• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Alchemy Au1x00 ethernet driver
5  *
6  * Copyright 2001-2003, 2006 MontaVista Software Inc.
7  * Copyright 2002 TimeSys Corp.
8  * Added ethtool/mii-tool support,
9  * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
10  * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
11  * or riemer@riemer-nt.de: fixed the link beat detection with
12  * ioctls (SIOCGMIIPHY)
13  * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
14  *  converted to use linux-2.6.x's PHY framework
15  *
16  * Author: MontaVista Software, Inc.
17  *		ppopov@mvista.com or source@mvista.com
18  */
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include <linux/capability.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/string.h>
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/in.h>
29 #include <linux/ioport.h>
30 #include <linux/bitops.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/mii.h>
37 #include <linux/skbuff.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/phy.h>
41 #include <linux/platform_device.h>
42 #include <linux/cpu.h>
43 #include <linux/io.h>
44 
45 #include <asm/mipsregs.h>
46 #include <asm/irq.h>
47 #include <asm/processor.h>
48 
49 #include <au1000.h>
50 #include <au1xxx_eth.h>
51 #include <prom.h>
52 
53 #include "au1000_eth.h"
54 
55 #ifdef AU1000_ETH_DEBUG
56 static int au1000_debug = 5;
57 #else
58 static int au1000_debug = 3;
59 #endif
60 
61 #define AU1000_DEF_MSG_ENABLE	(NETIF_MSG_DRV	| \
62 				NETIF_MSG_PROBE	| \
63 				NETIF_MSG_LINK)
64 
65 #define DRV_NAME	"au1000_eth"
66 #define DRV_AUTHOR	"Pete Popov <ppopov@embeddedalley.com>"
67 #define DRV_DESC	"Au1xxx on-chip Ethernet driver"
68 
69 MODULE_AUTHOR(DRV_AUTHOR);
70 MODULE_DESCRIPTION(DRV_DESC);
71 MODULE_LICENSE("GPL");
72 
73 /* AU1000 MAC registers and bits */
74 #define MAC_CONTROL		0x0
75 #  define MAC_RX_ENABLE		(1 << 2)
76 #  define MAC_TX_ENABLE		(1 << 3)
77 #  define MAC_DEF_CHECK		(1 << 5)
78 #  define MAC_SET_BL(X)		(((X) & 0x3) << 6)
79 #  define MAC_AUTO_PAD		(1 << 8)
80 #  define MAC_DISABLE_RETRY	(1 << 10)
81 #  define MAC_DISABLE_BCAST	(1 << 11)
82 #  define MAC_LATE_COL		(1 << 12)
83 #  define MAC_HASH_MODE		(1 << 13)
84 #  define MAC_HASH_ONLY		(1 << 15)
85 #  define MAC_PASS_ALL		(1 << 16)
86 #  define MAC_INVERSE_FILTER	(1 << 17)
87 #  define MAC_PROMISCUOUS	(1 << 18)
88 #  define MAC_PASS_ALL_MULTI	(1 << 19)
89 #  define MAC_FULL_DUPLEX	(1 << 20)
90 #  define MAC_NORMAL_MODE	0
91 #  define MAC_INT_LOOPBACK	(1 << 21)
92 #  define MAC_EXT_LOOPBACK	(1 << 22)
93 #  define MAC_DISABLE_RX_OWN	(1 << 23)
94 #  define MAC_BIG_ENDIAN	(1 << 30)
95 #  define MAC_RX_ALL		(1 << 31)
96 #define MAC_ADDRESS_HIGH	0x4
97 #define MAC_ADDRESS_LOW		0x8
98 #define MAC_MCAST_HIGH		0xC
99 #define MAC_MCAST_LOW		0x10
100 #define MAC_MII_CNTRL		0x14
101 #  define MAC_MII_BUSY		(1 << 0)
102 #  define MAC_MII_READ		0
103 #  define MAC_MII_WRITE		(1 << 1)
104 #  define MAC_SET_MII_SELECT_REG(X) (((X) & 0x1f) << 6)
105 #  define MAC_SET_MII_SELECT_PHY(X) (((X) & 0x1f) << 11)
106 #define MAC_MII_DATA		0x18
107 #define MAC_FLOW_CNTRL		0x1C
108 #  define MAC_FLOW_CNTRL_BUSY	(1 << 0)
109 #  define MAC_FLOW_CNTRL_ENABLE (1 << 1)
110 #  define MAC_PASS_CONTROL	(1 << 2)
111 #  define MAC_SET_PAUSE(X)	(((X) & 0xffff) << 16)
112 #define MAC_VLAN1_TAG		0x20
113 #define MAC_VLAN2_TAG		0x24
114 
115 /* Ethernet Controller Enable */
116 #  define MAC_EN_CLOCK_ENABLE	(1 << 0)
117 #  define MAC_EN_RESET0		(1 << 1)
118 #  define MAC_EN_TOSS		(0 << 2)
119 #  define MAC_EN_CACHEABLE	(1 << 3)
120 #  define MAC_EN_RESET1		(1 << 4)
121 #  define MAC_EN_RESET2		(1 << 5)
122 #  define MAC_DMA_RESET		(1 << 6)
123 
124 /* Ethernet Controller DMA Channels */
125 /* offsets from MAC_TX_RING_ADDR address */
126 #define MAC_TX_BUFF0_STATUS	0x0
127 #  define TX_FRAME_ABORTED	(1 << 0)
128 #  define TX_JAB_TIMEOUT	(1 << 1)
129 #  define TX_NO_CARRIER		(1 << 2)
130 #  define TX_LOSS_CARRIER	(1 << 3)
131 #  define TX_EXC_DEF		(1 << 4)
132 #  define TX_LATE_COLL_ABORT	(1 << 5)
133 #  define TX_EXC_COLL		(1 << 6)
134 #  define TX_UNDERRUN		(1 << 7)
135 #  define TX_DEFERRED		(1 << 8)
136 #  define TX_LATE_COLL		(1 << 9)
137 #  define TX_COLL_CNT_MASK	(0xF << 10)
138 #  define TX_PKT_RETRY		(1 << 31)
139 #define MAC_TX_BUFF0_ADDR	0x4
140 #  define TX_DMA_ENABLE		(1 << 0)
141 #  define TX_T_DONE		(1 << 1)
142 #  define TX_GET_DMA_BUFFER(X)	(((X) >> 2) & 0x3)
143 #define MAC_TX_BUFF0_LEN	0x8
144 #define MAC_TX_BUFF1_STATUS	0x10
145 #define MAC_TX_BUFF1_ADDR	0x14
146 #define MAC_TX_BUFF1_LEN	0x18
147 #define MAC_TX_BUFF2_STATUS	0x20
148 #define MAC_TX_BUFF2_ADDR	0x24
149 #define MAC_TX_BUFF2_LEN	0x28
150 #define MAC_TX_BUFF3_STATUS	0x30
151 #define MAC_TX_BUFF3_ADDR	0x34
152 #define MAC_TX_BUFF3_LEN	0x38
153 
154 /* offsets from MAC_RX_RING_ADDR */
155 #define MAC_RX_BUFF0_STATUS	0x0
156 #  define RX_FRAME_LEN_MASK	0x3fff
157 #  define RX_WDOG_TIMER		(1 << 14)
158 #  define RX_RUNT		(1 << 15)
159 #  define RX_OVERLEN		(1 << 16)
160 #  define RX_COLL		(1 << 17)
161 #  define RX_ETHER		(1 << 18)
162 #  define RX_MII_ERROR		(1 << 19)
163 #  define RX_DRIBBLING		(1 << 20)
164 #  define RX_CRC_ERROR		(1 << 21)
165 #  define RX_VLAN1		(1 << 22)
166 #  define RX_VLAN2		(1 << 23)
167 #  define RX_LEN_ERROR		(1 << 24)
168 #  define RX_CNTRL_FRAME	(1 << 25)
169 #  define RX_U_CNTRL_FRAME	(1 << 26)
170 #  define RX_MCAST_FRAME	(1 << 27)
171 #  define RX_BCAST_FRAME	(1 << 28)
172 #  define RX_FILTER_FAIL	(1 << 29)
173 #  define RX_PACKET_FILTER	(1 << 30)
174 #  define RX_MISSED_FRAME	(1 << 31)
175 
176 #  define RX_ERROR (RX_WDOG_TIMER | RX_RUNT | RX_OVERLEN |  \
177 		    RX_COLL | RX_MII_ERROR | RX_CRC_ERROR | \
178 		    RX_LEN_ERROR | RX_U_CNTRL_FRAME | RX_MISSED_FRAME)
179 #define MAC_RX_BUFF0_ADDR	0x4
180 #  define RX_DMA_ENABLE		(1 << 0)
181 #  define RX_T_DONE		(1 << 1)
182 #  define RX_GET_DMA_BUFFER(X)	(((X) >> 2) & 0x3)
183 #  define RX_SET_BUFF_ADDR(X)	((X) & 0xffffffc0)
184 #define MAC_RX_BUFF1_STATUS	0x10
185 #define MAC_RX_BUFF1_ADDR	0x14
186 #define MAC_RX_BUFF2_STATUS	0x20
187 #define MAC_RX_BUFF2_ADDR	0x24
188 #define MAC_RX_BUFF3_STATUS	0x30
189 #define MAC_RX_BUFF3_ADDR	0x34
190 
191 /*
192  * Theory of operation
193  *
194  * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
195  * There are four receive and four transmit descriptors.  These
196  * descriptors are not in memory; rather, they are just a set of
197  * hardware registers.
198  *
199  * Since the Au1000 has a coherent data cache, the receive and
200  * transmit buffers are allocated from the KSEG0 segment. The
201  * hardware registers, however, are still mapped at KSEG1 to
202  * make sure there's no out-of-order writes, and that all writes
203  * complete immediately.
204  */
205 
206 /*
207  * board-specific configurations
208  *
209  * PHY detection algorithm
210  *
211  * If phy_static_config is undefined, the PHY setup is
212  * autodetected:
213  *
214  * mii_probe() first searches the current MAC's MII bus for a PHY,
215  * selecting the first (or last, if phy_search_highest_addr is
216  * defined) PHY address not already claimed by another netdev.
217  *
218  * If nothing was found that way when searching for the 2nd ethernet
219  * controller's PHY and phy1_search_mac0 is defined, then
220  * the first MII bus is searched as well for an unclaimed PHY; this is
221  * needed in case of a dual-PHY accessible only through the MAC0's MII
222  * bus.
223  *
224  * Finally, if no PHY is found, then the corresponding ethernet
225  * controller is not registered to the network subsystem.
226  */
227 
228 /* autodetection defaults: phy1_search_mac0 */
229 
230 /* static PHY setup
231  *
232  * most boards PHY setup should be detectable properly with the
233  * autodetection algorithm in mii_probe(), but in some cases (e.g. if
234  * you have a switch attached, or want to use the PHY's interrupt
235  * notification capabilities) you can provide a static PHY
236  * configuration here
237  *
238  * IRQs may only be set, if a PHY address was configured
239  * If a PHY address is given, also a bus id is required to be set
240  *
241  * ps: make sure the used irqs are configured properly in the board
242  * specific irq-map
243  */
au1000_enable_mac(struct net_device * dev,int force_reset)244 static void au1000_enable_mac(struct net_device *dev, int force_reset)
245 {
246 	unsigned long flags;
247 	struct au1000_private *aup = netdev_priv(dev);
248 
249 	spin_lock_irqsave(&aup->lock, flags);
250 
251 	if (force_reset || (!aup->mac_enabled)) {
252 		writel(MAC_EN_CLOCK_ENABLE, aup->enable);
253 		wmb(); /* drain writebuffer */
254 		mdelay(2);
255 		writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
256 				| MAC_EN_CLOCK_ENABLE), aup->enable);
257 		wmb(); /* drain writebuffer */
258 		mdelay(2);
259 
260 		aup->mac_enabled = 1;
261 	}
262 
263 	spin_unlock_irqrestore(&aup->lock, flags);
264 }
265 
266 /*
267  * MII operations
268  */
au1000_mdio_read(struct net_device * dev,int phy_addr,int reg)269 static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
270 {
271 	struct au1000_private *aup = netdev_priv(dev);
272 	u32 *const mii_control_reg = &aup->mac->mii_control;
273 	u32 *const mii_data_reg = &aup->mac->mii_data;
274 	u32 timedout = 20;
275 	u32 mii_control;
276 
277 	while (readl(mii_control_reg) & MAC_MII_BUSY) {
278 		mdelay(1);
279 		if (--timedout == 0) {
280 			netdev_err(dev, "read_MII busy timeout!!\n");
281 			return -1;
282 		}
283 	}
284 
285 	mii_control = MAC_SET_MII_SELECT_REG(reg) |
286 		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
287 
288 	writel(mii_control, mii_control_reg);
289 
290 	timedout = 20;
291 	while (readl(mii_control_reg) & MAC_MII_BUSY) {
292 		mdelay(1);
293 		if (--timedout == 0) {
294 			netdev_err(dev, "mdio_read busy timeout!!\n");
295 			return -1;
296 		}
297 	}
298 	return readl(mii_data_reg);
299 }
300 
au1000_mdio_write(struct net_device * dev,int phy_addr,int reg,u16 value)301 static void au1000_mdio_write(struct net_device *dev, int phy_addr,
302 			      int reg, u16 value)
303 {
304 	struct au1000_private *aup = netdev_priv(dev);
305 	u32 *const mii_control_reg = &aup->mac->mii_control;
306 	u32 *const mii_data_reg = &aup->mac->mii_data;
307 	u32 timedout = 20;
308 	u32 mii_control;
309 
310 	while (readl(mii_control_reg) & MAC_MII_BUSY) {
311 		mdelay(1);
312 		if (--timedout == 0) {
313 			netdev_err(dev, "mdio_write busy timeout!!\n");
314 			return;
315 		}
316 	}
317 
318 	mii_control = MAC_SET_MII_SELECT_REG(reg) |
319 		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
320 
321 	writel(value, mii_data_reg);
322 	writel(mii_control, mii_control_reg);
323 }
324 
au1000_mdiobus_read(struct mii_bus * bus,int phy_addr,int regnum)325 static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
326 {
327 	struct net_device *const dev = bus->priv;
328 
329 	/* make sure the MAC associated with this
330 	 * mii_bus is enabled
331 	 */
332 	au1000_enable_mac(dev, 0);
333 
334 	return au1000_mdio_read(dev, phy_addr, regnum);
335 }
336 
au1000_mdiobus_write(struct mii_bus * bus,int phy_addr,int regnum,u16 value)337 static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
338 				u16 value)
339 {
340 	struct net_device *const dev = bus->priv;
341 
342 	/* make sure the MAC associated with this
343 	 * mii_bus is enabled
344 	 */
345 	au1000_enable_mac(dev, 0);
346 
347 	au1000_mdio_write(dev, phy_addr, regnum, value);
348 	return 0;
349 }
350 
au1000_mdiobus_reset(struct mii_bus * bus)351 static int au1000_mdiobus_reset(struct mii_bus *bus)
352 {
353 	struct net_device *const dev = bus->priv;
354 
355 	/* make sure the MAC associated with this
356 	 * mii_bus is enabled
357 	 */
358 	au1000_enable_mac(dev, 0);
359 
360 	return 0;
361 }
362 
au1000_hard_stop(struct net_device * dev)363 static void au1000_hard_stop(struct net_device *dev)
364 {
365 	struct au1000_private *aup = netdev_priv(dev);
366 	u32 reg;
367 
368 	netif_dbg(aup, drv, dev, "hard stop\n");
369 
370 	reg = readl(&aup->mac->control);
371 	reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
372 	writel(reg, &aup->mac->control);
373 	wmb(); /* drain writebuffer */
374 	mdelay(10);
375 }
376 
au1000_enable_rx_tx(struct net_device * dev)377 static void au1000_enable_rx_tx(struct net_device *dev)
378 {
379 	struct au1000_private *aup = netdev_priv(dev);
380 	u32 reg;
381 
382 	netif_dbg(aup, hw, dev, "enable_rx_tx\n");
383 
384 	reg = readl(&aup->mac->control);
385 	reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
386 	writel(reg, &aup->mac->control);
387 	wmb(); /* drain writebuffer */
388 	mdelay(10);
389 }
390 
391 static void
au1000_adjust_link(struct net_device * dev)392 au1000_adjust_link(struct net_device *dev)
393 {
394 	struct au1000_private *aup = netdev_priv(dev);
395 	struct phy_device *phydev = dev->phydev;
396 	unsigned long flags;
397 	u32 reg;
398 
399 	int status_change = 0;
400 
401 	BUG_ON(!phydev);
402 
403 	spin_lock_irqsave(&aup->lock, flags);
404 
405 	if (phydev->link && (aup->old_speed != phydev->speed)) {
406 		/* speed changed */
407 
408 		switch (phydev->speed) {
409 		case SPEED_10:
410 		case SPEED_100:
411 			break;
412 		default:
413 			netdev_warn(dev, "Speed (%d) is not 10/100 ???\n",
414 							phydev->speed);
415 			break;
416 		}
417 
418 		aup->old_speed = phydev->speed;
419 
420 		status_change = 1;
421 	}
422 
423 	if (phydev->link && (aup->old_duplex != phydev->duplex)) {
424 		/* duplex mode changed */
425 
426 		/* switching duplex mode requires to disable rx and tx! */
427 		au1000_hard_stop(dev);
428 
429 		reg = readl(&aup->mac->control);
430 		if (DUPLEX_FULL == phydev->duplex) {
431 			reg |= MAC_FULL_DUPLEX;
432 			reg &= ~MAC_DISABLE_RX_OWN;
433 		} else {
434 			reg &= ~MAC_FULL_DUPLEX;
435 			reg |= MAC_DISABLE_RX_OWN;
436 		}
437 		writel(reg, &aup->mac->control);
438 		wmb(); /* drain writebuffer */
439 		mdelay(1);
440 
441 		au1000_enable_rx_tx(dev);
442 		aup->old_duplex = phydev->duplex;
443 
444 		status_change = 1;
445 	}
446 
447 	if (phydev->link != aup->old_link) {
448 		/* link state changed */
449 
450 		if (!phydev->link) {
451 			/* link went down */
452 			aup->old_speed = 0;
453 			aup->old_duplex = -1;
454 		}
455 
456 		aup->old_link = phydev->link;
457 		status_change = 1;
458 	}
459 
460 	spin_unlock_irqrestore(&aup->lock, flags);
461 
462 	if (status_change) {
463 		if (phydev->link)
464 			netdev_info(dev, "link up (%d/%s)\n",
465 			       phydev->speed,
466 			       DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
467 		else
468 			netdev_info(dev, "link down\n");
469 	}
470 }
471 
au1000_mii_probe(struct net_device * dev)472 static int au1000_mii_probe(struct net_device *dev)
473 {
474 	struct au1000_private *const aup = netdev_priv(dev);
475 	struct phy_device *phydev = NULL;
476 	int phy_addr;
477 
478 	if (aup->phy_static_config) {
479 		BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
480 
481 		if (aup->phy_addr)
482 			phydev = mdiobus_get_phy(aup->mii_bus, aup->phy_addr);
483 		else
484 			netdev_info(dev, "using PHY-less setup\n");
485 		return 0;
486 	}
487 
488 	/* find the first (lowest address) PHY
489 	 * on the current MAC's MII bus
490 	 */
491 	for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
492 		if (mdiobus_get_phy(aup->mii_bus, phy_addr)) {
493 			phydev = mdiobus_get_phy(aup->mii_bus, phy_addr);
494 			if (!aup->phy_search_highest_addr)
495 				/* break out with first one found */
496 				break;
497 		}
498 
499 	if (aup->phy1_search_mac0) {
500 		/* try harder to find a PHY */
501 		if (!phydev && (aup->mac_id == 1)) {
502 			/* no PHY found, maybe we have a dual PHY? */
503 			dev_info(&dev->dev, ": no PHY found on MAC1, "
504 				"let's see if it's attached to MAC0...\n");
505 
506 			/* find the first (lowest address) non-attached
507 			 * PHY on the MAC0 MII bus
508 			 */
509 			for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
510 				struct phy_device *const tmp_phydev =
511 					mdiobus_get_phy(aup->mii_bus,
512 							phy_addr);
513 
514 				if (aup->mac_id == 1)
515 					break;
516 
517 				/* no PHY here... */
518 				if (!tmp_phydev)
519 					continue;
520 
521 				/* already claimed by MAC0 */
522 				if (tmp_phydev->attached_dev)
523 					continue;
524 
525 				phydev = tmp_phydev;
526 				break; /* found it */
527 			}
528 		}
529 	}
530 
531 	if (!phydev) {
532 		netdev_err(dev, "no PHY found\n");
533 		return -1;
534 	}
535 
536 	/* now we are supposed to have a proper phydev, to attach to... */
537 	BUG_ON(phydev->attached_dev);
538 
539 	phydev = phy_connect(dev, phydev_name(phydev),
540 			     &au1000_adjust_link, PHY_INTERFACE_MODE_MII);
541 
542 	if (IS_ERR(phydev)) {
543 		netdev_err(dev, "Could not attach to PHY\n");
544 		return PTR_ERR(phydev);
545 	}
546 
547 	phy_set_max_speed(phydev, SPEED_100);
548 
549 	aup->old_link = 0;
550 	aup->old_speed = 0;
551 	aup->old_duplex = -1;
552 
553 	phy_attached_info(phydev);
554 
555 	return 0;
556 }
557 
558 /*
559  * Buffer allocation/deallocation routines. The buffer descriptor returned
560  * has the virtual and dma address of a buffer suitable for
561  * both, receive and transmit operations.
562  */
au1000_GetFreeDB(struct au1000_private * aup)563 static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup)
564 {
565 	struct db_dest *pDB;
566 	pDB = aup->pDBfree;
567 
568 	if (pDB)
569 		aup->pDBfree = pDB->pnext;
570 
571 	return pDB;
572 }
573 
au1000_ReleaseDB(struct au1000_private * aup,struct db_dest * pDB)574 void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB)
575 {
576 	struct db_dest *pDBfree = aup->pDBfree;
577 	if (pDBfree)
578 		pDBfree->pnext = pDB;
579 	aup->pDBfree = pDB;
580 }
581 
au1000_reset_mac_unlocked(struct net_device * dev)582 static void au1000_reset_mac_unlocked(struct net_device *dev)
583 {
584 	struct au1000_private *const aup = netdev_priv(dev);
585 	int i;
586 
587 	au1000_hard_stop(dev);
588 
589 	writel(MAC_EN_CLOCK_ENABLE, aup->enable);
590 	wmb(); /* drain writebuffer */
591 	mdelay(2);
592 	writel(0, aup->enable);
593 	wmb(); /* drain writebuffer */
594 	mdelay(2);
595 
596 	aup->tx_full = 0;
597 	for (i = 0; i < NUM_RX_DMA; i++) {
598 		/* reset control bits */
599 		aup->rx_dma_ring[i]->buff_stat &= ~0xf;
600 	}
601 	for (i = 0; i < NUM_TX_DMA; i++) {
602 		/* reset control bits */
603 		aup->tx_dma_ring[i]->buff_stat &= ~0xf;
604 	}
605 
606 	aup->mac_enabled = 0;
607 
608 }
609 
au1000_reset_mac(struct net_device * dev)610 static void au1000_reset_mac(struct net_device *dev)
611 {
612 	struct au1000_private *const aup = netdev_priv(dev);
613 	unsigned long flags;
614 
615 	netif_dbg(aup, hw, dev, "reset mac, aup %x\n",
616 					(unsigned)aup);
617 
618 	spin_lock_irqsave(&aup->lock, flags);
619 
620 	au1000_reset_mac_unlocked(dev);
621 
622 	spin_unlock_irqrestore(&aup->lock, flags);
623 }
624 
625 /*
626  * Setup the receive and transmit "rings".  These pointers are the addresses
627  * of the rx and tx MAC DMA registers so they are fixed by the hardware --
628  * these are not descriptors sitting in memory.
629  */
630 static void
au1000_setup_hw_rings(struct au1000_private * aup,void __iomem * tx_base)631 au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base)
632 {
633 	int i;
634 
635 	for (i = 0; i < NUM_RX_DMA; i++) {
636 		aup->rx_dma_ring[i] = (struct rx_dma *)
637 			(tx_base + 0x100 + sizeof(struct rx_dma) * i);
638 	}
639 	for (i = 0; i < NUM_TX_DMA; i++) {
640 		aup->tx_dma_ring[i] = (struct tx_dma *)
641 			(tx_base + sizeof(struct tx_dma) * i);
642 	}
643 }
644 
645 /*
646  * ethtool operations
647  */
648 static void
au1000_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)649 au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
650 {
651 	struct au1000_private *aup = netdev_priv(dev);
652 
653 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
654 	snprintf(info->bus_info, sizeof(info->bus_info), "%s %d", DRV_NAME,
655 		 aup->mac_id);
656 }
657 
au1000_set_msglevel(struct net_device * dev,u32 value)658 static void au1000_set_msglevel(struct net_device *dev, u32 value)
659 {
660 	struct au1000_private *aup = netdev_priv(dev);
661 	aup->msg_enable = value;
662 }
663 
au1000_get_msglevel(struct net_device * dev)664 static u32 au1000_get_msglevel(struct net_device *dev)
665 {
666 	struct au1000_private *aup = netdev_priv(dev);
667 	return aup->msg_enable;
668 }
669 
670 static const struct ethtool_ops au1000_ethtool_ops = {
671 	.get_drvinfo = au1000_get_drvinfo,
672 	.get_link = ethtool_op_get_link,
673 	.get_msglevel = au1000_get_msglevel,
674 	.set_msglevel = au1000_set_msglevel,
675 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
676 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
677 };
678 
679 /*
680  * Initialize the interface.
681  *
682  * When the device powers up, the clocks are disabled and the
683  * mac is in reset state.  When the interface is closed, we
684  * do the same -- reset the device and disable the clocks to
685  * conserve power. Thus, whenever au1000_init() is called,
686  * the device should already be in reset state.
687  */
au1000_init(struct net_device * dev)688 static int au1000_init(struct net_device *dev)
689 {
690 	struct au1000_private *aup = netdev_priv(dev);
691 	unsigned long flags;
692 	int i;
693 	u32 control;
694 
695 	netif_dbg(aup, hw, dev, "au1000_init\n");
696 
697 	/* bring the device out of reset */
698 	au1000_enable_mac(dev, 1);
699 
700 	spin_lock_irqsave(&aup->lock, flags);
701 
702 	writel(0, &aup->mac->control);
703 	aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
704 	aup->tx_tail = aup->tx_head;
705 	aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
706 
707 	writel(dev->dev_addr[5]<<8 | dev->dev_addr[4],
708 					&aup->mac->mac_addr_high);
709 	writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
710 		dev->dev_addr[1]<<8 | dev->dev_addr[0],
711 					&aup->mac->mac_addr_low);
712 
713 
714 	for (i = 0; i < NUM_RX_DMA; i++)
715 		aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
716 
717 	wmb(); /* drain writebuffer */
718 
719 	control = MAC_RX_ENABLE | MAC_TX_ENABLE;
720 #ifndef CONFIG_CPU_LITTLE_ENDIAN
721 	control |= MAC_BIG_ENDIAN;
722 #endif
723 	if (dev->phydev) {
724 		if (dev->phydev->link && (DUPLEX_FULL == dev->phydev->duplex))
725 			control |= MAC_FULL_DUPLEX;
726 		else
727 			control |= MAC_DISABLE_RX_OWN;
728 	} else { /* PHY-less op, assume full-duplex */
729 		control |= MAC_FULL_DUPLEX;
730 	}
731 
732 	writel(control, &aup->mac->control);
733 	writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */
734 	wmb(); /* drain writebuffer */
735 
736 	spin_unlock_irqrestore(&aup->lock, flags);
737 	return 0;
738 }
739 
au1000_update_rx_stats(struct net_device * dev,u32 status)740 static inline void au1000_update_rx_stats(struct net_device *dev, u32 status)
741 {
742 	struct net_device_stats *ps = &dev->stats;
743 
744 	ps->rx_packets++;
745 	if (status & RX_MCAST_FRAME)
746 		ps->multicast++;
747 
748 	if (status & RX_ERROR) {
749 		ps->rx_errors++;
750 		if (status & RX_MISSED_FRAME)
751 			ps->rx_missed_errors++;
752 		if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR))
753 			ps->rx_length_errors++;
754 		if (status & RX_CRC_ERROR)
755 			ps->rx_crc_errors++;
756 		if (status & RX_COLL)
757 			ps->collisions++;
758 	} else
759 		ps->rx_bytes += status & RX_FRAME_LEN_MASK;
760 
761 }
762 
763 /*
764  * Au1000 receive routine.
765  */
au1000_rx(struct net_device * dev)766 static int au1000_rx(struct net_device *dev)
767 {
768 	struct au1000_private *aup = netdev_priv(dev);
769 	struct sk_buff *skb;
770 	struct rx_dma *prxd;
771 	u32 buff_stat, status;
772 	struct db_dest *pDB;
773 	u32	frmlen;
774 
775 	netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head);
776 
777 	prxd = aup->rx_dma_ring[aup->rx_head];
778 	buff_stat = prxd->buff_stat;
779 	while (buff_stat & RX_T_DONE)  {
780 		status = prxd->status;
781 		pDB = aup->rx_db_inuse[aup->rx_head];
782 		au1000_update_rx_stats(dev, status);
783 		if (!(status & RX_ERROR))  {
784 
785 			/* good frame */
786 			frmlen = (status & RX_FRAME_LEN_MASK);
787 			frmlen -= 4; /* Remove FCS */
788 			skb = netdev_alloc_skb(dev, frmlen + 2);
789 			if (!skb) {
790 				dev->stats.rx_dropped++;
791 				continue;
792 			}
793 			skb_reserve(skb, 2);	/* 16 byte IP header align */
794 			skb_copy_to_linear_data(skb,
795 				(unsigned char *)pDB->vaddr, frmlen);
796 			skb_put(skb, frmlen);
797 			skb->protocol = eth_type_trans(skb, dev);
798 			netif_rx(skb);	/* pass the packet to upper layers */
799 		} else {
800 			if (au1000_debug > 4) {
801 				pr_err("rx_error(s):");
802 				if (status & RX_MISSED_FRAME)
803 					pr_cont(" miss");
804 				if (status & RX_WDOG_TIMER)
805 					pr_cont(" wdog");
806 				if (status & RX_RUNT)
807 					pr_cont(" runt");
808 				if (status & RX_OVERLEN)
809 					pr_cont(" overlen");
810 				if (status & RX_COLL)
811 					pr_cont(" coll");
812 				if (status & RX_MII_ERROR)
813 					pr_cont(" mii error");
814 				if (status & RX_CRC_ERROR)
815 					pr_cont(" crc error");
816 				if (status & RX_LEN_ERROR)
817 					pr_cont(" len error");
818 				if (status & RX_U_CNTRL_FRAME)
819 					pr_cont(" u control frame");
820 				pr_cont("\n");
821 			}
822 		}
823 		prxd->buff_stat = lower_32_bits(pDB->dma_addr) | RX_DMA_ENABLE;
824 		aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
825 		wmb(); /* drain writebuffer */
826 
827 		/* next descriptor */
828 		prxd = aup->rx_dma_ring[aup->rx_head];
829 		buff_stat = prxd->buff_stat;
830 	}
831 	return 0;
832 }
833 
au1000_update_tx_stats(struct net_device * dev,u32 status)834 static void au1000_update_tx_stats(struct net_device *dev, u32 status)
835 {
836 	struct net_device_stats *ps = &dev->stats;
837 
838 	if (status & TX_FRAME_ABORTED) {
839 		if (!dev->phydev || (DUPLEX_FULL == dev->phydev->duplex)) {
840 			if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
841 				/* any other tx errors are only valid
842 				 * in half duplex mode
843 				 */
844 				ps->tx_errors++;
845 				ps->tx_aborted_errors++;
846 			}
847 		} else {
848 			ps->tx_errors++;
849 			ps->tx_aborted_errors++;
850 			if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
851 				ps->tx_carrier_errors++;
852 		}
853 	}
854 }
855 
856 /*
857  * Called from the interrupt service routine to acknowledge
858  * the TX DONE bits.  This is a must if the irq is setup as
859  * edge triggered.
860  */
au1000_tx_ack(struct net_device * dev)861 static void au1000_tx_ack(struct net_device *dev)
862 {
863 	struct au1000_private *aup = netdev_priv(dev);
864 	struct tx_dma *ptxd;
865 
866 	ptxd = aup->tx_dma_ring[aup->tx_tail];
867 
868 	while (ptxd->buff_stat & TX_T_DONE) {
869 		au1000_update_tx_stats(dev, ptxd->status);
870 		ptxd->buff_stat &= ~TX_T_DONE;
871 		ptxd->len = 0;
872 		wmb(); /* drain writebuffer */
873 
874 		aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
875 		ptxd = aup->tx_dma_ring[aup->tx_tail];
876 
877 		if (aup->tx_full) {
878 			aup->tx_full = 0;
879 			netif_wake_queue(dev);
880 		}
881 	}
882 }
883 
884 /*
885  * Au1000 interrupt service routine.
886  */
au1000_interrupt(int irq,void * dev_id)887 static irqreturn_t au1000_interrupt(int irq, void *dev_id)
888 {
889 	struct net_device *dev = dev_id;
890 
891 	/* Handle RX interrupts first to minimize chance of overrun */
892 
893 	au1000_rx(dev);
894 	au1000_tx_ack(dev);
895 	return IRQ_RETVAL(1);
896 }
897 
au1000_open(struct net_device * dev)898 static int au1000_open(struct net_device *dev)
899 {
900 	int retval;
901 	struct au1000_private *aup = netdev_priv(dev);
902 
903 	netif_dbg(aup, drv, dev, "open: dev=%p\n", dev);
904 
905 	retval = request_irq(dev->irq, au1000_interrupt, 0,
906 					dev->name, dev);
907 	if (retval) {
908 		netdev_err(dev, "unable to get IRQ %d\n", dev->irq);
909 		return retval;
910 	}
911 
912 	retval = au1000_init(dev);
913 	if (retval) {
914 		netdev_err(dev, "error in au1000_init\n");
915 		free_irq(dev->irq, dev);
916 		return retval;
917 	}
918 
919 	if (dev->phydev)
920 		phy_start(dev->phydev);
921 
922 	netif_start_queue(dev);
923 
924 	netif_dbg(aup, drv, dev, "open: Initialization done.\n");
925 
926 	return 0;
927 }
928 
au1000_close(struct net_device * dev)929 static int au1000_close(struct net_device *dev)
930 {
931 	unsigned long flags;
932 	struct au1000_private *const aup = netdev_priv(dev);
933 
934 	netif_dbg(aup, drv, dev, "close: dev=%p\n", dev);
935 
936 	if (dev->phydev)
937 		phy_stop(dev->phydev);
938 
939 	spin_lock_irqsave(&aup->lock, flags);
940 
941 	au1000_reset_mac_unlocked(dev);
942 
943 	/* stop the device */
944 	netif_stop_queue(dev);
945 
946 	/* disable the interrupt */
947 	free_irq(dev->irq, dev);
948 	spin_unlock_irqrestore(&aup->lock, flags);
949 
950 	return 0;
951 }
952 
953 /*
954  * Au1000 transmit routine.
955  */
au1000_tx(struct sk_buff * skb,struct net_device * dev)956 static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev)
957 {
958 	struct au1000_private *aup = netdev_priv(dev);
959 	struct net_device_stats *ps = &dev->stats;
960 	struct tx_dma *ptxd;
961 	u32 buff_stat;
962 	struct db_dest *pDB;
963 	int i;
964 
965 	netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n",
966 				(unsigned)aup, skb->len,
967 				skb->data, aup->tx_head);
968 
969 	ptxd = aup->tx_dma_ring[aup->tx_head];
970 	buff_stat = ptxd->buff_stat;
971 	if (buff_stat & TX_DMA_ENABLE) {
972 		/* We've wrapped around and the transmitter is still busy */
973 		netif_stop_queue(dev);
974 		aup->tx_full = 1;
975 		return NETDEV_TX_BUSY;
976 	} else if (buff_stat & TX_T_DONE) {
977 		au1000_update_tx_stats(dev, ptxd->status);
978 		ptxd->len = 0;
979 	}
980 
981 	if (aup->tx_full) {
982 		aup->tx_full = 0;
983 		netif_wake_queue(dev);
984 	}
985 
986 	pDB = aup->tx_db_inuse[aup->tx_head];
987 	skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
988 	if (skb->len < ETH_ZLEN) {
989 		for (i = skb->len; i < ETH_ZLEN; i++)
990 			((char *)pDB->vaddr)[i] = 0;
991 
992 		ptxd->len = ETH_ZLEN;
993 	} else
994 		ptxd->len = skb->len;
995 
996 	ps->tx_packets++;
997 	ps->tx_bytes += ptxd->len;
998 
999 	ptxd->buff_stat = lower_32_bits(pDB->dma_addr) | TX_DMA_ENABLE;
1000 	wmb(); /* drain writebuffer */
1001 	dev_kfree_skb(skb);
1002 	aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
1003 	return NETDEV_TX_OK;
1004 }
1005 
1006 /*
1007  * The Tx ring has been full longer than the watchdog timeout
1008  * value. The transmitter must be hung?
1009  */
au1000_tx_timeout(struct net_device * dev,unsigned int txqueue)1010 static void au1000_tx_timeout(struct net_device *dev, unsigned int txqueue)
1011 {
1012 	netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev);
1013 	au1000_reset_mac(dev);
1014 	au1000_init(dev);
1015 	netif_trans_update(dev); /* prevent tx timeout */
1016 	netif_wake_queue(dev);
1017 }
1018 
au1000_multicast_list(struct net_device * dev)1019 static void au1000_multicast_list(struct net_device *dev)
1020 {
1021 	struct au1000_private *aup = netdev_priv(dev);
1022 	u32 reg;
1023 
1024 	netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags);
1025 	reg = readl(&aup->mac->control);
1026 	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
1027 		reg |= MAC_PROMISCUOUS;
1028 	} else if ((dev->flags & IFF_ALLMULTI)  ||
1029 			   netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) {
1030 		reg |= MAC_PASS_ALL_MULTI;
1031 		reg &= ~MAC_PROMISCUOUS;
1032 		netdev_info(dev, "Pass all multicast\n");
1033 	} else {
1034 		struct netdev_hw_addr *ha;
1035 		u32 mc_filter[2];	/* Multicast hash filter */
1036 
1037 		mc_filter[1] = mc_filter[0] = 0;
1038 		netdev_for_each_mc_addr(ha, dev)
1039 			set_bit(ether_crc(ETH_ALEN, ha->addr)>>26,
1040 					(long *)mc_filter);
1041 		writel(mc_filter[1], &aup->mac->multi_hash_high);
1042 		writel(mc_filter[0], &aup->mac->multi_hash_low);
1043 		reg &= ~MAC_PROMISCUOUS;
1044 		reg |= MAC_HASH_MODE;
1045 	}
1046 	writel(reg, &aup->mac->control);
1047 }
1048 
1049 static const struct net_device_ops au1000_netdev_ops = {
1050 	.ndo_open		= au1000_open,
1051 	.ndo_stop		= au1000_close,
1052 	.ndo_start_xmit		= au1000_tx,
1053 	.ndo_set_rx_mode	= au1000_multicast_list,
1054 	.ndo_eth_ioctl		= phy_do_ioctl_running,
1055 	.ndo_tx_timeout		= au1000_tx_timeout,
1056 	.ndo_set_mac_address	= eth_mac_addr,
1057 	.ndo_validate_addr	= eth_validate_addr,
1058 };
1059 
au1000_probe(struct platform_device * pdev)1060 static int au1000_probe(struct platform_device *pdev)
1061 {
1062 	struct au1000_private *aup = NULL;
1063 	struct au1000_eth_platform_data *pd;
1064 	struct net_device *dev = NULL;
1065 	struct db_dest *pDB, *pDBfree;
1066 	int irq, i, err = 0;
1067 	struct resource *base, *macen, *macdma;
1068 
1069 	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1070 	if (!base) {
1071 		dev_err(&pdev->dev, "failed to retrieve base register\n");
1072 		err = -ENODEV;
1073 		goto out;
1074 	}
1075 
1076 	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1077 	if (!macen) {
1078 		dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n");
1079 		err = -ENODEV;
1080 		goto out;
1081 	}
1082 
1083 	irq = platform_get_irq(pdev, 0);
1084 	if (irq < 0) {
1085 		err = -ENODEV;
1086 		goto out;
1087 	}
1088 
1089 	macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1090 	if (!macdma) {
1091 		dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n");
1092 		err = -ENODEV;
1093 		goto out;
1094 	}
1095 
1096 	if (!request_mem_region(base->start, resource_size(base),
1097 							pdev->name)) {
1098 		dev_err(&pdev->dev, "failed to request memory region for base registers\n");
1099 		err = -ENXIO;
1100 		goto out;
1101 	}
1102 
1103 	if (!request_mem_region(macen->start, resource_size(macen),
1104 							pdev->name)) {
1105 		dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n");
1106 		err = -ENXIO;
1107 		goto err_request;
1108 	}
1109 
1110 	if (!request_mem_region(macdma->start, resource_size(macdma),
1111 							pdev->name)) {
1112 		dev_err(&pdev->dev, "failed to request MACDMA memory region\n");
1113 		err = -ENXIO;
1114 		goto err_macdma;
1115 	}
1116 
1117 	dev = alloc_etherdev(sizeof(struct au1000_private));
1118 	if (!dev) {
1119 		err = -ENOMEM;
1120 		goto err_alloc;
1121 	}
1122 
1123 	SET_NETDEV_DEV(dev, &pdev->dev);
1124 	platform_set_drvdata(pdev, dev);
1125 	aup = netdev_priv(dev);
1126 
1127 	spin_lock_init(&aup->lock);
1128 	aup->msg_enable = (au1000_debug < 4 ?
1129 				AU1000_DEF_MSG_ENABLE : au1000_debug);
1130 
1131 	/* Allocate the data buffers
1132 	 * Snooping works fine with eth on all au1xxx
1133 	 */
1134 	aup->vaddr = dma_alloc_coherent(&pdev->dev, MAX_BUF_SIZE *
1135 					(NUM_TX_BUFFS + NUM_RX_BUFFS),
1136 					&aup->dma_addr, 0);
1137 	if (!aup->vaddr) {
1138 		dev_err(&pdev->dev, "failed to allocate data buffers\n");
1139 		err = -ENOMEM;
1140 		goto err_vaddr;
1141 	}
1142 
1143 	/* aup->mac is the base address of the MAC's registers */
1144 	aup->mac = (struct mac_reg *)
1145 			ioremap(base->start, resource_size(base));
1146 	if (!aup->mac) {
1147 		dev_err(&pdev->dev, "failed to ioremap MAC registers\n");
1148 		err = -ENXIO;
1149 		goto err_remap1;
1150 	}
1151 
1152 	/* Setup some variables for quick register address access */
1153 	aup->enable = (u32 *)ioremap(macen->start,
1154 						resource_size(macen));
1155 	if (!aup->enable) {
1156 		dev_err(&pdev->dev, "failed to ioremap MAC enable register\n");
1157 		err = -ENXIO;
1158 		goto err_remap2;
1159 	}
1160 	aup->mac_id = pdev->id;
1161 
1162 	aup->macdma = ioremap(macdma->start, resource_size(macdma));
1163 	if (!aup->macdma) {
1164 		dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n");
1165 		err = -ENXIO;
1166 		goto err_remap3;
1167 	}
1168 
1169 	au1000_setup_hw_rings(aup, aup->macdma);
1170 
1171 	writel(0, aup->enable);
1172 	aup->mac_enabled = 0;
1173 
1174 	pd = dev_get_platdata(&pdev->dev);
1175 	if (!pd) {
1176 		dev_info(&pdev->dev, "no platform_data passed,"
1177 					" PHY search on MAC0\n");
1178 		aup->phy1_search_mac0 = 1;
1179 	} else {
1180 		if (is_valid_ether_addr(pd->mac)) {
1181 			eth_hw_addr_set(dev, pd->mac);
1182 		} else {
1183 			/* Set a random MAC since no valid provided by platform_data. */
1184 			eth_hw_addr_random(dev);
1185 		}
1186 
1187 		aup->phy_static_config = pd->phy_static_config;
1188 		aup->phy_search_highest_addr = pd->phy_search_highest_addr;
1189 		aup->phy1_search_mac0 = pd->phy1_search_mac0;
1190 		aup->phy_addr = pd->phy_addr;
1191 		aup->phy_busid = pd->phy_busid;
1192 		aup->phy_irq = pd->phy_irq;
1193 	}
1194 
1195 	if (aup->phy_busid > 0) {
1196 		dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n");
1197 		err = -ENODEV;
1198 		goto err_mdiobus_alloc;
1199 	}
1200 
1201 	aup->mii_bus = mdiobus_alloc();
1202 	if (!aup->mii_bus) {
1203 		dev_err(&pdev->dev, "failed to allocate mdiobus structure\n");
1204 		err = -ENOMEM;
1205 		goto err_mdiobus_alloc;
1206 	}
1207 
1208 	aup->mii_bus->priv = dev;
1209 	aup->mii_bus->read = au1000_mdiobus_read;
1210 	aup->mii_bus->write = au1000_mdiobus_write;
1211 	aup->mii_bus->reset = au1000_mdiobus_reset;
1212 	aup->mii_bus->name = "au1000_eth_mii";
1213 	snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1214 		pdev->name, aup->mac_id);
1215 
1216 	/* if known, set corresponding PHY IRQs */
1217 	if (aup->phy_static_config)
1218 		if (aup->phy_irq && aup->phy_busid == aup->mac_id)
1219 			aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq;
1220 
1221 	err = mdiobus_register(aup->mii_bus);
1222 	if (err) {
1223 		dev_err(&pdev->dev, "failed to register MDIO bus\n");
1224 		goto err_mdiobus_reg;
1225 	}
1226 
1227 	err = au1000_mii_probe(dev);
1228 	if (err != 0)
1229 		goto err_out;
1230 
1231 	pDBfree = NULL;
1232 	/* setup the data buffer descriptors and attach a buffer to each one */
1233 	pDB = aup->db;
1234 	for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
1235 		pDB->pnext = pDBfree;
1236 		pDBfree = pDB;
1237 		pDB->vaddr = aup->vaddr + MAX_BUF_SIZE * i;
1238 		pDB->dma_addr = aup->dma_addr + MAX_BUF_SIZE * i;
1239 		pDB++;
1240 	}
1241 	aup->pDBfree = pDBfree;
1242 
1243 	err = -ENODEV;
1244 	for (i = 0; i < NUM_RX_DMA; i++) {
1245 		pDB = au1000_GetFreeDB(aup);
1246 		if (!pDB)
1247 			goto err_out;
1248 
1249 		aup->rx_dma_ring[i]->buff_stat = lower_32_bits(pDB->dma_addr);
1250 		aup->rx_db_inuse[i] = pDB;
1251 	}
1252 
1253 	for (i = 0; i < NUM_TX_DMA; i++) {
1254 		pDB = au1000_GetFreeDB(aup);
1255 		if (!pDB)
1256 			goto err_out;
1257 
1258 		aup->tx_dma_ring[i]->buff_stat = lower_32_bits(pDB->dma_addr);
1259 		aup->tx_dma_ring[i]->len = 0;
1260 		aup->tx_db_inuse[i] = pDB;
1261 	}
1262 
1263 	dev->base_addr = base->start;
1264 	dev->irq = irq;
1265 	dev->netdev_ops = &au1000_netdev_ops;
1266 	dev->ethtool_ops = &au1000_ethtool_ops;
1267 	dev->watchdog_timeo = ETH_TX_TIMEOUT;
1268 
1269 	/*
1270 	 * The boot code uses the ethernet controller, so reset it to start
1271 	 * fresh.  au1000_init() expects that the device is in reset state.
1272 	 */
1273 	au1000_reset_mac(dev);
1274 
1275 	err = register_netdev(dev);
1276 	if (err) {
1277 		netdev_err(dev, "Cannot register net device, aborting.\n");
1278 		goto err_out;
1279 	}
1280 
1281 	netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n",
1282 			(unsigned long)base->start, irq);
1283 
1284 	return 0;
1285 
1286 err_out:
1287 	if (aup->mii_bus)
1288 		mdiobus_unregister(aup->mii_bus);
1289 
1290 	/* here we should have a valid dev plus aup-> register addresses
1291 	 * so we can reset the mac properly.
1292 	 */
1293 	au1000_reset_mac(dev);
1294 
1295 	for (i = 0; i < NUM_RX_DMA; i++) {
1296 		if (aup->rx_db_inuse[i])
1297 			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1298 	}
1299 	for (i = 0; i < NUM_TX_DMA; i++) {
1300 		if (aup->tx_db_inuse[i])
1301 			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1302 	}
1303 err_mdiobus_reg:
1304 	mdiobus_free(aup->mii_bus);
1305 err_mdiobus_alloc:
1306 	iounmap(aup->macdma);
1307 err_remap3:
1308 	iounmap(aup->enable);
1309 err_remap2:
1310 	iounmap(aup->mac);
1311 err_remap1:
1312 	dma_free_coherent(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1313 			  aup->vaddr, aup->dma_addr);
1314 err_vaddr:
1315 	free_netdev(dev);
1316 err_alloc:
1317 	release_mem_region(macdma->start, resource_size(macdma));
1318 err_macdma:
1319 	release_mem_region(macen->start, resource_size(macen));
1320 err_request:
1321 	release_mem_region(base->start, resource_size(base));
1322 out:
1323 	return err;
1324 }
1325 
au1000_remove(struct platform_device * pdev)1326 static int au1000_remove(struct platform_device *pdev)
1327 {
1328 	struct net_device *dev = platform_get_drvdata(pdev);
1329 	struct au1000_private *aup = netdev_priv(dev);
1330 	int i;
1331 	struct resource *base, *macen;
1332 
1333 	unregister_netdev(dev);
1334 	mdiobus_unregister(aup->mii_bus);
1335 	mdiobus_free(aup->mii_bus);
1336 
1337 	for (i = 0; i < NUM_RX_DMA; i++)
1338 		if (aup->rx_db_inuse[i])
1339 			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1340 
1341 	for (i = 0; i < NUM_TX_DMA; i++)
1342 		if (aup->tx_db_inuse[i])
1343 			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1344 
1345 	dma_free_coherent(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1346 			  aup->vaddr, aup->dma_addr);
1347 
1348 	iounmap(aup->macdma);
1349 	iounmap(aup->mac);
1350 	iounmap(aup->enable);
1351 
1352 	base = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1353 	release_mem_region(base->start, resource_size(base));
1354 
1355 	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1356 	release_mem_region(base->start, resource_size(base));
1357 
1358 	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1359 	release_mem_region(macen->start, resource_size(macen));
1360 
1361 	free_netdev(dev);
1362 
1363 	return 0;
1364 }
1365 
1366 static struct platform_driver au1000_eth_driver = {
1367 	.probe  = au1000_probe,
1368 	.remove = au1000_remove,
1369 	.driver = {
1370 		.name   = "au1000-eth",
1371 	},
1372 };
1373 
1374 module_platform_driver(au1000_eth_driver);
1375 
1376 MODULE_ALIAS("platform:au1000-eth");
1377