• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Cirrus Logic EP93xx SPI controller.
4  *
5  * Copyright (C) 2010-2011 Mika Westerberg
6  *
7  * Explicit FIFO handling code was inspired by amba-pl022 driver.
8  *
9  * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
10  *
11  * For more information about the SPI controller see documentation on Cirrus
12  * Logic web site:
13  *     https://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
14  */
15 
16 #include <linux/io.h>
17 #include <linux/clk.h>
18 #include <linux/err.h>
19 #include <linux/delay.h>
20 #include <linux/device.h>
21 #include <linux/dmaengine.h>
22 #include <linux/bitops.h>
23 #include <linux/interrupt.h>
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/sched.h>
27 #include <linux/scatterlist.h>
28 #include <linux/spi/spi.h>
29 
30 #include <linux/platform_data/dma-ep93xx.h>
31 #include <linux/platform_data/spi-ep93xx.h>
32 
33 #define SSPCR0			0x0000
34 #define SSPCR0_SPO		BIT(6)
35 #define SSPCR0_SPH		BIT(7)
36 #define SSPCR0_SCR_SHIFT	8
37 
38 #define SSPCR1			0x0004
39 #define SSPCR1_RIE		BIT(0)
40 #define SSPCR1_TIE		BIT(1)
41 #define SSPCR1_RORIE		BIT(2)
42 #define SSPCR1_LBM		BIT(3)
43 #define SSPCR1_SSE		BIT(4)
44 #define SSPCR1_MS		BIT(5)
45 #define SSPCR1_SOD		BIT(6)
46 
47 #define SSPDR			0x0008
48 
49 #define SSPSR			0x000c
50 #define SSPSR_TFE		BIT(0)
51 #define SSPSR_TNF		BIT(1)
52 #define SSPSR_RNE		BIT(2)
53 #define SSPSR_RFF		BIT(3)
54 #define SSPSR_BSY		BIT(4)
55 #define SSPCPSR			0x0010
56 
57 #define SSPIIR			0x0014
58 #define SSPIIR_RIS		BIT(0)
59 #define SSPIIR_TIS		BIT(1)
60 #define SSPIIR_RORIS		BIT(2)
61 #define SSPICR			SSPIIR
62 
63 /* timeout in milliseconds */
64 #define SPI_TIMEOUT		5
65 /* maximum depth of RX/TX FIFO */
66 #define SPI_FIFO_SIZE		8
67 
68 /**
69  * struct ep93xx_spi - EP93xx SPI controller structure
70  * @clk: clock for the controller
71  * @mmio: pointer to ioremap()'d registers
72  * @sspdr_phys: physical address of the SSPDR register
73  * @tx: current byte in transfer to transmit
74  * @rx: current byte in transfer to receive
75  * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
76  *              frame decreases this level and sending one frame increases it.
77  * @dma_rx: RX DMA channel
78  * @dma_tx: TX DMA channel
79  * @dma_rx_data: RX parameters passed to the DMA engine
80  * @dma_tx_data: TX parameters passed to the DMA engine
81  * @rx_sgt: sg table for RX transfers
82  * @tx_sgt: sg table for TX transfers
83  * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
84  *            the client
85  */
86 struct ep93xx_spi {
87 	struct clk			*clk;
88 	void __iomem			*mmio;
89 	unsigned long			sspdr_phys;
90 	size_t				tx;
91 	size_t				rx;
92 	size_t				fifo_level;
93 	struct dma_chan			*dma_rx;
94 	struct dma_chan			*dma_tx;
95 	struct ep93xx_dma_data		dma_rx_data;
96 	struct ep93xx_dma_data		dma_tx_data;
97 	struct sg_table			rx_sgt;
98 	struct sg_table			tx_sgt;
99 	void				*zeropage;
100 };
101 
102 /* converts bits per word to CR0.DSS value */
103 #define bits_per_word_to_dss(bpw)	((bpw) - 1)
104 
105 /**
106  * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
107  * @host: SPI host
108  * @rate: desired SPI output clock rate
109  * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
110  * @div_scr: pointer to return the scr divider
111  */
ep93xx_spi_calc_divisors(struct spi_controller * host,u32 rate,u8 * div_cpsr,u8 * div_scr)112 static int ep93xx_spi_calc_divisors(struct spi_controller *host,
113 				    u32 rate, u8 *div_cpsr, u8 *div_scr)
114 {
115 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
116 	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
117 	int cpsr, scr;
118 
119 	/*
120 	 * Make sure that max value is between values supported by the
121 	 * controller.
122 	 */
123 	rate = clamp(rate, host->min_speed_hz, host->max_speed_hz);
124 
125 	/*
126 	 * Calculate divisors so that we can get speed according the
127 	 * following formula:
128 	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
129 	 *
130 	 * cpsr must be even number and starts from 2, scr can be any number
131 	 * between 0 and 255.
132 	 */
133 	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
134 		for (scr = 0; scr <= 255; scr++) {
135 			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
136 				*div_scr = (u8)scr;
137 				*div_cpsr = (u8)cpsr;
138 				return 0;
139 			}
140 		}
141 	}
142 
143 	return -EINVAL;
144 }
145 
ep93xx_spi_chip_setup(struct spi_controller * host,struct spi_device * spi,struct spi_transfer * xfer)146 static int ep93xx_spi_chip_setup(struct spi_controller *host,
147 				 struct spi_device *spi,
148 				 struct spi_transfer *xfer)
149 {
150 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
151 	u8 dss = bits_per_word_to_dss(xfer->bits_per_word);
152 	u8 div_cpsr = 0;
153 	u8 div_scr = 0;
154 	u16 cr0;
155 	int err;
156 
157 	err = ep93xx_spi_calc_divisors(host, xfer->speed_hz,
158 				       &div_cpsr, &div_scr);
159 	if (err)
160 		return err;
161 
162 	cr0 = div_scr << SSPCR0_SCR_SHIFT;
163 	if (spi->mode & SPI_CPOL)
164 		cr0 |= SSPCR0_SPO;
165 	if (spi->mode & SPI_CPHA)
166 		cr0 |= SSPCR0_SPH;
167 	cr0 |= dss;
168 
169 	dev_dbg(&host->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
170 		spi->mode, div_cpsr, div_scr, dss);
171 	dev_dbg(&host->dev, "setup: cr0 %#x\n", cr0);
172 
173 	writel(div_cpsr, espi->mmio + SSPCPSR);
174 	writel(cr0, espi->mmio + SSPCR0);
175 
176 	return 0;
177 }
178 
ep93xx_do_write(struct spi_controller * host)179 static void ep93xx_do_write(struct spi_controller *host)
180 {
181 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
182 	struct spi_transfer *xfer = host->cur_msg->state;
183 	u32 val = 0;
184 
185 	if (xfer->bits_per_word > 8) {
186 		if (xfer->tx_buf)
187 			val = ((u16 *)xfer->tx_buf)[espi->tx];
188 		espi->tx += 2;
189 	} else {
190 		if (xfer->tx_buf)
191 			val = ((u8 *)xfer->tx_buf)[espi->tx];
192 		espi->tx += 1;
193 	}
194 	writel(val, espi->mmio + SSPDR);
195 }
196 
ep93xx_do_read(struct spi_controller * host)197 static void ep93xx_do_read(struct spi_controller *host)
198 {
199 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
200 	struct spi_transfer *xfer = host->cur_msg->state;
201 	u32 val;
202 
203 	val = readl(espi->mmio + SSPDR);
204 	if (xfer->bits_per_word > 8) {
205 		if (xfer->rx_buf)
206 			((u16 *)xfer->rx_buf)[espi->rx] = val;
207 		espi->rx += 2;
208 	} else {
209 		if (xfer->rx_buf)
210 			((u8 *)xfer->rx_buf)[espi->rx] = val;
211 		espi->rx += 1;
212 	}
213 }
214 
215 /**
216  * ep93xx_spi_read_write() - perform next RX/TX transfer
217  * @host: SPI host
218  *
219  * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
220  * called several times, the whole transfer will be completed. Returns
221  * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
222  *
223  * When this function is finished, RX FIFO should be empty and TX FIFO should be
224  * full.
225  */
ep93xx_spi_read_write(struct spi_controller * host)226 static int ep93xx_spi_read_write(struct spi_controller *host)
227 {
228 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
229 	struct spi_transfer *xfer = host->cur_msg->state;
230 
231 	/* read as long as RX FIFO has frames in it */
232 	while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) {
233 		ep93xx_do_read(host);
234 		espi->fifo_level--;
235 	}
236 
237 	/* write as long as TX FIFO has room */
238 	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) {
239 		ep93xx_do_write(host);
240 		espi->fifo_level++;
241 	}
242 
243 	if (espi->rx == xfer->len)
244 		return 0;
245 
246 	return -EINPROGRESS;
247 }
248 
249 static enum dma_transfer_direction
ep93xx_dma_data_to_trans_dir(enum dma_data_direction dir)250 ep93xx_dma_data_to_trans_dir(enum dma_data_direction dir)
251 {
252 	switch (dir) {
253 	case DMA_TO_DEVICE:
254 		return DMA_MEM_TO_DEV;
255 	case DMA_FROM_DEVICE:
256 		return DMA_DEV_TO_MEM;
257 	default:
258 		return DMA_TRANS_NONE;
259 	}
260 }
261 
262 /**
263  * ep93xx_spi_dma_prepare() - prepares a DMA transfer
264  * @host: SPI host
265  * @dir: DMA transfer direction
266  *
267  * Function configures the DMA, maps the buffer and prepares the DMA
268  * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
269  * in case of failure.
270  */
271 static struct dma_async_tx_descriptor *
ep93xx_spi_dma_prepare(struct spi_controller * host,enum dma_data_direction dir)272 ep93xx_spi_dma_prepare(struct spi_controller *host,
273 		       enum dma_data_direction dir)
274 {
275 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
276 	struct spi_transfer *xfer = host->cur_msg->state;
277 	struct dma_async_tx_descriptor *txd;
278 	enum dma_slave_buswidth buswidth;
279 	struct dma_slave_config conf;
280 	struct scatterlist *sg;
281 	struct sg_table *sgt;
282 	struct dma_chan *chan;
283 	const void *buf, *pbuf;
284 	size_t len = xfer->len;
285 	int i, ret, nents;
286 
287 	if (xfer->bits_per_word > 8)
288 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
289 	else
290 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
291 
292 	memset(&conf, 0, sizeof(conf));
293 	conf.direction = ep93xx_dma_data_to_trans_dir(dir);
294 
295 	if (dir == DMA_FROM_DEVICE) {
296 		chan = espi->dma_rx;
297 		buf = xfer->rx_buf;
298 		sgt = &espi->rx_sgt;
299 
300 		conf.src_addr = espi->sspdr_phys;
301 		conf.src_addr_width = buswidth;
302 	} else {
303 		chan = espi->dma_tx;
304 		buf = xfer->tx_buf;
305 		sgt = &espi->tx_sgt;
306 
307 		conf.dst_addr = espi->sspdr_phys;
308 		conf.dst_addr_width = buswidth;
309 	}
310 
311 	ret = dmaengine_slave_config(chan, &conf);
312 	if (ret)
313 		return ERR_PTR(ret);
314 
315 	/*
316 	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
317 	 * because we are using @espi->zeropage to provide a zero RX buffer
318 	 * for the TX transfers and we have only allocated one page for that.
319 	 *
320 	 * For performance reasons we allocate a new sg_table only when
321 	 * needed. Otherwise we will re-use the current one. Eventually the
322 	 * last sg_table is released in ep93xx_spi_release_dma().
323 	 */
324 
325 	nents = DIV_ROUND_UP(len, PAGE_SIZE);
326 	if (nents != sgt->nents) {
327 		sg_free_table(sgt);
328 
329 		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
330 		if (ret)
331 			return ERR_PTR(ret);
332 	}
333 
334 	pbuf = buf;
335 	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
336 		size_t bytes = min_t(size_t, len, PAGE_SIZE);
337 
338 		if (buf) {
339 			sg_set_page(sg, virt_to_page(pbuf), bytes,
340 				    offset_in_page(pbuf));
341 		} else {
342 			sg_set_page(sg, virt_to_page(espi->zeropage),
343 				    bytes, 0);
344 		}
345 
346 		pbuf += bytes;
347 		len -= bytes;
348 	}
349 
350 	if (WARN_ON(len)) {
351 		dev_warn(&host->dev, "len = %zu expected 0!\n", len);
352 		return ERR_PTR(-EINVAL);
353 	}
354 
355 	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
356 	if (!nents)
357 		return ERR_PTR(-ENOMEM);
358 
359 	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, conf.direction,
360 				      DMA_CTRL_ACK);
361 	if (!txd) {
362 		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
363 		return ERR_PTR(-ENOMEM);
364 	}
365 	return txd;
366 }
367 
368 /**
369  * ep93xx_spi_dma_finish() - finishes with a DMA transfer
370  * @host: SPI host
371  * @dir: DMA transfer direction
372  *
373  * Function finishes with the DMA transfer. After this, the DMA buffer is
374  * unmapped.
375  */
ep93xx_spi_dma_finish(struct spi_controller * host,enum dma_data_direction dir)376 static void ep93xx_spi_dma_finish(struct spi_controller *host,
377 				  enum dma_data_direction dir)
378 {
379 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
380 	struct dma_chan *chan;
381 	struct sg_table *sgt;
382 
383 	if (dir == DMA_FROM_DEVICE) {
384 		chan = espi->dma_rx;
385 		sgt = &espi->rx_sgt;
386 	} else {
387 		chan = espi->dma_tx;
388 		sgt = &espi->tx_sgt;
389 	}
390 
391 	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
392 }
393 
ep93xx_spi_dma_callback(void * callback_param)394 static void ep93xx_spi_dma_callback(void *callback_param)
395 {
396 	struct spi_controller *host = callback_param;
397 
398 	ep93xx_spi_dma_finish(host, DMA_TO_DEVICE);
399 	ep93xx_spi_dma_finish(host, DMA_FROM_DEVICE);
400 
401 	spi_finalize_current_transfer(host);
402 }
403 
ep93xx_spi_dma_transfer(struct spi_controller * host)404 static int ep93xx_spi_dma_transfer(struct spi_controller *host)
405 {
406 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
407 	struct dma_async_tx_descriptor *rxd, *txd;
408 
409 	rxd = ep93xx_spi_dma_prepare(host, DMA_FROM_DEVICE);
410 	if (IS_ERR(rxd)) {
411 		dev_err(&host->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
412 		return PTR_ERR(rxd);
413 	}
414 
415 	txd = ep93xx_spi_dma_prepare(host, DMA_TO_DEVICE);
416 	if (IS_ERR(txd)) {
417 		ep93xx_spi_dma_finish(host, DMA_FROM_DEVICE);
418 		dev_err(&host->dev, "DMA TX failed: %ld\n", PTR_ERR(txd));
419 		return PTR_ERR(txd);
420 	}
421 
422 	/* We are ready when RX is done */
423 	rxd->callback = ep93xx_spi_dma_callback;
424 	rxd->callback_param = host;
425 
426 	/* Now submit both descriptors and start DMA */
427 	dmaengine_submit(rxd);
428 	dmaengine_submit(txd);
429 
430 	dma_async_issue_pending(espi->dma_rx);
431 	dma_async_issue_pending(espi->dma_tx);
432 
433 	/* signal that we need to wait for completion */
434 	return 1;
435 }
436 
ep93xx_spi_interrupt(int irq,void * dev_id)437 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
438 {
439 	struct spi_controller *host = dev_id;
440 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
441 	u32 val;
442 
443 	/*
444 	 * If we got ROR (receive overrun) interrupt we know that something is
445 	 * wrong. Just abort the message.
446 	 */
447 	if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) {
448 		/* clear the overrun interrupt */
449 		writel(0, espi->mmio + SSPICR);
450 		dev_warn(&host->dev,
451 			 "receive overrun, aborting the message\n");
452 		host->cur_msg->status = -EIO;
453 	} else {
454 		/*
455 		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
456 		 * simply execute next data transfer.
457 		 */
458 		if (ep93xx_spi_read_write(host)) {
459 			/*
460 			 * In normal case, there still is some processing left
461 			 * for current transfer. Let's wait for the next
462 			 * interrupt then.
463 			 */
464 			return IRQ_HANDLED;
465 		}
466 	}
467 
468 	/*
469 	 * Current transfer is finished, either with error or with success. In
470 	 * any case we disable interrupts and notify the worker to handle
471 	 * any post-processing of the message.
472 	 */
473 	val = readl(espi->mmio + SSPCR1);
474 	val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
475 	writel(val, espi->mmio + SSPCR1);
476 
477 	spi_finalize_current_transfer(host);
478 
479 	return IRQ_HANDLED;
480 }
481 
ep93xx_spi_transfer_one(struct spi_controller * host,struct spi_device * spi,struct spi_transfer * xfer)482 static int ep93xx_spi_transfer_one(struct spi_controller *host,
483 				   struct spi_device *spi,
484 				   struct spi_transfer *xfer)
485 {
486 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
487 	u32 val;
488 	int ret;
489 
490 	ret = ep93xx_spi_chip_setup(host, spi, xfer);
491 	if (ret) {
492 		dev_err(&host->dev, "failed to setup chip for transfer\n");
493 		return ret;
494 	}
495 
496 	host->cur_msg->state = xfer;
497 	espi->rx = 0;
498 	espi->tx = 0;
499 
500 	/*
501 	 * There is no point of setting up DMA for the transfers which will
502 	 * fit into the FIFO and can be transferred with a single interrupt.
503 	 * So in these cases we will be using PIO and don't bother for DMA.
504 	 */
505 	if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE)
506 		return ep93xx_spi_dma_transfer(host);
507 
508 	/* Using PIO so prime the TX FIFO and enable interrupts */
509 	ep93xx_spi_read_write(host);
510 
511 	val = readl(espi->mmio + SSPCR1);
512 	val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
513 	writel(val, espi->mmio + SSPCR1);
514 
515 	/* signal that we need to wait for completion */
516 	return 1;
517 }
518 
ep93xx_spi_prepare_message(struct spi_controller * host,struct spi_message * msg)519 static int ep93xx_spi_prepare_message(struct spi_controller *host,
520 				      struct spi_message *msg)
521 {
522 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
523 	unsigned long timeout;
524 
525 	/*
526 	 * Just to be sure: flush any data from RX FIFO.
527 	 */
528 	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
529 	while (readl(espi->mmio + SSPSR) & SSPSR_RNE) {
530 		if (time_after(jiffies, timeout)) {
531 			dev_warn(&host->dev,
532 				 "timeout while flushing RX FIFO\n");
533 			return -ETIMEDOUT;
534 		}
535 		readl(espi->mmio + SSPDR);
536 	}
537 
538 	/*
539 	 * We explicitly handle FIFO level. This way we don't have to check TX
540 	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
541 	 */
542 	espi->fifo_level = 0;
543 
544 	return 0;
545 }
546 
ep93xx_spi_prepare_hardware(struct spi_controller * host)547 static int ep93xx_spi_prepare_hardware(struct spi_controller *host)
548 {
549 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
550 	u32 val;
551 	int ret;
552 
553 	ret = clk_prepare_enable(espi->clk);
554 	if (ret)
555 		return ret;
556 
557 	val = readl(espi->mmio + SSPCR1);
558 	val |= SSPCR1_SSE;
559 	writel(val, espi->mmio + SSPCR1);
560 
561 	return 0;
562 }
563 
ep93xx_spi_unprepare_hardware(struct spi_controller * host)564 static int ep93xx_spi_unprepare_hardware(struct spi_controller *host)
565 {
566 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
567 	u32 val;
568 
569 	val = readl(espi->mmio + SSPCR1);
570 	val &= ~SSPCR1_SSE;
571 	writel(val, espi->mmio + SSPCR1);
572 
573 	clk_disable_unprepare(espi->clk);
574 
575 	return 0;
576 }
577 
ep93xx_spi_dma_filter(struct dma_chan * chan,void * filter_param)578 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
579 {
580 	if (ep93xx_dma_chan_is_m2p(chan))
581 		return false;
582 
583 	chan->private = filter_param;
584 	return true;
585 }
586 
ep93xx_spi_setup_dma(struct ep93xx_spi * espi)587 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
588 {
589 	dma_cap_mask_t mask;
590 	int ret;
591 
592 	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
593 	if (!espi->zeropage)
594 		return -ENOMEM;
595 
596 	dma_cap_zero(mask);
597 	dma_cap_set(DMA_SLAVE, mask);
598 
599 	espi->dma_rx_data.port = EP93XX_DMA_SSP;
600 	espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
601 	espi->dma_rx_data.name = "ep93xx-spi-rx";
602 
603 	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
604 					   &espi->dma_rx_data);
605 	if (!espi->dma_rx) {
606 		ret = -ENODEV;
607 		goto fail_free_page;
608 	}
609 
610 	espi->dma_tx_data.port = EP93XX_DMA_SSP;
611 	espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
612 	espi->dma_tx_data.name = "ep93xx-spi-tx";
613 
614 	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
615 					   &espi->dma_tx_data);
616 	if (!espi->dma_tx) {
617 		ret = -ENODEV;
618 		goto fail_release_rx;
619 	}
620 
621 	return 0;
622 
623 fail_release_rx:
624 	dma_release_channel(espi->dma_rx);
625 	espi->dma_rx = NULL;
626 fail_free_page:
627 	free_page((unsigned long)espi->zeropage);
628 
629 	return ret;
630 }
631 
ep93xx_spi_release_dma(struct ep93xx_spi * espi)632 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
633 {
634 	if (espi->dma_rx) {
635 		dma_release_channel(espi->dma_rx);
636 		sg_free_table(&espi->rx_sgt);
637 	}
638 	if (espi->dma_tx) {
639 		dma_release_channel(espi->dma_tx);
640 		sg_free_table(&espi->tx_sgt);
641 	}
642 
643 	if (espi->zeropage)
644 		free_page((unsigned long)espi->zeropage);
645 }
646 
ep93xx_spi_probe(struct platform_device * pdev)647 static int ep93xx_spi_probe(struct platform_device *pdev)
648 {
649 	struct spi_controller *host;
650 	struct ep93xx_spi_info *info;
651 	struct ep93xx_spi *espi;
652 	struct resource *res;
653 	int irq;
654 	int error;
655 
656 	info = dev_get_platdata(&pdev->dev);
657 	if (!info) {
658 		dev_err(&pdev->dev, "missing platform data\n");
659 		return -EINVAL;
660 	}
661 
662 	irq = platform_get_irq(pdev, 0);
663 	if (irq < 0)
664 		return irq;
665 
666 	host = spi_alloc_host(&pdev->dev, sizeof(*espi));
667 	if (!host)
668 		return -ENOMEM;
669 
670 	host->use_gpio_descriptors = true;
671 	host->prepare_transfer_hardware = ep93xx_spi_prepare_hardware;
672 	host->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware;
673 	host->prepare_message = ep93xx_spi_prepare_message;
674 	host->transfer_one = ep93xx_spi_transfer_one;
675 	host->bus_num = pdev->id;
676 	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
677 	host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
678 	/*
679 	 * The SPI core will count the number of GPIO descriptors to figure
680 	 * out the number of chip selects available on the platform.
681 	 */
682 	host->num_chipselect = 0;
683 
684 	platform_set_drvdata(pdev, host);
685 
686 	espi = spi_controller_get_devdata(host);
687 
688 	espi->clk = devm_clk_get(&pdev->dev, NULL);
689 	if (IS_ERR(espi->clk)) {
690 		dev_err(&pdev->dev, "unable to get spi clock\n");
691 		error = PTR_ERR(espi->clk);
692 		goto fail_release_host;
693 	}
694 
695 	/*
696 	 * Calculate maximum and minimum supported clock rates
697 	 * for the controller.
698 	 */
699 	host->max_speed_hz = clk_get_rate(espi->clk) / 2;
700 	host->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
701 
702 	espi->mmio = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
703 	if (IS_ERR(espi->mmio)) {
704 		error = PTR_ERR(espi->mmio);
705 		goto fail_release_host;
706 	}
707 	espi->sspdr_phys = res->start + SSPDR;
708 
709 	error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
710 				0, "ep93xx-spi", host);
711 	if (error) {
712 		dev_err(&pdev->dev, "failed to request irq\n");
713 		goto fail_release_host;
714 	}
715 
716 	if (info->use_dma && ep93xx_spi_setup_dma(espi))
717 		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
718 
719 	/* make sure that the hardware is disabled */
720 	writel(0, espi->mmio + SSPCR1);
721 
722 	error = devm_spi_register_controller(&pdev->dev, host);
723 	if (error) {
724 		dev_err(&pdev->dev, "failed to register SPI host\n");
725 		goto fail_free_dma;
726 	}
727 
728 	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
729 		 (unsigned long)res->start, irq);
730 
731 	return 0;
732 
733 fail_free_dma:
734 	ep93xx_spi_release_dma(espi);
735 fail_release_host:
736 	spi_controller_put(host);
737 
738 	return error;
739 }
740 
ep93xx_spi_remove(struct platform_device * pdev)741 static void ep93xx_spi_remove(struct platform_device *pdev)
742 {
743 	struct spi_controller *host = platform_get_drvdata(pdev);
744 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
745 
746 	ep93xx_spi_release_dma(espi);
747 }
748 
749 static struct platform_driver ep93xx_spi_driver = {
750 	.driver		= {
751 		.name	= "ep93xx-spi",
752 	},
753 	.probe		= ep93xx_spi_probe,
754 	.remove_new	= ep93xx_spi_remove,
755 };
756 module_platform_driver(ep93xx_spi_driver);
757 
758 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
759 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
760 MODULE_LICENSE("GPL");
761 MODULE_ALIAS("platform:ep93xx-spi");
762