1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * Cyrix stuff, June 1998 by:
6 * - Rafael R. Reilova (moved everything from head.S),
7 * <rreilova@ececs.uc.edu>
8 * - Channing Corn (tests & fixes),
9 * - Andrew D. Balsa (code cleanup).
10 */
11 #include <linux/init.h>
12 #include <linux/cpu.h>
13 #include <linux/module.h>
14 #include <linux/nospec.h>
15 #include <linux/prctl.h>
16 #include <linux/sched/smt.h>
17 #include <linux/pgtable.h>
18 #include <linux/bpf.h>
19
20 #include <asm/spec-ctrl.h>
21 #include <asm/cmdline.h>
22 #include <asm/bugs.h>
23 #include <asm/processor.h>
24 #include <asm/processor-flags.h>
25 #include <asm/fpu/api.h>
26 #include <asm/msr.h>
27 #include <asm/vmx.h>
28 #include <asm/paravirt.h>
29 #include <asm/intel-family.h>
30 #include <asm/e820/api.h>
31 #include <asm/hypervisor.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cpu.h>
34
35 #include "cpu.h"
36
37 static void __init spectre_v1_select_mitigation(void);
38 static void __init spectre_v2_select_mitigation(void);
39 static void __init retbleed_select_mitigation(void);
40 static void __init spectre_v2_user_select_mitigation(void);
41 static void __init ssb_select_mitigation(void);
42 static void __init l1tf_select_mitigation(void);
43 static void __init mds_select_mitigation(void);
44 static void __init md_clear_update_mitigation(void);
45 static void __init md_clear_select_mitigation(void);
46 static void __init taa_select_mitigation(void);
47 static void __init mmio_select_mitigation(void);
48 static void __init srbds_select_mitigation(void);
49 static void __init l1d_flush_select_mitigation(void);
50 static void __init srso_select_mitigation(void);
51 static void __init gds_select_mitigation(void);
52
53 /* The base value of the SPEC_CTRL MSR without task-specific bits set */
54 u64 x86_spec_ctrl_base;
55 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
56
57 /* The current value of the SPEC_CTRL MSR with task-specific bits set */
58 DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
59 EXPORT_SYMBOL_GPL(x86_spec_ctrl_current);
60
61 u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB;
62 EXPORT_SYMBOL_GPL(x86_pred_cmd);
63
64 static u64 __ro_after_init x86_arch_cap_msr;
65
66 static DEFINE_MUTEX(spec_ctrl_mutex);
67
68 void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk;
69
70 /* Update SPEC_CTRL MSR and its cached copy unconditionally */
update_spec_ctrl(u64 val)71 static void update_spec_ctrl(u64 val)
72 {
73 this_cpu_write(x86_spec_ctrl_current, val);
74 wrmsrl(MSR_IA32_SPEC_CTRL, val);
75 }
76
77 /*
78 * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
79 * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
80 */
update_spec_ctrl_cond(u64 val)81 void update_spec_ctrl_cond(u64 val)
82 {
83 if (this_cpu_read(x86_spec_ctrl_current) == val)
84 return;
85
86 this_cpu_write(x86_spec_ctrl_current, val);
87
88 /*
89 * When KERNEL_IBRS this MSR is written on return-to-user, unless
90 * forced the update can be delayed until that time.
91 */
92 if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
93 wrmsrl(MSR_IA32_SPEC_CTRL, val);
94 }
95
spec_ctrl_current(void)96 noinstr u64 spec_ctrl_current(void)
97 {
98 return this_cpu_read(x86_spec_ctrl_current);
99 }
100 EXPORT_SYMBOL_GPL(spec_ctrl_current);
101
102 /*
103 * AMD specific MSR info for Speculative Store Bypass control.
104 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
105 */
106 u64 __ro_after_init x86_amd_ls_cfg_base;
107 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
108
109 /* Control conditional STIBP in switch_to() */
110 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
111 /* Control conditional IBPB in switch_mm() */
112 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
113 /* Control unconditional IBPB in switch_mm() */
114 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
115
116 /* Control MDS CPU buffer clear before idling (halt, mwait) */
117 DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
118 EXPORT_SYMBOL_GPL(mds_idle_clear);
119
120 /*
121 * Controls whether l1d flush based mitigations are enabled,
122 * based on hw features and admin setting via boot parameter
123 * defaults to false
124 */
125 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
126
127 /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
128 DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
129 EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
130
cpu_select_mitigations(void)131 void __init cpu_select_mitigations(void)
132 {
133 /*
134 * Read the SPEC_CTRL MSR to account for reserved bits which may
135 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
136 * init code as it is not enumerated and depends on the family.
137 */
138 if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
139 rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
140
141 /*
142 * Previously running kernel (kexec), may have some controls
143 * turned ON. Clear them and let the mitigations setup below
144 * rediscover them based on configuration.
145 */
146 x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
147 }
148
149 x86_arch_cap_msr = x86_read_arch_cap_msr();
150
151 /* Select the proper CPU mitigations before patching alternatives: */
152 spectre_v1_select_mitigation();
153 spectre_v2_select_mitigation();
154 /*
155 * retbleed_select_mitigation() relies on the state set by
156 * spectre_v2_select_mitigation(); specifically it wants to know about
157 * spectre_v2=ibrs.
158 */
159 retbleed_select_mitigation();
160 /*
161 * spectre_v2_user_select_mitigation() relies on the state set by
162 * retbleed_select_mitigation(); specifically the STIBP selection is
163 * forced for UNRET or IBPB.
164 */
165 spectre_v2_user_select_mitigation();
166 ssb_select_mitigation();
167 l1tf_select_mitigation();
168 md_clear_select_mitigation();
169 srbds_select_mitigation();
170 l1d_flush_select_mitigation();
171
172 /*
173 * srso_select_mitigation() depends and must run after
174 * retbleed_select_mitigation().
175 */
176 srso_select_mitigation();
177 gds_select_mitigation();
178 }
179
180 /*
181 * NOTE: This function is *only* called for SVM, since Intel uses
182 * MSR_IA32_SPEC_CTRL for SSBD.
183 */
184 void
x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl,bool setguest)185 x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
186 {
187 u64 guestval, hostval;
188 struct thread_info *ti = current_thread_info();
189
190 /*
191 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
192 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
193 */
194 if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
195 !static_cpu_has(X86_FEATURE_VIRT_SSBD))
196 return;
197
198 /*
199 * If the host has SSBD mitigation enabled, force it in the host's
200 * virtual MSR value. If its not permanently enabled, evaluate
201 * current's TIF_SSBD thread flag.
202 */
203 if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
204 hostval = SPEC_CTRL_SSBD;
205 else
206 hostval = ssbd_tif_to_spec_ctrl(ti->flags);
207
208 /* Sanitize the guest value */
209 guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
210
211 if (hostval != guestval) {
212 unsigned long tif;
213
214 tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
215 ssbd_spec_ctrl_to_tif(hostval);
216
217 speculation_ctrl_update(tif);
218 }
219 }
220 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
221
x86_amd_ssb_disable(void)222 static void x86_amd_ssb_disable(void)
223 {
224 u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
225
226 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
227 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
228 else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
229 wrmsrl(MSR_AMD64_LS_CFG, msrval);
230 }
231
232 #undef pr_fmt
233 #define pr_fmt(fmt) "MDS: " fmt
234
235 /* Default mitigation for MDS-affected CPUs */
236 static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
237 static bool mds_nosmt __ro_after_init = false;
238
239 static const char * const mds_strings[] = {
240 [MDS_MITIGATION_OFF] = "Vulnerable",
241 [MDS_MITIGATION_FULL] = "Mitigation: Clear CPU buffers",
242 [MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode",
243 };
244
mds_select_mitigation(void)245 static void __init mds_select_mitigation(void)
246 {
247 if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
248 mds_mitigation = MDS_MITIGATION_OFF;
249 return;
250 }
251
252 if (mds_mitigation == MDS_MITIGATION_FULL) {
253 if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
254 mds_mitigation = MDS_MITIGATION_VMWERV;
255
256 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
257
258 if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
259 (mds_nosmt || cpu_mitigations_auto_nosmt()))
260 cpu_smt_disable(false);
261 }
262 }
263
mds_cmdline(char * str)264 static int __init mds_cmdline(char *str)
265 {
266 if (!boot_cpu_has_bug(X86_BUG_MDS))
267 return 0;
268
269 if (!str)
270 return -EINVAL;
271
272 if (!strcmp(str, "off"))
273 mds_mitigation = MDS_MITIGATION_OFF;
274 else if (!strcmp(str, "full"))
275 mds_mitigation = MDS_MITIGATION_FULL;
276 else if (!strcmp(str, "full,nosmt")) {
277 mds_mitigation = MDS_MITIGATION_FULL;
278 mds_nosmt = true;
279 }
280
281 return 0;
282 }
283 early_param("mds", mds_cmdline);
284
285 #undef pr_fmt
286 #define pr_fmt(fmt) "TAA: " fmt
287
288 enum taa_mitigations {
289 TAA_MITIGATION_OFF,
290 TAA_MITIGATION_UCODE_NEEDED,
291 TAA_MITIGATION_VERW,
292 TAA_MITIGATION_TSX_DISABLED,
293 };
294
295 /* Default mitigation for TAA-affected CPUs */
296 static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
297 static bool taa_nosmt __ro_after_init;
298
299 static const char * const taa_strings[] = {
300 [TAA_MITIGATION_OFF] = "Vulnerable",
301 [TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
302 [TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
303 [TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled",
304 };
305
taa_select_mitigation(void)306 static void __init taa_select_mitigation(void)
307 {
308 if (!boot_cpu_has_bug(X86_BUG_TAA)) {
309 taa_mitigation = TAA_MITIGATION_OFF;
310 return;
311 }
312
313 /* TSX previously disabled by tsx=off */
314 if (!boot_cpu_has(X86_FEATURE_RTM)) {
315 taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
316 return;
317 }
318
319 if (cpu_mitigations_off()) {
320 taa_mitigation = TAA_MITIGATION_OFF;
321 return;
322 }
323
324 /*
325 * TAA mitigation via VERW is turned off if both
326 * tsx_async_abort=off and mds=off are specified.
327 */
328 if (taa_mitigation == TAA_MITIGATION_OFF &&
329 mds_mitigation == MDS_MITIGATION_OFF)
330 return;
331
332 if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
333 taa_mitigation = TAA_MITIGATION_VERW;
334 else
335 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
336
337 /*
338 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
339 * A microcode update fixes this behavior to clear CPU buffers. It also
340 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
341 * ARCH_CAP_TSX_CTRL_MSR bit.
342 *
343 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
344 * update is required.
345 */
346 if ( (x86_arch_cap_msr & ARCH_CAP_MDS_NO) &&
347 !(x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR))
348 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
349
350 /*
351 * TSX is enabled, select alternate mitigation for TAA which is
352 * the same as MDS. Enable MDS static branch to clear CPU buffers.
353 *
354 * For guests that can't determine whether the correct microcode is
355 * present on host, enable the mitigation for UCODE_NEEDED as well.
356 */
357 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
358
359 if (taa_nosmt || cpu_mitigations_auto_nosmt())
360 cpu_smt_disable(false);
361 }
362
tsx_async_abort_parse_cmdline(char * str)363 static int __init tsx_async_abort_parse_cmdline(char *str)
364 {
365 if (!boot_cpu_has_bug(X86_BUG_TAA))
366 return 0;
367
368 if (!str)
369 return -EINVAL;
370
371 if (!strcmp(str, "off")) {
372 taa_mitigation = TAA_MITIGATION_OFF;
373 } else if (!strcmp(str, "full")) {
374 taa_mitigation = TAA_MITIGATION_VERW;
375 } else if (!strcmp(str, "full,nosmt")) {
376 taa_mitigation = TAA_MITIGATION_VERW;
377 taa_nosmt = true;
378 }
379
380 return 0;
381 }
382 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
383
384 #undef pr_fmt
385 #define pr_fmt(fmt) "MMIO Stale Data: " fmt
386
387 enum mmio_mitigations {
388 MMIO_MITIGATION_OFF,
389 MMIO_MITIGATION_UCODE_NEEDED,
390 MMIO_MITIGATION_VERW,
391 };
392
393 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */
394 static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
395 static bool mmio_nosmt __ro_after_init = false;
396
397 static const char * const mmio_strings[] = {
398 [MMIO_MITIGATION_OFF] = "Vulnerable",
399 [MMIO_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
400 [MMIO_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
401 };
402
mmio_select_mitigation(void)403 static void __init mmio_select_mitigation(void)
404 {
405 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
406 boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
407 cpu_mitigations_off()) {
408 mmio_mitigation = MMIO_MITIGATION_OFF;
409 return;
410 }
411
412 if (mmio_mitigation == MMIO_MITIGATION_OFF)
413 return;
414
415 /*
416 * Enable CPU buffer clear mitigation for host and VMM, if also affected
417 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
418 */
419 if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
420 boot_cpu_has(X86_FEATURE_RTM)))
421 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
422
423 /*
424 * X86_FEATURE_CLEAR_CPU_BUF could be enabled by other VERW based
425 * mitigations, disable KVM-only mitigation in that case.
426 */
427 if (boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
428 static_branch_disable(&mmio_stale_data_clear);
429 else
430 static_branch_enable(&mmio_stale_data_clear);
431
432 /*
433 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
434 * be propagated to uncore buffers, clearing the Fill buffers on idle
435 * is required irrespective of SMT state.
436 */
437 if (!(x86_arch_cap_msr & ARCH_CAP_FBSDP_NO))
438 static_branch_enable(&mds_idle_clear);
439
440 /*
441 * Check if the system has the right microcode.
442 *
443 * CPU Fill buffer clear mitigation is enumerated by either an explicit
444 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
445 * affected systems.
446 */
447 if ((x86_arch_cap_msr & ARCH_CAP_FB_CLEAR) ||
448 (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
449 boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
450 !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)))
451 mmio_mitigation = MMIO_MITIGATION_VERW;
452 else
453 mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
454
455 if (mmio_nosmt || cpu_mitigations_auto_nosmt())
456 cpu_smt_disable(false);
457 }
458
mmio_stale_data_parse_cmdline(char * str)459 static int __init mmio_stale_data_parse_cmdline(char *str)
460 {
461 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
462 return 0;
463
464 if (!str)
465 return -EINVAL;
466
467 if (!strcmp(str, "off")) {
468 mmio_mitigation = MMIO_MITIGATION_OFF;
469 } else if (!strcmp(str, "full")) {
470 mmio_mitigation = MMIO_MITIGATION_VERW;
471 } else if (!strcmp(str, "full,nosmt")) {
472 mmio_mitigation = MMIO_MITIGATION_VERW;
473 mmio_nosmt = true;
474 }
475
476 return 0;
477 }
478 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
479
480 #undef pr_fmt
481 #define pr_fmt(fmt) "Register File Data Sampling: " fmt
482
483 enum rfds_mitigations {
484 RFDS_MITIGATION_OFF,
485 RFDS_MITIGATION_VERW,
486 RFDS_MITIGATION_UCODE_NEEDED,
487 };
488
489 /* Default mitigation for Register File Data Sampling */
490 static enum rfds_mitigations rfds_mitigation __ro_after_init =
491 IS_ENABLED(CONFIG_MITIGATION_RFDS) ? RFDS_MITIGATION_VERW : RFDS_MITIGATION_OFF;
492
493 static const char * const rfds_strings[] = {
494 [RFDS_MITIGATION_OFF] = "Vulnerable",
495 [RFDS_MITIGATION_VERW] = "Mitigation: Clear Register File",
496 [RFDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
497 };
498
rfds_select_mitigation(void)499 static void __init rfds_select_mitigation(void)
500 {
501 if (!boot_cpu_has_bug(X86_BUG_RFDS) || cpu_mitigations_off()) {
502 rfds_mitigation = RFDS_MITIGATION_OFF;
503 return;
504 }
505 if (rfds_mitigation == RFDS_MITIGATION_OFF)
506 return;
507
508 if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
509 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
510 else
511 rfds_mitigation = RFDS_MITIGATION_UCODE_NEEDED;
512 }
513
rfds_parse_cmdline(char * str)514 static __init int rfds_parse_cmdline(char *str)
515 {
516 if (!str)
517 return -EINVAL;
518
519 if (!boot_cpu_has_bug(X86_BUG_RFDS))
520 return 0;
521
522 if (!strcmp(str, "off"))
523 rfds_mitigation = RFDS_MITIGATION_OFF;
524 else if (!strcmp(str, "on"))
525 rfds_mitigation = RFDS_MITIGATION_VERW;
526
527 return 0;
528 }
529 early_param("reg_file_data_sampling", rfds_parse_cmdline);
530
531 #undef pr_fmt
532 #define pr_fmt(fmt) "" fmt
533
md_clear_update_mitigation(void)534 static void __init md_clear_update_mitigation(void)
535 {
536 if (cpu_mitigations_off())
537 return;
538
539 if (!boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
540 goto out;
541
542 /*
543 * X86_FEATURE_CLEAR_CPU_BUF is now enabled. Update MDS, TAA and MMIO
544 * Stale Data mitigation, if necessary.
545 */
546 if (mds_mitigation == MDS_MITIGATION_OFF &&
547 boot_cpu_has_bug(X86_BUG_MDS)) {
548 mds_mitigation = MDS_MITIGATION_FULL;
549 mds_select_mitigation();
550 }
551 if (taa_mitigation == TAA_MITIGATION_OFF &&
552 boot_cpu_has_bug(X86_BUG_TAA)) {
553 taa_mitigation = TAA_MITIGATION_VERW;
554 taa_select_mitigation();
555 }
556 /*
557 * MMIO_MITIGATION_OFF is not checked here so that mmio_stale_data_clear
558 * gets updated correctly as per X86_FEATURE_CLEAR_CPU_BUF state.
559 */
560 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
561 mmio_mitigation = MMIO_MITIGATION_VERW;
562 mmio_select_mitigation();
563 }
564 if (rfds_mitigation == RFDS_MITIGATION_OFF &&
565 boot_cpu_has_bug(X86_BUG_RFDS)) {
566 rfds_mitigation = RFDS_MITIGATION_VERW;
567 rfds_select_mitigation();
568 }
569 out:
570 if (boot_cpu_has_bug(X86_BUG_MDS))
571 pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
572 if (boot_cpu_has_bug(X86_BUG_TAA))
573 pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
574 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
575 pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
576 else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
577 pr_info("MMIO Stale Data: Unknown: No mitigations\n");
578 if (boot_cpu_has_bug(X86_BUG_RFDS))
579 pr_info("Register File Data Sampling: %s\n", rfds_strings[rfds_mitigation]);
580 }
581
md_clear_select_mitigation(void)582 static void __init md_clear_select_mitigation(void)
583 {
584 mds_select_mitigation();
585 taa_select_mitigation();
586 mmio_select_mitigation();
587 rfds_select_mitigation();
588
589 /*
590 * As these mitigations are inter-related and rely on VERW instruction
591 * to clear the microarchitural buffers, update and print their status
592 * after mitigation selection is done for each of these vulnerabilities.
593 */
594 md_clear_update_mitigation();
595 }
596
597 #undef pr_fmt
598 #define pr_fmt(fmt) "SRBDS: " fmt
599
600 enum srbds_mitigations {
601 SRBDS_MITIGATION_OFF,
602 SRBDS_MITIGATION_UCODE_NEEDED,
603 SRBDS_MITIGATION_FULL,
604 SRBDS_MITIGATION_TSX_OFF,
605 SRBDS_MITIGATION_HYPERVISOR,
606 };
607
608 static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
609
610 static const char * const srbds_strings[] = {
611 [SRBDS_MITIGATION_OFF] = "Vulnerable",
612 [SRBDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
613 [SRBDS_MITIGATION_FULL] = "Mitigation: Microcode",
614 [SRBDS_MITIGATION_TSX_OFF] = "Mitigation: TSX disabled",
615 [SRBDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
616 };
617
618 static bool srbds_off;
619
update_srbds_msr(void)620 void update_srbds_msr(void)
621 {
622 u64 mcu_ctrl;
623
624 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
625 return;
626
627 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
628 return;
629
630 if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
631 return;
632
633 /*
634 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
635 * being disabled and it hasn't received the SRBDS MSR microcode.
636 */
637 if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
638 return;
639
640 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
641
642 switch (srbds_mitigation) {
643 case SRBDS_MITIGATION_OFF:
644 case SRBDS_MITIGATION_TSX_OFF:
645 mcu_ctrl |= RNGDS_MITG_DIS;
646 break;
647 case SRBDS_MITIGATION_FULL:
648 mcu_ctrl &= ~RNGDS_MITG_DIS;
649 break;
650 default:
651 break;
652 }
653
654 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
655 }
656
srbds_select_mitigation(void)657 static void __init srbds_select_mitigation(void)
658 {
659 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
660 return;
661
662 /*
663 * Check to see if this is one of the MDS_NO systems supporting TSX that
664 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
665 * by Processor MMIO Stale Data vulnerability.
666 */
667 if ((x86_arch_cap_msr & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
668 !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
669 srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
670 else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
671 srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
672 else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
673 srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
674 else if (cpu_mitigations_off() || srbds_off)
675 srbds_mitigation = SRBDS_MITIGATION_OFF;
676
677 update_srbds_msr();
678 pr_info("%s\n", srbds_strings[srbds_mitigation]);
679 }
680
srbds_parse_cmdline(char * str)681 static int __init srbds_parse_cmdline(char *str)
682 {
683 if (!str)
684 return -EINVAL;
685
686 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
687 return 0;
688
689 srbds_off = !strcmp(str, "off");
690 return 0;
691 }
692 early_param("srbds", srbds_parse_cmdline);
693
694 #undef pr_fmt
695 #define pr_fmt(fmt) "L1D Flush : " fmt
696
697 enum l1d_flush_mitigations {
698 L1D_FLUSH_OFF = 0,
699 L1D_FLUSH_ON,
700 };
701
702 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
703
l1d_flush_select_mitigation(void)704 static void __init l1d_flush_select_mitigation(void)
705 {
706 if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
707 return;
708
709 static_branch_enable(&switch_mm_cond_l1d_flush);
710 pr_info("Conditional flush on switch_mm() enabled\n");
711 }
712
l1d_flush_parse_cmdline(char * str)713 static int __init l1d_flush_parse_cmdline(char *str)
714 {
715 if (!strcmp(str, "on"))
716 l1d_flush_mitigation = L1D_FLUSH_ON;
717
718 return 0;
719 }
720 early_param("l1d_flush", l1d_flush_parse_cmdline);
721
722 #undef pr_fmt
723 #define pr_fmt(fmt) "GDS: " fmt
724
725 enum gds_mitigations {
726 GDS_MITIGATION_OFF,
727 GDS_MITIGATION_UCODE_NEEDED,
728 GDS_MITIGATION_FORCE,
729 GDS_MITIGATION_FULL,
730 GDS_MITIGATION_FULL_LOCKED,
731 GDS_MITIGATION_HYPERVISOR,
732 };
733
734 #if IS_ENABLED(CONFIG_GDS_FORCE_MITIGATION)
735 static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FORCE;
736 #else
737 static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FULL;
738 #endif
739
740 static const char * const gds_strings[] = {
741 [GDS_MITIGATION_OFF] = "Vulnerable",
742 [GDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
743 [GDS_MITIGATION_FORCE] = "Mitigation: AVX disabled, no microcode",
744 [GDS_MITIGATION_FULL] = "Mitigation: Microcode",
745 [GDS_MITIGATION_FULL_LOCKED] = "Mitigation: Microcode (locked)",
746 [GDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
747 };
748
gds_ucode_mitigated(void)749 bool gds_ucode_mitigated(void)
750 {
751 return (gds_mitigation == GDS_MITIGATION_FULL ||
752 gds_mitigation == GDS_MITIGATION_FULL_LOCKED);
753 }
754 EXPORT_SYMBOL_GPL(gds_ucode_mitigated);
755
update_gds_msr(void)756 void update_gds_msr(void)
757 {
758 u64 mcu_ctrl_after;
759 u64 mcu_ctrl;
760
761 switch (gds_mitigation) {
762 case GDS_MITIGATION_OFF:
763 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
764 mcu_ctrl |= GDS_MITG_DIS;
765 break;
766 case GDS_MITIGATION_FULL_LOCKED:
767 /*
768 * The LOCKED state comes from the boot CPU. APs might not have
769 * the same state. Make sure the mitigation is enabled on all
770 * CPUs.
771 */
772 case GDS_MITIGATION_FULL:
773 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
774 mcu_ctrl &= ~GDS_MITG_DIS;
775 break;
776 case GDS_MITIGATION_FORCE:
777 case GDS_MITIGATION_UCODE_NEEDED:
778 case GDS_MITIGATION_HYPERVISOR:
779 return;
780 };
781
782 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
783
784 /*
785 * Check to make sure that the WRMSR value was not ignored. Writes to
786 * GDS_MITG_DIS will be ignored if this processor is locked but the boot
787 * processor was not.
788 */
789 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after);
790 WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after);
791 }
792
gds_select_mitigation(void)793 static void __init gds_select_mitigation(void)
794 {
795 u64 mcu_ctrl;
796
797 if (!boot_cpu_has_bug(X86_BUG_GDS))
798 return;
799
800 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
801 gds_mitigation = GDS_MITIGATION_HYPERVISOR;
802 goto out;
803 }
804
805 if (cpu_mitigations_off())
806 gds_mitigation = GDS_MITIGATION_OFF;
807 /* Will verify below that mitigation _can_ be disabled */
808
809 /* No microcode */
810 if (!(x86_arch_cap_msr & ARCH_CAP_GDS_CTRL)) {
811 if (gds_mitigation == GDS_MITIGATION_FORCE) {
812 /*
813 * This only needs to be done on the boot CPU so do it
814 * here rather than in update_gds_msr()
815 */
816 setup_clear_cpu_cap(X86_FEATURE_AVX);
817 pr_warn("Microcode update needed! Disabling AVX as mitigation.\n");
818 } else {
819 gds_mitigation = GDS_MITIGATION_UCODE_NEEDED;
820 }
821 goto out;
822 }
823
824 /* Microcode has mitigation, use it */
825 if (gds_mitigation == GDS_MITIGATION_FORCE)
826 gds_mitigation = GDS_MITIGATION_FULL;
827
828 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
829 if (mcu_ctrl & GDS_MITG_LOCKED) {
830 if (gds_mitigation == GDS_MITIGATION_OFF)
831 pr_warn("Mitigation locked. Disable failed.\n");
832
833 /*
834 * The mitigation is selected from the boot CPU. All other CPUs
835 * _should_ have the same state. If the boot CPU isn't locked
836 * but others are then update_gds_msr() will WARN() of the state
837 * mismatch. If the boot CPU is locked update_gds_msr() will
838 * ensure the other CPUs have the mitigation enabled.
839 */
840 gds_mitigation = GDS_MITIGATION_FULL_LOCKED;
841 }
842
843 update_gds_msr();
844 out:
845 pr_info("%s\n", gds_strings[gds_mitigation]);
846 }
847
gds_parse_cmdline(char * str)848 static int __init gds_parse_cmdline(char *str)
849 {
850 if (!str)
851 return -EINVAL;
852
853 if (!boot_cpu_has_bug(X86_BUG_GDS))
854 return 0;
855
856 if (!strcmp(str, "off"))
857 gds_mitigation = GDS_MITIGATION_OFF;
858 else if (!strcmp(str, "force"))
859 gds_mitigation = GDS_MITIGATION_FORCE;
860
861 return 0;
862 }
863 early_param("gather_data_sampling", gds_parse_cmdline);
864
865 #undef pr_fmt
866 #define pr_fmt(fmt) "Spectre V1 : " fmt
867
868 enum spectre_v1_mitigation {
869 SPECTRE_V1_MITIGATION_NONE,
870 SPECTRE_V1_MITIGATION_AUTO,
871 };
872
873 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
874 SPECTRE_V1_MITIGATION_AUTO;
875
876 static const char * const spectre_v1_strings[] = {
877 [SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
878 [SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
879 };
880
881 /*
882 * Does SMAP provide full mitigation against speculative kernel access to
883 * userspace?
884 */
smap_works_speculatively(void)885 static bool smap_works_speculatively(void)
886 {
887 if (!boot_cpu_has(X86_FEATURE_SMAP))
888 return false;
889
890 /*
891 * On CPUs which are vulnerable to Meltdown, SMAP does not
892 * prevent speculative access to user data in the L1 cache.
893 * Consider SMAP to be non-functional as a mitigation on these
894 * CPUs.
895 */
896 if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
897 return false;
898
899 return true;
900 }
901
spectre_v1_select_mitigation(void)902 static void __init spectre_v1_select_mitigation(void)
903 {
904 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
905 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
906 return;
907 }
908
909 if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
910 /*
911 * With Spectre v1, a user can speculatively control either
912 * path of a conditional swapgs with a user-controlled GS
913 * value. The mitigation is to add lfences to both code paths.
914 *
915 * If FSGSBASE is enabled, the user can put a kernel address in
916 * GS, in which case SMAP provides no protection.
917 *
918 * If FSGSBASE is disabled, the user can only put a user space
919 * address in GS. That makes an attack harder, but still
920 * possible if there's no SMAP protection.
921 */
922 if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
923 !smap_works_speculatively()) {
924 /*
925 * Mitigation can be provided from SWAPGS itself or
926 * PTI as the CR3 write in the Meltdown mitigation
927 * is serializing.
928 *
929 * If neither is there, mitigate with an LFENCE to
930 * stop speculation through swapgs.
931 */
932 if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
933 !boot_cpu_has(X86_FEATURE_PTI))
934 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
935
936 /*
937 * Enable lfences in the kernel entry (non-swapgs)
938 * paths, to prevent user entry from speculatively
939 * skipping swapgs.
940 */
941 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
942 }
943 }
944
945 pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
946 }
947
nospectre_v1_cmdline(char * str)948 static int __init nospectre_v1_cmdline(char *str)
949 {
950 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
951 return 0;
952 }
953 early_param("nospectre_v1", nospectre_v1_cmdline);
954
955 enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE;
956
957 #undef pr_fmt
958 #define pr_fmt(fmt) "RETBleed: " fmt
959
960 enum retbleed_mitigation {
961 RETBLEED_MITIGATION_NONE,
962 RETBLEED_MITIGATION_UNRET,
963 RETBLEED_MITIGATION_IBPB,
964 RETBLEED_MITIGATION_IBRS,
965 RETBLEED_MITIGATION_EIBRS,
966 RETBLEED_MITIGATION_STUFF,
967 };
968
969 enum retbleed_mitigation_cmd {
970 RETBLEED_CMD_OFF,
971 RETBLEED_CMD_AUTO,
972 RETBLEED_CMD_UNRET,
973 RETBLEED_CMD_IBPB,
974 RETBLEED_CMD_STUFF,
975 };
976
977 static const char * const retbleed_strings[] = {
978 [RETBLEED_MITIGATION_NONE] = "Vulnerable",
979 [RETBLEED_MITIGATION_UNRET] = "Mitigation: untrained return thunk",
980 [RETBLEED_MITIGATION_IBPB] = "Mitigation: IBPB",
981 [RETBLEED_MITIGATION_IBRS] = "Mitigation: IBRS",
982 [RETBLEED_MITIGATION_EIBRS] = "Mitigation: Enhanced IBRS",
983 [RETBLEED_MITIGATION_STUFF] = "Mitigation: Stuffing",
984 };
985
986 static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
987 RETBLEED_MITIGATION_NONE;
988 static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
989 RETBLEED_CMD_AUTO;
990
991 static int __ro_after_init retbleed_nosmt = false;
992
retbleed_parse_cmdline(char * str)993 static int __init retbleed_parse_cmdline(char *str)
994 {
995 if (!str)
996 return -EINVAL;
997
998 while (str) {
999 char *next = strchr(str, ',');
1000 if (next) {
1001 *next = 0;
1002 next++;
1003 }
1004
1005 if (!strcmp(str, "off")) {
1006 retbleed_cmd = RETBLEED_CMD_OFF;
1007 } else if (!strcmp(str, "auto")) {
1008 retbleed_cmd = RETBLEED_CMD_AUTO;
1009 } else if (!strcmp(str, "unret")) {
1010 retbleed_cmd = RETBLEED_CMD_UNRET;
1011 } else if (!strcmp(str, "ibpb")) {
1012 retbleed_cmd = RETBLEED_CMD_IBPB;
1013 } else if (!strcmp(str, "stuff")) {
1014 retbleed_cmd = RETBLEED_CMD_STUFF;
1015 } else if (!strcmp(str, "nosmt")) {
1016 retbleed_nosmt = true;
1017 } else if (!strcmp(str, "force")) {
1018 setup_force_cpu_bug(X86_BUG_RETBLEED);
1019 } else {
1020 pr_err("Ignoring unknown retbleed option (%s).", str);
1021 }
1022
1023 str = next;
1024 }
1025
1026 return 0;
1027 }
1028 early_param("retbleed", retbleed_parse_cmdline);
1029
1030 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
1031 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
1032
retbleed_select_mitigation(void)1033 static void __init retbleed_select_mitigation(void)
1034 {
1035 bool mitigate_smt = false;
1036
1037 if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
1038 return;
1039
1040 switch (retbleed_cmd) {
1041 case RETBLEED_CMD_OFF:
1042 return;
1043
1044 case RETBLEED_CMD_UNRET:
1045 if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY)) {
1046 retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1047 } else {
1048 pr_err("WARNING: kernel not compiled with CPU_UNRET_ENTRY.\n");
1049 goto do_cmd_auto;
1050 }
1051 break;
1052
1053 case RETBLEED_CMD_IBPB:
1054 if (!boot_cpu_has(X86_FEATURE_IBPB)) {
1055 pr_err("WARNING: CPU does not support IBPB.\n");
1056 goto do_cmd_auto;
1057 } else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
1058 retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1059 } else {
1060 pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
1061 goto do_cmd_auto;
1062 }
1063 break;
1064
1065 case RETBLEED_CMD_STUFF:
1066 if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING) &&
1067 spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
1068 retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1069
1070 } else {
1071 if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING))
1072 pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
1073 else
1074 pr_err("WARNING: kernel not compiled with CALL_DEPTH_TRACKING.\n");
1075
1076 goto do_cmd_auto;
1077 }
1078 break;
1079
1080 do_cmd_auto:
1081 case RETBLEED_CMD_AUTO:
1082 default:
1083 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1084 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
1085 if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY))
1086 retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1087 else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY) && boot_cpu_has(X86_FEATURE_IBPB))
1088 retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1089 }
1090
1091 /*
1092 * The Intel mitigation (IBRS or eIBRS) was already selected in
1093 * spectre_v2_select_mitigation(). 'retbleed_mitigation' will
1094 * be set accordingly below.
1095 */
1096
1097 break;
1098 }
1099
1100 switch (retbleed_mitigation) {
1101 case RETBLEED_MITIGATION_UNRET:
1102 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1103 setup_force_cpu_cap(X86_FEATURE_UNRET);
1104
1105 x86_return_thunk = retbleed_return_thunk;
1106
1107 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
1108 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
1109 pr_err(RETBLEED_UNTRAIN_MSG);
1110
1111 mitigate_smt = true;
1112 break;
1113
1114 case RETBLEED_MITIGATION_IBPB:
1115 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
1116 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
1117 mitigate_smt = true;
1118 break;
1119
1120 case RETBLEED_MITIGATION_STUFF:
1121 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1122 setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1123 x86_set_skl_return_thunk();
1124 break;
1125
1126 default:
1127 break;
1128 }
1129
1130 if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
1131 (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
1132 cpu_smt_disable(false);
1133
1134 /*
1135 * Let IBRS trump all on Intel without affecting the effects of the
1136 * retbleed= cmdline option except for call depth based stuffing
1137 */
1138 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1139 switch (spectre_v2_enabled) {
1140 case SPECTRE_V2_IBRS:
1141 retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1142 break;
1143 case SPECTRE_V2_EIBRS:
1144 case SPECTRE_V2_EIBRS_RETPOLINE:
1145 case SPECTRE_V2_EIBRS_LFENCE:
1146 retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1147 break;
1148 default:
1149 if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
1150 pr_err(RETBLEED_INTEL_MSG);
1151 }
1152 }
1153
1154 pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
1155 }
1156
1157 #undef pr_fmt
1158 #define pr_fmt(fmt) "Spectre V2 : " fmt
1159
1160 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
1161 SPECTRE_V2_USER_NONE;
1162 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
1163 SPECTRE_V2_USER_NONE;
1164
1165 #ifdef CONFIG_RETPOLINE
1166 static bool spectre_v2_bad_module;
1167
retpoline_module_ok(bool has_retpoline)1168 bool retpoline_module_ok(bool has_retpoline)
1169 {
1170 if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
1171 return true;
1172
1173 pr_err("System may be vulnerable to spectre v2\n");
1174 spectre_v2_bad_module = true;
1175 return false;
1176 }
1177
spectre_v2_module_string(void)1178 static inline const char *spectre_v2_module_string(void)
1179 {
1180 return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1181 }
1182 #else
spectre_v2_module_string(void)1183 static inline const char *spectre_v2_module_string(void) { return ""; }
1184 #endif
1185
1186 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1187 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1188 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1189 #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1190
1191 #ifdef CONFIG_BPF_SYSCALL
unpriv_ebpf_notify(int new_state)1192 void unpriv_ebpf_notify(int new_state)
1193 {
1194 if (new_state)
1195 return;
1196
1197 /* Unprivileged eBPF is enabled */
1198
1199 switch (spectre_v2_enabled) {
1200 case SPECTRE_V2_EIBRS:
1201 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1202 break;
1203 case SPECTRE_V2_EIBRS_LFENCE:
1204 if (sched_smt_active())
1205 pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1206 break;
1207 default:
1208 break;
1209 }
1210 }
1211 #endif
1212
match_option(const char * arg,int arglen,const char * opt)1213 static inline bool match_option(const char *arg, int arglen, const char *opt)
1214 {
1215 int len = strlen(opt);
1216
1217 return len == arglen && !strncmp(arg, opt, len);
1218 }
1219
1220 /* The kernel command line selection for spectre v2 */
1221 enum spectre_v2_mitigation_cmd {
1222 SPECTRE_V2_CMD_NONE,
1223 SPECTRE_V2_CMD_AUTO,
1224 SPECTRE_V2_CMD_FORCE,
1225 SPECTRE_V2_CMD_RETPOLINE,
1226 SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1227 SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1228 SPECTRE_V2_CMD_EIBRS,
1229 SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1230 SPECTRE_V2_CMD_EIBRS_LFENCE,
1231 SPECTRE_V2_CMD_IBRS,
1232 };
1233
1234 enum spectre_v2_user_cmd {
1235 SPECTRE_V2_USER_CMD_NONE,
1236 SPECTRE_V2_USER_CMD_AUTO,
1237 SPECTRE_V2_USER_CMD_FORCE,
1238 SPECTRE_V2_USER_CMD_PRCTL,
1239 SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1240 SPECTRE_V2_USER_CMD_SECCOMP,
1241 SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1242 };
1243
1244 static const char * const spectre_v2_user_strings[] = {
1245 [SPECTRE_V2_USER_NONE] = "User space: Vulnerable",
1246 [SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection",
1247 [SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection",
1248 [SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl",
1249 [SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl",
1250 };
1251
1252 static const struct {
1253 const char *option;
1254 enum spectre_v2_user_cmd cmd;
1255 bool secure;
1256 } v2_user_options[] __initconst = {
1257 { "auto", SPECTRE_V2_USER_CMD_AUTO, false },
1258 { "off", SPECTRE_V2_USER_CMD_NONE, false },
1259 { "on", SPECTRE_V2_USER_CMD_FORCE, true },
1260 { "prctl", SPECTRE_V2_USER_CMD_PRCTL, false },
1261 { "prctl,ibpb", SPECTRE_V2_USER_CMD_PRCTL_IBPB, false },
1262 { "seccomp", SPECTRE_V2_USER_CMD_SECCOMP, false },
1263 { "seccomp,ibpb", SPECTRE_V2_USER_CMD_SECCOMP_IBPB, false },
1264 };
1265
spec_v2_user_print_cond(const char * reason,bool secure)1266 static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1267 {
1268 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1269 pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1270 }
1271
1272 static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1273
1274 static enum spectre_v2_user_cmd __init
spectre_v2_parse_user_cmdline(void)1275 spectre_v2_parse_user_cmdline(void)
1276 {
1277 char arg[20];
1278 int ret, i;
1279
1280 switch (spectre_v2_cmd) {
1281 case SPECTRE_V2_CMD_NONE:
1282 return SPECTRE_V2_USER_CMD_NONE;
1283 case SPECTRE_V2_CMD_FORCE:
1284 return SPECTRE_V2_USER_CMD_FORCE;
1285 default:
1286 break;
1287 }
1288
1289 ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1290 arg, sizeof(arg));
1291 if (ret < 0)
1292 return SPECTRE_V2_USER_CMD_AUTO;
1293
1294 for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1295 if (match_option(arg, ret, v2_user_options[i].option)) {
1296 spec_v2_user_print_cond(v2_user_options[i].option,
1297 v2_user_options[i].secure);
1298 return v2_user_options[i].cmd;
1299 }
1300 }
1301
1302 pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1303 return SPECTRE_V2_USER_CMD_AUTO;
1304 }
1305
spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)1306 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1307 {
1308 return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
1309 }
1310
1311 static void __init
spectre_v2_user_select_mitigation(void)1312 spectre_v2_user_select_mitigation(void)
1313 {
1314 enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1315 bool smt_possible = IS_ENABLED(CONFIG_SMP);
1316 enum spectre_v2_user_cmd cmd;
1317
1318 if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1319 return;
1320
1321 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1322 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1323 smt_possible = false;
1324
1325 cmd = spectre_v2_parse_user_cmdline();
1326 switch (cmd) {
1327 case SPECTRE_V2_USER_CMD_NONE:
1328 goto set_mode;
1329 case SPECTRE_V2_USER_CMD_FORCE:
1330 mode = SPECTRE_V2_USER_STRICT;
1331 break;
1332 case SPECTRE_V2_USER_CMD_AUTO:
1333 case SPECTRE_V2_USER_CMD_PRCTL:
1334 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1335 mode = SPECTRE_V2_USER_PRCTL;
1336 break;
1337 case SPECTRE_V2_USER_CMD_SECCOMP:
1338 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1339 if (IS_ENABLED(CONFIG_SECCOMP))
1340 mode = SPECTRE_V2_USER_SECCOMP;
1341 else
1342 mode = SPECTRE_V2_USER_PRCTL;
1343 break;
1344 }
1345
1346 /* Initialize Indirect Branch Prediction Barrier */
1347 if (boot_cpu_has(X86_FEATURE_IBPB)) {
1348 setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1349
1350 spectre_v2_user_ibpb = mode;
1351 switch (cmd) {
1352 case SPECTRE_V2_USER_CMD_FORCE:
1353 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1354 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1355 static_branch_enable(&switch_mm_always_ibpb);
1356 spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1357 break;
1358 case SPECTRE_V2_USER_CMD_PRCTL:
1359 case SPECTRE_V2_USER_CMD_AUTO:
1360 case SPECTRE_V2_USER_CMD_SECCOMP:
1361 static_branch_enable(&switch_mm_cond_ibpb);
1362 break;
1363 default:
1364 break;
1365 }
1366
1367 pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1368 static_key_enabled(&switch_mm_always_ibpb) ?
1369 "always-on" : "conditional");
1370 }
1371
1372 /*
1373 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP
1374 * is not required.
1375 *
1376 * Intel's Enhanced IBRS also protects against cross-thread branch target
1377 * injection in user-mode as the IBRS bit remains always set which
1378 * implicitly enables cross-thread protections. However, in legacy IBRS
1379 * mode, the IBRS bit is set only on kernel entry and cleared on return
1380 * to userspace. AMD Automatic IBRS also does not protect userspace.
1381 * These modes therefore disable the implicit cross-thread protection,
1382 * so allow for STIBP to be selected in those cases.
1383 */
1384 if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1385 !smt_possible ||
1386 (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1387 !boot_cpu_has(X86_FEATURE_AUTOIBRS)))
1388 return;
1389
1390 /*
1391 * At this point, an STIBP mode other than "off" has been set.
1392 * If STIBP support is not being forced, check if STIBP always-on
1393 * is preferred.
1394 */
1395 if (mode != SPECTRE_V2_USER_STRICT &&
1396 boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1397 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1398
1399 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1400 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1401 if (mode != SPECTRE_V2_USER_STRICT &&
1402 mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1403 pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1404 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1405 }
1406
1407 spectre_v2_user_stibp = mode;
1408
1409 set_mode:
1410 pr_info("%s\n", spectre_v2_user_strings[mode]);
1411 }
1412
1413 static const char * const spectre_v2_strings[] = {
1414 [SPECTRE_V2_NONE] = "Vulnerable",
1415 [SPECTRE_V2_RETPOLINE] = "Mitigation: Retpolines",
1416 [SPECTRE_V2_LFENCE] = "Mitigation: LFENCE",
1417 [SPECTRE_V2_EIBRS] = "Mitigation: Enhanced / Automatic IBRS",
1418 [SPECTRE_V2_EIBRS_LFENCE] = "Mitigation: Enhanced / Automatic IBRS + LFENCE",
1419 [SPECTRE_V2_EIBRS_RETPOLINE] = "Mitigation: Enhanced / Automatic IBRS + Retpolines",
1420 [SPECTRE_V2_IBRS] = "Mitigation: IBRS",
1421 };
1422
1423 static const struct {
1424 const char *option;
1425 enum spectre_v2_mitigation_cmd cmd;
1426 bool secure;
1427 } mitigation_options[] __initconst = {
1428 { "off", SPECTRE_V2_CMD_NONE, false },
1429 { "on", SPECTRE_V2_CMD_FORCE, true },
1430 { "retpoline", SPECTRE_V2_CMD_RETPOLINE, false },
1431 { "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1432 { "retpoline,lfence", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1433 { "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1434 { "eibrs", SPECTRE_V2_CMD_EIBRS, false },
1435 { "eibrs,lfence", SPECTRE_V2_CMD_EIBRS_LFENCE, false },
1436 { "eibrs,retpoline", SPECTRE_V2_CMD_EIBRS_RETPOLINE, false },
1437 { "auto", SPECTRE_V2_CMD_AUTO, false },
1438 { "ibrs", SPECTRE_V2_CMD_IBRS, false },
1439 };
1440
spec_v2_print_cond(const char * reason,bool secure)1441 static void __init spec_v2_print_cond(const char *reason, bool secure)
1442 {
1443 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1444 pr_info("%s selected on command line.\n", reason);
1445 }
1446
spectre_v2_parse_cmdline(void)1447 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1448 {
1449 enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1450 char arg[20];
1451 int ret, i;
1452
1453 if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1454 cpu_mitigations_off())
1455 return SPECTRE_V2_CMD_NONE;
1456
1457 ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1458 if (ret < 0)
1459 return SPECTRE_V2_CMD_AUTO;
1460
1461 for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1462 if (!match_option(arg, ret, mitigation_options[i].option))
1463 continue;
1464 cmd = mitigation_options[i].cmd;
1465 break;
1466 }
1467
1468 if (i >= ARRAY_SIZE(mitigation_options)) {
1469 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1470 return SPECTRE_V2_CMD_AUTO;
1471 }
1472
1473 if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1474 cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1475 cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1476 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1477 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1478 !IS_ENABLED(CONFIG_RETPOLINE)) {
1479 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1480 mitigation_options[i].option);
1481 return SPECTRE_V2_CMD_AUTO;
1482 }
1483
1484 if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1485 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1486 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1487 !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1488 pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n",
1489 mitigation_options[i].option);
1490 return SPECTRE_V2_CMD_AUTO;
1491 }
1492
1493 if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1494 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1495 !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1496 pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1497 mitigation_options[i].option);
1498 return SPECTRE_V2_CMD_AUTO;
1499 }
1500
1501 if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_CPU_IBRS_ENTRY)) {
1502 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1503 mitigation_options[i].option);
1504 return SPECTRE_V2_CMD_AUTO;
1505 }
1506
1507 if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1508 pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1509 mitigation_options[i].option);
1510 return SPECTRE_V2_CMD_AUTO;
1511 }
1512
1513 if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1514 pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1515 mitigation_options[i].option);
1516 return SPECTRE_V2_CMD_AUTO;
1517 }
1518
1519 if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1520 pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1521 mitigation_options[i].option);
1522 return SPECTRE_V2_CMD_AUTO;
1523 }
1524
1525 spec_v2_print_cond(mitigation_options[i].option,
1526 mitigation_options[i].secure);
1527 return cmd;
1528 }
1529
spectre_v2_select_retpoline(void)1530 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1531 {
1532 if (!IS_ENABLED(CONFIG_RETPOLINE)) {
1533 pr_err("Kernel not compiled with retpoline; no mitigation available!");
1534 return SPECTRE_V2_NONE;
1535 }
1536
1537 return SPECTRE_V2_RETPOLINE;
1538 }
1539
1540 static bool __ro_after_init rrsba_disabled;
1541
1542 /* Disable in-kernel use of non-RSB RET predictors */
spec_ctrl_disable_kernel_rrsba(void)1543 static void __init spec_ctrl_disable_kernel_rrsba(void)
1544 {
1545 if (rrsba_disabled)
1546 return;
1547
1548 if (!(x86_arch_cap_msr & ARCH_CAP_RRSBA)) {
1549 rrsba_disabled = true;
1550 return;
1551 }
1552
1553 if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1554 return;
1555
1556 x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1557 update_spec_ctrl(x86_spec_ctrl_base);
1558 rrsba_disabled = true;
1559 }
1560
spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)1561 static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1562 {
1563 /*
1564 * Similar to context switches, there are two types of RSB attacks
1565 * after VM exit:
1566 *
1567 * 1) RSB underflow
1568 *
1569 * 2) Poisoned RSB entry
1570 *
1571 * When retpoline is enabled, both are mitigated by filling/clearing
1572 * the RSB.
1573 *
1574 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1575 * prediction isolation protections, RSB still needs to be cleared
1576 * because of #2. Note that SMEP provides no protection here, unlike
1577 * user-space-poisoned RSB entries.
1578 *
1579 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1580 * bug is present then a LITE version of RSB protection is required,
1581 * just a single call needs to retire before a RET is executed.
1582 */
1583 switch (mode) {
1584 case SPECTRE_V2_NONE:
1585 return;
1586
1587 case SPECTRE_V2_EIBRS_LFENCE:
1588 case SPECTRE_V2_EIBRS:
1589 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1590 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1591 pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1592 }
1593 return;
1594
1595 case SPECTRE_V2_EIBRS_RETPOLINE:
1596 case SPECTRE_V2_RETPOLINE:
1597 case SPECTRE_V2_LFENCE:
1598 case SPECTRE_V2_IBRS:
1599 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1600 pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1601 return;
1602 }
1603
1604 pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1605 dump_stack();
1606 }
1607
1608 /*
1609 * Set BHI_DIS_S to prevent indirect branches in kernel to be influenced by
1610 * branch history in userspace. Not needed if BHI_NO is set.
1611 */
spec_ctrl_bhi_dis(void)1612 static bool __init spec_ctrl_bhi_dis(void)
1613 {
1614 if (!boot_cpu_has(X86_FEATURE_BHI_CTRL))
1615 return false;
1616
1617 x86_spec_ctrl_base |= SPEC_CTRL_BHI_DIS_S;
1618 update_spec_ctrl(x86_spec_ctrl_base);
1619 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_HW);
1620
1621 return true;
1622 }
1623
1624 enum bhi_mitigations {
1625 BHI_MITIGATION_OFF,
1626 BHI_MITIGATION_ON,
1627 };
1628
1629 static enum bhi_mitigations bhi_mitigation __ro_after_init =
1630 IS_ENABLED(CONFIG_MITIGATION_SPECTRE_BHI) ? BHI_MITIGATION_ON : BHI_MITIGATION_OFF;
1631
spectre_bhi_parse_cmdline(char * str)1632 static int __init spectre_bhi_parse_cmdline(char *str)
1633 {
1634 if (!str)
1635 return -EINVAL;
1636
1637 if (!strcmp(str, "off"))
1638 bhi_mitigation = BHI_MITIGATION_OFF;
1639 else if (!strcmp(str, "on"))
1640 bhi_mitigation = BHI_MITIGATION_ON;
1641 else
1642 pr_err("Ignoring unknown spectre_bhi option (%s)", str);
1643
1644 return 0;
1645 }
1646 early_param("spectre_bhi", spectre_bhi_parse_cmdline);
1647
bhi_select_mitigation(void)1648 static void __init bhi_select_mitigation(void)
1649 {
1650 if (bhi_mitigation == BHI_MITIGATION_OFF)
1651 return;
1652
1653 /* Retpoline mitigates against BHI unless the CPU has RRSBA behavior */
1654 if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
1655 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE)) {
1656 spec_ctrl_disable_kernel_rrsba();
1657 if (rrsba_disabled)
1658 return;
1659 }
1660
1661 if (spec_ctrl_bhi_dis())
1662 return;
1663
1664 if (!IS_ENABLED(CONFIG_X86_64))
1665 return;
1666
1667 /* Mitigate KVM by default */
1668 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT);
1669 pr_info("Spectre BHI mitigation: SW BHB clearing on vm exit\n");
1670
1671 /* Mitigate syscalls when the mitigation is forced =on */
1672 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP);
1673 pr_info("Spectre BHI mitigation: SW BHB clearing on syscall\n");
1674 }
1675
spectre_v2_select_mitigation(void)1676 static void __init spectre_v2_select_mitigation(void)
1677 {
1678 enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1679 enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1680
1681 /*
1682 * If the CPU is not affected and the command line mode is NONE or AUTO
1683 * then nothing to do.
1684 */
1685 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1686 (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1687 return;
1688
1689 switch (cmd) {
1690 case SPECTRE_V2_CMD_NONE:
1691 return;
1692
1693 case SPECTRE_V2_CMD_FORCE:
1694 case SPECTRE_V2_CMD_AUTO:
1695 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1696 mode = SPECTRE_V2_EIBRS;
1697 break;
1698 }
1699
1700 if (IS_ENABLED(CONFIG_CPU_IBRS_ENTRY) &&
1701 boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1702 retbleed_cmd != RETBLEED_CMD_OFF &&
1703 retbleed_cmd != RETBLEED_CMD_STUFF &&
1704 boot_cpu_has(X86_FEATURE_IBRS) &&
1705 boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1706 mode = SPECTRE_V2_IBRS;
1707 break;
1708 }
1709
1710 mode = spectre_v2_select_retpoline();
1711 break;
1712
1713 case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1714 pr_err(SPECTRE_V2_LFENCE_MSG);
1715 mode = SPECTRE_V2_LFENCE;
1716 break;
1717
1718 case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1719 mode = SPECTRE_V2_RETPOLINE;
1720 break;
1721
1722 case SPECTRE_V2_CMD_RETPOLINE:
1723 mode = spectre_v2_select_retpoline();
1724 break;
1725
1726 case SPECTRE_V2_CMD_IBRS:
1727 mode = SPECTRE_V2_IBRS;
1728 break;
1729
1730 case SPECTRE_V2_CMD_EIBRS:
1731 mode = SPECTRE_V2_EIBRS;
1732 break;
1733
1734 case SPECTRE_V2_CMD_EIBRS_LFENCE:
1735 mode = SPECTRE_V2_EIBRS_LFENCE;
1736 break;
1737
1738 case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1739 mode = SPECTRE_V2_EIBRS_RETPOLINE;
1740 break;
1741 }
1742
1743 if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1744 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1745
1746 if (spectre_v2_in_ibrs_mode(mode)) {
1747 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
1748 msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
1749 } else {
1750 x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1751 update_spec_ctrl(x86_spec_ctrl_base);
1752 }
1753 }
1754
1755 switch (mode) {
1756 case SPECTRE_V2_NONE:
1757 case SPECTRE_V2_EIBRS:
1758 break;
1759
1760 case SPECTRE_V2_IBRS:
1761 setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1762 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1763 pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1764 break;
1765
1766 case SPECTRE_V2_LFENCE:
1767 case SPECTRE_V2_EIBRS_LFENCE:
1768 setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1769 fallthrough;
1770
1771 case SPECTRE_V2_RETPOLINE:
1772 case SPECTRE_V2_EIBRS_RETPOLINE:
1773 setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1774 break;
1775 }
1776
1777 /*
1778 * Disable alternate RSB predictions in kernel when indirect CALLs and
1779 * JMPs gets protection against BHI and Intramode-BTI, but RET
1780 * prediction from a non-RSB predictor is still a risk.
1781 */
1782 if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1783 mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1784 mode == SPECTRE_V2_RETPOLINE)
1785 spec_ctrl_disable_kernel_rrsba();
1786
1787 if (boot_cpu_has(X86_BUG_BHI))
1788 bhi_select_mitigation();
1789
1790 spectre_v2_enabled = mode;
1791 pr_info("%s\n", spectre_v2_strings[mode]);
1792
1793 /*
1794 * If Spectre v2 protection has been enabled, fill the RSB during a
1795 * context switch. In general there are two types of RSB attacks
1796 * across context switches, for which the CALLs/RETs may be unbalanced.
1797 *
1798 * 1) RSB underflow
1799 *
1800 * Some Intel parts have "bottomless RSB". When the RSB is empty,
1801 * speculated return targets may come from the branch predictor,
1802 * which could have a user-poisoned BTB or BHB entry.
1803 *
1804 * AMD has it even worse: *all* returns are speculated from the BTB,
1805 * regardless of the state of the RSB.
1806 *
1807 * When IBRS or eIBRS is enabled, the "user -> kernel" attack
1808 * scenario is mitigated by the IBRS branch prediction isolation
1809 * properties, so the RSB buffer filling wouldn't be necessary to
1810 * protect against this type of attack.
1811 *
1812 * The "user -> user" attack scenario is mitigated by RSB filling.
1813 *
1814 * 2) Poisoned RSB entry
1815 *
1816 * If the 'next' in-kernel return stack is shorter than 'prev',
1817 * 'next' could be tricked into speculating with a user-poisoned RSB
1818 * entry.
1819 *
1820 * The "user -> kernel" attack scenario is mitigated by SMEP and
1821 * eIBRS.
1822 *
1823 * The "user -> user" scenario, also known as SpectreBHB, requires
1824 * RSB clearing.
1825 *
1826 * So to mitigate all cases, unconditionally fill RSB on context
1827 * switches.
1828 *
1829 * FIXME: Is this pointless for retbleed-affected AMD?
1830 */
1831 setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1832 pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1833
1834 spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1835
1836 /*
1837 * Retpoline protects the kernel, but doesn't protect firmware. IBRS
1838 * and Enhanced IBRS protect firmware too, so enable IBRS around
1839 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
1840 * otherwise enabled.
1841 *
1842 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1843 * the user might select retpoline on the kernel command line and if
1844 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1845 * enable IBRS around firmware calls.
1846 */
1847 if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1848 boot_cpu_has(X86_FEATURE_IBPB) &&
1849 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1850 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
1851
1852 if (retbleed_cmd != RETBLEED_CMD_IBPB) {
1853 setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
1854 pr_info("Enabling Speculation Barrier for firmware calls\n");
1855 }
1856
1857 } else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1858 setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1859 pr_info("Enabling Restricted Speculation for firmware calls\n");
1860 }
1861
1862 /* Set up IBPB and STIBP depending on the general spectre V2 command */
1863 spectre_v2_cmd = cmd;
1864 }
1865
update_stibp_msr(void * __unused)1866 static void update_stibp_msr(void * __unused)
1867 {
1868 u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1869 update_spec_ctrl(val);
1870 }
1871
1872 /* Update x86_spec_ctrl_base in case SMT state changed. */
update_stibp_strict(void)1873 static void update_stibp_strict(void)
1874 {
1875 u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1876
1877 if (sched_smt_active())
1878 mask |= SPEC_CTRL_STIBP;
1879
1880 if (mask == x86_spec_ctrl_base)
1881 return;
1882
1883 pr_info("Update user space SMT mitigation: STIBP %s\n",
1884 mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1885 x86_spec_ctrl_base = mask;
1886 on_each_cpu(update_stibp_msr, NULL, 1);
1887 }
1888
1889 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
update_indir_branch_cond(void)1890 static void update_indir_branch_cond(void)
1891 {
1892 if (sched_smt_active())
1893 static_branch_enable(&switch_to_cond_stibp);
1894 else
1895 static_branch_disable(&switch_to_cond_stibp);
1896 }
1897
1898 #undef pr_fmt
1899 #define pr_fmt(fmt) fmt
1900
1901 /* Update the static key controlling the MDS CPU buffer clear in idle */
update_mds_branch_idle(void)1902 static void update_mds_branch_idle(void)
1903 {
1904 /*
1905 * Enable the idle clearing if SMT is active on CPUs which are
1906 * affected only by MSBDS and not any other MDS variant.
1907 *
1908 * The other variants cannot be mitigated when SMT is enabled, so
1909 * clearing the buffers on idle just to prevent the Store Buffer
1910 * repartitioning leak would be a window dressing exercise.
1911 */
1912 if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1913 return;
1914
1915 if (sched_smt_active()) {
1916 static_branch_enable(&mds_idle_clear);
1917 } else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1918 (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO)) {
1919 static_branch_disable(&mds_idle_clear);
1920 }
1921 }
1922
1923 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1924 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1925 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1926
cpu_bugs_smt_update(void)1927 void cpu_bugs_smt_update(void)
1928 {
1929 mutex_lock(&spec_ctrl_mutex);
1930
1931 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1932 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1933 pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1934
1935 switch (spectre_v2_user_stibp) {
1936 case SPECTRE_V2_USER_NONE:
1937 break;
1938 case SPECTRE_V2_USER_STRICT:
1939 case SPECTRE_V2_USER_STRICT_PREFERRED:
1940 update_stibp_strict();
1941 break;
1942 case SPECTRE_V2_USER_PRCTL:
1943 case SPECTRE_V2_USER_SECCOMP:
1944 update_indir_branch_cond();
1945 break;
1946 }
1947
1948 switch (mds_mitigation) {
1949 case MDS_MITIGATION_FULL:
1950 case MDS_MITIGATION_VMWERV:
1951 if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1952 pr_warn_once(MDS_MSG_SMT);
1953 update_mds_branch_idle();
1954 break;
1955 case MDS_MITIGATION_OFF:
1956 break;
1957 }
1958
1959 switch (taa_mitigation) {
1960 case TAA_MITIGATION_VERW:
1961 case TAA_MITIGATION_UCODE_NEEDED:
1962 if (sched_smt_active())
1963 pr_warn_once(TAA_MSG_SMT);
1964 break;
1965 case TAA_MITIGATION_TSX_DISABLED:
1966 case TAA_MITIGATION_OFF:
1967 break;
1968 }
1969
1970 switch (mmio_mitigation) {
1971 case MMIO_MITIGATION_VERW:
1972 case MMIO_MITIGATION_UCODE_NEEDED:
1973 if (sched_smt_active())
1974 pr_warn_once(MMIO_MSG_SMT);
1975 break;
1976 case MMIO_MITIGATION_OFF:
1977 break;
1978 }
1979
1980 mutex_unlock(&spec_ctrl_mutex);
1981 }
1982
1983 #undef pr_fmt
1984 #define pr_fmt(fmt) "Speculative Store Bypass: " fmt
1985
1986 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1987
1988 /* The kernel command line selection */
1989 enum ssb_mitigation_cmd {
1990 SPEC_STORE_BYPASS_CMD_NONE,
1991 SPEC_STORE_BYPASS_CMD_AUTO,
1992 SPEC_STORE_BYPASS_CMD_ON,
1993 SPEC_STORE_BYPASS_CMD_PRCTL,
1994 SPEC_STORE_BYPASS_CMD_SECCOMP,
1995 };
1996
1997 static const char * const ssb_strings[] = {
1998 [SPEC_STORE_BYPASS_NONE] = "Vulnerable",
1999 [SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled",
2000 [SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl",
2001 [SPEC_STORE_BYPASS_SECCOMP] = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
2002 };
2003
2004 static const struct {
2005 const char *option;
2006 enum ssb_mitigation_cmd cmd;
2007 } ssb_mitigation_options[] __initconst = {
2008 { "auto", SPEC_STORE_BYPASS_CMD_AUTO }, /* Platform decides */
2009 { "on", SPEC_STORE_BYPASS_CMD_ON }, /* Disable Speculative Store Bypass */
2010 { "off", SPEC_STORE_BYPASS_CMD_NONE }, /* Don't touch Speculative Store Bypass */
2011 { "prctl", SPEC_STORE_BYPASS_CMD_PRCTL }, /* Disable Speculative Store Bypass via prctl */
2012 { "seccomp", SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
2013 };
2014
ssb_parse_cmdline(void)2015 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
2016 {
2017 enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
2018 char arg[20];
2019 int ret, i;
2020
2021 if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
2022 cpu_mitigations_off()) {
2023 return SPEC_STORE_BYPASS_CMD_NONE;
2024 } else {
2025 ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
2026 arg, sizeof(arg));
2027 if (ret < 0)
2028 return SPEC_STORE_BYPASS_CMD_AUTO;
2029
2030 for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
2031 if (!match_option(arg, ret, ssb_mitigation_options[i].option))
2032 continue;
2033
2034 cmd = ssb_mitigation_options[i].cmd;
2035 break;
2036 }
2037
2038 if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
2039 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
2040 return SPEC_STORE_BYPASS_CMD_AUTO;
2041 }
2042 }
2043
2044 return cmd;
2045 }
2046
__ssb_select_mitigation(void)2047 static enum ssb_mitigation __init __ssb_select_mitigation(void)
2048 {
2049 enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
2050 enum ssb_mitigation_cmd cmd;
2051
2052 if (!boot_cpu_has(X86_FEATURE_SSBD))
2053 return mode;
2054
2055 cmd = ssb_parse_cmdline();
2056 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
2057 (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
2058 cmd == SPEC_STORE_BYPASS_CMD_AUTO))
2059 return mode;
2060
2061 switch (cmd) {
2062 case SPEC_STORE_BYPASS_CMD_SECCOMP:
2063 /*
2064 * Choose prctl+seccomp as the default mode if seccomp is
2065 * enabled.
2066 */
2067 if (IS_ENABLED(CONFIG_SECCOMP))
2068 mode = SPEC_STORE_BYPASS_SECCOMP;
2069 else
2070 mode = SPEC_STORE_BYPASS_PRCTL;
2071 break;
2072 case SPEC_STORE_BYPASS_CMD_ON:
2073 mode = SPEC_STORE_BYPASS_DISABLE;
2074 break;
2075 case SPEC_STORE_BYPASS_CMD_AUTO:
2076 case SPEC_STORE_BYPASS_CMD_PRCTL:
2077 mode = SPEC_STORE_BYPASS_PRCTL;
2078 break;
2079 case SPEC_STORE_BYPASS_CMD_NONE:
2080 break;
2081 }
2082
2083 /*
2084 * We have three CPU feature flags that are in play here:
2085 * - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
2086 * - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
2087 * - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
2088 */
2089 if (mode == SPEC_STORE_BYPASS_DISABLE) {
2090 setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
2091 /*
2092 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
2093 * use a completely different MSR and bit dependent on family.
2094 */
2095 if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
2096 !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
2097 x86_amd_ssb_disable();
2098 } else {
2099 x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
2100 update_spec_ctrl(x86_spec_ctrl_base);
2101 }
2102 }
2103
2104 return mode;
2105 }
2106
ssb_select_mitigation(void)2107 static void ssb_select_mitigation(void)
2108 {
2109 ssb_mode = __ssb_select_mitigation();
2110
2111 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2112 pr_info("%s\n", ssb_strings[ssb_mode]);
2113 }
2114
2115 #undef pr_fmt
2116 #define pr_fmt(fmt) "Speculation prctl: " fmt
2117
task_update_spec_tif(struct task_struct * tsk)2118 static void task_update_spec_tif(struct task_struct *tsk)
2119 {
2120 /* Force the update of the real TIF bits */
2121 set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
2122
2123 /*
2124 * Immediately update the speculation control MSRs for the current
2125 * task, but for a non-current task delay setting the CPU
2126 * mitigation until it is scheduled next.
2127 *
2128 * This can only happen for SECCOMP mitigation. For PRCTL it's
2129 * always the current task.
2130 */
2131 if (tsk == current)
2132 speculation_ctrl_update_current();
2133 }
2134
l1d_flush_prctl_set(struct task_struct * task,unsigned long ctrl)2135 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
2136 {
2137
2138 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2139 return -EPERM;
2140
2141 switch (ctrl) {
2142 case PR_SPEC_ENABLE:
2143 set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2144 return 0;
2145 case PR_SPEC_DISABLE:
2146 clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2147 return 0;
2148 default:
2149 return -ERANGE;
2150 }
2151 }
2152
ssb_prctl_set(struct task_struct * task,unsigned long ctrl)2153 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
2154 {
2155 if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
2156 ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
2157 return -ENXIO;
2158
2159 switch (ctrl) {
2160 case PR_SPEC_ENABLE:
2161 /* If speculation is force disabled, enable is not allowed */
2162 if (task_spec_ssb_force_disable(task))
2163 return -EPERM;
2164 task_clear_spec_ssb_disable(task);
2165 task_clear_spec_ssb_noexec(task);
2166 task_update_spec_tif(task);
2167 break;
2168 case PR_SPEC_DISABLE:
2169 task_set_spec_ssb_disable(task);
2170 task_clear_spec_ssb_noexec(task);
2171 task_update_spec_tif(task);
2172 break;
2173 case PR_SPEC_FORCE_DISABLE:
2174 task_set_spec_ssb_disable(task);
2175 task_set_spec_ssb_force_disable(task);
2176 task_clear_spec_ssb_noexec(task);
2177 task_update_spec_tif(task);
2178 break;
2179 case PR_SPEC_DISABLE_NOEXEC:
2180 if (task_spec_ssb_force_disable(task))
2181 return -EPERM;
2182 task_set_spec_ssb_disable(task);
2183 task_set_spec_ssb_noexec(task);
2184 task_update_spec_tif(task);
2185 break;
2186 default:
2187 return -ERANGE;
2188 }
2189 return 0;
2190 }
2191
is_spec_ib_user_controlled(void)2192 static bool is_spec_ib_user_controlled(void)
2193 {
2194 return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
2195 spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2196 spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
2197 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
2198 }
2199
ib_prctl_set(struct task_struct * task,unsigned long ctrl)2200 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
2201 {
2202 switch (ctrl) {
2203 case PR_SPEC_ENABLE:
2204 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2205 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2206 return 0;
2207
2208 /*
2209 * With strict mode for both IBPB and STIBP, the instruction
2210 * code paths avoid checking this task flag and instead,
2211 * unconditionally run the instruction. However, STIBP and IBPB
2212 * are independent and either can be set to conditionally
2213 * enabled regardless of the mode of the other.
2214 *
2215 * If either is set to conditional, allow the task flag to be
2216 * updated, unless it was force-disabled by a previous prctl
2217 * call. Currently, this is possible on an AMD CPU which has the
2218 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
2219 * kernel is booted with 'spectre_v2_user=seccomp', then
2220 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
2221 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
2222 */
2223 if (!is_spec_ib_user_controlled() ||
2224 task_spec_ib_force_disable(task))
2225 return -EPERM;
2226
2227 task_clear_spec_ib_disable(task);
2228 task_update_spec_tif(task);
2229 break;
2230 case PR_SPEC_DISABLE:
2231 case PR_SPEC_FORCE_DISABLE:
2232 /*
2233 * Indirect branch speculation is always allowed when
2234 * mitigation is force disabled.
2235 */
2236 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2237 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2238 return -EPERM;
2239
2240 if (!is_spec_ib_user_controlled())
2241 return 0;
2242
2243 task_set_spec_ib_disable(task);
2244 if (ctrl == PR_SPEC_FORCE_DISABLE)
2245 task_set_spec_ib_force_disable(task);
2246 task_update_spec_tif(task);
2247 if (task == current)
2248 indirect_branch_prediction_barrier();
2249 break;
2250 default:
2251 return -ERANGE;
2252 }
2253 return 0;
2254 }
2255
arch_prctl_spec_ctrl_set(struct task_struct * task,unsigned long which,unsigned long ctrl)2256 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
2257 unsigned long ctrl)
2258 {
2259 switch (which) {
2260 case PR_SPEC_STORE_BYPASS:
2261 return ssb_prctl_set(task, ctrl);
2262 case PR_SPEC_INDIRECT_BRANCH:
2263 return ib_prctl_set(task, ctrl);
2264 case PR_SPEC_L1D_FLUSH:
2265 return l1d_flush_prctl_set(task, ctrl);
2266 default:
2267 return -ENODEV;
2268 }
2269 }
2270
2271 #ifdef CONFIG_SECCOMP
arch_seccomp_spec_mitigate(struct task_struct * task)2272 void arch_seccomp_spec_mitigate(struct task_struct *task)
2273 {
2274 if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2275 ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2276 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2277 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2278 ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2279 }
2280 #endif
2281
l1d_flush_prctl_get(struct task_struct * task)2282 static int l1d_flush_prctl_get(struct task_struct *task)
2283 {
2284 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2285 return PR_SPEC_FORCE_DISABLE;
2286
2287 if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2288 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2289 else
2290 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2291 }
2292
ssb_prctl_get(struct task_struct * task)2293 static int ssb_prctl_get(struct task_struct *task)
2294 {
2295 switch (ssb_mode) {
2296 case SPEC_STORE_BYPASS_DISABLE:
2297 return PR_SPEC_DISABLE;
2298 case SPEC_STORE_BYPASS_SECCOMP:
2299 case SPEC_STORE_BYPASS_PRCTL:
2300 if (task_spec_ssb_force_disable(task))
2301 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2302 if (task_spec_ssb_noexec(task))
2303 return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2304 if (task_spec_ssb_disable(task))
2305 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2306 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2307 default:
2308 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2309 return PR_SPEC_ENABLE;
2310 return PR_SPEC_NOT_AFFECTED;
2311 }
2312 }
2313
ib_prctl_get(struct task_struct * task)2314 static int ib_prctl_get(struct task_struct *task)
2315 {
2316 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2317 return PR_SPEC_NOT_AFFECTED;
2318
2319 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2320 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2321 return PR_SPEC_ENABLE;
2322 else if (is_spec_ib_user_controlled()) {
2323 if (task_spec_ib_force_disable(task))
2324 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2325 if (task_spec_ib_disable(task))
2326 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2327 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2328 } else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2329 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2330 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2331 return PR_SPEC_DISABLE;
2332 else
2333 return PR_SPEC_NOT_AFFECTED;
2334 }
2335
arch_prctl_spec_ctrl_get(struct task_struct * task,unsigned long which)2336 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2337 {
2338 switch (which) {
2339 case PR_SPEC_STORE_BYPASS:
2340 return ssb_prctl_get(task);
2341 case PR_SPEC_INDIRECT_BRANCH:
2342 return ib_prctl_get(task);
2343 case PR_SPEC_L1D_FLUSH:
2344 return l1d_flush_prctl_get(task);
2345 default:
2346 return -ENODEV;
2347 }
2348 }
2349
x86_spec_ctrl_setup_ap(void)2350 void x86_spec_ctrl_setup_ap(void)
2351 {
2352 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2353 update_spec_ctrl(x86_spec_ctrl_base);
2354
2355 if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2356 x86_amd_ssb_disable();
2357 }
2358
2359 bool itlb_multihit_kvm_mitigation;
2360 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2361
2362 #undef pr_fmt
2363 #define pr_fmt(fmt) "L1TF: " fmt
2364
2365 /* Default mitigation for L1TF-affected CPUs */
2366 enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
2367 #if IS_ENABLED(CONFIG_KVM_INTEL)
2368 EXPORT_SYMBOL_GPL(l1tf_mitigation);
2369 #endif
2370 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2371 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2372
2373 /*
2374 * These CPUs all support 44bits physical address space internally in the
2375 * cache but CPUID can report a smaller number of physical address bits.
2376 *
2377 * The L1TF mitigation uses the top most address bit for the inversion of
2378 * non present PTEs. When the installed memory reaches into the top most
2379 * address bit due to memory holes, which has been observed on machines
2380 * which report 36bits physical address bits and have 32G RAM installed,
2381 * then the mitigation range check in l1tf_select_mitigation() triggers.
2382 * This is a false positive because the mitigation is still possible due to
2383 * the fact that the cache uses 44bit internally. Use the cache bits
2384 * instead of the reported physical bits and adjust them on the affected
2385 * machines to 44bit if the reported bits are less than 44.
2386 */
override_cache_bits(struct cpuinfo_x86 * c)2387 static void override_cache_bits(struct cpuinfo_x86 *c)
2388 {
2389 if (c->x86 != 6)
2390 return;
2391
2392 switch (c->x86_model) {
2393 case INTEL_FAM6_NEHALEM:
2394 case INTEL_FAM6_WESTMERE:
2395 case INTEL_FAM6_SANDYBRIDGE:
2396 case INTEL_FAM6_IVYBRIDGE:
2397 case INTEL_FAM6_HASWELL:
2398 case INTEL_FAM6_HASWELL_L:
2399 case INTEL_FAM6_HASWELL_G:
2400 case INTEL_FAM6_BROADWELL:
2401 case INTEL_FAM6_BROADWELL_G:
2402 case INTEL_FAM6_SKYLAKE_L:
2403 case INTEL_FAM6_SKYLAKE:
2404 case INTEL_FAM6_KABYLAKE_L:
2405 case INTEL_FAM6_KABYLAKE:
2406 if (c->x86_cache_bits < 44)
2407 c->x86_cache_bits = 44;
2408 break;
2409 }
2410 }
2411
l1tf_select_mitigation(void)2412 static void __init l1tf_select_mitigation(void)
2413 {
2414 u64 half_pa;
2415
2416 if (!boot_cpu_has_bug(X86_BUG_L1TF))
2417 return;
2418
2419 if (cpu_mitigations_off())
2420 l1tf_mitigation = L1TF_MITIGATION_OFF;
2421 else if (cpu_mitigations_auto_nosmt())
2422 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2423
2424 override_cache_bits(&boot_cpu_data);
2425
2426 switch (l1tf_mitigation) {
2427 case L1TF_MITIGATION_OFF:
2428 case L1TF_MITIGATION_FLUSH_NOWARN:
2429 case L1TF_MITIGATION_FLUSH:
2430 break;
2431 case L1TF_MITIGATION_FLUSH_NOSMT:
2432 case L1TF_MITIGATION_FULL:
2433 cpu_smt_disable(false);
2434 break;
2435 case L1TF_MITIGATION_FULL_FORCE:
2436 cpu_smt_disable(true);
2437 break;
2438 }
2439
2440 #if CONFIG_PGTABLE_LEVELS == 2
2441 pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2442 return;
2443 #endif
2444
2445 half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2446 if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2447 e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2448 pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2449 pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2450 half_pa);
2451 pr_info("However, doing so will make a part of your RAM unusable.\n");
2452 pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2453 return;
2454 }
2455
2456 setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2457 }
2458
l1tf_cmdline(char * str)2459 static int __init l1tf_cmdline(char *str)
2460 {
2461 if (!boot_cpu_has_bug(X86_BUG_L1TF))
2462 return 0;
2463
2464 if (!str)
2465 return -EINVAL;
2466
2467 if (!strcmp(str, "off"))
2468 l1tf_mitigation = L1TF_MITIGATION_OFF;
2469 else if (!strcmp(str, "flush,nowarn"))
2470 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2471 else if (!strcmp(str, "flush"))
2472 l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2473 else if (!strcmp(str, "flush,nosmt"))
2474 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2475 else if (!strcmp(str, "full"))
2476 l1tf_mitigation = L1TF_MITIGATION_FULL;
2477 else if (!strcmp(str, "full,force"))
2478 l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2479
2480 return 0;
2481 }
2482 early_param("l1tf", l1tf_cmdline);
2483
2484 #undef pr_fmt
2485 #define pr_fmt(fmt) "Speculative Return Stack Overflow: " fmt
2486
2487 enum srso_mitigation {
2488 SRSO_MITIGATION_NONE,
2489 SRSO_MITIGATION_UCODE_NEEDED,
2490 SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED,
2491 SRSO_MITIGATION_MICROCODE,
2492 SRSO_MITIGATION_SAFE_RET,
2493 SRSO_MITIGATION_IBPB,
2494 SRSO_MITIGATION_IBPB_ON_VMEXIT,
2495 };
2496
2497 enum srso_mitigation_cmd {
2498 SRSO_CMD_OFF,
2499 SRSO_CMD_MICROCODE,
2500 SRSO_CMD_SAFE_RET,
2501 SRSO_CMD_IBPB,
2502 SRSO_CMD_IBPB_ON_VMEXIT,
2503 };
2504
2505 static const char * const srso_strings[] = {
2506 [SRSO_MITIGATION_NONE] = "Vulnerable",
2507 [SRSO_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
2508 [SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED] = "Vulnerable: Safe RET, no microcode",
2509 [SRSO_MITIGATION_MICROCODE] = "Vulnerable: Microcode, no safe RET",
2510 [SRSO_MITIGATION_SAFE_RET] = "Mitigation: Safe RET",
2511 [SRSO_MITIGATION_IBPB] = "Mitigation: IBPB",
2512 [SRSO_MITIGATION_IBPB_ON_VMEXIT] = "Mitigation: IBPB on VMEXIT only"
2513 };
2514
2515 static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_NONE;
2516 static enum srso_mitigation_cmd srso_cmd __ro_after_init = SRSO_CMD_SAFE_RET;
2517
srso_parse_cmdline(char * str)2518 static int __init srso_parse_cmdline(char *str)
2519 {
2520 if (!str)
2521 return -EINVAL;
2522
2523 if (!strcmp(str, "off"))
2524 srso_cmd = SRSO_CMD_OFF;
2525 else if (!strcmp(str, "microcode"))
2526 srso_cmd = SRSO_CMD_MICROCODE;
2527 else if (!strcmp(str, "safe-ret"))
2528 srso_cmd = SRSO_CMD_SAFE_RET;
2529 else if (!strcmp(str, "ibpb"))
2530 srso_cmd = SRSO_CMD_IBPB;
2531 else if (!strcmp(str, "ibpb-vmexit"))
2532 srso_cmd = SRSO_CMD_IBPB_ON_VMEXIT;
2533 else
2534 pr_err("Ignoring unknown SRSO option (%s).", str);
2535
2536 return 0;
2537 }
2538 early_param("spec_rstack_overflow", srso_parse_cmdline);
2539
2540 #define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options."
2541
srso_select_mitigation(void)2542 static void __init srso_select_mitigation(void)
2543 {
2544 bool has_microcode = boot_cpu_has(X86_FEATURE_IBPB_BRTYPE);
2545
2546 if (!boot_cpu_has_bug(X86_BUG_SRSO) || cpu_mitigations_off())
2547 goto pred_cmd;
2548
2549 if (has_microcode) {
2550 /*
2551 * Zen1/2 with SMT off aren't vulnerable after the right
2552 * IBPB microcode has been applied.
2553 */
2554 if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) {
2555 setup_force_cpu_cap(X86_FEATURE_SRSO_NO);
2556 return;
2557 }
2558
2559 if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2560 srso_mitigation = SRSO_MITIGATION_IBPB;
2561 goto out;
2562 }
2563 } else {
2564 pr_warn("IBPB-extending microcode not applied!\n");
2565 pr_warn(SRSO_NOTICE);
2566
2567 /* may be overwritten by SRSO_CMD_SAFE_RET below */
2568 srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED;
2569 }
2570
2571 switch (srso_cmd) {
2572 case SRSO_CMD_OFF:
2573 goto pred_cmd;
2574
2575 case SRSO_CMD_MICROCODE:
2576 if (has_microcode) {
2577 srso_mitigation = SRSO_MITIGATION_MICROCODE;
2578 pr_warn(SRSO_NOTICE);
2579 }
2580 break;
2581
2582 case SRSO_CMD_SAFE_RET:
2583 if (IS_ENABLED(CONFIG_CPU_SRSO)) {
2584 /*
2585 * Enable the return thunk for generated code
2586 * like ftrace, static_call, etc.
2587 */
2588 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
2589 setup_force_cpu_cap(X86_FEATURE_UNRET);
2590
2591 if (boot_cpu_data.x86 == 0x19) {
2592 setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS);
2593 x86_return_thunk = srso_alias_return_thunk;
2594 } else {
2595 setup_force_cpu_cap(X86_FEATURE_SRSO);
2596 x86_return_thunk = srso_return_thunk;
2597 }
2598 if (has_microcode)
2599 srso_mitigation = SRSO_MITIGATION_SAFE_RET;
2600 else
2601 srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED;
2602 } else {
2603 pr_err("WARNING: kernel not compiled with CPU_SRSO.\n");
2604 goto pred_cmd;
2605 }
2606 break;
2607
2608 case SRSO_CMD_IBPB:
2609 if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
2610 if (has_microcode) {
2611 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
2612 srso_mitigation = SRSO_MITIGATION_IBPB;
2613 }
2614 } else {
2615 pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
2616 goto pred_cmd;
2617 }
2618 break;
2619
2620 case SRSO_CMD_IBPB_ON_VMEXIT:
2621 if (IS_ENABLED(CONFIG_CPU_SRSO)) {
2622 if (!boot_cpu_has(X86_FEATURE_ENTRY_IBPB) && has_microcode) {
2623 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2624 srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
2625 }
2626 } else {
2627 pr_err("WARNING: kernel not compiled with CPU_SRSO.\n");
2628 goto pred_cmd;
2629 }
2630 break;
2631
2632 default:
2633 break;
2634 }
2635
2636 out:
2637 pr_info("%s\n", srso_strings[srso_mitigation]);
2638
2639 pred_cmd:
2640 if ((!boot_cpu_has_bug(X86_BUG_SRSO) || srso_cmd == SRSO_CMD_OFF) &&
2641 boot_cpu_has(X86_FEATURE_SBPB))
2642 x86_pred_cmd = PRED_CMD_SBPB;
2643 }
2644
2645 #undef pr_fmt
2646 #define pr_fmt(fmt) fmt
2647
2648 #ifdef CONFIG_SYSFS
2649
2650 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2651
2652 #if IS_ENABLED(CONFIG_KVM_INTEL)
2653 static const char * const l1tf_vmx_states[] = {
2654 [VMENTER_L1D_FLUSH_AUTO] = "auto",
2655 [VMENTER_L1D_FLUSH_NEVER] = "vulnerable",
2656 [VMENTER_L1D_FLUSH_COND] = "conditional cache flushes",
2657 [VMENTER_L1D_FLUSH_ALWAYS] = "cache flushes",
2658 [VMENTER_L1D_FLUSH_EPT_DISABLED] = "EPT disabled",
2659 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = "flush not necessary"
2660 };
2661
l1tf_show_state(char * buf)2662 static ssize_t l1tf_show_state(char *buf)
2663 {
2664 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2665 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2666
2667 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2668 (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2669 sched_smt_active())) {
2670 return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2671 l1tf_vmx_states[l1tf_vmx_mitigation]);
2672 }
2673
2674 return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2675 l1tf_vmx_states[l1tf_vmx_mitigation],
2676 sched_smt_active() ? "vulnerable" : "disabled");
2677 }
2678
itlb_multihit_show_state(char * buf)2679 static ssize_t itlb_multihit_show_state(char *buf)
2680 {
2681 if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2682 !boot_cpu_has(X86_FEATURE_VMX))
2683 return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
2684 else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2685 return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
2686 else if (itlb_multihit_kvm_mitigation)
2687 return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
2688 else
2689 return sysfs_emit(buf, "KVM: Vulnerable\n");
2690 }
2691 #else
l1tf_show_state(char * buf)2692 static ssize_t l1tf_show_state(char *buf)
2693 {
2694 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2695 }
2696
itlb_multihit_show_state(char * buf)2697 static ssize_t itlb_multihit_show_state(char *buf)
2698 {
2699 return sysfs_emit(buf, "Processor vulnerable\n");
2700 }
2701 #endif
2702
mds_show_state(char * buf)2703 static ssize_t mds_show_state(char *buf)
2704 {
2705 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2706 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2707 mds_strings[mds_mitigation]);
2708 }
2709
2710 if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2711 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2712 (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2713 sched_smt_active() ? "mitigated" : "disabled"));
2714 }
2715
2716 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2717 sched_smt_active() ? "vulnerable" : "disabled");
2718 }
2719
tsx_async_abort_show_state(char * buf)2720 static ssize_t tsx_async_abort_show_state(char *buf)
2721 {
2722 if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2723 (taa_mitigation == TAA_MITIGATION_OFF))
2724 return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
2725
2726 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2727 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2728 taa_strings[taa_mitigation]);
2729 }
2730
2731 return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2732 sched_smt_active() ? "vulnerable" : "disabled");
2733 }
2734
mmio_stale_data_show_state(char * buf)2735 static ssize_t mmio_stale_data_show_state(char *buf)
2736 {
2737 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2738 return sysfs_emit(buf, "Unknown: No mitigations\n");
2739
2740 if (mmio_mitigation == MMIO_MITIGATION_OFF)
2741 return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2742
2743 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2744 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2745 mmio_strings[mmio_mitigation]);
2746 }
2747
2748 return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2749 sched_smt_active() ? "vulnerable" : "disabled");
2750 }
2751
rfds_show_state(char * buf)2752 static ssize_t rfds_show_state(char *buf)
2753 {
2754 return sysfs_emit(buf, "%s\n", rfds_strings[rfds_mitigation]);
2755 }
2756
stibp_state(void)2757 static char *stibp_state(void)
2758 {
2759 if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
2760 !boot_cpu_has(X86_FEATURE_AUTOIBRS))
2761 return "";
2762
2763 switch (spectre_v2_user_stibp) {
2764 case SPECTRE_V2_USER_NONE:
2765 return "; STIBP: disabled";
2766 case SPECTRE_V2_USER_STRICT:
2767 return "; STIBP: forced";
2768 case SPECTRE_V2_USER_STRICT_PREFERRED:
2769 return "; STIBP: always-on";
2770 case SPECTRE_V2_USER_PRCTL:
2771 case SPECTRE_V2_USER_SECCOMP:
2772 if (static_key_enabled(&switch_to_cond_stibp))
2773 return "; STIBP: conditional";
2774 }
2775 return "";
2776 }
2777
ibpb_state(void)2778 static char *ibpb_state(void)
2779 {
2780 if (boot_cpu_has(X86_FEATURE_IBPB)) {
2781 if (static_key_enabled(&switch_mm_always_ibpb))
2782 return "; IBPB: always-on";
2783 if (static_key_enabled(&switch_mm_cond_ibpb))
2784 return "; IBPB: conditional";
2785 return "; IBPB: disabled";
2786 }
2787 return "";
2788 }
2789
pbrsb_eibrs_state(void)2790 static char *pbrsb_eibrs_state(void)
2791 {
2792 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2793 if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2794 boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2795 return "; PBRSB-eIBRS: SW sequence";
2796 else
2797 return "; PBRSB-eIBRS: Vulnerable";
2798 } else {
2799 return "; PBRSB-eIBRS: Not affected";
2800 }
2801 }
2802
spectre_bhi_state(void)2803 static const char *spectre_bhi_state(void)
2804 {
2805 if (!boot_cpu_has_bug(X86_BUG_BHI))
2806 return "; BHI: Not affected";
2807 else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_HW))
2808 return "; BHI: BHI_DIS_S";
2809 else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP))
2810 return "; BHI: SW loop, KVM: SW loop";
2811 else if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
2812 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE) &&
2813 rrsba_disabled)
2814 return "; BHI: Retpoline";
2815 else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT))
2816 return "; BHI: Vulnerable, KVM: SW loop";
2817
2818 return "; BHI: Vulnerable";
2819 }
2820
spectre_v2_show_state(char * buf)2821 static ssize_t spectre_v2_show_state(char *buf)
2822 {
2823 if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2824 return sysfs_emit(buf, "Vulnerable: LFENCE\n");
2825
2826 if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2827 return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
2828
2829 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2830 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2831 return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2832
2833 return sysfs_emit(buf, "%s%s%s%s%s%s%s%s\n",
2834 spectre_v2_strings[spectre_v2_enabled],
2835 ibpb_state(),
2836 boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? "; IBRS_FW" : "",
2837 stibp_state(),
2838 boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? "; RSB filling" : "",
2839 pbrsb_eibrs_state(),
2840 spectre_bhi_state(),
2841 /* this should always be at the end */
2842 spectre_v2_module_string());
2843 }
2844
srbds_show_state(char * buf)2845 static ssize_t srbds_show_state(char *buf)
2846 {
2847 return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
2848 }
2849
retbleed_show_state(char * buf)2850 static ssize_t retbleed_show_state(char *buf)
2851 {
2852 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2853 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2854 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2855 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2856 return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
2857
2858 return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
2859 !sched_smt_active() ? "disabled" :
2860 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2861 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2862 "enabled with STIBP protection" : "vulnerable");
2863 }
2864
2865 return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
2866 }
2867
srso_show_state(char * buf)2868 static ssize_t srso_show_state(char *buf)
2869 {
2870 if (boot_cpu_has(X86_FEATURE_SRSO_NO))
2871 return sysfs_emit(buf, "Mitigation: SMT disabled\n");
2872
2873 return sysfs_emit(buf, "%s\n", srso_strings[srso_mitigation]);
2874 }
2875
gds_show_state(char * buf)2876 static ssize_t gds_show_state(char *buf)
2877 {
2878 return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]);
2879 }
2880
cpu_show_common(struct device * dev,struct device_attribute * attr,char * buf,unsigned int bug)2881 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2882 char *buf, unsigned int bug)
2883 {
2884 if (!boot_cpu_has_bug(bug))
2885 return sysfs_emit(buf, "Not affected\n");
2886
2887 switch (bug) {
2888 case X86_BUG_CPU_MELTDOWN:
2889 if (boot_cpu_has(X86_FEATURE_PTI))
2890 return sysfs_emit(buf, "Mitigation: PTI\n");
2891
2892 if (hypervisor_is_type(X86_HYPER_XEN_PV))
2893 return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2894
2895 break;
2896
2897 case X86_BUG_SPECTRE_V1:
2898 return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2899
2900 case X86_BUG_SPECTRE_V2:
2901 return spectre_v2_show_state(buf);
2902
2903 case X86_BUG_SPEC_STORE_BYPASS:
2904 return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
2905
2906 case X86_BUG_L1TF:
2907 if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2908 return l1tf_show_state(buf);
2909 break;
2910
2911 case X86_BUG_MDS:
2912 return mds_show_state(buf);
2913
2914 case X86_BUG_TAA:
2915 return tsx_async_abort_show_state(buf);
2916
2917 case X86_BUG_ITLB_MULTIHIT:
2918 return itlb_multihit_show_state(buf);
2919
2920 case X86_BUG_SRBDS:
2921 return srbds_show_state(buf);
2922
2923 case X86_BUG_MMIO_STALE_DATA:
2924 case X86_BUG_MMIO_UNKNOWN:
2925 return mmio_stale_data_show_state(buf);
2926
2927 case X86_BUG_RETBLEED:
2928 return retbleed_show_state(buf);
2929
2930 case X86_BUG_SRSO:
2931 return srso_show_state(buf);
2932
2933 case X86_BUG_GDS:
2934 return gds_show_state(buf);
2935
2936 case X86_BUG_RFDS:
2937 return rfds_show_state(buf);
2938
2939 default:
2940 break;
2941 }
2942
2943 return sysfs_emit(buf, "Vulnerable\n");
2944 }
2945
cpu_show_meltdown(struct device * dev,struct device_attribute * attr,char * buf)2946 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2947 {
2948 return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2949 }
2950
cpu_show_spectre_v1(struct device * dev,struct device_attribute * attr,char * buf)2951 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2952 {
2953 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2954 }
2955
cpu_show_spectre_v2(struct device * dev,struct device_attribute * attr,char * buf)2956 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2957 {
2958 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2959 }
2960
cpu_show_spec_store_bypass(struct device * dev,struct device_attribute * attr,char * buf)2961 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2962 {
2963 return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2964 }
2965
cpu_show_l1tf(struct device * dev,struct device_attribute * attr,char * buf)2966 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2967 {
2968 return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
2969 }
2970
cpu_show_mds(struct device * dev,struct device_attribute * attr,char * buf)2971 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
2972 {
2973 return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
2974 }
2975
cpu_show_tsx_async_abort(struct device * dev,struct device_attribute * attr,char * buf)2976 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
2977 {
2978 return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
2979 }
2980
cpu_show_itlb_multihit(struct device * dev,struct device_attribute * attr,char * buf)2981 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
2982 {
2983 return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
2984 }
2985
cpu_show_srbds(struct device * dev,struct device_attribute * attr,char * buf)2986 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
2987 {
2988 return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
2989 }
2990
cpu_show_mmio_stale_data(struct device * dev,struct device_attribute * attr,char * buf)2991 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
2992 {
2993 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2994 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
2995 else
2996 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
2997 }
2998
cpu_show_retbleed(struct device * dev,struct device_attribute * attr,char * buf)2999 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
3000 {
3001 return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
3002 }
3003
cpu_show_spec_rstack_overflow(struct device * dev,struct device_attribute * attr,char * buf)3004 ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf)
3005 {
3006 return cpu_show_common(dev, attr, buf, X86_BUG_SRSO);
3007 }
3008
cpu_show_gds(struct device * dev,struct device_attribute * attr,char * buf)3009 ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf)
3010 {
3011 return cpu_show_common(dev, attr, buf, X86_BUG_GDS);
3012 }
3013
cpu_show_reg_file_data_sampling(struct device * dev,struct device_attribute * attr,char * buf)3014 ssize_t cpu_show_reg_file_data_sampling(struct device *dev, struct device_attribute *attr, char *buf)
3015 {
3016 return cpu_show_common(dev, attr, buf, X86_BUG_RFDS);
3017 }
3018 #endif
3019