• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 /* List of registered clks that use runtime PM */
41 static HLIST_HEAD(clk_rpm_list);
42 static DEFINE_MUTEX(clk_rpm_list_lock);
43 
44 static const struct hlist_head *all_lists[] = {
45 	&clk_root_list,
46 	&clk_orphan_list,
47 	NULL,
48 };
49 
50 /***    private data structures    ***/
51 
52 struct clk_parent_map {
53 	const struct clk_hw	*hw;
54 	struct clk_core		*core;
55 	const char		*fw_name;
56 	const char		*name;
57 	int			index;
58 };
59 
60 struct clk_core {
61 	const char		*name;
62 	const struct clk_ops	*ops;
63 	struct clk_hw		*hw;
64 	struct module		*owner;
65 	struct device		*dev;
66 	struct hlist_node	rpm_node;
67 	struct device_node	*of_node;
68 	struct clk_core		*parent;
69 	struct clk_parent_map	*parents;
70 	u8			num_parents;
71 	u8			new_parent_index;
72 	unsigned long		rate;
73 	unsigned long		req_rate;
74 	unsigned long		new_rate;
75 	struct clk_core		*new_parent;
76 	struct clk_core		*new_child;
77 	unsigned long		flags;
78 	bool			orphan;
79 	bool			rpm_enabled;
80 	bool			need_sync;
81 	bool			boot_enabled;
82 	unsigned int		enable_count;
83 	unsigned int		prepare_count;
84 	unsigned int		protect_count;
85 	unsigned long		min_rate;
86 	unsigned long		max_rate;
87 	unsigned long		accuracy;
88 	int			phase;
89 	struct clk_duty		duty;
90 	struct hlist_head	children;
91 	struct hlist_node	child_node;
92 	struct hlist_head	clks;
93 	unsigned int		notifier_count;
94 #ifdef CONFIG_DEBUG_FS
95 	struct dentry		*dentry;
96 	struct hlist_node	debug_node;
97 #endif
98 	struct kref		ref;
99 };
100 
101 #define CREATE_TRACE_POINTS
102 #include <trace/events/clk.h>
103 
104 struct clk {
105 	struct clk_core	*core;
106 	struct device *dev;
107 	const char *dev_id;
108 	const char *con_id;
109 	unsigned long min_rate;
110 	unsigned long max_rate;
111 	unsigned int exclusive_count;
112 	struct hlist_node clks_node;
113 };
114 
115 /***           runtime pm          ***/
clk_pm_runtime_get(struct clk_core * core)116 static int clk_pm_runtime_get(struct clk_core *core)
117 {
118 	if (!core->rpm_enabled)
119 		return 0;
120 
121 	return pm_runtime_resume_and_get(core->dev);
122 }
123 
clk_pm_runtime_put(struct clk_core * core)124 static void clk_pm_runtime_put(struct clk_core *core)
125 {
126 	if (!core->rpm_enabled)
127 		return;
128 
129 	pm_runtime_put_sync(core->dev);
130 }
131 
132 /**
133  * clk_pm_runtime_get_all() - Runtime "get" all clk provider devices
134  *
135  * Call clk_pm_runtime_get() on all runtime PM enabled clks in the clk tree so
136  * that disabling unused clks avoids a deadlock where a device is runtime PM
137  * resuming/suspending and the runtime PM callback is trying to grab the
138  * prepare_lock for something like clk_prepare_enable() while
139  * clk_disable_unused_subtree() holds the prepare_lock and is trying to runtime
140  * PM resume/suspend the device as well.
141  *
142  * Context: Acquires the 'clk_rpm_list_lock' and returns with the lock held on
143  * success. Otherwise the lock is released on failure.
144  *
145  * Return: 0 on success, negative errno otherwise.
146  */
clk_pm_runtime_get_all(void)147 static int clk_pm_runtime_get_all(void)
148 {
149 	int ret;
150 	struct clk_core *core, *failed;
151 
152 	/*
153 	 * Grab the list lock to prevent any new clks from being registered
154 	 * or unregistered until clk_pm_runtime_put_all().
155 	 */
156 	mutex_lock(&clk_rpm_list_lock);
157 
158 	/*
159 	 * Runtime PM "get" all the devices that are needed for the clks
160 	 * currently registered. Do this without holding the prepare_lock, to
161 	 * avoid the deadlock.
162 	 */
163 	hlist_for_each_entry(core, &clk_rpm_list, rpm_node) {
164 		ret = clk_pm_runtime_get(core);
165 		if (ret) {
166 			failed = core;
167 			pr_err("clk: Failed to runtime PM get '%s' for clk '%s'\n",
168 			       dev_name(failed->dev), failed->name);
169 			goto err;
170 		}
171 	}
172 
173 	return 0;
174 
175 err:
176 	hlist_for_each_entry(core, &clk_rpm_list, rpm_node) {
177 		if (core == failed)
178 			break;
179 
180 		clk_pm_runtime_put(core);
181 	}
182 	mutex_unlock(&clk_rpm_list_lock);
183 
184 	return ret;
185 }
186 
187 /**
188  * clk_pm_runtime_put_all() - Runtime "put" all clk provider devices
189  *
190  * Put the runtime PM references taken in clk_pm_runtime_get_all() and release
191  * the 'clk_rpm_list_lock'.
192  */
clk_pm_runtime_put_all(void)193 static void clk_pm_runtime_put_all(void)
194 {
195 	struct clk_core *core;
196 
197 	hlist_for_each_entry(core, &clk_rpm_list, rpm_node)
198 		clk_pm_runtime_put(core);
199 	mutex_unlock(&clk_rpm_list_lock);
200 }
201 
clk_pm_runtime_init(struct clk_core * core)202 static void clk_pm_runtime_init(struct clk_core *core)
203 {
204 	struct device *dev = core->dev;
205 
206 	if (dev && pm_runtime_enabled(dev)) {
207 		core->rpm_enabled = true;
208 
209 		mutex_lock(&clk_rpm_list_lock);
210 		hlist_add_head(&core->rpm_node, &clk_rpm_list);
211 		mutex_unlock(&clk_rpm_list_lock);
212 	}
213 }
214 
215 /***           locking             ***/
clk_prepare_lock(void)216 static void clk_prepare_lock(void)
217 {
218 	if (!mutex_trylock(&prepare_lock)) {
219 		if (prepare_owner == current) {
220 			prepare_refcnt++;
221 			return;
222 		}
223 		mutex_lock(&prepare_lock);
224 	}
225 	WARN_ON_ONCE(prepare_owner != NULL);
226 	WARN_ON_ONCE(prepare_refcnt != 0);
227 	prepare_owner = current;
228 	prepare_refcnt = 1;
229 }
230 
clk_prepare_unlock(void)231 static void clk_prepare_unlock(void)
232 {
233 	WARN_ON_ONCE(prepare_owner != current);
234 	WARN_ON_ONCE(prepare_refcnt == 0);
235 
236 	if (--prepare_refcnt)
237 		return;
238 	prepare_owner = NULL;
239 	mutex_unlock(&prepare_lock);
240 }
241 
clk_enable_lock(void)242 static unsigned long clk_enable_lock(void)
243 	__acquires(enable_lock)
244 {
245 	unsigned long flags;
246 
247 	/*
248 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
249 	 * we already hold the lock. So, in that case, we rely only on
250 	 * reference counting.
251 	 */
252 	if (!IS_ENABLED(CONFIG_SMP) ||
253 	    !spin_trylock_irqsave(&enable_lock, flags)) {
254 		if (enable_owner == current) {
255 			enable_refcnt++;
256 			__acquire(enable_lock);
257 			if (!IS_ENABLED(CONFIG_SMP))
258 				local_save_flags(flags);
259 			return flags;
260 		}
261 		spin_lock_irqsave(&enable_lock, flags);
262 	}
263 	WARN_ON_ONCE(enable_owner != NULL);
264 	WARN_ON_ONCE(enable_refcnt != 0);
265 	enable_owner = current;
266 	enable_refcnt = 1;
267 	return flags;
268 }
269 
clk_enable_unlock(unsigned long flags)270 static void clk_enable_unlock(unsigned long flags)
271 	__releases(enable_lock)
272 {
273 	WARN_ON_ONCE(enable_owner != current);
274 	WARN_ON_ONCE(enable_refcnt == 0);
275 
276 	if (--enable_refcnt) {
277 		__release(enable_lock);
278 		return;
279 	}
280 	enable_owner = NULL;
281 	spin_unlock_irqrestore(&enable_lock, flags);
282 }
283 
clk_core_rate_is_protected(struct clk_core * core)284 static bool clk_core_rate_is_protected(struct clk_core *core)
285 {
286 	return core->protect_count;
287 }
288 
clk_core_is_prepared(struct clk_core * core)289 static bool clk_core_is_prepared(struct clk_core *core)
290 {
291 	bool ret = false;
292 
293 	/*
294 	 * .is_prepared is optional for clocks that can prepare
295 	 * fall back to software usage counter if it is missing
296 	 */
297 	if (!core->ops->is_prepared)
298 		return core->prepare_count;
299 
300 	if (!clk_pm_runtime_get(core)) {
301 		ret = core->ops->is_prepared(core->hw);
302 		clk_pm_runtime_put(core);
303 	}
304 
305 	return ret;
306 }
307 
clk_core_is_enabled(struct clk_core * core)308 static bool clk_core_is_enabled(struct clk_core *core)
309 {
310 	bool ret = false;
311 
312 	/*
313 	 * .is_enabled is only mandatory for clocks that gate
314 	 * fall back to software usage counter if .is_enabled is missing
315 	 */
316 	if (!core->ops->is_enabled)
317 		return core->enable_count;
318 
319 	/*
320 	 * Check if clock controller's device is runtime active before
321 	 * calling .is_enabled callback. If not, assume that clock is
322 	 * disabled, because we might be called from atomic context, from
323 	 * which pm_runtime_get() is not allowed.
324 	 * This function is called mainly from clk_disable_unused_subtree,
325 	 * which ensures proper runtime pm activation of controller before
326 	 * taking enable spinlock, but the below check is needed if one tries
327 	 * to call it from other places.
328 	 */
329 	if (core->rpm_enabled) {
330 		pm_runtime_get_noresume(core->dev);
331 		if (!pm_runtime_active(core->dev)) {
332 			ret = false;
333 			goto done;
334 		}
335 	}
336 
337 	/*
338 	 * This could be called with the enable lock held, or from atomic
339 	 * context. If the parent isn't enabled already, we can't do
340 	 * anything here. We can also assume this clock isn't enabled.
341 	 */
342 	if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent)
343 		if (!clk_core_is_enabled(core->parent)) {
344 			ret = false;
345 			goto done;
346 		}
347 
348 	ret = core->ops->is_enabled(core->hw);
349 done:
350 	if (core->rpm_enabled)
351 		pm_runtime_put(core->dev);
352 
353 	return ret;
354 }
355 
356 /***    helper functions   ***/
357 
__clk_get_name(const struct clk * clk)358 const char *__clk_get_name(const struct clk *clk)
359 {
360 	return !clk ? NULL : clk->core->name;
361 }
362 EXPORT_SYMBOL_GPL(__clk_get_name);
363 
clk_hw_get_name(const struct clk_hw * hw)364 const char *clk_hw_get_name(const struct clk_hw *hw)
365 {
366 	return hw->core->name;
367 }
368 EXPORT_SYMBOL_GPL(clk_hw_get_name);
369 
__clk_get_hw(struct clk * clk)370 struct clk_hw *__clk_get_hw(struct clk *clk)
371 {
372 	return !clk ? NULL : clk->core->hw;
373 }
374 EXPORT_SYMBOL_GPL(__clk_get_hw);
375 
clk_hw_get_num_parents(const struct clk_hw * hw)376 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
377 {
378 	return hw->core->num_parents;
379 }
380 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
381 
clk_hw_get_parent(const struct clk_hw * hw)382 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
383 {
384 	return hw->core->parent ? hw->core->parent->hw : NULL;
385 }
386 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
387 
__clk_lookup_subtree(const char * name,struct clk_core * core)388 static struct clk_core *__clk_lookup_subtree(const char *name,
389 					     struct clk_core *core)
390 {
391 	struct clk_core *child;
392 	struct clk_core *ret;
393 
394 	if (!strcmp(core->name, name))
395 		return core;
396 
397 	hlist_for_each_entry(child, &core->children, child_node) {
398 		ret = __clk_lookup_subtree(name, child);
399 		if (ret)
400 			return ret;
401 	}
402 
403 	return NULL;
404 }
405 
clk_core_lookup(const char * name)406 static struct clk_core *clk_core_lookup(const char *name)
407 {
408 	struct clk_core *root_clk;
409 	struct clk_core *ret;
410 
411 	if (!name)
412 		return NULL;
413 
414 	/* search the 'proper' clk tree first */
415 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
416 		ret = __clk_lookup_subtree(name, root_clk);
417 		if (ret)
418 			return ret;
419 	}
420 
421 	/* if not found, then search the orphan tree */
422 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
423 		ret = __clk_lookup_subtree(name, root_clk);
424 		if (ret)
425 			return ret;
426 	}
427 
428 	return NULL;
429 }
430 
431 #ifdef CONFIG_OF
432 static int of_parse_clkspec(const struct device_node *np, int index,
433 			    const char *name, struct of_phandle_args *out_args);
434 static struct clk_hw *
435 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
436 #else
of_parse_clkspec(const struct device_node * np,int index,const char * name,struct of_phandle_args * out_args)437 static inline int of_parse_clkspec(const struct device_node *np, int index,
438 				   const char *name,
439 				   struct of_phandle_args *out_args)
440 {
441 	return -ENOENT;
442 }
443 static inline struct clk_hw *
of_clk_get_hw_from_clkspec(struct of_phandle_args * clkspec)444 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
445 {
446 	return ERR_PTR(-ENOENT);
447 }
448 #endif
449 
450 /**
451  * clk_core_get - Find the clk_core parent of a clk
452  * @core: clk to find parent of
453  * @p_index: parent index to search for
454  *
455  * This is the preferred method for clk providers to find the parent of a
456  * clk when that parent is external to the clk controller. The parent_names
457  * array is indexed and treated as a local name matching a string in the device
458  * node's 'clock-names' property or as the 'con_id' matching the device's
459  * dev_name() in a clk_lookup. This allows clk providers to use their own
460  * namespace instead of looking for a globally unique parent string.
461  *
462  * For example the following DT snippet would allow a clock registered by the
463  * clock-controller@c001 that has a clk_init_data::parent_data array
464  * with 'xtal' in the 'name' member to find the clock provided by the
465  * clock-controller@f00abcd without needing to get the globally unique name of
466  * the xtal clk.
467  *
468  *      parent: clock-controller@f00abcd {
469  *              reg = <0xf00abcd 0xabcd>;
470  *              #clock-cells = <0>;
471  *      };
472  *
473  *      clock-controller@c001 {
474  *              reg = <0xc001 0xf00d>;
475  *              clocks = <&parent>;
476  *              clock-names = "xtal";
477  *              #clock-cells = <1>;
478  *      };
479  *
480  * Returns: -ENOENT when the provider can't be found or the clk doesn't
481  * exist in the provider or the name can't be found in the DT node or
482  * in a clkdev lookup. NULL when the provider knows about the clk but it
483  * isn't provided on this system.
484  * A valid clk_core pointer when the clk can be found in the provider.
485  */
clk_core_get(struct clk_core * core,u8 p_index)486 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
487 {
488 	const char *name = core->parents[p_index].fw_name;
489 	int index = core->parents[p_index].index;
490 	struct clk_hw *hw = ERR_PTR(-ENOENT);
491 	struct device *dev = core->dev;
492 	const char *dev_id = dev ? dev_name(dev) : NULL;
493 	struct device_node *np = core->of_node;
494 	struct of_phandle_args clkspec;
495 
496 	if (np && (name || index >= 0) &&
497 	    !of_parse_clkspec(np, index, name, &clkspec)) {
498 		hw = of_clk_get_hw_from_clkspec(&clkspec);
499 		of_node_put(clkspec.np);
500 	} else if (name) {
501 		/*
502 		 * If the DT search above couldn't find the provider fallback to
503 		 * looking up via clkdev based clk_lookups.
504 		 */
505 		hw = clk_find_hw(dev_id, name);
506 	}
507 
508 	if (IS_ERR(hw))
509 		return ERR_CAST(hw);
510 
511 	if (!hw)
512 		return NULL;
513 
514 	return hw->core;
515 }
516 
clk_core_fill_parent_index(struct clk_core * core,u8 index)517 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
518 {
519 	struct clk_parent_map *entry = &core->parents[index];
520 	struct clk_core *parent;
521 
522 	if (entry->hw) {
523 		parent = entry->hw->core;
524 	} else {
525 		parent = clk_core_get(core, index);
526 		if (PTR_ERR(parent) == -ENOENT && entry->name)
527 			parent = clk_core_lookup(entry->name);
528 	}
529 
530 	/*
531 	 * We have a direct reference but it isn't registered yet?
532 	 * Orphan it and let clk_reparent() update the orphan status
533 	 * when the parent is registered.
534 	 */
535 	if (!parent)
536 		parent = ERR_PTR(-EPROBE_DEFER);
537 
538 	/* Only cache it if it's not an error */
539 	if (!IS_ERR(parent))
540 		entry->core = parent;
541 }
542 
clk_core_get_parent_by_index(struct clk_core * core,u8 index)543 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
544 							 u8 index)
545 {
546 	if (!core || index >= core->num_parents || !core->parents)
547 		return NULL;
548 
549 	if (!core->parents[index].core)
550 		clk_core_fill_parent_index(core, index);
551 
552 	return core->parents[index].core;
553 }
554 
555 struct clk_hw *
clk_hw_get_parent_by_index(const struct clk_hw * hw,unsigned int index)556 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
557 {
558 	struct clk_core *parent;
559 
560 	parent = clk_core_get_parent_by_index(hw->core, index);
561 
562 	return !parent ? NULL : parent->hw;
563 }
564 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
565 
__clk_get_enable_count(struct clk * clk)566 unsigned int __clk_get_enable_count(struct clk *clk)
567 {
568 	return !clk ? 0 : clk->core->enable_count;
569 }
570 
clk_core_get_rate_nolock(struct clk_core * core)571 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
572 {
573 	if (!core)
574 		return 0;
575 
576 	if (!core->num_parents || core->parent)
577 		return core->rate;
578 
579 	/*
580 	 * Clk must have a parent because num_parents > 0 but the parent isn't
581 	 * known yet. Best to return 0 as the rate of this clk until we can
582 	 * properly recalc the rate based on the parent's rate.
583 	 */
584 	return 0;
585 }
586 
clk_hw_get_rate(const struct clk_hw * hw)587 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
588 {
589 	return clk_core_get_rate_nolock(hw->core);
590 }
591 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
592 
clk_core_get_accuracy_no_lock(struct clk_core * core)593 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
594 {
595 	if (!core)
596 		return 0;
597 
598 	return core->accuracy;
599 }
600 
clk_hw_get_flags(const struct clk_hw * hw)601 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
602 {
603 	return hw->core->flags;
604 }
605 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
606 
clk_hw_is_prepared(const struct clk_hw * hw)607 bool clk_hw_is_prepared(const struct clk_hw *hw)
608 {
609 	return clk_core_is_prepared(hw->core);
610 }
611 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
612 
clk_hw_rate_is_protected(const struct clk_hw * hw)613 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
614 {
615 	return clk_core_rate_is_protected(hw->core);
616 }
617 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
618 
clk_hw_is_enabled(const struct clk_hw * hw)619 bool clk_hw_is_enabled(const struct clk_hw *hw)
620 {
621 	return clk_core_is_enabled(hw->core);
622 }
623 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
624 
__clk_is_enabled(struct clk * clk)625 bool __clk_is_enabled(struct clk *clk)
626 {
627 	if (!clk)
628 		return false;
629 
630 	return clk_core_is_enabled(clk->core);
631 }
632 EXPORT_SYMBOL_GPL(__clk_is_enabled);
633 
mux_is_better_rate(unsigned long rate,unsigned long now,unsigned long best,unsigned long flags)634 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
635 			   unsigned long best, unsigned long flags)
636 {
637 	if (flags & CLK_MUX_ROUND_CLOSEST)
638 		return abs(now - rate) < abs(best - rate);
639 
640 	return now <= rate && now > best;
641 }
642 
643 static void clk_core_init_rate_req(struct clk_core * const core,
644 				   struct clk_rate_request *req,
645 				   unsigned long rate);
646 
647 static int clk_core_round_rate_nolock(struct clk_core *core,
648 				      struct clk_rate_request *req);
649 
clk_core_has_parent(struct clk_core * core,const struct clk_core * parent)650 static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent)
651 {
652 	struct clk_core *tmp;
653 	unsigned int i;
654 
655 	/* Optimize for the case where the parent is already the parent. */
656 	if (core->parent == parent)
657 		return true;
658 
659 	for (i = 0; i < core->num_parents; i++) {
660 		tmp = clk_core_get_parent_by_index(core, i);
661 		if (!tmp)
662 			continue;
663 
664 		if (tmp == parent)
665 			return true;
666 	}
667 
668 	return false;
669 }
670 
671 static void
clk_core_forward_rate_req(struct clk_core * core,const struct clk_rate_request * old_req,struct clk_core * parent,struct clk_rate_request * req,unsigned long parent_rate)672 clk_core_forward_rate_req(struct clk_core *core,
673 			  const struct clk_rate_request *old_req,
674 			  struct clk_core *parent,
675 			  struct clk_rate_request *req,
676 			  unsigned long parent_rate)
677 {
678 	if (WARN_ON(!clk_core_has_parent(core, parent)))
679 		return;
680 
681 	clk_core_init_rate_req(parent, req, parent_rate);
682 
683 	if (req->min_rate < old_req->min_rate)
684 		req->min_rate = old_req->min_rate;
685 
686 	if (req->max_rate > old_req->max_rate)
687 		req->max_rate = old_req->max_rate;
688 }
689 
690 static int
clk_core_determine_rate_no_reparent(struct clk_hw * hw,struct clk_rate_request * req)691 clk_core_determine_rate_no_reparent(struct clk_hw *hw,
692 				    struct clk_rate_request *req)
693 {
694 	struct clk_core *core = hw->core;
695 	struct clk_core *parent = core->parent;
696 	unsigned long best;
697 	int ret;
698 
699 	if (core->flags & CLK_SET_RATE_PARENT) {
700 		struct clk_rate_request parent_req;
701 
702 		if (!parent) {
703 			req->rate = 0;
704 			return 0;
705 		}
706 
707 		clk_core_forward_rate_req(core, req, parent, &parent_req,
708 					  req->rate);
709 
710 		trace_clk_rate_request_start(&parent_req);
711 
712 		ret = clk_core_round_rate_nolock(parent, &parent_req);
713 		if (ret)
714 			return ret;
715 
716 		trace_clk_rate_request_done(&parent_req);
717 
718 		best = parent_req.rate;
719 	} else if (parent) {
720 		best = clk_core_get_rate_nolock(parent);
721 	} else {
722 		best = clk_core_get_rate_nolock(core);
723 	}
724 
725 	req->best_parent_rate = best;
726 	req->rate = best;
727 
728 	return 0;
729 }
730 
clk_mux_determine_rate_flags(struct clk_hw * hw,struct clk_rate_request * req,unsigned long flags)731 int clk_mux_determine_rate_flags(struct clk_hw *hw,
732 				 struct clk_rate_request *req,
733 				 unsigned long flags)
734 {
735 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
736 	int i, num_parents, ret;
737 	unsigned long best = 0;
738 
739 	/* if NO_REPARENT flag set, pass through to current parent */
740 	if (core->flags & CLK_SET_RATE_NO_REPARENT)
741 		return clk_core_determine_rate_no_reparent(hw, req);
742 
743 	/* find the parent that can provide the fastest rate <= rate */
744 	num_parents = core->num_parents;
745 	for (i = 0; i < num_parents; i++) {
746 		unsigned long parent_rate;
747 
748 		parent = clk_core_get_parent_by_index(core, i);
749 		if (!parent)
750 			continue;
751 
752 		if (core->flags & CLK_SET_RATE_PARENT) {
753 			struct clk_rate_request parent_req;
754 
755 			clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
756 
757 			trace_clk_rate_request_start(&parent_req);
758 
759 			ret = clk_core_round_rate_nolock(parent, &parent_req);
760 			if (ret)
761 				continue;
762 
763 			trace_clk_rate_request_done(&parent_req);
764 
765 			parent_rate = parent_req.rate;
766 		} else {
767 			parent_rate = clk_core_get_rate_nolock(parent);
768 		}
769 
770 		if (mux_is_better_rate(req->rate, parent_rate,
771 				       best, flags)) {
772 			best_parent = parent;
773 			best = parent_rate;
774 		}
775 	}
776 
777 	if (!best_parent)
778 		return -EINVAL;
779 
780 	req->best_parent_hw = best_parent->hw;
781 	req->best_parent_rate = best;
782 	req->rate = best;
783 
784 	return 0;
785 }
786 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
787 
__clk_lookup(const char * name)788 struct clk *__clk_lookup(const char *name)
789 {
790 	struct clk_core *core = clk_core_lookup(name);
791 
792 	return !core ? NULL : core->hw->clk;
793 }
794 
clk_core_get_boundaries(struct clk_core * core,unsigned long * min_rate,unsigned long * max_rate)795 static void clk_core_get_boundaries(struct clk_core *core,
796 				    unsigned long *min_rate,
797 				    unsigned long *max_rate)
798 {
799 	struct clk *clk_user;
800 
801 	lockdep_assert_held(&prepare_lock);
802 
803 	*min_rate = core->min_rate;
804 	*max_rate = core->max_rate;
805 
806 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
807 		*min_rate = max(*min_rate, clk_user->min_rate);
808 
809 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
810 		*max_rate = min(*max_rate, clk_user->max_rate);
811 }
812 
813 /*
814  * clk_hw_get_rate_range() - returns the clock rate range for a hw clk
815  * @hw: the hw clk we want to get the range from
816  * @min_rate: pointer to the variable that will hold the minimum
817  * @max_rate: pointer to the variable that will hold the maximum
818  *
819  * Fills the @min_rate and @max_rate variables with the minimum and
820  * maximum that clock can reach.
821  */
clk_hw_get_rate_range(struct clk_hw * hw,unsigned long * min_rate,unsigned long * max_rate)822 void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate,
823 			   unsigned long *max_rate)
824 {
825 	clk_core_get_boundaries(hw->core, min_rate, max_rate);
826 }
827 EXPORT_SYMBOL_GPL(clk_hw_get_rate_range);
828 
clk_core_check_boundaries(struct clk_core * core,unsigned long min_rate,unsigned long max_rate)829 static bool clk_core_check_boundaries(struct clk_core *core,
830 				      unsigned long min_rate,
831 				      unsigned long max_rate)
832 {
833 	struct clk *user;
834 
835 	lockdep_assert_held(&prepare_lock);
836 
837 	if (min_rate > core->max_rate || max_rate < core->min_rate)
838 		return false;
839 
840 	hlist_for_each_entry(user, &core->clks, clks_node)
841 		if (min_rate > user->max_rate || max_rate < user->min_rate)
842 			return false;
843 
844 	return true;
845 }
846 
clk_hw_set_rate_range(struct clk_hw * hw,unsigned long min_rate,unsigned long max_rate)847 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
848 			   unsigned long max_rate)
849 {
850 	hw->core->min_rate = min_rate;
851 	hw->core->max_rate = max_rate;
852 }
853 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
854 
855 /*
856  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
857  * @hw: mux type clk to determine rate on
858  * @req: rate request, also used to return preferred parent and frequencies
859  *
860  * Helper for finding best parent to provide a given frequency. This can be used
861  * directly as a determine_rate callback (e.g. for a mux), or from a more
862  * complex clock that may combine a mux with other operations.
863  *
864  * Returns: 0 on success, -EERROR value on error
865  */
__clk_mux_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)866 int __clk_mux_determine_rate(struct clk_hw *hw,
867 			     struct clk_rate_request *req)
868 {
869 	return clk_mux_determine_rate_flags(hw, req, 0);
870 }
871 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
872 
__clk_mux_determine_rate_closest(struct clk_hw * hw,struct clk_rate_request * req)873 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
874 				     struct clk_rate_request *req)
875 {
876 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
877 }
878 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
879 
880 /*
881  * clk_hw_determine_rate_no_reparent - clk_ops::determine_rate implementation for a clk that doesn't reparent
882  * @hw: mux type clk to determine rate on
883  * @req: rate request, also used to return preferred frequency
884  *
885  * Helper for finding best parent rate to provide a given frequency.
886  * This can be used directly as a determine_rate callback (e.g. for a
887  * mux), or from a more complex clock that may combine a mux with other
888  * operations.
889  *
890  * Returns: 0 on success, -EERROR value on error
891  */
clk_hw_determine_rate_no_reparent(struct clk_hw * hw,struct clk_rate_request * req)892 int clk_hw_determine_rate_no_reparent(struct clk_hw *hw,
893 				      struct clk_rate_request *req)
894 {
895 	return clk_core_determine_rate_no_reparent(hw, req);
896 }
897 EXPORT_SYMBOL_GPL(clk_hw_determine_rate_no_reparent);
898 
899 /***        clk api        ***/
900 
clk_core_rate_unprotect(struct clk_core * core)901 static void clk_core_rate_unprotect(struct clk_core *core)
902 {
903 	lockdep_assert_held(&prepare_lock);
904 
905 	if (!core)
906 		return;
907 
908 	if (WARN(core->protect_count == 0,
909 	    "%s already unprotected\n", core->name))
910 		return;
911 
912 	if (--core->protect_count > 0)
913 		return;
914 
915 	clk_core_rate_unprotect(core->parent);
916 }
917 
clk_core_rate_nuke_protect(struct clk_core * core)918 static int clk_core_rate_nuke_protect(struct clk_core *core)
919 {
920 	int ret;
921 
922 	lockdep_assert_held(&prepare_lock);
923 
924 	if (!core)
925 		return -EINVAL;
926 
927 	if (core->protect_count == 0)
928 		return 0;
929 
930 	ret = core->protect_count;
931 	core->protect_count = 1;
932 	clk_core_rate_unprotect(core);
933 
934 	return ret;
935 }
936 
937 /**
938  * clk_rate_exclusive_put - release exclusivity over clock rate control
939  * @clk: the clk over which the exclusivity is released
940  *
941  * clk_rate_exclusive_put() completes a critical section during which a clock
942  * consumer cannot tolerate any other consumer making any operation on the
943  * clock which could result in a rate change or rate glitch. Exclusive clocks
944  * cannot have their rate changed, either directly or indirectly due to changes
945  * further up the parent chain of clocks. As a result, clocks up parent chain
946  * also get under exclusive control of the calling consumer.
947  *
948  * If exlusivity is claimed more than once on clock, even by the same consumer,
949  * the rate effectively gets locked as exclusivity can't be preempted.
950  *
951  * Calls to clk_rate_exclusive_put() must be balanced with calls to
952  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
953  * error status.
954  */
clk_rate_exclusive_put(struct clk * clk)955 void clk_rate_exclusive_put(struct clk *clk)
956 {
957 	if (!clk)
958 		return;
959 
960 	clk_prepare_lock();
961 
962 	/*
963 	 * if there is something wrong with this consumer protect count, stop
964 	 * here before messing with the provider
965 	 */
966 	if (WARN_ON(clk->exclusive_count <= 0))
967 		goto out;
968 
969 	clk_core_rate_unprotect(clk->core);
970 	clk->exclusive_count--;
971 out:
972 	clk_prepare_unlock();
973 }
974 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
975 
clk_core_rate_protect(struct clk_core * core)976 static void clk_core_rate_protect(struct clk_core *core)
977 {
978 	lockdep_assert_held(&prepare_lock);
979 
980 	if (!core)
981 		return;
982 
983 	if (core->protect_count == 0)
984 		clk_core_rate_protect(core->parent);
985 
986 	core->protect_count++;
987 }
988 
clk_core_rate_restore_protect(struct clk_core * core,int count)989 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
990 {
991 	lockdep_assert_held(&prepare_lock);
992 
993 	if (!core)
994 		return;
995 
996 	if (count == 0)
997 		return;
998 
999 	clk_core_rate_protect(core);
1000 	core->protect_count = count;
1001 }
1002 
1003 /**
1004  * clk_rate_exclusive_get - get exclusivity over the clk rate control
1005  * @clk: the clk over which the exclusity of rate control is requested
1006  *
1007  * clk_rate_exclusive_get() begins a critical section during which a clock
1008  * consumer cannot tolerate any other consumer making any operation on the
1009  * clock which could result in a rate change or rate glitch. Exclusive clocks
1010  * cannot have their rate changed, either directly or indirectly due to changes
1011  * further up the parent chain of clocks. As a result, clocks up parent chain
1012  * also get under exclusive control of the calling consumer.
1013  *
1014  * If exlusivity is claimed more than once on clock, even by the same consumer,
1015  * the rate effectively gets locked as exclusivity can't be preempted.
1016  *
1017  * Calls to clk_rate_exclusive_get() should be balanced with calls to
1018  * clk_rate_exclusive_put(). Calls to this function may sleep.
1019  * Returns 0 on success, -EERROR otherwise
1020  */
clk_rate_exclusive_get(struct clk * clk)1021 int clk_rate_exclusive_get(struct clk *clk)
1022 {
1023 	if (!clk)
1024 		return 0;
1025 
1026 	clk_prepare_lock();
1027 	clk_core_rate_protect(clk->core);
1028 	clk->exclusive_count++;
1029 	clk_prepare_unlock();
1030 
1031 	return 0;
1032 }
1033 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
1034 
clk_core_unprepare(struct clk_core * core)1035 static void clk_core_unprepare(struct clk_core *core)
1036 {
1037 	lockdep_assert_held(&prepare_lock);
1038 
1039 	if (!core)
1040 		return;
1041 
1042 	if (WARN(core->prepare_count == 0,
1043 	    "%s already unprepared\n", core->name))
1044 		return;
1045 
1046 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
1047 	    "Unpreparing critical %s\n", core->name))
1048 		return;
1049 
1050 	if (core->flags & CLK_SET_RATE_GATE)
1051 		clk_core_rate_unprotect(core);
1052 
1053 	if (--core->prepare_count > 0)
1054 		return;
1055 
1056 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
1057 
1058 	trace_clk_unprepare(core);
1059 
1060 	if (core->ops->unprepare)
1061 		core->ops->unprepare(core->hw);
1062 
1063 	trace_clk_unprepare_complete(core);
1064 	clk_core_unprepare(core->parent);
1065 	clk_pm_runtime_put(core);
1066 }
1067 
clk_core_unprepare_lock(struct clk_core * core)1068 static void clk_core_unprepare_lock(struct clk_core *core)
1069 {
1070 	clk_prepare_lock();
1071 	clk_core_unprepare(core);
1072 	clk_prepare_unlock();
1073 }
1074 
1075 /**
1076  * clk_unprepare - undo preparation of a clock source
1077  * @clk: the clk being unprepared
1078  *
1079  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
1080  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
1081  * if the operation may sleep.  One example is a clk which is accessed over
1082  * I2c.  In the complex case a clk gate operation may require a fast and a slow
1083  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
1084  * exclusive.  In fact clk_disable must be called before clk_unprepare.
1085  */
clk_unprepare(struct clk * clk)1086 void clk_unprepare(struct clk *clk)
1087 {
1088 	if (IS_ERR_OR_NULL(clk))
1089 		return;
1090 
1091 	clk_core_unprepare_lock(clk->core);
1092 }
1093 EXPORT_SYMBOL_GPL(clk_unprepare);
1094 
clk_core_prepare(struct clk_core * core)1095 static int clk_core_prepare(struct clk_core *core)
1096 {
1097 	int ret = 0;
1098 
1099 	lockdep_assert_held(&prepare_lock);
1100 
1101 	if (!core)
1102 		return 0;
1103 
1104 	if (core->prepare_count == 0) {
1105 		ret = clk_pm_runtime_get(core);
1106 		if (ret)
1107 			return ret;
1108 
1109 		ret = clk_core_prepare(core->parent);
1110 		if (ret)
1111 			goto runtime_put;
1112 
1113 		trace_clk_prepare(core);
1114 
1115 		if (core->ops->prepare)
1116 			ret = core->ops->prepare(core->hw);
1117 
1118 		trace_clk_prepare_complete(core);
1119 
1120 		if (ret)
1121 			goto unprepare;
1122 	}
1123 
1124 	core->prepare_count++;
1125 
1126 	/*
1127 	 * CLK_SET_RATE_GATE is a special case of clock protection
1128 	 * Instead of a consumer claiming exclusive rate control, it is
1129 	 * actually the provider which prevents any consumer from making any
1130 	 * operation which could result in a rate change or rate glitch while
1131 	 * the clock is prepared.
1132 	 */
1133 	if (core->flags & CLK_SET_RATE_GATE)
1134 		clk_core_rate_protect(core);
1135 
1136 	return 0;
1137 unprepare:
1138 	clk_core_unprepare(core->parent);
1139 runtime_put:
1140 	clk_pm_runtime_put(core);
1141 	return ret;
1142 }
1143 
clk_core_prepare_lock(struct clk_core * core)1144 static int clk_core_prepare_lock(struct clk_core *core)
1145 {
1146 	int ret;
1147 
1148 	clk_prepare_lock();
1149 	ret = clk_core_prepare(core);
1150 	clk_prepare_unlock();
1151 
1152 	return ret;
1153 }
1154 
1155 /**
1156  * clk_prepare - prepare a clock source
1157  * @clk: the clk being prepared
1158  *
1159  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
1160  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
1161  * operation may sleep.  One example is a clk which is accessed over I2c.  In
1162  * the complex case a clk ungate operation may require a fast and a slow part.
1163  * It is this reason that clk_prepare and clk_enable are not mutually
1164  * exclusive.  In fact clk_prepare must be called before clk_enable.
1165  * Returns 0 on success, -EERROR otherwise.
1166  */
clk_prepare(struct clk * clk)1167 int clk_prepare(struct clk *clk)
1168 {
1169 	if (!clk)
1170 		return 0;
1171 
1172 	return clk_core_prepare_lock(clk->core);
1173 }
1174 EXPORT_SYMBOL_GPL(clk_prepare);
1175 
clk_core_disable(struct clk_core * core)1176 static void clk_core_disable(struct clk_core *core)
1177 {
1178 	lockdep_assert_held(&enable_lock);
1179 
1180 	if (!core)
1181 		return;
1182 
1183 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
1184 		return;
1185 
1186 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
1187 	    "Disabling critical %s\n", core->name))
1188 		return;
1189 
1190 	if (--core->enable_count > 0)
1191 		return;
1192 
1193 	trace_clk_disable(core);
1194 
1195 	if (core->ops->disable)
1196 		core->ops->disable(core->hw);
1197 
1198 	trace_clk_disable_complete(core);
1199 
1200 	clk_core_disable(core->parent);
1201 }
1202 
clk_core_disable_lock(struct clk_core * core)1203 static void clk_core_disable_lock(struct clk_core *core)
1204 {
1205 	unsigned long flags;
1206 
1207 	flags = clk_enable_lock();
1208 	clk_core_disable(core);
1209 	clk_enable_unlock(flags);
1210 }
1211 
1212 /**
1213  * clk_disable - gate a clock
1214  * @clk: the clk being gated
1215  *
1216  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1217  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1218  * clk if the operation is fast and will never sleep.  One example is a
1219  * SoC-internal clk which is controlled via simple register writes.  In the
1220  * complex case a clk gate operation may require a fast and a slow part.  It is
1221  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1222  * In fact clk_disable must be called before clk_unprepare.
1223  */
clk_disable(struct clk * clk)1224 void clk_disable(struct clk *clk)
1225 {
1226 	if (IS_ERR_OR_NULL(clk))
1227 		return;
1228 
1229 	clk_core_disable_lock(clk->core);
1230 }
1231 EXPORT_SYMBOL_GPL(clk_disable);
1232 
clk_core_enable(struct clk_core * core)1233 static int clk_core_enable(struct clk_core *core)
1234 {
1235 	int ret = 0;
1236 
1237 	lockdep_assert_held(&enable_lock);
1238 
1239 	if (!core)
1240 		return 0;
1241 
1242 	if (WARN(core->prepare_count == 0,
1243 	    "Enabling unprepared %s\n", core->name))
1244 		return -ESHUTDOWN;
1245 
1246 	if (core->enable_count == 0) {
1247 		ret = clk_core_enable(core->parent);
1248 
1249 		if (ret)
1250 			return ret;
1251 
1252 		trace_clk_enable(core);
1253 
1254 		if (core->ops->enable)
1255 			ret = core->ops->enable(core->hw);
1256 
1257 		trace_clk_enable_complete(core);
1258 
1259 		if (ret) {
1260 			clk_core_disable(core->parent);
1261 			return ret;
1262 		}
1263 	}
1264 
1265 	core->enable_count++;
1266 	return 0;
1267 }
1268 
clk_core_enable_lock(struct clk_core * core)1269 static int clk_core_enable_lock(struct clk_core *core)
1270 {
1271 	unsigned long flags;
1272 	int ret;
1273 
1274 	flags = clk_enable_lock();
1275 	ret = clk_core_enable(core);
1276 	clk_enable_unlock(flags);
1277 
1278 	return ret;
1279 }
1280 
1281 /**
1282  * clk_gate_restore_context - restore context for poweroff
1283  * @hw: the clk_hw pointer of clock whose state is to be restored
1284  *
1285  * The clock gate restore context function enables or disables
1286  * the gate clocks based on the enable_count. This is done in cases
1287  * where the clock context is lost and based on the enable_count
1288  * the clock either needs to be enabled/disabled. This
1289  * helps restore the state of gate clocks.
1290  */
clk_gate_restore_context(struct clk_hw * hw)1291 void clk_gate_restore_context(struct clk_hw *hw)
1292 {
1293 	struct clk_core *core = hw->core;
1294 
1295 	if (core->enable_count)
1296 		core->ops->enable(hw);
1297 	else
1298 		core->ops->disable(hw);
1299 }
1300 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1301 
clk_core_save_context(struct clk_core * core)1302 static int clk_core_save_context(struct clk_core *core)
1303 {
1304 	struct clk_core *child;
1305 	int ret = 0;
1306 
1307 	hlist_for_each_entry(child, &core->children, child_node) {
1308 		ret = clk_core_save_context(child);
1309 		if (ret < 0)
1310 			return ret;
1311 	}
1312 
1313 	if (core->ops && core->ops->save_context)
1314 		ret = core->ops->save_context(core->hw);
1315 
1316 	return ret;
1317 }
1318 
clk_core_restore_context(struct clk_core * core)1319 static void clk_core_restore_context(struct clk_core *core)
1320 {
1321 	struct clk_core *child;
1322 
1323 	if (core->ops && core->ops->restore_context)
1324 		core->ops->restore_context(core->hw);
1325 
1326 	hlist_for_each_entry(child, &core->children, child_node)
1327 		clk_core_restore_context(child);
1328 }
1329 
1330 /**
1331  * clk_save_context - save clock context for poweroff
1332  *
1333  * Saves the context of the clock register for powerstates in which the
1334  * contents of the registers will be lost. Occurs deep within the suspend
1335  * code.  Returns 0 on success.
1336  */
clk_save_context(void)1337 int clk_save_context(void)
1338 {
1339 	struct clk_core *clk;
1340 	int ret;
1341 
1342 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1343 		ret = clk_core_save_context(clk);
1344 		if (ret < 0)
1345 			return ret;
1346 	}
1347 
1348 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1349 		ret = clk_core_save_context(clk);
1350 		if (ret < 0)
1351 			return ret;
1352 	}
1353 
1354 	return 0;
1355 }
1356 EXPORT_SYMBOL_GPL(clk_save_context);
1357 
1358 /**
1359  * clk_restore_context - restore clock context after poweroff
1360  *
1361  * Restore the saved clock context upon resume.
1362  *
1363  */
clk_restore_context(void)1364 void clk_restore_context(void)
1365 {
1366 	struct clk_core *core;
1367 
1368 	hlist_for_each_entry(core, &clk_root_list, child_node)
1369 		clk_core_restore_context(core);
1370 
1371 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1372 		clk_core_restore_context(core);
1373 }
1374 EXPORT_SYMBOL_GPL(clk_restore_context);
1375 
1376 /**
1377  * clk_enable - ungate a clock
1378  * @clk: the clk being ungated
1379  *
1380  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1381  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1382  * if the operation will never sleep.  One example is a SoC-internal clk which
1383  * is controlled via simple register writes.  In the complex case a clk ungate
1384  * operation may require a fast and a slow part.  It is this reason that
1385  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1386  * must be called before clk_enable.  Returns 0 on success, -EERROR
1387  * otherwise.
1388  */
clk_enable(struct clk * clk)1389 int clk_enable(struct clk *clk)
1390 {
1391 	if (!clk)
1392 		return 0;
1393 
1394 	return clk_core_enable_lock(clk->core);
1395 }
1396 EXPORT_SYMBOL_GPL(clk_enable);
1397 
1398 /**
1399  * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1400  * @clk: clock source
1401  *
1402  * Returns true if clk_prepare() implicitly enables the clock, effectively
1403  * making clk_enable()/clk_disable() no-ops, false otherwise.
1404  *
1405  * This is of interest mainly to power management code where actually
1406  * disabling the clock also requires unpreparing it to have any material
1407  * effect.
1408  *
1409  * Regardless of the value returned here, the caller must always invoke
1410  * clk_enable() or clk_prepare_enable()  and counterparts for usage counts
1411  * to be right.
1412  */
clk_is_enabled_when_prepared(struct clk * clk)1413 bool clk_is_enabled_when_prepared(struct clk *clk)
1414 {
1415 	return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1416 }
1417 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1418 
clk_core_prepare_enable(struct clk_core * core)1419 static int clk_core_prepare_enable(struct clk_core *core)
1420 {
1421 	int ret;
1422 
1423 	ret = clk_core_prepare_lock(core);
1424 	if (ret)
1425 		return ret;
1426 
1427 	ret = clk_core_enable_lock(core);
1428 	if (ret)
1429 		clk_core_unprepare_lock(core);
1430 
1431 	return ret;
1432 }
1433 
clk_core_disable_unprepare(struct clk_core * core)1434 static void clk_core_disable_unprepare(struct clk_core *core)
1435 {
1436 	clk_core_disable_lock(core);
1437 	clk_core_unprepare_lock(core);
1438 }
1439 
clk_unprepare_unused_subtree(struct clk_core * core)1440 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1441 {
1442 	struct clk_core *child;
1443 
1444 	lockdep_assert_held(&prepare_lock);
1445 
1446 	hlist_for_each_entry(child, &core->children, child_node)
1447 		clk_unprepare_unused_subtree(child);
1448 
1449 	if (dev_has_sync_state(core->dev) &&
1450 	    !(core->flags & CLK_DONT_HOLD_STATE))
1451 		return;
1452 
1453 	if (core->prepare_count)
1454 		return;
1455 
1456 	if (core->flags & CLK_IGNORE_UNUSED)
1457 		return;
1458 
1459 	if (clk_core_is_prepared(core)) {
1460 		trace_clk_unprepare(core);
1461 		if (core->ops->unprepare_unused)
1462 			core->ops->unprepare_unused(core->hw);
1463 		else if (core->ops->unprepare)
1464 			core->ops->unprepare(core->hw);
1465 		trace_clk_unprepare_complete(core);
1466 	}
1467 }
1468 
clk_disable_unused_subtree(struct clk_core * core)1469 static void __init clk_disable_unused_subtree(struct clk_core *core)
1470 {
1471 	struct clk_core *child;
1472 	unsigned long flags;
1473 
1474 	lockdep_assert_held(&prepare_lock);
1475 
1476 	hlist_for_each_entry(child, &core->children, child_node)
1477 		clk_disable_unused_subtree(child);
1478 
1479 	if (dev_has_sync_state(core->dev) &&
1480 	    !(core->flags & CLK_DONT_HOLD_STATE))
1481 		return;
1482 
1483 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1484 		clk_core_prepare_enable(core->parent);
1485 
1486 	flags = clk_enable_lock();
1487 
1488 	if (core->enable_count)
1489 		goto unlock_out;
1490 
1491 	if (core->flags & CLK_IGNORE_UNUSED)
1492 		goto unlock_out;
1493 
1494 	/*
1495 	 * some gate clocks have special needs during the disable-unused
1496 	 * sequence.  call .disable_unused if available, otherwise fall
1497 	 * back to .disable
1498 	 */
1499 	if (clk_core_is_enabled(core)) {
1500 		trace_clk_disable(core);
1501 		if (core->ops->disable_unused)
1502 			core->ops->disable_unused(core->hw);
1503 		else if (core->ops->disable)
1504 			core->ops->disable(core->hw);
1505 		trace_clk_disable_complete(core);
1506 	}
1507 
1508 unlock_out:
1509 	clk_enable_unlock(flags);
1510 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1511 		clk_core_disable_unprepare(core->parent);
1512 }
1513 
1514 static bool clk_ignore_unused __initdata;
clk_ignore_unused_setup(char * __unused)1515 static int __init clk_ignore_unused_setup(char *__unused)
1516 {
1517 	clk_ignore_unused = true;
1518 	return 1;
1519 }
1520 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1521 
clk_disable_unused(void)1522 static int __init clk_disable_unused(void)
1523 {
1524 	struct clk_core *core;
1525 	int ret;
1526 
1527 	if (clk_ignore_unused) {
1528 		pr_warn("clk: Not disabling unused clocks\n");
1529 		return 0;
1530 	}
1531 
1532 	pr_info("clk: Disabling unused clocks\n");
1533 
1534 	ret = clk_pm_runtime_get_all();
1535 	if (ret)
1536 		return ret;
1537 	/*
1538 	 * Grab the prepare lock to keep the clk topology stable while iterating
1539 	 * over clks.
1540 	 */
1541 	clk_prepare_lock();
1542 
1543 	hlist_for_each_entry(core, &clk_root_list, child_node)
1544 		clk_disable_unused_subtree(core);
1545 
1546 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1547 		clk_disable_unused_subtree(core);
1548 
1549 	hlist_for_each_entry(core, &clk_root_list, child_node)
1550 		clk_unprepare_unused_subtree(core);
1551 
1552 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1553 		clk_unprepare_unused_subtree(core);
1554 
1555 	clk_prepare_unlock();
1556 
1557 	clk_pm_runtime_put_all();
1558 
1559 	return 0;
1560 }
1561 late_initcall_sync(clk_disable_unused);
1562 
clk_unprepare_disable_dev_subtree(struct clk_core * core,struct device * dev)1563 static void clk_unprepare_disable_dev_subtree(struct clk_core *core,
1564 					      struct device *dev)
1565 {
1566 	struct clk_core *child;
1567 
1568 	lockdep_assert_held(&prepare_lock);
1569 
1570 	hlist_for_each_entry(child, &core->children, child_node)
1571 		clk_unprepare_disable_dev_subtree(child, dev);
1572 
1573 	if (core->dev != dev || !core->need_sync)
1574 		return;
1575 
1576 	clk_core_disable_unprepare(core);
1577 }
1578 
clk_sync_state(struct device * dev)1579 void clk_sync_state(struct device *dev)
1580 {
1581 	struct clk_core *core;
1582 
1583 	clk_prepare_lock();
1584 
1585 	hlist_for_each_entry(core, &clk_root_list, child_node)
1586 		clk_unprepare_disable_dev_subtree(core, dev);
1587 
1588 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1589 		clk_unprepare_disable_dev_subtree(core, dev);
1590 
1591 	clk_prepare_unlock();
1592 }
1593 EXPORT_SYMBOL_GPL(clk_sync_state);
1594 
clk_core_determine_round_nolock(struct clk_core * core,struct clk_rate_request * req)1595 static int clk_core_determine_round_nolock(struct clk_core *core,
1596 					   struct clk_rate_request *req)
1597 {
1598 	long rate;
1599 
1600 	lockdep_assert_held(&prepare_lock);
1601 
1602 	if (!core)
1603 		return 0;
1604 
1605 	/*
1606 	 * Some clock providers hand-craft their clk_rate_requests and
1607 	 * might not fill min_rate and max_rate.
1608 	 *
1609 	 * If it's the case, clamping the rate is equivalent to setting
1610 	 * the rate to 0 which is bad. Skip the clamping but complain so
1611 	 * that it gets fixed, hopefully.
1612 	 */
1613 	if (!req->min_rate && !req->max_rate)
1614 		pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n",
1615 			__func__, core->name);
1616 	else
1617 		req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1618 
1619 	/*
1620 	 * At this point, core protection will be disabled
1621 	 * - if the provider is not protected at all
1622 	 * - if the calling consumer is the only one which has exclusivity
1623 	 *   over the provider
1624 	 */
1625 	if (clk_core_rate_is_protected(core)) {
1626 		req->rate = core->rate;
1627 	} else if (core->ops->determine_rate) {
1628 		return core->ops->determine_rate(core->hw, req);
1629 	} else if (core->ops->round_rate) {
1630 		rate = core->ops->round_rate(core->hw, req->rate,
1631 					     &req->best_parent_rate);
1632 		if (rate < 0)
1633 			return rate;
1634 
1635 		req->rate = rate;
1636 	} else {
1637 		return -EINVAL;
1638 	}
1639 
1640 	return 0;
1641 }
1642 
clk_core_init_rate_req(struct clk_core * const core,struct clk_rate_request * req,unsigned long rate)1643 static void clk_core_init_rate_req(struct clk_core * const core,
1644 				   struct clk_rate_request *req,
1645 				   unsigned long rate)
1646 {
1647 	struct clk_core *parent;
1648 
1649 	if (WARN_ON(!req))
1650 		return;
1651 
1652 	memset(req, 0, sizeof(*req));
1653 	req->max_rate = ULONG_MAX;
1654 
1655 	if (!core)
1656 		return;
1657 
1658 	req->core = core;
1659 	req->rate = rate;
1660 	clk_core_get_boundaries(core, &req->min_rate, &req->max_rate);
1661 
1662 	parent = core->parent;
1663 	if (parent) {
1664 		req->best_parent_hw = parent->hw;
1665 		req->best_parent_rate = parent->rate;
1666 	} else {
1667 		req->best_parent_hw = NULL;
1668 		req->best_parent_rate = 0;
1669 	}
1670 }
1671 
1672 /**
1673  * clk_hw_init_rate_request - Initializes a clk_rate_request
1674  * @hw: the clk for which we want to submit a rate request
1675  * @req: the clk_rate_request structure we want to initialise
1676  * @rate: the rate which is to be requested
1677  *
1678  * Initializes a clk_rate_request structure to submit to
1679  * __clk_determine_rate() or similar functions.
1680  */
clk_hw_init_rate_request(const struct clk_hw * hw,struct clk_rate_request * req,unsigned long rate)1681 void clk_hw_init_rate_request(const struct clk_hw *hw,
1682 			      struct clk_rate_request *req,
1683 			      unsigned long rate)
1684 {
1685 	if (WARN_ON(!hw || !req))
1686 		return;
1687 
1688 	clk_core_init_rate_req(hw->core, req, rate);
1689 }
1690 EXPORT_SYMBOL_GPL(clk_hw_init_rate_request);
1691 
1692 /**
1693  * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent
1694  * @hw: the original clock that got the rate request
1695  * @old_req: the original clk_rate_request structure we want to forward
1696  * @parent: the clk we want to forward @old_req to
1697  * @req: the clk_rate_request structure we want to initialise
1698  * @parent_rate: The rate which is to be requested to @parent
1699  *
1700  * Initializes a clk_rate_request structure to submit to a clock parent
1701  * in __clk_determine_rate() or similar functions.
1702  */
clk_hw_forward_rate_request(const struct clk_hw * hw,const struct clk_rate_request * old_req,const struct clk_hw * parent,struct clk_rate_request * req,unsigned long parent_rate)1703 void clk_hw_forward_rate_request(const struct clk_hw *hw,
1704 				 const struct clk_rate_request *old_req,
1705 				 const struct clk_hw *parent,
1706 				 struct clk_rate_request *req,
1707 				 unsigned long parent_rate)
1708 {
1709 	if (WARN_ON(!hw || !old_req || !parent || !req))
1710 		return;
1711 
1712 	clk_core_forward_rate_req(hw->core, old_req,
1713 				  parent->core, req,
1714 				  parent_rate);
1715 }
1716 EXPORT_SYMBOL_GPL(clk_hw_forward_rate_request);
1717 
clk_core_can_round(struct clk_core * const core)1718 static bool clk_core_can_round(struct clk_core * const core)
1719 {
1720 	return core->ops->determine_rate || core->ops->round_rate;
1721 }
1722 
clk_core_round_rate_nolock(struct clk_core * core,struct clk_rate_request * req)1723 static int clk_core_round_rate_nolock(struct clk_core *core,
1724 				      struct clk_rate_request *req)
1725 {
1726 	int ret;
1727 
1728 	lockdep_assert_held(&prepare_lock);
1729 
1730 	if (!core) {
1731 		req->rate = 0;
1732 		return 0;
1733 	}
1734 
1735 	if (clk_core_can_round(core))
1736 		return clk_core_determine_round_nolock(core, req);
1737 
1738 	if (core->flags & CLK_SET_RATE_PARENT) {
1739 		struct clk_rate_request parent_req;
1740 
1741 		clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate);
1742 
1743 		trace_clk_rate_request_start(&parent_req);
1744 
1745 		ret = clk_core_round_rate_nolock(core->parent, &parent_req);
1746 		if (ret)
1747 			return ret;
1748 
1749 		trace_clk_rate_request_done(&parent_req);
1750 
1751 		req->best_parent_rate = parent_req.rate;
1752 		req->rate = parent_req.rate;
1753 
1754 		return 0;
1755 	}
1756 
1757 	req->rate = core->rate;
1758 	return 0;
1759 }
1760 
1761 /**
1762  * __clk_determine_rate - get the closest rate actually supported by a clock
1763  * @hw: determine the rate of this clock
1764  * @req: target rate request
1765  *
1766  * Useful for clk_ops such as .set_rate and .determine_rate.
1767  */
__clk_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)1768 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1769 {
1770 	if (!hw) {
1771 		req->rate = 0;
1772 		return 0;
1773 	}
1774 
1775 	return clk_core_round_rate_nolock(hw->core, req);
1776 }
1777 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1778 
1779 /**
1780  * clk_hw_round_rate() - round the given rate for a hw clk
1781  * @hw: the hw clk for which we are rounding a rate
1782  * @rate: the rate which is to be rounded
1783  *
1784  * Takes in a rate as input and rounds it to a rate that the clk can actually
1785  * use.
1786  *
1787  * Context: prepare_lock must be held.
1788  *          For clk providers to call from within clk_ops such as .round_rate,
1789  *          .determine_rate.
1790  *
1791  * Return: returns rounded rate of hw clk if clk supports round_rate operation
1792  *         else returns the parent rate.
1793  */
clk_hw_round_rate(struct clk_hw * hw,unsigned long rate)1794 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1795 {
1796 	int ret;
1797 	struct clk_rate_request req;
1798 
1799 	clk_core_init_rate_req(hw->core, &req, rate);
1800 
1801 	trace_clk_rate_request_start(&req);
1802 
1803 	ret = clk_core_round_rate_nolock(hw->core, &req);
1804 	if (ret)
1805 		return 0;
1806 
1807 	trace_clk_rate_request_done(&req);
1808 
1809 	return req.rate;
1810 }
1811 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1812 
1813 /**
1814  * clk_round_rate - round the given rate for a clk
1815  * @clk: the clk for which we are rounding a rate
1816  * @rate: the rate which is to be rounded
1817  *
1818  * Takes in a rate as input and rounds it to a rate that the clk can actually
1819  * use which is then returned.  If clk doesn't support round_rate operation
1820  * then the parent rate is returned.
1821  */
clk_round_rate(struct clk * clk,unsigned long rate)1822 long clk_round_rate(struct clk *clk, unsigned long rate)
1823 {
1824 	struct clk_rate_request req;
1825 	int ret;
1826 
1827 	if (!clk)
1828 		return 0;
1829 
1830 	clk_prepare_lock();
1831 
1832 	if (clk->exclusive_count)
1833 		clk_core_rate_unprotect(clk->core);
1834 
1835 	clk_core_init_rate_req(clk->core, &req, rate);
1836 
1837 	trace_clk_rate_request_start(&req);
1838 
1839 	ret = clk_core_round_rate_nolock(clk->core, &req);
1840 
1841 	trace_clk_rate_request_done(&req);
1842 
1843 	if (clk->exclusive_count)
1844 		clk_core_rate_protect(clk->core);
1845 
1846 	clk_prepare_unlock();
1847 
1848 	if (ret)
1849 		return ret;
1850 
1851 	return req.rate;
1852 }
1853 EXPORT_SYMBOL_GPL(clk_round_rate);
1854 
1855 /**
1856  * __clk_notify - call clk notifier chain
1857  * @core: clk that is changing rate
1858  * @msg: clk notifier type (see include/linux/clk.h)
1859  * @old_rate: old clk rate
1860  * @new_rate: new clk rate
1861  *
1862  * Triggers a notifier call chain on the clk rate-change notification
1863  * for 'clk'.  Passes a pointer to the struct clk and the previous
1864  * and current rates to the notifier callback.  Intended to be called by
1865  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1866  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1867  * a driver returns that.
1868  */
__clk_notify(struct clk_core * core,unsigned long msg,unsigned long old_rate,unsigned long new_rate)1869 static int __clk_notify(struct clk_core *core, unsigned long msg,
1870 		unsigned long old_rate, unsigned long new_rate)
1871 {
1872 	struct clk_notifier *cn;
1873 	struct clk_notifier_data cnd;
1874 	int ret = NOTIFY_DONE;
1875 
1876 	cnd.old_rate = old_rate;
1877 	cnd.new_rate = new_rate;
1878 
1879 	list_for_each_entry(cn, &clk_notifier_list, node) {
1880 		if (cn->clk->core == core) {
1881 			cnd.clk = cn->clk;
1882 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1883 					&cnd);
1884 			if (ret & NOTIFY_STOP_MASK)
1885 				return ret;
1886 		}
1887 	}
1888 
1889 	return ret;
1890 }
1891 
1892 /**
1893  * __clk_recalc_accuracies
1894  * @core: first clk in the subtree
1895  *
1896  * Walks the subtree of clks starting with clk and recalculates accuracies as
1897  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1898  * callback then it is assumed that the clock will take on the accuracy of its
1899  * parent.
1900  */
__clk_recalc_accuracies(struct clk_core * core)1901 static void __clk_recalc_accuracies(struct clk_core *core)
1902 {
1903 	unsigned long parent_accuracy = 0;
1904 	struct clk_core *child;
1905 
1906 	lockdep_assert_held(&prepare_lock);
1907 
1908 	if (core->parent)
1909 		parent_accuracy = core->parent->accuracy;
1910 
1911 	if (core->ops->recalc_accuracy)
1912 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1913 							  parent_accuracy);
1914 	else
1915 		core->accuracy = parent_accuracy;
1916 
1917 	hlist_for_each_entry(child, &core->children, child_node)
1918 		__clk_recalc_accuracies(child);
1919 }
1920 
clk_core_get_accuracy_recalc(struct clk_core * core)1921 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1922 {
1923 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1924 		__clk_recalc_accuracies(core);
1925 
1926 	return clk_core_get_accuracy_no_lock(core);
1927 }
1928 
1929 /**
1930  * clk_get_accuracy - return the accuracy of clk
1931  * @clk: the clk whose accuracy is being returned
1932  *
1933  * Simply returns the cached accuracy of the clk, unless
1934  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1935  * issued.
1936  * If clk is NULL then returns 0.
1937  */
clk_get_accuracy(struct clk * clk)1938 long clk_get_accuracy(struct clk *clk)
1939 {
1940 	long accuracy;
1941 
1942 	if (!clk)
1943 		return 0;
1944 
1945 	clk_prepare_lock();
1946 	accuracy = clk_core_get_accuracy_recalc(clk->core);
1947 	clk_prepare_unlock();
1948 
1949 	return accuracy;
1950 }
1951 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1952 
clk_recalc(struct clk_core * core,unsigned long parent_rate)1953 static unsigned long clk_recalc(struct clk_core *core,
1954 				unsigned long parent_rate)
1955 {
1956 	unsigned long rate = parent_rate;
1957 
1958 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1959 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1960 		clk_pm_runtime_put(core);
1961 	}
1962 	return rate;
1963 }
1964 
1965 /**
1966  * __clk_recalc_rates
1967  * @core: first clk in the subtree
1968  * @update_req: Whether req_rate should be updated with the new rate
1969  * @msg: notification type (see include/linux/clk.h)
1970  *
1971  * Walks the subtree of clks starting with clk and recalculates rates as it
1972  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1973  * it is assumed that the clock will take on the rate of its parent.
1974  *
1975  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1976  * if necessary.
1977  */
__clk_recalc_rates(struct clk_core * core,bool update_req,unsigned long msg)1978 static void __clk_recalc_rates(struct clk_core *core, bool update_req,
1979 			       unsigned long msg)
1980 {
1981 	unsigned long old_rate;
1982 	unsigned long parent_rate = 0;
1983 	struct clk_core *child;
1984 
1985 	lockdep_assert_held(&prepare_lock);
1986 
1987 	old_rate = core->rate;
1988 
1989 	if (core->parent)
1990 		parent_rate = core->parent->rate;
1991 
1992 	core->rate = clk_recalc(core, parent_rate);
1993 	if (update_req)
1994 		core->req_rate = core->rate;
1995 
1996 	/*
1997 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1998 	 * & ABORT_RATE_CHANGE notifiers
1999 	 */
2000 	if (core->notifier_count && msg)
2001 		__clk_notify(core, msg, old_rate, core->rate);
2002 
2003 	hlist_for_each_entry(child, &core->children, child_node)
2004 		__clk_recalc_rates(child, update_req, msg);
2005 }
2006 
clk_core_get_rate_recalc(struct clk_core * core)2007 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
2008 {
2009 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
2010 		__clk_recalc_rates(core, false, 0);
2011 
2012 	return clk_core_get_rate_nolock(core);
2013 }
2014 
2015 /**
2016  * clk_get_rate - return the rate of clk
2017  * @clk: the clk whose rate is being returned
2018  *
2019  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
2020  * is set, which means a recalc_rate will be issued. Can be called regardless of
2021  * the clock enabledness. If clk is NULL, or if an error occurred, then returns
2022  * 0.
2023  */
clk_get_rate(struct clk * clk)2024 unsigned long clk_get_rate(struct clk *clk)
2025 {
2026 	unsigned long rate;
2027 
2028 	if (!clk)
2029 		return 0;
2030 
2031 	clk_prepare_lock();
2032 	rate = clk_core_get_rate_recalc(clk->core);
2033 	clk_prepare_unlock();
2034 
2035 	return rate;
2036 }
2037 EXPORT_SYMBOL_GPL(clk_get_rate);
2038 
clk_fetch_parent_index(struct clk_core * core,struct clk_core * parent)2039 static int clk_fetch_parent_index(struct clk_core *core,
2040 				  struct clk_core *parent)
2041 {
2042 	int i;
2043 
2044 	if (!parent)
2045 		return -EINVAL;
2046 
2047 	for (i = 0; i < core->num_parents; i++) {
2048 		/* Found it first try! */
2049 		if (core->parents[i].core == parent)
2050 			return i;
2051 
2052 		/* Something else is here, so keep looking */
2053 		if (core->parents[i].core)
2054 			continue;
2055 
2056 		/* Maybe core hasn't been cached but the hw is all we know? */
2057 		if (core->parents[i].hw) {
2058 			if (core->parents[i].hw == parent->hw)
2059 				break;
2060 
2061 			/* Didn't match, but we're expecting a clk_hw */
2062 			continue;
2063 		}
2064 
2065 		/* Maybe it hasn't been cached (clk_set_parent() path) */
2066 		if (parent == clk_core_get(core, i))
2067 			break;
2068 
2069 		/* Fallback to comparing globally unique names */
2070 		if (core->parents[i].name &&
2071 		    !strcmp(parent->name, core->parents[i].name))
2072 			break;
2073 	}
2074 
2075 	if (i == core->num_parents)
2076 		return -EINVAL;
2077 
2078 	core->parents[i].core = parent;
2079 	return i;
2080 }
2081 
2082 /**
2083  * clk_hw_get_parent_index - return the index of the parent clock
2084  * @hw: clk_hw associated with the clk being consumed
2085  *
2086  * Fetches and returns the index of parent clock. Returns -EINVAL if the given
2087  * clock does not have a current parent.
2088  */
clk_hw_get_parent_index(struct clk_hw * hw)2089 int clk_hw_get_parent_index(struct clk_hw *hw)
2090 {
2091 	struct clk_hw *parent = clk_hw_get_parent(hw);
2092 
2093 	if (WARN_ON(parent == NULL))
2094 		return -EINVAL;
2095 
2096 	return clk_fetch_parent_index(hw->core, parent->core);
2097 }
2098 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
2099 
clk_core_hold_state(struct clk_core * core)2100 static void clk_core_hold_state(struct clk_core *core)
2101 {
2102 	if (core->need_sync || !core->boot_enabled)
2103 		return;
2104 
2105 	if (core->orphan || !dev_has_sync_state(core->dev))
2106 		return;
2107 
2108 	if (core->flags & CLK_DONT_HOLD_STATE)
2109 		return;
2110 
2111 	core->need_sync = !clk_core_prepare_enable(core);
2112 }
2113 
__clk_core_update_orphan_hold_state(struct clk_core * core)2114 static void __clk_core_update_orphan_hold_state(struct clk_core *core)
2115 {
2116 	struct clk_core *child;
2117 
2118 	if (core->orphan)
2119 		return;
2120 
2121 	clk_core_hold_state(core);
2122 
2123 	hlist_for_each_entry(child, &core->children, child_node)
2124 		__clk_core_update_orphan_hold_state(child);
2125 }
2126 
2127 /*
2128  * Update the orphan status of @core and all its children.
2129  */
clk_core_update_orphan_status(struct clk_core * core,bool is_orphan)2130 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
2131 {
2132 	struct clk_core *child;
2133 
2134 	core->orphan = is_orphan;
2135 
2136 	hlist_for_each_entry(child, &core->children, child_node)
2137 		clk_core_update_orphan_status(child, is_orphan);
2138 }
2139 
clk_reparent(struct clk_core * core,struct clk_core * new_parent)2140 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
2141 {
2142 	bool was_orphan = core->orphan;
2143 
2144 	hlist_del(&core->child_node);
2145 
2146 	if (new_parent) {
2147 		bool becomes_orphan = new_parent->orphan;
2148 
2149 		/* avoid duplicate POST_RATE_CHANGE notifications */
2150 		if (new_parent->new_child == core)
2151 			new_parent->new_child = NULL;
2152 
2153 		hlist_add_head(&core->child_node, &new_parent->children);
2154 
2155 		if (was_orphan != becomes_orphan)
2156 			clk_core_update_orphan_status(core, becomes_orphan);
2157 	} else {
2158 		hlist_add_head(&core->child_node, &clk_orphan_list);
2159 		if (!was_orphan)
2160 			clk_core_update_orphan_status(core, true);
2161 	}
2162 
2163 	core->parent = new_parent;
2164 }
2165 
__clk_set_parent_before(struct clk_core * core,struct clk_core * parent)2166 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
2167 					   struct clk_core *parent)
2168 {
2169 	unsigned long flags;
2170 	struct clk_core *old_parent = core->parent;
2171 
2172 	/*
2173 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
2174 	 *
2175 	 * 2. Migrate prepare state between parents and prevent race with
2176 	 * clk_enable().
2177 	 *
2178 	 * If the clock is not prepared, then a race with
2179 	 * clk_enable/disable() is impossible since we already have the
2180 	 * prepare lock (future calls to clk_enable() need to be preceded by
2181 	 * a clk_prepare()).
2182 	 *
2183 	 * If the clock is prepared, migrate the prepared state to the new
2184 	 * parent and also protect against a race with clk_enable() by
2185 	 * forcing the clock and the new parent on.  This ensures that all
2186 	 * future calls to clk_enable() are practically NOPs with respect to
2187 	 * hardware and software states.
2188 	 *
2189 	 * See also: Comment for clk_set_parent() below.
2190 	 */
2191 
2192 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
2193 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2194 		clk_core_prepare_enable(old_parent);
2195 		clk_core_prepare_enable(parent);
2196 	}
2197 
2198 	/* migrate prepare count if > 0 */
2199 	if (core->prepare_count) {
2200 		clk_core_prepare_enable(parent);
2201 		clk_core_enable_lock(core);
2202 	}
2203 
2204 	/* update the clk tree topology */
2205 	flags = clk_enable_lock();
2206 	clk_reparent(core, parent);
2207 	clk_enable_unlock(flags);
2208 
2209 	return old_parent;
2210 }
2211 
__clk_set_parent_after(struct clk_core * core,struct clk_core * parent,struct clk_core * old_parent)2212 static void __clk_set_parent_after(struct clk_core *core,
2213 				   struct clk_core *parent,
2214 				   struct clk_core *old_parent)
2215 {
2216 	/*
2217 	 * Finish the migration of prepare state and undo the changes done
2218 	 * for preventing a race with clk_enable().
2219 	 */
2220 	if (core->prepare_count) {
2221 		clk_core_disable_lock(core);
2222 		clk_core_disable_unprepare(old_parent);
2223 	}
2224 
2225 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
2226 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2227 		clk_core_disable_unprepare(parent);
2228 		clk_core_disable_unprepare(old_parent);
2229 	}
2230 }
2231 
__clk_set_parent(struct clk_core * core,struct clk_core * parent,u8 p_index)2232 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
2233 			    u8 p_index)
2234 {
2235 	unsigned long flags;
2236 	int ret = 0;
2237 	struct clk_core *old_parent;
2238 
2239 	old_parent = __clk_set_parent_before(core, parent);
2240 
2241 	trace_clk_set_parent(core, parent);
2242 
2243 	/* change clock input source */
2244 	if (parent && core->ops->set_parent)
2245 		ret = core->ops->set_parent(core->hw, p_index);
2246 
2247 	trace_clk_set_parent_complete(core, parent);
2248 
2249 	if (ret) {
2250 		flags = clk_enable_lock();
2251 		clk_reparent(core, old_parent);
2252 		clk_enable_unlock(flags);
2253 
2254 		__clk_set_parent_after(core, old_parent, parent);
2255 
2256 		return ret;
2257 	}
2258 
2259 	__clk_set_parent_after(core, parent, old_parent);
2260 
2261 	return 0;
2262 }
2263 
2264 /**
2265  * __clk_speculate_rates
2266  * @core: first clk in the subtree
2267  * @parent_rate: the "future" rate of clk's parent
2268  *
2269  * Walks the subtree of clks starting with clk, speculating rates as it
2270  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
2271  *
2272  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
2273  * pre-rate change notifications and returns early if no clks in the
2274  * subtree have subscribed to the notifications.  Note that if a clk does not
2275  * implement the .recalc_rate callback then it is assumed that the clock will
2276  * take on the rate of its parent.
2277  */
__clk_speculate_rates(struct clk_core * core,unsigned long parent_rate)2278 static int __clk_speculate_rates(struct clk_core *core,
2279 				 unsigned long parent_rate)
2280 {
2281 	struct clk_core *child;
2282 	unsigned long new_rate;
2283 	int ret = NOTIFY_DONE;
2284 
2285 	lockdep_assert_held(&prepare_lock);
2286 
2287 	new_rate = clk_recalc(core, parent_rate);
2288 
2289 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
2290 	if (core->notifier_count)
2291 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
2292 
2293 	if (ret & NOTIFY_STOP_MASK) {
2294 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
2295 				__func__, core->name, ret);
2296 		goto out;
2297 	}
2298 
2299 	hlist_for_each_entry(child, &core->children, child_node) {
2300 		ret = __clk_speculate_rates(child, new_rate);
2301 		if (ret & NOTIFY_STOP_MASK)
2302 			break;
2303 	}
2304 
2305 out:
2306 	return ret;
2307 }
2308 
clk_calc_subtree(struct clk_core * core,unsigned long new_rate,struct clk_core * new_parent,u8 p_index)2309 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
2310 			     struct clk_core *new_parent, u8 p_index)
2311 {
2312 	struct clk_core *child;
2313 
2314 	core->new_rate = new_rate;
2315 	core->new_parent = new_parent;
2316 	core->new_parent_index = p_index;
2317 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
2318 	core->new_child = NULL;
2319 	if (new_parent && new_parent != core->parent)
2320 		new_parent->new_child = core;
2321 
2322 	hlist_for_each_entry(child, &core->children, child_node) {
2323 		child->new_rate = clk_recalc(child, new_rate);
2324 		clk_calc_subtree(child, child->new_rate, NULL, 0);
2325 	}
2326 }
2327 
2328 /*
2329  * calculate the new rates returning the topmost clock that has to be
2330  * changed.
2331  */
clk_calc_new_rates(struct clk_core * core,unsigned long rate)2332 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2333 					   unsigned long rate)
2334 {
2335 	struct clk_core *top = core;
2336 	struct clk_core *old_parent, *parent;
2337 	unsigned long best_parent_rate = 0;
2338 	unsigned long new_rate;
2339 	unsigned long min_rate;
2340 	unsigned long max_rate;
2341 	int p_index = 0;
2342 	long ret;
2343 
2344 	/* sanity */
2345 	if (IS_ERR_OR_NULL(core))
2346 		return NULL;
2347 
2348 	/* save parent rate, if it exists */
2349 	parent = old_parent = core->parent;
2350 	if (parent)
2351 		best_parent_rate = parent->rate;
2352 
2353 	clk_core_get_boundaries(core, &min_rate, &max_rate);
2354 
2355 	/* find the closest rate and parent clk/rate */
2356 	if (clk_core_can_round(core)) {
2357 		struct clk_rate_request req;
2358 
2359 		clk_core_init_rate_req(core, &req, rate);
2360 
2361 		trace_clk_rate_request_start(&req);
2362 
2363 		ret = clk_core_determine_round_nolock(core, &req);
2364 		if (ret < 0)
2365 			return NULL;
2366 
2367 		trace_clk_rate_request_done(&req);
2368 
2369 		best_parent_rate = req.best_parent_rate;
2370 		new_rate = req.rate;
2371 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
2372 
2373 		if (new_rate < min_rate || new_rate > max_rate)
2374 			return NULL;
2375 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2376 		/* pass-through clock without adjustable parent */
2377 		core->new_rate = core->rate;
2378 		return NULL;
2379 	} else {
2380 		/* pass-through clock with adjustable parent */
2381 		top = clk_calc_new_rates(parent, rate);
2382 		new_rate = parent->new_rate;
2383 		goto out;
2384 	}
2385 
2386 	/* some clocks must be gated to change parent */
2387 	if (parent != old_parent &&
2388 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2389 		pr_debug("%s: %s not gated but wants to reparent\n",
2390 			 __func__, core->name);
2391 		return NULL;
2392 	}
2393 
2394 	/* try finding the new parent index */
2395 	if (parent && core->num_parents > 1) {
2396 		p_index = clk_fetch_parent_index(core, parent);
2397 		if (p_index < 0) {
2398 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2399 				 __func__, parent->name, core->name);
2400 			return NULL;
2401 		}
2402 	}
2403 
2404 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2405 	    best_parent_rate != parent->rate)
2406 		top = clk_calc_new_rates(parent, best_parent_rate);
2407 
2408 out:
2409 	clk_calc_subtree(core, new_rate, parent, p_index);
2410 
2411 	return top;
2412 }
2413 
2414 /*
2415  * Notify about rate changes in a subtree. Always walk down the whole tree
2416  * so that in case of an error we can walk down the whole tree again and
2417  * abort the change.
2418  */
clk_propagate_rate_change(struct clk_core * core,unsigned long event)2419 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2420 						  unsigned long event)
2421 {
2422 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2423 	int ret = NOTIFY_DONE;
2424 
2425 	if (core->rate == core->new_rate)
2426 		return NULL;
2427 
2428 	if (core->notifier_count) {
2429 		ret = __clk_notify(core, event, core->rate, core->new_rate);
2430 		if (ret & NOTIFY_STOP_MASK)
2431 			fail_clk = core;
2432 	}
2433 
2434 	if (core->ops->pre_rate_change) {
2435 		ret = core->ops->pre_rate_change(core->hw, core->rate,
2436 						 core->new_rate);
2437 		if (ret)
2438 			fail_clk = core;
2439 	}
2440 
2441 	hlist_for_each_entry(child, &core->children, child_node) {
2442 		/* Skip children who will be reparented to another clock */
2443 		if (child->new_parent && child->new_parent != core)
2444 			continue;
2445 		tmp_clk = clk_propagate_rate_change(child, event);
2446 		if (tmp_clk)
2447 			fail_clk = tmp_clk;
2448 	}
2449 
2450 	/* handle the new child who might not be in core->children yet */
2451 	if (core->new_child) {
2452 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2453 		if (tmp_clk)
2454 			fail_clk = tmp_clk;
2455 	}
2456 
2457 	return fail_clk;
2458 }
2459 
2460 /*
2461  * walk down a subtree and set the new rates notifying the rate
2462  * change on the way
2463  */
clk_change_rate(struct clk_core * core)2464 static void clk_change_rate(struct clk_core *core)
2465 {
2466 	struct clk_core *child;
2467 	struct hlist_node *tmp;
2468 	unsigned long old_rate;
2469 	unsigned long best_parent_rate = 0;
2470 	bool skip_set_rate = false;
2471 	struct clk_core *old_parent;
2472 	struct clk_core *parent = NULL;
2473 
2474 	old_rate = core->rate;
2475 
2476 	if (core->new_parent) {
2477 		parent = core->new_parent;
2478 		best_parent_rate = core->new_parent->rate;
2479 	} else if (core->parent) {
2480 		parent = core->parent;
2481 		best_parent_rate = core->parent->rate;
2482 	}
2483 
2484 	if (clk_pm_runtime_get(core))
2485 		return;
2486 
2487 	if (core->flags & CLK_SET_RATE_UNGATE) {
2488 		clk_core_prepare(core);
2489 		clk_core_enable_lock(core);
2490 	}
2491 
2492 	if (core->new_parent && core->new_parent != core->parent) {
2493 		old_parent = __clk_set_parent_before(core, core->new_parent);
2494 		trace_clk_set_parent(core, core->new_parent);
2495 
2496 		if (core->ops->set_rate_and_parent) {
2497 			skip_set_rate = true;
2498 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2499 					best_parent_rate,
2500 					core->new_parent_index);
2501 		} else if (core->ops->set_parent) {
2502 			core->ops->set_parent(core->hw, core->new_parent_index);
2503 		}
2504 
2505 		trace_clk_set_parent_complete(core, core->new_parent);
2506 		__clk_set_parent_after(core, core->new_parent, old_parent);
2507 	}
2508 
2509 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2510 		clk_core_prepare_enable(parent);
2511 
2512 	trace_clk_set_rate(core, core->new_rate);
2513 
2514 	if (!skip_set_rate && core->ops->set_rate)
2515 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2516 
2517 	trace_clk_set_rate_complete(core, core->new_rate);
2518 
2519 	core->rate = clk_recalc(core, best_parent_rate);
2520 
2521 	if (core->flags & CLK_SET_RATE_UNGATE) {
2522 		clk_core_disable_lock(core);
2523 		clk_core_unprepare(core);
2524 	}
2525 
2526 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2527 		clk_core_disable_unprepare(parent);
2528 
2529 	if (core->notifier_count && old_rate != core->rate)
2530 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2531 
2532 	if (core->flags & CLK_RECALC_NEW_RATES)
2533 		(void)clk_calc_new_rates(core, core->new_rate);
2534 
2535 	if (core->ops->post_rate_change)
2536 		core->ops->post_rate_change(core->hw, old_rate, core->rate);
2537 
2538 	/*
2539 	 * Use safe iteration, as change_rate can actually swap parents
2540 	 * for certain clock types.
2541 	 */
2542 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2543 		/* Skip children who will be reparented to another clock */
2544 		if (child->new_parent && child->new_parent != core)
2545 			continue;
2546 		clk_change_rate(child);
2547 	}
2548 
2549 	/* handle the new child who might not be in core->children yet */
2550 	if (core->new_child)
2551 		clk_change_rate(core->new_child);
2552 
2553 	clk_pm_runtime_put(core);
2554 }
2555 
clk_core_req_round_rate_nolock(struct clk_core * core,unsigned long req_rate)2556 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2557 						     unsigned long req_rate)
2558 {
2559 	int ret, cnt;
2560 	struct clk_rate_request req;
2561 
2562 	lockdep_assert_held(&prepare_lock);
2563 
2564 	if (!core)
2565 		return 0;
2566 
2567 	/* simulate what the rate would be if it could be freely set */
2568 	cnt = clk_core_rate_nuke_protect(core);
2569 	if (cnt < 0)
2570 		return cnt;
2571 
2572 	clk_core_init_rate_req(core, &req, req_rate);
2573 
2574 	trace_clk_rate_request_start(&req);
2575 
2576 	ret = clk_core_round_rate_nolock(core, &req);
2577 
2578 	trace_clk_rate_request_done(&req);
2579 
2580 	/* restore the protection */
2581 	clk_core_rate_restore_protect(core, cnt);
2582 
2583 	return ret ? 0 : req.rate;
2584 }
2585 
clk_core_set_rate_nolock(struct clk_core * core,unsigned long req_rate)2586 static int clk_core_set_rate_nolock(struct clk_core *core,
2587 				    unsigned long req_rate)
2588 {
2589 	struct clk_core *top, *fail_clk;
2590 	unsigned long rate;
2591 	int ret;
2592 
2593 	if (!core)
2594 		return 0;
2595 
2596 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2597 
2598 	/* bail early if nothing to do */
2599 	if (rate == clk_core_get_rate_nolock(core))
2600 		return 0;
2601 
2602 	/* fail on a direct rate set of a protected provider */
2603 	if (clk_core_rate_is_protected(core))
2604 		return -EBUSY;
2605 
2606 	/* calculate new rates and get the topmost changed clock */
2607 	top = clk_calc_new_rates(core, req_rate);
2608 	if (!top)
2609 		return -EINVAL;
2610 
2611 	ret = clk_pm_runtime_get(core);
2612 	if (ret)
2613 		return ret;
2614 
2615 	/* notify that we are about to change rates */
2616 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2617 	if (fail_clk) {
2618 		pr_debug("%s: failed to set %s rate\n", __func__,
2619 				fail_clk->name);
2620 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2621 		ret = -EBUSY;
2622 		goto err;
2623 	}
2624 
2625 	/* change the rates */
2626 	clk_change_rate(top);
2627 
2628 	core->req_rate = req_rate;
2629 err:
2630 	clk_pm_runtime_put(core);
2631 
2632 	return ret;
2633 }
2634 
2635 /**
2636  * clk_set_rate - specify a new rate for clk
2637  * @clk: the clk whose rate is being changed
2638  * @rate: the new rate for clk
2639  *
2640  * In the simplest case clk_set_rate will only adjust the rate of clk.
2641  *
2642  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2643  * propagate up to clk's parent; whether or not this happens depends on the
2644  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2645  * after calling .round_rate then upstream parent propagation is ignored.  If
2646  * *parent_rate comes back with a new rate for clk's parent then we propagate
2647  * up to clk's parent and set its rate.  Upward propagation will continue
2648  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2649  * .round_rate stops requesting changes to clk's parent_rate.
2650  *
2651  * Rate changes are accomplished via tree traversal that also recalculates the
2652  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2653  *
2654  * Returns 0 on success, -EERROR otherwise.
2655  */
clk_set_rate(struct clk * clk,unsigned long rate)2656 int clk_set_rate(struct clk *clk, unsigned long rate)
2657 {
2658 	int ret;
2659 
2660 	if (!clk)
2661 		return 0;
2662 
2663 	/* prevent racing with updates to the clock topology */
2664 	clk_prepare_lock();
2665 
2666 	if (clk->exclusive_count)
2667 		clk_core_rate_unprotect(clk->core);
2668 
2669 	ret = clk_core_set_rate_nolock(clk->core, rate);
2670 
2671 	if (clk->exclusive_count)
2672 		clk_core_rate_protect(clk->core);
2673 
2674 	clk_prepare_unlock();
2675 
2676 	return ret;
2677 }
2678 EXPORT_SYMBOL_GPL(clk_set_rate);
2679 
2680 /**
2681  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2682  * @clk: the clk whose rate is being changed
2683  * @rate: the new rate for clk
2684  *
2685  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2686  * within a critical section
2687  *
2688  * This can be used initially to ensure that at least 1 consumer is
2689  * satisfied when several consumers are competing for exclusivity over the
2690  * same clock provider.
2691  *
2692  * The exclusivity is not applied if setting the rate failed.
2693  *
2694  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2695  * clk_rate_exclusive_put().
2696  *
2697  * Returns 0 on success, -EERROR otherwise.
2698  */
clk_set_rate_exclusive(struct clk * clk,unsigned long rate)2699 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2700 {
2701 	int ret;
2702 
2703 	if (!clk)
2704 		return 0;
2705 
2706 	/* prevent racing with updates to the clock topology */
2707 	clk_prepare_lock();
2708 
2709 	/*
2710 	 * The temporary protection removal is not here, on purpose
2711 	 * This function is meant to be used instead of clk_rate_protect,
2712 	 * so before the consumer code path protect the clock provider
2713 	 */
2714 
2715 	ret = clk_core_set_rate_nolock(clk->core, rate);
2716 	if (!ret) {
2717 		clk_core_rate_protect(clk->core);
2718 		clk->exclusive_count++;
2719 	}
2720 
2721 	clk_prepare_unlock();
2722 
2723 	return ret;
2724 }
2725 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2726 
clk_set_rate_range_nolock(struct clk * clk,unsigned long min,unsigned long max)2727 static int clk_set_rate_range_nolock(struct clk *clk,
2728 				     unsigned long min,
2729 				     unsigned long max)
2730 {
2731 	int ret = 0;
2732 	unsigned long old_min, old_max, rate;
2733 
2734 	lockdep_assert_held(&prepare_lock);
2735 
2736 	if (!clk)
2737 		return 0;
2738 
2739 	trace_clk_set_rate_range(clk->core, min, max);
2740 
2741 	if (min > max) {
2742 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2743 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2744 		       min, max);
2745 		return -EINVAL;
2746 	}
2747 
2748 	if (clk->exclusive_count)
2749 		clk_core_rate_unprotect(clk->core);
2750 
2751 	/* Save the current values in case we need to rollback the change */
2752 	old_min = clk->min_rate;
2753 	old_max = clk->max_rate;
2754 	clk->min_rate = min;
2755 	clk->max_rate = max;
2756 
2757 	if (!clk_core_check_boundaries(clk->core, min, max)) {
2758 		ret = -EINVAL;
2759 		goto out;
2760 	}
2761 
2762 	rate = clk->core->req_rate;
2763 	if (clk->core->flags & CLK_GET_RATE_NOCACHE)
2764 		rate = clk_core_get_rate_recalc(clk->core);
2765 
2766 	/*
2767 	 * Since the boundaries have been changed, let's give the
2768 	 * opportunity to the provider to adjust the clock rate based on
2769 	 * the new boundaries.
2770 	 *
2771 	 * We also need to handle the case where the clock is currently
2772 	 * outside of the boundaries. Clamping the last requested rate
2773 	 * to the current minimum and maximum will also handle this.
2774 	 *
2775 	 * FIXME:
2776 	 * There is a catch. It may fail for the usual reason (clock
2777 	 * broken, clock protected, etc) but also because:
2778 	 * - round_rate() was not favorable and fell on the wrong
2779 	 *   side of the boundary
2780 	 * - the determine_rate() callback does not really check for
2781 	 *   this corner case when determining the rate
2782 	 */
2783 	rate = clamp(rate, min, max);
2784 	ret = clk_core_set_rate_nolock(clk->core, rate);
2785 	if (ret) {
2786 		/* rollback the changes */
2787 		clk->min_rate = old_min;
2788 		clk->max_rate = old_max;
2789 	}
2790 
2791 out:
2792 	if (clk->exclusive_count)
2793 		clk_core_rate_protect(clk->core);
2794 
2795 	return ret;
2796 }
2797 
2798 /**
2799  * clk_set_rate_range - set a rate range for a clock source
2800  * @clk: clock source
2801  * @min: desired minimum clock rate in Hz, inclusive
2802  * @max: desired maximum clock rate in Hz, inclusive
2803  *
2804  * Return: 0 for success or negative errno on failure.
2805  */
clk_set_rate_range(struct clk * clk,unsigned long min,unsigned long max)2806 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2807 {
2808 	int ret;
2809 
2810 	if (!clk)
2811 		return 0;
2812 
2813 	clk_prepare_lock();
2814 
2815 	ret = clk_set_rate_range_nolock(clk, min, max);
2816 
2817 	clk_prepare_unlock();
2818 
2819 	return ret;
2820 }
2821 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2822 
2823 /**
2824  * clk_set_min_rate - set a minimum clock rate for a clock source
2825  * @clk: clock source
2826  * @rate: desired minimum clock rate in Hz, inclusive
2827  *
2828  * Returns success (0) or negative errno.
2829  */
clk_set_min_rate(struct clk * clk,unsigned long rate)2830 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2831 {
2832 	if (!clk)
2833 		return 0;
2834 
2835 	trace_clk_set_min_rate(clk->core, rate);
2836 
2837 	return clk_set_rate_range(clk, rate, clk->max_rate);
2838 }
2839 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2840 
2841 /**
2842  * clk_set_max_rate - set a maximum clock rate for a clock source
2843  * @clk: clock source
2844  * @rate: desired maximum clock rate in Hz, inclusive
2845  *
2846  * Returns success (0) or negative errno.
2847  */
clk_set_max_rate(struct clk * clk,unsigned long rate)2848 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2849 {
2850 	if (!clk)
2851 		return 0;
2852 
2853 	trace_clk_set_max_rate(clk->core, rate);
2854 
2855 	return clk_set_rate_range(clk, clk->min_rate, rate);
2856 }
2857 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2858 
2859 /**
2860  * clk_get_parent - return the parent of a clk
2861  * @clk: the clk whose parent gets returned
2862  *
2863  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2864  */
clk_get_parent(struct clk * clk)2865 struct clk *clk_get_parent(struct clk *clk)
2866 {
2867 	struct clk *parent;
2868 
2869 	if (!clk)
2870 		return NULL;
2871 
2872 	clk_prepare_lock();
2873 	/* TODO: Create a per-user clk and change callers to call clk_put */
2874 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2875 	clk_prepare_unlock();
2876 
2877 	return parent;
2878 }
2879 EXPORT_SYMBOL_GPL(clk_get_parent);
2880 
__clk_init_parent(struct clk_core * core)2881 static struct clk_core *__clk_init_parent(struct clk_core *core)
2882 {
2883 	u8 index = 0;
2884 
2885 	if (core->num_parents > 1 && core->ops->get_parent)
2886 		index = core->ops->get_parent(core->hw);
2887 
2888 	return clk_core_get_parent_by_index(core, index);
2889 }
2890 
clk_core_reparent(struct clk_core * core,struct clk_core * new_parent)2891 static void clk_core_reparent(struct clk_core *core,
2892 				  struct clk_core *new_parent)
2893 {
2894 	clk_reparent(core, new_parent);
2895 	__clk_recalc_accuracies(core);
2896 	__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2897 }
2898 
clk_hw_reparent(struct clk_hw * hw,struct clk_hw * new_parent)2899 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2900 {
2901 	if (!hw)
2902 		return;
2903 
2904 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2905 }
2906 
2907 /**
2908  * clk_has_parent - check if a clock is a possible parent for another
2909  * @clk: clock source
2910  * @parent: parent clock source
2911  *
2912  * This function can be used in drivers that need to check that a clock can be
2913  * the parent of another without actually changing the parent.
2914  *
2915  * Returns true if @parent is a possible parent for @clk, false otherwise.
2916  */
clk_has_parent(const struct clk * clk,const struct clk * parent)2917 bool clk_has_parent(const struct clk *clk, const struct clk *parent)
2918 {
2919 	/* NULL clocks should be nops, so return success if either is NULL. */
2920 	if (!clk || !parent)
2921 		return true;
2922 
2923 	return clk_core_has_parent(clk->core, parent->core);
2924 }
2925 EXPORT_SYMBOL_GPL(clk_has_parent);
2926 
clk_core_set_parent_nolock(struct clk_core * core,struct clk_core * parent)2927 static int clk_core_set_parent_nolock(struct clk_core *core,
2928 				      struct clk_core *parent)
2929 {
2930 	int ret = 0;
2931 	int p_index = 0;
2932 	unsigned long p_rate = 0;
2933 
2934 	lockdep_assert_held(&prepare_lock);
2935 
2936 	if (!core)
2937 		return 0;
2938 
2939 	if (core->parent == parent)
2940 		return 0;
2941 
2942 	/* verify ops for multi-parent clks */
2943 	if (core->num_parents > 1 && !core->ops->set_parent)
2944 		return -EPERM;
2945 
2946 	/* check that we are allowed to re-parent if the clock is in use */
2947 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2948 		return -EBUSY;
2949 
2950 	if (clk_core_rate_is_protected(core))
2951 		return -EBUSY;
2952 
2953 	/* try finding the new parent index */
2954 	if (parent) {
2955 		p_index = clk_fetch_parent_index(core, parent);
2956 		if (p_index < 0) {
2957 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2958 					__func__, parent->name, core->name);
2959 			return p_index;
2960 		}
2961 		p_rate = parent->rate;
2962 	}
2963 
2964 	ret = clk_pm_runtime_get(core);
2965 	if (ret)
2966 		return ret;
2967 
2968 	/* propagate PRE_RATE_CHANGE notifications */
2969 	ret = __clk_speculate_rates(core, p_rate);
2970 
2971 	/* abort if a driver objects */
2972 	if (ret & NOTIFY_STOP_MASK)
2973 		goto runtime_put;
2974 
2975 	/* do the re-parent */
2976 	ret = __clk_set_parent(core, parent, p_index);
2977 
2978 	/* propagate rate an accuracy recalculation accordingly */
2979 	if (ret) {
2980 		__clk_recalc_rates(core, true, ABORT_RATE_CHANGE);
2981 	} else {
2982 		__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2983 		__clk_recalc_accuracies(core);
2984 	}
2985 
2986 runtime_put:
2987 	clk_pm_runtime_put(core);
2988 
2989 	return ret;
2990 }
2991 
clk_hw_set_parent(struct clk_hw * hw,struct clk_hw * parent)2992 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2993 {
2994 	return clk_core_set_parent_nolock(hw->core, parent->core);
2995 }
2996 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2997 
2998 /**
2999  * clk_set_parent - switch the parent of a mux clk
3000  * @clk: the mux clk whose input we are switching
3001  * @parent: the new input to clk
3002  *
3003  * Re-parent clk to use parent as its new input source.  If clk is in
3004  * prepared state, the clk will get enabled for the duration of this call. If
3005  * that's not acceptable for a specific clk (Eg: the consumer can't handle
3006  * that, the reparenting is glitchy in hardware, etc), use the
3007  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
3008  *
3009  * After successfully changing clk's parent clk_set_parent will update the
3010  * clk topology, sysfs topology and propagate rate recalculation via
3011  * __clk_recalc_rates.
3012  *
3013  * Returns 0 on success, -EERROR otherwise.
3014  */
clk_set_parent(struct clk * clk,struct clk * parent)3015 int clk_set_parent(struct clk *clk, struct clk *parent)
3016 {
3017 	int ret;
3018 
3019 	if (!clk)
3020 		return 0;
3021 
3022 	clk_prepare_lock();
3023 
3024 	if (clk->exclusive_count)
3025 		clk_core_rate_unprotect(clk->core);
3026 
3027 	ret = clk_core_set_parent_nolock(clk->core,
3028 					 parent ? parent->core : NULL);
3029 
3030 	if (clk->exclusive_count)
3031 		clk_core_rate_protect(clk->core);
3032 
3033 	clk_prepare_unlock();
3034 
3035 	return ret;
3036 }
3037 EXPORT_SYMBOL_GPL(clk_set_parent);
3038 
clk_core_set_phase_nolock(struct clk_core * core,int degrees)3039 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
3040 {
3041 	int ret = -EINVAL;
3042 
3043 	lockdep_assert_held(&prepare_lock);
3044 
3045 	if (!core)
3046 		return 0;
3047 
3048 	if (clk_core_rate_is_protected(core))
3049 		return -EBUSY;
3050 
3051 	trace_clk_set_phase(core, degrees);
3052 
3053 	if (core->ops->set_phase) {
3054 		ret = core->ops->set_phase(core->hw, degrees);
3055 		if (!ret)
3056 			core->phase = degrees;
3057 	}
3058 
3059 	trace_clk_set_phase_complete(core, degrees);
3060 
3061 	return ret;
3062 }
3063 
3064 /**
3065  * clk_set_phase - adjust the phase shift of a clock signal
3066  * @clk: clock signal source
3067  * @degrees: number of degrees the signal is shifted
3068  *
3069  * Shifts the phase of a clock signal by the specified
3070  * degrees. Returns 0 on success, -EERROR otherwise.
3071  *
3072  * This function makes no distinction about the input or reference
3073  * signal that we adjust the clock signal phase against. For example
3074  * phase locked-loop clock signal generators we may shift phase with
3075  * respect to feedback clock signal input, but for other cases the
3076  * clock phase may be shifted with respect to some other, unspecified
3077  * signal.
3078  *
3079  * Additionally the concept of phase shift does not propagate through
3080  * the clock tree hierarchy, which sets it apart from clock rates and
3081  * clock accuracy. A parent clock phase attribute does not have an
3082  * impact on the phase attribute of a child clock.
3083  */
clk_set_phase(struct clk * clk,int degrees)3084 int clk_set_phase(struct clk *clk, int degrees)
3085 {
3086 	int ret;
3087 
3088 	if (!clk)
3089 		return 0;
3090 
3091 	/* sanity check degrees */
3092 	degrees %= 360;
3093 	if (degrees < 0)
3094 		degrees += 360;
3095 
3096 	clk_prepare_lock();
3097 
3098 	if (clk->exclusive_count)
3099 		clk_core_rate_unprotect(clk->core);
3100 
3101 	ret = clk_core_set_phase_nolock(clk->core, degrees);
3102 
3103 	if (clk->exclusive_count)
3104 		clk_core_rate_protect(clk->core);
3105 
3106 	clk_prepare_unlock();
3107 
3108 	return ret;
3109 }
3110 EXPORT_SYMBOL_GPL(clk_set_phase);
3111 
clk_core_get_phase(struct clk_core * core)3112 static int clk_core_get_phase(struct clk_core *core)
3113 {
3114 	int ret;
3115 
3116 	lockdep_assert_held(&prepare_lock);
3117 	if (!core->ops->get_phase)
3118 		return 0;
3119 
3120 	/* Always try to update cached phase if possible */
3121 	ret = core->ops->get_phase(core->hw);
3122 	if (ret >= 0)
3123 		core->phase = ret;
3124 
3125 	return ret;
3126 }
3127 
3128 /**
3129  * clk_get_phase - return the phase shift of a clock signal
3130  * @clk: clock signal source
3131  *
3132  * Returns the phase shift of a clock node in degrees, otherwise returns
3133  * -EERROR.
3134  */
clk_get_phase(struct clk * clk)3135 int clk_get_phase(struct clk *clk)
3136 {
3137 	int ret;
3138 
3139 	if (!clk)
3140 		return 0;
3141 
3142 	clk_prepare_lock();
3143 	ret = clk_core_get_phase(clk->core);
3144 	clk_prepare_unlock();
3145 
3146 	return ret;
3147 }
3148 EXPORT_SYMBOL_GPL(clk_get_phase);
3149 
clk_core_reset_duty_cycle_nolock(struct clk_core * core)3150 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
3151 {
3152 	/* Assume a default value of 50% */
3153 	core->duty.num = 1;
3154 	core->duty.den = 2;
3155 }
3156 
3157 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
3158 
clk_core_update_duty_cycle_nolock(struct clk_core * core)3159 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
3160 {
3161 	struct clk_duty *duty = &core->duty;
3162 	int ret = 0;
3163 
3164 	if (!core->ops->get_duty_cycle)
3165 		return clk_core_update_duty_cycle_parent_nolock(core);
3166 
3167 	ret = core->ops->get_duty_cycle(core->hw, duty);
3168 	if (ret)
3169 		goto reset;
3170 
3171 	/* Don't trust the clock provider too much */
3172 	if (duty->den == 0 || duty->num > duty->den) {
3173 		ret = -EINVAL;
3174 		goto reset;
3175 	}
3176 
3177 	return 0;
3178 
3179 reset:
3180 	clk_core_reset_duty_cycle_nolock(core);
3181 	return ret;
3182 }
3183 
clk_core_update_duty_cycle_parent_nolock(struct clk_core * core)3184 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
3185 {
3186 	int ret = 0;
3187 
3188 	if (core->parent &&
3189 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
3190 		ret = clk_core_update_duty_cycle_nolock(core->parent);
3191 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3192 	} else {
3193 		clk_core_reset_duty_cycle_nolock(core);
3194 	}
3195 
3196 	return ret;
3197 }
3198 
3199 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3200 						 struct clk_duty *duty);
3201 
clk_core_set_duty_cycle_nolock(struct clk_core * core,struct clk_duty * duty)3202 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
3203 					  struct clk_duty *duty)
3204 {
3205 	int ret;
3206 
3207 	lockdep_assert_held(&prepare_lock);
3208 
3209 	if (clk_core_rate_is_protected(core))
3210 		return -EBUSY;
3211 
3212 	trace_clk_set_duty_cycle(core, duty);
3213 
3214 	if (!core->ops->set_duty_cycle)
3215 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
3216 
3217 	ret = core->ops->set_duty_cycle(core->hw, duty);
3218 	if (!ret)
3219 		memcpy(&core->duty, duty, sizeof(*duty));
3220 
3221 	trace_clk_set_duty_cycle_complete(core, duty);
3222 
3223 	return ret;
3224 }
3225 
clk_core_set_duty_cycle_parent_nolock(struct clk_core * core,struct clk_duty * duty)3226 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3227 						 struct clk_duty *duty)
3228 {
3229 	int ret = 0;
3230 
3231 	if (core->parent &&
3232 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
3233 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
3234 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3235 	}
3236 
3237 	return ret;
3238 }
3239 
3240 /**
3241  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
3242  * @clk: clock signal source
3243  * @num: numerator of the duty cycle ratio to be applied
3244  * @den: denominator of the duty cycle ratio to be applied
3245  *
3246  * Apply the duty cycle ratio if the ratio is valid and the clock can
3247  * perform this operation
3248  *
3249  * Returns (0) on success, a negative errno otherwise.
3250  */
clk_set_duty_cycle(struct clk * clk,unsigned int num,unsigned int den)3251 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
3252 {
3253 	int ret;
3254 	struct clk_duty duty;
3255 
3256 	if (!clk)
3257 		return 0;
3258 
3259 	/* sanity check the ratio */
3260 	if (den == 0 || num > den)
3261 		return -EINVAL;
3262 
3263 	duty.num = num;
3264 	duty.den = den;
3265 
3266 	clk_prepare_lock();
3267 
3268 	if (clk->exclusive_count)
3269 		clk_core_rate_unprotect(clk->core);
3270 
3271 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
3272 
3273 	if (clk->exclusive_count)
3274 		clk_core_rate_protect(clk->core);
3275 
3276 	clk_prepare_unlock();
3277 
3278 	return ret;
3279 }
3280 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
3281 
clk_core_get_scaled_duty_cycle(struct clk_core * core,unsigned int scale)3282 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
3283 					  unsigned int scale)
3284 {
3285 	struct clk_duty *duty = &core->duty;
3286 	int ret;
3287 
3288 	clk_prepare_lock();
3289 
3290 	ret = clk_core_update_duty_cycle_nolock(core);
3291 	if (!ret)
3292 		ret = mult_frac(scale, duty->num, duty->den);
3293 
3294 	clk_prepare_unlock();
3295 
3296 	return ret;
3297 }
3298 
3299 /**
3300  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
3301  * @clk: clock signal source
3302  * @scale: scaling factor to be applied to represent the ratio as an integer
3303  *
3304  * Returns the duty cycle ratio of a clock node multiplied by the provided
3305  * scaling factor, or negative errno on error.
3306  */
clk_get_scaled_duty_cycle(struct clk * clk,unsigned int scale)3307 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
3308 {
3309 	if (!clk)
3310 		return 0;
3311 
3312 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
3313 }
3314 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
3315 
3316 /**
3317  * clk_is_match - check if two clk's point to the same hardware clock
3318  * @p: clk compared against q
3319  * @q: clk compared against p
3320  *
3321  * Returns true if the two struct clk pointers both point to the same hardware
3322  * clock node. Put differently, returns true if struct clk *p and struct clk *q
3323  * share the same struct clk_core object.
3324  *
3325  * Returns false otherwise. Note that two NULL clks are treated as matching.
3326  */
clk_is_match(const struct clk * p,const struct clk * q)3327 bool clk_is_match(const struct clk *p, const struct clk *q)
3328 {
3329 	/* trivial case: identical struct clk's or both NULL */
3330 	if (p == q)
3331 		return true;
3332 
3333 	/* true if clk->core pointers match. Avoid dereferencing garbage */
3334 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
3335 		if (p->core == q->core)
3336 			return true;
3337 
3338 	return false;
3339 }
3340 EXPORT_SYMBOL_GPL(clk_is_match);
3341 
3342 /***        debugfs support        ***/
3343 
3344 #ifdef CONFIG_DEBUG_FS
3345 #include <linux/debugfs.h>
3346 
3347 static struct dentry *rootdir;
3348 static int inited = 0;
3349 static DEFINE_MUTEX(clk_debug_lock);
3350 static HLIST_HEAD(clk_debug_list);
3351 
3352 static struct hlist_head *orphan_list[] = {
3353 	&clk_orphan_list,
3354 	NULL,
3355 };
3356 
clk_summary_show_one(struct seq_file * s,struct clk_core * c,int level)3357 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3358 				 int level)
3359 {
3360 	int phase;
3361 	struct clk *clk_user;
3362 	int multi_node = 0;
3363 
3364 	seq_printf(s, "%*s%-*s %-7d %-8d %-8d %-11lu %-10lu ",
3365 		   level * 3 + 1, "",
3366 		   35 - level * 3, c->name,
3367 		   c->enable_count, c->prepare_count, c->protect_count,
3368 		   clk_core_get_rate_recalc(c),
3369 		   clk_core_get_accuracy_recalc(c));
3370 
3371 	phase = clk_core_get_phase(c);
3372 	if (phase >= 0)
3373 		seq_printf(s, "%-5d", phase);
3374 	else
3375 		seq_puts(s, "-----");
3376 
3377 	seq_printf(s, " %-6d", clk_core_get_scaled_duty_cycle(c, 100000));
3378 
3379 	if (c->ops->is_enabled)
3380 		seq_printf(s, " %5c ", clk_core_is_enabled(c) ? 'Y' : 'N');
3381 	else if (!c->ops->enable)
3382 		seq_printf(s, " %5c ", 'Y');
3383 	else
3384 		seq_printf(s, " %5c ", '?');
3385 
3386 	hlist_for_each_entry(clk_user, &c->clks, clks_node) {
3387 		seq_printf(s, "%*s%-*s  %-25s\n",
3388 			   level * 3 + 2 + 105 * multi_node, "",
3389 			   30,
3390 			   clk_user->dev_id ? clk_user->dev_id : "deviceless",
3391 			   clk_user->con_id ? clk_user->con_id : "no_connection_id");
3392 
3393 		multi_node = 1;
3394 	}
3395 
3396 }
3397 
clk_summary_show_subtree(struct seq_file * s,struct clk_core * c,int level)3398 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3399 				     int level)
3400 {
3401 	struct clk_core *child;
3402 
3403 	clk_summary_show_one(s, c, level);
3404 
3405 	hlist_for_each_entry(child, &c->children, child_node)
3406 		clk_summary_show_subtree(s, child, level + 1);
3407 }
3408 
clk_summary_show(struct seq_file * s,void * data)3409 static int clk_summary_show(struct seq_file *s, void *data)
3410 {
3411 	struct clk_core *c;
3412 	struct hlist_head **lists = s->private;
3413 	int ret;
3414 
3415 	seq_puts(s, "                                 enable  prepare  protect                                duty  hardware                            connection\n");
3416 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable   consumer                         id\n");
3417 	seq_puts(s, "---------------------------------------------------------------------------------------------------------------------------------------------\n");
3418 
3419 	ret = clk_pm_runtime_get_all();
3420 	if (ret)
3421 		return ret;
3422 
3423 	clk_prepare_lock();
3424 
3425 	for (; *lists; lists++)
3426 		hlist_for_each_entry(c, *lists, child_node)
3427 			clk_summary_show_subtree(s, c, 0);
3428 
3429 	clk_prepare_unlock();
3430 	clk_pm_runtime_put_all();
3431 
3432 	return 0;
3433 }
3434 DEFINE_SHOW_ATTRIBUTE(clk_summary);
3435 
clk_dump_one(struct seq_file * s,struct clk_core * c,int level)3436 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3437 {
3438 	int phase;
3439 	unsigned long min_rate, max_rate;
3440 
3441 	clk_core_get_boundaries(c, &min_rate, &max_rate);
3442 
3443 	/* This should be JSON format, i.e. elements separated with a comma */
3444 	seq_printf(s, "\"%s\": { ", c->name);
3445 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3446 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3447 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3448 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3449 	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3450 	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3451 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3452 	phase = clk_core_get_phase(c);
3453 	if (phase >= 0)
3454 		seq_printf(s, "\"phase\": %d,", phase);
3455 	seq_printf(s, "\"duty_cycle\": %u",
3456 		   clk_core_get_scaled_duty_cycle(c, 100000));
3457 }
3458 
clk_dump_subtree(struct seq_file * s,struct clk_core * c,int level)3459 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3460 {
3461 	struct clk_core *child;
3462 
3463 	clk_dump_one(s, c, level);
3464 
3465 	hlist_for_each_entry(child, &c->children, child_node) {
3466 		seq_putc(s, ',');
3467 		clk_dump_subtree(s, child, level + 1);
3468 	}
3469 
3470 	seq_putc(s, '}');
3471 }
3472 
clk_dump_show(struct seq_file * s,void * data)3473 static int clk_dump_show(struct seq_file *s, void *data)
3474 {
3475 	struct clk_core *c;
3476 	bool first_node = true;
3477 	struct hlist_head **lists = s->private;
3478 	int ret;
3479 
3480 	ret = clk_pm_runtime_get_all();
3481 	if (ret)
3482 		return ret;
3483 
3484 	seq_putc(s, '{');
3485 
3486 	clk_prepare_lock();
3487 
3488 	for (; *lists; lists++) {
3489 		hlist_for_each_entry(c, *lists, child_node) {
3490 			if (!first_node)
3491 				seq_putc(s, ',');
3492 			first_node = false;
3493 			clk_dump_subtree(s, c, 0);
3494 		}
3495 	}
3496 
3497 	clk_prepare_unlock();
3498 	clk_pm_runtime_put_all();
3499 
3500 	seq_puts(s, "}\n");
3501 	return 0;
3502 }
3503 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3504 
3505 #define CLOCK_ALLOW_WRITE_DEBUGFS
3506 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3507 /*
3508  * This can be dangerous, therefore don't provide any real compile time
3509  * configuration option for this feature.
3510  * People who want to use this will need to modify the source code directly.
3511  */
clk_rate_set(void * data,u64 val)3512 static int clk_rate_set(void *data, u64 val)
3513 {
3514 	struct clk_core *core = data;
3515 	int ret;
3516 
3517 	clk_prepare_lock();
3518 	ret = clk_core_set_rate_nolock(core, val);
3519 	clk_prepare_unlock();
3520 
3521 	return ret;
3522 }
3523 
3524 #define clk_rate_mode	0644
3525 
clk_prepare_enable_set(void * data,u64 val)3526 static int clk_prepare_enable_set(void *data, u64 val)
3527 {
3528 	struct clk_core *core = data;
3529 	int ret = 0;
3530 
3531 	if (val)
3532 		ret = clk_prepare_enable(core->hw->clk);
3533 	else
3534 		clk_disable_unprepare(core->hw->clk);
3535 
3536 	return ret;
3537 }
3538 
clk_prepare_enable_get(void * data,u64 * val)3539 static int clk_prepare_enable_get(void *data, u64 *val)
3540 {
3541 	struct clk_core *core = data;
3542 
3543 	*val = core->enable_count && core->prepare_count;
3544 	return 0;
3545 }
3546 
3547 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3548 			 clk_prepare_enable_set, "%llu\n");
3549 
3550 #else
3551 #define clk_rate_set	NULL
3552 #define clk_rate_mode	0444
3553 #endif
3554 
clk_rate_get(void * data,u64 * val)3555 static int clk_rate_get(void *data, u64 *val)
3556 {
3557 	struct clk_core *core = data;
3558 
3559 	clk_prepare_lock();
3560 	*val = clk_core_get_rate_recalc(core);
3561 	clk_prepare_unlock();
3562 
3563 	return 0;
3564 }
3565 
3566 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3567 
3568 static const struct {
3569 	unsigned long flag;
3570 	const char *name;
3571 } clk_flags[] = {
3572 #define ENTRY(f) { f, #f }
3573 	ENTRY(CLK_SET_RATE_GATE),
3574 	ENTRY(CLK_SET_PARENT_GATE),
3575 	ENTRY(CLK_SET_RATE_PARENT),
3576 	ENTRY(CLK_IGNORE_UNUSED),
3577 	ENTRY(CLK_GET_RATE_NOCACHE),
3578 	ENTRY(CLK_SET_RATE_NO_REPARENT),
3579 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3580 	ENTRY(CLK_RECALC_NEW_RATES),
3581 	ENTRY(CLK_SET_RATE_UNGATE),
3582 	ENTRY(CLK_IS_CRITICAL),
3583 	ENTRY(CLK_OPS_PARENT_ENABLE),
3584 	ENTRY(CLK_DUTY_CYCLE_PARENT),
3585 #undef ENTRY
3586 };
3587 
clk_flags_show(struct seq_file * s,void * data)3588 static int clk_flags_show(struct seq_file *s, void *data)
3589 {
3590 	struct clk_core *core = s->private;
3591 	unsigned long flags = core->flags;
3592 	unsigned int i;
3593 
3594 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3595 		if (flags & clk_flags[i].flag) {
3596 			seq_printf(s, "%s\n", clk_flags[i].name);
3597 			flags &= ~clk_flags[i].flag;
3598 		}
3599 	}
3600 	if (flags) {
3601 		/* Unknown flags */
3602 		seq_printf(s, "0x%lx\n", flags);
3603 	}
3604 
3605 	return 0;
3606 }
3607 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3608 
possible_parent_show(struct seq_file * s,struct clk_core * core,unsigned int i,char terminator)3609 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3610 				 unsigned int i, char terminator)
3611 {
3612 	struct clk_core *parent;
3613 	const char *name = NULL;
3614 
3615 	/*
3616 	 * Go through the following options to fetch a parent's name.
3617 	 *
3618 	 * 1. Fetch the registered parent clock and use its name
3619 	 * 2. Use the global (fallback) name if specified
3620 	 * 3. Use the local fw_name if provided
3621 	 * 4. Fetch parent clock's clock-output-name if DT index was set
3622 	 *
3623 	 * This may still fail in some cases, such as when the parent is
3624 	 * specified directly via a struct clk_hw pointer, but it isn't
3625 	 * registered (yet).
3626 	 */
3627 	parent = clk_core_get_parent_by_index(core, i);
3628 	if (parent) {
3629 		seq_puts(s, parent->name);
3630 	} else if (core->parents[i].name) {
3631 		seq_puts(s, core->parents[i].name);
3632 	} else if (core->parents[i].fw_name) {
3633 		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3634 	} else {
3635 		if (core->parents[i].index >= 0)
3636 			name = of_clk_get_parent_name(core->of_node, core->parents[i].index);
3637 		if (!name)
3638 			name = "(missing)";
3639 
3640 		seq_puts(s, name);
3641 	}
3642 
3643 	seq_putc(s, terminator);
3644 }
3645 
possible_parents_show(struct seq_file * s,void * data)3646 static int possible_parents_show(struct seq_file *s, void *data)
3647 {
3648 	struct clk_core *core = s->private;
3649 	int i;
3650 
3651 	for (i = 0; i < core->num_parents - 1; i++)
3652 		possible_parent_show(s, core, i, ' ');
3653 
3654 	possible_parent_show(s, core, i, '\n');
3655 
3656 	return 0;
3657 }
3658 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3659 
current_parent_show(struct seq_file * s,void * data)3660 static int current_parent_show(struct seq_file *s, void *data)
3661 {
3662 	struct clk_core *core = s->private;
3663 
3664 	if (core->parent)
3665 		seq_printf(s, "%s\n", core->parent->name);
3666 
3667 	return 0;
3668 }
3669 DEFINE_SHOW_ATTRIBUTE(current_parent);
3670 
3671 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
current_parent_write(struct file * file,const char __user * ubuf,size_t count,loff_t * ppos)3672 static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3673 				    size_t count, loff_t *ppos)
3674 {
3675 	struct seq_file *s = file->private_data;
3676 	struct clk_core *core = s->private;
3677 	struct clk_core *parent;
3678 	u8 idx;
3679 	int err;
3680 
3681 	err = kstrtou8_from_user(ubuf, count, 0, &idx);
3682 	if (err < 0)
3683 		return err;
3684 
3685 	parent = clk_core_get_parent_by_index(core, idx);
3686 	if (!parent)
3687 		return -ENOENT;
3688 
3689 	clk_prepare_lock();
3690 	err = clk_core_set_parent_nolock(core, parent);
3691 	clk_prepare_unlock();
3692 	if (err)
3693 		return err;
3694 
3695 	return count;
3696 }
3697 
3698 static const struct file_operations current_parent_rw_fops = {
3699 	.open		= current_parent_open,
3700 	.write		= current_parent_write,
3701 	.read		= seq_read,
3702 	.llseek		= seq_lseek,
3703 	.release	= single_release,
3704 };
3705 #endif
3706 
clk_duty_cycle_show(struct seq_file * s,void * data)3707 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3708 {
3709 	struct clk_core *core = s->private;
3710 	struct clk_duty *duty = &core->duty;
3711 
3712 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3713 
3714 	return 0;
3715 }
3716 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3717 
clk_min_rate_show(struct seq_file * s,void * data)3718 static int clk_min_rate_show(struct seq_file *s, void *data)
3719 {
3720 	struct clk_core *core = s->private;
3721 	unsigned long min_rate, max_rate;
3722 
3723 	clk_prepare_lock();
3724 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3725 	clk_prepare_unlock();
3726 	seq_printf(s, "%lu\n", min_rate);
3727 
3728 	return 0;
3729 }
3730 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3731 
clk_max_rate_show(struct seq_file * s,void * data)3732 static int clk_max_rate_show(struct seq_file *s, void *data)
3733 {
3734 	struct clk_core *core = s->private;
3735 	unsigned long min_rate, max_rate;
3736 
3737 	clk_prepare_lock();
3738 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3739 	clk_prepare_unlock();
3740 	seq_printf(s, "%lu\n", max_rate);
3741 
3742 	return 0;
3743 }
3744 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3745 
clk_debug_create_one(struct clk_core * core,struct dentry * pdentry)3746 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3747 {
3748 	struct dentry *root;
3749 
3750 	if (!core || !pdentry)
3751 		return;
3752 
3753 	root = debugfs_create_dir(core->name, pdentry);
3754 	core->dentry = root;
3755 
3756 	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3757 			    &clk_rate_fops);
3758 	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3759 	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3760 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3761 	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3762 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3763 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3764 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3765 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3766 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3767 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3768 			    &clk_duty_cycle_fops);
3769 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3770 	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3771 			    &clk_prepare_enable_fops);
3772 
3773 	if (core->num_parents > 1)
3774 		debugfs_create_file("clk_parent", 0644, root, core,
3775 				    &current_parent_rw_fops);
3776 	else
3777 #endif
3778 	if (core->num_parents > 0)
3779 		debugfs_create_file("clk_parent", 0444, root, core,
3780 				    &current_parent_fops);
3781 
3782 	if (core->num_parents > 1)
3783 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3784 				    &possible_parents_fops);
3785 
3786 	if (core->ops->debug_init)
3787 		core->ops->debug_init(core->hw, core->dentry);
3788 }
3789 
3790 /**
3791  * clk_debug_register - add a clk node to the debugfs clk directory
3792  * @core: the clk being added to the debugfs clk directory
3793  *
3794  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3795  * initialized.  Otherwise it bails out early since the debugfs clk directory
3796  * will be created lazily by clk_debug_init as part of a late_initcall.
3797  */
clk_debug_register(struct clk_core * core)3798 static void clk_debug_register(struct clk_core *core)
3799 {
3800 	mutex_lock(&clk_debug_lock);
3801 	hlist_add_head(&core->debug_node, &clk_debug_list);
3802 	if (inited)
3803 		clk_debug_create_one(core, rootdir);
3804 	mutex_unlock(&clk_debug_lock);
3805 }
3806 
3807  /**
3808  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3809  * @core: the clk being removed from the debugfs clk directory
3810  *
3811  * Dynamically removes a clk and all its child nodes from the
3812  * debugfs clk directory if clk->dentry points to debugfs created by
3813  * clk_debug_register in __clk_core_init.
3814  */
clk_debug_unregister(struct clk_core * core)3815 static void clk_debug_unregister(struct clk_core *core)
3816 {
3817 	mutex_lock(&clk_debug_lock);
3818 	hlist_del_init(&core->debug_node);
3819 	debugfs_remove_recursive(core->dentry);
3820 	core->dentry = NULL;
3821 	mutex_unlock(&clk_debug_lock);
3822 }
3823 
3824 /**
3825  * clk_debug_init - lazily populate the debugfs clk directory
3826  *
3827  * clks are often initialized very early during boot before memory can be
3828  * dynamically allocated and well before debugfs is setup. This function
3829  * populates the debugfs clk directory once at boot-time when we know that
3830  * debugfs is setup. It should only be called once at boot-time, all other clks
3831  * added dynamically will be done so with clk_debug_register.
3832  */
clk_debug_init(void)3833 static int __init clk_debug_init(void)
3834 {
3835 	struct clk_core *core;
3836 
3837 	rootdir = debugfs_create_dir("clk", NULL);
3838 
3839 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3840 			    &clk_summary_fops);
3841 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3842 			    &clk_dump_fops);
3843 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3844 			    &clk_summary_fops);
3845 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3846 			    &clk_dump_fops);
3847 
3848 	mutex_lock(&clk_debug_lock);
3849 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3850 		clk_debug_create_one(core, rootdir);
3851 
3852 	inited = 1;
3853 	mutex_unlock(&clk_debug_lock);
3854 
3855 	return 0;
3856 }
3857 late_initcall(clk_debug_init);
3858 #else
clk_debug_register(struct clk_core * core)3859 static inline void clk_debug_register(struct clk_core *core) { }
clk_debug_unregister(struct clk_core * core)3860 static inline void clk_debug_unregister(struct clk_core *core)
3861 {
3862 }
3863 #endif
3864 
clk_core_reparent_orphans_nolock(void)3865 static void clk_core_reparent_orphans_nolock(void)
3866 {
3867 	struct clk_core *orphan;
3868 	struct hlist_node *tmp2;
3869 
3870 	/*
3871 	 * walk the list of orphan clocks and reparent any that newly finds a
3872 	 * parent.
3873 	 */
3874 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3875 		struct clk_core *parent = __clk_init_parent(orphan);
3876 
3877 		/*
3878 		 * We need to use __clk_set_parent_before() and _after() to
3879 		 * properly migrate any prepare/enable count of the orphan
3880 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3881 		 * are enabled during init but might not have a parent yet.
3882 		 */
3883 		if (parent) {
3884 			/* update the clk tree topology */
3885 			__clk_set_parent_before(orphan, parent);
3886 			__clk_set_parent_after(orphan, parent, NULL);
3887 			__clk_recalc_accuracies(orphan);
3888 			__clk_recalc_rates(orphan, true, 0);
3889 			__clk_core_update_orphan_hold_state(orphan);
3890 
3891 			/*
3892 			 * __clk_init_parent() will set the initial req_rate to
3893 			 * 0 if the clock doesn't have clk_ops::recalc_rate and
3894 			 * is an orphan when it's registered.
3895 			 *
3896 			 * 'req_rate' is used by clk_set_rate_range() and
3897 			 * clk_put() to trigger a clk_set_rate() call whenever
3898 			 * the boundaries are modified. Let's make sure
3899 			 * 'req_rate' is set to something non-zero so that
3900 			 * clk_set_rate_range() doesn't drop the frequency.
3901 			 */
3902 			orphan->req_rate = orphan->rate;
3903 		}
3904 	}
3905 }
3906 
3907 /**
3908  * __clk_core_init - initialize the data structures in a struct clk_core
3909  * @core:	clk_core being initialized
3910  *
3911  * Initializes the lists in struct clk_core, queries the hardware for the
3912  * parent and rate and sets them both.
3913  */
__clk_core_init(struct clk_core * core)3914 static int __clk_core_init(struct clk_core *core)
3915 {
3916 	int ret;
3917 	struct clk_core *parent;
3918 	unsigned long rate;
3919 	int phase;
3920 
3921 	clk_prepare_lock();
3922 
3923 	/*
3924 	 * Set hw->core after grabbing the prepare_lock to synchronize with
3925 	 * callers of clk_core_fill_parent_index() where we treat hw->core
3926 	 * being NULL as the clk not being registered yet. This is crucial so
3927 	 * that clks aren't parented until their parent is fully registered.
3928 	 */
3929 	core->hw->core = core;
3930 
3931 	ret = clk_pm_runtime_get(core);
3932 	if (ret)
3933 		goto unlock;
3934 
3935 	/* check to see if a clock with this name is already registered */
3936 	if (clk_core_lookup(core->name)) {
3937 		pr_debug("%s: clk %s already initialized\n",
3938 				__func__, core->name);
3939 		ret = -EEXIST;
3940 		goto out;
3941 	}
3942 
3943 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3944 	if (core->ops->set_rate &&
3945 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3946 	      core->ops->recalc_rate)) {
3947 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3948 		       __func__, core->name);
3949 		ret = -EINVAL;
3950 		goto out;
3951 	}
3952 
3953 	if (core->ops->set_parent && !core->ops->get_parent) {
3954 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3955 		       __func__, core->name);
3956 		ret = -EINVAL;
3957 		goto out;
3958 	}
3959 
3960 	if (core->ops->set_parent && !core->ops->determine_rate) {
3961 		pr_err("%s: %s must implement .set_parent & .determine_rate\n",
3962 			__func__, core->name);
3963 		ret = -EINVAL;
3964 		goto out;
3965 	}
3966 
3967 	if (core->num_parents > 1 && !core->ops->get_parent) {
3968 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3969 		       __func__, core->name);
3970 		ret = -EINVAL;
3971 		goto out;
3972 	}
3973 
3974 	if (core->ops->set_rate_and_parent &&
3975 			!(core->ops->set_parent && core->ops->set_rate)) {
3976 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3977 				__func__, core->name);
3978 		ret = -EINVAL;
3979 		goto out;
3980 	}
3981 
3982 	/*
3983 	 * optional platform-specific magic
3984 	 *
3985 	 * The .init callback is not used by any of the basic clock types, but
3986 	 * exists for weird hardware that must perform initialization magic for
3987 	 * CCF to get an accurate view of clock for any other callbacks. It may
3988 	 * also be used needs to perform dynamic allocations. Such allocation
3989 	 * must be freed in the terminate() callback.
3990 	 * This callback shall not be used to initialize the parameters state,
3991 	 * such as rate, parent, etc ...
3992 	 *
3993 	 * If it exist, this callback should called before any other callback of
3994 	 * the clock
3995 	 */
3996 	if (core->ops->init) {
3997 		ret = core->ops->init(core->hw);
3998 		if (ret)
3999 			goto out;
4000 	}
4001 
4002 	parent = core->parent = __clk_init_parent(core);
4003 
4004 	/*
4005 	 * Populate core->parent if parent has already been clk_core_init'd. If
4006 	 * parent has not yet been clk_core_init'd then place clk in the orphan
4007 	 * list.  If clk doesn't have any parents then place it in the root
4008 	 * clk list.
4009 	 *
4010 	 * Every time a new clk is clk_init'd then we walk the list of orphan
4011 	 * clocks and re-parent any that are children of the clock currently
4012 	 * being clk_init'd.
4013 	 */
4014 	if (parent) {
4015 		hlist_add_head(&core->child_node, &parent->children);
4016 		core->orphan = parent->orphan;
4017 	} else if (!core->num_parents) {
4018 		hlist_add_head(&core->child_node, &clk_root_list);
4019 		core->orphan = false;
4020 	} else {
4021 		hlist_add_head(&core->child_node, &clk_orphan_list);
4022 		core->orphan = true;
4023 	}
4024 
4025 	/*
4026 	 * Set clk's accuracy.  The preferred method is to use
4027 	 * .recalc_accuracy. For simple clocks and lazy developers the default
4028 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
4029 	 * parent (or is orphaned) then accuracy is set to zero (perfect
4030 	 * clock).
4031 	 */
4032 	if (core->ops->recalc_accuracy)
4033 		core->accuracy = core->ops->recalc_accuracy(core->hw,
4034 					clk_core_get_accuracy_no_lock(parent));
4035 	else if (parent)
4036 		core->accuracy = parent->accuracy;
4037 	else
4038 		core->accuracy = 0;
4039 
4040 	/*
4041 	 * Set clk's phase by clk_core_get_phase() caching the phase.
4042 	 * Since a phase is by definition relative to its parent, just
4043 	 * query the current clock phase, or just assume it's in phase.
4044 	 */
4045 	phase = clk_core_get_phase(core);
4046 	if (phase < 0) {
4047 		ret = phase;
4048 		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
4049 			core->name);
4050 		goto out;
4051 	}
4052 
4053 	/*
4054 	 * Set clk's duty cycle.
4055 	 */
4056 	clk_core_update_duty_cycle_nolock(core);
4057 
4058 	/*
4059 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
4060 	 * simple clocks and lazy developers the default fallback is to use the
4061 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
4062 	 * then rate is set to zero.
4063 	 */
4064 	if (core->ops->recalc_rate)
4065 		rate = core->ops->recalc_rate(core->hw,
4066 				clk_core_get_rate_nolock(parent));
4067 	else if (parent)
4068 		rate = parent->rate;
4069 	else
4070 		rate = 0;
4071 	core->rate = core->req_rate = rate;
4072 
4073 	core->boot_enabled = clk_core_is_enabled(core);
4074 
4075 	/*
4076 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
4077 	 * don't get accidentally disabled when walking the orphan tree and
4078 	 * reparenting clocks
4079 	 */
4080 	if (core->flags & CLK_IS_CRITICAL) {
4081 		ret = clk_core_prepare(core);
4082 		if (ret) {
4083 			pr_warn("%s: critical clk '%s' failed to prepare\n",
4084 			       __func__, core->name);
4085 			goto out;
4086 		}
4087 
4088 		ret = clk_core_enable_lock(core);
4089 		if (ret) {
4090 			pr_warn("%s: critical clk '%s' failed to enable\n",
4091 			       __func__, core->name);
4092 			clk_core_unprepare(core);
4093 			goto out;
4094 		}
4095 	}
4096 
4097 	clk_core_hold_state(core);
4098 	clk_core_reparent_orphans_nolock();
4099 out:
4100 	clk_pm_runtime_put(core);
4101 unlock:
4102 	if (ret) {
4103 		hlist_del_init(&core->child_node);
4104 		core->hw->core = NULL;
4105 	}
4106 
4107 	clk_prepare_unlock();
4108 
4109 	if (!ret)
4110 		clk_debug_register(core);
4111 
4112 	return ret;
4113 }
4114 
4115 /**
4116  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
4117  * @core: clk to add consumer to
4118  * @clk: consumer to link to a clk
4119  */
clk_core_link_consumer(struct clk_core * core,struct clk * clk)4120 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
4121 {
4122 	clk_prepare_lock();
4123 	hlist_add_head(&clk->clks_node, &core->clks);
4124 	clk_prepare_unlock();
4125 }
4126 
4127 /**
4128  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
4129  * @clk: consumer to unlink
4130  */
clk_core_unlink_consumer(struct clk * clk)4131 static void clk_core_unlink_consumer(struct clk *clk)
4132 {
4133 	lockdep_assert_held(&prepare_lock);
4134 	hlist_del(&clk->clks_node);
4135 }
4136 
4137 /**
4138  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
4139  * @core: clk to allocate a consumer for
4140  * @dev_id: string describing device name
4141  * @con_id: connection ID string on device
4142  *
4143  * Returns: clk consumer left unlinked from the consumer list
4144  */
alloc_clk(struct clk_core * core,const char * dev_id,const char * con_id)4145 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
4146 			     const char *con_id)
4147 {
4148 	struct clk *clk;
4149 
4150 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
4151 	if (!clk)
4152 		return ERR_PTR(-ENOMEM);
4153 
4154 	clk->core = core;
4155 	clk->dev_id = dev_id;
4156 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
4157 	clk->max_rate = ULONG_MAX;
4158 
4159 	return clk;
4160 }
4161 
4162 /**
4163  * free_clk - Free a clk consumer
4164  * @clk: clk consumer to free
4165  *
4166  * Note, this assumes the clk has been unlinked from the clk_core consumer
4167  * list.
4168  */
free_clk(struct clk * clk)4169 static void free_clk(struct clk *clk)
4170 {
4171 	kfree_const(clk->con_id);
4172 	kfree(clk);
4173 }
4174 
4175 /**
4176  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
4177  * a clk_hw
4178  * @dev: clk consumer device
4179  * @hw: clk_hw associated with the clk being consumed
4180  * @dev_id: string describing device name
4181  * @con_id: connection ID string on device
4182  *
4183  * This is the main function used to create a clk pointer for use by clk
4184  * consumers. It connects a consumer to the clk_core and clk_hw structures
4185  * used by the framework and clk provider respectively.
4186  */
clk_hw_create_clk(struct device * dev,struct clk_hw * hw,const char * dev_id,const char * con_id)4187 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
4188 			      const char *dev_id, const char *con_id)
4189 {
4190 	struct clk *clk;
4191 	struct clk_core *core;
4192 
4193 	/* This is to allow this function to be chained to others */
4194 	if (IS_ERR_OR_NULL(hw))
4195 		return ERR_CAST(hw);
4196 
4197 	core = hw->core;
4198 	clk = alloc_clk(core, dev_id, con_id);
4199 	if (IS_ERR(clk))
4200 		return clk;
4201 	clk->dev = dev;
4202 
4203 	if (!try_module_get(core->owner)) {
4204 		free_clk(clk);
4205 		return ERR_PTR(-ENOENT);
4206 	}
4207 
4208 	kref_get(&core->ref);
4209 	clk_core_link_consumer(core, clk);
4210 
4211 	return clk;
4212 }
4213 
4214 /**
4215  * clk_hw_get_clk - get clk consumer given an clk_hw
4216  * @hw: clk_hw associated with the clk being consumed
4217  * @con_id: connection ID string on device
4218  *
4219  * Returns: new clk consumer
4220  * This is the function to be used by providers which need
4221  * to get a consumer clk and act on the clock element
4222  * Calls to this function must be balanced with calls clk_put()
4223  */
clk_hw_get_clk(struct clk_hw * hw,const char * con_id)4224 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
4225 {
4226 	struct device *dev = hw->core->dev;
4227 	const char *name = dev ? dev_name(dev) : NULL;
4228 
4229 	return clk_hw_create_clk(dev, hw, name, con_id);
4230 }
4231 EXPORT_SYMBOL(clk_hw_get_clk);
4232 
clk_cpy_name(const char ** dst_p,const char * src,bool must_exist)4233 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
4234 {
4235 	const char *dst;
4236 
4237 	if (!src) {
4238 		if (must_exist)
4239 			return -EINVAL;
4240 		return 0;
4241 	}
4242 
4243 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
4244 	if (!dst)
4245 		return -ENOMEM;
4246 
4247 	return 0;
4248 }
4249 
clk_core_populate_parent_map(struct clk_core * core,const struct clk_init_data * init)4250 static int clk_core_populate_parent_map(struct clk_core *core,
4251 					const struct clk_init_data *init)
4252 {
4253 	u8 num_parents = init->num_parents;
4254 	const char * const *parent_names = init->parent_names;
4255 	const struct clk_hw **parent_hws = init->parent_hws;
4256 	const struct clk_parent_data *parent_data = init->parent_data;
4257 	int i, ret = 0;
4258 	struct clk_parent_map *parents, *parent;
4259 
4260 	if (!num_parents)
4261 		return 0;
4262 
4263 	/*
4264 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
4265 	 * having a cache of names/clk_hw pointers to clk_core pointers.
4266 	 */
4267 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
4268 	core->parents = parents;
4269 	if (!parents)
4270 		return -ENOMEM;
4271 
4272 	/* Copy everything over because it might be __initdata */
4273 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
4274 		parent->index = -1;
4275 		if (parent_names) {
4276 			/* throw a WARN if any entries are NULL */
4277 			WARN(!parent_names[i],
4278 				"%s: invalid NULL in %s's .parent_names\n",
4279 				__func__, core->name);
4280 			ret = clk_cpy_name(&parent->name, parent_names[i],
4281 					   true);
4282 		} else if (parent_data) {
4283 			parent->hw = parent_data[i].hw;
4284 			parent->index = parent_data[i].index;
4285 			ret = clk_cpy_name(&parent->fw_name,
4286 					   parent_data[i].fw_name, false);
4287 			if (!ret)
4288 				ret = clk_cpy_name(&parent->name,
4289 						   parent_data[i].name,
4290 						   false);
4291 		} else if (parent_hws) {
4292 			parent->hw = parent_hws[i];
4293 		} else {
4294 			ret = -EINVAL;
4295 			WARN(1, "Must specify parents if num_parents > 0\n");
4296 		}
4297 
4298 		if (ret) {
4299 			do {
4300 				kfree_const(parents[i].name);
4301 				kfree_const(parents[i].fw_name);
4302 			} while (--i >= 0);
4303 			kfree(parents);
4304 
4305 			return ret;
4306 		}
4307 	}
4308 
4309 	return 0;
4310 }
4311 
clk_core_free_parent_map(struct clk_core * core)4312 static void clk_core_free_parent_map(struct clk_core *core)
4313 {
4314 	int i = core->num_parents;
4315 
4316 	if (!core->num_parents)
4317 		return;
4318 
4319 	while (--i >= 0) {
4320 		kfree_const(core->parents[i].name);
4321 		kfree_const(core->parents[i].fw_name);
4322 	}
4323 
4324 	kfree(core->parents);
4325 }
4326 
4327 /* Free memory allocated for a struct clk_core */
__clk_release(struct kref * ref)4328 static void __clk_release(struct kref *ref)
4329 {
4330 	struct clk_core *core = container_of(ref, struct clk_core, ref);
4331 
4332 	if (core->rpm_enabled) {
4333 		mutex_lock(&clk_rpm_list_lock);
4334 		hlist_del(&core->rpm_node);
4335 		mutex_unlock(&clk_rpm_list_lock);
4336 	}
4337 
4338 	clk_core_free_parent_map(core);
4339 	kfree_const(core->name);
4340 	kfree(core);
4341 }
4342 
4343 static struct clk *
__clk_register(struct device * dev,struct device_node * np,struct clk_hw * hw)4344 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
4345 {
4346 	int ret;
4347 	struct clk_core *core;
4348 	const struct clk_init_data *init = hw->init;
4349 
4350 	/*
4351 	 * The init data is not supposed to be used outside of registration path.
4352 	 * Set it to NULL so that provider drivers can't use it either and so that
4353 	 * we catch use of hw->init early on in the core.
4354 	 */
4355 	hw->init = NULL;
4356 
4357 	core = kzalloc(sizeof(*core), GFP_KERNEL);
4358 	if (!core) {
4359 		ret = -ENOMEM;
4360 		goto fail_out;
4361 	}
4362 
4363 	kref_init(&core->ref);
4364 
4365 	core->name = kstrdup_const(init->name, GFP_KERNEL);
4366 	if (!core->name) {
4367 		ret = -ENOMEM;
4368 		goto fail_name;
4369 	}
4370 
4371 	if (WARN_ON(!init->ops)) {
4372 		ret = -EINVAL;
4373 		goto fail_ops;
4374 	}
4375 	core->ops = init->ops;
4376 
4377 	core->dev = dev;
4378 	clk_pm_runtime_init(core);
4379 	core->of_node = np;
4380 	if (dev && dev->driver)
4381 		core->owner = dev->driver->owner;
4382 	core->hw = hw;
4383 	core->flags = init->flags;
4384 	core->num_parents = init->num_parents;
4385 	core->min_rate = 0;
4386 	core->max_rate = ULONG_MAX;
4387 
4388 	ret = clk_core_populate_parent_map(core, init);
4389 	if (ret)
4390 		goto fail_parents;
4391 
4392 	INIT_HLIST_HEAD(&core->clks);
4393 
4394 	/*
4395 	 * Don't call clk_hw_create_clk() here because that would pin the
4396 	 * provider module to itself and prevent it from ever being removed.
4397 	 */
4398 	hw->clk = alloc_clk(core, NULL, NULL);
4399 	if (IS_ERR(hw->clk)) {
4400 		ret = PTR_ERR(hw->clk);
4401 		goto fail_create_clk;
4402 	}
4403 
4404 	clk_core_link_consumer(core, hw->clk);
4405 
4406 	ret = __clk_core_init(core);
4407 	if (!ret)
4408 		return hw->clk;
4409 
4410 	clk_prepare_lock();
4411 	clk_core_unlink_consumer(hw->clk);
4412 	clk_prepare_unlock();
4413 
4414 	free_clk(hw->clk);
4415 	hw->clk = NULL;
4416 
4417 fail_create_clk:
4418 fail_parents:
4419 fail_ops:
4420 fail_name:
4421 	kref_put(&core->ref, __clk_release);
4422 fail_out:
4423 	return ERR_PTR(ret);
4424 }
4425 
4426 /**
4427  * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4428  * @dev: Device to get device node of
4429  *
4430  * Return: device node pointer of @dev, or the device node pointer of
4431  * @dev->parent if dev doesn't have a device node, or NULL if neither
4432  * @dev or @dev->parent have a device node.
4433  */
dev_or_parent_of_node(struct device * dev)4434 static struct device_node *dev_or_parent_of_node(struct device *dev)
4435 {
4436 	struct device_node *np;
4437 
4438 	if (!dev)
4439 		return NULL;
4440 
4441 	np = dev_of_node(dev);
4442 	if (!np)
4443 		np = dev_of_node(dev->parent);
4444 
4445 	return np;
4446 }
4447 
4448 /**
4449  * clk_register - allocate a new clock, register it and return an opaque cookie
4450  * @dev: device that is registering this clock
4451  * @hw: link to hardware-specific clock data
4452  *
4453  * clk_register is the *deprecated* interface for populating the clock tree with
4454  * new clock nodes. Use clk_hw_register() instead.
4455  *
4456  * Returns: a pointer to the newly allocated struct clk which
4457  * cannot be dereferenced by driver code but may be used in conjunction with the
4458  * rest of the clock API.  In the event of an error clk_register will return an
4459  * error code; drivers must test for an error code after calling clk_register.
4460  */
clk_register(struct device * dev,struct clk_hw * hw)4461 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4462 {
4463 	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4464 }
4465 EXPORT_SYMBOL_GPL(clk_register);
4466 
4467 /**
4468  * clk_hw_register - register a clk_hw and return an error code
4469  * @dev: device that is registering this clock
4470  * @hw: link to hardware-specific clock data
4471  *
4472  * clk_hw_register is the primary interface for populating the clock tree with
4473  * new clock nodes. It returns an integer equal to zero indicating success or
4474  * less than zero indicating failure. Drivers must test for an error code after
4475  * calling clk_hw_register().
4476  */
clk_hw_register(struct device * dev,struct clk_hw * hw)4477 int clk_hw_register(struct device *dev, struct clk_hw *hw)
4478 {
4479 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4480 			       hw));
4481 }
4482 EXPORT_SYMBOL_GPL(clk_hw_register);
4483 
4484 /*
4485  * of_clk_hw_register - register a clk_hw and return an error code
4486  * @node: device_node of device that is registering this clock
4487  * @hw: link to hardware-specific clock data
4488  *
4489  * of_clk_hw_register() is the primary interface for populating the clock tree
4490  * with new clock nodes when a struct device is not available, but a struct
4491  * device_node is. It returns an integer equal to zero indicating success or
4492  * less than zero indicating failure. Drivers must test for an error code after
4493  * calling of_clk_hw_register().
4494  */
of_clk_hw_register(struct device_node * node,struct clk_hw * hw)4495 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4496 {
4497 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4498 }
4499 EXPORT_SYMBOL_GPL(of_clk_hw_register);
4500 
4501 /*
4502  * Empty clk_ops for unregistered clocks. These are used temporarily
4503  * after clk_unregister() was called on a clock and until last clock
4504  * consumer calls clk_put() and the struct clk object is freed.
4505  */
clk_nodrv_prepare_enable(struct clk_hw * hw)4506 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4507 {
4508 	return -ENXIO;
4509 }
4510 
clk_nodrv_disable_unprepare(struct clk_hw * hw)4511 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4512 {
4513 	WARN_ON_ONCE(1);
4514 }
4515 
clk_nodrv_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)4516 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4517 					unsigned long parent_rate)
4518 {
4519 	return -ENXIO;
4520 }
4521 
clk_nodrv_set_parent(struct clk_hw * hw,u8 index)4522 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4523 {
4524 	return -ENXIO;
4525 }
4526 
clk_nodrv_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)4527 static int clk_nodrv_determine_rate(struct clk_hw *hw,
4528 				    struct clk_rate_request *req)
4529 {
4530 	return -ENXIO;
4531 }
4532 
4533 static const struct clk_ops clk_nodrv_ops = {
4534 	.enable		= clk_nodrv_prepare_enable,
4535 	.disable	= clk_nodrv_disable_unprepare,
4536 	.prepare	= clk_nodrv_prepare_enable,
4537 	.unprepare	= clk_nodrv_disable_unprepare,
4538 	.determine_rate	= clk_nodrv_determine_rate,
4539 	.set_rate	= clk_nodrv_set_rate,
4540 	.set_parent	= clk_nodrv_set_parent,
4541 };
4542 
clk_core_evict_parent_cache_subtree(struct clk_core * root,const struct clk_core * target)4543 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4544 						const struct clk_core *target)
4545 {
4546 	int i;
4547 	struct clk_core *child;
4548 
4549 	for (i = 0; i < root->num_parents; i++)
4550 		if (root->parents[i].core == target)
4551 			root->parents[i].core = NULL;
4552 
4553 	hlist_for_each_entry(child, &root->children, child_node)
4554 		clk_core_evict_parent_cache_subtree(child, target);
4555 }
4556 
4557 /* Remove this clk from all parent caches */
clk_core_evict_parent_cache(struct clk_core * core)4558 static void clk_core_evict_parent_cache(struct clk_core *core)
4559 {
4560 	const struct hlist_head **lists;
4561 	struct clk_core *root;
4562 
4563 	lockdep_assert_held(&prepare_lock);
4564 
4565 	for (lists = all_lists; *lists; lists++)
4566 		hlist_for_each_entry(root, *lists, child_node)
4567 			clk_core_evict_parent_cache_subtree(root, core);
4568 
4569 }
4570 
4571 /**
4572  * clk_unregister - unregister a currently registered clock
4573  * @clk: clock to unregister
4574  */
clk_unregister(struct clk * clk)4575 void clk_unregister(struct clk *clk)
4576 {
4577 	unsigned long flags;
4578 	const struct clk_ops *ops;
4579 
4580 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4581 		return;
4582 
4583 	clk_debug_unregister(clk->core);
4584 
4585 	clk_prepare_lock();
4586 
4587 	ops = clk->core->ops;
4588 	if (ops == &clk_nodrv_ops) {
4589 		pr_err("%s: unregistered clock: %s\n", __func__,
4590 		       clk->core->name);
4591 		clk_prepare_unlock();
4592 		return;
4593 	}
4594 	/*
4595 	 * Assign empty clock ops for consumers that might still hold
4596 	 * a reference to this clock.
4597 	 */
4598 	flags = clk_enable_lock();
4599 	clk->core->ops = &clk_nodrv_ops;
4600 	clk_enable_unlock(flags);
4601 
4602 	if (ops->terminate)
4603 		ops->terminate(clk->core->hw);
4604 
4605 	if (!hlist_empty(&clk->core->children)) {
4606 		struct clk_core *child;
4607 		struct hlist_node *t;
4608 
4609 		/* Reparent all children to the orphan list. */
4610 		hlist_for_each_entry_safe(child, t, &clk->core->children,
4611 					  child_node)
4612 			clk_core_set_parent_nolock(child, NULL);
4613 	}
4614 
4615 	clk_core_evict_parent_cache(clk->core);
4616 
4617 	hlist_del_init(&clk->core->child_node);
4618 
4619 	if (clk->core->prepare_count)
4620 		pr_warn("%s: unregistering prepared clock: %s\n",
4621 					__func__, clk->core->name);
4622 
4623 	if (clk->core->protect_count)
4624 		pr_warn("%s: unregistering protected clock: %s\n",
4625 					__func__, clk->core->name);
4626 	clk_prepare_unlock();
4627 
4628 	kref_put(&clk->core->ref, __clk_release);
4629 	free_clk(clk);
4630 }
4631 EXPORT_SYMBOL_GPL(clk_unregister);
4632 
4633 /**
4634  * clk_hw_unregister - unregister a currently registered clk_hw
4635  * @hw: hardware-specific clock data to unregister
4636  */
clk_hw_unregister(struct clk_hw * hw)4637 void clk_hw_unregister(struct clk_hw *hw)
4638 {
4639 	clk_unregister(hw->clk);
4640 }
4641 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4642 
devm_clk_unregister_cb(struct device * dev,void * res)4643 static void devm_clk_unregister_cb(struct device *dev, void *res)
4644 {
4645 	clk_unregister(*(struct clk **)res);
4646 }
4647 
devm_clk_hw_unregister_cb(struct device * dev,void * res)4648 static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4649 {
4650 	clk_hw_unregister(*(struct clk_hw **)res);
4651 }
4652 
4653 /**
4654  * devm_clk_register - resource managed clk_register()
4655  * @dev: device that is registering this clock
4656  * @hw: link to hardware-specific clock data
4657  *
4658  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4659  *
4660  * Clocks returned from this function are automatically clk_unregister()ed on
4661  * driver detach. See clk_register() for more information.
4662  */
devm_clk_register(struct device * dev,struct clk_hw * hw)4663 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4664 {
4665 	struct clk *clk;
4666 	struct clk **clkp;
4667 
4668 	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4669 	if (!clkp)
4670 		return ERR_PTR(-ENOMEM);
4671 
4672 	clk = clk_register(dev, hw);
4673 	if (!IS_ERR(clk)) {
4674 		*clkp = clk;
4675 		devres_add(dev, clkp);
4676 	} else {
4677 		devres_free(clkp);
4678 	}
4679 
4680 	return clk;
4681 }
4682 EXPORT_SYMBOL_GPL(devm_clk_register);
4683 
4684 /**
4685  * devm_clk_hw_register - resource managed clk_hw_register()
4686  * @dev: device that is registering this clock
4687  * @hw: link to hardware-specific clock data
4688  *
4689  * Managed clk_hw_register(). Clocks registered by this function are
4690  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4691  * for more information.
4692  */
devm_clk_hw_register(struct device * dev,struct clk_hw * hw)4693 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4694 {
4695 	struct clk_hw **hwp;
4696 	int ret;
4697 
4698 	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4699 	if (!hwp)
4700 		return -ENOMEM;
4701 
4702 	ret = clk_hw_register(dev, hw);
4703 	if (!ret) {
4704 		*hwp = hw;
4705 		devres_add(dev, hwp);
4706 	} else {
4707 		devres_free(hwp);
4708 	}
4709 
4710 	return ret;
4711 }
4712 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4713 
devm_clk_release(struct device * dev,void * res)4714 static void devm_clk_release(struct device *dev, void *res)
4715 {
4716 	clk_put(*(struct clk **)res);
4717 }
4718 
4719 /**
4720  * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4721  * @dev: device that is registering this clock
4722  * @hw: clk_hw associated with the clk being consumed
4723  * @con_id: connection ID string on device
4724  *
4725  * Managed clk_hw_get_clk(). Clocks got with this function are
4726  * automatically clk_put() on driver detach. See clk_put()
4727  * for more information.
4728  */
devm_clk_hw_get_clk(struct device * dev,struct clk_hw * hw,const char * con_id)4729 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4730 				const char *con_id)
4731 {
4732 	struct clk *clk;
4733 	struct clk **clkp;
4734 
4735 	/* This should not happen because it would mean we have drivers
4736 	 * passing around clk_hw pointers instead of having the caller use
4737 	 * proper clk_get() style APIs
4738 	 */
4739 	WARN_ON_ONCE(dev != hw->core->dev);
4740 
4741 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4742 	if (!clkp)
4743 		return ERR_PTR(-ENOMEM);
4744 
4745 	clk = clk_hw_get_clk(hw, con_id);
4746 	if (!IS_ERR(clk)) {
4747 		*clkp = clk;
4748 		devres_add(dev, clkp);
4749 	} else {
4750 		devres_free(clkp);
4751 	}
4752 
4753 	return clk;
4754 }
4755 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4756 
4757 /*
4758  * clkdev helpers
4759  */
4760 
__clk_put(struct clk * clk)4761 void __clk_put(struct clk *clk)
4762 {
4763 	struct module *owner;
4764 
4765 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4766 		return;
4767 
4768 	clk_prepare_lock();
4769 
4770 	/*
4771 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4772 	 * given user should be balanced with calls to clk_rate_exclusive_put()
4773 	 * and by that same consumer
4774 	 */
4775 	if (WARN_ON(clk->exclusive_count)) {
4776 		/* We voiced our concern, let's sanitize the situation */
4777 		clk->core->protect_count -= (clk->exclusive_count - 1);
4778 		clk_core_rate_unprotect(clk->core);
4779 		clk->exclusive_count = 0;
4780 	}
4781 
4782 	hlist_del(&clk->clks_node);
4783 
4784 	/* If we had any boundaries on that clock, let's drop them. */
4785 	if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX)
4786 		clk_set_rate_range_nolock(clk, 0, ULONG_MAX);
4787 
4788 	clk_prepare_unlock();
4789 
4790 	owner = clk->core->owner;
4791 	kref_put(&clk->core->ref, __clk_release);
4792 	module_put(owner);
4793 	free_clk(clk);
4794 }
4795 
4796 /***        clk rate change notifiers        ***/
4797 
4798 /**
4799  * clk_notifier_register - add a clk rate change notifier
4800  * @clk: struct clk * to watch
4801  * @nb: struct notifier_block * with callback info
4802  *
4803  * Request notification when clk's rate changes.  This uses an SRCU
4804  * notifier because we want it to block and notifier unregistrations are
4805  * uncommon.  The callbacks associated with the notifier must not
4806  * re-enter into the clk framework by calling any top-level clk APIs;
4807  * this will cause a nested prepare_lock mutex.
4808  *
4809  * In all notification cases (pre, post and abort rate change) the original
4810  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4811  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4812  *
4813  * clk_notifier_register() must be called from non-atomic context.
4814  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4815  * allocation failure; otherwise, passes along the return value of
4816  * srcu_notifier_chain_register().
4817  */
clk_notifier_register(struct clk * clk,struct notifier_block * nb)4818 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4819 {
4820 	struct clk_notifier *cn;
4821 	int ret = -ENOMEM;
4822 
4823 	if (!clk || !nb)
4824 		return -EINVAL;
4825 
4826 	clk_prepare_lock();
4827 
4828 	/* search the list of notifiers for this clk */
4829 	list_for_each_entry(cn, &clk_notifier_list, node)
4830 		if (cn->clk == clk)
4831 			goto found;
4832 
4833 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4834 	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4835 	if (!cn)
4836 		goto out;
4837 
4838 	cn->clk = clk;
4839 	srcu_init_notifier_head(&cn->notifier_head);
4840 
4841 	list_add(&cn->node, &clk_notifier_list);
4842 
4843 found:
4844 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4845 
4846 	clk->core->notifier_count++;
4847 
4848 out:
4849 	clk_prepare_unlock();
4850 
4851 	return ret;
4852 }
4853 EXPORT_SYMBOL_GPL(clk_notifier_register);
4854 
4855 /**
4856  * clk_notifier_unregister - remove a clk rate change notifier
4857  * @clk: struct clk *
4858  * @nb: struct notifier_block * with callback info
4859  *
4860  * Request no further notification for changes to 'clk' and frees memory
4861  * allocated in clk_notifier_register.
4862  *
4863  * Returns -EINVAL if called with null arguments; otherwise, passes
4864  * along the return value of srcu_notifier_chain_unregister().
4865  */
clk_notifier_unregister(struct clk * clk,struct notifier_block * nb)4866 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4867 {
4868 	struct clk_notifier *cn;
4869 	int ret = -ENOENT;
4870 
4871 	if (!clk || !nb)
4872 		return -EINVAL;
4873 
4874 	clk_prepare_lock();
4875 
4876 	list_for_each_entry(cn, &clk_notifier_list, node) {
4877 		if (cn->clk == clk) {
4878 			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4879 
4880 			clk->core->notifier_count--;
4881 
4882 			/* XXX the notifier code should handle this better */
4883 			if (!cn->notifier_head.head) {
4884 				srcu_cleanup_notifier_head(&cn->notifier_head);
4885 				list_del(&cn->node);
4886 				kfree(cn);
4887 			}
4888 			break;
4889 		}
4890 	}
4891 
4892 	clk_prepare_unlock();
4893 
4894 	return ret;
4895 }
4896 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4897 
4898 struct clk_notifier_devres {
4899 	struct clk *clk;
4900 	struct notifier_block *nb;
4901 };
4902 
devm_clk_notifier_release(struct device * dev,void * res)4903 static void devm_clk_notifier_release(struct device *dev, void *res)
4904 {
4905 	struct clk_notifier_devres *devres = res;
4906 
4907 	clk_notifier_unregister(devres->clk, devres->nb);
4908 }
4909 
devm_clk_notifier_register(struct device * dev,struct clk * clk,struct notifier_block * nb)4910 int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4911 			       struct notifier_block *nb)
4912 {
4913 	struct clk_notifier_devres *devres;
4914 	int ret;
4915 
4916 	devres = devres_alloc(devm_clk_notifier_release,
4917 			      sizeof(*devres), GFP_KERNEL);
4918 
4919 	if (!devres)
4920 		return -ENOMEM;
4921 
4922 	ret = clk_notifier_register(clk, nb);
4923 	if (!ret) {
4924 		devres->clk = clk;
4925 		devres->nb = nb;
4926 		devres_add(dev, devres);
4927 	} else {
4928 		devres_free(devres);
4929 	}
4930 
4931 	return ret;
4932 }
4933 EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4934 
4935 #ifdef CONFIG_OF
clk_core_reparent_orphans(void)4936 static void clk_core_reparent_orphans(void)
4937 {
4938 	clk_prepare_lock();
4939 	clk_core_reparent_orphans_nolock();
4940 	clk_prepare_unlock();
4941 }
4942 
4943 /**
4944  * struct of_clk_provider - Clock provider registration structure
4945  * @link: Entry in global list of clock providers
4946  * @node: Pointer to device tree node of clock provider
4947  * @get: Get clock callback.  Returns NULL or a struct clk for the
4948  *       given clock specifier
4949  * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4950  *       struct clk_hw for the given clock specifier
4951  * @data: context pointer to be passed into @get callback
4952  */
4953 struct of_clk_provider {
4954 	struct list_head link;
4955 
4956 	struct device_node *node;
4957 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4958 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4959 	void *data;
4960 };
4961 
4962 extern struct of_device_id __clk_of_table;
4963 static const struct of_device_id __clk_of_table_sentinel
4964 	__used __section("__clk_of_table_end");
4965 
4966 static LIST_HEAD(of_clk_providers);
4967 static DEFINE_MUTEX(of_clk_mutex);
4968 
of_clk_src_simple_get(struct of_phandle_args * clkspec,void * data)4969 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4970 				     void *data)
4971 {
4972 	return data;
4973 }
4974 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4975 
of_clk_hw_simple_get(struct of_phandle_args * clkspec,void * data)4976 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4977 {
4978 	return data;
4979 }
4980 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4981 
of_clk_src_onecell_get(struct of_phandle_args * clkspec,void * data)4982 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4983 {
4984 	struct clk_onecell_data *clk_data = data;
4985 	unsigned int idx = clkspec->args[0];
4986 
4987 	if (idx >= clk_data->clk_num) {
4988 		pr_err("%s: invalid clock index %u\n", __func__, idx);
4989 		return ERR_PTR(-EINVAL);
4990 	}
4991 
4992 	return clk_data->clks[idx];
4993 }
4994 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4995 
4996 struct clk_hw *
of_clk_hw_onecell_get(struct of_phandle_args * clkspec,void * data)4997 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4998 {
4999 	struct clk_hw_onecell_data *hw_data = data;
5000 	unsigned int idx = clkspec->args[0];
5001 
5002 	if (idx >= hw_data->num) {
5003 		pr_err("%s: invalid index %u\n", __func__, idx);
5004 		return ERR_PTR(-EINVAL);
5005 	}
5006 
5007 	return hw_data->hws[idx];
5008 }
5009 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
5010 
5011 /**
5012  * of_clk_add_provider() - Register a clock provider for a node
5013  * @np: Device node pointer associated with clock provider
5014  * @clk_src_get: callback for decoding clock
5015  * @data: context pointer for @clk_src_get callback.
5016  *
5017  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
5018  */
of_clk_add_provider(struct device_node * np,struct clk * (* clk_src_get)(struct of_phandle_args * clkspec,void * data),void * data)5019 int of_clk_add_provider(struct device_node *np,
5020 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
5021 						   void *data),
5022 			void *data)
5023 {
5024 	struct of_clk_provider *cp;
5025 	int ret;
5026 
5027 	if (!np)
5028 		return 0;
5029 
5030 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
5031 	if (!cp)
5032 		return -ENOMEM;
5033 
5034 	cp->node = of_node_get(np);
5035 	cp->data = data;
5036 	cp->get = clk_src_get;
5037 
5038 	mutex_lock(&of_clk_mutex);
5039 	list_add(&cp->link, &of_clk_providers);
5040 	mutex_unlock(&of_clk_mutex);
5041 	pr_debug("Added clock from %pOF\n", np);
5042 
5043 	clk_core_reparent_orphans();
5044 
5045 	ret = of_clk_set_defaults(np, true);
5046 	if (ret < 0)
5047 		of_clk_del_provider(np);
5048 
5049 	fwnode_dev_initialized(&np->fwnode, true);
5050 
5051 	return ret;
5052 }
5053 EXPORT_SYMBOL_GPL(of_clk_add_provider);
5054 
5055 /**
5056  * of_clk_add_hw_provider() - Register a clock provider for a node
5057  * @np: Device node pointer associated with clock provider
5058  * @get: callback for decoding clk_hw
5059  * @data: context pointer for @get callback.
5060  */
of_clk_add_hw_provider(struct device_node * np,struct clk_hw * (* get)(struct of_phandle_args * clkspec,void * data),void * data)5061 int of_clk_add_hw_provider(struct device_node *np,
5062 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
5063 						 void *data),
5064 			   void *data)
5065 {
5066 	struct of_clk_provider *cp;
5067 	int ret;
5068 
5069 	if (!np)
5070 		return 0;
5071 
5072 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
5073 	if (!cp)
5074 		return -ENOMEM;
5075 
5076 	cp->node = of_node_get(np);
5077 	cp->data = data;
5078 	cp->get_hw = get;
5079 
5080 	mutex_lock(&of_clk_mutex);
5081 	list_add(&cp->link, &of_clk_providers);
5082 	mutex_unlock(&of_clk_mutex);
5083 	pr_debug("Added clk_hw provider from %pOF\n", np);
5084 
5085 	clk_core_reparent_orphans();
5086 
5087 	ret = of_clk_set_defaults(np, true);
5088 	if (ret < 0)
5089 		of_clk_del_provider(np);
5090 
5091 	fwnode_dev_initialized(&np->fwnode, true);
5092 
5093 	return ret;
5094 }
5095 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
5096 
devm_of_clk_release_provider(struct device * dev,void * res)5097 static void devm_of_clk_release_provider(struct device *dev, void *res)
5098 {
5099 	of_clk_del_provider(*(struct device_node **)res);
5100 }
5101 
5102 /*
5103  * We allow a child device to use its parent device as the clock provider node
5104  * for cases like MFD sub-devices where the child device driver wants to use
5105  * devm_*() APIs but not list the device in DT as a sub-node.
5106  */
get_clk_provider_node(struct device * dev)5107 static struct device_node *get_clk_provider_node(struct device *dev)
5108 {
5109 	struct device_node *np, *parent_np;
5110 
5111 	np = dev->of_node;
5112 	parent_np = dev->parent ? dev->parent->of_node : NULL;
5113 
5114 	if (!of_property_present(np, "#clock-cells"))
5115 		if (of_property_present(parent_np, "#clock-cells"))
5116 			np = parent_np;
5117 
5118 	return np;
5119 }
5120 
5121 /**
5122  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
5123  * @dev: Device acting as the clock provider (used for DT node and lifetime)
5124  * @get: callback for decoding clk_hw
5125  * @data: context pointer for @get callback
5126  *
5127  * Registers clock provider for given device's node. If the device has no DT
5128  * node or if the device node lacks of clock provider information (#clock-cells)
5129  * then the parent device's node is scanned for this information. If parent node
5130  * has the #clock-cells then it is used in registration. Provider is
5131  * automatically released at device exit.
5132  *
5133  * Return: 0 on success or an errno on failure.
5134  */
devm_of_clk_add_hw_provider(struct device * dev,struct clk_hw * (* get)(struct of_phandle_args * clkspec,void * data),void * data)5135 int devm_of_clk_add_hw_provider(struct device *dev,
5136 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
5137 					      void *data),
5138 			void *data)
5139 {
5140 	struct device_node **ptr, *np;
5141 	int ret;
5142 
5143 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
5144 			   GFP_KERNEL);
5145 	if (!ptr)
5146 		return -ENOMEM;
5147 
5148 	np = get_clk_provider_node(dev);
5149 	ret = of_clk_add_hw_provider(np, get, data);
5150 	if (!ret) {
5151 		*ptr = np;
5152 		devres_add(dev, ptr);
5153 	} else {
5154 		devres_free(ptr);
5155 	}
5156 
5157 	return ret;
5158 }
5159 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
5160 
5161 /**
5162  * of_clk_del_provider() - Remove a previously registered clock provider
5163  * @np: Device node pointer associated with clock provider
5164  */
of_clk_del_provider(struct device_node * np)5165 void of_clk_del_provider(struct device_node *np)
5166 {
5167 	struct of_clk_provider *cp;
5168 
5169 	if (!np)
5170 		return;
5171 
5172 	mutex_lock(&of_clk_mutex);
5173 	list_for_each_entry(cp, &of_clk_providers, link) {
5174 		if (cp->node == np) {
5175 			list_del(&cp->link);
5176 			fwnode_dev_initialized(&np->fwnode, false);
5177 			of_node_put(cp->node);
5178 			kfree(cp);
5179 			break;
5180 		}
5181 	}
5182 	mutex_unlock(&of_clk_mutex);
5183 }
5184 EXPORT_SYMBOL_GPL(of_clk_del_provider);
5185 
5186 /**
5187  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
5188  * @np: device node to parse clock specifier from
5189  * @index: index of phandle to parse clock out of. If index < 0, @name is used
5190  * @name: clock name to find and parse. If name is NULL, the index is used
5191  * @out_args: Result of parsing the clock specifier
5192  *
5193  * Parses a device node's "clocks" and "clock-names" properties to find the
5194  * phandle and cells for the index or name that is desired. The resulting clock
5195  * specifier is placed into @out_args, or an errno is returned when there's a
5196  * parsing error. The @index argument is ignored if @name is non-NULL.
5197  *
5198  * Example:
5199  *
5200  * phandle1: clock-controller@1 {
5201  *	#clock-cells = <2>;
5202  * }
5203  *
5204  * phandle2: clock-controller@2 {
5205  *	#clock-cells = <1>;
5206  * }
5207  *
5208  * clock-consumer@3 {
5209  *	clocks = <&phandle1 1 2 &phandle2 3>;
5210  *	clock-names = "name1", "name2";
5211  * }
5212  *
5213  * To get a device_node for `clock-controller@2' node you may call this
5214  * function a few different ways:
5215  *
5216  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
5217  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
5218  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
5219  *
5220  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
5221  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
5222  * the "clock-names" property of @np.
5223  */
of_parse_clkspec(const struct device_node * np,int index,const char * name,struct of_phandle_args * out_args)5224 static int of_parse_clkspec(const struct device_node *np, int index,
5225 			    const char *name, struct of_phandle_args *out_args)
5226 {
5227 	int ret = -ENOENT;
5228 
5229 	/* Walk up the tree of devices looking for a clock property that matches */
5230 	while (np) {
5231 		/*
5232 		 * For named clocks, first look up the name in the
5233 		 * "clock-names" property.  If it cannot be found, then index
5234 		 * will be an error code and of_parse_phandle_with_args() will
5235 		 * return -EINVAL.
5236 		 */
5237 		if (name)
5238 			index = of_property_match_string(np, "clock-names", name);
5239 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
5240 						 index, out_args);
5241 		if (!ret)
5242 			break;
5243 		if (name && index >= 0)
5244 			break;
5245 
5246 		/*
5247 		 * No matching clock found on this node.  If the parent node
5248 		 * has a "clock-ranges" property, then we can try one of its
5249 		 * clocks.
5250 		 */
5251 		np = np->parent;
5252 		if (np && !of_get_property(np, "clock-ranges", NULL))
5253 			break;
5254 		index = 0;
5255 	}
5256 
5257 	return ret;
5258 }
5259 
5260 static struct clk_hw *
__of_clk_get_hw_from_provider(struct of_clk_provider * provider,struct of_phandle_args * clkspec)5261 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
5262 			      struct of_phandle_args *clkspec)
5263 {
5264 	struct clk *clk;
5265 
5266 	if (provider->get_hw)
5267 		return provider->get_hw(clkspec, provider->data);
5268 
5269 	clk = provider->get(clkspec, provider->data);
5270 	if (IS_ERR(clk))
5271 		return ERR_CAST(clk);
5272 	return __clk_get_hw(clk);
5273 }
5274 
5275 static struct clk_hw *
of_clk_get_hw_from_clkspec(struct of_phandle_args * clkspec)5276 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
5277 {
5278 	struct of_clk_provider *provider;
5279 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
5280 
5281 	if (!clkspec)
5282 		return ERR_PTR(-EINVAL);
5283 
5284 	mutex_lock(&of_clk_mutex);
5285 	list_for_each_entry(provider, &of_clk_providers, link) {
5286 		if (provider->node == clkspec->np) {
5287 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
5288 			if (!IS_ERR(hw))
5289 				break;
5290 		}
5291 	}
5292 	mutex_unlock(&of_clk_mutex);
5293 
5294 	return hw;
5295 }
5296 
5297 /**
5298  * of_clk_get_from_provider() - Lookup a clock from a clock provider
5299  * @clkspec: pointer to a clock specifier data structure
5300  *
5301  * This function looks up a struct clk from the registered list of clock
5302  * providers, an input is a clock specifier data structure as returned
5303  * from the of_parse_phandle_with_args() function call.
5304  */
of_clk_get_from_provider(struct of_phandle_args * clkspec)5305 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
5306 {
5307 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
5308 
5309 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
5310 }
5311 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
5312 
of_clk_get_hw(struct device_node * np,int index,const char * con_id)5313 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
5314 			     const char *con_id)
5315 {
5316 	int ret;
5317 	struct clk_hw *hw;
5318 	struct of_phandle_args clkspec;
5319 
5320 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
5321 	if (ret)
5322 		return ERR_PTR(ret);
5323 
5324 	hw = of_clk_get_hw_from_clkspec(&clkspec);
5325 	of_node_put(clkspec.np);
5326 
5327 	return hw;
5328 }
5329 
__of_clk_get(struct device_node * np,int index,const char * dev_id,const char * con_id)5330 static struct clk *__of_clk_get(struct device_node *np,
5331 				int index, const char *dev_id,
5332 				const char *con_id)
5333 {
5334 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
5335 
5336 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5337 }
5338 
of_clk_get(struct device_node * np,int index)5339 struct clk *of_clk_get(struct device_node *np, int index)
5340 {
5341 	return __of_clk_get(np, index, np->full_name, NULL);
5342 }
5343 EXPORT_SYMBOL(of_clk_get);
5344 
5345 /**
5346  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5347  * @np: pointer to clock consumer node
5348  * @name: name of consumer's clock input, or NULL for the first clock reference
5349  *
5350  * This function parses the clocks and clock-names properties,
5351  * and uses them to look up the struct clk from the registered list of clock
5352  * providers.
5353  */
of_clk_get_by_name(struct device_node * np,const char * name)5354 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5355 {
5356 	if (!np)
5357 		return ERR_PTR(-ENOENT);
5358 
5359 	return __of_clk_get(np, 0, np->full_name, name);
5360 }
5361 EXPORT_SYMBOL(of_clk_get_by_name);
5362 
5363 /**
5364  * of_clk_get_parent_count() - Count the number of clocks a device node has
5365  * @np: device node to count
5366  *
5367  * Returns: The number of clocks that are possible parents of this node
5368  */
of_clk_get_parent_count(const struct device_node * np)5369 unsigned int of_clk_get_parent_count(const struct device_node *np)
5370 {
5371 	int count;
5372 
5373 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5374 	if (count < 0)
5375 		return 0;
5376 
5377 	return count;
5378 }
5379 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5380 
of_clk_get_parent_name(const struct device_node * np,int index)5381 const char *of_clk_get_parent_name(const struct device_node *np, int index)
5382 {
5383 	struct of_phandle_args clkspec;
5384 	struct property *prop;
5385 	const char *clk_name;
5386 	const __be32 *vp;
5387 	u32 pv;
5388 	int rc;
5389 	int count;
5390 	struct clk *clk;
5391 
5392 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5393 					&clkspec);
5394 	if (rc)
5395 		return NULL;
5396 
5397 	index = clkspec.args_count ? clkspec.args[0] : 0;
5398 	count = 0;
5399 
5400 	/* if there is an indices property, use it to transfer the index
5401 	 * specified into an array offset for the clock-output-names property.
5402 	 */
5403 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
5404 		if (index == pv) {
5405 			index = count;
5406 			break;
5407 		}
5408 		count++;
5409 	}
5410 	/* We went off the end of 'clock-indices' without finding it */
5411 	if (prop && !vp)
5412 		return NULL;
5413 
5414 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
5415 					  index,
5416 					  &clk_name) < 0) {
5417 		/*
5418 		 * Best effort to get the name if the clock has been
5419 		 * registered with the framework. If the clock isn't
5420 		 * registered, we return the node name as the name of
5421 		 * the clock as long as #clock-cells = 0.
5422 		 */
5423 		clk = of_clk_get_from_provider(&clkspec);
5424 		if (IS_ERR(clk)) {
5425 			if (clkspec.args_count == 0)
5426 				clk_name = clkspec.np->name;
5427 			else
5428 				clk_name = NULL;
5429 		} else {
5430 			clk_name = __clk_get_name(clk);
5431 			clk_put(clk);
5432 		}
5433 	}
5434 
5435 
5436 	of_node_put(clkspec.np);
5437 	return clk_name;
5438 }
5439 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5440 
5441 /**
5442  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5443  * number of parents
5444  * @np: Device node pointer associated with clock provider
5445  * @parents: pointer to char array that hold the parents' names
5446  * @size: size of the @parents array
5447  *
5448  * Return: number of parents for the clock node.
5449  */
of_clk_parent_fill(struct device_node * np,const char ** parents,unsigned int size)5450 int of_clk_parent_fill(struct device_node *np, const char **parents,
5451 		       unsigned int size)
5452 {
5453 	unsigned int i = 0;
5454 
5455 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5456 		i++;
5457 
5458 	return i;
5459 }
5460 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5461 
5462 struct clock_provider {
5463 	void (*clk_init_cb)(struct device_node *);
5464 	struct device_node *np;
5465 	struct list_head node;
5466 };
5467 
5468 /*
5469  * This function looks for a parent clock. If there is one, then it
5470  * checks that the provider for this parent clock was initialized, in
5471  * this case the parent clock will be ready.
5472  */
parent_ready(struct device_node * np)5473 static int parent_ready(struct device_node *np)
5474 {
5475 	int i = 0;
5476 
5477 	while (true) {
5478 		struct clk *clk = of_clk_get(np, i);
5479 
5480 		/* this parent is ready we can check the next one */
5481 		if (!IS_ERR(clk)) {
5482 			clk_put(clk);
5483 			i++;
5484 			continue;
5485 		}
5486 
5487 		/* at least one parent is not ready, we exit now */
5488 		if (PTR_ERR(clk) == -EPROBE_DEFER)
5489 			return 0;
5490 
5491 		/*
5492 		 * Here we make assumption that the device tree is
5493 		 * written correctly. So an error means that there is
5494 		 * no more parent. As we didn't exit yet, then the
5495 		 * previous parent are ready. If there is no clock
5496 		 * parent, no need to wait for them, then we can
5497 		 * consider their absence as being ready
5498 		 */
5499 		return 1;
5500 	}
5501 }
5502 
5503 /**
5504  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5505  * @np: Device node pointer associated with clock provider
5506  * @index: clock index
5507  * @flags: pointer to top-level framework flags
5508  *
5509  * Detects if the clock-critical property exists and, if so, sets the
5510  * corresponding CLK_IS_CRITICAL flag.
5511  *
5512  * Do not use this function. It exists only for legacy Device Tree
5513  * bindings, such as the one-clock-per-node style that are outdated.
5514  * Those bindings typically put all clock data into .dts and the Linux
5515  * driver has no clock data, thus making it impossible to set this flag
5516  * correctly from the driver. Only those drivers may call
5517  * of_clk_detect_critical from their setup functions.
5518  *
5519  * Return: error code or zero on success
5520  */
of_clk_detect_critical(struct device_node * np,int index,unsigned long * flags)5521 int of_clk_detect_critical(struct device_node *np, int index,
5522 			   unsigned long *flags)
5523 {
5524 	struct property *prop;
5525 	const __be32 *cur;
5526 	uint32_t idx;
5527 
5528 	if (!np || !flags)
5529 		return -EINVAL;
5530 
5531 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5532 		if (index == idx)
5533 			*flags |= CLK_IS_CRITICAL;
5534 
5535 	return 0;
5536 }
5537 
5538 /**
5539  * of_clk_init() - Scan and init clock providers from the DT
5540  * @matches: array of compatible values and init functions for providers.
5541  *
5542  * This function scans the device tree for matching clock providers
5543  * and calls their initialization functions. It also does it by trying
5544  * to follow the dependencies.
5545  */
of_clk_init(const struct of_device_id * matches)5546 void __init of_clk_init(const struct of_device_id *matches)
5547 {
5548 	const struct of_device_id *match;
5549 	struct device_node *np;
5550 	struct clock_provider *clk_provider, *next;
5551 	bool is_init_done;
5552 	bool force = false;
5553 	LIST_HEAD(clk_provider_list);
5554 
5555 	if (!matches)
5556 		matches = &__clk_of_table;
5557 
5558 	/* First prepare the list of the clocks providers */
5559 	for_each_matching_node_and_match(np, matches, &match) {
5560 		struct clock_provider *parent;
5561 
5562 		if (!of_device_is_available(np))
5563 			continue;
5564 
5565 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5566 		if (!parent) {
5567 			list_for_each_entry_safe(clk_provider, next,
5568 						 &clk_provider_list, node) {
5569 				list_del(&clk_provider->node);
5570 				of_node_put(clk_provider->np);
5571 				kfree(clk_provider);
5572 			}
5573 			of_node_put(np);
5574 			return;
5575 		}
5576 
5577 		parent->clk_init_cb = match->data;
5578 		parent->np = of_node_get(np);
5579 		list_add_tail(&parent->node, &clk_provider_list);
5580 	}
5581 
5582 	while (!list_empty(&clk_provider_list)) {
5583 		is_init_done = false;
5584 		list_for_each_entry_safe(clk_provider, next,
5585 					&clk_provider_list, node) {
5586 			if (force || parent_ready(clk_provider->np)) {
5587 
5588 				/* Don't populate platform devices */
5589 				of_node_set_flag(clk_provider->np,
5590 						 OF_POPULATED);
5591 
5592 				clk_provider->clk_init_cb(clk_provider->np);
5593 				of_clk_set_defaults(clk_provider->np, true);
5594 
5595 				list_del(&clk_provider->node);
5596 				of_node_put(clk_provider->np);
5597 				kfree(clk_provider);
5598 				is_init_done = true;
5599 			}
5600 		}
5601 
5602 		/*
5603 		 * We didn't manage to initialize any of the
5604 		 * remaining providers during the last loop, so now we
5605 		 * initialize all the remaining ones unconditionally
5606 		 * in case the clock parent was not mandatory
5607 		 */
5608 		if (!is_init_done)
5609 			force = true;
5610 	}
5611 }
5612 #endif
5613