955 */
956 local_bh_disable();
957 rcu_do_batch(rdp);
958 local_bh_enable();
959 lockdep_assert_irqs_enabled();
960 rcu_nocb_lock_irqsave(rdp, flags);
961 if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
962 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
963 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
964 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
965 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
966 }
967
968 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
969 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) {
970 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB);
971 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
972 needwake_state = true;
973 }
974 if (rcu_segcblist_ready_cbs(cblist))
975 can_sleep = false;
976 } else {
977 /*
978 * De-offloading. Clear our flag and notify the de-offload worker.
979 * We won't touch the callbacks and keep sleeping until we ever
980 * get re-offloaded.
981 */
982 WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB));
983 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB);
984 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
985 needwake_state = true;
986 }
987
988 WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep);
989
990 if (rdp->nocb_cb_sleep)
991 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
992
993 rcu_nocb_unlock_irqrestore(rdp, flags);
994 if (needwake_gp)
995 rcu_gp_kthread_wake();
996
997 if (needwake_state)
998 swake_up_one(&rdp->nocb_state_wq);
999 }
1000
1001 /*
1002 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke
1003 * nocb_cb_wait() to do the dirty work.
1004 */
rcu_nocb_cb_kthread(void * arg)1005 static int rcu_nocb_cb_kthread(void *arg)
1006 {
1007 struct rcu_data *rdp = arg;
1008
1009 // Each pass through this loop does one callback batch, and,
1010 // if there are no more ready callbacks, waits for them.
1011 for (;;) {
1012 nocb_cb_wait(rdp);
1013 cond_resched_tasks_rcu_qs();
1014 }
1015 return 0;
1016 }
1017
1018 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
rcu_nocb_need_deferred_wakeup(struct rcu_data * rdp,int level)1019 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1020 {
1021 return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
1022 }
1023
1024 /* Do a deferred wakeup of rcu_nocb_kthread(). */
do_nocb_deferred_wakeup_common(struct rcu_data * rdp_gp,struct rcu_data * rdp,int level,unsigned long flags)1025 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
1026 struct rcu_data *rdp, int level,
1027 unsigned long flags)
1028 __releases(rdp_gp->nocb_gp_lock)
1029 {
1030 int ndw;
1031 int ret;
1032
1033 if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
1034 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1035 return false;
1036 }
1037
1038 ndw = rdp_gp->nocb_defer_wakeup;
1039 ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
1040 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
1041
1042 return ret;
1043 }
1044
1045 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
do_nocb_deferred_wakeup_timer(struct timer_list * t)1046 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
1047 {
1048 unsigned long flags;
1049 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
1050
1051 WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
1052 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1053
1054 raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
1055 smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1056 do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
1057 }
1058
1059 /*
1060 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
1061 * This means we do an inexact common-case check. Note that if
1062 * we miss, ->nocb_timer will eventually clean things up.
1063 */
do_nocb_deferred_wakeup(struct rcu_data * rdp)1064 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1065 {
1066 unsigned long flags;
1067 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1068
1069 if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
1070 return false;
1071
1072 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1073 return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
1074 }
1075
rcu_nocb_flush_deferred_wakeup(void)1076 void rcu_nocb_flush_deferred_wakeup(void)
1077 {
1078 do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
1079 }
1080 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);
1081
rdp_offload_toggle(struct rcu_data * rdp,bool offload,unsigned long flags)1082 static int rdp_offload_toggle(struct rcu_data *rdp,
1083 bool offload, unsigned long flags)
1084 __releases(rdp->nocb_lock)
1085 {
1086 struct rcu_segcblist *cblist = &rdp->cblist;
1087 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1088 bool wake_gp = false;
1089
1090 rcu_segcblist_offload(cblist, offload);
1091
1092 if (rdp->nocb_cb_sleep)
1093 rdp->nocb_cb_sleep = false;
1094 rcu_nocb_unlock_irqrestore(rdp, flags);
1095
1096 /*
1097 * Ignore former value of nocb_cb_sleep and force wake up as it could
1098 * have been spuriously set to false already.
1099 */
1100 swake_up_one(&rdp->nocb_cb_wq);
1101
1102 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1103 // Queue this rdp for add/del to/from the list to iterate on rcuog
1104 WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp);
1105 if (rdp_gp->nocb_gp_sleep) {
1106 rdp_gp->nocb_gp_sleep = false;
1107 wake_gp = true;
1108 }
1109 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1110
1111 return wake_gp;
1112 }
1113
rcu_nocb_rdp_deoffload(void * arg)1114 static long rcu_nocb_rdp_deoffload(void *arg)
1115 {
1116 struct rcu_data *rdp = arg;
1117 struct rcu_segcblist *cblist = &rdp->cblist;
1118 unsigned long flags;
1119 int wake_gp;
1120 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1121
1122 /*
1123 * rcu_nocb_rdp_deoffload() may be called directly if
1124 * rcuog/o[p] spawn failed, because at this time the rdp->cpu
1125 * is not online yet.
1126 */
1127 WARN_ON_ONCE((rdp->cpu != raw_smp_processor_id()) && cpu_online(rdp->cpu));
1128
1129 pr_info("De-offloading %d\n", rdp->cpu);
1130
1131 rcu_nocb_lock_irqsave(rdp, flags);
1132 /*
1133 * Flush once and for all now. This suffices because we are
1134 * running on the target CPU holding ->nocb_lock (thus having
1135 * interrupts disabled), and because rdp_offload_toggle()
1136 * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED.
1137 * Thus future calls to rcu_segcblist_completely_offloaded() will
1138 * return false, which means that future calls to rcu_nocb_try_bypass()
1139 * will refuse to put anything into the bypass.
1140 */
1141 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
1142 /*
1143 * Start with invoking rcu_core() early. This way if the current thread
1144 * happens to preempt an ongoing call to rcu_core() in the middle,
1145 * leaving some work dismissed because rcu_core() still thinks the rdp is
1146 * completely offloaded, we are guaranteed a nearby future instance of
1147 * rcu_core() to catch up.
1148 */
1149 rcu_segcblist_set_flags(cblist, SEGCBLIST_RCU_CORE);
1150 invoke_rcu_core();
1151 wake_gp = rdp_offload_toggle(rdp, false, flags);
1152
1153 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1154 if (rdp_gp->nocb_gp_kthread) {
1155 if (wake_gp)
1156 wake_up_process(rdp_gp->nocb_gp_kthread);
1157
1158 /*
1159 * If rcuo[p] kthread spawn failed, directly remove SEGCBLIST_KTHREAD_CB.
1160 * Just wait SEGCBLIST_KTHREAD_GP to be cleared by rcuog.
1161 */
1162 if (!rdp->nocb_cb_kthread) {
1163 rcu_nocb_lock_irqsave(rdp, flags);
1164 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB);
1165 rcu_nocb_unlock_irqrestore(rdp, flags);
1166 }
1167
1168 swait_event_exclusive(rdp->nocb_state_wq,
1169 !rcu_segcblist_test_flags(cblist,
1170 SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP));
1171 } else {
1172 /*
1173 * No kthread to clear the flags for us or remove the rdp from the nocb list
1174 * to iterate. Do it here instead. Locking doesn't look stricly necessary
1175 * but we stick to paranoia in this rare path.
1176 */
1177 rcu_nocb_lock_irqsave(rdp, flags);
1178 rcu_segcblist_clear_flags(&rdp->cblist,
1179 SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP);
1180 rcu_nocb_unlock_irqrestore(rdp, flags);
1181
1182 list_del(&rdp->nocb_entry_rdp);
1183 }
1184 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1185
1186 /*
1187 * Lock one last time to acquire latest callback updates from kthreads
1188 * so we can later handle callbacks locally without locking.
1189 */
1190 rcu_nocb_lock_irqsave(rdp, flags);
1191 /*
1192 * Theoretically we could clear SEGCBLIST_LOCKING after the nocb
1193 * lock is released but how about being paranoid for once?
1194 */
1195 rcu_segcblist_clear_flags(cblist, SEGCBLIST_LOCKING);
1196 /*
1197 * Without SEGCBLIST_LOCKING, we can't use
1198 * rcu_nocb_unlock_irqrestore() anymore.
1199 */
1200 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1201
1202 /* Sanity check */
1203 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1204
1205
1206 return 0;
1207 }
1208
rcu_nocb_cpu_deoffload(int cpu)1209 int rcu_nocb_cpu_deoffload(int cpu)
1210 {
1211 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1212 int ret = 0;
1213
1214 cpus_read_lock();
1215 mutex_lock(&rcu_state.barrier_mutex);
1216 if (rcu_rdp_is_offloaded(rdp)) {
1217 if (cpu_online(cpu)) {
1218 ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp);
1219 if (!ret)
1220 cpumask_clear_cpu(cpu, rcu_nocb_mask);
1221 } else {
1222 pr_info("NOCB: Cannot CB-deoffload offline CPU %d\n", rdp->cpu);
1223 ret = -EINVAL;
1224 }
1225 }
1226 mutex_unlock(&rcu_state.barrier_mutex);
1227 cpus_read_unlock();
1228
1229 return ret;
1230 }
1231 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);
1232
rcu_nocb_rdp_offload(void * arg)1233 static long rcu_nocb_rdp_offload(void *arg)
1234 {
1235 struct rcu_data *rdp = arg;
1236 struct rcu_segcblist *cblist = &rdp->cblist;
1237 unsigned long flags;
1238 int wake_gp;
1239 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1240
1241 WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
1242 /*
1243 * For now we only support re-offload, ie: the rdp must have been
1244 * offloaded on boot first.
1245 */
1246 if (!rdp->nocb_gp_rdp)
1247 return -EINVAL;
1248
1249 if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread))
1250 return -EINVAL;
1251
1252 pr_info("Offloading %d\n", rdp->cpu);
1253
1254 /*
1255 * Can't use rcu_nocb_lock_irqsave() before SEGCBLIST_LOCKING
1256 * is set.
1257 */
1258 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1259
1260 /*
1261 * We didn't take the nocb lock while working on the
1262 * rdp->cblist with SEGCBLIST_LOCKING cleared (pure softirq/rcuc mode).
1263 * Every modifications that have been done previously on
1264 * rdp->cblist must be visible remotely by the nocb kthreads
1265 * upon wake up after reading the cblist flags.
1266 *
1267 * The layout against nocb_lock enforces that ordering:
1268 *
1269 * __rcu_nocb_rdp_offload() nocb_cb_wait()/nocb_gp_wait()
1270 * ------------------------- ----------------------------
1271 * WRITE callbacks rcu_nocb_lock()
1272 * rcu_nocb_lock() READ flags
1273 * WRITE flags READ callbacks
1274 * rcu_nocb_unlock() rcu_nocb_unlock()
1275 */
1276 wake_gp = rdp_offload_toggle(rdp, true, flags);
1277 if (wake_gp)
1278 wake_up_process(rdp_gp->nocb_gp_kthread);
1279 swait_event_exclusive(rdp->nocb_state_wq,
1280 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) &&
1281 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
1282
1283 /*
1284 * All kthreads are ready to work, we can finally relieve rcu_core() and
1285 * enable nocb bypass.
1286 */
1287 rcu_nocb_lock_irqsave(rdp, flags);
1288 rcu_segcblist_clear_flags(cblist, SEGCBLIST_RCU_CORE);
1289 rcu_nocb_unlock_irqrestore(rdp, flags);
1290
1291 return 0;
1292 }
1293
rcu_nocb_cpu_offload(int cpu)1294 int rcu_nocb_cpu_offload(int cpu)
1295 {
1296 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1297 int ret = 0;
1298
1299 cpus_read_lock();
1300 mutex_lock(&rcu_state.barrier_mutex);
1301 if (!rcu_rdp_is_offloaded(rdp)) {
1302 if (cpu_online(cpu)) {
1303 ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp);
1304 if (!ret)
1305 cpumask_set_cpu(cpu, rcu_nocb_mask);
1306 } else {
1307 pr_info("NOCB: Cannot CB-offload offline CPU %d\n", rdp->cpu);
1308 ret = -EINVAL;
1309 }
1310 }
1311 mutex_unlock(&rcu_state.barrier_mutex);
1312 cpus_read_unlock();
1313
1314 return ret;
1315 }
1316 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
1317
1318 #ifdef CONFIG_RCU_LAZY
1319 static unsigned long
lazy_rcu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1320 lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1321 {
1322 int cpu;
1323 unsigned long count = 0;
1324
1325 if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
1326 return 0;
1327
1328 /* Protect rcu_nocb_mask against concurrent (de-)offloading. */
1329 if (!mutex_trylock(&rcu_state.barrier_mutex))
1330 return 0;
1331
1332 /* Snapshot count of all CPUs */
1333 for_each_cpu(cpu, rcu_nocb_mask) {
1334 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1335
1336 count += READ_ONCE(rdp->lazy_len);
1337 }
1338
1339 mutex_unlock(&rcu_state.barrier_mutex);
1340
1341 return count ? count : SHRINK_EMPTY;
1342 }
1343
1344 static unsigned long
lazy_rcu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1345 lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1346 {
1347 int cpu;
1348 unsigned long flags;
1349 unsigned long count = 0;
1350
1351 if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
1352 return 0;
1353 /*
1354 * Protect against concurrent (de-)offloading. Otherwise nocb locking
1355 * may be ignored or imbalanced.
1356 */
1357 if (!mutex_trylock(&rcu_state.barrier_mutex)) {
1358 /*
1359 * But really don't insist if barrier_mutex is contended since we
1360 * can't guarantee that it will never engage in a dependency
1361 * chain involving memory allocation. The lock is seldom contended
1362 * anyway.
1363 */
1364 return 0;
1365 }
1366
1367 /* Snapshot count of all CPUs */
1368 for_each_cpu(cpu, rcu_nocb_mask) {
1369 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1370 int _count;
1371
1372 if (WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)))
1373 continue;
1374
1375 if (!READ_ONCE(rdp->lazy_len))
1376 continue;
1377
1378 rcu_nocb_lock_irqsave(rdp, flags);
1379 /*
1380 * Recheck under the nocb lock. Since we are not holding the bypass
1381 * lock we may still race with increments from the enqueuer but still
1382 * we know for sure if there is at least one lazy callback.
1383 */
1384 _count = READ_ONCE(rdp->lazy_len);
1385 if (!_count) {
1386 rcu_nocb_unlock_irqrestore(rdp, flags);
1387 continue;
1388 }
1389 rcu_nocb_try_flush_bypass(rdp, jiffies);
1390 rcu_nocb_unlock_irqrestore(rdp, flags);
1391 wake_nocb_gp(rdp, false);
1392 sc->nr_to_scan -= _count;
1393 count += _count;
1394 if (sc->nr_to_scan <= 0)
1395 break;
1396 }
1397
1398 mutex_unlock(&rcu_state.barrier_mutex);
1399
1400 return count ? count : SHRINK_STOP;
1401 }
1402
1403 static struct shrinker lazy_rcu_shrinker = {
1404 .count_objects = lazy_rcu_shrink_count,
1405 .scan_objects = lazy_rcu_shrink_scan,
1406 .batch = 0,
1407 .seeks = DEFAULT_SEEKS,
1408 };
1409 #endif // #ifdef CONFIG_RCU_LAZY
1410
rcu_init_nohz(void)1411 void __init rcu_init_nohz(void)
1412 {
1413 int cpu;
1414 struct rcu_data *rdp;
1415 const struct cpumask *cpumask = NULL;
1416
1417 #if defined(CONFIG_NO_HZ_FULL)
1418 if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask))
1419 cpumask = tick_nohz_full_mask;
1420 #endif
1421
1422 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) &&
1423 !rcu_state.nocb_is_setup && !cpumask)
1424 cpumask = cpu_possible_mask;
1425
1426 if (cpumask) {
1427 if (!cpumask_available(rcu_nocb_mask)) {
1428 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
1429 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
1430 return;
1431 }
1432 }
1433
1434 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, cpumask);
1435 rcu_state.nocb_is_setup = true;
1436 }
1437
1438 if (!rcu_state.nocb_is_setup)
1439 return;
1440
1441 #ifdef CONFIG_RCU_LAZY
1442 if (register_shrinker(&lazy_rcu_shrinker, "rcu-lazy"))
1443 pr_err("Failed to register lazy_rcu shrinker!\n");
1444 #endif // #ifdef CONFIG_RCU_LAZY
1445
1446 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
1447 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
1448 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
1449 rcu_nocb_mask);
1450 }
1451 if (cpumask_empty(rcu_nocb_mask))
1452 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
1453 else
1454 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
1455 cpumask_pr_args(rcu_nocb_mask));
1456 if (rcu_nocb_poll)
1457 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
1458
1459 for_each_cpu(cpu, rcu_nocb_mask) {
1460 rdp = per_cpu_ptr(&rcu_data, cpu);
1461 if (rcu_segcblist_empty(&rdp->cblist))
1462 rcu_segcblist_init(&rdp->cblist);
1463 rcu_segcblist_offload(&rdp->cblist, true);
1464 rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP);
1465 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_RCU_CORE);
1466 }
1467 rcu_organize_nocb_kthreads();
1468 }
1469
1470 /* Initialize per-rcu_data variables for no-CBs CPUs. */
rcu_boot_init_nocb_percpu_data(struct rcu_data * rdp)1471 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1472 {
1473 init_swait_queue_head(&rdp->nocb_cb_wq);
1474 init_swait_queue_head(&rdp->nocb_gp_wq);
1475 init_swait_queue_head(&rdp->nocb_state_wq);
1476 raw_spin_lock_init(&rdp->nocb_lock);
1477 raw_spin_lock_init(&rdp->nocb_bypass_lock);
1478 raw_spin_lock_init(&rdp->nocb_gp_lock);
1479 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
1480 rcu_cblist_init(&rdp->nocb_bypass);
1481 WRITE_ONCE(rdp->lazy_len, 0);
1482 mutex_init(&rdp->nocb_gp_kthread_mutex);
1483 }
1484
1485 /*
1486 * If the specified CPU is a no-CBs CPU that does not already have its
1487 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread
1488 * for this CPU's group has not yet been created, spawn it as well.
1489 */
rcu_spawn_cpu_nocb_kthread(int cpu)1490 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1491 {
1492 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1493 struct rcu_data *rdp_gp;
1494 struct task_struct *t;
1495 struct sched_param sp;
1496
1497 if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup)
1498 return;
1499
1500 /* If there already is an rcuo kthread, then nothing to do. */
1501 if (rdp->nocb_cb_kthread)
1502 return;
1503
1504 /* If we didn't spawn the GP kthread first, reorganize! */
1505 sp.sched_priority = kthread_prio;
1506 rdp_gp = rdp->nocb_gp_rdp;
1507 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1508 if (!rdp_gp->nocb_gp_kthread) {
1509 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
1510 "rcuog/%d", rdp_gp->cpu);
1511 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) {
1512 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1513 goto end;
1514 }
1515 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
1516 if (kthread_prio)
1517 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1518 }
1519 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1520
1521 /* Spawn the kthread for this CPU. */
1522 t = kthread_run(rcu_nocb_cb_kthread, rdp,
1523 "rcuo%c/%d", rcu_state.abbr, cpu);
1524 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
1525 goto end;
1526
1527 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio)
1528 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1529
1530 WRITE_ONCE(rdp->nocb_cb_kthread, t);
1531 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
1532 return;
1533 end:
1534 mutex_lock(&rcu_state.barrier_mutex);
1535 if (rcu_rdp_is_offloaded(rdp)) {
1536 rcu_nocb_rdp_deoffload(rdp);
1537 cpumask_clear_cpu(cpu, rcu_nocb_mask);
1538 }
1539 mutex_unlock(&rcu_state.barrier_mutex);
1540 }
1541
1542 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */
1543 static int rcu_nocb_gp_stride = -1;
1544 module_param(rcu_nocb_gp_stride, int, 0444);
1545
1546 /*
1547 * Initialize GP-CB relationships for all no-CBs CPU.
1548 */
rcu_organize_nocb_kthreads(void)1549 static void __init rcu_organize_nocb_kthreads(void)
1550 {
1551 int cpu;
1552 bool firsttime = true;
1553 bool gotnocbs = false;
1554 bool gotnocbscbs = true;
1555 int ls = rcu_nocb_gp_stride;
1556 int nl = 0; /* Next GP kthread. */
1557 struct rcu_data *rdp;
1558 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */
1559
1560 if (!cpumask_available(rcu_nocb_mask))
1561 return;
1562 if (ls == -1) {
1563 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
1564 rcu_nocb_gp_stride = ls;
1565 }
1566
1567 /*
1568 * Each pass through this loop sets up one rcu_data structure.
1569 * Should the corresponding CPU come online in the future, then
1570 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
1571 */
1572 for_each_possible_cpu(cpu) {
1573 rdp = per_cpu_ptr(&rcu_data, cpu);
1574 if (rdp->cpu >= nl) {
1575 /* New GP kthread, set up for CBs & next GP. */
1576 gotnocbs = true;
1577 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
1578 rdp_gp = rdp;
1579 INIT_LIST_HEAD(&rdp->nocb_head_rdp);
1580 if (dump_tree) {
1581 if (!firsttime)
1582 pr_cont("%s\n", gotnocbscbs
1583 ? "" : " (self only)");
1584 gotnocbscbs = false;
1585 firsttime = false;
1586 pr_alert("%s: No-CB GP kthread CPU %d:",
1587 __func__, cpu);
1588 }
1589 } else {
1590 /* Another CB kthread, link to previous GP kthread. */
1591 gotnocbscbs = true;
1592 if (dump_tree)
1593 pr_cont(" %d", cpu);
1594 }
1595 rdp->nocb_gp_rdp = rdp_gp;
1596 if (cpumask_test_cpu(cpu, rcu_nocb_mask))
1597 list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
1598 }
1599 if (gotnocbs && dump_tree)
1600 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
1601 }
1602
1603 /*
1604 * Bind the current task to the offloaded CPUs. If there are no offloaded
1605 * CPUs, leave the task unbound. Splat if the bind attempt fails.
1606 */
rcu_bind_current_to_nocb(void)1607 void rcu_bind_current_to_nocb(void)
1608 {
1609 if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask))
1610 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
1611 }
1612 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
1613
1614 // The ->on_cpu field is available only in CONFIG_SMP=y, so...
1615 #ifdef CONFIG_SMP
show_rcu_should_be_on_cpu(struct task_struct * tsp)1616 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1617 {
1618 return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
1619 }
1620 #else // #ifdef CONFIG_SMP
show_rcu_should_be_on_cpu(struct task_struct * tsp)1621 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1622 {
1623 return "";
1624 }
1625 #endif // #else #ifdef CONFIG_SMP
1626
1627 /*
1628 * Dump out nocb grace-period kthread state for the specified rcu_data
1629 * structure.
1630 */
show_rcu_nocb_gp_state(struct rcu_data * rdp)1631 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
1632 {
1633 struct rcu_node *rnp = rdp->mynode;
1634
1635 pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
1636 rdp->cpu,
1637 "kK"[!!rdp->nocb_gp_kthread],
1638 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
1639 "dD"[!!rdp->nocb_defer_wakeup],
1640 "tT"[timer_pending(&rdp->nocb_timer)],
1641 "sS"[!!rdp->nocb_gp_sleep],
1642 ".W"[swait_active(&rdp->nocb_gp_wq)],
1643 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
1644 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
1645 ".B"[!!rdp->nocb_gp_bypass],
1646 ".G"[!!rdp->nocb_gp_gp],
1647 (long)rdp->nocb_gp_seq,
1648 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
1649 rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
1650 rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
1651 show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread));
1652 }
1653
1654 /* Dump out nocb kthread state for the specified rcu_data structure. */
show_rcu_nocb_state(struct rcu_data * rdp)1655 static void show_rcu_nocb_state(struct rcu_data *rdp)
1656 {
1657 char bufw[20];
1658 char bufr[20];
1659 struct rcu_data *nocb_next_rdp;
1660 struct rcu_segcblist *rsclp = &rdp->cblist;
1661 bool waslocked;
1662 bool wassleep;
1663
1664 if (rdp->nocb_gp_rdp == rdp)
1665 show_rcu_nocb_gp_state(rdp);
1666
1667 nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp,
1668 &rdp->nocb_entry_rdp,
1669 typeof(*rdp),
1670 nocb_entry_rdp);
1671
1672 sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]);
1673 sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
1674 pr_info(" CB %d^%d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n",
1675 rdp->cpu, rdp->nocb_gp_rdp->cpu,
1676 nocb_next_rdp ? nocb_next_rdp->cpu : -1,
1677 "kK"[!!rdp->nocb_cb_kthread],
1678 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
1679 "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
1680 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
1681 "sS"[!!rdp->nocb_cb_sleep],
1682 ".W"[swait_active(&rdp->nocb_cb_wq)],
1683 jiffies - rdp->nocb_bypass_first,
1684 jiffies - rdp->nocb_nobypass_last,
1685 rdp->nocb_nobypass_count,
1686 ".D"[rcu_segcblist_ready_cbs(rsclp)],
1687 ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
1688 rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
1689 ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
1690 rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
1691 ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
1692 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
1693 rcu_segcblist_n_cbs(&rdp->cblist),
1694 rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
1695 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1,
1696 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
1697
1698 /* It is OK for GP kthreads to have GP state. */
1699 if (rdp->nocb_gp_rdp == rdp)
1700 return;
1701
1702 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
1703 wassleep = swait_active(&rdp->nocb_gp_wq);
1704 if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
1705 return; /* Nothing untoward. */
1706
1707 pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
1708 "lL"[waslocked],
1709 "dD"[!!rdp->nocb_defer_wakeup],
1710 "sS"[!!rdp->nocb_gp_sleep],
1711 ".W"[wassleep]);
1712 }
1713
1714 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
1715
rcu_lockdep_is_held_nocb(struct rcu_data * rdp)1716 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
1717 {
1718 return 0;
1719 }
1720
rcu_current_is_nocb_kthread(struct rcu_data * rdp)1721 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
1722 {
1723 return false;
1724 }
1725
1726 /* No ->nocb_lock to acquire. */
rcu_nocb_lock(struct rcu_data * rdp)1727 static void rcu_nocb_lock(struct rcu_data *rdp)
1728 {
1729 }
1730
1731 /* No ->nocb_lock to release. */
rcu_nocb_unlock(struct rcu_data * rdp)1732 static void rcu_nocb_unlock(struct rcu_data *rdp)
1733 {
1734 }
1735
1736 /* No ->nocb_lock to release. */
rcu_nocb_unlock_irqrestore(struct rcu_data * rdp,unsigned long flags)1737 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1738 unsigned long flags)
1739 {
1740 local_irq_restore(flags);
1741 }
1742
1743 /* Lockdep check that ->cblist may be safely accessed. */
rcu_lockdep_assert_cblist_protected(struct rcu_data * rdp)1744 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1745 {
1746 lockdep_assert_irqs_disabled();
1747 }
1748
rcu_nocb_gp_cleanup(struct swait_queue_head * sq)1749 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1750 {
1751 }
1752
rcu_nocb_gp_get(struct rcu_node * rnp)1753 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1754 {
1755 return NULL;
1756 }
1757
rcu_init_one_nocb(struct rcu_node * rnp)1758 static void rcu_init_one_nocb(struct rcu_node *rnp)
1759 {
1760 }
1761
wake_nocb_gp(struct rcu_data * rdp,bool force)1762 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
1763 {
1764 return false;
1765 }
1766
rcu_nocb_flush_bypass(struct rcu_data * rdp,struct rcu_head * rhp,unsigned long j,bool lazy)1767 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1768 unsigned long j, bool lazy)
1769 {
1770 return true;
1771 }
1772
rcu_nocb_try_bypass(struct rcu_data * rdp,struct rcu_head * rhp,bool * was_alldone,unsigned long flags,bool lazy)1773 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1774 bool *was_alldone, unsigned long flags, bool lazy)
1775 {
1776 return false;
1777 }
1778
__call_rcu_nocb_wake(struct rcu_data * rdp,bool was_empty,unsigned long flags)1779 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
1780 unsigned long flags)
1781 {
1782 WARN_ON_ONCE(1); /* Should be dead code! */
1783 }
1784
rcu_boot_init_nocb_percpu_data(struct rcu_data * rdp)1785 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1786 {
1787 }
1788
rcu_nocb_need_deferred_wakeup(struct rcu_data * rdp,int level)1789 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1790 {
1791 return false;
1792 }
1793
do_nocb_deferred_wakeup(struct rcu_data * rdp)1794 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1795 {
1796 return false;
1797 }
1798
rcu_spawn_cpu_nocb_kthread(int cpu)1799 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1800 {
1801 }
1802
show_rcu_nocb_state(struct rcu_data * rdp)1803 static void show_rcu_nocb_state(struct rcu_data *rdp)
1804 {
1805 }
1806
1807 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
1808