1 /*
2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Ke Yu
25 * Kevin Tian <kevin.tian@intel.com>
26 * Zhiyuan Lv <zhiyuan.lv@intel.com>
27 *
28 * Contributors:
29 * Min He <min.he@intel.com>
30 * Ping Gao <ping.a.gao@intel.com>
31 * Tina Zhang <tina.zhang@intel.com>
32 * Yulei Zhang <yulei.zhang@intel.com>
33 * Zhi Wang <zhi.a.wang@intel.com>
34 *
35 */
36
37 #include <linux/slab.h>
38
39 #include "i915_drv.h"
40 #include "i915_reg.h"
41 #include "gt/intel_engine_regs.h"
42 #include "gt/intel_gpu_commands.h"
43 #include "gt/intel_gt_regs.h"
44 #include "gt/intel_lrc.h"
45 #include "gt/intel_ring.h"
46 #include "gt/intel_gt_requests.h"
47 #include "gt/shmem_utils.h"
48 #include "gvt.h"
49 #include "i915_pvinfo.h"
50 #include "trace.h"
51
52 #include "display/intel_display.h"
53 #include "gem/i915_gem_context.h"
54 #include "gem/i915_gem_pm.h"
55 #include "gt/intel_context.h"
56
57 #define INVALID_OP (~0U)
58
59 #define OP_LEN_MI 9
60 #define OP_LEN_2D 10
61 #define OP_LEN_3D_MEDIA 16
62 #define OP_LEN_MFX_VC 16
63 #define OP_LEN_VEBOX 16
64
65 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7)
66
67 struct sub_op_bits {
68 int hi;
69 int low;
70 };
71 struct decode_info {
72 const char *name;
73 int op_len;
74 int nr_sub_op;
75 const struct sub_op_bits *sub_op;
76 };
77
78 #define MAX_CMD_BUDGET 0x7fffffff
79 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15)
80 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9)
81 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1)
82
83 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20)
84 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10)
85 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2)
86
87 /* Render Command Map */
88
89 /* MI_* command Opcode (28:23) */
90 #define OP_MI_NOOP 0x0
91 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */
92 #define OP_MI_USER_INTERRUPT 0x2
93 #define OP_MI_WAIT_FOR_EVENT 0x3
94 #define OP_MI_FLUSH 0x4
95 #define OP_MI_ARB_CHECK 0x5
96 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */
97 #define OP_MI_REPORT_HEAD 0x7
98 #define OP_MI_ARB_ON_OFF 0x8
99 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */
100 #define OP_MI_BATCH_BUFFER_END 0xA
101 #define OP_MI_SUSPEND_FLUSH 0xB
102 #define OP_MI_PREDICATE 0xC /* IVB+ */
103 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */
104 #define OP_MI_SET_APPID 0xE /* IVB+ */
105 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */
106 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */
107 #define OP_MI_DISPLAY_FLIP 0x14
108 #define OP_MI_SEMAPHORE_MBOX 0x16
109 #define OP_MI_SET_CONTEXT 0x18
110 #define OP_MI_MATH 0x1A
111 #define OP_MI_URB_CLEAR 0x19
112 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */
113 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */
114
115 #define OP_MI_STORE_DATA_IMM 0x20
116 #define OP_MI_STORE_DATA_INDEX 0x21
117 #define OP_MI_LOAD_REGISTER_IMM 0x22
118 #define OP_MI_UPDATE_GTT 0x23
119 #define OP_MI_STORE_REGISTER_MEM 0x24
120 #define OP_MI_FLUSH_DW 0x26
121 #define OP_MI_CLFLUSH 0x27
122 #define OP_MI_REPORT_PERF_COUNT 0x28
123 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */
124 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */
125 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */
126 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */
127 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */
128 #define OP_MI_2E 0x2E /* BDW+ */
129 #define OP_MI_2F 0x2F /* BDW+ */
130 #define OP_MI_BATCH_BUFFER_START 0x31
131
132 /* Bit definition for dword 0 */
133 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8)
134
135 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36
136
137 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
138 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
139 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U)
140 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U)
141
142 /* 2D command: Opcode (28:22) */
143 #define OP_2D(x) ((2<<7) | x)
144
145 #define OP_XY_SETUP_BLT OP_2D(0x1)
146 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3)
147 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11)
148 #define OP_XY_PIXEL_BLT OP_2D(0x24)
149 #define OP_XY_SCANLINES_BLT OP_2D(0x25)
150 #define OP_XY_TEXT_BLT OP_2D(0x26)
151 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31)
152 #define OP_XY_COLOR_BLT OP_2D(0x50)
153 #define OP_XY_PAT_BLT OP_2D(0x51)
154 #define OP_XY_MONO_PAT_BLT OP_2D(0x52)
155 #define OP_XY_SRC_COPY_BLT OP_2D(0x53)
156 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54)
157 #define OP_XY_FULL_BLT OP_2D(0x55)
158 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56)
159 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57)
160 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58)
161 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59)
162 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71)
163 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72)
164 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73)
165 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74)
166 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75)
167 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76)
168 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77)
169
170 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
171 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
172 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
173
174 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03)
175
176 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01)
177 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02)
178 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04)
179 #define OP_SWTESS_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x03)
180
181 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B)
182
183 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04)
184
185 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0)
186 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1)
187 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2)
188 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3)
189 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4)
190 #define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5)
191
192 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0)
193 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2)
194 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3)
195 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5)
196
197 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
198 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
199 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
200 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
201 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08)
202 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09)
203 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A)
204 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B)
205 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */
206 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E)
207 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F)
208 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10)
209 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11)
210 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12)
211 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13)
212 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14)
213 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15)
214 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16)
215 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17)
216 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18)
217 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
218 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
219 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
220 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
221 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
222 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
223 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
224 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
225 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
226 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
227 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
228 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
229 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
230 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
231 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
232 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
233 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
234 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
235 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
236 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
237 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
238 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
239 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
240 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
241 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
242 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
243 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
244 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
245 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
246 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
247 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
248 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
249 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
250 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
251 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
252 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
253 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
254 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
255 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
256 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
257 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
258 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
259 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
260 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
261 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
262 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
263
264 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
265 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
266 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
267 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
268 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
269 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
270 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
271 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
272 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
273 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
274 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
275
276 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00)
277 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02)
278 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04)
279 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05)
280 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06)
281 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07)
282 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08)
283 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A)
284 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B)
285 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C)
286 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D)
287 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E)
288 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F)
289 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10)
290 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11)
291 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
292 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
293 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
294 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
295 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
296 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17)
297 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18)
298 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
299 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
300 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
301 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C)
302 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00)
303 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00)
304
305 /* VCCP Command Parser */
306
307 /*
308 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
309 * git://anongit.freedesktop.org/vaapi/intel-driver
310 * src/i965_defines.h
311 *
312 */
313
314 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \
315 (3 << 13 | \
316 (pipeline) << 11 | \
317 (op) << 8 | \
318 (sub_opa) << 5 | \
319 (sub_opb))
320
321 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */
322 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */
323 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */
324 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */
325 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */
326 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */
327 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */
328 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */
329 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */
330 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */
331 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */
332
333 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */
334
335 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */
336 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */
337 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */
338 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */
339 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */
340 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */
341 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */
342 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */
343 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */
344 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */
345 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */
346 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */
347
348 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */
349 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */
350 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */
351 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */
352 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */
353
354 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */
355 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */
356 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */
357 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */
358 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */
359
360 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */
361 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */
362 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */
363
364 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0)
365 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2)
366 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8)
367
368 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
369 (3 << 13 | \
370 (pipeline) << 11 | \
371 (op) << 8 | \
372 (sub_opa) << 5 | \
373 (sub_opb))
374
375 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0)
376 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2)
377 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3)
378
379 struct parser_exec_state;
380
381 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
382
383 #define GVT_CMD_HASH_BITS 7
384
385 /* which DWords need address fix */
386 #define ADDR_FIX_1(x1) (1 << (x1))
387 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
388 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
389 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
390 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
391
392 #define DWORD_FIELD(dword, end, start) \
393 FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
394
395 #define OP_LENGTH_BIAS 2
396 #define CMD_LEN(value) (value + OP_LENGTH_BIAS)
397
gvt_check_valid_cmd_length(int len,int valid_len)398 static int gvt_check_valid_cmd_length(int len, int valid_len)
399 {
400 if (valid_len != len) {
401 gvt_err("len is not valid: len=%u valid_len=%u\n",
402 len, valid_len);
403 return -EFAULT;
404 }
405 return 0;
406 }
407
408 struct cmd_info {
409 const char *name;
410 u32 opcode;
411
412 #define F_LEN_MASK 3U
413 #define F_LEN_CONST 1U
414 #define F_LEN_VAR 0U
415 /* value is const although LEN maybe variable */
416 #define F_LEN_VAR_FIXED (1<<1)
417
418 /*
419 * command has its own ip advance logic
420 * e.g. MI_BATCH_START, MI_BATCH_END
421 */
422 #define F_IP_ADVANCE_CUSTOM (1<<2)
423 u32 flag;
424
425 #define R_RCS BIT(RCS0)
426 #define R_VCS1 BIT(VCS0)
427 #define R_VCS2 BIT(VCS1)
428 #define R_VCS (R_VCS1 | R_VCS2)
429 #define R_BCS BIT(BCS0)
430 #define R_VECS BIT(VECS0)
431 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
432 /* rings that support this cmd: BLT/RCS/VCS/VECS */
433 intel_engine_mask_t rings;
434
435 /* devices that support this cmd: SNB/IVB/HSW/... */
436 u16 devices;
437
438 /* which DWords are address that need fix up.
439 * bit 0 means a 32-bit non address operand in command
440 * bit 1 means address operand, which could be 32-bit
441 * or 64-bit depending on different architectures.(
442 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
443 * No matter the address length, each address only takes
444 * one bit in the bitmap.
445 */
446 u16 addr_bitmap;
447
448 /* flag == F_LEN_CONST : command length
449 * flag == F_LEN_VAR : length bias bits
450 * Note: length is in DWord
451 */
452 u32 len;
453
454 parser_cmd_handler handler;
455
456 /* valid length in DWord */
457 u32 valid_len;
458 };
459
460 struct cmd_entry {
461 struct hlist_node hlist;
462 const struct cmd_info *info;
463 };
464
465 enum {
466 RING_BUFFER_INSTRUCTION,
467 BATCH_BUFFER_INSTRUCTION,
468 BATCH_BUFFER_2ND_LEVEL,
469 RING_BUFFER_CTX,
470 };
471
472 enum {
473 GTT_BUFFER,
474 PPGTT_BUFFER
475 };
476
477 struct parser_exec_state {
478 struct intel_vgpu *vgpu;
479 const struct intel_engine_cs *engine;
480
481 int buf_type;
482
483 /* batch buffer address type */
484 int buf_addr_type;
485
486 /* graphics memory address of ring buffer start */
487 unsigned long ring_start;
488 unsigned long ring_size;
489 unsigned long ring_head;
490 unsigned long ring_tail;
491
492 /* instruction graphics memory address */
493 unsigned long ip_gma;
494
495 /* mapped va of the instr_gma */
496 void *ip_va;
497 void *rb_va;
498
499 void *ret_bb_va;
500 /* next instruction when return from batch buffer to ring buffer */
501 unsigned long ret_ip_gma_ring;
502
503 /* next instruction when return from 2nd batch buffer to batch buffer */
504 unsigned long ret_ip_gma_bb;
505
506 /* batch buffer address type (GTT or PPGTT)
507 * used when ret from 2nd level batch buffer
508 */
509 int saved_buf_addr_type;
510 bool is_ctx_wa;
511 bool is_init_ctx;
512
513 const struct cmd_info *info;
514
515 struct intel_vgpu_workload *workload;
516 };
517
518 #define gmadr_dw_number(s) \
519 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
520
521 static unsigned long bypass_scan_mask = 0;
522
523 /* ring ALL, type = 0 */
524 static const struct sub_op_bits sub_op_mi[] = {
525 {31, 29},
526 {28, 23},
527 };
528
529 static const struct decode_info decode_info_mi = {
530 "MI",
531 OP_LEN_MI,
532 ARRAY_SIZE(sub_op_mi),
533 sub_op_mi,
534 };
535
536 /* ring RCS, command type 2 */
537 static const struct sub_op_bits sub_op_2d[] = {
538 {31, 29},
539 {28, 22},
540 };
541
542 static const struct decode_info decode_info_2d = {
543 "2D",
544 OP_LEN_2D,
545 ARRAY_SIZE(sub_op_2d),
546 sub_op_2d,
547 };
548
549 /* ring RCS, command type 3 */
550 static const struct sub_op_bits sub_op_3d_media[] = {
551 {31, 29},
552 {28, 27},
553 {26, 24},
554 {23, 16},
555 };
556
557 static const struct decode_info decode_info_3d_media = {
558 "3D_Media",
559 OP_LEN_3D_MEDIA,
560 ARRAY_SIZE(sub_op_3d_media),
561 sub_op_3d_media,
562 };
563
564 /* ring VCS, command type 3 */
565 static const struct sub_op_bits sub_op_mfx_vc[] = {
566 {31, 29},
567 {28, 27},
568 {26, 24},
569 {23, 21},
570 {20, 16},
571 };
572
573 static const struct decode_info decode_info_mfx_vc = {
574 "MFX_VC",
575 OP_LEN_MFX_VC,
576 ARRAY_SIZE(sub_op_mfx_vc),
577 sub_op_mfx_vc,
578 };
579
580 /* ring VECS, command type 3 */
581 static const struct sub_op_bits sub_op_vebox[] = {
582 {31, 29},
583 {28, 27},
584 {26, 24},
585 {23, 21},
586 {20, 16},
587 };
588
589 static const struct decode_info decode_info_vebox = {
590 "VEBOX",
591 OP_LEN_VEBOX,
592 ARRAY_SIZE(sub_op_vebox),
593 sub_op_vebox,
594 };
595
596 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
597 [RCS0] = {
598 &decode_info_mi,
599 NULL,
600 NULL,
601 &decode_info_3d_media,
602 NULL,
603 NULL,
604 NULL,
605 NULL,
606 },
607
608 [VCS0] = {
609 &decode_info_mi,
610 NULL,
611 NULL,
612 &decode_info_mfx_vc,
613 NULL,
614 NULL,
615 NULL,
616 NULL,
617 },
618
619 [BCS0] = {
620 &decode_info_mi,
621 NULL,
622 &decode_info_2d,
623 NULL,
624 NULL,
625 NULL,
626 NULL,
627 NULL,
628 },
629
630 [VECS0] = {
631 &decode_info_mi,
632 NULL,
633 NULL,
634 &decode_info_vebox,
635 NULL,
636 NULL,
637 NULL,
638 NULL,
639 },
640
641 [VCS1] = {
642 &decode_info_mi,
643 NULL,
644 NULL,
645 &decode_info_mfx_vc,
646 NULL,
647 NULL,
648 NULL,
649 NULL,
650 },
651 };
652
get_opcode(u32 cmd,const struct intel_engine_cs * engine)653 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine)
654 {
655 const struct decode_info *d_info;
656
657 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
658 if (d_info == NULL)
659 return INVALID_OP;
660
661 return cmd >> (32 - d_info->op_len);
662 }
663
664 static inline const struct cmd_info *
find_cmd_entry(struct intel_gvt * gvt,unsigned int opcode,const struct intel_engine_cs * engine)665 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode,
666 const struct intel_engine_cs *engine)
667 {
668 struct cmd_entry *e;
669
670 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
671 if (opcode == e->info->opcode &&
672 e->info->rings & engine->mask)
673 return e->info;
674 }
675 return NULL;
676 }
677
678 static inline const struct cmd_info *
get_cmd_info(struct intel_gvt * gvt,u32 cmd,const struct intel_engine_cs * engine)679 get_cmd_info(struct intel_gvt *gvt, u32 cmd,
680 const struct intel_engine_cs *engine)
681 {
682 u32 opcode;
683
684 opcode = get_opcode(cmd, engine);
685 if (opcode == INVALID_OP)
686 return NULL;
687
688 return find_cmd_entry(gvt, opcode, engine);
689 }
690
sub_op_val(u32 cmd,u32 hi,u32 low)691 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
692 {
693 return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
694 }
695
print_opcode(u32 cmd,const struct intel_engine_cs * engine)696 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine)
697 {
698 const struct decode_info *d_info;
699 int i;
700
701 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
702 if (d_info == NULL)
703 return;
704
705 gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
706 cmd >> (32 - d_info->op_len), d_info->name);
707
708 for (i = 0; i < d_info->nr_sub_op; i++)
709 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
710 d_info->sub_op[i].low));
711
712 pr_err("\n");
713 }
714
cmd_ptr(struct parser_exec_state * s,int index)715 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
716 {
717 return s->ip_va + (index << 2);
718 }
719
cmd_val(struct parser_exec_state * s,int index)720 static inline u32 cmd_val(struct parser_exec_state *s, int index)
721 {
722 return *cmd_ptr(s, index);
723 }
724
is_init_ctx(struct parser_exec_state * s)725 static inline bool is_init_ctx(struct parser_exec_state *s)
726 {
727 return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx);
728 }
729
parser_exec_state_dump(struct parser_exec_state * s)730 static void parser_exec_state_dump(struct parser_exec_state *s)
731 {
732 int cnt = 0;
733 int i;
734
735 gvt_dbg_cmd(" vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)"
736 " ring_head(%08lx) ring_tail(%08lx)\n",
737 s->vgpu->id, s->engine->name,
738 s->ring_start, s->ring_start + s->ring_size,
739 s->ring_head, s->ring_tail);
740
741 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ",
742 s->buf_type == RING_BUFFER_INSTRUCTION ?
743 "RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ?
744 "CTX_BUFFER" : "BATCH_BUFFER"),
745 s->buf_addr_type == GTT_BUFFER ?
746 "GTT" : "PPGTT", s->ip_gma);
747
748 if (s->ip_va == NULL) {
749 gvt_dbg_cmd(" ip_va(NULL)");
750 return;
751 }
752
753 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n",
754 s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
755 cmd_val(s, 2), cmd_val(s, 3));
756
757 print_opcode(cmd_val(s, 0), s->engine);
758
759 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
760
761 while (cnt < 1024) {
762 gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
763 for (i = 0; i < 8; i++)
764 gvt_dbg_cmd("%08x ", cmd_val(s, i));
765 gvt_dbg_cmd("\n");
766
767 s->ip_va += 8 * sizeof(u32);
768 cnt += 8;
769 }
770 }
771
update_ip_va(struct parser_exec_state * s)772 static inline void update_ip_va(struct parser_exec_state *s)
773 {
774 unsigned long len = 0;
775
776 if (WARN_ON(s->ring_head == s->ring_tail))
777 return;
778
779 if (s->buf_type == RING_BUFFER_INSTRUCTION ||
780 s->buf_type == RING_BUFFER_CTX) {
781 unsigned long ring_top = s->ring_start + s->ring_size;
782
783 if (s->ring_head > s->ring_tail) {
784 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
785 len = (s->ip_gma - s->ring_head);
786 else if (s->ip_gma >= s->ring_start &&
787 s->ip_gma <= s->ring_tail)
788 len = (ring_top - s->ring_head) +
789 (s->ip_gma - s->ring_start);
790 } else
791 len = (s->ip_gma - s->ring_head);
792
793 s->ip_va = s->rb_va + len;
794 } else {/* shadow batch buffer */
795 s->ip_va = s->ret_bb_va;
796 }
797 }
798
ip_gma_set(struct parser_exec_state * s,unsigned long ip_gma)799 static inline int ip_gma_set(struct parser_exec_state *s,
800 unsigned long ip_gma)
801 {
802 WARN_ON(!IS_ALIGNED(ip_gma, 4));
803
804 s->ip_gma = ip_gma;
805 update_ip_va(s);
806 return 0;
807 }
808
ip_gma_advance(struct parser_exec_state * s,unsigned int dw_len)809 static inline int ip_gma_advance(struct parser_exec_state *s,
810 unsigned int dw_len)
811 {
812 s->ip_gma += (dw_len << 2);
813
814 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
815 if (s->ip_gma >= s->ring_start + s->ring_size)
816 s->ip_gma -= s->ring_size;
817 update_ip_va(s);
818 } else {
819 s->ip_va += (dw_len << 2);
820 }
821
822 return 0;
823 }
824
get_cmd_length(const struct cmd_info * info,u32 cmd)825 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
826 {
827 if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
828 return info->len;
829 else
830 return (cmd & ((1U << info->len) - 1)) + 2;
831 return 0;
832 }
833
cmd_length(struct parser_exec_state * s)834 static inline int cmd_length(struct parser_exec_state *s)
835 {
836 return get_cmd_length(s->info, cmd_val(s, 0));
837 }
838
839 /* do not remove this, some platform may need clflush here */
840 #define patch_value(s, addr, val) do { \
841 *addr = val; \
842 } while (0)
843
is_mocs_mmio(unsigned int offset)844 static inline bool is_mocs_mmio(unsigned int offset)
845 {
846 return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
847 ((offset >= 0xb020) && (offset <= 0xb0a0));
848 }
849
is_cmd_update_pdps(unsigned int offset,struct parser_exec_state * s)850 static int is_cmd_update_pdps(unsigned int offset,
851 struct parser_exec_state *s)
852 {
853 u32 base = s->workload->engine->mmio_base;
854 return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0));
855 }
856
cmd_pdp_mmio_update_handler(struct parser_exec_state * s,unsigned int offset,unsigned int index)857 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s,
858 unsigned int offset, unsigned int index)
859 {
860 struct intel_vgpu *vgpu = s->vgpu;
861 struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm;
862 struct intel_vgpu_mm *mm;
863 u64 pdps[GEN8_3LVL_PDPES];
864
865 if (shadow_mm->ppgtt_mm.root_entry_type ==
866 GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
867 pdps[0] = (u64)cmd_val(s, 2) << 32;
868 pdps[0] |= cmd_val(s, 4);
869
870 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
871 if (!mm) {
872 gvt_vgpu_err("failed to get the 4-level shadow vm\n");
873 return -EINVAL;
874 }
875 intel_vgpu_mm_get(mm);
876 list_add_tail(&mm->ppgtt_mm.link,
877 &s->workload->lri_shadow_mm);
878 *cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
879 *cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
880 } else {
881 /* Currently all guests use PML4 table and now can't
882 * have a guest with 3-level table but uses LRI for
883 * PPGTT update. So this is simply un-testable. */
884 GEM_BUG_ON(1);
885 gvt_vgpu_err("invalid shared shadow vm type\n");
886 return -EINVAL;
887 }
888 return 0;
889 }
890
cmd_reg_handler(struct parser_exec_state * s,unsigned int offset,unsigned int index,char * cmd)891 static int cmd_reg_handler(struct parser_exec_state *s,
892 unsigned int offset, unsigned int index, char *cmd)
893 {
894 struct intel_vgpu *vgpu = s->vgpu;
895 struct intel_gvt *gvt = vgpu->gvt;
896 u32 ctx_sr_ctl;
897 u32 *vreg, vreg_old;
898
899 if (offset + 4 > gvt->device_info.mmio_size) {
900 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
901 cmd, offset);
902 return -EFAULT;
903 }
904
905 if (is_init_ctx(s)) {
906 struct intel_gvt_mmio_info *mmio_info;
907
908 intel_gvt_mmio_set_cmd_accessible(gvt, offset);
909 mmio_info = intel_gvt_find_mmio_info(gvt, offset);
910 if (mmio_info && mmio_info->write)
911 intel_gvt_mmio_set_cmd_write_patch(gvt, offset);
912 return 0;
913 }
914
915 if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) {
916 gvt_vgpu_err("%s access to non-render register (%x)\n",
917 cmd, offset);
918 return -EBADRQC;
919 }
920
921 if (!strncmp(cmd, "srm", 3) ||
922 !strncmp(cmd, "lrm", 3)) {
923 if (offset == i915_mmio_reg_offset(GEN8_L3SQCREG4) ||
924 offset == 0x21f0 ||
925 (IS_BROADWELL(gvt->gt->i915) &&
926 offset == i915_mmio_reg_offset(INSTPM)))
927 return 0;
928 else {
929 gvt_vgpu_err("%s access to register (%x)\n",
930 cmd, offset);
931 return -EPERM;
932 }
933 }
934
935 if (!strncmp(cmd, "lrr-src", 7) ||
936 !strncmp(cmd, "lrr-dst", 7)) {
937 if (IS_BROADWELL(gvt->gt->i915) && offset == 0x215c)
938 return 0;
939 else {
940 gvt_vgpu_err("not allowed cmd %s reg (%x)\n", cmd, offset);
941 return -EPERM;
942 }
943 }
944
945 if (!strncmp(cmd, "pipe_ctrl", 9)) {
946 /* TODO: add LRI POST logic here */
947 return 0;
948 }
949
950 if (strncmp(cmd, "lri", 3))
951 return -EPERM;
952
953 /* below are all lri handlers */
954 vreg = &vgpu_vreg(s->vgpu, offset);
955
956 if (is_cmd_update_pdps(offset, s) &&
957 cmd_pdp_mmio_update_handler(s, offset, index))
958 return -EINVAL;
959
960 if (offset == i915_mmio_reg_offset(DERRMR) ||
961 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
962 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
963 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
964 }
965
966 if (is_mocs_mmio(offset))
967 *vreg = cmd_val(s, index + 1);
968
969 vreg_old = *vreg;
970
971 if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) {
972 u32 cmdval_new, cmdval;
973 struct intel_gvt_mmio_info *mmio_info;
974
975 cmdval = cmd_val(s, index + 1);
976
977 mmio_info = intel_gvt_find_mmio_info(gvt, offset);
978 if (!mmio_info) {
979 cmdval_new = cmdval;
980 } else {
981 u64 ro_mask = mmio_info->ro_mask;
982 int ret;
983
984 if (likely(!ro_mask))
985 ret = mmio_info->write(s->vgpu, offset,
986 &cmdval, 4);
987 else {
988 gvt_vgpu_err("try to write RO reg %x\n",
989 offset);
990 ret = -EBADRQC;
991 }
992 if (ret)
993 return ret;
994 cmdval_new = *vreg;
995 }
996 if (cmdval_new != cmdval)
997 patch_value(s, cmd_ptr(s, index+1), cmdval_new);
998 }
999
1000 /* only patch cmd. restore vreg value if changed in mmio write handler*/
1001 *vreg = vreg_old;
1002
1003 /* TODO
1004 * In order to let workload with inhibit context to generate
1005 * correct image data into memory, vregs values will be loaded to
1006 * hw via LRIs in the workload with inhibit context. But as
1007 * indirect context is loaded prior to LRIs in workload, we don't
1008 * want reg values specified in indirect context overwritten by
1009 * LRIs in workloads. So, when scanning an indirect context, we
1010 * update reg values in it into vregs, so LRIs in workload with
1011 * inhibit context will restore with correct values
1012 */
1013 if (GRAPHICS_VER(s->engine->i915) == 9 &&
1014 intel_gvt_mmio_is_sr_in_ctx(gvt, offset) &&
1015 !strncmp(cmd, "lri", 3)) {
1016 intel_gvt_read_gpa(s->vgpu,
1017 s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
1018 /* check inhibit context */
1019 if (ctx_sr_ctl & 1) {
1020 u32 data = cmd_val(s, index + 1);
1021
1022 if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
1023 intel_vgpu_mask_mmio_write(vgpu,
1024 offset, &data, 4);
1025 else
1026 vgpu_vreg(vgpu, offset) = data;
1027 }
1028 }
1029
1030 return 0;
1031 }
1032
1033 #define cmd_reg(s, i) \
1034 (cmd_val(s, i) & GENMASK(22, 2))
1035
1036 #define cmd_reg_inhibit(s, i) \
1037 (cmd_val(s, i) & GENMASK(22, 18))
1038
1039 #define cmd_gma(s, i) \
1040 (cmd_val(s, i) & GENMASK(31, 2))
1041
1042 #define cmd_gma_hi(s, i) \
1043 (cmd_val(s, i) & GENMASK(15, 0))
1044
cmd_handler_lri(struct parser_exec_state * s)1045 static int cmd_handler_lri(struct parser_exec_state *s)
1046 {
1047 int i, ret = 0;
1048 int cmd_len = cmd_length(s);
1049
1050 for (i = 1; i < cmd_len; i += 2) {
1051 if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) {
1052 if (s->engine->id == BCS0 &&
1053 cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
1054 ret |= 0;
1055 else
1056 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
1057 }
1058 if (ret)
1059 break;
1060 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
1061 if (ret)
1062 break;
1063 }
1064 return ret;
1065 }
1066
cmd_handler_lrr(struct parser_exec_state * s)1067 static int cmd_handler_lrr(struct parser_exec_state *s)
1068 {
1069 int i, ret = 0;
1070 int cmd_len = cmd_length(s);
1071
1072 for (i = 1; i < cmd_len; i += 2) {
1073 if (IS_BROADWELL(s->engine->i915))
1074 ret |= ((cmd_reg_inhibit(s, i) ||
1075 (cmd_reg_inhibit(s, i + 1)))) ?
1076 -EBADRQC : 0;
1077 if (ret)
1078 break;
1079 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1080 if (ret)
1081 break;
1082 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1083 if (ret)
1084 break;
1085 }
1086 return ret;
1087 }
1088
1089 static inline int cmd_address_audit(struct parser_exec_state *s,
1090 unsigned long guest_gma, int op_size, bool index_mode);
1091
cmd_handler_lrm(struct parser_exec_state * s)1092 static int cmd_handler_lrm(struct parser_exec_state *s)
1093 {
1094 struct intel_gvt *gvt = s->vgpu->gvt;
1095 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1096 unsigned long gma;
1097 int i, ret = 0;
1098 int cmd_len = cmd_length(s);
1099
1100 for (i = 1; i < cmd_len;) {
1101 if (IS_BROADWELL(s->engine->i915))
1102 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1103 if (ret)
1104 break;
1105 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1106 if (ret)
1107 break;
1108 if (cmd_val(s, 0) & (1 << 22)) {
1109 gma = cmd_gma(s, i + 1);
1110 if (gmadr_bytes == 8)
1111 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1112 ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1113 if (ret)
1114 break;
1115 }
1116 i += gmadr_dw_number(s) + 1;
1117 }
1118 return ret;
1119 }
1120
cmd_handler_srm(struct parser_exec_state * s)1121 static int cmd_handler_srm(struct parser_exec_state *s)
1122 {
1123 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1124 unsigned long gma;
1125 int i, ret = 0;
1126 int cmd_len = cmd_length(s);
1127
1128 for (i = 1; i < cmd_len;) {
1129 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1130 if (ret)
1131 break;
1132 if (cmd_val(s, 0) & (1 << 22)) {
1133 gma = cmd_gma(s, i + 1);
1134 if (gmadr_bytes == 8)
1135 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1136 ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1137 if (ret)
1138 break;
1139 }
1140 i += gmadr_dw_number(s) + 1;
1141 }
1142 return ret;
1143 }
1144
1145 struct cmd_interrupt_event {
1146 int pipe_control_notify;
1147 int mi_flush_dw;
1148 int mi_user_interrupt;
1149 };
1150
1151 static const struct cmd_interrupt_event cmd_interrupt_events[] = {
1152 [RCS0] = {
1153 .pipe_control_notify = RCS_PIPE_CONTROL,
1154 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1155 .mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1156 },
1157 [BCS0] = {
1158 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1159 .mi_flush_dw = BCS_MI_FLUSH_DW,
1160 .mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1161 },
1162 [VCS0] = {
1163 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1164 .mi_flush_dw = VCS_MI_FLUSH_DW,
1165 .mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1166 },
1167 [VCS1] = {
1168 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1169 .mi_flush_dw = VCS2_MI_FLUSH_DW,
1170 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1171 },
1172 [VECS0] = {
1173 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1174 .mi_flush_dw = VECS_MI_FLUSH_DW,
1175 .mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1176 },
1177 };
1178
cmd_handler_pipe_control(struct parser_exec_state * s)1179 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1180 {
1181 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1182 unsigned long gma;
1183 bool index_mode = false;
1184 unsigned int post_sync;
1185 int ret = 0;
1186 u32 hws_pga, val;
1187
1188 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1189
1190 /* LRI post sync */
1191 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1192 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1193 /* post sync */
1194 else if (post_sync) {
1195 if (post_sync == 2)
1196 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1197 else if (post_sync == 3)
1198 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1199 else if (post_sync == 1) {
1200 /* check ggtt*/
1201 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1202 gma = cmd_val(s, 2) & GENMASK(31, 3);
1203 if (gmadr_bytes == 8)
1204 gma |= (cmd_gma_hi(s, 3)) << 32;
1205 /* Store Data Index */
1206 if (cmd_val(s, 1) & (1 << 21))
1207 index_mode = true;
1208 ret |= cmd_address_audit(s, gma, sizeof(u64),
1209 index_mode);
1210 if (ret)
1211 return ret;
1212 if (index_mode) {
1213 hws_pga = s->vgpu->hws_pga[s->engine->id];
1214 gma = hws_pga + gma;
1215 patch_value(s, cmd_ptr(s, 2), gma);
1216 val = cmd_val(s, 1) & (~(1 << 21));
1217 patch_value(s, cmd_ptr(s, 1), val);
1218 }
1219 }
1220 }
1221 }
1222
1223 if (ret)
1224 return ret;
1225
1226 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1227 set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify,
1228 s->workload->pending_events);
1229 return 0;
1230 }
1231
cmd_handler_mi_user_interrupt(struct parser_exec_state * s)1232 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1233 {
1234 set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt,
1235 s->workload->pending_events);
1236 patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1237 return 0;
1238 }
1239
cmd_advance_default(struct parser_exec_state * s)1240 static int cmd_advance_default(struct parser_exec_state *s)
1241 {
1242 return ip_gma_advance(s, cmd_length(s));
1243 }
1244
cmd_handler_mi_batch_buffer_end(struct parser_exec_state * s)1245 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1246 {
1247 int ret;
1248
1249 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1250 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1251 ret = ip_gma_set(s, s->ret_ip_gma_bb);
1252 s->buf_addr_type = s->saved_buf_addr_type;
1253 } else if (s->buf_type == RING_BUFFER_CTX) {
1254 ret = ip_gma_set(s, s->ring_tail);
1255 } else {
1256 s->buf_type = RING_BUFFER_INSTRUCTION;
1257 s->buf_addr_type = GTT_BUFFER;
1258 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1259 s->ret_ip_gma_ring -= s->ring_size;
1260 ret = ip_gma_set(s, s->ret_ip_gma_ring);
1261 }
1262 return ret;
1263 }
1264
1265 struct mi_display_flip_command_info {
1266 int pipe;
1267 int plane;
1268 int event;
1269 i915_reg_t stride_reg;
1270 i915_reg_t ctrl_reg;
1271 i915_reg_t surf_reg;
1272 u64 stride_val;
1273 u64 tile_val;
1274 u64 surf_val;
1275 bool async_flip;
1276 };
1277
1278 struct plane_code_mapping {
1279 int pipe;
1280 int plane;
1281 int event;
1282 };
1283
gen8_decode_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1284 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1285 struct mi_display_flip_command_info *info)
1286 {
1287 struct drm_i915_private *dev_priv = s->engine->i915;
1288 struct plane_code_mapping gen8_plane_code[] = {
1289 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1290 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1291 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1292 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1293 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1294 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1295 };
1296 u32 dword0, dword1, dword2;
1297 u32 v;
1298
1299 dword0 = cmd_val(s, 0);
1300 dword1 = cmd_val(s, 1);
1301 dword2 = cmd_val(s, 2);
1302
1303 v = (dword0 & GENMASK(21, 19)) >> 19;
1304 if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code)))
1305 return -EBADRQC;
1306
1307 info->pipe = gen8_plane_code[v].pipe;
1308 info->plane = gen8_plane_code[v].plane;
1309 info->event = gen8_plane_code[v].event;
1310 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1311 info->tile_val = (dword1 & 0x1);
1312 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1313 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1314
1315 if (info->plane == PLANE_A) {
1316 info->ctrl_reg = DSPCNTR(info->pipe);
1317 info->stride_reg = DSPSTRIDE(info->pipe);
1318 info->surf_reg = DSPSURF(info->pipe);
1319 } else if (info->plane == PLANE_B) {
1320 info->ctrl_reg = SPRCTL(info->pipe);
1321 info->stride_reg = SPRSTRIDE(info->pipe);
1322 info->surf_reg = SPRSURF(info->pipe);
1323 } else {
1324 drm_WARN_ON(&dev_priv->drm, 1);
1325 return -EBADRQC;
1326 }
1327 return 0;
1328 }
1329
skl_decode_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1330 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1331 struct mi_display_flip_command_info *info)
1332 {
1333 struct drm_i915_private *dev_priv = s->engine->i915;
1334 struct intel_vgpu *vgpu = s->vgpu;
1335 u32 dword0 = cmd_val(s, 0);
1336 u32 dword1 = cmd_val(s, 1);
1337 u32 dword2 = cmd_val(s, 2);
1338 u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1339
1340 info->plane = PRIMARY_PLANE;
1341
1342 switch (plane) {
1343 case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1344 info->pipe = PIPE_A;
1345 info->event = PRIMARY_A_FLIP_DONE;
1346 break;
1347 case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1348 info->pipe = PIPE_B;
1349 info->event = PRIMARY_B_FLIP_DONE;
1350 break;
1351 case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1352 info->pipe = PIPE_C;
1353 info->event = PRIMARY_C_FLIP_DONE;
1354 break;
1355
1356 case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1357 info->pipe = PIPE_A;
1358 info->event = SPRITE_A_FLIP_DONE;
1359 info->plane = SPRITE_PLANE;
1360 break;
1361 case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1362 info->pipe = PIPE_B;
1363 info->event = SPRITE_B_FLIP_DONE;
1364 info->plane = SPRITE_PLANE;
1365 break;
1366 case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1367 info->pipe = PIPE_C;
1368 info->event = SPRITE_C_FLIP_DONE;
1369 info->plane = SPRITE_PLANE;
1370 break;
1371
1372 default:
1373 gvt_vgpu_err("unknown plane code %d\n", plane);
1374 return -EBADRQC;
1375 }
1376
1377 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1378 info->tile_val = (dword1 & GENMASK(2, 0));
1379 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1380 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1381
1382 info->ctrl_reg = DSPCNTR(info->pipe);
1383 info->stride_reg = DSPSTRIDE(info->pipe);
1384 info->surf_reg = DSPSURF(info->pipe);
1385
1386 return 0;
1387 }
1388
gen8_check_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1389 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1390 struct mi_display_flip_command_info *info)
1391 {
1392 u32 stride, tile;
1393
1394 if (!info->async_flip)
1395 return 0;
1396
1397 if (GRAPHICS_VER(s->engine->i915) >= 9) {
1398 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1399 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1400 GENMASK(12, 10)) >> 10;
1401 } else {
1402 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1403 GENMASK(15, 6)) >> 6;
1404 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1405 }
1406
1407 if (stride != info->stride_val)
1408 gvt_dbg_cmd("cannot change stride during async flip\n");
1409
1410 if (tile != info->tile_val)
1411 gvt_dbg_cmd("cannot change tile during async flip\n");
1412
1413 return 0;
1414 }
1415
gen8_update_plane_mmio_from_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1416 static int gen8_update_plane_mmio_from_mi_display_flip(
1417 struct parser_exec_state *s,
1418 struct mi_display_flip_command_info *info)
1419 {
1420 struct drm_i915_private *dev_priv = s->engine->i915;
1421 struct intel_vgpu *vgpu = s->vgpu;
1422
1423 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1424 info->surf_val << 12);
1425 if (GRAPHICS_VER(dev_priv) >= 9) {
1426 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1427 info->stride_val);
1428 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1429 info->tile_val << 10);
1430 } else {
1431 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1432 info->stride_val << 6);
1433 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1434 info->tile_val << 10);
1435 }
1436
1437 if (info->plane == PLANE_PRIMARY)
1438 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++;
1439
1440 if (info->async_flip)
1441 intel_vgpu_trigger_virtual_event(vgpu, info->event);
1442 else
1443 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1444
1445 return 0;
1446 }
1447
decode_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1448 static int decode_mi_display_flip(struct parser_exec_state *s,
1449 struct mi_display_flip_command_info *info)
1450 {
1451 if (IS_BROADWELL(s->engine->i915))
1452 return gen8_decode_mi_display_flip(s, info);
1453 if (GRAPHICS_VER(s->engine->i915) >= 9)
1454 return skl_decode_mi_display_flip(s, info);
1455
1456 return -ENODEV;
1457 }
1458
check_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1459 static int check_mi_display_flip(struct parser_exec_state *s,
1460 struct mi_display_flip_command_info *info)
1461 {
1462 return gen8_check_mi_display_flip(s, info);
1463 }
1464
update_plane_mmio_from_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1465 static int update_plane_mmio_from_mi_display_flip(
1466 struct parser_exec_state *s,
1467 struct mi_display_flip_command_info *info)
1468 {
1469 return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1470 }
1471
cmd_handler_mi_display_flip(struct parser_exec_state * s)1472 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1473 {
1474 struct mi_display_flip_command_info info;
1475 struct intel_vgpu *vgpu = s->vgpu;
1476 int ret;
1477 int i;
1478 int len = cmd_length(s);
1479 u32 valid_len = CMD_LEN(1);
1480
1481 /* Flip Type == Stereo 3D Flip */
1482 if (DWORD_FIELD(2, 1, 0) == 2)
1483 valid_len++;
1484 ret = gvt_check_valid_cmd_length(cmd_length(s),
1485 valid_len);
1486 if (ret)
1487 return ret;
1488
1489 ret = decode_mi_display_flip(s, &info);
1490 if (ret) {
1491 gvt_vgpu_err("fail to decode MI display flip command\n");
1492 return ret;
1493 }
1494
1495 ret = check_mi_display_flip(s, &info);
1496 if (ret) {
1497 gvt_vgpu_err("invalid MI display flip command\n");
1498 return ret;
1499 }
1500
1501 ret = update_plane_mmio_from_mi_display_flip(s, &info);
1502 if (ret) {
1503 gvt_vgpu_err("fail to update plane mmio\n");
1504 return ret;
1505 }
1506
1507 for (i = 0; i < len; i++)
1508 patch_value(s, cmd_ptr(s, i), MI_NOOP);
1509 return 0;
1510 }
1511
is_wait_for_flip_pending(u32 cmd)1512 static bool is_wait_for_flip_pending(u32 cmd)
1513 {
1514 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1515 MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1516 MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1517 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1518 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1519 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1520 }
1521
cmd_handler_mi_wait_for_event(struct parser_exec_state * s)1522 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1523 {
1524 u32 cmd = cmd_val(s, 0);
1525
1526 if (!is_wait_for_flip_pending(cmd))
1527 return 0;
1528
1529 patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1530 return 0;
1531 }
1532
get_gma_bb_from_cmd(struct parser_exec_state * s,int index)1533 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1534 {
1535 unsigned long addr;
1536 unsigned long gma_high, gma_low;
1537 struct intel_vgpu *vgpu = s->vgpu;
1538 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1539
1540 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1541 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1542 return INTEL_GVT_INVALID_ADDR;
1543 }
1544
1545 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1546 if (gmadr_bytes == 4) {
1547 addr = gma_low;
1548 } else {
1549 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1550 addr = (((unsigned long)gma_high) << 32) | gma_low;
1551 }
1552 return addr;
1553 }
1554
cmd_address_audit(struct parser_exec_state * s,unsigned long guest_gma,int op_size,bool index_mode)1555 static inline int cmd_address_audit(struct parser_exec_state *s,
1556 unsigned long guest_gma, int op_size, bool index_mode)
1557 {
1558 struct intel_vgpu *vgpu = s->vgpu;
1559 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1560 int i;
1561 int ret;
1562
1563 if (op_size > max_surface_size) {
1564 gvt_vgpu_err("command address audit fail name %s\n",
1565 s->info->name);
1566 return -EFAULT;
1567 }
1568
1569 if (index_mode) {
1570 if (guest_gma >= I915_GTT_PAGE_SIZE) {
1571 ret = -EFAULT;
1572 goto err;
1573 }
1574 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1575 ret = -EFAULT;
1576 goto err;
1577 }
1578
1579 return 0;
1580
1581 err:
1582 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1583 s->info->name, guest_gma, op_size);
1584
1585 pr_err("cmd dump: ");
1586 for (i = 0; i < cmd_length(s); i++) {
1587 if (!(i % 4))
1588 pr_err("\n%08x ", cmd_val(s, i));
1589 else
1590 pr_err("%08x ", cmd_val(s, i));
1591 }
1592 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1593 vgpu->id,
1594 vgpu_aperture_gmadr_base(vgpu),
1595 vgpu_aperture_gmadr_end(vgpu),
1596 vgpu_hidden_gmadr_base(vgpu),
1597 vgpu_hidden_gmadr_end(vgpu));
1598 return ret;
1599 }
1600
cmd_handler_mi_store_data_imm(struct parser_exec_state * s)1601 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1602 {
1603 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1604 int op_size = (cmd_length(s) - 3) * sizeof(u32);
1605 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1606 unsigned long gma, gma_low, gma_high;
1607 u32 valid_len = CMD_LEN(2);
1608 int ret = 0;
1609
1610 /* check ppggt */
1611 if (!(cmd_val(s, 0) & (1 << 22)))
1612 return 0;
1613
1614 /* check if QWORD */
1615 if (DWORD_FIELD(0, 21, 21))
1616 valid_len++;
1617 ret = gvt_check_valid_cmd_length(cmd_length(s),
1618 valid_len);
1619 if (ret)
1620 return ret;
1621
1622 gma = cmd_val(s, 2) & GENMASK(31, 2);
1623
1624 if (gmadr_bytes == 8) {
1625 gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1626 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1627 gma = (gma_high << 32) | gma_low;
1628 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1629 }
1630 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1631 return ret;
1632 }
1633
unexpected_cmd(struct parser_exec_state * s)1634 static inline int unexpected_cmd(struct parser_exec_state *s)
1635 {
1636 struct intel_vgpu *vgpu = s->vgpu;
1637
1638 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1639
1640 return -EBADRQC;
1641 }
1642
cmd_handler_mi_semaphore_wait(struct parser_exec_state * s)1643 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1644 {
1645 return unexpected_cmd(s);
1646 }
1647
cmd_handler_mi_report_perf_count(struct parser_exec_state * s)1648 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1649 {
1650 return unexpected_cmd(s);
1651 }
1652
cmd_handler_mi_op_2e(struct parser_exec_state * s)1653 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1654 {
1655 return unexpected_cmd(s);
1656 }
1657
cmd_handler_mi_op_2f(struct parser_exec_state * s)1658 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1659 {
1660 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1661 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1662 sizeof(u32);
1663 unsigned long gma, gma_high;
1664 u32 valid_len = CMD_LEN(1);
1665 int ret = 0;
1666
1667 if (!(cmd_val(s, 0) & (1 << 22)))
1668 return ret;
1669
1670 /* check inline data */
1671 if (cmd_val(s, 0) & BIT(18))
1672 valid_len = CMD_LEN(9);
1673 ret = gvt_check_valid_cmd_length(cmd_length(s),
1674 valid_len);
1675 if (ret)
1676 return ret;
1677
1678 gma = cmd_val(s, 1) & GENMASK(31, 2);
1679 if (gmadr_bytes == 8) {
1680 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1681 gma = (gma_high << 32) | gma;
1682 }
1683 ret = cmd_address_audit(s, gma, op_size, false);
1684 return ret;
1685 }
1686
cmd_handler_mi_store_data_index(struct parser_exec_state * s)1687 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1688 {
1689 return unexpected_cmd(s);
1690 }
1691
cmd_handler_mi_clflush(struct parser_exec_state * s)1692 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1693 {
1694 return unexpected_cmd(s);
1695 }
1696
cmd_handler_mi_conditional_batch_buffer_end(struct parser_exec_state * s)1697 static int cmd_handler_mi_conditional_batch_buffer_end(
1698 struct parser_exec_state *s)
1699 {
1700 return unexpected_cmd(s);
1701 }
1702
cmd_handler_mi_update_gtt(struct parser_exec_state * s)1703 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1704 {
1705 return unexpected_cmd(s);
1706 }
1707
cmd_handler_mi_flush_dw(struct parser_exec_state * s)1708 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1709 {
1710 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1711 unsigned long gma;
1712 bool index_mode = false;
1713 int ret = 0;
1714 u32 hws_pga, val;
1715 u32 valid_len = CMD_LEN(2);
1716
1717 ret = gvt_check_valid_cmd_length(cmd_length(s),
1718 valid_len);
1719 if (ret) {
1720 /* Check again for Qword */
1721 ret = gvt_check_valid_cmd_length(cmd_length(s),
1722 ++valid_len);
1723 return ret;
1724 }
1725
1726 /* Check post-sync and ppgtt bit */
1727 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1728 gma = cmd_val(s, 1) & GENMASK(31, 3);
1729 if (gmadr_bytes == 8)
1730 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1731 /* Store Data Index */
1732 if (cmd_val(s, 0) & (1 << 21))
1733 index_mode = true;
1734 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1735 if (ret)
1736 return ret;
1737 if (index_mode) {
1738 hws_pga = s->vgpu->hws_pga[s->engine->id];
1739 gma = hws_pga + gma;
1740 patch_value(s, cmd_ptr(s, 1), gma);
1741 val = cmd_val(s, 0) & (~(1 << 21));
1742 patch_value(s, cmd_ptr(s, 0), val);
1743 }
1744 }
1745 /* Check notify bit */
1746 if ((cmd_val(s, 0) & (1 << 8)))
1747 set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw,
1748 s->workload->pending_events);
1749 return ret;
1750 }
1751
addr_type_update_snb(struct parser_exec_state * s)1752 static void addr_type_update_snb(struct parser_exec_state *s)
1753 {
1754 if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1755 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1756 s->buf_addr_type = PPGTT_BUFFER;
1757 }
1758 }
1759
1760
copy_gma_to_hva(struct intel_vgpu * vgpu,struct intel_vgpu_mm * mm,unsigned long gma,unsigned long end_gma,void * va)1761 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1762 unsigned long gma, unsigned long end_gma, void *va)
1763 {
1764 unsigned long copy_len, offset;
1765 unsigned long len = 0;
1766 unsigned long gpa;
1767
1768 while (gma != end_gma) {
1769 gpa = intel_vgpu_gma_to_gpa(mm, gma);
1770 if (gpa == INTEL_GVT_INVALID_ADDR) {
1771 gvt_vgpu_err("invalid gma address: %lx\n", gma);
1772 return -EFAULT;
1773 }
1774
1775 offset = gma & (I915_GTT_PAGE_SIZE - 1);
1776
1777 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1778 I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1779
1780 intel_gvt_read_gpa(vgpu, gpa, va + len, copy_len);
1781
1782 len += copy_len;
1783 gma += copy_len;
1784 }
1785 return len;
1786 }
1787
1788
1789 /*
1790 * Check whether a batch buffer needs to be scanned. Currently
1791 * the only criteria is based on privilege.
1792 */
batch_buffer_needs_scan(struct parser_exec_state * s)1793 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1794 {
1795 /* Decide privilege based on address space */
1796 if (cmd_val(s, 0) & BIT(8) &&
1797 !(s->vgpu->scan_nonprivbb & s->engine->mask))
1798 return 0;
1799
1800 return 1;
1801 }
1802
repr_addr_type(unsigned int type)1803 static const char *repr_addr_type(unsigned int type)
1804 {
1805 return type == PPGTT_BUFFER ? "ppgtt" : "ggtt";
1806 }
1807
find_bb_size(struct parser_exec_state * s,unsigned long * bb_size,unsigned long * bb_end_cmd_offset)1808 static int find_bb_size(struct parser_exec_state *s,
1809 unsigned long *bb_size,
1810 unsigned long *bb_end_cmd_offset)
1811 {
1812 unsigned long gma = 0;
1813 const struct cmd_info *info;
1814 u32 cmd_len = 0;
1815 bool bb_end = false;
1816 struct intel_vgpu *vgpu = s->vgpu;
1817 u32 cmd;
1818 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1819 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1820
1821 *bb_size = 0;
1822 *bb_end_cmd_offset = 0;
1823
1824 /* get the start gm address of the batch buffer */
1825 gma = get_gma_bb_from_cmd(s, 1);
1826 if (gma == INTEL_GVT_INVALID_ADDR)
1827 return -EFAULT;
1828
1829 cmd = cmd_val(s, 0);
1830 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1831 if (info == NULL) {
1832 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1833 cmd, get_opcode(cmd, s->engine),
1834 repr_addr_type(s->buf_addr_type),
1835 s->engine->name, s->workload);
1836 return -EBADRQC;
1837 }
1838 do {
1839 if (copy_gma_to_hva(s->vgpu, mm,
1840 gma, gma + 4, &cmd) < 0)
1841 return -EFAULT;
1842 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1843 if (info == NULL) {
1844 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1845 cmd, get_opcode(cmd, s->engine),
1846 repr_addr_type(s->buf_addr_type),
1847 s->engine->name, s->workload);
1848 return -EBADRQC;
1849 }
1850
1851 if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1852 bb_end = true;
1853 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1854 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1855 /* chained batch buffer */
1856 bb_end = true;
1857 }
1858
1859 if (bb_end)
1860 *bb_end_cmd_offset = *bb_size;
1861
1862 cmd_len = get_cmd_length(info, cmd) << 2;
1863 *bb_size += cmd_len;
1864 gma += cmd_len;
1865 } while (!bb_end);
1866
1867 return 0;
1868 }
1869
audit_bb_end(struct parser_exec_state * s,void * va)1870 static int audit_bb_end(struct parser_exec_state *s, void *va)
1871 {
1872 struct intel_vgpu *vgpu = s->vgpu;
1873 u32 cmd = *(u32 *)va;
1874 const struct cmd_info *info;
1875
1876 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1877 if (info == NULL) {
1878 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1879 cmd, get_opcode(cmd, s->engine),
1880 repr_addr_type(s->buf_addr_type),
1881 s->engine->name, s->workload);
1882 return -EBADRQC;
1883 }
1884
1885 if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1886 ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1887 (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1888 return 0;
1889
1890 return -EBADRQC;
1891 }
1892
perform_bb_shadow(struct parser_exec_state * s)1893 static int perform_bb_shadow(struct parser_exec_state *s)
1894 {
1895 struct intel_vgpu *vgpu = s->vgpu;
1896 struct intel_vgpu_shadow_bb *bb;
1897 unsigned long gma = 0;
1898 unsigned long bb_size;
1899 unsigned long bb_end_cmd_offset;
1900 int ret = 0;
1901 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1902 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1903 unsigned long start_offset = 0;
1904
1905 /* get the start gm address of the batch buffer */
1906 gma = get_gma_bb_from_cmd(s, 1);
1907 if (gma == INTEL_GVT_INVALID_ADDR)
1908 return -EFAULT;
1909
1910 ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1911 if (ret)
1912 return ret;
1913
1914 bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1915 if (!bb)
1916 return -ENOMEM;
1917
1918 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1919
1920 /* the start_offset stores the batch buffer's start gma's
1921 * offset relative to page boundary. so for non-privileged batch
1922 * buffer, the shadowed gem object holds exactly the same page
1923 * layout as original gem object. This is for the convience of
1924 * replacing the whole non-privilged batch buffer page to this
1925 * shadowed one in PPGTT at the same gma address. (this replacing
1926 * action is not implemented yet now, but may be necessary in
1927 * future).
1928 * for prileged batch buffer, we just change start gma address to
1929 * that of shadowed page.
1930 */
1931 if (bb->ppgtt)
1932 start_offset = gma & ~I915_GTT_PAGE_MASK;
1933
1934 bb->obj = i915_gem_object_create_shmem(s->engine->i915,
1935 round_up(bb_size + start_offset,
1936 PAGE_SIZE));
1937 if (IS_ERR(bb->obj)) {
1938 ret = PTR_ERR(bb->obj);
1939 goto err_free_bb;
1940 }
1941
1942 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1943 if (IS_ERR(bb->va)) {
1944 ret = PTR_ERR(bb->va);
1945 goto err_free_obj;
1946 }
1947
1948 ret = copy_gma_to_hva(s->vgpu, mm,
1949 gma, gma + bb_size,
1950 bb->va + start_offset);
1951 if (ret < 0) {
1952 gvt_vgpu_err("fail to copy guest ring buffer\n");
1953 ret = -EFAULT;
1954 goto err_unmap;
1955 }
1956
1957 ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1958 if (ret)
1959 goto err_unmap;
1960
1961 i915_gem_object_unlock(bb->obj);
1962 INIT_LIST_HEAD(&bb->list);
1963 list_add(&bb->list, &s->workload->shadow_bb);
1964
1965 bb->bb_start_cmd_va = s->ip_va;
1966
1967 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1968 bb->bb_offset = s->ip_va - s->rb_va;
1969 else
1970 bb->bb_offset = 0;
1971
1972 /*
1973 * ip_va saves the virtual address of the shadow batch buffer, while
1974 * ip_gma saves the graphics address of the original batch buffer.
1975 * As the shadow batch buffer is just a copy from the originial one,
1976 * it should be right to use shadow batch buffer'va and original batch
1977 * buffer's gma in pair. After all, we don't want to pin the shadow
1978 * buffer here (too early).
1979 */
1980 s->ip_va = bb->va + start_offset;
1981 s->ip_gma = gma;
1982 return 0;
1983 err_unmap:
1984 i915_gem_object_unpin_map(bb->obj);
1985 err_free_obj:
1986 i915_gem_object_put(bb->obj);
1987 err_free_bb:
1988 kfree(bb);
1989 return ret;
1990 }
1991
cmd_handler_mi_batch_buffer_start(struct parser_exec_state * s)1992 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1993 {
1994 bool second_level;
1995 int ret = 0;
1996 struct intel_vgpu *vgpu = s->vgpu;
1997
1998 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1999 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
2000 return -EFAULT;
2001 }
2002
2003 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
2004 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
2005 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
2006 return -EFAULT;
2007 }
2008
2009 s->saved_buf_addr_type = s->buf_addr_type;
2010 addr_type_update_snb(s);
2011 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2012 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
2013 s->buf_type = BATCH_BUFFER_INSTRUCTION;
2014 } else if (second_level) {
2015 s->buf_type = BATCH_BUFFER_2ND_LEVEL;
2016 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
2017 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
2018 }
2019
2020 if (batch_buffer_needs_scan(s)) {
2021 ret = perform_bb_shadow(s);
2022 if (ret < 0)
2023 gvt_vgpu_err("invalid shadow batch buffer\n");
2024 } else {
2025 /* emulate a batch buffer end to do return right */
2026 ret = cmd_handler_mi_batch_buffer_end(s);
2027 if (ret < 0)
2028 return ret;
2029 }
2030 return ret;
2031 }
2032
2033 static int mi_noop_index;
2034
2035 static const struct cmd_info cmd_info[] = {
2036 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2037
2038 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
2039 0, 1, NULL},
2040
2041 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
2042 0, 1, cmd_handler_mi_user_interrupt},
2043
2044 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
2045 D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
2046
2047 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2048
2049 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2050 NULL},
2051
2052 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2053 NULL},
2054
2055 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2056 NULL},
2057
2058 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2059 NULL},
2060
2061 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
2062 D_ALL, 0, 1, NULL},
2063
2064 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2065 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2066 cmd_handler_mi_batch_buffer_end},
2067
2068 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2069 0, 1, NULL},
2070
2071 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2072 NULL},
2073
2074 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2075 D_ALL, 0, 1, NULL},
2076
2077 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2078 NULL},
2079
2080 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2081 NULL},
2082
2083 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2084 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2085
2086 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2087 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2088
2089 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2090
2091 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2092 D_ALL, 0, 8, NULL, CMD_LEN(0)},
2093
2094 {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2095 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2096 NULL, CMD_LEN(0)},
2097
2098 {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2099 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2100 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2101
2102 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2103 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2104
2105 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2106 0, 8, cmd_handler_mi_store_data_index},
2107
2108 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2109 D_ALL, 0, 8, cmd_handler_lri},
2110
2111 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2112 cmd_handler_mi_update_gtt},
2113
2114 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2115 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2116 cmd_handler_srm, CMD_LEN(2)},
2117
2118 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2119 cmd_handler_mi_flush_dw},
2120
2121 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2122 10, cmd_handler_mi_clflush},
2123
2124 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2125 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2126 cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2127
2128 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2129 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2130 cmd_handler_lrm, CMD_LEN(2)},
2131
2132 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2133 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2134 cmd_handler_lrr, CMD_LEN(1)},
2135
2136 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2137 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2138 8, NULL, CMD_LEN(2)},
2139
2140 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2141 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2142
2143 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2144 ADDR_FIX_1(2), 8, NULL},
2145
2146 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2147 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2148
2149 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2150 8, cmd_handler_mi_op_2f},
2151
2152 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2153 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2154 cmd_handler_mi_batch_buffer_start},
2155
2156 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2157 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2158 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2159
2160 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2161 R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2162
2163 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2164 ADDR_FIX_2(4, 7), 8, NULL},
2165
2166 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2167 0, 8, NULL},
2168
2169 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2170 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2171
2172 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2173
2174 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2175 0, 8, NULL},
2176
2177 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2178 ADDR_FIX_1(3), 8, NULL},
2179
2180 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2181 D_ALL, 0, 8, NULL},
2182
2183 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2184 ADDR_FIX_1(4), 8, NULL},
2185
2186 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2187 ADDR_FIX_2(4, 5), 8, NULL},
2188
2189 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2190 ADDR_FIX_1(4), 8, NULL},
2191
2192 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2193 ADDR_FIX_2(4, 7), 8, NULL},
2194
2195 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2196 D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2197
2198 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2199
2200 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2201 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2202
2203 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2204 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2205
2206 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2207 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2208 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2209
2210 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2211 D_ALL, ADDR_FIX_1(4), 8, NULL},
2212
2213 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2214 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2215
2216 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2217 D_ALL, ADDR_FIX_1(4), 8, NULL},
2218
2219 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2220 D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2221
2222 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2223 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2224
2225 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2226 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2227 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2228
2229 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2230 ADDR_FIX_2(4, 5), 8, NULL},
2231
2232 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2233 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2234
2235 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2236 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2237 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2238
2239 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2240 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2241 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2242
2243 {"3DSTATE_BLEND_STATE_POINTERS",
2244 OP_3DSTATE_BLEND_STATE_POINTERS,
2245 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2246
2247 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2248 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2249 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2250
2251 {"3DSTATE_BINDING_TABLE_POINTERS_VS",
2252 OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2253 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2254
2255 {"3DSTATE_BINDING_TABLE_POINTERS_HS",
2256 OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2257 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2258
2259 {"3DSTATE_BINDING_TABLE_POINTERS_DS",
2260 OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2261 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2262
2263 {"3DSTATE_BINDING_TABLE_POINTERS_GS",
2264 OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2265 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2266
2267 {"3DSTATE_BINDING_TABLE_POINTERS_PS",
2268 OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2269 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2270
2271 {"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2272 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2273 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2274
2275 {"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2276 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2277 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2278
2279 {"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2280 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2281 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2282
2283 {"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2284 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2285 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2286
2287 {"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2288 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2289 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2290
2291 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2292 0, 8, NULL},
2293
2294 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2295 0, 8, NULL},
2296
2297 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2298 0, 8, NULL},
2299
2300 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2301 0, 8, NULL},
2302
2303 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2304 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2305
2306 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2307 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2308
2309 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2310 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2311
2312 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2313 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2314
2315 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2316 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2317
2318 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2319 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2320
2321 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2322 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2323
2324 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2325 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2326
2327 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2328 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2329
2330 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2331 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2332
2333 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2334 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2335
2336 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2337 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2338
2339 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2340 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2341
2342 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2343 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2344
2345 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2346 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2347
2348 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2349 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2350
2351 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2352 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2353
2354 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2355 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2356
2357 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2358 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2359
2360 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2361 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2362
2363 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2364 D_BDW_PLUS, 0, 8, NULL},
2365
2366 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2367 NULL},
2368
2369 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2370 D_BDW_PLUS, 0, 8, NULL},
2371
2372 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2373 D_BDW_PLUS, 0, 8, NULL},
2374
2375 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2376 8, NULL},
2377
2378 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2379 R_RCS, D_BDW_PLUS, 0, 8, NULL},
2380
2381 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2382 8, NULL},
2383
2384 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2385 NULL},
2386
2387 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2388 NULL},
2389
2390 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2391 NULL},
2392
2393 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2394 D_BDW_PLUS, 0, 8, NULL},
2395
2396 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2397 R_RCS, D_ALL, 0, 8, NULL},
2398
2399 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2400 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2401
2402 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2403 R_RCS, D_ALL, 0, 1, NULL},
2404
2405 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2406
2407 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2408 R_RCS, D_ALL, 0, 8, NULL},
2409
2410 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2411 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2412
2413 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2414
2415 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2416
2417 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2418
2419 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2420 D_BDW_PLUS, 0, 8, NULL},
2421
2422 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2423 D_BDW_PLUS, 0, 8, NULL},
2424
2425 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2426 D_ALL, 0, 8, NULL},
2427
2428 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2429 D_BDW_PLUS, 0, 8, NULL},
2430
2431 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2432 D_BDW_PLUS, 0, 8, NULL},
2433
2434 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2435
2436 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2437
2438 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2439
2440 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2441 D_ALL, 0, 8, NULL},
2442
2443 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2444
2445 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2446
2447 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2448 R_RCS, D_ALL, 0, 8, NULL},
2449
2450 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2451 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2452
2453 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2454 0, 8, NULL},
2455
2456 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2457 D_ALL, ADDR_FIX_1(2), 8, NULL},
2458
2459 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2460 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2461
2462 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2463 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2464
2465 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2466 D_ALL, 0, 8, NULL},
2467
2468 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2469 D_ALL, 0, 8, NULL},
2470
2471 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2472 D_ALL, 0, 8, NULL},
2473
2474 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2475 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2476
2477 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2478 D_BDW_PLUS, 0, 8, NULL},
2479
2480 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2481 D_ALL, ADDR_FIX_1(2), 8, NULL},
2482
2483 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2484 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2485
2486 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2487 R_RCS, D_ALL, 0, 8, NULL},
2488
2489 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2490 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2491
2492 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2493 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2494
2495 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2496 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2497
2498 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2499 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2500
2501 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2502 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2503
2504 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2505 R_RCS, D_ALL, 0, 8, NULL},
2506
2507 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2508 D_ALL, 0, 9, NULL},
2509
2510 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2511 ADDR_FIX_2(2, 4), 8, NULL},
2512
2513 {"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2514 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2515 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2516
2517 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2518 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2519
2520 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2521 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2522 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2523
2524 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2525 D_BDW_PLUS, 0, 8, NULL},
2526
2527 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2528 ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2529
2530 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2531
2532 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2533 1, NULL},
2534
2535 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2536 ADDR_FIX_1(1), 8, NULL},
2537
2538 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2539
2540 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2541 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2542
2543 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2544 ADDR_FIX_1(1), 8, NULL},
2545
2546 {"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS,
2547 F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL},
2548
2549 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2550
2551 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2552
2553 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2554 0, 8, NULL},
2555
2556 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2557 D_SKL_PLUS, 0, 8, NULL},
2558
2559 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2560 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2561
2562 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2563 0, 16, NULL},
2564
2565 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2566 0, 16, NULL},
2567
2568 {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2569 0, 16, NULL},
2570
2571 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2572
2573 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2574 0, 16, NULL},
2575
2576 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2577 0, 16, NULL},
2578
2579 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2580 0, 16, NULL},
2581
2582 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2583 0, 8, NULL},
2584
2585 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2586 NULL},
2587
2588 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2589 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2590
2591 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2592 R_VCS, D_ALL, 0, 12, NULL},
2593
2594 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2595 R_VCS, D_ALL, 0, 12, NULL},
2596
2597 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2598 R_VCS, D_BDW_PLUS, 0, 12, NULL},
2599
2600 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2601 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2602
2603 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2604 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2605
2606 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2607
2608 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2609 R_VCS, D_ALL, 0, 12, NULL},
2610
2611 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2612 R_VCS, D_ALL, 0, 12, NULL},
2613
2614 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2615 R_VCS, D_ALL, 0, 12, NULL},
2616
2617 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2618 R_VCS, D_ALL, 0, 12, NULL},
2619
2620 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2621 R_VCS, D_ALL, 0, 12, NULL},
2622
2623 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2624 R_VCS, D_ALL, 0, 12, NULL},
2625
2626 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2627 R_VCS, D_ALL, 0, 6, NULL},
2628
2629 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2630 R_VCS, D_ALL, 0, 12, NULL},
2631
2632 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2633 R_VCS, D_ALL, 0, 12, NULL},
2634
2635 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2636 R_VCS, D_ALL, 0, 12, NULL},
2637
2638 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2639 R_VCS, D_ALL, 0, 12, NULL},
2640
2641 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2642 R_VCS, D_ALL, 0, 12, NULL},
2643
2644 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2645 R_VCS, D_ALL, 0, 12, NULL},
2646
2647 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2648 R_VCS, D_ALL, 0, 12, NULL},
2649 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2650 R_VCS, D_ALL, 0, 12, NULL},
2651
2652 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2653 R_VCS, D_ALL, 0, 12, NULL},
2654
2655 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2656 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2657
2658 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2659 R_VCS, D_ALL, 0, 12, NULL},
2660
2661 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2662 R_VCS, D_ALL, 0, 12, NULL},
2663
2664 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2665 R_VCS, D_ALL, 0, 12, NULL},
2666
2667 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2668 R_VCS, D_ALL, 0, 12, NULL},
2669
2670 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2671 R_VCS, D_ALL, 0, 12, NULL},
2672
2673 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2674 R_VCS, D_ALL, 0, 12, NULL},
2675
2676 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2677 R_VCS, D_ALL, 0, 12, NULL},
2678
2679 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2680 R_VCS, D_ALL, 0, 12, NULL},
2681
2682 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2683 R_VCS, D_ALL, 0, 12, NULL},
2684
2685 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2686 R_VCS, D_ALL, 0, 12, NULL},
2687
2688 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2689 R_VCS, D_ALL, 0, 12, NULL},
2690
2691 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2692 0, 16, NULL},
2693
2694 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2695
2696 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2697
2698 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2699 R_VCS, D_ALL, 0, 12, NULL},
2700
2701 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2702 R_VCS, D_ALL, 0, 12, NULL},
2703
2704 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2705 R_VCS, D_ALL, 0, 12, NULL},
2706
2707 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2708
2709 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2710 0, 12, NULL},
2711
2712 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2713 0, 12, NULL},
2714 };
2715
add_cmd_entry(struct intel_gvt * gvt,struct cmd_entry * e)2716 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2717 {
2718 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2719 }
2720
2721 /* call the cmd handler, and advance ip */
cmd_parser_exec(struct parser_exec_state * s)2722 static int cmd_parser_exec(struct parser_exec_state *s)
2723 {
2724 struct intel_vgpu *vgpu = s->vgpu;
2725 const struct cmd_info *info;
2726 u32 cmd;
2727 int ret = 0;
2728
2729 cmd = cmd_val(s, 0);
2730
2731 /* fastpath for MI_NOOP */
2732 if (cmd == MI_NOOP)
2733 info = &cmd_info[mi_noop_index];
2734 else
2735 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
2736
2737 if (info == NULL) {
2738 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
2739 cmd, get_opcode(cmd, s->engine),
2740 repr_addr_type(s->buf_addr_type),
2741 s->engine->name, s->workload);
2742 return -EBADRQC;
2743 }
2744
2745 s->info = info;
2746
2747 trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va,
2748 cmd_length(s), s->buf_type, s->buf_addr_type,
2749 s->workload, info->name);
2750
2751 if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2752 ret = gvt_check_valid_cmd_length(cmd_length(s),
2753 info->valid_len);
2754 if (ret)
2755 return ret;
2756 }
2757
2758 if (info->handler) {
2759 ret = info->handler(s);
2760 if (ret < 0) {
2761 gvt_vgpu_err("%s handler error\n", info->name);
2762 return ret;
2763 }
2764 }
2765
2766 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2767 ret = cmd_advance_default(s);
2768 if (ret) {
2769 gvt_vgpu_err("%s IP advance error\n", info->name);
2770 return ret;
2771 }
2772 }
2773 return 0;
2774 }
2775
gma_out_of_range(unsigned long gma,unsigned long gma_head,unsigned int gma_tail)2776 static inline bool gma_out_of_range(unsigned long gma,
2777 unsigned long gma_head, unsigned int gma_tail)
2778 {
2779 if (gma_tail >= gma_head)
2780 return (gma < gma_head) || (gma > gma_tail);
2781 else
2782 return (gma > gma_tail) && (gma < gma_head);
2783 }
2784
2785 /* Keep the consistent return type, e.g EBADRQC for unknown
2786 * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2787 * works as the input of VM healthy status.
2788 */
command_scan(struct parser_exec_state * s,unsigned long rb_head,unsigned long rb_tail,unsigned long rb_start,unsigned long rb_len)2789 static int command_scan(struct parser_exec_state *s,
2790 unsigned long rb_head, unsigned long rb_tail,
2791 unsigned long rb_start, unsigned long rb_len)
2792 {
2793
2794 unsigned long gma_head, gma_tail, gma_bottom;
2795 int ret = 0;
2796 struct intel_vgpu *vgpu = s->vgpu;
2797
2798 gma_head = rb_start + rb_head;
2799 gma_tail = rb_start + rb_tail;
2800 gma_bottom = rb_start + rb_len;
2801
2802 while (s->ip_gma != gma_tail) {
2803 if (s->buf_type == RING_BUFFER_INSTRUCTION ||
2804 s->buf_type == RING_BUFFER_CTX) {
2805 if (!(s->ip_gma >= rb_start) ||
2806 !(s->ip_gma < gma_bottom)) {
2807 gvt_vgpu_err("ip_gma %lx out of ring scope."
2808 "(base:0x%lx, bottom: 0x%lx)\n",
2809 s->ip_gma, rb_start,
2810 gma_bottom);
2811 parser_exec_state_dump(s);
2812 return -EFAULT;
2813 }
2814 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2815 gvt_vgpu_err("ip_gma %lx out of range."
2816 "base 0x%lx head 0x%lx tail 0x%lx\n",
2817 s->ip_gma, rb_start,
2818 rb_head, rb_tail);
2819 parser_exec_state_dump(s);
2820 break;
2821 }
2822 }
2823 ret = cmd_parser_exec(s);
2824 if (ret) {
2825 gvt_vgpu_err("cmd parser error\n");
2826 parser_exec_state_dump(s);
2827 break;
2828 }
2829 }
2830
2831 return ret;
2832 }
2833
scan_workload(struct intel_vgpu_workload * workload)2834 static int scan_workload(struct intel_vgpu_workload *workload)
2835 {
2836 unsigned long gma_head, gma_tail;
2837 struct parser_exec_state s;
2838 int ret = 0;
2839
2840 /* ring base is page aligned */
2841 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2842 return -EINVAL;
2843
2844 gma_head = workload->rb_start + workload->rb_head;
2845 gma_tail = workload->rb_start + workload->rb_tail;
2846
2847 s.buf_type = RING_BUFFER_INSTRUCTION;
2848 s.buf_addr_type = GTT_BUFFER;
2849 s.vgpu = workload->vgpu;
2850 s.engine = workload->engine;
2851 s.ring_start = workload->rb_start;
2852 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2853 s.ring_head = gma_head;
2854 s.ring_tail = gma_tail;
2855 s.rb_va = workload->shadow_ring_buffer_va;
2856 s.workload = workload;
2857 s.is_ctx_wa = false;
2858
2859 if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail)
2860 return 0;
2861
2862 ret = ip_gma_set(&s, gma_head);
2863 if (ret)
2864 goto out;
2865
2866 ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2867 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2868
2869 out:
2870 return ret;
2871 }
2872
scan_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)2873 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2874 {
2875
2876 unsigned long gma_head, gma_tail, ring_size, ring_tail;
2877 struct parser_exec_state s;
2878 int ret = 0;
2879 struct intel_vgpu_workload *workload = container_of(wa_ctx,
2880 struct intel_vgpu_workload,
2881 wa_ctx);
2882
2883 /* ring base is page aligned */
2884 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2885 I915_GTT_PAGE_SIZE)))
2886 return -EINVAL;
2887
2888 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2889 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2890 PAGE_SIZE);
2891 gma_head = wa_ctx->indirect_ctx.guest_gma;
2892 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2893
2894 s.buf_type = RING_BUFFER_INSTRUCTION;
2895 s.buf_addr_type = GTT_BUFFER;
2896 s.vgpu = workload->vgpu;
2897 s.engine = workload->engine;
2898 s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2899 s.ring_size = ring_size;
2900 s.ring_head = gma_head;
2901 s.ring_tail = gma_tail;
2902 s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2903 s.workload = workload;
2904 s.is_ctx_wa = true;
2905
2906 ret = ip_gma_set(&s, gma_head);
2907 if (ret)
2908 goto out;
2909
2910 ret = command_scan(&s, 0, ring_tail,
2911 wa_ctx->indirect_ctx.guest_gma, ring_size);
2912 out:
2913 return ret;
2914 }
2915
shadow_workload_ring_buffer(struct intel_vgpu_workload * workload)2916 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2917 {
2918 struct intel_vgpu *vgpu = workload->vgpu;
2919 struct intel_vgpu_submission *s = &vgpu->submission;
2920 unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2921 void *shadow_ring_buffer_va;
2922 int ret;
2923
2924 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2925
2926 /* calculate workload ring buffer size */
2927 workload->rb_len = (workload->rb_tail + guest_rb_size -
2928 workload->rb_head) % guest_rb_size;
2929
2930 gma_head = workload->rb_start + workload->rb_head;
2931 gma_tail = workload->rb_start + workload->rb_tail;
2932 gma_top = workload->rb_start + guest_rb_size;
2933
2934 if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) {
2935 void *p;
2936
2937 /* realloc the new ring buffer if needed */
2938 p = krealloc(s->ring_scan_buffer[workload->engine->id],
2939 workload->rb_len, GFP_KERNEL);
2940 if (!p) {
2941 gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2942 return -ENOMEM;
2943 }
2944 s->ring_scan_buffer[workload->engine->id] = p;
2945 s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len;
2946 }
2947
2948 shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id];
2949
2950 /* get shadow ring buffer va */
2951 workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2952
2953 /* head > tail --> copy head <-> top */
2954 if (gma_head > gma_tail) {
2955 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2956 gma_head, gma_top, shadow_ring_buffer_va);
2957 if (ret < 0) {
2958 gvt_vgpu_err("fail to copy guest ring buffer\n");
2959 return ret;
2960 }
2961 shadow_ring_buffer_va += ret;
2962 gma_head = workload->rb_start;
2963 }
2964
2965 /* copy head or start <-> tail */
2966 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2967 shadow_ring_buffer_va);
2968 if (ret < 0) {
2969 gvt_vgpu_err("fail to copy guest ring buffer\n");
2970 return ret;
2971 }
2972 return 0;
2973 }
2974
intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload * workload)2975 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2976 {
2977 int ret;
2978 struct intel_vgpu *vgpu = workload->vgpu;
2979
2980 ret = shadow_workload_ring_buffer(workload);
2981 if (ret) {
2982 gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2983 return ret;
2984 }
2985
2986 ret = scan_workload(workload);
2987 if (ret) {
2988 gvt_vgpu_err("scan workload error\n");
2989 return ret;
2990 }
2991 return 0;
2992 }
2993
shadow_indirect_ctx(struct intel_shadow_wa_ctx * wa_ctx)2994 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2995 {
2996 int ctx_size = wa_ctx->indirect_ctx.size;
2997 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2998 struct intel_vgpu_workload *workload = container_of(wa_ctx,
2999 struct intel_vgpu_workload,
3000 wa_ctx);
3001 struct intel_vgpu *vgpu = workload->vgpu;
3002 struct drm_i915_gem_object *obj;
3003 int ret = 0;
3004 void *map;
3005
3006 obj = i915_gem_object_create_shmem(workload->engine->i915,
3007 roundup(ctx_size + CACHELINE_BYTES,
3008 PAGE_SIZE));
3009 if (IS_ERR(obj))
3010 return PTR_ERR(obj);
3011
3012 /* get the va of the shadow batch buffer */
3013 map = i915_gem_object_pin_map(obj, I915_MAP_WB);
3014 if (IS_ERR(map)) {
3015 gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
3016 ret = PTR_ERR(map);
3017 goto put_obj;
3018 }
3019
3020 i915_gem_object_lock(obj, NULL);
3021 ret = i915_gem_object_set_to_cpu_domain(obj, false);
3022 i915_gem_object_unlock(obj);
3023 if (ret) {
3024 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
3025 goto unmap_src;
3026 }
3027
3028 ret = copy_gma_to_hva(workload->vgpu,
3029 workload->vgpu->gtt.ggtt_mm,
3030 guest_gma, guest_gma + ctx_size,
3031 map);
3032 if (ret < 0) {
3033 gvt_vgpu_err("fail to copy guest indirect ctx\n");
3034 goto unmap_src;
3035 }
3036
3037 wa_ctx->indirect_ctx.obj = obj;
3038 wa_ctx->indirect_ctx.shadow_va = map;
3039 return 0;
3040
3041 unmap_src:
3042 i915_gem_object_unpin_map(obj);
3043 put_obj:
3044 i915_gem_object_put(obj);
3045 return ret;
3046 }
3047
combine_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)3048 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3049 {
3050 u32 per_ctx_start[CACHELINE_DWORDS] = {0};
3051 unsigned char *bb_start_sva;
3052
3053 if (!wa_ctx->per_ctx.valid)
3054 return 0;
3055
3056 per_ctx_start[0] = 0x18800001;
3057 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
3058
3059 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
3060 wa_ctx->indirect_ctx.size;
3061
3062 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3063
3064 return 0;
3065 }
3066
intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)3067 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3068 {
3069 int ret;
3070 struct intel_vgpu_workload *workload = container_of(wa_ctx,
3071 struct intel_vgpu_workload,
3072 wa_ctx);
3073 struct intel_vgpu *vgpu = workload->vgpu;
3074
3075 if (wa_ctx->indirect_ctx.size == 0)
3076 return 0;
3077
3078 ret = shadow_indirect_ctx(wa_ctx);
3079 if (ret) {
3080 gvt_vgpu_err("fail to shadow indirect ctx\n");
3081 return ret;
3082 }
3083
3084 combine_wa_ctx(wa_ctx);
3085
3086 ret = scan_wa_ctx(wa_ctx);
3087 if (ret) {
3088 gvt_vgpu_err("scan wa ctx error\n");
3089 return ret;
3090 }
3091
3092 return 0;
3093 }
3094
3095 /* generate dummy contexts by sending empty requests to HW, and let
3096 * the HW to fill Engine Contexts. This dummy contexts are used for
3097 * initialization purpose (update reg whitelist), so referred to as
3098 * init context here
3099 */
intel_gvt_update_reg_whitelist(struct intel_vgpu * vgpu)3100 void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu)
3101 {
3102 const unsigned long start = LRC_STATE_PN * PAGE_SIZE;
3103 struct intel_gvt *gvt = vgpu->gvt;
3104 struct intel_engine_cs *engine;
3105 enum intel_engine_id id;
3106
3107 if (gvt->is_reg_whitelist_updated)
3108 return;
3109
3110 /* scan init ctx to update cmd accessible list */
3111 for_each_engine(engine, gvt->gt, id) {
3112 struct parser_exec_state s;
3113 void *vaddr;
3114 int ret;
3115
3116 if (!engine->default_state)
3117 continue;
3118
3119 vaddr = shmem_pin_map(engine->default_state);
3120 if (!vaddr) {
3121 gvt_err("failed to map %s->default state\n",
3122 engine->name);
3123 return;
3124 }
3125
3126 s.buf_type = RING_BUFFER_CTX;
3127 s.buf_addr_type = GTT_BUFFER;
3128 s.vgpu = vgpu;
3129 s.engine = engine;
3130 s.ring_start = 0;
3131 s.ring_size = engine->context_size - start;
3132 s.ring_head = 0;
3133 s.ring_tail = s.ring_size;
3134 s.rb_va = vaddr + start;
3135 s.workload = NULL;
3136 s.is_ctx_wa = false;
3137 s.is_init_ctx = true;
3138
3139 /* skipping the first RING_CTX_SIZE(0x50) dwords */
3140 ret = ip_gma_set(&s, RING_CTX_SIZE);
3141 if (ret == 0) {
3142 ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size);
3143 if (ret)
3144 gvt_err("Scan init ctx error\n");
3145 }
3146
3147 shmem_unpin_map(engine->default_state, vaddr);
3148 if (ret)
3149 return;
3150 }
3151
3152 gvt->is_reg_whitelist_updated = true;
3153 }
3154
intel_gvt_scan_engine_context(struct intel_vgpu_workload * workload)3155 int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload)
3156 {
3157 struct intel_vgpu *vgpu = workload->vgpu;
3158 unsigned long gma_head, gma_tail, gma_start, ctx_size;
3159 struct parser_exec_state s;
3160 int ring_id = workload->engine->id;
3161 struct intel_context *ce = vgpu->submission.shadow[ring_id];
3162 int ret;
3163
3164 GEM_BUG_ON(atomic_read(&ce->pin_count) < 0);
3165
3166 ctx_size = workload->engine->context_size - PAGE_SIZE;
3167
3168 /* Only ring contxt is loaded to HW for inhibit context, no need to
3169 * scan engine context
3170 */
3171 if (is_inhibit_context(ce))
3172 return 0;
3173
3174 gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE;
3175 gma_head = 0;
3176 gma_tail = ctx_size;
3177
3178 s.buf_type = RING_BUFFER_CTX;
3179 s.buf_addr_type = GTT_BUFFER;
3180 s.vgpu = workload->vgpu;
3181 s.engine = workload->engine;
3182 s.ring_start = gma_start;
3183 s.ring_size = ctx_size;
3184 s.ring_head = gma_start + gma_head;
3185 s.ring_tail = gma_start + gma_tail;
3186 s.rb_va = ce->lrc_reg_state;
3187 s.workload = workload;
3188 s.is_ctx_wa = false;
3189 s.is_init_ctx = false;
3190
3191 /* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring
3192 * context
3193 */
3194 ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE);
3195 if (ret)
3196 goto out;
3197
3198 ret = command_scan(&s, gma_head, gma_tail,
3199 gma_start, ctx_size);
3200 out:
3201 if (ret)
3202 gvt_vgpu_err("scan shadow ctx error\n");
3203
3204 return ret;
3205 }
3206
init_cmd_table(struct intel_gvt * gvt)3207 static int init_cmd_table(struct intel_gvt *gvt)
3208 {
3209 unsigned int gen_type = intel_gvt_get_device_type(gvt);
3210 int i;
3211
3212 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3213 struct cmd_entry *e;
3214
3215 if (!(cmd_info[i].devices & gen_type))
3216 continue;
3217
3218 e = kzalloc(sizeof(*e), GFP_KERNEL);
3219 if (!e)
3220 return -ENOMEM;
3221
3222 e->info = &cmd_info[i];
3223 if (cmd_info[i].opcode == OP_MI_NOOP)
3224 mi_noop_index = i;
3225
3226 INIT_HLIST_NODE(&e->hlist);
3227 add_cmd_entry(gvt, e);
3228 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3229 e->info->name, e->info->opcode, e->info->flag,
3230 e->info->devices, e->info->rings);
3231 }
3232
3233 return 0;
3234 }
3235
clean_cmd_table(struct intel_gvt * gvt)3236 static void clean_cmd_table(struct intel_gvt *gvt)
3237 {
3238 struct hlist_node *tmp;
3239 struct cmd_entry *e;
3240 int i;
3241
3242 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3243 kfree(e);
3244
3245 hash_init(gvt->cmd_table);
3246 }
3247
intel_gvt_clean_cmd_parser(struct intel_gvt * gvt)3248 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3249 {
3250 clean_cmd_table(gvt);
3251 }
3252
intel_gvt_init_cmd_parser(struct intel_gvt * gvt)3253 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3254 {
3255 int ret;
3256
3257 ret = init_cmd_table(gvt);
3258 if (ret) {
3259 intel_gvt_clean_cmd_parser(gvt);
3260 return ret;
3261 }
3262 return 0;
3263 }
3264