• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions for working with the Flattened Device Tree data format
4  *
5  * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
6  * benh@kernel.crashing.org
7  */
8 
9 #define pr_fmt(fmt)	"OF: fdt: " fmt
10 
11 #include <linux/crash_dump.h>
12 #include <linux/crc32.h>
13 #include <linux/kernel.h>
14 #include <linux/initrd.h>
15 #include <linux/memblock.h>
16 #include <linux/mutex.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_reserved_mem.h>
20 #include <linux/sizes.h>
21 #include <linux/string.h>
22 #include <linux/errno.h>
23 #include <linux/slab.h>
24 #include <linux/libfdt.h>
25 #include <linux/debugfs.h>
26 #include <linux/serial_core.h>
27 #include <linux/sysfs.h>
28 #include <linux/random.h>
29 
30 #include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
31 #include <asm/page.h>
32 
33 #include "of_private.h"
34 
35 /*
36  * of_fdt_limit_memory - limit the number of regions in the /memory node
37  * @limit: maximum entries
38  *
39  * Adjust the flattened device tree to have at most 'limit' number of
40  * memory entries in the /memory node. This function may be called
41  * any time after initial_boot_param is set.
42  */
of_fdt_limit_memory(int limit)43 void __init of_fdt_limit_memory(int limit)
44 {
45 	int memory;
46 	int len;
47 	const void *val;
48 	int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
49 	int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
50 	const __be32 *addr_prop;
51 	const __be32 *size_prop;
52 	int root_offset;
53 	int cell_size;
54 
55 	root_offset = fdt_path_offset(initial_boot_params, "/");
56 	if (root_offset < 0)
57 		return;
58 
59 	addr_prop = fdt_getprop(initial_boot_params, root_offset,
60 				"#address-cells", NULL);
61 	if (addr_prop)
62 		nr_address_cells = fdt32_to_cpu(*addr_prop);
63 
64 	size_prop = fdt_getprop(initial_boot_params, root_offset,
65 				"#size-cells", NULL);
66 	if (size_prop)
67 		nr_size_cells = fdt32_to_cpu(*size_prop);
68 
69 	cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
70 
71 	memory = fdt_path_offset(initial_boot_params, "/memory");
72 	if (memory > 0) {
73 		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
74 		if (len > limit*cell_size) {
75 			len = limit*cell_size;
76 			pr_debug("Limiting number of entries to %d\n", limit);
77 			fdt_setprop(initial_boot_params, memory, "reg", val,
78 					len);
79 		}
80 	}
81 }
82 
of_fdt_device_is_available(const void * blob,unsigned long node)83 static bool of_fdt_device_is_available(const void *blob, unsigned long node)
84 {
85 	const char *status = fdt_getprop(blob, node, "status", NULL);
86 
87 	if (!status)
88 		return true;
89 
90 	if (!strcmp(status, "ok") || !strcmp(status, "okay"))
91 		return true;
92 
93 	return false;
94 }
95 
unflatten_dt_alloc(void ** mem,unsigned long size,unsigned long align)96 static void *unflatten_dt_alloc(void **mem, unsigned long size,
97 				       unsigned long align)
98 {
99 	void *res;
100 
101 	*mem = PTR_ALIGN(*mem, align);
102 	res = *mem;
103 	*mem += size;
104 
105 	return res;
106 }
107 
populate_properties(const void * blob,int offset,void ** mem,struct device_node * np,const char * nodename,bool dryrun)108 static void populate_properties(const void *blob,
109 				int offset,
110 				void **mem,
111 				struct device_node *np,
112 				const char *nodename,
113 				bool dryrun)
114 {
115 	struct property *pp, **pprev = NULL;
116 	int cur;
117 	bool has_name = false;
118 
119 	pprev = &np->properties;
120 	for (cur = fdt_first_property_offset(blob, offset);
121 	     cur >= 0;
122 	     cur = fdt_next_property_offset(blob, cur)) {
123 		const __be32 *val;
124 		const char *pname;
125 		u32 sz;
126 
127 		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
128 		if (!val) {
129 			pr_warn("Cannot locate property at 0x%x\n", cur);
130 			continue;
131 		}
132 
133 		if (!pname) {
134 			pr_warn("Cannot find property name at 0x%x\n", cur);
135 			continue;
136 		}
137 
138 		if (!strcmp(pname, "name"))
139 			has_name = true;
140 
141 		pp = unflatten_dt_alloc(mem, sizeof(struct property),
142 					__alignof__(struct property));
143 		if (dryrun)
144 			continue;
145 
146 		/* We accept flattened tree phandles either in
147 		 * ePAPR-style "phandle" properties, or the
148 		 * legacy "linux,phandle" properties.  If both
149 		 * appear and have different values, things
150 		 * will get weird. Don't do that.
151 		 */
152 		if (!strcmp(pname, "phandle") ||
153 		    !strcmp(pname, "linux,phandle")) {
154 			if (!np->phandle)
155 				np->phandle = be32_to_cpup(val);
156 		}
157 
158 		/* And we process the "ibm,phandle" property
159 		 * used in pSeries dynamic device tree
160 		 * stuff
161 		 */
162 		if (!strcmp(pname, "ibm,phandle"))
163 			np->phandle = be32_to_cpup(val);
164 
165 		pp->name   = (char *)pname;
166 		pp->length = sz;
167 		pp->value  = (__be32 *)val;
168 		*pprev     = pp;
169 		pprev      = &pp->next;
170 	}
171 
172 	/* With version 0x10 we may not have the name property,
173 	 * recreate it here from the unit name if absent
174 	 */
175 	if (!has_name) {
176 		const char *p = nodename, *ps = p, *pa = NULL;
177 		int len;
178 
179 		while (*p) {
180 			if ((*p) == '@')
181 				pa = p;
182 			else if ((*p) == '/')
183 				ps = p + 1;
184 			p++;
185 		}
186 
187 		if (pa < ps)
188 			pa = p;
189 		len = (pa - ps) + 1;
190 		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
191 					__alignof__(struct property));
192 		if (!dryrun) {
193 			pp->name   = "name";
194 			pp->length = len;
195 			pp->value  = pp + 1;
196 			*pprev     = pp;
197 			memcpy(pp->value, ps, len - 1);
198 			((char *)pp->value)[len - 1] = 0;
199 			pr_debug("fixed up name for %s -> %s\n",
200 				 nodename, (char *)pp->value);
201 		}
202 	}
203 }
204 
populate_node(const void * blob,int offset,void ** mem,struct device_node * dad,struct device_node ** pnp,bool dryrun)205 static int populate_node(const void *blob,
206 			  int offset,
207 			  void **mem,
208 			  struct device_node *dad,
209 			  struct device_node **pnp,
210 			  bool dryrun)
211 {
212 	struct device_node *np;
213 	const char *pathp;
214 	int len;
215 
216 	pathp = fdt_get_name(blob, offset, &len);
217 	if (!pathp) {
218 		*pnp = NULL;
219 		return len;
220 	}
221 
222 	len++;
223 
224 	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len,
225 				__alignof__(struct device_node));
226 	if (!dryrun) {
227 		char *fn;
228 		of_node_init(np);
229 		np->full_name = fn = ((char *)np) + sizeof(*np);
230 
231 		memcpy(fn, pathp, len);
232 
233 		if (dad != NULL) {
234 			np->parent = dad;
235 			np->sibling = dad->child;
236 			dad->child = np;
237 		}
238 	}
239 
240 	populate_properties(blob, offset, mem, np, pathp, dryrun);
241 	if (!dryrun) {
242 		np->name = of_get_property(np, "name", NULL);
243 		if (!np->name)
244 			np->name = "<NULL>";
245 	}
246 
247 	*pnp = np;
248 	return 0;
249 }
250 
reverse_nodes(struct device_node * parent)251 static void reverse_nodes(struct device_node *parent)
252 {
253 	struct device_node *child, *next;
254 
255 	/* In-depth first */
256 	child = parent->child;
257 	while (child) {
258 		reverse_nodes(child);
259 
260 		child = child->sibling;
261 	}
262 
263 	/* Reverse the nodes in the child list */
264 	child = parent->child;
265 	parent->child = NULL;
266 	while (child) {
267 		next = child->sibling;
268 
269 		child->sibling = parent->child;
270 		parent->child = child;
271 		child = next;
272 	}
273 }
274 
275 /**
276  * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
277  * @blob: The parent device tree blob
278  * @mem: Memory chunk to use for allocating device nodes and properties
279  * @dad: Parent struct device_node
280  * @nodepp: The device_node tree created by the call
281  *
282  * Return: The size of unflattened device tree or error code
283  */
unflatten_dt_nodes(const void * blob,void * mem,struct device_node * dad,struct device_node ** nodepp)284 static int unflatten_dt_nodes(const void *blob,
285 			      void *mem,
286 			      struct device_node *dad,
287 			      struct device_node **nodepp)
288 {
289 	struct device_node *root;
290 	int offset = 0, depth = 0, initial_depth = 0;
291 #define FDT_MAX_DEPTH	64
292 	struct device_node *nps[FDT_MAX_DEPTH];
293 	void *base = mem;
294 	bool dryrun = !base;
295 	int ret;
296 
297 	if (nodepp)
298 		*nodepp = NULL;
299 
300 	/*
301 	 * We're unflattening device sub-tree if @dad is valid. There are
302 	 * possibly multiple nodes in the first level of depth. We need
303 	 * set @depth to 1 to make fdt_next_node() happy as it bails
304 	 * immediately when negative @depth is found. Otherwise, the device
305 	 * nodes except the first one won't be unflattened successfully.
306 	 */
307 	if (dad)
308 		depth = initial_depth = 1;
309 
310 	root = dad;
311 	nps[depth] = dad;
312 
313 	for (offset = 0;
314 	     offset >= 0 && depth >= initial_depth;
315 	     offset = fdt_next_node(blob, offset, &depth)) {
316 		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1))
317 			continue;
318 
319 		if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
320 		    !of_fdt_device_is_available(blob, offset))
321 			continue;
322 
323 		ret = populate_node(blob, offset, &mem, nps[depth],
324 				   &nps[depth+1], dryrun);
325 		if (ret < 0)
326 			return ret;
327 
328 		if (!dryrun && nodepp && !*nodepp)
329 			*nodepp = nps[depth+1];
330 		if (!dryrun && !root)
331 			root = nps[depth+1];
332 	}
333 
334 	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
335 		pr_err("Error %d processing FDT\n", offset);
336 		return -EINVAL;
337 	}
338 
339 	/*
340 	 * Reverse the child list. Some drivers assumes node order matches .dts
341 	 * node order
342 	 */
343 	if (!dryrun)
344 		reverse_nodes(root);
345 
346 	return mem - base;
347 }
348 
349 /**
350  * __unflatten_device_tree - create tree of device_nodes from flat blob
351  * @blob: The blob to expand
352  * @dad: Parent device node
353  * @mynodes: The device_node tree created by the call
354  * @dt_alloc: An allocator that provides a virtual address to memory
355  * for the resulting tree
356  * @detached: if true set OF_DETACHED on @mynodes
357  *
358  * unflattens a device-tree, creating the tree of struct device_node. It also
359  * fills the "name" and "type" pointers of the nodes so the normal device-tree
360  * walking functions can be used.
361  *
362  * Return: NULL on failure or the memory chunk containing the unflattened
363  * device tree on success.
364  */
__unflatten_device_tree(const void * blob,struct device_node * dad,struct device_node ** mynodes,void * (* dt_alloc)(u64 size,u64 align),bool detached)365 void *__unflatten_device_tree(const void *blob,
366 			      struct device_node *dad,
367 			      struct device_node **mynodes,
368 			      void *(*dt_alloc)(u64 size, u64 align),
369 			      bool detached)
370 {
371 	int size;
372 	void *mem;
373 	int ret;
374 
375 	if (mynodes)
376 		*mynodes = NULL;
377 
378 	pr_debug(" -> unflatten_device_tree()\n");
379 
380 	if (!blob) {
381 		pr_debug("No device tree pointer\n");
382 		return NULL;
383 	}
384 
385 	pr_debug("Unflattening device tree:\n");
386 	pr_debug("magic: %08x\n", fdt_magic(blob));
387 	pr_debug("size: %08x\n", fdt_totalsize(blob));
388 	pr_debug("version: %08x\n", fdt_version(blob));
389 
390 	if (fdt_check_header(blob)) {
391 		pr_err("Invalid device tree blob header\n");
392 		return NULL;
393 	}
394 
395 	/* First pass, scan for size */
396 	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
397 	if (size <= 0)
398 		return NULL;
399 
400 	size = ALIGN(size, 4);
401 	pr_debug("  size is %d, allocating...\n", size);
402 
403 	/* Allocate memory for the expanded device tree */
404 	mem = dt_alloc(size + 4, __alignof__(struct device_node));
405 	if (!mem)
406 		return NULL;
407 
408 	memset(mem, 0, size);
409 
410 	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
411 
412 	pr_debug("  unflattening %p...\n", mem);
413 
414 	/* Second pass, do actual unflattening */
415 	ret = unflatten_dt_nodes(blob, mem, dad, mynodes);
416 
417 	if (be32_to_cpup(mem + size) != 0xdeadbeef)
418 		pr_warn("End of tree marker overwritten: %08x\n",
419 			be32_to_cpup(mem + size));
420 
421 	if (ret <= 0)
422 		return NULL;
423 
424 	if (detached && mynodes && *mynodes) {
425 		of_node_set_flag(*mynodes, OF_DETACHED);
426 		pr_debug("unflattened tree is detached\n");
427 	}
428 
429 	pr_debug(" <- unflatten_device_tree()\n");
430 	return mem;
431 }
432 
kernel_tree_alloc(u64 size,u64 align)433 static void *kernel_tree_alloc(u64 size, u64 align)
434 {
435 	return kzalloc(size, GFP_KERNEL);
436 }
437 
438 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
439 
440 /**
441  * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
442  * @blob: Flat device tree blob
443  * @dad: Parent device node
444  * @mynodes: The device tree created by the call
445  *
446  * unflattens the device-tree passed by the firmware, creating the
447  * tree of struct device_node. It also fills the "name" and "type"
448  * pointers of the nodes so the normal device-tree walking functions
449  * can be used.
450  *
451  * Return: NULL on failure or the memory chunk containing the unflattened
452  * device tree on success.
453  */
of_fdt_unflatten_tree(const unsigned long * blob,struct device_node * dad,struct device_node ** mynodes)454 void *of_fdt_unflatten_tree(const unsigned long *blob,
455 			    struct device_node *dad,
456 			    struct device_node **mynodes)
457 {
458 	void *mem;
459 
460 	mutex_lock(&of_fdt_unflatten_mutex);
461 	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
462 				      true);
463 	mutex_unlock(&of_fdt_unflatten_mutex);
464 
465 	return mem;
466 }
467 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
468 
469 /* Everything below here references initial_boot_params directly. */
470 int __initdata dt_root_addr_cells;
471 int __initdata dt_root_size_cells;
472 
473 void *initial_boot_params __ro_after_init;
474 
475 #ifdef CONFIG_OF_EARLY_FLATTREE
476 
477 static u32 of_fdt_crc32;
478 
early_init_dt_reserve_memory(phys_addr_t base,phys_addr_t size,bool nomap)479 static int __init early_init_dt_reserve_memory(phys_addr_t base,
480 					       phys_addr_t size, bool nomap)
481 {
482 	if (nomap) {
483 		/*
484 		 * If the memory is already reserved (by another region), we
485 		 * should not allow it to be marked nomap, but don't worry
486 		 * if the region isn't memory as it won't be mapped.
487 		 */
488 		if (memblock_overlaps_region(&memblock.memory, base, size) &&
489 		    memblock_is_region_reserved(base, size))
490 			return -EBUSY;
491 
492 		return memblock_mark_nomap(base, size);
493 	}
494 	return memblock_reserve(base, size);
495 }
496 
497 /*
498  * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
499  */
__reserved_mem_reserve_reg(unsigned long node,const char * uname)500 static int __init __reserved_mem_reserve_reg(unsigned long node,
501 					     const char *uname)
502 {
503 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
504 	phys_addr_t base, size;
505 	int len;
506 	const __be32 *prop;
507 	int first = 1;
508 	bool nomap;
509 
510 	prop = of_get_flat_dt_prop(node, "reg", &len);
511 	if (!prop)
512 		return -ENOENT;
513 
514 	if (len && len % t_len != 0) {
515 		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
516 		       uname);
517 		return -EINVAL;
518 	}
519 
520 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
521 
522 	while (len >= t_len) {
523 		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
524 		size = dt_mem_next_cell(dt_root_size_cells, &prop);
525 
526 		if (size &&
527 		    early_init_dt_reserve_memory(base, size, nomap) == 0)
528 			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
529 				uname, &base, (unsigned long)(size / SZ_1M));
530 		else
531 			pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
532 			       uname, &base, (unsigned long)(size / SZ_1M));
533 
534 		len -= t_len;
535 		if (first) {
536 			fdt_reserved_mem_save_node(node, uname, base, size);
537 			first = 0;
538 		}
539 	}
540 	return 0;
541 }
542 
543 /*
544  * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
545  * in /reserved-memory matches the values supported by the current implementation,
546  * also check if ranges property has been provided
547  */
__reserved_mem_check_root(unsigned long node)548 static int __init __reserved_mem_check_root(unsigned long node)
549 {
550 	const __be32 *prop;
551 
552 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
553 	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
554 		return -EINVAL;
555 
556 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
557 	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
558 		return -EINVAL;
559 
560 	prop = of_get_flat_dt_prop(node, "ranges", NULL);
561 	if (!prop)
562 		return -EINVAL;
563 	return 0;
564 }
565 
566 /*
567  * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
568  */
fdt_scan_reserved_mem(void)569 static int __init fdt_scan_reserved_mem(void)
570 {
571 	int node, child;
572 	const void *fdt = initial_boot_params;
573 
574 	node = fdt_path_offset(fdt, "/reserved-memory");
575 	if (node < 0)
576 		return -ENODEV;
577 
578 	if (__reserved_mem_check_root(node) != 0) {
579 		pr_err("Reserved memory: unsupported node format, ignoring\n");
580 		return -EINVAL;
581 	}
582 
583 	fdt_for_each_subnode(child, fdt, node) {
584 		const char *uname;
585 		int err;
586 
587 		if (!of_fdt_device_is_available(fdt, child))
588 			continue;
589 
590 		uname = fdt_get_name(fdt, child, NULL);
591 
592 		err = __reserved_mem_reserve_reg(child, uname);
593 		if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL))
594 			fdt_reserved_mem_save_node(child, uname, 0, 0);
595 	}
596 	return 0;
597 }
598 
599 /*
600  * fdt_reserve_elfcorehdr() - reserves memory for elf core header
601  *
602  * This function reserves the memory occupied by an elf core header
603  * described in the device tree. This region contains all the
604  * information about primary kernel's core image and is used by a dump
605  * capture kernel to access the system memory on primary kernel.
606  */
fdt_reserve_elfcorehdr(void)607 static void __init fdt_reserve_elfcorehdr(void)
608 {
609 	if (!IS_ENABLED(CONFIG_CRASH_DUMP) || !elfcorehdr_size)
610 		return;
611 
612 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
613 		pr_warn("elfcorehdr is overlapped\n");
614 		return;
615 	}
616 
617 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
618 	memblock_memsize_record("elfcorehdr", elfcorehdr_addr, elfcorehdr_size,
619 				false, false);
620 
621 	pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n",
622 		elfcorehdr_size >> 10, elfcorehdr_addr);
623 }
624 
625 /**
626  * early_init_fdt_scan_reserved_mem() - create reserved memory regions
627  *
628  * This function grabs memory from early allocator for device exclusive use
629  * defined in device tree structures. It should be called by arch specific code
630  * once the early allocator (i.e. memblock) has been fully activated.
631  */
early_init_fdt_scan_reserved_mem(void)632 void __init early_init_fdt_scan_reserved_mem(void)
633 {
634 	int n;
635 	u64 base, size;
636 
637 	if (!initial_boot_params)
638 		return;
639 
640 	memblock_memsize_detect_hole();
641 	memblock_memsize_disable_tracking();
642 
643 	fdt_scan_reserved_mem();
644 	fdt_reserve_elfcorehdr();
645 
646 	/* Process header /memreserve/ fields */
647 	for (n = 0; ; n++) {
648 		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
649 		if (!size)
650 			break;
651 		memblock_reserve(base, size);
652 		memblock_memsize_record("memreserve", base, size, false, false);
653 	}
654 
655 	fdt_init_reserved_mem();
656 
657 	memblock_memsize_enable_tracking();
658 }
659 
660 /**
661  * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
662  */
early_init_fdt_reserve_self(void)663 void __init early_init_fdt_reserve_self(void)
664 {
665 	if (!initial_boot_params)
666 		return;
667 
668 	/* Reserve the dtb region */
669 	memblock_reserve(__pa(initial_boot_params),
670 			 fdt_totalsize(initial_boot_params));
671 }
672 
673 /**
674  * of_scan_flat_dt - scan flattened tree blob and call callback on each.
675  * @it: callback function
676  * @data: context data pointer
677  *
678  * This function is used to scan the flattened device-tree, it is
679  * used to extract the memory information at boot before we can
680  * unflatten the tree
681  */
of_scan_flat_dt(int (* it)(unsigned long node,const char * uname,int depth,void * data),void * data)682 int __init of_scan_flat_dt(int (*it)(unsigned long node,
683 				     const char *uname, int depth,
684 				     void *data),
685 			   void *data)
686 {
687 	const void *blob = initial_boot_params;
688 	const char *pathp;
689 	int offset, rc = 0, depth = -1;
690 
691 	if (!blob)
692 		return 0;
693 
694 	for (offset = fdt_next_node(blob, -1, &depth);
695 	     offset >= 0 && depth >= 0 && !rc;
696 	     offset = fdt_next_node(blob, offset, &depth)) {
697 
698 		pathp = fdt_get_name(blob, offset, NULL);
699 		rc = it(offset, pathp, depth, data);
700 	}
701 	return rc;
702 }
703 
704 /**
705  * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
706  * @parent: parent node
707  * @it: callback function
708  * @data: context data pointer
709  *
710  * This function is used to scan sub-nodes of a node.
711  */
of_scan_flat_dt_subnodes(unsigned long parent,int (* it)(unsigned long node,const char * uname,void * data),void * data)712 int __init of_scan_flat_dt_subnodes(unsigned long parent,
713 				    int (*it)(unsigned long node,
714 					      const char *uname,
715 					      void *data),
716 				    void *data)
717 {
718 	const void *blob = initial_boot_params;
719 	int node;
720 
721 	fdt_for_each_subnode(node, blob, parent) {
722 		const char *pathp;
723 		int rc;
724 
725 		pathp = fdt_get_name(blob, node, NULL);
726 		rc = it(node, pathp, data);
727 		if (rc)
728 			return rc;
729 	}
730 	return 0;
731 }
732 
733 /**
734  * of_get_flat_dt_subnode_by_name - get the subnode by given name
735  *
736  * @node: the parent node
737  * @uname: the name of subnode
738  * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
739  */
740 
of_get_flat_dt_subnode_by_name(unsigned long node,const char * uname)741 int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
742 {
743 	return fdt_subnode_offset(initial_boot_params, node, uname);
744 }
745 
746 /*
747  * of_get_flat_dt_root - find the root node in the flat blob
748  */
of_get_flat_dt_root(void)749 unsigned long __init of_get_flat_dt_root(void)
750 {
751 	return 0;
752 }
753 
754 /*
755  * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
756  *
757  * This function can be used within scan_flattened_dt callback to get
758  * access to properties
759  */
of_get_flat_dt_prop(unsigned long node,const char * name,int * size)760 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
761 				       int *size)
762 {
763 	return fdt_getprop(initial_boot_params, node, name, size);
764 }
765 
766 /**
767  * of_fdt_is_compatible - Return true if given node from the given blob has
768  * compat in its compatible list
769  * @blob: A device tree blob
770  * @node: node to test
771  * @compat: compatible string to compare with compatible list.
772  *
773  * Return: a non-zero value on match with smaller values returned for more
774  * specific compatible values.
775  */
of_fdt_is_compatible(const void * blob,unsigned long node,const char * compat)776 static int of_fdt_is_compatible(const void *blob,
777 		      unsigned long node, const char *compat)
778 {
779 	const char *cp;
780 	int cplen;
781 	unsigned long l, score = 0;
782 
783 	cp = fdt_getprop(blob, node, "compatible", &cplen);
784 	if (cp == NULL)
785 		return 0;
786 	while (cplen > 0) {
787 		score++;
788 		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
789 			return score;
790 		l = strlen(cp) + 1;
791 		cp += l;
792 		cplen -= l;
793 	}
794 
795 	return 0;
796 }
797 
798 /**
799  * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
800  * @node: node to test
801  * @compat: compatible string to compare with compatible list.
802  */
of_flat_dt_is_compatible(unsigned long node,const char * compat)803 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
804 {
805 	return of_fdt_is_compatible(initial_boot_params, node, compat);
806 }
807 
808 /*
809  * of_flat_dt_match - Return true if node matches a list of compatible values
810  */
of_flat_dt_match(unsigned long node,const char * const * compat)811 static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
812 {
813 	unsigned int tmp, score = 0;
814 
815 	if (!compat)
816 		return 0;
817 
818 	while (*compat) {
819 		tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
820 		if (tmp && (score == 0 || (tmp < score)))
821 			score = tmp;
822 		compat++;
823 	}
824 
825 	return score;
826 }
827 
828 /*
829  * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle
830  */
of_get_flat_dt_phandle(unsigned long node)831 uint32_t __init of_get_flat_dt_phandle(unsigned long node)
832 {
833 	return fdt_get_phandle(initial_boot_params, node);
834 }
835 
of_flat_dt_get_machine_name(void)836 const char * __init of_flat_dt_get_machine_name(void)
837 {
838 	const char *name;
839 	unsigned long dt_root = of_get_flat_dt_root();
840 
841 	name = of_get_flat_dt_prop(dt_root, "model", NULL);
842 	if (!name)
843 		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
844 	return name;
845 }
846 
847 /**
848  * of_flat_dt_match_machine - Iterate match tables to find matching machine.
849  *
850  * @default_match: A machine specific ptr to return in case of no match.
851  * @get_next_compat: callback function to return next compatible match table.
852  *
853  * Iterate through machine match tables to find the best match for the machine
854  * compatible string in the FDT.
855  */
of_flat_dt_match_machine(const void * default_match,const void * (* get_next_compat)(const char * const **))856 const void * __init of_flat_dt_match_machine(const void *default_match,
857 		const void * (*get_next_compat)(const char * const**))
858 {
859 	const void *data = NULL;
860 	const void *best_data = default_match;
861 	const char *const *compat;
862 	unsigned long dt_root;
863 	unsigned int best_score = ~1, score = 0;
864 
865 	dt_root = of_get_flat_dt_root();
866 	while ((data = get_next_compat(&compat))) {
867 		score = of_flat_dt_match(dt_root, compat);
868 		if (score > 0 && score < best_score) {
869 			best_data = data;
870 			best_score = score;
871 		}
872 	}
873 	if (!best_data) {
874 		const char *prop;
875 		int size;
876 
877 		pr_err("\n unrecognized device tree list:\n[ ");
878 
879 		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
880 		if (prop) {
881 			while (size > 0) {
882 				printk("'%s' ", prop);
883 				size -= strlen(prop) + 1;
884 				prop += strlen(prop) + 1;
885 			}
886 		}
887 		printk("]\n\n");
888 		return NULL;
889 	}
890 
891 	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
892 
893 	return best_data;
894 }
895 
__early_init_dt_declare_initrd(unsigned long start,unsigned long end)896 static void __early_init_dt_declare_initrd(unsigned long start,
897 					   unsigned long end)
898 {
899 	/*
900 	 * __va() is not yet available this early on some platforms. In that
901 	 * case, the platform uses phys_initrd_start/phys_initrd_size instead
902 	 * and does the VA conversion itself.
903 	 */
904 	if (!IS_ENABLED(CONFIG_ARM64) &&
905 	    !(IS_ENABLED(CONFIG_RISCV) && IS_ENABLED(CONFIG_64BIT))) {
906 		initrd_start = (unsigned long)__va(start);
907 		initrd_end = (unsigned long)__va(end);
908 		initrd_below_start_ok = 1;
909 	}
910 }
911 
912 /**
913  * early_init_dt_check_for_initrd - Decode initrd location from flat tree
914  * @node: reference to node containing initrd location ('chosen')
915  */
early_init_dt_check_for_initrd(unsigned long node)916 static void __init early_init_dt_check_for_initrd(unsigned long node)
917 {
918 	u64 start, end;
919 	int len;
920 	const __be32 *prop;
921 
922 	if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD))
923 		return;
924 
925 	pr_debug("Looking for initrd properties... ");
926 
927 	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
928 	if (!prop)
929 		return;
930 	start = of_read_number(prop, len/4);
931 
932 	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
933 	if (!prop)
934 		return;
935 	end = of_read_number(prop, len/4);
936 	if (start > end)
937 		return;
938 
939 	__early_init_dt_declare_initrd(start, end);
940 	phys_initrd_start = start;
941 	phys_initrd_size = end - start;
942 
943 	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n", start, end);
944 }
945 
946 /**
947  * early_init_dt_check_for_elfcorehdr - Decode elfcorehdr location from flat
948  * tree
949  * @node: reference to node containing elfcorehdr location ('chosen')
950  */
early_init_dt_check_for_elfcorehdr(unsigned long node)951 static void __init early_init_dt_check_for_elfcorehdr(unsigned long node)
952 {
953 	const __be32 *prop;
954 	int len;
955 
956 	if (!IS_ENABLED(CONFIG_CRASH_DUMP))
957 		return;
958 
959 	pr_debug("Looking for elfcorehdr property... ");
960 
961 	prop = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
962 	if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells)))
963 		return;
964 
965 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &prop);
966 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &prop);
967 
968 	pr_debug("elfcorehdr_start=0x%llx elfcorehdr_size=0x%llx\n",
969 		 elfcorehdr_addr, elfcorehdr_size);
970 }
971 
972 static unsigned long chosen_node_offset = -FDT_ERR_NOTFOUND;
973 
974 /*
975  * The main usage of linux,usable-memory-range is for crash dump kernel.
976  * Originally, the number of usable-memory regions is one. Now there may
977  * be two regions, low region and high region.
978  * To make compatibility with existing user-space and older kdump, the low
979  * region is always the last range of linux,usable-memory-range if exist.
980  */
981 #define MAX_USABLE_RANGES		2
982 
983 /**
984  * early_init_dt_check_for_usable_mem_range - Decode usable memory range
985  * location from flat tree
986  */
early_init_dt_check_for_usable_mem_range(void)987 void __init early_init_dt_check_for_usable_mem_range(void)
988 {
989 	struct memblock_region rgn[MAX_USABLE_RANGES] = {0};
990 	const __be32 *prop, *endp;
991 	int len, i;
992 	unsigned long node = chosen_node_offset;
993 
994 	if ((long)node < 0)
995 		return;
996 
997 	pr_debug("Looking for usable-memory-range property... ");
998 
999 	prop = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
1000 	if (!prop || (len % (dt_root_addr_cells + dt_root_size_cells)))
1001 		return;
1002 
1003 	endp = prop + (len / sizeof(__be32));
1004 	for (i = 0; i < MAX_USABLE_RANGES && prop < endp; i++) {
1005 		rgn[i].base = dt_mem_next_cell(dt_root_addr_cells, &prop);
1006 		rgn[i].size = dt_mem_next_cell(dt_root_size_cells, &prop);
1007 
1008 		pr_debug("cap_mem_regions[%d]: base=%pa, size=%pa\n",
1009 			 i, &rgn[i].base, &rgn[i].size);
1010 	}
1011 
1012 	memblock_cap_memory_range(rgn[0].base, rgn[0].size);
1013 	for (i = 1; i < MAX_USABLE_RANGES && rgn[i].size; i++)
1014 		memblock_add(rgn[i].base, rgn[i].size);
1015 }
1016 
1017 #ifdef CONFIG_SERIAL_EARLYCON
1018 
early_init_dt_scan_chosen_stdout(void)1019 int __init early_init_dt_scan_chosen_stdout(void)
1020 {
1021 	int offset;
1022 	const char *p, *q, *options = NULL;
1023 	int l;
1024 	const struct earlycon_id *match;
1025 	const void *fdt = initial_boot_params;
1026 	int ret;
1027 
1028 	offset = fdt_path_offset(fdt, "/chosen");
1029 	if (offset < 0)
1030 		offset = fdt_path_offset(fdt, "/chosen@0");
1031 	if (offset < 0)
1032 		return -ENOENT;
1033 
1034 	p = fdt_getprop(fdt, offset, "stdout-path", &l);
1035 	if (!p)
1036 		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
1037 	if (!p || !l)
1038 		return -ENOENT;
1039 
1040 	q = strchrnul(p, ':');
1041 	if (*q != '\0')
1042 		options = q + 1;
1043 	l = q - p;
1044 
1045 	/* Get the node specified by stdout-path */
1046 	offset = fdt_path_offset_namelen(fdt, p, l);
1047 	if (offset < 0) {
1048 		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
1049 		return 0;
1050 	}
1051 
1052 	for (match = __earlycon_table; match < __earlycon_table_end; match++) {
1053 		if (!match->compatible[0])
1054 			continue;
1055 
1056 		if (fdt_node_check_compatible(fdt, offset, match->compatible))
1057 			continue;
1058 
1059 		ret = of_setup_earlycon(match, offset, options);
1060 		if (!ret || ret == -EALREADY)
1061 			return 0;
1062 	}
1063 	return -ENODEV;
1064 }
1065 #endif
1066 
1067 /*
1068  * early_init_dt_scan_root - fetch the top level address and size cells
1069  */
early_init_dt_scan_root(void)1070 int __init early_init_dt_scan_root(void)
1071 {
1072 	const __be32 *prop;
1073 	const void *fdt = initial_boot_params;
1074 	int node = fdt_path_offset(fdt, "/");
1075 
1076 	if (node < 0)
1077 		return -ENODEV;
1078 
1079 	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
1080 	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
1081 
1082 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1083 	if (prop)
1084 		dt_root_size_cells = be32_to_cpup(prop);
1085 	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
1086 
1087 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1088 	if (prop)
1089 		dt_root_addr_cells = be32_to_cpup(prop);
1090 	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1091 
1092 	return 0;
1093 }
1094 
dt_mem_next_cell(int s,const __be32 ** cellp)1095 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1096 {
1097 	const __be32 *p = *cellp;
1098 
1099 	*cellp = p + s;
1100 	return of_read_number(p, s);
1101 }
1102 
1103 /*
1104  * early_init_dt_scan_memory - Look for and parse memory nodes
1105  */
early_init_dt_scan_memory(void)1106 int __init early_init_dt_scan_memory(void)
1107 {
1108 	int node, found_memory = 0;
1109 	const void *fdt = initial_boot_params;
1110 
1111 	fdt_for_each_subnode(node, fdt, 0) {
1112 		const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1113 		const __be32 *reg, *endp;
1114 		int l;
1115 		bool hotpluggable;
1116 
1117 		/* We are scanning "memory" nodes only */
1118 		if (type == NULL || strcmp(type, "memory") != 0)
1119 			continue;
1120 
1121 		if (!of_fdt_device_is_available(fdt, node))
1122 			continue;
1123 
1124 		reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1125 		if (reg == NULL)
1126 			reg = of_get_flat_dt_prop(node, "reg", &l);
1127 		if (reg == NULL)
1128 			continue;
1129 
1130 		endp = reg + (l / sizeof(__be32));
1131 		hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1132 
1133 		pr_debug("memory scan node %s, reg size %d,\n",
1134 			 fdt_get_name(fdt, node, NULL), l);
1135 
1136 		while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1137 			u64 base, size;
1138 
1139 			base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1140 			size = dt_mem_next_cell(dt_root_size_cells, &reg);
1141 
1142 			if (size == 0)
1143 				continue;
1144 			pr_debug(" - %llx, %llx\n", base, size);
1145 
1146 			early_init_dt_add_memory_arch(base, size);
1147 
1148 			found_memory = 1;
1149 
1150 			if (!hotpluggable)
1151 				continue;
1152 
1153 			if (memblock_mark_hotplug(base, size))
1154 				pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1155 					base, base + size);
1156 		}
1157 	}
1158 	return found_memory;
1159 }
1160 
1161 /*
1162  * Convert configs to something easy to use in C code
1163  */
1164 #if defined(CONFIG_CMDLINE_FORCE)
1165 static const int overwrite_incoming_cmdline = 1;
1166 static const int read_dt_cmdline;
1167 static const int concat_cmdline;
1168 #elif defined(CONFIG_CMDLINE_EXTEND)
1169 static const int overwrite_incoming_cmdline;
1170 static const int read_dt_cmdline = 1;
1171 static const int concat_cmdline = 1;
1172 #else /* CMDLINE_FROM_BOOTLOADER */
1173 static const int overwrite_incoming_cmdline;
1174 static const int read_dt_cmdline = 1;
1175 static const int concat_cmdline;
1176 #endif
1177 
1178 #ifdef CONFIG_CMDLINE
1179 static const char *config_cmdline = CONFIG_CMDLINE;
1180 #else
1181 static const char *config_cmdline = "";
1182 #endif
1183 
early_init_dt_scan_chosen(char * cmdline)1184 int __init early_init_dt_scan_chosen(char *cmdline)
1185 {
1186 	int l = 0, node;
1187 	const char *p = NULL;
1188 	const void *rng_seed;
1189 	const void *fdt = initial_boot_params;
1190 
1191 	node = fdt_path_offset(fdt, "/chosen");
1192 	if (node < 0)
1193 		node = fdt_path_offset(fdt, "/chosen@0");
1194 	if (node < 0)
1195 		/* Handle the cmdline config options even if no /chosen node */
1196 		goto handle_cmdline;
1197 
1198 	chosen_node_offset = node;
1199 
1200 	early_init_dt_check_for_initrd(node);
1201 	early_init_dt_check_for_elfcorehdr(node);
1202 
1203 	rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1204 	if (rng_seed && l > 0) {
1205 		add_bootloader_randomness(rng_seed, l);
1206 
1207 		/* try to clear seed so it won't be found. */
1208 		fdt_nop_property(initial_boot_params, node, "rng-seed");
1209 
1210 		/* update CRC check value */
1211 		of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1212 				fdt_totalsize(initial_boot_params));
1213 	}
1214 
1215 	/* Put CONFIG_CMDLINE in if forced or if data had nothing in it to start */
1216 	if (overwrite_incoming_cmdline || !cmdline[0])
1217 		strscpy(cmdline, config_cmdline, COMMAND_LINE_SIZE);
1218 
1219 	/* Retrieve command line unless forcing */
1220 	if (read_dt_cmdline)
1221 		p = of_get_flat_dt_prop(node, "bootargs", &l);
1222 	if (p != NULL && l > 0) {
1223 		if (concat_cmdline) {
1224 			int cmdline_len;
1225 			int copy_len;
1226 			strlcat(cmdline, " ", COMMAND_LINE_SIZE);
1227 			cmdline_len = strlen(cmdline);
1228 			copy_len = COMMAND_LINE_SIZE - cmdline_len - 1;
1229 			copy_len = min((int)l, copy_len);
1230 			strncpy(cmdline + cmdline_len, p, copy_len);
1231 			cmdline[cmdline_len + copy_len] = '\0';
1232 		} else {
1233 			strscpy(cmdline, p, min(l, COMMAND_LINE_SIZE));
1234 		}
1235 	}
1236 
1237 handle_cmdline:
1238 	pr_debug("Command line is: %s\n", (char *)cmdline);
1239 
1240 	return 0;
1241 }
1242 
1243 #ifndef MIN_MEMBLOCK_ADDR
1244 #define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1245 #endif
1246 #ifndef MAX_MEMBLOCK_ADDR
1247 #define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1248 #endif
1249 
early_init_dt_add_memory_arch(u64 base,u64 size)1250 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1251 {
1252 	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1253 
1254 	if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1255 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1256 			base, base + size);
1257 		return;
1258 	}
1259 
1260 	if (!PAGE_ALIGNED(base)) {
1261 		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1262 		base = PAGE_ALIGN(base);
1263 	}
1264 	size &= PAGE_MASK;
1265 
1266 	if (base > MAX_MEMBLOCK_ADDR) {
1267 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1268 			base, base + size);
1269 		return;
1270 	}
1271 
1272 	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1273 		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1274 			((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1275 		size = MAX_MEMBLOCK_ADDR - base + 1;
1276 	}
1277 
1278 	if (base + size < phys_offset) {
1279 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1280 			base, base + size);
1281 		return;
1282 	}
1283 	if (base < phys_offset) {
1284 		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1285 			base, phys_offset);
1286 		size -= phys_offset - base;
1287 		base = phys_offset;
1288 	}
1289 	memblock_add(base, size);
1290 }
1291 
early_init_dt_alloc_memory_arch(u64 size,u64 align)1292 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1293 {
1294 	void *ptr = memblock_alloc(size, align);
1295 
1296 	if (!ptr)
1297 		panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1298 		      __func__, size, align);
1299 
1300 	return ptr;
1301 }
1302 
early_init_dt_verify(void * params)1303 bool __init early_init_dt_verify(void *params)
1304 {
1305 	if (!params)
1306 		return false;
1307 
1308 	/* check device tree validity */
1309 	if (fdt_check_header(params))
1310 		return false;
1311 
1312 	/* Setup flat device-tree pointer */
1313 	initial_boot_params = params;
1314 	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1315 				fdt_totalsize(initial_boot_params));
1316 	return true;
1317 }
1318 
1319 
early_init_dt_scan_nodes(void)1320 void __init early_init_dt_scan_nodes(void)
1321 {
1322 	int rc;
1323 
1324 	/* Initialize {size,address}-cells info */
1325 	early_init_dt_scan_root();
1326 
1327 	/* Retrieve various information from the /chosen node */
1328 	rc = early_init_dt_scan_chosen(boot_command_line);
1329 	if (rc)
1330 		pr_warn("No chosen node found, continuing without\n");
1331 
1332 	/* Setup memory, calling early_init_dt_add_memory_arch */
1333 	early_init_dt_scan_memory();
1334 
1335 	/* Handle linux,usable-memory-range property */
1336 	early_init_dt_check_for_usable_mem_range();
1337 }
1338 
early_init_dt_scan(void * params)1339 bool __init early_init_dt_scan(void *params)
1340 {
1341 	bool status;
1342 
1343 	status = early_init_dt_verify(params);
1344 	if (!status)
1345 		return false;
1346 
1347 	early_init_dt_scan_nodes();
1348 	return true;
1349 }
1350 
1351 /**
1352  * unflatten_device_tree - create tree of device_nodes from flat blob
1353  *
1354  * unflattens the device-tree passed by the firmware, creating the
1355  * tree of struct device_node. It also fills the "name" and "type"
1356  * pointers of the nodes so the normal device-tree walking functions
1357  * can be used.
1358  */
unflatten_device_tree(void)1359 void __init unflatten_device_tree(void)
1360 {
1361 	__unflatten_device_tree(initial_boot_params, NULL, &of_root,
1362 				early_init_dt_alloc_memory_arch, false);
1363 
1364 	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1365 	of_alias_scan(early_init_dt_alloc_memory_arch);
1366 
1367 	unittest_unflatten_overlay_base();
1368 }
1369 
1370 /**
1371  * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1372  *
1373  * Copies and unflattens the device-tree passed by the firmware, creating the
1374  * tree of struct device_node. It also fills the "name" and "type"
1375  * pointers of the nodes so the normal device-tree walking functions
1376  * can be used. This should only be used when the FDT memory has not been
1377  * reserved such is the case when the FDT is built-in to the kernel init
1378  * section. If the FDT memory is reserved already then unflatten_device_tree
1379  * should be used instead.
1380  */
unflatten_and_copy_device_tree(void)1381 void __init unflatten_and_copy_device_tree(void)
1382 {
1383 	int size;
1384 	void *dt;
1385 
1386 	if (!initial_boot_params) {
1387 		pr_warn("No valid device tree found, continuing without\n");
1388 		return;
1389 	}
1390 
1391 	size = fdt_totalsize(initial_boot_params);
1392 	dt = early_init_dt_alloc_memory_arch(size,
1393 					     roundup_pow_of_two(FDT_V17_SIZE));
1394 
1395 	if (dt) {
1396 		memcpy(dt, initial_boot_params, size);
1397 		initial_boot_params = dt;
1398 	}
1399 	unflatten_device_tree();
1400 }
1401 
1402 #ifdef CONFIG_SYSFS
of_fdt_raw_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)1403 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1404 			       struct bin_attribute *bin_attr,
1405 			       char *buf, loff_t off, size_t count)
1406 {
1407 	memcpy(buf, initial_boot_params + off, count);
1408 	return count;
1409 }
1410 
of_fdt_raw_init(void)1411 static int __init of_fdt_raw_init(void)
1412 {
1413 	static struct bin_attribute of_fdt_raw_attr =
1414 		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1415 
1416 	if (!initial_boot_params)
1417 		return 0;
1418 
1419 	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1420 				     fdt_totalsize(initial_boot_params))) {
1421 		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1422 		return 0;
1423 	}
1424 	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1425 	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1426 }
1427 late_initcall(of_fdt_raw_init);
1428 #endif
1429 
1430 #endif /* CONFIG_OF_EARLY_FLATTREE */
1431