• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
2 /*
3  * Copyright (C) 2005-2014 Intel Corporation
4  */
5 /*
6  * Please use this file (commands.h) only for uCode API definitions.
7  * Please use iwl-xxxx-hw.h for hardware-related definitions.
8  * Please use dev.h for driver implementation definitions.
9  */
10 
11 #ifndef __iwl_commands_h__
12 #define __iwl_commands_h__
13 
14 #include <linux/ieee80211.h>
15 #include <linux/types.h>
16 
17 
18 enum {
19 	REPLY_ALIVE = 0x1,
20 	REPLY_ERROR = 0x2,
21 	REPLY_ECHO = 0x3,		/* test command */
22 
23 	/* RXON and QOS commands */
24 	REPLY_RXON = 0x10,
25 	REPLY_RXON_ASSOC = 0x11,
26 	REPLY_QOS_PARAM = 0x13,
27 	REPLY_RXON_TIMING = 0x14,
28 
29 	/* Multi-Station support */
30 	REPLY_ADD_STA = 0x18,
31 	REPLY_REMOVE_STA = 0x19,
32 	REPLY_REMOVE_ALL_STA = 0x1a,	/* not used */
33 	REPLY_TXFIFO_FLUSH = 0x1e,
34 
35 	/* Security */
36 	REPLY_WEPKEY = 0x20,
37 
38 	/* RX, TX, LEDs */
39 	REPLY_TX = 0x1c,
40 	REPLY_LEDS_CMD = 0x48,
41 	REPLY_TX_LINK_QUALITY_CMD = 0x4e,
42 
43 	/* WiMAX coexistence */
44 	COEX_PRIORITY_TABLE_CMD = 0x5a,
45 	COEX_MEDIUM_NOTIFICATION = 0x5b,
46 	COEX_EVENT_CMD = 0x5c,
47 
48 	/* Calibration */
49 	TEMPERATURE_NOTIFICATION = 0x62,
50 	CALIBRATION_CFG_CMD = 0x65,
51 	CALIBRATION_RES_NOTIFICATION = 0x66,
52 	CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
53 
54 	/* 802.11h related */
55 	REPLY_QUIET_CMD = 0x71,		/* not used */
56 	REPLY_CHANNEL_SWITCH = 0x72,
57 	CHANNEL_SWITCH_NOTIFICATION = 0x73,
58 	REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
59 	SPECTRUM_MEASURE_NOTIFICATION = 0x75,
60 
61 	/* Power Management */
62 	POWER_TABLE_CMD = 0x77,
63 	PM_SLEEP_NOTIFICATION = 0x7A,
64 	PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
65 
66 	/* Scan commands and notifications */
67 	REPLY_SCAN_CMD = 0x80,
68 	REPLY_SCAN_ABORT_CMD = 0x81,
69 	SCAN_START_NOTIFICATION = 0x82,
70 	SCAN_RESULTS_NOTIFICATION = 0x83,
71 	SCAN_COMPLETE_NOTIFICATION = 0x84,
72 
73 	/* IBSS/AP commands */
74 	BEACON_NOTIFICATION = 0x90,
75 	REPLY_TX_BEACON = 0x91,
76 	WHO_IS_AWAKE_NOTIFICATION = 0x94,	/* not used */
77 
78 	/* Miscellaneous commands */
79 	REPLY_TX_POWER_DBM_CMD = 0x95,
80 	QUIET_NOTIFICATION = 0x96,		/* not used */
81 	REPLY_TX_PWR_TABLE_CMD = 0x97,
82 	REPLY_TX_POWER_DBM_CMD_V1 = 0x98,	/* old version of API */
83 	TX_ANT_CONFIGURATION_CMD = 0x98,
84 	MEASURE_ABORT_NOTIFICATION = 0x99,	/* not used */
85 
86 	/* Bluetooth device coexistence config command */
87 	REPLY_BT_CONFIG = 0x9b,
88 
89 	/* Statistics */
90 	REPLY_STATISTICS_CMD = 0x9c,
91 	STATISTICS_NOTIFICATION = 0x9d,
92 
93 	/* RF-KILL commands and notifications */
94 	REPLY_CARD_STATE_CMD = 0xa0,
95 	CARD_STATE_NOTIFICATION = 0xa1,
96 
97 	/* Missed beacons notification */
98 	MISSED_BEACONS_NOTIFICATION = 0xa2,
99 
100 	REPLY_CT_KILL_CONFIG_CMD = 0xa4,
101 	SENSITIVITY_CMD = 0xa8,
102 	REPLY_PHY_CALIBRATION_CMD = 0xb0,
103 	REPLY_RX_PHY_CMD = 0xc0,
104 	REPLY_RX_MPDU_CMD = 0xc1,
105 	REPLY_RX = 0xc3,
106 	REPLY_COMPRESSED_BA = 0xc5,
107 
108 	/* BT Coex */
109 	REPLY_BT_COEX_PRIO_TABLE = 0xcc,
110 	REPLY_BT_COEX_PROT_ENV = 0xcd,
111 	REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
112 
113 	/* PAN commands */
114 	REPLY_WIPAN_PARAMS = 0xb2,
115 	REPLY_WIPAN_RXON = 0xb3,	/* use REPLY_RXON structure */
116 	REPLY_WIPAN_RXON_TIMING = 0xb4,	/* use REPLY_RXON_TIMING structure */
117 	REPLY_WIPAN_RXON_ASSOC = 0xb6,	/* use REPLY_RXON_ASSOC structure */
118 	REPLY_WIPAN_QOS_PARAM = 0xb7,	/* use REPLY_QOS_PARAM structure */
119 	REPLY_WIPAN_WEPKEY = 0xb8,	/* use REPLY_WEPKEY structure */
120 	REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
121 	REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
122 	REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd,
123 
124 	REPLY_WOWLAN_PATTERNS = 0xe0,
125 	REPLY_WOWLAN_WAKEUP_FILTER = 0xe1,
126 	REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2,
127 	REPLY_WOWLAN_TKIP_PARAMS = 0xe3,
128 	REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4,
129 	REPLY_WOWLAN_GET_STATUS = 0xe5,
130 	REPLY_D3_CONFIG = 0xd3,
131 
132 	REPLY_MAX = 0xff
133 };
134 
135 /*
136  * Minimum number of queues. MAX_NUM is defined in hw specific files.
137  * Set the minimum to accommodate
138  *  - 4 standard TX queues
139  *  - the command queue
140  *  - 4 PAN TX queues
141  *  - the PAN multicast queue, and
142  *  - the AUX (TX during scan dwell) queue.
143  */
144 #define IWL_MIN_NUM_QUEUES	11
145 
146 /*
147  * Command queue depends on iPAN support.
148  */
149 #define IWL_DEFAULT_CMD_QUEUE_NUM	4
150 #define IWL_IPAN_CMD_QUEUE_NUM		9
151 
152 #define IWL_TX_FIFO_BK		0	/* shared */
153 #define IWL_TX_FIFO_BE		1
154 #define IWL_TX_FIFO_VI		2	/* shared */
155 #define IWL_TX_FIFO_VO		3
156 #define IWL_TX_FIFO_BK_IPAN	IWL_TX_FIFO_BK
157 #define IWL_TX_FIFO_BE_IPAN	4
158 #define IWL_TX_FIFO_VI_IPAN	IWL_TX_FIFO_VI
159 #define IWL_TX_FIFO_VO_IPAN	5
160 /* re-uses the VO FIFO, uCode will properly flush/schedule */
161 #define IWL_TX_FIFO_AUX		5
162 #define IWL_TX_FIFO_UNUSED	255
163 
164 #define IWLAGN_CMD_FIFO_NUM	7
165 
166 /*
167  * This queue number is required for proper operation
168  * because the ucode will stop/start the scheduler as
169  * required.
170  */
171 #define IWL_IPAN_MCAST_QUEUE	8
172 
173 /******************************************************************************
174  * (0)
175  * Commonly used structures and definitions:
176  * Command header, rate_n_flags, txpower
177  *
178  *****************************************************************************/
179 
180 /**
181  * iwlagn rate_n_flags bit fields
182  *
183  * rate_n_flags format is used in following iwlagn commands:
184  *  REPLY_RX (response only)
185  *  REPLY_RX_MPDU (response only)
186  *  REPLY_TX (both command and response)
187  *  REPLY_TX_LINK_QUALITY_CMD
188  *
189  * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
190  *  2-0:  0)   6 Mbps
191  *        1)  12 Mbps
192  *        2)  18 Mbps
193  *        3)  24 Mbps
194  *        4)  36 Mbps
195  *        5)  48 Mbps
196  *        6)  54 Mbps
197  *        7)  60 Mbps
198  *
199  *  4-3:  0)  Single stream (SISO)
200  *        1)  Dual stream (MIMO)
201  *        2)  Triple stream (MIMO)
202  *
203  *    5:  Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
204  *
205  * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
206  *  3-0:  0xD)   6 Mbps
207  *        0xF)   9 Mbps
208  *        0x5)  12 Mbps
209  *        0x7)  18 Mbps
210  *        0x9)  24 Mbps
211  *        0xB)  36 Mbps
212  *        0x1)  48 Mbps
213  *        0x3)  54 Mbps
214  *
215  * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
216  *  6-0:   10)  1 Mbps
217  *         20)  2 Mbps
218  *         55)  5.5 Mbps
219  *        110)  11 Mbps
220  */
221 #define RATE_MCS_CODE_MSK 0x7
222 #define RATE_MCS_SPATIAL_POS 3
223 #define RATE_MCS_SPATIAL_MSK 0x18
224 #define RATE_MCS_HT_DUP_POS 5
225 #define RATE_MCS_HT_DUP_MSK 0x20
226 /* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
227 #define RATE_MCS_RATE_MSK 0xff
228 
229 /* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
230 #define RATE_MCS_FLAGS_POS 8
231 #define RATE_MCS_HT_POS 8
232 #define RATE_MCS_HT_MSK 0x100
233 
234 /* Bit 9: (1) CCK, (0) OFDM.  HT (bit 8) must be "0" for this bit to be valid */
235 #define RATE_MCS_CCK_POS 9
236 #define RATE_MCS_CCK_MSK 0x200
237 
238 /* Bit 10: (1) Use Green Field preamble */
239 #define RATE_MCS_GF_POS 10
240 #define RATE_MCS_GF_MSK 0x400
241 
242 /* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
243 #define RATE_MCS_HT40_POS 11
244 #define RATE_MCS_HT40_MSK 0x800
245 
246 /* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
247 #define RATE_MCS_DUP_POS 12
248 #define RATE_MCS_DUP_MSK 0x1000
249 
250 /* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
251 #define RATE_MCS_SGI_POS 13
252 #define RATE_MCS_SGI_MSK 0x2000
253 
254 /**
255  * rate_n_flags Tx antenna masks
256  * bit14:16
257  */
258 #define RATE_MCS_ANT_POS	14
259 #define RATE_MCS_ANT_A_MSK	0x04000
260 #define RATE_MCS_ANT_B_MSK	0x08000
261 #define RATE_MCS_ANT_C_MSK	0x10000
262 #define RATE_MCS_ANT_AB_MSK	(RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
263 #define RATE_MCS_ANT_ABC_MSK	(RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
264 #define RATE_ANT_NUM 3
265 
266 #define POWER_TABLE_NUM_ENTRIES			33
267 #define POWER_TABLE_NUM_HT_OFDM_ENTRIES		32
268 #define POWER_TABLE_CCK_ENTRY			32
269 
270 #define IWL_PWR_NUM_HT_OFDM_ENTRIES		24
271 #define IWL_PWR_CCK_ENTRIES			2
272 
273 /**
274  * struct tx_power_dual_stream
275  *
276  * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
277  *
278  * Same format as iwl_tx_power_dual_stream, but __le32
279  */
280 struct tx_power_dual_stream {
281 	__le32 dw;
282 } __packed;
283 
284 /**
285  * Command REPLY_TX_POWER_DBM_CMD = 0x98
286  * struct iwlagn_tx_power_dbm_cmd
287  */
288 #define IWLAGN_TX_POWER_AUTO 0x7f
289 #define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
290 
291 struct iwlagn_tx_power_dbm_cmd {
292 	s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
293 	u8 flags;
294 	s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
295 	u8 reserved;
296 } __packed;
297 
298 /**
299  * Command TX_ANT_CONFIGURATION_CMD = 0x98
300  * This command is used to configure valid Tx antenna.
301  * By default uCode concludes the valid antenna according to the radio flavor.
302  * This command enables the driver to override/modify this conclusion.
303  */
304 struct iwl_tx_ant_config_cmd {
305 	__le32 valid;
306 } __packed;
307 
308 /******************************************************************************
309  * (0a)
310  * Alive and Error Commands & Responses:
311  *
312  *****************************************************************************/
313 
314 #define UCODE_VALID_OK	cpu_to_le32(0x1)
315 
316 /**
317  * REPLY_ALIVE = 0x1 (response only, not a command)
318  *
319  * uCode issues this "alive" notification once the runtime image is ready
320  * to receive commands from the driver.  This is the *second* "alive"
321  * notification that the driver will receive after rebooting uCode;
322  * this "alive" is indicated by subtype field != 9.
323  *
324  * See comments documenting "BSM" (bootstrap state machine).
325  *
326  * This response includes two pointers to structures within the device's
327  * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
328  *
329  * 1)  log_event_table_ptr indicates base of the event log.  This traces
330  *     a 256-entry history of uCode execution within a circular buffer.
331  *     Its header format is:
332  *
333  *	__le32 log_size;     log capacity (in number of entries)
334  *	__le32 type;         (1) timestamp with each entry, (0) no timestamp
335  *	__le32 wraps;        # times uCode has wrapped to top of circular buffer
336  *      __le32 write_index;  next circular buffer entry that uCode would fill
337  *
338  *     The header is followed by the circular buffer of log entries.  Entries
339  *     with timestamps have the following format:
340  *
341  *	__le32 event_id;     range 0 - 1500
342  *	__le32 timestamp;    low 32 bits of TSF (of network, if associated)
343  *	__le32 data;         event_id-specific data value
344  *
345  *     Entries without timestamps contain only event_id and data.
346  *
347  *
348  * 2)  error_event_table_ptr indicates base of the error log.  This contains
349  *     information about any uCode error that occurs.  For agn, the format
350  *     of the error log is defined by struct iwl_error_event_table.
351  *
352  * The Linux driver can print both logs to the system log when a uCode error
353  * occurs.
354  */
355 
356 /*
357  * Note: This structure is read from the device with IO accesses,
358  * and the reading already does the endian conversion. As it is
359  * read with u32-sized accesses, any members with a different size
360  * need to be ordered correctly though!
361  */
362 struct iwl_error_event_table {
363 	u32 valid;		/* (nonzero) valid, (0) log is empty */
364 	u32 error_id;		/* type of error */
365 	u32 pc;			/* program counter */
366 	u32 blink1;		/* branch link */
367 	u32 blink2;		/* branch link */
368 	u32 ilink1;		/* interrupt link */
369 	u32 ilink2;		/* interrupt link */
370 	u32 data1;		/* error-specific data */
371 	u32 data2;		/* error-specific data */
372 	u32 line;		/* source code line of error */
373 	u32 bcon_time;		/* beacon timer */
374 	u32 tsf_low;		/* network timestamp function timer */
375 	u32 tsf_hi;		/* network timestamp function timer */
376 	u32 gp1;		/* GP1 timer register */
377 	u32 gp2;		/* GP2 timer register */
378 	u32 gp3;		/* GP3 timer register */
379 	u32 ucode_ver;		/* uCode version */
380 	u32 hw_ver;		/* HW Silicon version */
381 	u32 brd_ver;		/* HW board version */
382 	u32 log_pc;		/* log program counter */
383 	u32 frame_ptr;		/* frame pointer */
384 	u32 stack_ptr;		/* stack pointer */
385 	u32 hcmd;		/* last host command header */
386 	u32 isr0;		/* isr status register LMPM_NIC_ISR0:
387 				 * rxtx_flag */
388 	u32 isr1;		/* isr status register LMPM_NIC_ISR1:
389 				 * host_flag */
390 	u32 isr2;		/* isr status register LMPM_NIC_ISR2:
391 				 * enc_flag */
392 	u32 isr3;		/* isr status register LMPM_NIC_ISR3:
393 				 * time_flag */
394 	u32 isr4;		/* isr status register LMPM_NIC_ISR4:
395 				 * wico interrupt */
396 	u32 isr_pref;		/* isr status register LMPM_NIC_PREF_STAT */
397 	u32 wait_event;		/* wait event() caller address */
398 	u32 l2p_control;	/* L2pControlField */
399 	u32 l2p_duration;	/* L2pDurationField */
400 	u32 l2p_mhvalid;	/* L2pMhValidBits */
401 	u32 l2p_addr_match;	/* L2pAddrMatchStat */
402 	u32 lmpm_pmg_sel;	/* indicate which clocks are turned on
403 				 * (LMPM_PMG_SEL) */
404 	u32 u_timestamp;	/* indicate when the date and time of the
405 				 * compilation */
406 	u32 flow_handler;	/* FH read/write pointers, RX credit */
407 } __packed;
408 
409 struct iwl_alive_resp {
410 	u8 ucode_minor;
411 	u8 ucode_major;
412 	__le16 reserved1;
413 	u8 sw_rev[8];
414 	u8 ver_type;
415 	u8 ver_subtype;			/* not "9" for runtime alive */
416 	__le16 reserved2;
417 	__le32 log_event_table_ptr;	/* SRAM address for event log */
418 	__le32 error_event_table_ptr;	/* SRAM address for error log */
419 	__le32 timestamp;
420 	__le32 is_valid;
421 } __packed;
422 
423 /*
424  * REPLY_ERROR = 0x2 (response only, not a command)
425  */
426 struct iwl_error_resp {
427 	__le32 error_type;
428 	u8 cmd_id;
429 	u8 reserved1;
430 	__le16 bad_cmd_seq_num;
431 	__le32 error_info;
432 	__le64 timestamp;
433 } __packed;
434 
435 /******************************************************************************
436  * (1)
437  * RXON Commands & Responses:
438  *
439  *****************************************************************************/
440 
441 /*
442  * Rx config defines & structure
443  */
444 /* rx_config device types  */
445 enum {
446 	RXON_DEV_TYPE_AP = 1,
447 	RXON_DEV_TYPE_ESS = 3,
448 	RXON_DEV_TYPE_IBSS = 4,
449 	RXON_DEV_TYPE_SNIFFER = 6,
450 	RXON_DEV_TYPE_CP = 7,
451 	RXON_DEV_TYPE_2STA = 8,
452 	RXON_DEV_TYPE_P2P = 9,
453 };
454 
455 
456 #define RXON_RX_CHAIN_DRIVER_FORCE_MSK		cpu_to_le16(0x1 << 0)
457 #define RXON_RX_CHAIN_DRIVER_FORCE_POS		(0)
458 #define RXON_RX_CHAIN_VALID_MSK			cpu_to_le16(0x7 << 1)
459 #define RXON_RX_CHAIN_VALID_POS			(1)
460 #define RXON_RX_CHAIN_FORCE_SEL_MSK		cpu_to_le16(0x7 << 4)
461 #define RXON_RX_CHAIN_FORCE_SEL_POS		(4)
462 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK	cpu_to_le16(0x7 << 7)
463 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS	(7)
464 #define RXON_RX_CHAIN_CNT_MSK			cpu_to_le16(0x3 << 10)
465 #define RXON_RX_CHAIN_CNT_POS			(10)
466 #define RXON_RX_CHAIN_MIMO_CNT_MSK		cpu_to_le16(0x3 << 12)
467 #define RXON_RX_CHAIN_MIMO_CNT_POS		(12)
468 #define RXON_RX_CHAIN_MIMO_FORCE_MSK		cpu_to_le16(0x1 << 14)
469 #define RXON_RX_CHAIN_MIMO_FORCE_POS		(14)
470 
471 /* rx_config flags */
472 /* band & modulation selection */
473 #define RXON_FLG_BAND_24G_MSK           cpu_to_le32(1 << 0)
474 #define RXON_FLG_CCK_MSK                cpu_to_le32(1 << 1)
475 /* auto detection enable */
476 #define RXON_FLG_AUTO_DETECT_MSK        cpu_to_le32(1 << 2)
477 /* TGg protection when tx */
478 #define RXON_FLG_TGG_PROTECT_MSK        cpu_to_le32(1 << 3)
479 /* cck short slot & preamble */
480 #define RXON_FLG_SHORT_SLOT_MSK          cpu_to_le32(1 << 4)
481 #define RXON_FLG_SHORT_PREAMBLE_MSK     cpu_to_le32(1 << 5)
482 /* antenna selection */
483 #define RXON_FLG_DIS_DIV_MSK            cpu_to_le32(1 << 7)
484 #define RXON_FLG_ANT_SEL_MSK            cpu_to_le32(0x0f00)
485 #define RXON_FLG_ANT_A_MSK              cpu_to_le32(1 << 8)
486 #define RXON_FLG_ANT_B_MSK              cpu_to_le32(1 << 9)
487 /* radar detection enable */
488 #define RXON_FLG_RADAR_DETECT_MSK       cpu_to_le32(1 << 12)
489 #define RXON_FLG_TGJ_NARROW_BAND_MSK    cpu_to_le32(1 << 13)
490 /* rx response to host with 8-byte TSF
491 * (according to ON_AIR deassertion) */
492 #define RXON_FLG_TSF2HOST_MSK           cpu_to_le32(1 << 15)
493 
494 
495 /* HT flags */
496 #define RXON_FLG_CTRL_CHANNEL_LOC_POS		(22)
497 #define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK	cpu_to_le32(0x1 << 22)
498 
499 #define RXON_FLG_HT_OPERATING_MODE_POS		(23)
500 
501 #define RXON_FLG_HT_PROT_MSK			cpu_to_le32(0x1 << 23)
502 #define RXON_FLG_HT40_PROT_MSK			cpu_to_le32(0x2 << 23)
503 
504 #define RXON_FLG_CHANNEL_MODE_POS		(25)
505 #define RXON_FLG_CHANNEL_MODE_MSK		cpu_to_le32(0x3 << 25)
506 
507 /* channel mode */
508 enum {
509 	CHANNEL_MODE_LEGACY = 0,
510 	CHANNEL_MODE_PURE_40 = 1,
511 	CHANNEL_MODE_MIXED = 2,
512 	CHANNEL_MODE_RESERVED = 3,
513 };
514 #define RXON_FLG_CHANNEL_MODE_LEGACY	cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
515 #define RXON_FLG_CHANNEL_MODE_PURE_40	cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
516 #define RXON_FLG_CHANNEL_MODE_MIXED	cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
517 
518 /* CTS to self (if spec allows) flag */
519 #define RXON_FLG_SELF_CTS_EN			cpu_to_le32(0x1<<30)
520 
521 /* rx_config filter flags */
522 /* accept all data frames */
523 #define RXON_FILTER_PROMISC_MSK         cpu_to_le32(1 << 0)
524 /* pass control & management to host */
525 #define RXON_FILTER_CTL2HOST_MSK        cpu_to_le32(1 << 1)
526 /* accept multi-cast */
527 #define RXON_FILTER_ACCEPT_GRP_MSK      cpu_to_le32(1 << 2)
528 /* don't decrypt uni-cast frames */
529 #define RXON_FILTER_DIS_DECRYPT_MSK     cpu_to_le32(1 << 3)
530 /* don't decrypt multi-cast frames */
531 #define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
532 /* STA is associated */
533 #define RXON_FILTER_ASSOC_MSK           cpu_to_le32(1 << 5)
534 /* transfer to host non bssid beacons in associated state */
535 #define RXON_FILTER_BCON_AWARE_MSK      cpu_to_le32(1 << 6)
536 
537 /**
538  * REPLY_RXON = 0x10 (command, has simple generic response)
539  *
540  * RXON tunes the radio tuner to a service channel, and sets up a number
541  * of parameters that are used primarily for Rx, but also for Tx operations.
542  *
543  * NOTE:  When tuning to a new channel, driver must set the
544  *        RXON_FILTER_ASSOC_MSK to 0.  This will clear station-dependent
545  *        info within the device, including the station tables, tx retry
546  *        rate tables, and txpower tables.  Driver must build a new station
547  *        table and txpower table before transmitting anything on the RXON
548  *        channel.
549  *
550  * NOTE:  All RXONs wipe clean the internal txpower table.  Driver must
551  *        issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
552  *        regardless of whether RXON_FILTER_ASSOC_MSK is set.
553  */
554 
555 struct iwl_rxon_cmd {
556 	u8 node_addr[6];
557 	__le16 reserved1;
558 	u8 bssid_addr[6];
559 	__le16 reserved2;
560 	u8 wlap_bssid_addr[6];
561 	__le16 reserved3;
562 	u8 dev_type;
563 	u8 air_propagation;
564 	__le16 rx_chain;
565 	u8 ofdm_basic_rates;
566 	u8 cck_basic_rates;
567 	__le16 assoc_id;
568 	__le32 flags;
569 	__le32 filter_flags;
570 	__le16 channel;
571 	u8 ofdm_ht_single_stream_basic_rates;
572 	u8 ofdm_ht_dual_stream_basic_rates;
573 	u8 ofdm_ht_triple_stream_basic_rates;
574 	u8 reserved5;
575 	__le16 acquisition_data;
576 	__le16 reserved6;
577 } __packed;
578 
579 /*
580  * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
581  */
582 struct iwl_rxon_assoc_cmd {
583 	__le32 flags;
584 	__le32 filter_flags;
585 	u8 ofdm_basic_rates;
586 	u8 cck_basic_rates;
587 	__le16 reserved1;
588 	u8 ofdm_ht_single_stream_basic_rates;
589 	u8 ofdm_ht_dual_stream_basic_rates;
590 	u8 ofdm_ht_triple_stream_basic_rates;
591 	u8 reserved2;
592 	__le16 rx_chain_select_flags;
593 	__le16 acquisition_data;
594 	__le32 reserved3;
595 } __packed;
596 
597 #define IWL_CONN_MAX_LISTEN_INTERVAL	10
598 #define IWL_MAX_UCODE_BEACON_INTERVAL	4 /* 4096 */
599 
600 /*
601  * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
602  */
603 struct iwl_rxon_time_cmd {
604 	__le64 timestamp;
605 	__le16 beacon_interval;
606 	__le16 atim_window;
607 	__le32 beacon_init_val;
608 	__le16 listen_interval;
609 	u8 dtim_period;
610 	u8 delta_cp_bss_tbtts;
611 } __packed;
612 
613 /*
614  * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
615  */
616 /**
617  * struct iwl5000_channel_switch_cmd
618  * @band: 0- 5.2GHz, 1- 2.4GHz
619  * @expect_beacon: 0- resume transmits after channel switch
620  *		   1- wait for beacon to resume transmits
621  * @channel: new channel number
622  * @rxon_flags: Rx on flags
623  * @rxon_filter_flags: filtering parameters
624  * @switch_time: switch time in extended beacon format
625  * @reserved: reserved bytes
626  */
627 struct iwl5000_channel_switch_cmd {
628 	u8 band;
629 	u8 expect_beacon;
630 	__le16 channel;
631 	__le32 rxon_flags;
632 	__le32 rxon_filter_flags;
633 	__le32 switch_time;
634 	__le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
635 } __packed;
636 
637 /**
638  * struct iwl6000_channel_switch_cmd
639  * @band: 0- 5.2GHz, 1- 2.4GHz
640  * @expect_beacon: 0- resume transmits after channel switch
641  *		   1- wait for beacon to resume transmits
642  * @channel: new channel number
643  * @rxon_flags: Rx on flags
644  * @rxon_filter_flags: filtering parameters
645  * @switch_time: switch time in extended beacon format
646  * @reserved: reserved bytes
647  */
648 struct iwl6000_channel_switch_cmd {
649 	u8 band;
650 	u8 expect_beacon;
651 	__le16 channel;
652 	__le32 rxon_flags;
653 	__le32 rxon_filter_flags;
654 	__le32 switch_time;
655 	__le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
656 } __packed;
657 
658 /*
659  * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
660  */
661 struct iwl_csa_notification {
662 	__le16 band;
663 	__le16 channel;
664 	__le32 status;		/* 0 - OK, 1 - fail */
665 } __packed;
666 
667 /******************************************************************************
668  * (2)
669  * Quality-of-Service (QOS) Commands & Responses:
670  *
671  *****************************************************************************/
672 
673 /**
674  * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
675  * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
676  *
677  * @cw_min: Contention window, start value in numbers of slots.
678  *          Should be a power-of-2, minus 1.  Device's default is 0x0f.
679  * @cw_max: Contention window, max value in numbers of slots.
680  *          Should be a power-of-2, minus 1.  Device's default is 0x3f.
681  * @aifsn:  Number of slots in Arbitration Interframe Space (before
682  *          performing random backoff timing prior to Tx).  Device default 1.
683  * @edca_txop:  Length of Tx opportunity, in uSecs.  Device default is 0.
684  *
685  * Device will automatically increase contention window by (2*CW) + 1 for each
686  * transmission retry.  Device uses cw_max as a bit mask, ANDed with new CW
687  * value, to cap the CW value.
688  */
689 struct iwl_ac_qos {
690 	__le16 cw_min;
691 	__le16 cw_max;
692 	u8 aifsn;
693 	u8 reserved1;
694 	__le16 edca_txop;
695 } __packed;
696 
697 /* QoS flags defines */
698 #define QOS_PARAM_FLG_UPDATE_EDCA_MSK	cpu_to_le32(0x01)
699 #define QOS_PARAM_FLG_TGN_MSK		cpu_to_le32(0x02)
700 #define QOS_PARAM_FLG_TXOP_TYPE_MSK	cpu_to_le32(0x10)
701 
702 /* Number of Access Categories (AC) (EDCA), queues 0..3 */
703 #define AC_NUM                4
704 
705 /*
706  * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
707  *
708  * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
709  * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
710  */
711 struct iwl_qosparam_cmd {
712 	__le32 qos_flags;
713 	struct iwl_ac_qos ac[AC_NUM];
714 } __packed;
715 
716 /******************************************************************************
717  * (3)
718  * Add/Modify Stations Commands & Responses:
719  *
720  *****************************************************************************/
721 /*
722  * Multi station support
723  */
724 
725 /* Special, dedicated locations within device's station table */
726 #define	IWL_AP_ID		0
727 #define	IWL_AP_ID_PAN		1
728 #define	IWL_STA_ID		2
729 #define IWLAGN_PAN_BCAST_ID	14
730 #define IWLAGN_BROADCAST_ID	15
731 #define	IWLAGN_STATION_COUNT	16
732 
733 #define IWL_TID_NON_QOS IWL_MAX_TID_COUNT
734 
735 #define STA_FLG_TX_RATE_MSK		cpu_to_le32(1 << 2)
736 #define STA_FLG_PWR_SAVE_MSK		cpu_to_le32(1 << 8)
737 #define STA_FLG_PAN_STATION		cpu_to_le32(1 << 13)
738 #define STA_FLG_RTS_MIMO_PROT_MSK	cpu_to_le32(1 << 17)
739 #define STA_FLG_AGG_MPDU_8US_MSK	cpu_to_le32(1 << 18)
740 #define STA_FLG_MAX_AGG_SIZE_POS	(19)
741 #define STA_FLG_MAX_AGG_SIZE_MSK	cpu_to_le32(3 << 19)
742 #define STA_FLG_HT40_EN_MSK		cpu_to_le32(1 << 21)
743 #define STA_FLG_MIMO_DIS_MSK		cpu_to_le32(1 << 22)
744 #define STA_FLG_AGG_MPDU_DENSITY_POS	(23)
745 #define STA_FLG_AGG_MPDU_DENSITY_MSK	cpu_to_le32(7 << 23)
746 
747 /* Use in mode field.  1: modify existing entry, 0: add new station entry */
748 #define STA_CONTROL_MODIFY_MSK		0x01
749 
750 /* key flags __le16*/
751 #define STA_KEY_FLG_ENCRYPT_MSK	cpu_to_le16(0x0007)
752 #define STA_KEY_FLG_NO_ENC	cpu_to_le16(0x0000)
753 #define STA_KEY_FLG_WEP		cpu_to_le16(0x0001)
754 #define STA_KEY_FLG_CCMP	cpu_to_le16(0x0002)
755 #define STA_KEY_FLG_TKIP	cpu_to_le16(0x0003)
756 
757 #define STA_KEY_FLG_KEYID_POS	8
758 #define STA_KEY_FLG_INVALID 	cpu_to_le16(0x0800)
759 /* wep key is either from global key (0) or from station info array (1) */
760 #define STA_KEY_FLG_MAP_KEY_MSK	cpu_to_le16(0x0008)
761 
762 /* wep key in STA: 5-bytes (0) or 13-bytes (1) */
763 #define STA_KEY_FLG_KEY_SIZE_MSK     cpu_to_le16(0x1000)
764 #define STA_KEY_MULTICAST_MSK        cpu_to_le16(0x4000)
765 #define STA_KEY_MAX_NUM		8
766 #define STA_KEY_MAX_NUM_PAN	16
767 /* must not match WEP_INVALID_OFFSET */
768 #define IWLAGN_HW_KEY_DEFAULT	0xfe
769 
770 /* Flags indicate whether to modify vs. don't change various station params */
771 #define	STA_MODIFY_KEY_MASK		0x01
772 #define	STA_MODIFY_TID_DISABLE_TX	0x02
773 #define	STA_MODIFY_TX_RATE_MSK		0x04
774 #define STA_MODIFY_ADDBA_TID_MSK	0x08
775 #define STA_MODIFY_DELBA_TID_MSK	0x10
776 #define STA_MODIFY_SLEEP_TX_COUNT_MSK	0x20
777 
778 /* agn */
779 struct iwl_keyinfo {
780 	__le16 key_flags;
781 	u8 tkip_rx_tsc_byte2;	/* TSC[2] for key mix ph1 detection */
782 	u8 reserved1;
783 	__le16 tkip_rx_ttak[5];	/* 10-byte unicast TKIP TTAK */
784 	u8 key_offset;
785 	u8 reserved2;
786 	u8 key[16];		/* 16-byte unicast decryption key */
787 	__le64 tx_secur_seq_cnt;
788 	__le64 hw_tkip_mic_rx_key;
789 	__le64 hw_tkip_mic_tx_key;
790 } __packed;
791 
792 /**
793  * struct sta_id_modify
794  * @addr[ETH_ALEN]: station's MAC address
795  * @sta_id: index of station in uCode's station table
796  * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
797  *
798  * Driver selects unused table index when adding new station,
799  * or the index to a pre-existing station entry when modifying that station.
800  * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
801  *
802  * modify_mask flags select which parameters to modify vs. leave alone.
803  */
804 struct sta_id_modify {
805 	u8 addr[ETH_ALEN];
806 	__le16 reserved1;
807 	u8 sta_id;
808 	u8 modify_mask;
809 	__le16 reserved2;
810 } __packed;
811 
812 /*
813  * REPLY_ADD_STA = 0x18 (command)
814  *
815  * The device contains an internal table of per-station information,
816  * with info on security keys, aggregation parameters, and Tx rates for
817  * initial Tx attempt and any retries (agn devices uses
818  * REPLY_TX_LINK_QUALITY_CMD,
819  *
820  * REPLY_ADD_STA sets up the table entry for one station, either creating
821  * a new entry, or modifying a pre-existing one.
822  *
823  * NOTE:  RXON command (without "associated" bit set) wipes the station table
824  *        clean.  Moving into RF_KILL state does this also.  Driver must set up
825  *        new station table before transmitting anything on the RXON channel
826  *        (except active scans or active measurements; those commands carry
827  *        their own txpower/rate setup data).
828  *
829  *        When getting started on a new channel, driver must set up the
830  *        IWL_BROADCAST_ID entry (last entry in the table).  For a client
831  *        station in a BSS, once an AP is selected, driver sets up the AP STA
832  *        in the IWL_AP_ID entry (1st entry in the table).  BROADCAST and AP
833  *        are all that are needed for a BSS client station.  If the device is
834  *        used as AP, or in an IBSS network, driver must set up station table
835  *        entries for all STAs in network, starting with index IWL_STA_ID.
836  */
837 
838 struct iwl_addsta_cmd {
839 	u8 mode;		/* 1: modify existing, 0: add new station */
840 	u8 reserved[3];
841 	struct sta_id_modify sta;
842 	struct iwl_keyinfo key;
843 	__le32 station_flags;		/* STA_FLG_* */
844 	__le32 station_flags_msk;	/* STA_FLG_* */
845 
846 	/* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
847 	 * corresponding to bit (e.g. bit 5 controls TID 5).
848 	 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
849 	__le16 tid_disable_tx;
850 	__le16 legacy_reserved;
851 
852 	/* TID for which to add block-ack support.
853 	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
854 	u8 add_immediate_ba_tid;
855 
856 	/* TID for which to remove block-ack support.
857 	 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
858 	u8 remove_immediate_ba_tid;
859 
860 	/* Starting Sequence Number for added block-ack support.
861 	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
862 	__le16 add_immediate_ba_ssn;
863 
864 	/*
865 	 * Number of packets OK to transmit to station even though
866 	 * it is asleep -- used to synchronise PS-poll and u-APSD
867 	 * responses while ucode keeps track of STA sleep state.
868 	 */
869 	__le16 sleep_tx_count;
870 
871 	__le16 reserved2;
872 } __packed;
873 
874 
875 #define ADD_STA_SUCCESS_MSK		0x1
876 #define ADD_STA_NO_ROOM_IN_TABLE	0x2
877 #define ADD_STA_NO_BLOCK_ACK_RESOURCE	0x4
878 #define ADD_STA_MODIFY_NON_EXIST_STA	0x8
879 /*
880  * REPLY_ADD_STA = 0x18 (response)
881  */
882 struct iwl_add_sta_resp {
883 	u8 status;	/* ADD_STA_* */
884 } __packed;
885 
886 #define REM_STA_SUCCESS_MSK              0x1
887 /*
888  *  REPLY_REM_STA = 0x19 (response)
889  */
890 struct iwl_rem_sta_resp {
891 	u8 status;
892 } __packed;
893 
894 /*
895  *  REPLY_REM_STA = 0x19 (command)
896  */
897 struct iwl_rem_sta_cmd {
898 	u8 num_sta;     /* number of removed stations */
899 	u8 reserved[3];
900 	u8 addr[ETH_ALEN]; /* MAC addr of the first station */
901 	u8 reserved2[2];
902 } __packed;
903 
904 
905 /* WiFi queues mask */
906 #define IWL_SCD_BK_MSK			BIT(0)
907 #define IWL_SCD_BE_MSK			BIT(1)
908 #define IWL_SCD_VI_MSK			BIT(2)
909 #define IWL_SCD_VO_MSK			BIT(3)
910 #define IWL_SCD_MGMT_MSK		BIT(3)
911 
912 /* PAN queues mask */
913 #define IWL_PAN_SCD_BK_MSK		BIT(4)
914 #define IWL_PAN_SCD_BE_MSK		BIT(5)
915 #define IWL_PAN_SCD_VI_MSK		BIT(6)
916 #define IWL_PAN_SCD_VO_MSK		BIT(7)
917 #define IWL_PAN_SCD_MGMT_MSK		BIT(7)
918 #define IWL_PAN_SCD_MULTICAST_MSK	BIT(8)
919 
920 #define IWL_AGG_TX_QUEUE_MSK		0xffc00
921 
922 #define IWL_DROP_ALL			BIT(1)
923 
924 /*
925  * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
926  *
927  * When using full FIFO flush this command checks the scheduler HW block WR/RD
928  * pointers to check if all the frames were transferred by DMA into the
929  * relevant TX FIFO queue. Only when the DMA is finished and the queue is
930  * empty the command can finish.
931  * This command is used to flush the TXFIFO from transmit commands, it may
932  * operate on single or multiple queues, the command queue can't be flushed by
933  * this command. The command response is returned when all the queue flush
934  * operations are done. Each TX command flushed return response with the FLUSH
935  * status set in the TX response status. When FIFO flush operation is used,
936  * the flush operation ends when both the scheduler DMA done and TXFIFO empty
937  * are set.
938  *
939  * @queue_control: bit mask for which queues to flush
940  * @flush_control: flush controls
941  *	0: Dump single MSDU
942  *	1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
943  *	2: Dump all FIFO
944  */
945 struct iwl_txfifo_flush_cmd_v3 {
946 	__le32 queue_control;
947 	__le16 flush_control;
948 	__le16 reserved;
949 } __packed;
950 
951 struct iwl_txfifo_flush_cmd_v2 {
952 	__le16 queue_control;
953 	__le16 flush_control;
954 } __packed;
955 
956 /*
957  * REPLY_WEP_KEY = 0x20
958  */
959 struct iwl_wep_key {
960 	u8 key_index;
961 	u8 key_offset;
962 	u8 reserved1[2];
963 	u8 key_size;
964 	u8 reserved2[3];
965 	u8 key[16];
966 } __packed;
967 
968 struct iwl_wep_cmd {
969 	u8 num_keys;
970 	u8 global_key_type;
971 	u8 flags;
972 	u8 reserved;
973 	struct iwl_wep_key key[];
974 } __packed;
975 
976 #define WEP_KEY_WEP_TYPE 1
977 #define WEP_KEYS_MAX 4
978 #define WEP_INVALID_OFFSET 0xff
979 #define WEP_KEY_LEN_64 5
980 #define WEP_KEY_LEN_128 13
981 
982 /******************************************************************************
983  * (4)
984  * Rx Responses:
985  *
986  *****************************************************************************/
987 
988 #define RX_RES_STATUS_NO_CRC32_ERROR	cpu_to_le32(1 << 0)
989 #define RX_RES_STATUS_NO_RXE_OVERFLOW	cpu_to_le32(1 << 1)
990 
991 #define RX_RES_PHY_FLAGS_BAND_24_MSK	cpu_to_le16(1 << 0)
992 #define RX_RES_PHY_FLAGS_MOD_CCK_MSK		cpu_to_le16(1 << 1)
993 #define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK	cpu_to_le16(1 << 2)
994 #define RX_RES_PHY_FLAGS_NARROW_BAND_MSK	cpu_to_le16(1 << 3)
995 #define RX_RES_PHY_FLAGS_ANTENNA_MSK		0x70
996 #define RX_RES_PHY_FLAGS_ANTENNA_POS		4
997 #define RX_RES_PHY_FLAGS_AGG_MSK		cpu_to_le16(1 << 7)
998 
999 #define RX_RES_STATUS_SEC_TYPE_MSK	(0x7 << 8)
1000 #define RX_RES_STATUS_SEC_TYPE_NONE	(0x0 << 8)
1001 #define RX_RES_STATUS_SEC_TYPE_WEP	(0x1 << 8)
1002 #define RX_RES_STATUS_SEC_TYPE_CCMP	(0x2 << 8)
1003 #define RX_RES_STATUS_SEC_TYPE_TKIP	(0x3 << 8)
1004 #define	RX_RES_STATUS_SEC_TYPE_ERR	(0x7 << 8)
1005 
1006 #define RX_RES_STATUS_STATION_FOUND	(1<<6)
1007 #define RX_RES_STATUS_NO_STATION_INFO_MISMATCH	(1<<7)
1008 
1009 #define RX_RES_STATUS_DECRYPT_TYPE_MSK	(0x3 << 11)
1010 #define RX_RES_STATUS_NOT_DECRYPT	(0x0 << 11)
1011 #define RX_RES_STATUS_DECRYPT_OK	(0x3 << 11)
1012 #define RX_RES_STATUS_BAD_ICV_MIC	(0x1 << 11)
1013 #define RX_RES_STATUS_BAD_KEY_TTAK	(0x2 << 11)
1014 
1015 #define RX_MPDU_RES_STATUS_ICV_OK	(0x20)
1016 #define RX_MPDU_RES_STATUS_MIC_OK	(0x40)
1017 #define RX_MPDU_RES_STATUS_TTAK_OK	(1 << 7)
1018 #define RX_MPDU_RES_STATUS_DEC_DONE_MSK	(0x800)
1019 
1020 
1021 #define IWLAGN_RX_RES_PHY_CNT 8
1022 #define IWLAGN_RX_RES_AGC_IDX     1
1023 #define IWLAGN_RX_RES_RSSI_AB_IDX 2
1024 #define IWLAGN_RX_RES_RSSI_C_IDX  3
1025 #define IWLAGN_OFDM_AGC_MSK 0xfe00
1026 #define IWLAGN_OFDM_AGC_BIT_POS 9
1027 #define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
1028 #define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
1029 #define IWLAGN_OFDM_RSSI_A_BIT_POS 0
1030 #define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
1031 #define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
1032 #define IWLAGN_OFDM_RSSI_B_BIT_POS 16
1033 #define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
1034 #define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
1035 #define IWLAGN_OFDM_RSSI_C_BIT_POS 0
1036 
1037 struct iwlagn_non_cfg_phy {
1038 	__le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT];  /* up to 8 phy entries */
1039 } __packed;
1040 
1041 
1042 /*
1043  * REPLY_RX = 0xc3 (response only, not a command)
1044  * Used only for legacy (non 11n) frames.
1045  */
1046 struct iwl_rx_phy_res {
1047 	u8 non_cfg_phy_cnt;     /* non configurable DSP phy data byte count */
1048 	u8 cfg_phy_cnt;		/* configurable DSP phy data byte count */
1049 	u8 stat_id;		/* configurable DSP phy data set ID */
1050 	u8 reserved1;
1051 	__le64 timestamp;	/* TSF at on air rise */
1052 	__le32 beacon_time_stamp; /* beacon at on-air rise */
1053 	__le16 phy_flags;	/* general phy flags: band, modulation, ... */
1054 	__le16 channel;		/* channel number */
1055 	u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1056 	__le32 rate_n_flags;	/* RATE_MCS_* */
1057 	__le16 byte_count;	/* frame's byte-count */
1058 	__le16 frame_time;	/* frame's time on the air */
1059 } __packed;
1060 
1061 struct iwl_rx_mpdu_res_start {
1062 	__le16 byte_count;
1063 	__le16 reserved;
1064 } __packed;
1065 
1066 
1067 /******************************************************************************
1068  * (5)
1069  * Tx Commands & Responses:
1070  *
1071  * Driver must place each REPLY_TX command into one of the prioritized Tx
1072  * queues in host DRAM, shared between driver and device (see comments for
1073  * SCD registers and Tx/Rx Queues).  When the device's Tx scheduler and uCode
1074  * are preparing to transmit, the device pulls the Tx command over the PCI
1075  * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1076  * from which data will be transmitted.
1077  *
1078  * uCode handles all timing and protocol related to control frames
1079  * (RTS/CTS/ACK), based on flags in the Tx command.  uCode and Tx scheduler
1080  * handle reception of block-acks; uCode updates the host driver via
1081  * REPLY_COMPRESSED_BA.
1082  *
1083  * uCode handles retrying Tx when an ACK is expected but not received.
1084  * This includes trying lower data rates than the one requested in the Tx
1085  * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn).
1086  *
1087  * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1088  * This command must be executed after every RXON command, before Tx can occur.
1089  *****************************************************************************/
1090 
1091 /* REPLY_TX Tx flags field */
1092 
1093 /*
1094  * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1095  * before this frame. if CTS-to-self required check
1096  * RXON_FLG_SELF_CTS_EN status.
1097  */
1098 #define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
1099 
1100 /* 1: Expect ACK from receiving station
1101  * 0: Don't expect ACK (MAC header's duration field s/b 0)
1102  * Set this for unicast frames, but not broadcast/multicast. */
1103 #define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1104 
1105 /* For agn devices:
1106  * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1107  *    Tx command's initial_rate_index indicates first rate to try;
1108  *    uCode walks through table for additional Tx attempts.
1109  * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1110  *    This rate will be used for all Tx attempts; it will not be scaled. */
1111 #define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1112 
1113 /* 1: Expect immediate block-ack.
1114  * Set when Txing a block-ack request frame.  Also set TX_CMD_FLG_ACK_MSK. */
1115 #define TX_CMD_FLG_IMM_BA_RSP_MASK  cpu_to_le32(1 << 6)
1116 
1117 /* Tx antenna selection field; reserved (0) for agn devices. */
1118 #define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1119 
1120 /* 1: Ignore Bluetooth priority for this frame.
1121  * 0: Delay Tx until Bluetooth device is done (normal usage). */
1122 #define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
1123 
1124 /* 1: uCode overrides sequence control field in MAC header.
1125  * 0: Driver provides sequence control field in MAC header.
1126  * Set this for management frames, non-QOS data frames, non-unicast frames,
1127  * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1128 #define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1129 
1130 /* 1: This frame is non-last MPDU; more fragments are coming.
1131  * 0: Last fragment, or not using fragmentation. */
1132 #define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1133 
1134 /* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1135  * 0: No TSF required in outgoing frame.
1136  * Set this for transmitting beacons and probe responses. */
1137 #define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1138 
1139 /* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1140  *    alignment of frame's payload data field.
1141  * 0: No pad
1142  * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1143  * field (but not both).  Driver must align frame data (i.e. data following
1144  * MAC header) to DWORD boundary. */
1145 #define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1146 
1147 /* accelerate aggregation support
1148  * 0 - no CCMP encryption; 1 - CCMP encryption */
1149 #define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1150 
1151 /* HCCA-AP - disable duration overwriting. */
1152 #define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1153 
1154 
1155 /*
1156  * TX command security control
1157  */
1158 #define TX_CMD_SEC_WEP  	0x01
1159 #define TX_CMD_SEC_CCM  	0x02
1160 #define TX_CMD_SEC_TKIP		0x03
1161 #define TX_CMD_SEC_MSK		0x03
1162 #define TX_CMD_SEC_SHIFT	6
1163 #define TX_CMD_SEC_KEY128	0x08
1164 
1165 /*
1166  * REPLY_TX = 0x1c (command)
1167  */
1168 
1169 /*
1170  * Used for managing Tx retries when expecting block-acks.
1171  * Driver should set these fields to 0.
1172  */
1173 struct iwl_dram_scratch {
1174 	u8 try_cnt;		/* Tx attempts */
1175 	u8 bt_kill_cnt;		/* Tx attempts blocked by Bluetooth device */
1176 	__le16 reserved;
1177 } __packed;
1178 
1179 struct iwl_tx_cmd {
1180 	/*
1181 	 * MPDU byte count:
1182 	 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1183 	 * + 8 byte IV for CCM or TKIP (not used for WEP)
1184 	 * + Data payload
1185 	 * + 8-byte MIC (not used for CCM/WEP)
1186 	 * NOTE:  Does not include Tx command bytes, post-MAC pad bytes,
1187 	 *        MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1188 	 * Range: 14-2342 bytes.
1189 	 */
1190 	__le16 len;
1191 
1192 	/*
1193 	 * MPDU or MSDU byte count for next frame.
1194 	 * Used for fragmentation and bursting, but not 11n aggregation.
1195 	 * Same as "len", but for next frame.  Set to 0 if not applicable.
1196 	 */
1197 	__le16 next_frame_len;
1198 
1199 	__le32 tx_flags;	/* TX_CMD_FLG_* */
1200 
1201 	/* uCode may modify this field of the Tx command (in host DRAM!).
1202 	 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1203 	struct iwl_dram_scratch scratch;
1204 
1205 	/* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1206 	__le32 rate_n_flags;	/* RATE_MCS_* */
1207 
1208 	/* Index of destination station in uCode's station table */
1209 	u8 sta_id;
1210 
1211 	/* Type of security encryption:  CCM or TKIP */
1212 	u8 sec_ctl;		/* TX_CMD_SEC_* */
1213 
1214 	/*
1215 	 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1216 	 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set.  Normally "0" for
1217 	 * data frames, this field may be used to selectively reduce initial
1218 	 * rate (via non-0 value) for special frames (e.g. management), while
1219 	 * still supporting rate scaling for all frames.
1220 	 */
1221 	u8 initial_rate_index;
1222 	u8 reserved;
1223 	u8 key[16];
1224 	__le16 next_frame_flags;
1225 	__le16 reserved2;
1226 	union {
1227 		__le32 life_time;
1228 		__le32 attempt;
1229 	} stop_time;
1230 
1231 	/* Host DRAM physical address pointer to "scratch" in this command.
1232 	 * Must be dword aligned.  "0" in dram_lsb_ptr disables usage. */
1233 	__le32 dram_lsb_ptr;
1234 	u8 dram_msb_ptr;
1235 
1236 	u8 rts_retry_limit;	/*byte 50 */
1237 	u8 data_retry_limit;	/*byte 51 */
1238 	u8 tid_tspec;
1239 	union {
1240 		__le16 pm_frame_timeout;
1241 		__le16 attempt_duration;
1242 	} timeout;
1243 
1244 	/*
1245 	 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1246 	 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1247 	 */
1248 	__le16 driver_txop;
1249 
1250 	/*
1251 	 * MAC header goes here, followed by 2 bytes padding if MAC header
1252 	 * length is 26 or 30 bytes, followed by payload data
1253 	 */
1254 	union {
1255 		DECLARE_FLEX_ARRAY(u8, payload);
1256 		DECLARE_FLEX_ARRAY(struct ieee80211_hdr, hdr);
1257 	};
1258 } __packed;
1259 
1260 /*
1261  * TX command response is sent after *agn* transmission attempts.
1262  *
1263  * both postpone and abort status are expected behavior from uCode. there is
1264  * no special operation required from driver; except for RFKILL_FLUSH,
1265  * which required tx flush host command to flush all the tx frames in queues
1266  */
1267 enum {
1268 	TX_STATUS_SUCCESS = 0x01,
1269 	TX_STATUS_DIRECT_DONE = 0x02,
1270 	/* postpone TX */
1271 	TX_STATUS_POSTPONE_DELAY = 0x40,
1272 	TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
1273 	TX_STATUS_POSTPONE_BT_PRIO = 0x42,
1274 	TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
1275 	TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
1276 	/* abort TX */
1277 	TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
1278 	TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1279 	TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1280 	TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1281 	TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
1282 	TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
1283 	TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1284 	TX_STATUS_FAIL_DEST_PS = 0x88,
1285 	TX_STATUS_FAIL_HOST_ABORTED = 0x89,
1286 	TX_STATUS_FAIL_BT_RETRY = 0x8a,
1287 	TX_STATUS_FAIL_STA_INVALID = 0x8b,
1288 	TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1289 	TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1290 	TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
1291 	TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1292 	TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
1293 	TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1294 };
1295 
1296 #define	TX_PACKET_MODE_REGULAR		0x0000
1297 #define	TX_PACKET_MODE_BURST_SEQ	0x0100
1298 #define	TX_PACKET_MODE_BURST_FIRST	0x0200
1299 
1300 enum {
1301 	TX_POWER_PA_NOT_ACTIVE = 0x0,
1302 };
1303 
1304 enum {
1305 	TX_STATUS_MSK = 0x000000ff,		/* bits 0:7 */
1306 	TX_STATUS_DELAY_MSK = 0x00000040,
1307 	TX_STATUS_ABORT_MSK = 0x00000080,
1308 	TX_PACKET_MODE_MSK = 0x0000ff00,	/* bits 8:15 */
1309 	TX_FIFO_NUMBER_MSK = 0x00070000,	/* bits 16:18 */
1310 	TX_RESERVED = 0x00780000,		/* bits 19:22 */
1311 	TX_POWER_PA_DETECT_MSK = 0x7f800000,	/* bits 23:30 */
1312 	TX_ABORT_REQUIRED_MSK = 0x80000000,	/* bits 31:31 */
1313 };
1314 
1315 /* *******************************
1316  * TX aggregation status
1317  ******************************* */
1318 
1319 enum {
1320 	AGG_TX_STATE_TRANSMITTED = 0x00,
1321 	AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1322 	AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1323 	AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1324 	AGG_TX_STATE_ABORT_MSK = 0x08,
1325 	AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1326 	AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1327 	AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1328 	AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1329 	AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1330 	AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1331 	AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1332 	AGG_TX_STATE_DELAY_TX_MSK = 0x400
1333 };
1334 
1335 #define AGG_TX_STATUS_MSK	0x00000fff	/* bits 0:11 */
1336 #define AGG_TX_TRY_MSK		0x0000f000	/* bits 12:15 */
1337 #define AGG_TX_TRY_POS		12
1338 
1339 #define AGG_TX_STATE_LAST_SENT_MSK  (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1340 				     AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1341 				     AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1342 
1343 /* # tx attempts for first frame in aggregation */
1344 #define AGG_TX_STATE_TRY_CNT_POS 12
1345 #define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1346 
1347 /* Command ID and sequence number of Tx command for this frame */
1348 #define AGG_TX_STATE_SEQ_NUM_POS 16
1349 #define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1350 
1351 /*
1352  * REPLY_TX = 0x1c (response)
1353  *
1354  * This response may be in one of two slightly different formats, indicated
1355  * by the frame_count field:
1356  *
1357  * 1)  No aggregation (frame_count == 1).  This reports Tx results for
1358  *     a single frame.  Multiple attempts, at various bit rates, may have
1359  *     been made for this frame.
1360  *
1361  * 2)  Aggregation (frame_count > 1).  This reports Tx results for
1362  *     2 or more frames that used block-acknowledge.  All frames were
1363  *     transmitted at same rate.  Rate scaling may have been used if first
1364  *     frame in this new agg block failed in previous agg block(s).
1365  *
1366  *     Note that, for aggregation, ACK (block-ack) status is not delivered here;
1367  *     block-ack has not been received by the time the agn device records
1368  *     this status.
1369  *     This status relates to reasons the tx might have been blocked or aborted
1370  *     within the sending station (this agn device), rather than whether it was
1371  *     received successfully by the destination station.
1372  */
1373 struct agg_tx_status {
1374 	__le16 status;
1375 	__le16 sequence;
1376 } __packed;
1377 
1378 /* refer to ra_tid */
1379 #define IWLAGN_TX_RES_TID_POS	0
1380 #define IWLAGN_TX_RES_TID_MSK	0x0f
1381 #define IWLAGN_TX_RES_RA_POS	4
1382 #define IWLAGN_TX_RES_RA_MSK	0xf0
1383 
1384 struct iwlagn_tx_resp {
1385 	u8 frame_count;		/* 1 no aggregation, >1 aggregation */
1386 	u8 bt_kill_count;	/* # blocked by bluetooth (unused for agg) */
1387 	u8 failure_rts;		/* # failures due to unsuccessful RTS */
1388 	u8 failure_frame;	/* # failures due to no ACK (unused for agg) */
1389 
1390 	/* For non-agg:  Rate at which frame was successful.
1391 	 * For agg:  Rate at which all frames were transmitted. */
1392 	__le32 rate_n_flags;	/* RATE_MCS_*  */
1393 
1394 	/* For non-agg:  RTS + CTS + frame tx attempts time + ACK.
1395 	 * For agg:  RTS + CTS + aggregation tx time + block-ack time. */
1396 	__le16 wireless_media_time;	/* uSecs */
1397 
1398 	u8 pa_status;		/* RF power amplifier measurement (not used) */
1399 	u8 pa_integ_res_a[3];
1400 	u8 pa_integ_res_b[3];
1401 	u8 pa_integ_res_C[3];
1402 
1403 	__le32 tfd_info;
1404 	__le16 seq_ctl;
1405 	__le16 byte_cnt;
1406 	u8 tlc_info;
1407 	u8 ra_tid;		/* tid (0:3), sta_id (4:7) */
1408 	__le16 frame_ctrl;
1409 	/*
1410 	 * For non-agg:  frame status TX_STATUS_*
1411 	 * For agg:  status of 1st frame, AGG_TX_STATE_*; other frame status
1412 	 *           fields follow this one, up to frame_count.
1413 	 *           Bit fields:
1414 	 *           11- 0:  AGG_TX_STATE_* status code
1415 	 *           15-12:  Retry count for 1st frame in aggregation (retries
1416 	 *                   occur if tx failed for this frame when it was a
1417 	 *                   member of a previous aggregation block).  If rate
1418 	 *                   scaling is used, retry count indicates the rate
1419 	 *                   table entry used for all frames in the new agg.
1420 	 *           31-16:  Sequence # for this frame's Tx cmd (not SSN!)
1421 	 */
1422 	struct agg_tx_status status;	/* TX status (in aggregation -
1423 					 * status of 1st frame) */
1424 } __packed;
1425 /*
1426  * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1427  *
1428  * Reports Block-Acknowledge from recipient station
1429  */
1430 struct iwl_compressed_ba_resp {
1431 	__le32 sta_addr_lo32;
1432 	__le16 sta_addr_hi16;
1433 	__le16 reserved;
1434 
1435 	/* Index of recipient (BA-sending) station in uCode's station table */
1436 	u8 sta_id;
1437 	u8 tid;
1438 	__le16 seq_ctl;
1439 	__le64 bitmap;
1440 	__le16 scd_flow;
1441 	__le16 scd_ssn;
1442 	u8 txed;	/* number of frames sent */
1443 	u8 txed_2_done; /* number of frames acked */
1444 	__le16 reserved1;
1445 } __packed;
1446 
1447 /*
1448  * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1449  *
1450  */
1451 
1452 /*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1453 #define  LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK	(1 << 0)
1454 
1455 /* # of EDCA prioritized tx fifos */
1456 #define  LINK_QUAL_AC_NUM AC_NUM
1457 
1458 /* # entries in rate scale table to support Tx retries */
1459 #define  LINK_QUAL_MAX_RETRY_NUM 16
1460 
1461 /* Tx antenna selection values */
1462 #define  LINK_QUAL_ANT_A_MSK (1 << 0)
1463 #define  LINK_QUAL_ANT_B_MSK (1 << 1)
1464 #define  LINK_QUAL_ANT_MSK   (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1465 
1466 
1467 /**
1468  * struct iwl_link_qual_general_params
1469  *
1470  * Used in REPLY_TX_LINK_QUALITY_CMD
1471  */
1472 struct iwl_link_qual_general_params {
1473 	u8 flags;
1474 
1475 	/* No entries at or above this (driver chosen) index contain MIMO */
1476 	u8 mimo_delimiter;
1477 
1478 	/* Best single antenna to use for single stream (legacy, SISO). */
1479 	u8 single_stream_ant_msk;	/* LINK_QUAL_ANT_* */
1480 
1481 	/* Best antennas to use for MIMO */
1482 	u8 dual_stream_ant_msk;		/* LINK_QUAL_ANT_* */
1483 
1484 	/*
1485 	 * If driver needs to use different initial rates for different
1486 	 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1487 	 * this table will set that up, by indicating the indexes in the
1488 	 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1489 	 * Otherwise, driver should set all entries to 0.
1490 	 *
1491 	 * Entry usage:
1492 	 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1493 	 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1494 	 */
1495 	u8 start_rate_index[LINK_QUAL_AC_NUM];
1496 } __packed;
1497 
1498 #define LINK_QUAL_AGG_TIME_LIMIT_DEF	(4000) /* 4 milliseconds */
1499 #define LINK_QUAL_AGG_TIME_LIMIT_MAX	(8000)
1500 #define LINK_QUAL_AGG_TIME_LIMIT_MIN	(100)
1501 
1502 #define LINK_QUAL_AGG_DISABLE_START_DEF	(3)
1503 #define LINK_QUAL_AGG_DISABLE_START_MAX	(255)
1504 #define LINK_QUAL_AGG_DISABLE_START_MIN	(0)
1505 
1506 #define LINK_QUAL_AGG_FRAME_LIMIT_DEF	(63)
1507 #define LINK_QUAL_AGG_FRAME_LIMIT_MAX	(63)
1508 #define LINK_QUAL_AGG_FRAME_LIMIT_MIN	(0)
1509 
1510 /**
1511  * struct iwl_link_qual_agg_params
1512  *
1513  * Used in REPLY_TX_LINK_QUALITY_CMD
1514  */
1515 struct iwl_link_qual_agg_params {
1516 
1517 	/*
1518 	 *Maximum number of uSec in aggregation.
1519 	 * default set to 4000 (4 milliseconds) if not configured in .cfg
1520 	 */
1521 	__le16 agg_time_limit;
1522 
1523 	/*
1524 	 * Number of Tx retries allowed for a frame, before that frame will
1525 	 * no longer be considered for the start of an aggregation sequence
1526 	 * (scheduler will then try to tx it as single frame).
1527 	 * Driver should set this to 3.
1528 	 */
1529 	u8 agg_dis_start_th;
1530 
1531 	/*
1532 	 * Maximum number of frames in aggregation.
1533 	 * 0 = no limit (default).  1 = no aggregation.
1534 	 * Other values = max # frames in aggregation.
1535 	 */
1536 	u8 agg_frame_cnt_limit;
1537 
1538 	__le32 reserved;
1539 } __packed;
1540 
1541 /*
1542  * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1543  *
1544  * For agn devices
1545  *
1546  * Each station in the agn device's internal station table has its own table
1547  * of 16
1548  * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1549  * an ACK is not received.  This command replaces the entire table for
1550  * one station.
1551  *
1552  * NOTE:  Station must already be in agn device's station table.
1553  *	  Use REPLY_ADD_STA.
1554  *
1555  * The rate scaling procedures described below work well.  Of course, other
1556  * procedures are possible, and may work better for particular environments.
1557  *
1558  *
1559  * FILLING THE RATE TABLE
1560  *
1561  * Given a particular initial rate and mode, as determined by the rate
1562  * scaling algorithm described below, the Linux driver uses the following
1563  * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1564  * Link Quality command:
1565  *
1566  *
1567  * 1)  If using High-throughput (HT) (SISO or MIMO) initial rate:
1568  *     a) Use this same initial rate for first 3 entries.
1569  *     b) Find next lower available rate using same mode (SISO or MIMO),
1570  *        use for next 3 entries.  If no lower rate available, switch to
1571  *        legacy mode (no HT40 channel, no MIMO, no short guard interval).
1572  *     c) If using MIMO, set command's mimo_delimiter to number of entries
1573  *        using MIMO (3 or 6).
1574  *     d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
1575  *        no MIMO, no short guard interval), at the next lower bit rate
1576  *        (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1577  *        legacy procedure for remaining table entries.
1578  *
1579  * 2)  If using legacy initial rate:
1580  *     a) Use the initial rate for only one entry.
1581  *     b) For each following entry, reduce the rate to next lower available
1582  *        rate, until reaching the lowest available rate.
1583  *     c) When reducing rate, also switch antenna selection.
1584  *     d) Once lowest available rate is reached, repeat this rate until
1585  *        rate table is filled (16 entries), switching antenna each entry.
1586  *
1587  *
1588  * ACCUMULATING HISTORY
1589  *
1590  * The rate scaling algorithm for agn devices, as implemented in Linux driver,
1591  * uses two sets of frame Tx success history:  One for the current/active
1592  * modulation mode, and one for a speculative/search mode that is being
1593  * attempted. If the speculative mode turns out to be more effective (i.e.
1594  * actual transfer rate is better), then the driver continues to use the
1595  * speculative mode as the new current active mode.
1596  *
1597  * Each history set contains, separately for each possible rate, data for a
1598  * sliding window of the 62 most recent tx attempts at that rate.  The data
1599  * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1600  * and attempted frames, from which the driver can additionally calculate a
1601  * success ratio (success / attempted) and number of failures
1602  * (attempted - success), and control the size of the window (attempted).
1603  * The driver uses the bit map to remove successes from the success sum, as
1604  * the oldest tx attempts fall out of the window.
1605  *
1606  * When the agn device makes multiple tx attempts for a given frame, each
1607  * attempt might be at a different rate, and have different modulation
1608  * characteristics (e.g. antenna, fat channel, short guard interval), as set
1609  * up in the rate scaling table in the Link Quality command.  The driver must
1610  * determine which rate table entry was used for each tx attempt, to determine
1611  * which rate-specific history to update, and record only those attempts that
1612  * match the modulation characteristics of the history set.
1613  *
1614  * When using block-ack (aggregation), all frames are transmitted at the same
1615  * rate, since there is no per-attempt acknowledgment from the destination
1616  * station.  The Tx response struct iwl_tx_resp indicates the Tx rate in
1617  * rate_n_flags field.  After receiving a block-ack, the driver can update
1618  * history for the entire block all at once.
1619  *
1620  *
1621  * FINDING BEST STARTING RATE:
1622  *
1623  * When working with a selected initial modulation mode (see below), the
1624  * driver attempts to find a best initial rate.  The initial rate is the
1625  * first entry in the Link Quality command's rate table.
1626  *
1627  * 1)  Calculate actual throughput (success ratio * expected throughput, see
1628  *     table below) for current initial rate.  Do this only if enough frames
1629  *     have been attempted to make the value meaningful:  at least 6 failed
1630  *     tx attempts, or at least 8 successes.  If not enough, don't try rate
1631  *     scaling yet.
1632  *
1633  * 2)  Find available rates adjacent to current initial rate.  Available means:
1634  *     a)  supported by hardware &&
1635  *     b)  supported by association &&
1636  *     c)  within any constraints selected by user
1637  *
1638  * 3)  Gather measured throughputs for adjacent rates.  These might not have
1639  *     enough history to calculate a throughput.  That's okay, we might try
1640  *     using one of them anyway!
1641  *
1642  * 4)  Try decreasing rate if, for current rate:
1643  *     a)  success ratio is < 15% ||
1644  *     b)  lower adjacent rate has better measured throughput ||
1645  *     c)  higher adjacent rate has worse throughput, and lower is unmeasured
1646  *
1647  *     As a sanity check, if decrease was determined above, leave rate
1648  *     unchanged if:
1649  *     a)  lower rate unavailable
1650  *     b)  success ratio at current rate > 85% (very good)
1651  *     c)  current measured throughput is better than expected throughput
1652  *         of lower rate (under perfect 100% tx conditions, see table below)
1653  *
1654  * 5)  Try increasing rate if, for current rate:
1655  *     a)  success ratio is < 15% ||
1656  *     b)  both adjacent rates' throughputs are unmeasured (try it!) ||
1657  *     b)  higher adjacent rate has better measured throughput ||
1658  *     c)  lower adjacent rate has worse throughput, and higher is unmeasured
1659  *
1660  *     As a sanity check, if increase was determined above, leave rate
1661  *     unchanged if:
1662  *     a)  success ratio at current rate < 70%.  This is not particularly
1663  *         good performance; higher rate is sure to have poorer success.
1664  *
1665  * 6)  Re-evaluate the rate after each tx frame.  If working with block-
1666  *     acknowledge, history and statistics may be calculated for the entire
1667  *     block (including prior history that fits within the history windows),
1668  *     before re-evaluation.
1669  *
1670  * FINDING BEST STARTING MODULATION MODE:
1671  *
1672  * After working with a modulation mode for a "while" (and doing rate scaling),
1673  * the driver searches for a new initial mode in an attempt to improve
1674  * throughput.  The "while" is measured by numbers of attempted frames:
1675  *
1676  * For legacy mode, search for new mode after:
1677  *   480 successful frames, or 160 failed frames
1678  * For high-throughput modes (SISO or MIMO), search for new mode after:
1679  *   4500 successful frames, or 400 failed frames
1680  *
1681  * Mode switch possibilities are (3 for each mode):
1682  *
1683  * For legacy:
1684  *   Change antenna, try SISO (if HT association), try MIMO (if HT association)
1685  * For SISO:
1686  *   Change antenna, try MIMO, try shortened guard interval (SGI)
1687  * For MIMO:
1688  *   Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1689  *
1690  * When trying a new mode, use the same bit rate as the old/current mode when
1691  * trying antenna switches and shortened guard interval.  When switching to
1692  * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1693  * for which the expected throughput (under perfect conditions) is about the
1694  * same or slightly better than the actual measured throughput delivered by
1695  * the old/current mode.
1696  *
1697  * Actual throughput can be estimated by multiplying the expected throughput
1698  * by the success ratio (successful / attempted tx frames).  Frame size is
1699  * not considered in this calculation; it assumes that frame size will average
1700  * out to be fairly consistent over several samples.  The following are
1701  * metric values for expected throughput assuming 100% success ratio.
1702  * Only G band has support for CCK rates:
1703  *
1704  *           RATE:  1    2    5   11    6   9   12   18   24   36   48   54   60
1705  *
1706  *              G:  7   13   35   58   40  57   72   98  121  154  177  186  186
1707  *              A:  0    0    0    0   40  57   72   98  121  154  177  186  186
1708  *     SISO 20MHz:  0    0    0    0   42  42   76  102  124  159  183  193  202
1709  * SGI SISO 20MHz:  0    0    0    0   46  46   82  110  132  168  192  202  211
1710  *     MIMO 20MHz:  0    0    0    0   74  74  123  155  179  214  236  244  251
1711  * SGI MIMO 20MHz:  0    0    0    0   81  81  131  164  188  222  243  251  257
1712  *     SISO 40MHz:  0    0    0    0   77  77  127  160  184  220  242  250  257
1713  * SGI SISO 40MHz:  0    0    0    0   83  83  135  169  193  229  250  257  264
1714  *     MIMO 40MHz:  0    0    0    0  123 123  182  214  235  264  279  285  289
1715  * SGI MIMO 40MHz:  0    0    0    0  131 131  191  222  242  270  284  289  293
1716  *
1717  * After the new mode has been tried for a short while (minimum of 6 failed
1718  * frames or 8 successful frames), compare success ratio and actual throughput
1719  * estimate of the new mode with the old.  If either is better with the new
1720  * mode, continue to use the new mode.
1721  *
1722  * Continue comparing modes until all 3 possibilities have been tried.
1723  * If moving from legacy to HT, try all 3 possibilities from the new HT
1724  * mode.  After trying all 3, a best mode is found.  Continue to use this mode
1725  * for the longer "while" described above (e.g. 480 successful frames for
1726  * legacy), and then repeat the search process.
1727  *
1728  */
1729 struct iwl_link_quality_cmd {
1730 
1731 	/* Index of destination/recipient station in uCode's station table */
1732 	u8 sta_id;
1733 	u8 reserved1;
1734 	__le16 control;		/* not used */
1735 	struct iwl_link_qual_general_params general_params;
1736 	struct iwl_link_qual_agg_params agg_params;
1737 
1738 	/*
1739 	 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1740 	 * specifies 1st Tx rate attempted, via index into this table.
1741 	 * agn devices works its way through table when retrying Tx.
1742 	 */
1743 	struct {
1744 		__le32 rate_n_flags;	/* RATE_MCS_*, IWL_RATE_* */
1745 	} rs_table[LINK_QUAL_MAX_RETRY_NUM];
1746 	__le32 reserved2;
1747 } __packed;
1748 
1749 /*
1750  * BT configuration enable flags:
1751  *   bit 0 - 1: BT channel announcement enabled
1752  *           0: disable
1753  *   bit 1 - 1: priority of BT device enabled
1754  *           0: disable
1755  *   bit 2 - 1: BT 2 wire support enabled
1756  *           0: disable
1757  */
1758 #define BT_COEX_DISABLE (0x0)
1759 #define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
1760 #define BT_ENABLE_PRIORITY	   BIT(1)
1761 #define BT_ENABLE_2_WIRE	   BIT(2)
1762 
1763 #define BT_COEX_DISABLE (0x0)
1764 #define BT_COEX_ENABLE  (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
1765 
1766 #define BT_LEAD_TIME_MIN (0x0)
1767 #define BT_LEAD_TIME_DEF (0x1E)
1768 #define BT_LEAD_TIME_MAX (0xFF)
1769 
1770 #define BT_MAX_KILL_MIN (0x1)
1771 #define BT_MAX_KILL_DEF (0x5)
1772 #define BT_MAX_KILL_MAX (0xFF)
1773 
1774 #define BT_DURATION_LIMIT_DEF	625
1775 #define BT_DURATION_LIMIT_MAX	1250
1776 #define BT_DURATION_LIMIT_MIN	625
1777 
1778 #define BT_ON_THRESHOLD_DEF	4
1779 #define BT_ON_THRESHOLD_MAX	1000
1780 #define BT_ON_THRESHOLD_MIN	1
1781 
1782 #define BT_FRAG_THRESHOLD_DEF	0
1783 #define BT_FRAG_THRESHOLD_MAX	0
1784 #define BT_FRAG_THRESHOLD_MIN	0
1785 
1786 #define BT_AGG_THRESHOLD_DEF	1200
1787 #define BT_AGG_THRESHOLD_MAX	8000
1788 #define BT_AGG_THRESHOLD_MIN	400
1789 
1790 /*
1791  * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1792  *
1793  * agn devices support hardware handshake with Bluetooth device on
1794  * same platform.  Bluetooth device alerts wireless device when it will Tx;
1795  * wireless device can delay or kill its own Tx to accommodate.
1796  */
1797 struct iwl_bt_cmd {
1798 	u8 flags;
1799 	u8 lead_time;
1800 	u8 max_kill;
1801 	u8 reserved;
1802 	__le32 kill_ack_mask;
1803 	__le32 kill_cts_mask;
1804 } __packed;
1805 
1806 #define IWLAGN_BT_FLAG_CHANNEL_INHIBITION	BIT(0)
1807 
1808 #define IWLAGN_BT_FLAG_COEX_MODE_MASK		(BIT(3)|BIT(4)|BIT(5))
1809 #define IWLAGN_BT_FLAG_COEX_MODE_SHIFT		3
1810 #define IWLAGN_BT_FLAG_COEX_MODE_DISABLED	0
1811 #define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W	1
1812 #define IWLAGN_BT_FLAG_COEX_MODE_3W		2
1813 #define IWLAGN_BT_FLAG_COEX_MODE_4W		3
1814 
1815 #define IWLAGN_BT_FLAG_UCODE_DEFAULT		BIT(6)
1816 /* Disable Sync PSPoll on SCO/eSCO */
1817 #define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE	BIT(7)
1818 
1819 #define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD	-75 /* dBm */
1820 #define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD	-65 /* dBm */
1821 
1822 #define IWLAGN_BT_PRIO_BOOST_MAX	0xFF
1823 #define IWLAGN_BT_PRIO_BOOST_MIN	0x00
1824 #define IWLAGN_BT_PRIO_BOOST_DEFAULT	0xF0
1825 #define IWLAGN_BT_PRIO_BOOST_DEFAULT32	0xF0F0F0F0
1826 
1827 #define IWLAGN_BT_MAX_KILL_DEFAULT	5
1828 
1829 #define IWLAGN_BT3_T7_DEFAULT		1
1830 
1831 enum iwl_bt_kill_idx {
1832 	IWL_BT_KILL_DEFAULT = 0,
1833 	IWL_BT_KILL_OVERRIDE = 1,
1834 	IWL_BT_KILL_REDUCE = 2,
1835 };
1836 
1837 #define IWLAGN_BT_KILL_ACK_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1838 #define IWLAGN_BT_KILL_CTS_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1839 #define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO	cpu_to_le32(0xffffffff)
1840 #define IWLAGN_BT_KILL_ACK_CTS_MASK_REDUCE	cpu_to_le32(0)
1841 
1842 #define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT	2
1843 
1844 #define IWLAGN_BT3_T2_DEFAULT		0xc
1845 
1846 #define IWLAGN_BT_VALID_ENABLE_FLAGS	cpu_to_le16(BIT(0))
1847 #define IWLAGN_BT_VALID_BOOST		cpu_to_le16(BIT(1))
1848 #define IWLAGN_BT_VALID_MAX_KILL	cpu_to_le16(BIT(2))
1849 #define IWLAGN_BT_VALID_3W_TIMERS	cpu_to_le16(BIT(3))
1850 #define IWLAGN_BT_VALID_KILL_ACK_MASK	cpu_to_le16(BIT(4))
1851 #define IWLAGN_BT_VALID_KILL_CTS_MASK	cpu_to_le16(BIT(5))
1852 #define IWLAGN_BT_VALID_REDUCED_TX_PWR	cpu_to_le16(BIT(6))
1853 #define IWLAGN_BT_VALID_3W_LUT		cpu_to_le16(BIT(7))
1854 
1855 #define IWLAGN_BT_ALL_VALID_MSK		(IWLAGN_BT_VALID_ENABLE_FLAGS | \
1856 					IWLAGN_BT_VALID_BOOST | \
1857 					IWLAGN_BT_VALID_MAX_KILL | \
1858 					IWLAGN_BT_VALID_3W_TIMERS | \
1859 					IWLAGN_BT_VALID_KILL_ACK_MASK | \
1860 					IWLAGN_BT_VALID_KILL_CTS_MASK | \
1861 					IWLAGN_BT_VALID_REDUCED_TX_PWR | \
1862 					IWLAGN_BT_VALID_3W_LUT)
1863 
1864 #define IWLAGN_BT_REDUCED_TX_PWR	BIT(0)
1865 
1866 #define IWLAGN_BT_DECISION_LUT_SIZE	12
1867 
1868 struct iwl_basic_bt_cmd {
1869 	u8 flags;
1870 	u8 ledtime; /* unused */
1871 	u8 max_kill;
1872 	u8 bt3_timer_t7_value;
1873 	__le32 kill_ack_mask;
1874 	__le32 kill_cts_mask;
1875 	u8 bt3_prio_sample_time;
1876 	u8 bt3_timer_t2_value;
1877 	__le16 bt4_reaction_time; /* unused */
1878 	__le32 bt3_lookup_table[IWLAGN_BT_DECISION_LUT_SIZE];
1879 	/*
1880 	 * bit 0: use reduced tx power for control frame
1881 	 * bit 1 - 7: reserved
1882 	 */
1883 	u8 reduce_txpower;
1884 	u8 reserved;
1885 	__le16 valid;
1886 };
1887 
1888 struct iwl_bt_cmd_v1 {
1889 	struct iwl_basic_bt_cmd basic;
1890 	u8 prio_boost;
1891 	/*
1892 	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1893 	 * if configure the following patterns
1894 	 */
1895 	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
1896 	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
1897 };
1898 
1899 struct iwl_bt_cmd_v2 {
1900 	struct iwl_basic_bt_cmd basic;
1901 	__le32 prio_boost;
1902 	/*
1903 	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1904 	 * if configure the following patterns
1905 	 */
1906 	u8 reserved;
1907 	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
1908 	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
1909 };
1910 
1911 #define IWLAGN_BT_SCO_ACTIVE	cpu_to_le32(BIT(0))
1912 
1913 struct iwlagn_bt_sco_cmd {
1914 	__le32 flags;
1915 };
1916 
1917 /******************************************************************************
1918  * (6)
1919  * Spectrum Management (802.11h) Commands, Responses, Notifications:
1920  *
1921  *****************************************************************************/
1922 
1923 /*
1924  * Spectrum Management
1925  */
1926 #define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK         | \
1927 				 RXON_FILTER_CTL2HOST_MSK        | \
1928 				 RXON_FILTER_ACCEPT_GRP_MSK      | \
1929 				 RXON_FILTER_DIS_DECRYPT_MSK     | \
1930 				 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
1931 				 RXON_FILTER_ASSOC_MSK           | \
1932 				 RXON_FILTER_BCON_AWARE_MSK)
1933 
1934 struct iwl_measure_channel {
1935 	__le32 duration;	/* measurement duration in extended beacon
1936 				 * format */
1937 	u8 channel;		/* channel to measure */
1938 	u8 type;		/* see enum iwl_measure_type */
1939 	__le16 reserved;
1940 } __packed;
1941 
1942 /*
1943  * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
1944  */
1945 struct iwl_spectrum_cmd {
1946 	__le16 len;		/* number of bytes starting from token */
1947 	u8 token;		/* token id */
1948 	u8 id;			/* measurement id -- 0 or 1 */
1949 	u8 origin;		/* 0 = TGh, 1 = other, 2 = TGk */
1950 	u8 periodic;		/* 1 = periodic */
1951 	__le16 path_loss_timeout;
1952 	__le32 start_time;	/* start time in extended beacon format */
1953 	__le32 reserved2;
1954 	__le32 flags;		/* rxon flags */
1955 	__le32 filter_flags;	/* rxon filter flags */
1956 	__le16 channel_count;	/* minimum 1, maximum 10 */
1957 	__le16 reserved3;
1958 	struct iwl_measure_channel channels[10];
1959 } __packed;
1960 
1961 /*
1962  * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
1963  */
1964 struct iwl_spectrum_resp {
1965 	u8 token;
1966 	u8 id;			/* id of the prior command replaced, or 0xff */
1967 	__le16 status;		/* 0 - command will be handled
1968 				 * 1 - cannot handle (conflicts with another
1969 				 *     measurement) */
1970 } __packed;
1971 
1972 enum iwl_measurement_state {
1973 	IWL_MEASUREMENT_START = 0,
1974 	IWL_MEASUREMENT_STOP = 1,
1975 };
1976 
1977 enum iwl_measurement_status {
1978 	IWL_MEASUREMENT_OK = 0,
1979 	IWL_MEASUREMENT_CONCURRENT = 1,
1980 	IWL_MEASUREMENT_CSA_CONFLICT = 2,
1981 	IWL_MEASUREMENT_TGH_CONFLICT = 3,
1982 	/* 4-5 reserved */
1983 	IWL_MEASUREMENT_STOPPED = 6,
1984 	IWL_MEASUREMENT_TIMEOUT = 7,
1985 	IWL_MEASUREMENT_PERIODIC_FAILED = 8,
1986 };
1987 
1988 #define NUM_ELEMENTS_IN_HISTOGRAM 8
1989 
1990 struct iwl_measurement_histogram {
1991 	__le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 0.8usec counts */
1992 	__le32 cck[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 1usec counts */
1993 } __packed;
1994 
1995 /* clear channel availability counters */
1996 struct iwl_measurement_cca_counters {
1997 	__le32 ofdm;
1998 	__le32 cck;
1999 } __packed;
2000 
2001 enum iwl_measure_type {
2002 	IWL_MEASURE_BASIC = (1 << 0),
2003 	IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2004 	IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2005 	IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2006 	IWL_MEASURE_FRAME = (1 << 4),
2007 	/* bits 5:6 are reserved */
2008 	IWL_MEASURE_IDLE = (1 << 7),
2009 };
2010 
2011 /*
2012  * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2013  */
2014 struct iwl_spectrum_notification {
2015 	u8 id;			/* measurement id -- 0 or 1 */
2016 	u8 token;
2017 	u8 channel_index;	/* index in measurement channel list */
2018 	u8 state;		/* 0 - start, 1 - stop */
2019 	__le32 start_time;	/* lower 32-bits of TSF */
2020 	u8 band;		/* 0 - 5.2GHz, 1 - 2.4GHz */
2021 	u8 channel;
2022 	u8 type;		/* see enum iwl_measurement_type */
2023 	u8 reserved1;
2024 	/* NOTE:  cca_ofdm, cca_cck, basic_type, and histogram are only only
2025 	 * valid if applicable for measurement type requested. */
2026 	__le32 cca_ofdm;	/* cca fraction time in 40Mhz clock periods */
2027 	__le32 cca_cck;		/* cca fraction time in 44Mhz clock periods */
2028 	__le32 cca_time;	/* channel load time in usecs */
2029 	u8 basic_type;		/* 0 - bss, 1 - ofdm preamble, 2 -
2030 				 * unidentified */
2031 	u8 reserved2[3];
2032 	struct iwl_measurement_histogram histogram;
2033 	__le32 stop_time;	/* lower 32-bits of TSF */
2034 	__le32 status;		/* see iwl_measurement_status */
2035 } __packed;
2036 
2037 /******************************************************************************
2038  * (7)
2039  * Power Management Commands, Responses, Notifications:
2040  *
2041  *****************************************************************************/
2042 
2043 /**
2044  * struct iwl_powertable_cmd - Power Table Command
2045  * @flags: See below:
2046  *
2047  * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2048  *
2049  * PM allow:
2050  *   bit 0 - '0' Driver not allow power management
2051  *           '1' Driver allow PM (use rest of parameters)
2052  *
2053  * uCode send sleep notifications:
2054  *   bit 1 - '0' Don't send sleep notification
2055  *           '1' send sleep notification (SEND_PM_NOTIFICATION)
2056  *
2057  * Sleep over DTIM
2058  *   bit 2 - '0' PM have to walk up every DTIM
2059  *           '1' PM could sleep over DTIM till listen Interval.
2060  *
2061  * PCI power managed
2062  *   bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2063  *           '1' !(PCI_CFG_LINK_CTRL & 0x1)
2064  *
2065  * Fast PD
2066  *   bit 4 - '1' Put radio to sleep when receiving frame for others
2067  *
2068  * Force sleep Modes
2069  *   bit 31/30- '00' use both mac/xtal sleeps
2070  *              '01' force Mac sleep
2071  *              '10' force xtal sleep
2072  *              '11' Illegal set
2073  *
2074  * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2075  * ucode assume sleep over DTIM is allowed and we don't need to wake up
2076  * for every DTIM.
2077  */
2078 #define IWL_POWER_VEC_SIZE 5
2079 
2080 #define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK	cpu_to_le16(BIT(0))
2081 #define IWL_POWER_POWER_SAVE_ENA_MSK		cpu_to_le16(BIT(0))
2082 #define IWL_POWER_POWER_MANAGEMENT_ENA_MSK	cpu_to_le16(BIT(1))
2083 #define IWL_POWER_SLEEP_OVER_DTIM_MSK		cpu_to_le16(BIT(2))
2084 #define IWL_POWER_PCI_PM_MSK			cpu_to_le16(BIT(3))
2085 #define IWL_POWER_FAST_PD			cpu_to_le16(BIT(4))
2086 #define IWL_POWER_BEACON_FILTERING		cpu_to_le16(BIT(5))
2087 #define IWL_POWER_SHADOW_REG_ENA		cpu_to_le16(BIT(6))
2088 #define IWL_POWER_CT_KILL_SET			cpu_to_le16(BIT(7))
2089 #define IWL_POWER_BT_SCO_ENA			cpu_to_le16(BIT(8))
2090 #define IWL_POWER_ADVANCE_PM_ENA_MSK		cpu_to_le16(BIT(9))
2091 
2092 struct iwl_powertable_cmd {
2093 	__le16 flags;
2094 	u8 keep_alive_seconds;
2095 	u8 debug_flags;
2096 	__le32 rx_data_timeout;
2097 	__le32 tx_data_timeout;
2098 	__le32 sleep_interval[IWL_POWER_VEC_SIZE];
2099 	__le32 keep_alive_beacons;
2100 } __packed;
2101 
2102 /*
2103  * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2104  * all devices identical.
2105  */
2106 struct iwl_sleep_notification {
2107 	u8 pm_sleep_mode;
2108 	u8 pm_wakeup_src;
2109 	__le16 reserved;
2110 	__le32 sleep_time;
2111 	__le32 tsf_low;
2112 	__le32 bcon_timer;
2113 } __packed;
2114 
2115 /* Sleep states.  all devices identical. */
2116 enum {
2117 	IWL_PM_NO_SLEEP = 0,
2118 	IWL_PM_SLP_MAC = 1,
2119 	IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2120 	IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2121 	IWL_PM_SLP_PHY = 4,
2122 	IWL_PM_SLP_REPENT = 5,
2123 	IWL_PM_WAKEUP_BY_TIMER = 6,
2124 	IWL_PM_WAKEUP_BY_DRIVER = 7,
2125 	IWL_PM_WAKEUP_BY_RFKILL = 8,
2126 	/* 3 reserved */
2127 	IWL_PM_NUM_OF_MODES = 12,
2128 };
2129 
2130 /*
2131  * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2132  */
2133 #define CARD_STATE_CMD_DISABLE 0x00	/* Put card to sleep */
2134 #define CARD_STATE_CMD_ENABLE  0x01	/* Wake up card */
2135 #define CARD_STATE_CMD_HALT    0x02	/* Power down permanently */
2136 struct iwl_card_state_cmd {
2137 	__le32 status;		/* CARD_STATE_CMD_* request new power state */
2138 } __packed;
2139 
2140 /*
2141  * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2142  */
2143 struct iwl_card_state_notif {
2144 	__le32 flags;
2145 } __packed;
2146 
2147 #define HW_CARD_DISABLED   0x01
2148 #define SW_CARD_DISABLED   0x02
2149 #define CT_CARD_DISABLED   0x04
2150 #define RXON_CARD_DISABLED 0x10
2151 
2152 struct iwl_ct_kill_config {
2153 	__le32   reserved;
2154 	__le32   critical_temperature_M;
2155 	__le32   critical_temperature_R;
2156 }  __packed;
2157 
2158 /* 1000, and 6x00 */
2159 struct iwl_ct_kill_throttling_config {
2160 	__le32   critical_temperature_exit;
2161 	__le32   reserved;
2162 	__le32   critical_temperature_enter;
2163 }  __packed;
2164 
2165 /******************************************************************************
2166  * (8)
2167  * Scan Commands, Responses, Notifications:
2168  *
2169  *****************************************************************************/
2170 
2171 #define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2172 #define SCAN_CHANNEL_TYPE_ACTIVE  cpu_to_le32(1)
2173 
2174 /**
2175  * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2176  *
2177  * One for each channel in the scan list.
2178  * Each channel can independently select:
2179  * 1)  SSID for directed active scans
2180  * 2)  Txpower setting (for rate specified within Tx command)
2181  * 3)  How long to stay on-channel (behavior may be modified by quiet_time,
2182  *     quiet_plcp_th, good_CRC_th)
2183  *
2184  * To avoid uCode errors, make sure the following are true (see comments
2185  * under struct iwl_scan_cmd about max_out_time and quiet_time):
2186  * 1)  If using passive_dwell (i.e. passive_dwell != 0):
2187  *     active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2188  * 2)  quiet_time <= active_dwell
2189  * 3)  If restricting off-channel time (i.e. max_out_time !=0):
2190  *     passive_dwell < max_out_time
2191  *     active_dwell < max_out_time
2192  */
2193 
2194 struct iwl_scan_channel {
2195 	/*
2196 	 * type is defined as:
2197 	 * 0:0 1 = active, 0 = passive
2198 	 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2199 	 *     SSID IE is transmitted in probe request.
2200 	 * 21:31 reserved
2201 	 */
2202 	__le32 type;
2203 	__le16 channel;	/* band is selected by iwl_scan_cmd "flags" field */
2204 	u8 tx_gain;		/* gain for analog radio */
2205 	u8 dsp_atten;		/* gain for DSP */
2206 	__le16 active_dwell;	/* in 1024-uSec TU (time units), typ 5-50 */
2207 	__le16 passive_dwell;	/* in 1024-uSec TU (time units), typ 20-500 */
2208 } __packed;
2209 
2210 /* set number of direct probes __le32 type */
2211 #define IWL_SCAN_PROBE_MASK(n) 	cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2212 
2213 /**
2214  * struct iwl_ssid_ie - directed scan network information element
2215  *
2216  * Up to 20 of these may appear in REPLY_SCAN_CMD,
2217  * selected by "type" bit field in struct iwl_scan_channel;
2218  * each channel may select different ssids from among the 20 entries.
2219  * SSID IEs get transmitted in reverse order of entry.
2220  */
2221 struct iwl_ssid_ie {
2222 	u8 id;
2223 	u8 len;
2224 	u8 ssid[32];
2225 } __packed;
2226 
2227 #define PROBE_OPTION_MAX		20
2228 #define TX_CMD_LIFE_TIME_INFINITE	cpu_to_le32(0xFFFFFFFF)
2229 #define IWL_GOOD_CRC_TH_DISABLED	0
2230 #define IWL_GOOD_CRC_TH_DEFAULT		cpu_to_le16(1)
2231 #define IWL_GOOD_CRC_TH_NEVER		cpu_to_le16(0xffff)
2232 #define IWL_MAX_CMD_SIZE 4096
2233 
2234 /*
2235  * REPLY_SCAN_CMD = 0x80 (command)
2236  *
2237  * The hardware scan command is very powerful; the driver can set it up to
2238  * maintain (relatively) normal network traffic while doing a scan in the
2239  * background.  The max_out_time and suspend_time control the ratio of how
2240  * long the device stays on an associated network channel ("service channel")
2241  * vs. how long it's away from the service channel, i.e. tuned to other channels
2242  * for scanning.
2243  *
2244  * max_out_time is the max time off-channel (in usec), and suspend_time
2245  * is how long (in "extended beacon" format) that the scan is "suspended"
2246  * after returning to the service channel.  That is, suspend_time is the
2247  * time that we stay on the service channel, doing normal work, between
2248  * scan segments.  The driver may set these parameters differently to support
2249  * scanning when associated vs. not associated, and light vs. heavy traffic
2250  * loads when associated.
2251  *
2252  * After receiving this command, the device's scan engine does the following;
2253  *
2254  * 1)  Sends SCAN_START notification to driver
2255  * 2)  Checks to see if it has time to do scan for one channel
2256  * 3)  Sends NULL packet, with power-save (PS) bit set to 1,
2257  *     to tell AP that we're going off-channel
2258  * 4)  Tunes to first channel in scan list, does active or passive scan
2259  * 5)  Sends SCAN_RESULT notification to driver
2260  * 6)  Checks to see if it has time to do scan on *next* channel in list
2261  * 7)  Repeats 4-6 until it no longer has time to scan the next channel
2262  *     before max_out_time expires
2263  * 8)  Returns to service channel
2264  * 9)  Sends NULL packet with PS=0 to tell AP that we're back
2265  * 10) Stays on service channel until suspend_time expires
2266  * 11) Repeats entire process 2-10 until list is complete
2267  * 12) Sends SCAN_COMPLETE notification
2268  *
2269  * For fast, efficient scans, the scan command also has support for staying on
2270  * a channel for just a short time, if doing active scanning and getting no
2271  * responses to the transmitted probe request.  This time is controlled by
2272  * quiet_time, and the number of received packets below which a channel is
2273  * considered "quiet" is controlled by quiet_plcp_threshold.
2274  *
2275  * For active scanning on channels that have regulatory restrictions against
2276  * blindly transmitting, the scan can listen before transmitting, to make sure
2277  * that there is already legitimate activity on the channel.  If enough
2278  * packets are cleanly received on the channel (controlled by good_CRC_th,
2279  * typical value 1), the scan engine starts transmitting probe requests.
2280  *
2281  * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2282  *
2283  * To avoid uCode errors, see timing restrictions described under
2284  * struct iwl_scan_channel.
2285  */
2286 
2287 enum iwl_scan_flags {
2288 	/* BIT(0) currently unused */
2289 	IWL_SCAN_FLAGS_ACTION_FRAME_TX	= BIT(1),
2290 	/* bits 2-7 reserved */
2291 };
2292 
2293 struct iwl_scan_cmd {
2294 	__le16 len;
2295 	u8 scan_flags;		/* scan flags: see enum iwl_scan_flags */
2296 	u8 channel_count;	/* # channels in channel list */
2297 	__le16 quiet_time;	/* dwell only this # millisecs on quiet channel
2298 				 * (only for active scan) */
2299 	__le16 quiet_plcp_th;	/* quiet chnl is < this # pkts (typ. 1) */
2300 	__le16 good_CRC_th;	/* passive -> active promotion threshold */
2301 	__le16 rx_chain;	/* RXON_RX_CHAIN_* */
2302 	__le32 max_out_time;	/* max usec to be away from associated (service)
2303 				 * channel */
2304 	__le32 suspend_time;	/* pause scan this long (in "extended beacon
2305 				 * format") when returning to service chnl:
2306 				 */
2307 	__le32 flags;		/* RXON_FLG_* */
2308 	__le32 filter_flags;	/* RXON_FILTER_* */
2309 
2310 	/* For active scans (set to all-0s for passive scans).
2311 	 * Does not include payload.  Must specify Tx rate; no rate scaling. */
2312 	struct iwl_tx_cmd tx_cmd;
2313 
2314 	/* For directed active scans (set to all-0s otherwise) */
2315 	struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2316 
2317 	/*
2318 	 * Probe request frame, followed by channel list.
2319 	 *
2320 	 * Size of probe request frame is specified by byte count in tx_cmd.
2321 	 * Channel list follows immediately after probe request frame.
2322 	 * Number of channels in list is specified by channel_count.
2323 	 * Each channel in list is of type:
2324 	 *
2325 	 * struct iwl_scan_channel channels[0];
2326 	 *
2327 	 * NOTE:  Only one band of channels can be scanned per pass.  You
2328 	 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2329 	 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2330 	 * before requesting another scan.
2331 	 */
2332 	u8 data[];
2333 } __packed;
2334 
2335 /* Can abort will notify by complete notification with abort status. */
2336 #define CAN_ABORT_STATUS	cpu_to_le32(0x1)
2337 /* complete notification statuses */
2338 #define ABORT_STATUS            0x2
2339 
2340 /*
2341  * REPLY_SCAN_CMD = 0x80 (response)
2342  */
2343 struct iwl_scanreq_notification {
2344 	__le32 status;		/* 1: okay, 2: cannot fulfill request */
2345 } __packed;
2346 
2347 /*
2348  * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2349  */
2350 struct iwl_scanstart_notification {
2351 	__le32 tsf_low;
2352 	__le32 tsf_high;
2353 	__le32 beacon_timer;
2354 	u8 channel;
2355 	u8 band;
2356 	u8 reserved[2];
2357 	__le32 status;
2358 } __packed;
2359 
2360 #define  SCAN_OWNER_STATUS 0x1
2361 #define  MEASURE_OWNER_STATUS 0x2
2362 
2363 #define IWL_PROBE_STATUS_OK		0
2364 #define IWL_PROBE_STATUS_TX_FAILED	BIT(0)
2365 /* error statuses combined with TX_FAILED */
2366 #define IWL_PROBE_STATUS_FAIL_TTL	BIT(1)
2367 #define IWL_PROBE_STATUS_FAIL_BT	BIT(2)
2368 
2369 #define NUMBER_OF_STATISTICS 1	/* first __le32 is good CRC */
2370 /*
2371  * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2372  */
2373 struct iwl_scanresults_notification {
2374 	u8 channel;
2375 	u8 band;
2376 	u8 probe_status;
2377 	u8 num_probe_not_sent; /* not enough time to send */
2378 	__le32 tsf_low;
2379 	__le32 tsf_high;
2380 	__le32 statistics[NUMBER_OF_STATISTICS];
2381 } __packed;
2382 
2383 /*
2384  * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2385  */
2386 struct iwl_scancomplete_notification {
2387 	u8 scanned_channels;
2388 	u8 status;
2389 	u8 bt_status;	/* BT On/Off status */
2390 	u8 last_channel;
2391 	__le32 tsf_low;
2392 	__le32 tsf_high;
2393 } __packed;
2394 
2395 
2396 /******************************************************************************
2397  * (9)
2398  * IBSS/AP Commands and Notifications:
2399  *
2400  *****************************************************************************/
2401 
2402 enum iwl_ibss_manager {
2403 	IWL_NOT_IBSS_MANAGER = 0,
2404 	IWL_IBSS_MANAGER = 1,
2405 };
2406 
2407 /*
2408  * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2409  */
2410 
2411 struct iwlagn_beacon_notif {
2412 	struct iwlagn_tx_resp beacon_notify_hdr;
2413 	__le32 low_tsf;
2414 	__le32 high_tsf;
2415 	__le32 ibss_mgr_status;
2416 } __packed;
2417 
2418 /*
2419  * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2420  */
2421 
2422 struct iwl_tx_beacon_cmd {
2423 	struct iwl_tx_cmd tx;
2424 	__le16 tim_idx;
2425 	u8 tim_size;
2426 	u8 reserved1;
2427 	struct ieee80211_hdr frame[];	/* beacon frame */
2428 } __packed;
2429 
2430 /******************************************************************************
2431  * (10)
2432  * Statistics Commands and Notifications:
2433  *
2434  *****************************************************************************/
2435 
2436 #define IWL_TEMP_CONVERT 260
2437 
2438 #define SUP_RATE_11A_MAX_NUM_CHANNELS  8
2439 #define SUP_RATE_11B_MAX_NUM_CHANNELS  4
2440 #define SUP_RATE_11G_MAX_NUM_CHANNELS  12
2441 
2442 /* Used for passing to driver number of successes and failures per rate */
2443 struct rate_histogram {
2444 	union {
2445 		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2446 		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2447 		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2448 	} success;
2449 	union {
2450 		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2451 		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2452 		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2453 	} failed;
2454 } __packed;
2455 
2456 /* statistics command response */
2457 
2458 struct statistics_dbg {
2459 	__le32 burst_check;
2460 	__le32 burst_count;
2461 	__le32 wait_for_silence_timeout_cnt;
2462 	__le32 reserved[3];
2463 } __packed;
2464 
2465 struct statistics_rx_phy {
2466 	__le32 ina_cnt;
2467 	__le32 fina_cnt;
2468 	__le32 plcp_err;
2469 	__le32 crc32_err;
2470 	__le32 overrun_err;
2471 	__le32 early_overrun_err;
2472 	__le32 crc32_good;
2473 	__le32 false_alarm_cnt;
2474 	__le32 fina_sync_err_cnt;
2475 	__le32 sfd_timeout;
2476 	__le32 fina_timeout;
2477 	__le32 unresponded_rts;
2478 	__le32 rxe_frame_limit_overrun;
2479 	__le32 sent_ack_cnt;
2480 	__le32 sent_cts_cnt;
2481 	__le32 sent_ba_rsp_cnt;
2482 	__le32 dsp_self_kill;
2483 	__le32 mh_format_err;
2484 	__le32 re_acq_main_rssi_sum;
2485 	__le32 reserved3;
2486 } __packed;
2487 
2488 struct statistics_rx_ht_phy {
2489 	__le32 plcp_err;
2490 	__le32 overrun_err;
2491 	__le32 early_overrun_err;
2492 	__le32 crc32_good;
2493 	__le32 crc32_err;
2494 	__le32 mh_format_err;
2495 	__le32 agg_crc32_good;
2496 	__le32 agg_mpdu_cnt;
2497 	__le32 agg_cnt;
2498 	__le32 unsupport_mcs;
2499 } __packed;
2500 
2501 #define INTERFERENCE_DATA_AVAILABLE      cpu_to_le32(1)
2502 
2503 struct statistics_rx_non_phy {
2504 	__le32 bogus_cts;	/* CTS received when not expecting CTS */
2505 	__le32 bogus_ack;	/* ACK received when not expecting ACK */
2506 	__le32 non_bssid_frames;	/* number of frames with BSSID that
2507 					 * doesn't belong to the STA BSSID */
2508 	__le32 filtered_frames;	/* count frames that were dumped in the
2509 				 * filtering process */
2510 	__le32 non_channel_beacons;	/* beacons with our bss id but not on
2511 					 * our serving channel */
2512 	__le32 channel_beacons;	/* beacons with our bss id and in our
2513 				 * serving channel */
2514 	__le32 num_missed_bcon;	/* number of missed beacons */
2515 	__le32 adc_rx_saturation_time;	/* count in 0.8us units the time the
2516 					 * ADC was in saturation */
2517 	__le32 ina_detection_search_time;/* total time (in 0.8us) searched
2518 					  * for INA */
2519 	__le32 beacon_silence_rssi_a;	/* RSSI silence after beacon frame */
2520 	__le32 beacon_silence_rssi_b;	/* RSSI silence after beacon frame */
2521 	__le32 beacon_silence_rssi_c;	/* RSSI silence after beacon frame */
2522 	__le32 interference_data_flag;	/* flag for interference data
2523 					 * availability. 1 when data is
2524 					 * available. */
2525 	__le32 channel_load;		/* counts RX Enable time in uSec */
2526 	__le32 dsp_false_alarms;	/* DSP false alarm (both OFDM
2527 					 * and CCK) counter */
2528 	__le32 beacon_rssi_a;
2529 	__le32 beacon_rssi_b;
2530 	__le32 beacon_rssi_c;
2531 	__le32 beacon_energy_a;
2532 	__le32 beacon_energy_b;
2533 	__le32 beacon_energy_c;
2534 } __packed;
2535 
2536 struct statistics_rx_non_phy_bt {
2537 	struct statistics_rx_non_phy common;
2538 	/* additional stats for bt */
2539 	__le32 num_bt_kills;
2540 	__le32 reserved[2];
2541 } __packed;
2542 
2543 struct statistics_rx {
2544 	struct statistics_rx_phy ofdm;
2545 	struct statistics_rx_phy cck;
2546 	struct statistics_rx_non_phy general;
2547 	struct statistics_rx_ht_phy ofdm_ht;
2548 } __packed;
2549 
2550 struct statistics_rx_bt {
2551 	struct statistics_rx_phy ofdm;
2552 	struct statistics_rx_phy cck;
2553 	struct statistics_rx_non_phy_bt general;
2554 	struct statistics_rx_ht_phy ofdm_ht;
2555 } __packed;
2556 
2557 /**
2558  * struct statistics_tx_power - current tx power
2559  *
2560  * @ant_a: current tx power on chain a in 1/2 dB step
2561  * @ant_b: current tx power on chain b in 1/2 dB step
2562  * @ant_c: current tx power on chain c in 1/2 dB step
2563  */
2564 struct statistics_tx_power {
2565 	u8 ant_a;
2566 	u8 ant_b;
2567 	u8 ant_c;
2568 	u8 reserved;
2569 } __packed;
2570 
2571 struct statistics_tx_non_phy_agg {
2572 	__le32 ba_timeout;
2573 	__le32 ba_reschedule_frames;
2574 	__le32 scd_query_agg_frame_cnt;
2575 	__le32 scd_query_no_agg;
2576 	__le32 scd_query_agg;
2577 	__le32 scd_query_mismatch;
2578 	__le32 frame_not_ready;
2579 	__le32 underrun;
2580 	__le32 bt_prio_kill;
2581 	__le32 rx_ba_rsp_cnt;
2582 } __packed;
2583 
2584 struct statistics_tx {
2585 	__le32 preamble_cnt;
2586 	__le32 rx_detected_cnt;
2587 	__le32 bt_prio_defer_cnt;
2588 	__le32 bt_prio_kill_cnt;
2589 	__le32 few_bytes_cnt;
2590 	__le32 cts_timeout;
2591 	__le32 ack_timeout;
2592 	__le32 expected_ack_cnt;
2593 	__le32 actual_ack_cnt;
2594 	__le32 dump_msdu_cnt;
2595 	__le32 burst_abort_next_frame_mismatch_cnt;
2596 	__le32 burst_abort_missing_next_frame_cnt;
2597 	__le32 cts_timeout_collision;
2598 	__le32 ack_or_ba_timeout_collision;
2599 	struct statistics_tx_non_phy_agg agg;
2600 	/*
2601 	 * "tx_power" are optional parameters provided by uCode,
2602 	 * 6000 series is the only device provide the information,
2603 	 * Those are reserved fields for all the other devices
2604 	 */
2605 	struct statistics_tx_power tx_power;
2606 	__le32 reserved1;
2607 } __packed;
2608 
2609 
2610 struct statistics_div {
2611 	__le32 tx_on_a;
2612 	__le32 tx_on_b;
2613 	__le32 exec_time;
2614 	__le32 probe_time;
2615 	__le32 reserved1;
2616 	__le32 reserved2;
2617 } __packed;
2618 
2619 struct statistics_general_common {
2620 	__le32 temperature;   /* radio temperature */
2621 	__le32 temperature_m; /* radio voltage */
2622 	struct statistics_dbg dbg;
2623 	__le32 sleep_time;
2624 	__le32 slots_out;
2625 	__le32 slots_idle;
2626 	__le32 ttl_timestamp;
2627 	struct statistics_div div;
2628 	__le32 rx_enable_counter;
2629 	/*
2630 	 * num_of_sos_states:
2631 	 *  count the number of times we have to re-tune
2632 	 *  in order to get out of bad PHY status
2633 	 */
2634 	__le32 num_of_sos_states;
2635 } __packed;
2636 
2637 struct statistics_bt_activity {
2638 	/* Tx statistics */
2639 	__le32 hi_priority_tx_req_cnt;
2640 	__le32 hi_priority_tx_denied_cnt;
2641 	__le32 lo_priority_tx_req_cnt;
2642 	__le32 lo_priority_tx_denied_cnt;
2643 	/* Rx statistics */
2644 	__le32 hi_priority_rx_req_cnt;
2645 	__le32 hi_priority_rx_denied_cnt;
2646 	__le32 lo_priority_rx_req_cnt;
2647 	__le32 lo_priority_rx_denied_cnt;
2648 } __packed;
2649 
2650 struct statistics_general {
2651 	struct statistics_general_common common;
2652 	__le32 reserved2;
2653 	__le32 reserved3;
2654 } __packed;
2655 
2656 struct statistics_general_bt {
2657 	struct statistics_general_common common;
2658 	struct statistics_bt_activity activity;
2659 	__le32 reserved2;
2660 	__le32 reserved3;
2661 } __packed;
2662 
2663 #define UCODE_STATISTICS_CLEAR_MSK		(0x1 << 0)
2664 #define UCODE_STATISTICS_FREQUENCY_MSK		(0x1 << 1)
2665 #define UCODE_STATISTICS_NARROW_BAND_MSK	(0x1 << 2)
2666 
2667 /*
2668  * REPLY_STATISTICS_CMD = 0x9c,
2669  * all devices identical.
2670  *
2671  * This command triggers an immediate response containing uCode statistics.
2672  * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2673  *
2674  * If the CLEAR_STATS configuration flag is set, uCode will clear its
2675  * internal copy of the statistics (counters) after issuing the response.
2676  * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2677  *
2678  * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2679  * STATISTICS_NOTIFICATIONs after received beacons (see below).  This flag
2680  * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2681  */
2682 #define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1)	/* see above */
2683 #define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2684 struct iwl_statistics_cmd {
2685 	__le32 configuration_flags;	/* IWL_STATS_CONF_* */
2686 } __packed;
2687 
2688 /*
2689  * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2690  *
2691  * By default, uCode issues this notification after receiving a beacon
2692  * while associated.  To disable this behavior, set DISABLE_NOTIF flag in the
2693  * REPLY_STATISTICS_CMD 0x9c, above.
2694  *
2695  * Statistics counters continue to increment beacon after beacon, but are
2696  * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2697  * 0x9c with CLEAR_STATS bit set (see above).
2698  *
2699  * uCode also issues this notification during scans.  uCode clears statistics
2700  * appropriately so that each notification contains statistics for only the
2701  * one channel that has just been scanned.
2702  */
2703 #define STATISTICS_REPLY_FLG_BAND_24G_MSK         cpu_to_le32(0x2)
2704 #define STATISTICS_REPLY_FLG_HT40_MODE_MSK        cpu_to_le32(0x8)
2705 
2706 struct iwl_notif_statistics {
2707 	__le32 flag;
2708 	struct statistics_rx rx;
2709 	struct statistics_tx tx;
2710 	struct statistics_general general;
2711 } __packed;
2712 
2713 struct iwl_bt_notif_statistics {
2714 	__le32 flag;
2715 	struct statistics_rx_bt rx;
2716 	struct statistics_tx tx;
2717 	struct statistics_general_bt general;
2718 } __packed;
2719 
2720 /*
2721  * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2722  *
2723  * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
2724  * in regardless of how many missed beacons, which mean when driver receive the
2725  * notification, inside the command, it can find all the beacons information
2726  * which include number of total missed beacons, number of consecutive missed
2727  * beacons, number of beacons received and number of beacons expected to
2728  * receive.
2729  *
2730  * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
2731  * in order to bring the radio/PHY back to working state; which has no relation
2732  * to when driver will perform sensitivity calibration.
2733  *
2734  * Driver should set it own missed_beacon_threshold to decide when to perform
2735  * sensitivity calibration based on number of consecutive missed beacons in
2736  * order to improve overall performance, especially in noisy environment.
2737  *
2738  */
2739 
2740 #define IWL_MISSED_BEACON_THRESHOLD_MIN	(1)
2741 #define IWL_MISSED_BEACON_THRESHOLD_DEF	(5)
2742 #define IWL_MISSED_BEACON_THRESHOLD_MAX	IWL_MISSED_BEACON_THRESHOLD_DEF
2743 
2744 struct iwl_missed_beacon_notif {
2745 	__le32 consecutive_missed_beacons;
2746 	__le32 total_missed_becons;
2747 	__le32 num_expected_beacons;
2748 	__le32 num_recvd_beacons;
2749 } __packed;
2750 
2751 
2752 /******************************************************************************
2753  * (11)
2754  * Rx Calibration Commands:
2755  *
2756  * With the uCode used for open source drivers, most Tx calibration (except
2757  * for Tx Power) and most Rx calibration is done by uCode during the
2758  * "initialize" phase of uCode boot.  Driver must calibrate only:
2759  *
2760  * 1)  Tx power (depends on temperature), described elsewhere
2761  * 2)  Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2762  * 3)  Receiver sensitivity (to optimize signal detection)
2763  *
2764  *****************************************************************************/
2765 
2766 /**
2767  * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2768  *
2769  * This command sets up the Rx signal detector for a sensitivity level that
2770  * is high enough to lock onto all signals within the associated network,
2771  * but low enough to ignore signals that are below a certain threshold, so as
2772  * not to have too many "false alarms".  False alarms are signals that the
2773  * Rx DSP tries to lock onto, but then discards after determining that they
2774  * are noise.
2775  *
2776  * The optimum number of false alarms is between 5 and 50 per 200 TUs
2777  * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2778  * time listening, not transmitting).  Driver must adjust sensitivity so that
2779  * the ratio of actual false alarms to actual Rx time falls within this range.
2780  *
2781  * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2782  * received beacon.  These provide information to the driver to analyze the
2783  * sensitivity.  Don't analyze statistics that come in from scanning, or any
2784  * other non-associated-network source.  Pertinent statistics include:
2785  *
2786  * From "general" statistics (struct statistics_rx_non_phy):
2787  *
2788  * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2789  *   Measure of energy of desired signal.  Used for establishing a level
2790  *   below which the device does not detect signals.
2791  *
2792  * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2793  *   Measure of background noise in silent period after beacon.
2794  *
2795  * channel_load
2796  *   uSecs of actual Rx time during beacon period (varies according to
2797  *   how much time was spent transmitting).
2798  *
2799  * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2800  *
2801  * false_alarm_cnt
2802  *   Signal locks abandoned early (before phy-level header).
2803  *
2804  * plcp_err
2805  *   Signal locks abandoned late (during phy-level header).
2806  *
2807  * NOTE:  Both false_alarm_cnt and plcp_err increment monotonically from
2808  *        beacon to beacon, i.e. each value is an accumulation of all errors
2809  *        before and including the latest beacon.  Values will wrap around to 0
2810  *        after counting up to 2^32 - 1.  Driver must differentiate vs.
2811  *        previous beacon's values to determine # false alarms in the current
2812  *        beacon period.
2813  *
2814  * Total number of false alarms = false_alarms + plcp_errs
2815  *
2816  * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2817  * (notice that the start points for OFDM are at or close to settings for
2818  * maximum sensitivity):
2819  *
2820  *                                             START  /  MIN  /  MAX
2821  *   HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          90   /   85  /  120
2822  *   HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX     170   /  170  /  210
2823  *   HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX         105   /  105  /  140
2824  *   HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX     220   /  220  /  270
2825  *
2826  *   If actual rate of OFDM false alarms (+ plcp_errors) is too high
2827  *   (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2828  *   by *adding* 1 to all 4 of the table entries above, up to the max for
2829  *   each entry.  Conversely, if false alarm rate is too low (less than 5
2830  *   for each 204.8 msecs listening), *subtract* 1 from each entry to
2831  *   increase sensitivity.
2832  *
2833  * For CCK sensitivity, keep track of the following:
2834  *
2835  *   1).  20-beacon history of maximum background noise, indicated by
2836  *        (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2837  *        3 receivers.  For any given beacon, the "silence reference" is
2838  *        the maximum of last 60 samples (20 beacons * 3 receivers).
2839  *
2840  *   2).  10-beacon history of strongest signal level, as indicated
2841  *        by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2842  *        i.e. the strength of the signal through the best receiver at the
2843  *        moment.  These measurements are "upside down", with lower values
2844  *        for stronger signals, so max energy will be *minimum* value.
2845  *
2846  *        Then for any given beacon, the driver must determine the *weakest*
2847  *        of the strongest signals; this is the minimum level that needs to be
2848  *        successfully detected, when using the best receiver at the moment.
2849  *        "Max cck energy" is the maximum (higher value means lower energy!)
2850  *        of the last 10 minima.  Once this is determined, driver must add
2851  *        a little margin by adding "6" to it.
2852  *
2853  *   3).  Number of consecutive beacon periods with too few false alarms.
2854  *        Reset this to 0 at the first beacon period that falls within the
2855  *        "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2856  *
2857  * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2858  * (notice that the start points for CCK are at maximum sensitivity):
2859  *
2860  *                                             START  /  MIN  /  MAX
2861  *   HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX         125   /  125  /  200
2862  *   HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX     200   /  200  /  400
2863  *   HD_MIN_ENERGY_CCK_DET_INDEX                100   /    0  /  100
2864  *
2865  *   If actual rate of CCK false alarms (+ plcp_errors) is too high
2866  *   (greater than 50 for each 204.8 msecs listening), method for reducing
2867  *   sensitivity is:
2868  *
2869  *   1)  *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2870  *       up to max 400.
2871  *
2872  *   2)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2873  *       sensitivity has been reduced a significant amount; bring it up to
2874  *       a moderate 161.  Otherwise, *add* 3, up to max 200.
2875  *
2876  *   3)  a)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2877  *       sensitivity has been reduced only a moderate or small amount;
2878  *       *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2879  *       down to min 0.  Otherwise (if gain has been significantly reduced),
2880  *       don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2881  *
2882  *       b)  Save a snapshot of the "silence reference".
2883  *
2884  *   If actual rate of CCK false alarms (+ plcp_errors) is too low
2885  *   (less than 5 for each 204.8 msecs listening), method for increasing
2886  *   sensitivity is used only if:
2887  *
2888  *   1a)  Previous beacon did not have too many false alarms
2889  *   1b)  AND difference between previous "silence reference" and current
2890  *        "silence reference" (prev - current) is 2 or more,
2891  *   OR 2)  100 or more consecutive beacon periods have had rate of
2892  *          less than 5 false alarms per 204.8 milliseconds rx time.
2893  *
2894  *   Method for increasing sensitivity:
2895  *
2896  *   1)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
2897  *       down to min 125.
2898  *
2899  *   2)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2900  *       down to min 200.
2901  *
2902  *   3)  *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
2903  *
2904  *   If actual rate of CCK false alarms (+ plcp_errors) is within good range
2905  *   (between 5 and 50 for each 204.8 msecs listening):
2906  *
2907  *   1)  Save a snapshot of the silence reference.
2908  *
2909  *   2)  If previous beacon had too many CCK false alarms (+ plcp_errors),
2910  *       give some extra margin to energy threshold by *subtracting* 8
2911  *       from value in HD_MIN_ENERGY_CCK_DET_INDEX.
2912  *
2913  *   For all cases (too few, too many, good range), make sure that the CCK
2914  *   detection threshold (energy) is below the energy level for robust
2915  *   detection over the past 10 beacon periods, the "Max cck energy".
2916  *   Lower values mean higher energy; this means making sure that the value
2917  *   in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
2918  *
2919  */
2920 
2921 /*
2922  * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
2923  */
2924 #define HD_TABLE_SIZE  (11)	/* number of entries */
2925 #define HD_MIN_ENERGY_CCK_DET_INDEX                 (0)	/* table indexes */
2926 #define HD_MIN_ENERGY_OFDM_DET_INDEX                (1)
2927 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          (2)
2928 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX      (3)
2929 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX      (4)
2930 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX          (5)
2931 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX      (6)
2932 #define HD_BARKER_CORR_TH_ADD_MIN_INDEX             (7)
2933 #define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX         (8)
2934 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX          (9)
2935 #define HD_OFDM_ENERGY_TH_IN_INDEX                  (10)
2936 
2937 /*
2938  * Additional table entries in enhance SENSITIVITY_CMD
2939  */
2940 #define HD_INA_NON_SQUARE_DET_OFDM_INDEX		(11)
2941 #define HD_INA_NON_SQUARE_DET_CCK_INDEX			(12)
2942 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX		(13)
2943 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX		(14)
2944 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(15)
2945 #define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX		(16)
2946 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX		(17)
2947 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX		(18)
2948 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(19)
2949 #define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX		(20)
2950 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX		(21)
2951 #define HD_RESERVED					(22)
2952 
2953 /* number of entries for enhanced tbl */
2954 #define ENHANCE_HD_TABLE_SIZE  (23)
2955 
2956 /* number of additional entries for enhanced tbl */
2957 #define ENHANCE_HD_TABLE_ENTRIES  (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
2958 
2959 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1		cpu_to_le16(0)
2960 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V1		cpu_to_le16(0)
2961 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1		cpu_to_le16(0)
2962 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1	cpu_to_le16(668)
2963 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1	cpu_to_le16(4)
2964 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1		cpu_to_le16(486)
2965 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1	cpu_to_le16(37)
2966 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1		cpu_to_le16(853)
2967 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1	cpu_to_le16(4)
2968 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1		cpu_to_le16(476)
2969 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1		cpu_to_le16(99)
2970 
2971 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2		cpu_to_le16(1)
2972 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V2		cpu_to_le16(1)
2973 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2		cpu_to_le16(1)
2974 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2	cpu_to_le16(600)
2975 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2	cpu_to_le16(40)
2976 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2		cpu_to_le16(486)
2977 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2	cpu_to_le16(45)
2978 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2		cpu_to_le16(853)
2979 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2	cpu_to_le16(60)
2980 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2		cpu_to_le16(476)
2981 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2		cpu_to_le16(99)
2982 
2983 
2984 /* Control field in struct iwl_sensitivity_cmd */
2985 #define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE	cpu_to_le16(0)
2986 #define SENSITIVITY_CMD_CONTROL_WORK_TABLE	cpu_to_le16(1)
2987 
2988 /**
2989  * struct iwl_sensitivity_cmd
2990  * @control:  (1) updates working table, (0) updates default table
2991  * @table:  energy threshold values, use HD_* as index into table
2992  *
2993  * Always use "1" in "control" to update uCode's working table and DSP.
2994  */
2995 struct iwl_sensitivity_cmd {
2996 	__le16 control;			/* always use "1" */
2997 	__le16 table[HD_TABLE_SIZE];	/* use HD_* as index */
2998 } __packed;
2999 
3000 /*
3001  *
3002  */
3003 struct iwl_enhance_sensitivity_cmd {
3004 	__le16 control;			/* always use "1" */
3005 	__le16 enhance_table[ENHANCE_HD_TABLE_SIZE];	/* use HD_* as index */
3006 } __packed;
3007 
3008 
3009 /**
3010  * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3011  *
3012  * This command sets the relative gains of agn device's 3 radio receiver chains.
3013  *
3014  * After the first association, driver should accumulate signal and noise
3015  * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3016  * beacons from the associated network (don't collect statistics that come
3017  * in from scanning, or any other non-network source).
3018  *
3019  * DISCONNECTED ANTENNA:
3020  *
3021  * Driver should determine which antennas are actually connected, by comparing
3022  * average beacon signal levels for the 3 Rx chains.  Accumulate (add) the
3023  * following values over 20 beacons, one accumulator for each of the chains
3024  * a/b/c, from struct statistics_rx_non_phy:
3025  *
3026  * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3027  *
3028  * Find the strongest signal from among a/b/c.  Compare the other two to the
3029  * strongest.  If any signal is more than 15 dB (times 20, unless you
3030  * divide the accumulated values by 20) below the strongest, the driver
3031  * considers that antenna to be disconnected, and should not try to use that
3032  * antenna/chain for Rx or Tx.  If both A and B seem to be disconnected,
3033  * driver should declare the stronger one as connected, and attempt to use it
3034  * (A and B are the only 2 Tx chains!).
3035  *
3036  *
3037  * RX BALANCE:
3038  *
3039  * Driver should balance the 3 receivers (but just the ones that are connected
3040  * to antennas, see above) for gain, by comparing the average signal levels
3041  * detected during the silence after each beacon (background noise).
3042  * Accumulate (add) the following values over 20 beacons, one accumulator for
3043  * each of the chains a/b/c, from struct statistics_rx_non_phy:
3044  *
3045  * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3046  *
3047  * Find the weakest background noise level from among a/b/c.  This Rx chain
3048  * will be the reference, with 0 gain adjustment.  Attenuate other channels by
3049  * finding noise difference:
3050  *
3051  * (accum_noise[i] - accum_noise[reference]) / 30
3052  *
3053  * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3054  * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3055  * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3056  * and set bit 2 to indicate "reduce gain".  The value for the reference
3057  * (weakest) chain should be "0".
3058  *
3059  * diff_gain_[abc] bit fields:
3060  *   2: (1) reduce gain, (0) increase gain
3061  * 1-0: amount of gain, units of 1.5 dB
3062  */
3063 
3064 /* Phy calibration command for series */
3065 enum {
3066 	IWL_PHY_CALIBRATE_DC_CMD		= 8,
3067 	IWL_PHY_CALIBRATE_LO_CMD		= 9,
3068 	IWL_PHY_CALIBRATE_TX_IQ_CMD		= 11,
3069 	IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD	= 15,
3070 	IWL_PHY_CALIBRATE_BASE_BAND_CMD		= 16,
3071 	IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD	= 17,
3072 	IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD	= 18,
3073 };
3074 
3075 /* This enum defines the bitmap of various calibrations to enable in both
3076  * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
3077  */
3078 enum iwl_ucode_calib_cfg {
3079 	IWL_CALIB_CFG_RX_BB_IDX			= BIT(0),
3080 	IWL_CALIB_CFG_DC_IDX			= BIT(1),
3081 	IWL_CALIB_CFG_LO_IDX			= BIT(2),
3082 	IWL_CALIB_CFG_TX_IQ_IDX			= BIT(3),
3083 	IWL_CALIB_CFG_RX_IQ_IDX			= BIT(4),
3084 	IWL_CALIB_CFG_NOISE_IDX			= BIT(5),
3085 	IWL_CALIB_CFG_CRYSTAL_IDX		= BIT(6),
3086 	IWL_CALIB_CFG_TEMPERATURE_IDX		= BIT(7),
3087 	IWL_CALIB_CFG_PAPD_IDX			= BIT(8),
3088 	IWL_CALIB_CFG_SENSITIVITY_IDX		= BIT(9),
3089 	IWL_CALIB_CFG_TX_PWR_IDX		= BIT(10),
3090 };
3091 
3092 #define IWL_CALIB_INIT_CFG_ALL	cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX |	\
3093 					IWL_CALIB_CFG_DC_IDX |		\
3094 					IWL_CALIB_CFG_LO_IDX |		\
3095 					IWL_CALIB_CFG_TX_IQ_IDX |	\
3096 					IWL_CALIB_CFG_RX_IQ_IDX |	\
3097 					IWL_CALIB_CFG_CRYSTAL_IDX)
3098 
3099 #define IWL_CALIB_RT_CFG_ALL	cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX |	\
3100 					IWL_CALIB_CFG_DC_IDX |		\
3101 					IWL_CALIB_CFG_LO_IDX |		\
3102 					IWL_CALIB_CFG_TX_IQ_IDX |	\
3103 					IWL_CALIB_CFG_RX_IQ_IDX |	\
3104 					IWL_CALIB_CFG_TEMPERATURE_IDX |	\
3105 					IWL_CALIB_CFG_PAPD_IDX |	\
3106 					IWL_CALIB_CFG_TX_PWR_IDX |	\
3107 					IWL_CALIB_CFG_CRYSTAL_IDX)
3108 
3109 #define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK	cpu_to_le32(BIT(0))
3110 
3111 struct iwl_calib_cfg_elmnt_s {
3112 	__le32 is_enable;
3113 	__le32 start;
3114 	__le32 send_res;
3115 	__le32 apply_res;
3116 	__le32 reserved;
3117 } __packed;
3118 
3119 struct iwl_calib_cfg_status_s {
3120 	struct iwl_calib_cfg_elmnt_s once;
3121 	struct iwl_calib_cfg_elmnt_s perd;
3122 	__le32 flags;
3123 } __packed;
3124 
3125 struct iwl_calib_cfg_cmd {
3126 	struct iwl_calib_cfg_status_s ucd_calib_cfg;
3127 	struct iwl_calib_cfg_status_s drv_calib_cfg;
3128 	__le32 reserved1;
3129 } __packed;
3130 
3131 struct iwl_calib_hdr {
3132 	u8 op_code;
3133 	u8 first_group;
3134 	u8 groups_num;
3135 	u8 data_valid;
3136 } __packed;
3137 
3138 struct iwl_calib_cmd {
3139 	struct iwl_calib_hdr hdr;
3140 	u8 data[];
3141 } __packed;
3142 
3143 struct iwl_calib_xtal_freq_cmd {
3144 	struct iwl_calib_hdr hdr;
3145 	u8 cap_pin1;
3146 	u8 cap_pin2;
3147 	u8 pad[2];
3148 } __packed;
3149 
3150 #define DEFAULT_RADIO_SENSOR_OFFSET    cpu_to_le16(2700)
3151 struct iwl_calib_temperature_offset_cmd {
3152 	struct iwl_calib_hdr hdr;
3153 	__le16 radio_sensor_offset;
3154 	__le16 reserved;
3155 } __packed;
3156 
3157 struct iwl_calib_temperature_offset_v2_cmd {
3158 	struct iwl_calib_hdr hdr;
3159 	__le16 radio_sensor_offset_high;
3160 	__le16 radio_sensor_offset_low;
3161 	__le16 burntVoltageRef;
3162 	__le16 reserved;
3163 } __packed;
3164 
3165 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3166 struct iwl_calib_chain_noise_reset_cmd {
3167 	struct iwl_calib_hdr hdr;
3168 	u8 data[];
3169 };
3170 
3171 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3172 struct iwl_calib_chain_noise_gain_cmd {
3173 	struct iwl_calib_hdr hdr;
3174 	u8 delta_gain_1;
3175 	u8 delta_gain_2;
3176 	u8 pad[2];
3177 } __packed;
3178 
3179 /******************************************************************************
3180  * (12)
3181  * Miscellaneous Commands:
3182  *
3183  *****************************************************************************/
3184 
3185 /*
3186  * LEDs Command & Response
3187  * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3188  *
3189  * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3190  * this command turns it on or off, or sets up a periodic blinking cycle.
3191  */
3192 struct iwl_led_cmd {
3193 	__le32 interval;	/* "interval" in uSec */
3194 	u8 id;			/* 1: Activity, 2: Link, 3: Tech */
3195 	u8 off;			/* # intervals off while blinking;
3196 				 * "0", with >0 "on" value, turns LED on */
3197 	u8 on;			/* # intervals on while blinking;
3198 				 * "0", regardless of "off", turns LED off */
3199 	u8 reserved;
3200 } __packed;
3201 
3202 /*
3203  * station priority table entries
3204  * also used as potential "events" value for both
3205  * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
3206  */
3207 
3208 /*
3209  * COEX events entry flag masks
3210  * RP - Requested Priority
3211  * WP - Win Medium Priority: priority assigned when the contention has been won
3212  */
3213 #define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG        (0x1)
3214 #define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG        (0x2)
3215 #define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG  (0x4)
3216 
3217 #define COEX_CU_UNASSOC_IDLE_RP               4
3218 #define COEX_CU_UNASSOC_MANUAL_SCAN_RP        4
3219 #define COEX_CU_UNASSOC_AUTO_SCAN_RP          4
3220 #define COEX_CU_CALIBRATION_RP                4
3221 #define COEX_CU_PERIODIC_CALIBRATION_RP       4
3222 #define COEX_CU_CONNECTION_ESTAB_RP           4
3223 #define COEX_CU_ASSOCIATED_IDLE_RP            4
3224 #define COEX_CU_ASSOC_MANUAL_SCAN_RP          4
3225 #define COEX_CU_ASSOC_AUTO_SCAN_RP            4
3226 #define COEX_CU_ASSOC_ACTIVE_LEVEL_RP         4
3227 #define COEX_CU_RF_ON_RP                      6
3228 #define COEX_CU_RF_OFF_RP                     4
3229 #define COEX_CU_STAND_ALONE_DEBUG_RP          6
3230 #define COEX_CU_IPAN_ASSOC_LEVEL_RP           4
3231 #define COEX_CU_RSRVD1_RP                     4
3232 #define COEX_CU_RSRVD2_RP                     4
3233 
3234 #define COEX_CU_UNASSOC_IDLE_WP               3
3235 #define COEX_CU_UNASSOC_MANUAL_SCAN_WP        3
3236 #define COEX_CU_UNASSOC_AUTO_SCAN_WP          3
3237 #define COEX_CU_CALIBRATION_WP                3
3238 #define COEX_CU_PERIODIC_CALIBRATION_WP       3
3239 #define COEX_CU_CONNECTION_ESTAB_WP           3
3240 #define COEX_CU_ASSOCIATED_IDLE_WP            3
3241 #define COEX_CU_ASSOC_MANUAL_SCAN_WP          3
3242 #define COEX_CU_ASSOC_AUTO_SCAN_WP            3
3243 #define COEX_CU_ASSOC_ACTIVE_LEVEL_WP         3
3244 #define COEX_CU_RF_ON_WP                      3
3245 #define COEX_CU_RF_OFF_WP                     3
3246 #define COEX_CU_STAND_ALONE_DEBUG_WP          6
3247 #define COEX_CU_IPAN_ASSOC_LEVEL_WP           3
3248 #define COEX_CU_RSRVD1_WP                     3
3249 #define COEX_CU_RSRVD2_WP                     3
3250 
3251 #define COEX_UNASSOC_IDLE_FLAGS                     0
3252 #define COEX_UNASSOC_MANUAL_SCAN_FLAGS		\
3253 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3254 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3255 #define COEX_UNASSOC_AUTO_SCAN_FLAGS		\
3256 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3257 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3258 #define COEX_CALIBRATION_FLAGS			\
3259 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3260 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3261 #define COEX_PERIODIC_CALIBRATION_FLAGS             0
3262 /*
3263  * COEX_CONNECTION_ESTAB:
3264  * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3265  */
3266 #define COEX_CONNECTION_ESTAB_FLAGS		\
3267 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3268 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3269 	COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3270 #define COEX_ASSOCIATED_IDLE_FLAGS                  0
3271 #define COEX_ASSOC_MANUAL_SCAN_FLAGS		\
3272 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3273 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3274 #define COEX_ASSOC_AUTO_SCAN_FLAGS		\
3275 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3276 	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3277 #define COEX_ASSOC_ACTIVE_LEVEL_FLAGS               0
3278 #define COEX_RF_ON_FLAGS                            0
3279 #define COEX_RF_OFF_FLAGS                           0
3280 #define COEX_STAND_ALONE_DEBUG_FLAGS		\
3281 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3282 	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3283 #define COEX_IPAN_ASSOC_LEVEL_FLAGS		\
3284 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3285 	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3286 	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3287 #define COEX_RSRVD1_FLAGS                           0
3288 #define COEX_RSRVD2_FLAGS                           0
3289 /*
3290  * COEX_CU_RF_ON is the event wrapping all radio ownership.
3291  * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3292  */
3293 #define COEX_CU_RF_ON_FLAGS			\
3294 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3295 	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3296 	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3297 
3298 
3299 enum {
3300 	/* un-association part */
3301 	COEX_UNASSOC_IDLE		= 0,
3302 	COEX_UNASSOC_MANUAL_SCAN	= 1,
3303 	COEX_UNASSOC_AUTO_SCAN		= 2,
3304 	/* calibration */
3305 	COEX_CALIBRATION		= 3,
3306 	COEX_PERIODIC_CALIBRATION	= 4,
3307 	/* connection */
3308 	COEX_CONNECTION_ESTAB		= 5,
3309 	/* association part */
3310 	COEX_ASSOCIATED_IDLE		= 6,
3311 	COEX_ASSOC_MANUAL_SCAN		= 7,
3312 	COEX_ASSOC_AUTO_SCAN		= 8,
3313 	COEX_ASSOC_ACTIVE_LEVEL		= 9,
3314 	/* RF ON/OFF */
3315 	COEX_RF_ON			= 10,
3316 	COEX_RF_OFF			= 11,
3317 	COEX_STAND_ALONE_DEBUG		= 12,
3318 	/* IPAN */
3319 	COEX_IPAN_ASSOC_LEVEL		= 13,
3320 	/* reserved */
3321 	COEX_RSRVD1			= 14,
3322 	COEX_RSRVD2			= 15,
3323 	COEX_NUM_OF_EVENTS		= 16
3324 };
3325 
3326 /*
3327  * Coexistence WIFI/WIMAX  Command
3328  * COEX_PRIORITY_TABLE_CMD = 0x5a
3329  *
3330  */
3331 struct iwl_wimax_coex_event_entry {
3332 	u8 request_prio;
3333 	u8 win_medium_prio;
3334 	u8 reserved;
3335 	u8 flags;
3336 } __packed;
3337 
3338 /* COEX flag masks */
3339 
3340 /* Station table is valid */
3341 #define COEX_FLAGS_STA_TABLE_VALID_MSK      (0x1)
3342 /* UnMask wake up src at unassociated sleep */
3343 #define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK    (0x4)
3344 /* UnMask wake up src at associated sleep */
3345 #define COEX_FLAGS_ASSOC_WA_UNMASK_MSK      (0x8)
3346 /* Enable CoEx feature. */
3347 #define COEX_FLAGS_COEX_ENABLE_MSK          (0x80)
3348 
3349 struct iwl_wimax_coex_cmd {
3350 	u8 flags;
3351 	u8 reserved[3];
3352 	struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3353 } __packed;
3354 
3355 /*
3356  * Coexistence MEDIUM NOTIFICATION
3357  * COEX_MEDIUM_NOTIFICATION = 0x5b
3358  *
3359  * notification from uCode to host to indicate medium changes
3360  *
3361  */
3362 /*
3363  * status field
3364  * bit 0 - 2: medium status
3365  * bit 3: medium change indication
3366  * bit 4 - 31: reserved
3367  */
3368 /* status option values, (0 - 2 bits) */
3369 #define COEX_MEDIUM_BUSY	(0x0) /* radio belongs to WiMAX */
3370 #define COEX_MEDIUM_ACTIVE	(0x1) /* radio belongs to WiFi */
3371 #define COEX_MEDIUM_PRE_RELEASE	(0x2) /* received radio release */
3372 #define COEX_MEDIUM_MSK		(0x7)
3373 
3374 /* send notification status (1 bit) */
3375 #define COEX_MEDIUM_CHANGED	(0x8)
3376 #define COEX_MEDIUM_CHANGED_MSK	(0x8)
3377 #define COEX_MEDIUM_SHIFT	(3)
3378 
3379 struct iwl_coex_medium_notification {
3380 	__le32 status;
3381 	__le32 events;
3382 } __packed;
3383 
3384 /*
3385  * Coexistence EVENT  Command
3386  * COEX_EVENT_CMD = 0x5c
3387  *
3388  * send from host to uCode for coex event request.
3389  */
3390 /* flags options */
3391 #define COEX_EVENT_REQUEST_MSK	(0x1)
3392 
3393 struct iwl_coex_event_cmd {
3394 	u8 flags;
3395 	u8 event;
3396 	__le16 reserved;
3397 } __packed;
3398 
3399 struct iwl_coex_event_resp {
3400 	__le32 status;
3401 } __packed;
3402 
3403 
3404 /******************************************************************************
3405  * Bluetooth Coexistence commands
3406  *
3407  *****************************************************************************/
3408 
3409 /*
3410  * BT Status notification
3411  * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
3412  */
3413 enum iwl_bt_coex_profile_traffic_load {
3414 	IWL_BT_COEX_TRAFFIC_LOAD_NONE = 	0,
3415 	IWL_BT_COEX_TRAFFIC_LOAD_LOW =		1,
3416 	IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 	2,
3417 	IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS =	3,
3418 /*
3419  * There are no more even though below is a u8, the
3420  * indication from the BT device only has two bits.
3421  */
3422 };
3423 
3424 #define BT_SESSION_ACTIVITY_1_UART_MSG		0x1
3425 #define BT_SESSION_ACTIVITY_2_UART_MSG		0x2
3426 
3427 /* BT UART message - Share Part (BT -> WiFi) */
3428 #define BT_UART_MSG_FRAME1MSGTYPE_POS		(0)
3429 #define BT_UART_MSG_FRAME1MSGTYPE_MSK		\
3430 		(0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
3431 #define BT_UART_MSG_FRAME1SSN_POS		(3)
3432 #define BT_UART_MSG_FRAME1SSN_MSK		\
3433 		(0x3 << BT_UART_MSG_FRAME1SSN_POS)
3434 #define BT_UART_MSG_FRAME1UPDATEREQ_POS		(5)
3435 #define BT_UART_MSG_FRAME1UPDATEREQ_MSK		\
3436 		(0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
3437 #define BT_UART_MSG_FRAME1RESERVED_POS		(6)
3438 #define BT_UART_MSG_FRAME1RESERVED_MSK		\
3439 		(0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
3440 
3441 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS	(0)
3442 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK	\
3443 		(0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
3444 #define BT_UART_MSG_FRAME2TRAFFICLOAD_POS	(2)
3445 #define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK	\
3446 		(0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
3447 #define BT_UART_MSG_FRAME2CHLSEQN_POS		(4)
3448 #define BT_UART_MSG_FRAME2CHLSEQN_MSK		\
3449 		(0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
3450 #define BT_UART_MSG_FRAME2INBAND_POS		(5)
3451 #define BT_UART_MSG_FRAME2INBAND_MSK		\
3452 		(0x1 << BT_UART_MSG_FRAME2INBAND_POS)
3453 #define BT_UART_MSG_FRAME2RESERVED_POS		(6)
3454 #define BT_UART_MSG_FRAME2RESERVED_MSK		\
3455 		(0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
3456 
3457 #define BT_UART_MSG_FRAME3SCOESCO_POS		(0)
3458 #define BT_UART_MSG_FRAME3SCOESCO_MSK		\
3459 		(0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
3460 #define BT_UART_MSG_FRAME3SNIFF_POS		(1)
3461 #define BT_UART_MSG_FRAME3SNIFF_MSK		\
3462 		(0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
3463 #define BT_UART_MSG_FRAME3A2DP_POS		(2)
3464 #define BT_UART_MSG_FRAME3A2DP_MSK		\
3465 		(0x1 << BT_UART_MSG_FRAME3A2DP_POS)
3466 #define BT_UART_MSG_FRAME3ACL_POS		(3)
3467 #define BT_UART_MSG_FRAME3ACL_MSK		\
3468 		(0x1 << BT_UART_MSG_FRAME3ACL_POS)
3469 #define BT_UART_MSG_FRAME3MASTER_POS		(4)
3470 #define BT_UART_MSG_FRAME3MASTER_MSK		\
3471 		(0x1 << BT_UART_MSG_FRAME3MASTER_POS)
3472 #define BT_UART_MSG_FRAME3OBEX_POS		(5)
3473 #define BT_UART_MSG_FRAME3OBEX_MSK		\
3474 		(0x1 << BT_UART_MSG_FRAME3OBEX_POS)
3475 #define BT_UART_MSG_FRAME3RESERVED_POS		(6)
3476 #define BT_UART_MSG_FRAME3RESERVED_MSK		\
3477 		(0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
3478 
3479 #define BT_UART_MSG_FRAME4IDLEDURATION_POS	(0)
3480 #define BT_UART_MSG_FRAME4IDLEDURATION_MSK	\
3481 		(0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
3482 #define BT_UART_MSG_FRAME4RESERVED_POS		(6)
3483 #define BT_UART_MSG_FRAME4RESERVED_MSK		\
3484 		(0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
3485 
3486 #define BT_UART_MSG_FRAME5TXACTIVITY_POS	(0)
3487 #define BT_UART_MSG_FRAME5TXACTIVITY_MSK	\
3488 		(0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
3489 #define BT_UART_MSG_FRAME5RXACTIVITY_POS	(2)
3490 #define BT_UART_MSG_FRAME5RXACTIVITY_MSK	\
3491 		(0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
3492 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS	(4)
3493 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK	\
3494 		(0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
3495 #define BT_UART_MSG_FRAME5RESERVED_POS		(6)
3496 #define BT_UART_MSG_FRAME5RESERVED_MSK		\
3497 		(0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
3498 
3499 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS	(0)
3500 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK	\
3501 		(0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
3502 #define BT_UART_MSG_FRAME6DISCOVERABLE_POS	(5)
3503 #define BT_UART_MSG_FRAME6DISCOVERABLE_MSK	\
3504 		(0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
3505 #define BT_UART_MSG_FRAME6RESERVED_POS		(6)
3506 #define BT_UART_MSG_FRAME6RESERVED_MSK		\
3507 		(0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
3508 
3509 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS	(0)
3510 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK	\
3511 		(0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
3512 #define BT_UART_MSG_FRAME7PAGE_POS		(3)
3513 #define BT_UART_MSG_FRAME7PAGE_MSK		\
3514 		(0x1 << BT_UART_MSG_FRAME7PAGE_POS)
3515 #define BT_UART_MSG_FRAME7INQUIRY_POS		(4)
3516 #define BT_UART_MSG_FRAME7INQUIRY_MSK		\
3517 		(0x1 << BT_UART_MSG_FRAME7INQUIRY_POS)
3518 #define BT_UART_MSG_FRAME7CONNECTABLE_POS	(5)
3519 #define BT_UART_MSG_FRAME7CONNECTABLE_MSK	\
3520 		(0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
3521 #define BT_UART_MSG_FRAME7RESERVED_POS		(6)
3522 #define BT_UART_MSG_FRAME7RESERVED_MSK		\
3523 		(0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
3524 
3525 /* BT Session Activity 2 UART message (BT -> WiFi) */
3526 #define BT_UART_MSG_2_FRAME1RESERVED1_POS	(5)
3527 #define BT_UART_MSG_2_FRAME1RESERVED1_MSK	\
3528 		(0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS)
3529 #define BT_UART_MSG_2_FRAME1RESERVED2_POS	(6)
3530 #define BT_UART_MSG_2_FRAME1RESERVED2_MSK	\
3531 		(0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS)
3532 
3533 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS	(0)
3534 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK	\
3535 		(0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS)
3536 #define BT_UART_MSG_2_FRAME2RESERVED_POS	(6)
3537 #define BT_UART_MSG_2_FRAME2RESERVED_MSK	\
3538 		(0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS)
3539 
3540 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS	(0)
3541 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK	\
3542 		(0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS)
3543 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS	(4)
3544 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK	\
3545 		(0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS)
3546 #define BT_UART_MSG_2_FRAME3LEMASTER_POS	(5)
3547 #define BT_UART_MSG_2_FRAME3LEMASTER_MSK	\
3548 		(0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS)
3549 #define BT_UART_MSG_2_FRAME3RESERVED_POS	(6)
3550 #define BT_UART_MSG_2_FRAME3RESERVED_MSK	\
3551 		(0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS)
3552 
3553 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS	(0)
3554 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK	\
3555 		(0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS)
3556 #define BT_UART_MSG_2_FRAME4NUMLECONN_POS	(4)
3557 #define BT_UART_MSG_2_FRAME4NUMLECONN_MSK	\
3558 		(0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS)
3559 #define BT_UART_MSG_2_FRAME4RESERVED_POS	(6)
3560 #define BT_UART_MSG_2_FRAME4RESERVED_MSK	\
3561 		(0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS)
3562 
3563 #define BT_UART_MSG_2_FRAME5BTMINRSSI_POS	(0)
3564 #define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK	\
3565 		(0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS)
3566 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS	(4)
3567 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK	\
3568 		(0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS)
3569 #define BT_UART_MSG_2_FRAME5LEADVERMODE_POS	(5)
3570 #define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK	\
3571 		(0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS)
3572 #define BT_UART_MSG_2_FRAME5RESERVED_POS	(6)
3573 #define BT_UART_MSG_2_FRAME5RESERVED_MSK	\
3574 		(0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS)
3575 
3576 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS	(0)
3577 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK	\
3578 		(0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS)
3579 #define BT_UART_MSG_2_FRAME6RFU_POS		(5)
3580 #define BT_UART_MSG_2_FRAME6RFU_MSK		\
3581 		(0x1<<BT_UART_MSG_2_FRAME6RFU_POS)
3582 #define BT_UART_MSG_2_FRAME6RESERVED_POS	(6)
3583 #define BT_UART_MSG_2_FRAME6RESERVED_MSK	\
3584 		(0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS)
3585 
3586 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS	(0)
3587 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK	\
3588 		(0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS)
3589 #define BT_UART_MSG_2_FRAME7LEPROFILE1_POS	(3)
3590 #define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK	\
3591 		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS)
3592 #define BT_UART_MSG_2_FRAME7LEPROFILE2_POS	(4)
3593 #define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK	\
3594 		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS)
3595 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS	(5)
3596 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK	\
3597 		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS)
3598 #define BT_UART_MSG_2_FRAME7RESERVED_POS	(6)
3599 #define BT_UART_MSG_2_FRAME7RESERVED_MSK	\
3600 		(0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS)
3601 
3602 
3603 #define BT_ENABLE_REDUCED_TXPOWER_THRESHOLD	(-62)
3604 #define BT_DISABLE_REDUCED_TXPOWER_THRESHOLD	(-65)
3605 
3606 struct iwl_bt_uart_msg {
3607 	u8 header;
3608 	u8 frame1;
3609 	u8 frame2;
3610 	u8 frame3;
3611 	u8 frame4;
3612 	u8 frame5;
3613 	u8 frame6;
3614 	u8 frame7;
3615 } __packed;
3616 
3617 struct iwl_bt_coex_profile_notif {
3618 	struct iwl_bt_uart_msg last_bt_uart_msg;
3619 	u8 bt_status; /* 0 - off, 1 - on */
3620 	u8 bt_traffic_load; /* 0 .. 3? */
3621 	u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
3622 	u8 reserved;
3623 } __packed;
3624 
3625 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS	0
3626 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK	0x1
3627 #define IWL_BT_COEX_PRIO_TBL_PRIO_POS		1
3628 #define IWL_BT_COEX_PRIO_TBL_PRIO_MASK		0x0e
3629 #define IWL_BT_COEX_PRIO_TBL_RESERVED_POS	4
3630 #define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK	0xf0
3631 #define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT		1
3632 
3633 /*
3634  * BT Coexistence Priority table
3635  * REPLY_BT_COEX_PRIO_TABLE = 0xcc
3636  */
3637 enum bt_coex_prio_table_events {
3638 	BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
3639 	BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
3640 	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
3641 	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
3642 	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
3643 	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
3644 	BT_COEX_PRIO_TBL_EVT_DTIM = 6,
3645 	BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
3646 	BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
3647 	BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
3648 	BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
3649 	BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
3650 	BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
3651 	BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
3652 	BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
3653 	BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
3654 	/* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
3655 	BT_COEX_PRIO_TBL_EVT_MAX,
3656 };
3657 
3658 enum bt_coex_prio_table_priorities {
3659 	BT_COEX_PRIO_TBL_DISABLED = 0,
3660 	BT_COEX_PRIO_TBL_PRIO_LOW = 1,
3661 	BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
3662 	BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
3663 	BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
3664 	BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
3665 	BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
3666 	BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
3667 	BT_COEX_PRIO_TBL_MAX,
3668 };
3669 
3670 struct iwl_bt_coex_prio_table_cmd {
3671 	u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
3672 } __packed;
3673 
3674 #define IWL_BT_COEX_ENV_CLOSE	0
3675 #define IWL_BT_COEX_ENV_OPEN	1
3676 /*
3677  * BT Protection Envelope
3678  * REPLY_BT_COEX_PROT_ENV = 0xcd
3679  */
3680 struct iwl_bt_coex_prot_env_cmd {
3681 	u8 action; /* 0 = closed, 1 = open */
3682 	u8 type; /* 0 .. 15 */
3683 	u8 reserved[2];
3684 } __packed;
3685 
3686 /*
3687  * REPLY_D3_CONFIG
3688  */
3689 enum iwlagn_d3_wakeup_filters {
3690 	IWLAGN_D3_WAKEUP_RFKILL		= BIT(0),
3691 	IWLAGN_D3_WAKEUP_SYSASSERT	= BIT(1),
3692 };
3693 
3694 struct iwlagn_d3_config_cmd {
3695 	__le32 min_sleep_time;
3696 	__le32 wakeup_flags;
3697 } __packed;
3698 
3699 /*
3700  * REPLY_WOWLAN_PATTERNS
3701  */
3702 #define IWLAGN_WOWLAN_MIN_PATTERN_LEN	16
3703 #define IWLAGN_WOWLAN_MAX_PATTERN_LEN	128
3704 
3705 struct iwlagn_wowlan_pattern {
3706 	u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8];
3707 	u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN];
3708 	u8 mask_size;
3709 	u8 pattern_size;
3710 	__le16 reserved;
3711 } __packed;
3712 
3713 #define IWLAGN_WOWLAN_MAX_PATTERNS	20
3714 
3715 struct iwlagn_wowlan_patterns_cmd {
3716 	__le32 n_patterns;
3717 	struct iwlagn_wowlan_pattern patterns[];
3718 } __packed;
3719 
3720 /*
3721  * REPLY_WOWLAN_WAKEUP_FILTER
3722  */
3723 enum iwlagn_wowlan_wakeup_filters {
3724 	IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET	= BIT(0),
3725 	IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH	= BIT(1),
3726 	IWLAGN_WOWLAN_WAKEUP_BEACON_MISS	= BIT(2),
3727 	IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE	= BIT(3),
3728 	IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL	= BIT(4),
3729 	IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ	= BIT(5),
3730 	IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE	= BIT(6),
3731 	IWLAGN_WOWLAN_WAKEUP_ALWAYS		= BIT(7),
3732 	IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT	= BIT(8),
3733 };
3734 
3735 struct iwlagn_wowlan_wakeup_filter_cmd {
3736 	__le32 enabled;
3737 	__le16 non_qos_seq;
3738 	__le16 reserved;
3739 	__le16 qos_seq[8];
3740 };
3741 
3742 /*
3743  * REPLY_WOWLAN_TSC_RSC_PARAMS
3744  */
3745 #define IWLAGN_NUM_RSC	16
3746 
3747 struct tkip_sc {
3748 	__le16 iv16;
3749 	__le16 pad;
3750 	__le32 iv32;
3751 } __packed;
3752 
3753 struct iwlagn_tkip_rsc_tsc {
3754 	struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC];
3755 	struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC];
3756 	struct tkip_sc tsc;
3757 } __packed;
3758 
3759 struct aes_sc {
3760 	__le64 pn;
3761 } __packed;
3762 
3763 struct iwlagn_aes_rsc_tsc {
3764 	struct aes_sc unicast_rsc[IWLAGN_NUM_RSC];
3765 	struct aes_sc multicast_rsc[IWLAGN_NUM_RSC];
3766 	struct aes_sc tsc;
3767 } __packed;
3768 
3769 union iwlagn_all_tsc_rsc {
3770 	struct iwlagn_tkip_rsc_tsc tkip;
3771 	struct iwlagn_aes_rsc_tsc aes;
3772 };
3773 
3774 struct iwlagn_wowlan_rsc_tsc_params_cmd {
3775 	union iwlagn_all_tsc_rsc all_tsc_rsc;
3776 } __packed;
3777 
3778 /*
3779  * REPLY_WOWLAN_TKIP_PARAMS
3780  */
3781 #define IWLAGN_MIC_KEY_SIZE	8
3782 #define IWLAGN_P1K_SIZE		5
3783 struct iwlagn_mic_keys {
3784 	u8 tx[IWLAGN_MIC_KEY_SIZE];
3785 	u8 rx_unicast[IWLAGN_MIC_KEY_SIZE];
3786 	u8 rx_mcast[IWLAGN_MIC_KEY_SIZE];
3787 } __packed;
3788 
3789 struct iwlagn_p1k_cache {
3790 	__le16 p1k[IWLAGN_P1K_SIZE];
3791 } __packed;
3792 
3793 #define IWLAGN_NUM_RX_P1K_CACHE	2
3794 
3795 struct iwlagn_wowlan_tkip_params_cmd {
3796 	struct iwlagn_mic_keys mic_keys;
3797 	struct iwlagn_p1k_cache tx;
3798 	struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE];
3799 	struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE];
3800 } __packed;
3801 
3802 /*
3803  * REPLY_WOWLAN_KEK_KCK_MATERIAL
3804  */
3805 
3806 #define IWLAGN_KCK_MAX_SIZE	32
3807 #define IWLAGN_KEK_MAX_SIZE	32
3808 
3809 struct iwlagn_wowlan_kek_kck_material_cmd {
3810 	u8	kck[IWLAGN_KCK_MAX_SIZE];
3811 	u8	kek[IWLAGN_KEK_MAX_SIZE];
3812 	__le16	kck_len;
3813 	__le16	kek_len;
3814 	__le64	replay_ctr;
3815 } __packed;
3816 
3817 #define RF_KILL_INDICATOR_FOR_WOWLAN	0x87
3818 
3819 /*
3820  * REPLY_WOWLAN_GET_STATUS = 0xe5
3821  */
3822 struct iwlagn_wowlan_status {
3823 	__le64 replay_ctr;
3824 	__le32 rekey_status;
3825 	__le32 wakeup_reason;
3826 	u8 pattern_number;
3827 	u8 reserved1;
3828 	__le16 qos_seq_ctr[8];
3829 	__le16 non_qos_seq_ctr;
3830 	__le16 reserved2;
3831 	union iwlagn_all_tsc_rsc tsc_rsc;
3832 	__le16 reserved3;
3833 } __packed;
3834 
3835 /*
3836  * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
3837  */
3838 
3839 /*
3840  * Minimum slot time in TU
3841  */
3842 #define IWL_MIN_SLOT_TIME	20
3843 
3844 /**
3845  * struct iwl_wipan_slot
3846  * @width: Time in TU
3847  * @type:
3848  *   0 - BSS
3849  *   1 - PAN
3850  */
3851 struct iwl_wipan_slot {
3852 	__le16 width;
3853 	u8 type;
3854 	u8 reserved;
3855 } __packed;
3856 
3857 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS		BIT(1)	/* reserved */
3858 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET	BIT(2)	/* reserved */
3859 #define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE		BIT(3)	/* reserved */
3860 #define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF	BIT(4)
3861 #define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE		BIT(5)
3862 
3863 /**
3864  * struct iwl_wipan_params_cmd
3865  * @flags:
3866  *   bit0: reserved
3867  *   bit1: CP leave channel with CTS
3868  *   bit2: CP leave channel qith Quiet
3869  *   bit3: slotted mode
3870  *     1 - work in slotted mode
3871  *     0 - work in non slotted mode
3872  *   bit4: filter beacon notification
3873  *   bit5: full tx slotted mode. if this flag is set,
3874  *         uCode will perform leaving channel methods in context switch
3875  *         also when working in same channel mode
3876  * @num_slots: 1 - 10
3877  */
3878 struct iwl_wipan_params_cmd {
3879 	__le16 flags;
3880 	u8 reserved;
3881 	u8 num_slots;
3882 	struct iwl_wipan_slot slots[10];
3883 } __packed;
3884 
3885 /*
3886  * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
3887  *
3888  * TODO: Figure out what this is used for,
3889  *	 it can only switch between 2.4 GHz
3890  *	 channels!!
3891  */
3892 
3893 struct iwl_wipan_p2p_channel_switch_cmd {
3894 	__le16 channel;
3895 	__le16 reserved;
3896 };
3897 
3898 /*
3899  * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
3900  *
3901  * This is used by the device to notify us of the
3902  * NoA schedule it determined so we can forward it
3903  * to userspace for inclusion in probe responses.
3904  *
3905  * In beacons, the NoA schedule is simply appended
3906  * to the frame we give the device.
3907  */
3908 
3909 struct iwl_wipan_noa_descriptor {
3910 	u8 count;
3911 	__le32 duration;
3912 	__le32 interval;
3913 	__le32 starttime;
3914 } __packed;
3915 
3916 struct iwl_wipan_noa_attribute {
3917 	u8 id;
3918 	__le16 length;
3919 	u8 index;
3920 	u8 ct_window;
3921 	struct iwl_wipan_noa_descriptor descr0, descr1;
3922 	u8 reserved;
3923 } __packed;
3924 
3925 struct iwl_wipan_noa_notification {
3926 	u32 noa_active;
3927 	struct iwl_wipan_noa_attribute noa_attribute;
3928 } __packed;
3929 
3930 #endif				/* __iwl_commands_h__ */
3931