1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions for working with the Flattened Device Tree data format
4 *
5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
6 * benh@kernel.crashing.org
7 */
8
9 #define pr_fmt(fmt) "OF: fdt: " fmt
10
11 #include <linux/crash_dump.h>
12 #include <linux/crc32.h>
13 #include <linux/kernel.h>
14 #include <linux/initrd.h>
15 #include <linux/memblock.h>
16 #include <linux/mutex.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_reserved_mem.h>
20 #include <linux/sizes.h>
21 #include <linux/string.h>
22 #include <linux/errno.h>
23 #include <linux/slab.h>
24 #include <linux/libfdt.h>
25 #include <linux/debugfs.h>
26 #include <linux/serial_core.h>
27 #include <linux/sysfs.h>
28 #include <linux/random.h>
29
30 #include <asm/setup.h> /* for COMMAND_LINE_SIZE */
31 #include <asm/page.h>
32
33 #include "of_private.h"
34
35 /*
36 * of_fdt_limit_memory - limit the number of regions in the /memory node
37 * @limit: maximum entries
38 *
39 * Adjust the flattened device tree to have at most 'limit' number of
40 * memory entries in the /memory node. This function may be called
41 * any time after initial_boot_param is set.
42 */
of_fdt_limit_memory(int limit)43 void __init of_fdt_limit_memory(int limit)
44 {
45 int memory;
46 int len;
47 const void *val;
48 int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
49 int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
50 const __be32 *addr_prop;
51 const __be32 *size_prop;
52 int root_offset;
53 int cell_size;
54
55 root_offset = fdt_path_offset(initial_boot_params, "/");
56 if (root_offset < 0)
57 return;
58
59 addr_prop = fdt_getprop(initial_boot_params, root_offset,
60 "#address-cells", NULL);
61 if (addr_prop)
62 nr_address_cells = fdt32_to_cpu(*addr_prop);
63
64 size_prop = fdt_getprop(initial_boot_params, root_offset,
65 "#size-cells", NULL);
66 if (size_prop)
67 nr_size_cells = fdt32_to_cpu(*size_prop);
68
69 cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
70
71 memory = fdt_path_offset(initial_boot_params, "/memory");
72 if (memory > 0) {
73 val = fdt_getprop(initial_boot_params, memory, "reg", &len);
74 if (len > limit*cell_size) {
75 len = limit*cell_size;
76 pr_debug("Limiting number of entries to %d\n", limit);
77 fdt_setprop(initial_boot_params, memory, "reg", val,
78 len);
79 }
80 }
81 }
82
of_fdt_device_is_available(const void * blob,unsigned long node)83 static bool of_fdt_device_is_available(const void *blob, unsigned long node)
84 {
85 const char *status = fdt_getprop(blob, node, "status", NULL);
86
87 if (!status)
88 return true;
89
90 if (!strcmp(status, "ok") || !strcmp(status, "okay"))
91 return true;
92
93 return false;
94 }
95
unflatten_dt_alloc(void ** mem,unsigned long size,unsigned long align)96 static void *unflatten_dt_alloc(void **mem, unsigned long size,
97 unsigned long align)
98 {
99 void *res;
100
101 *mem = PTR_ALIGN(*mem, align);
102 res = *mem;
103 *mem += size;
104
105 return res;
106 }
107
populate_properties(const void * blob,int offset,void ** mem,struct device_node * np,const char * nodename,bool dryrun)108 static void populate_properties(const void *blob,
109 int offset,
110 void **mem,
111 struct device_node *np,
112 const char *nodename,
113 bool dryrun)
114 {
115 struct property *pp, **pprev = NULL;
116 int cur;
117 bool has_name = false;
118
119 pprev = &np->properties;
120 for (cur = fdt_first_property_offset(blob, offset);
121 cur >= 0;
122 cur = fdt_next_property_offset(blob, cur)) {
123 const __be32 *val;
124 const char *pname;
125 u32 sz;
126
127 val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
128 if (!val) {
129 pr_warn("Cannot locate property at 0x%x\n", cur);
130 continue;
131 }
132
133 if (!pname) {
134 pr_warn("Cannot find property name at 0x%x\n", cur);
135 continue;
136 }
137
138 if (!strcmp(pname, "name"))
139 has_name = true;
140
141 pp = unflatten_dt_alloc(mem, sizeof(struct property),
142 __alignof__(struct property));
143 if (dryrun)
144 continue;
145
146 /* We accept flattened tree phandles either in
147 * ePAPR-style "phandle" properties, or the
148 * legacy "linux,phandle" properties. If both
149 * appear and have different values, things
150 * will get weird. Don't do that.
151 */
152 if (!strcmp(pname, "phandle") ||
153 !strcmp(pname, "linux,phandle")) {
154 if (!np->phandle)
155 np->phandle = be32_to_cpup(val);
156 }
157
158 /* And we process the "ibm,phandle" property
159 * used in pSeries dynamic device tree
160 * stuff
161 */
162 if (!strcmp(pname, "ibm,phandle"))
163 np->phandle = be32_to_cpup(val);
164
165 pp->name = (char *)pname;
166 pp->length = sz;
167 pp->value = (__be32 *)val;
168 *pprev = pp;
169 pprev = &pp->next;
170 }
171
172 /* With version 0x10 we may not have the name property,
173 * recreate it here from the unit name if absent
174 */
175 if (!has_name) {
176 const char *p = nodename, *ps = p, *pa = NULL;
177 int len;
178
179 while (*p) {
180 if ((*p) == '@')
181 pa = p;
182 else if ((*p) == '/')
183 ps = p + 1;
184 p++;
185 }
186
187 if (pa < ps)
188 pa = p;
189 len = (pa - ps) + 1;
190 pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
191 __alignof__(struct property));
192 if (!dryrun) {
193 pp->name = "name";
194 pp->length = len;
195 pp->value = pp + 1;
196 *pprev = pp;
197 memcpy(pp->value, ps, len - 1);
198 ((char *)pp->value)[len - 1] = 0;
199 pr_debug("fixed up name for %s -> %s\n",
200 nodename, (char *)pp->value);
201 }
202 }
203 }
204
populate_node(const void * blob,int offset,void ** mem,struct device_node * dad,struct device_node ** pnp,bool dryrun)205 static int populate_node(const void *blob,
206 int offset,
207 void **mem,
208 struct device_node *dad,
209 struct device_node **pnp,
210 bool dryrun)
211 {
212 struct device_node *np;
213 const char *pathp;
214 int len;
215
216 pathp = fdt_get_name(blob, offset, &len);
217 if (!pathp) {
218 *pnp = NULL;
219 return len;
220 }
221
222 len++;
223
224 np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len,
225 __alignof__(struct device_node));
226 if (!dryrun) {
227 char *fn;
228 of_node_init(np);
229 np->full_name = fn = ((char *)np) + sizeof(*np);
230
231 memcpy(fn, pathp, len);
232
233 if (dad != NULL) {
234 np->parent = dad;
235 np->sibling = dad->child;
236 dad->child = np;
237 }
238 }
239
240 populate_properties(blob, offset, mem, np, pathp, dryrun);
241 if (!dryrun) {
242 np->name = of_get_property(np, "name", NULL);
243 if (!np->name)
244 np->name = "<NULL>";
245 }
246
247 *pnp = np;
248 return 0;
249 }
250
reverse_nodes(struct device_node * parent)251 static void reverse_nodes(struct device_node *parent)
252 {
253 struct device_node *child, *next;
254
255 /* In-depth first */
256 child = parent->child;
257 while (child) {
258 reverse_nodes(child);
259
260 child = child->sibling;
261 }
262
263 /* Reverse the nodes in the child list */
264 child = parent->child;
265 parent->child = NULL;
266 while (child) {
267 next = child->sibling;
268
269 child->sibling = parent->child;
270 parent->child = child;
271 child = next;
272 }
273 }
274
275 /**
276 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
277 * @blob: The parent device tree blob
278 * @mem: Memory chunk to use for allocating device nodes and properties
279 * @dad: Parent struct device_node
280 * @nodepp: The device_node tree created by the call
281 *
282 * Return: The size of unflattened device tree or error code
283 */
unflatten_dt_nodes(const void * blob,void * mem,struct device_node * dad,struct device_node ** nodepp)284 static int unflatten_dt_nodes(const void *blob,
285 void *mem,
286 struct device_node *dad,
287 struct device_node **nodepp)
288 {
289 struct device_node *root;
290 int offset = 0, depth = 0, initial_depth = 0;
291 #define FDT_MAX_DEPTH 64
292 struct device_node *nps[FDT_MAX_DEPTH];
293 void *base = mem;
294 bool dryrun = !base;
295 int ret;
296
297 if (nodepp)
298 *nodepp = NULL;
299
300 /*
301 * We're unflattening device sub-tree if @dad is valid. There are
302 * possibly multiple nodes in the first level of depth. We need
303 * set @depth to 1 to make fdt_next_node() happy as it bails
304 * immediately when negative @depth is found. Otherwise, the device
305 * nodes except the first one won't be unflattened successfully.
306 */
307 if (dad)
308 depth = initial_depth = 1;
309
310 root = dad;
311 nps[depth] = dad;
312
313 for (offset = 0;
314 offset >= 0 && depth >= initial_depth;
315 offset = fdt_next_node(blob, offset, &depth)) {
316 if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1))
317 continue;
318
319 if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
320 !of_fdt_device_is_available(blob, offset))
321 continue;
322
323 ret = populate_node(blob, offset, &mem, nps[depth],
324 &nps[depth+1], dryrun);
325 if (ret < 0)
326 return ret;
327
328 if (!dryrun && nodepp && !*nodepp)
329 *nodepp = nps[depth+1];
330 if (!dryrun && !root)
331 root = nps[depth+1];
332 }
333
334 if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
335 pr_err("Error %d processing FDT\n", offset);
336 return -EINVAL;
337 }
338
339 /*
340 * Reverse the child list. Some drivers assumes node order matches .dts
341 * node order
342 */
343 if (!dryrun)
344 reverse_nodes(root);
345
346 return mem - base;
347 }
348
349 /**
350 * __unflatten_device_tree - create tree of device_nodes from flat blob
351 * @blob: The blob to expand
352 * @dad: Parent device node
353 * @mynodes: The device_node tree created by the call
354 * @dt_alloc: An allocator that provides a virtual address to memory
355 * for the resulting tree
356 * @detached: if true set OF_DETACHED on @mynodes
357 *
358 * unflattens a device-tree, creating the tree of struct device_node. It also
359 * fills the "name" and "type" pointers of the nodes so the normal device-tree
360 * walking functions can be used.
361 *
362 * Return: NULL on failure or the memory chunk containing the unflattened
363 * device tree on success.
364 */
__unflatten_device_tree(const void * blob,struct device_node * dad,struct device_node ** mynodes,void * (* dt_alloc)(u64 size,u64 align),bool detached)365 void *__unflatten_device_tree(const void *blob,
366 struct device_node *dad,
367 struct device_node **mynodes,
368 void *(*dt_alloc)(u64 size, u64 align),
369 bool detached)
370 {
371 int size;
372 void *mem;
373 int ret;
374
375 if (mynodes)
376 *mynodes = NULL;
377
378 pr_debug(" -> unflatten_device_tree()\n");
379
380 if (!blob) {
381 pr_debug("No device tree pointer\n");
382 return NULL;
383 }
384
385 pr_debug("Unflattening device tree:\n");
386 pr_debug("magic: %08x\n", fdt_magic(blob));
387 pr_debug("size: %08x\n", fdt_totalsize(blob));
388 pr_debug("version: %08x\n", fdt_version(blob));
389
390 if (fdt_check_header(blob)) {
391 pr_err("Invalid device tree blob header\n");
392 return NULL;
393 }
394
395 /* First pass, scan for size */
396 size = unflatten_dt_nodes(blob, NULL, dad, NULL);
397 if (size <= 0)
398 return NULL;
399
400 size = ALIGN(size, 4);
401 pr_debug(" size is %d, allocating...\n", size);
402
403 /* Allocate memory for the expanded device tree */
404 mem = dt_alloc(size + 4, __alignof__(struct device_node));
405 if (!mem)
406 return NULL;
407
408 memset(mem, 0, size);
409
410 *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
411
412 pr_debug(" unflattening %p...\n", mem);
413
414 /* Second pass, do actual unflattening */
415 ret = unflatten_dt_nodes(blob, mem, dad, mynodes);
416
417 if (be32_to_cpup(mem + size) != 0xdeadbeef)
418 pr_warn("End of tree marker overwritten: %08x\n",
419 be32_to_cpup(mem + size));
420
421 if (ret <= 0)
422 return NULL;
423
424 if (detached && mynodes && *mynodes) {
425 of_node_set_flag(*mynodes, OF_DETACHED);
426 pr_debug("unflattened tree is detached\n");
427 }
428
429 pr_debug(" <- unflatten_device_tree()\n");
430 return mem;
431 }
432
kernel_tree_alloc(u64 size,u64 align)433 static void *kernel_tree_alloc(u64 size, u64 align)
434 {
435 return kzalloc(size, GFP_KERNEL);
436 }
437
438 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
439
440 /**
441 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
442 * @blob: Flat device tree blob
443 * @dad: Parent device node
444 * @mynodes: The device tree created by the call
445 *
446 * unflattens the device-tree passed by the firmware, creating the
447 * tree of struct device_node. It also fills the "name" and "type"
448 * pointers of the nodes so the normal device-tree walking functions
449 * can be used.
450 *
451 * Return: NULL on failure or the memory chunk containing the unflattened
452 * device tree on success.
453 */
of_fdt_unflatten_tree(const unsigned long * blob,struct device_node * dad,struct device_node ** mynodes)454 void *of_fdt_unflatten_tree(const unsigned long *blob,
455 struct device_node *dad,
456 struct device_node **mynodes)
457 {
458 void *mem;
459
460 mutex_lock(&of_fdt_unflatten_mutex);
461 mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
462 true);
463 mutex_unlock(&of_fdt_unflatten_mutex);
464
465 return mem;
466 }
467 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
468
469 /* Everything below here references initial_boot_params directly. */
470 int __initdata dt_root_addr_cells;
471 int __initdata dt_root_size_cells;
472
473 void *initial_boot_params __ro_after_init;
474
475 #ifdef CONFIG_OF_EARLY_FLATTREE
476
477 static u32 of_fdt_crc32;
478
early_init_dt_reserve_memory(phys_addr_t base,phys_addr_t size,bool nomap)479 static int __init early_init_dt_reserve_memory(phys_addr_t base,
480 phys_addr_t size, bool nomap)
481 {
482 if (nomap) {
483 /*
484 * If the memory is already reserved (by another region), we
485 * should not allow it to be marked nomap, but don't worry
486 * if the region isn't memory as it won't be mapped.
487 */
488 if (memblock_overlaps_region(&memblock.memory, base, size) &&
489 memblock_is_region_reserved(base, size))
490 return -EBUSY;
491
492 return memblock_mark_nomap(base, size);
493 }
494 return memblock_reserve(base, size);
495 }
496
497 /*
498 * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
499 */
__reserved_mem_reserve_reg(unsigned long node,const char * uname)500 static int __init __reserved_mem_reserve_reg(unsigned long node,
501 const char *uname)
502 {
503 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
504 phys_addr_t base, size;
505 int len;
506 const __be32 *prop;
507 int first = 1;
508 bool nomap;
509
510 prop = of_get_flat_dt_prop(node, "reg", &len);
511 if (!prop)
512 return -ENOENT;
513
514 if (len && len % t_len != 0) {
515 pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
516 uname);
517 return -EINVAL;
518 }
519
520 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
521
522 while (len >= t_len) {
523 base = dt_mem_next_cell(dt_root_addr_cells, &prop);
524 size = dt_mem_next_cell(dt_root_size_cells, &prop);
525
526 if (size &&
527 early_init_dt_reserve_memory(base, size, nomap) == 0)
528 pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
529 uname, &base, (unsigned long)(size / SZ_1M));
530 else
531 pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
532 uname, &base, (unsigned long)(size / SZ_1M));
533
534 len -= t_len;
535 if (first) {
536 fdt_reserved_mem_save_node(node, uname, base, size);
537 first = 0;
538 }
539 }
540 return 0;
541 }
542
543 /*
544 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
545 * in /reserved-memory matches the values supported by the current implementation,
546 * also check if ranges property has been provided
547 */
__reserved_mem_check_root(unsigned long node)548 static int __init __reserved_mem_check_root(unsigned long node)
549 {
550 const __be32 *prop;
551
552 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
553 if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
554 return -EINVAL;
555
556 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
557 if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
558 return -EINVAL;
559
560 prop = of_get_flat_dt_prop(node, "ranges", NULL);
561 if (!prop)
562 return -EINVAL;
563 return 0;
564 }
565
566 /*
567 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
568 */
fdt_scan_reserved_mem(void)569 static int __init fdt_scan_reserved_mem(void)
570 {
571 int node, child;
572 const void *fdt = initial_boot_params;
573
574 node = fdt_path_offset(fdt, "/reserved-memory");
575 if (node < 0)
576 return -ENODEV;
577
578 if (__reserved_mem_check_root(node) != 0) {
579 pr_err("Reserved memory: unsupported node format, ignoring\n");
580 return -EINVAL;
581 }
582
583 fdt_for_each_subnode(child, fdt, node) {
584 const char *uname;
585 int err;
586
587 if (!of_fdt_device_is_available(fdt, child))
588 continue;
589
590 uname = fdt_get_name(fdt, child, NULL);
591
592 err = __reserved_mem_reserve_reg(child, uname);
593 if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL))
594 fdt_reserved_mem_save_node(child, uname, 0, 0);
595 }
596 return 0;
597 }
598
599 /*
600 * fdt_reserve_elfcorehdr() - reserves memory for elf core header
601 *
602 * This function reserves the memory occupied by an elf core header
603 * described in the device tree. This region contains all the
604 * information about primary kernel's core image and is used by a dump
605 * capture kernel to access the system memory on primary kernel.
606 */
fdt_reserve_elfcorehdr(void)607 static void __init fdt_reserve_elfcorehdr(void)
608 {
609 if (!IS_ENABLED(CONFIG_CRASH_DUMP) || !elfcorehdr_size)
610 return;
611
612 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
613 pr_warn("elfcorehdr is overlapped\n");
614 return;
615 }
616
617 memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
618 memblock_memsize_record("elfcorehdr", elfcorehdr_addr, elfcorehdr_size,
619 false, false);
620
621 pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n",
622 elfcorehdr_size >> 10, elfcorehdr_addr);
623 }
624
625 /**
626 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
627 *
628 * This function grabs memory from early allocator for device exclusive use
629 * defined in device tree structures. It should be called by arch specific code
630 * once the early allocator (i.e. memblock) has been fully activated.
631 */
early_init_fdt_scan_reserved_mem(void)632 void __init early_init_fdt_scan_reserved_mem(void)
633 {
634 int n;
635 u64 base, size;
636
637 if (!initial_boot_params)
638 return;
639
640 memblock_memsize_detect_hole();
641 memblock_memsize_disable_tracking();
642
643 fdt_scan_reserved_mem();
644 fdt_reserve_elfcorehdr();
645
646 /* Process header /memreserve/ fields */
647 for (n = 0; ; n++) {
648 fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
649 if (!size)
650 break;
651 memblock_reserve(base, size);
652 memblock_memsize_record("memreserve", base, size, false, false);
653 }
654
655 fdt_init_reserved_mem();
656
657 memblock_memsize_enable_tracking();
658 }
659
660 /**
661 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
662 */
early_init_fdt_reserve_self(void)663 void __init early_init_fdt_reserve_self(void)
664 {
665 if (!initial_boot_params)
666 return;
667
668 /* Reserve the dtb region */
669 memblock_reserve(__pa(initial_boot_params),
670 fdt_totalsize(initial_boot_params));
671 }
672
673 /**
674 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
675 * @it: callback function
676 * @data: context data pointer
677 *
678 * This function is used to scan the flattened device-tree, it is
679 * used to extract the memory information at boot before we can
680 * unflatten the tree
681 */
of_scan_flat_dt(int (* it)(unsigned long node,const char * uname,int depth,void * data),void * data)682 int __init of_scan_flat_dt(int (*it)(unsigned long node,
683 const char *uname, int depth,
684 void *data),
685 void *data)
686 {
687 const void *blob = initial_boot_params;
688 const char *pathp;
689 int offset, rc = 0, depth = -1;
690
691 if (!blob)
692 return 0;
693
694 for (offset = fdt_next_node(blob, -1, &depth);
695 offset >= 0 && depth >= 0 && !rc;
696 offset = fdt_next_node(blob, offset, &depth)) {
697
698 pathp = fdt_get_name(blob, offset, NULL);
699 rc = it(offset, pathp, depth, data);
700 }
701 return rc;
702 }
703
704 /**
705 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
706 * @parent: parent node
707 * @it: callback function
708 * @data: context data pointer
709 *
710 * This function is used to scan sub-nodes of a node.
711 */
of_scan_flat_dt_subnodes(unsigned long parent,int (* it)(unsigned long node,const char * uname,void * data),void * data)712 int __init of_scan_flat_dt_subnodes(unsigned long parent,
713 int (*it)(unsigned long node,
714 const char *uname,
715 void *data),
716 void *data)
717 {
718 const void *blob = initial_boot_params;
719 int node;
720
721 fdt_for_each_subnode(node, blob, parent) {
722 const char *pathp;
723 int rc;
724
725 pathp = fdt_get_name(blob, node, NULL);
726 rc = it(node, pathp, data);
727 if (rc)
728 return rc;
729 }
730 return 0;
731 }
732
733 /**
734 * of_get_flat_dt_subnode_by_name - get the subnode by given name
735 *
736 * @node: the parent node
737 * @uname: the name of subnode
738 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
739 */
740
of_get_flat_dt_subnode_by_name(unsigned long node,const char * uname)741 int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
742 {
743 return fdt_subnode_offset(initial_boot_params, node, uname);
744 }
745
746 /*
747 * of_get_flat_dt_root - find the root node in the flat blob
748 */
of_get_flat_dt_root(void)749 unsigned long __init of_get_flat_dt_root(void)
750 {
751 return 0;
752 }
753
754 /*
755 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
756 *
757 * This function can be used within scan_flattened_dt callback to get
758 * access to properties
759 */
of_get_flat_dt_prop(unsigned long node,const char * name,int * size)760 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
761 int *size)
762 {
763 return fdt_getprop(initial_boot_params, node, name, size);
764 }
765
766 /**
767 * of_fdt_is_compatible - Return true if given node from the given blob has
768 * compat in its compatible list
769 * @blob: A device tree blob
770 * @node: node to test
771 * @compat: compatible string to compare with compatible list.
772 *
773 * Return: a non-zero value on match with smaller values returned for more
774 * specific compatible values.
775 */
of_fdt_is_compatible(const void * blob,unsigned long node,const char * compat)776 static int of_fdt_is_compatible(const void *blob,
777 unsigned long node, const char *compat)
778 {
779 const char *cp;
780 int cplen;
781 unsigned long l, score = 0;
782
783 cp = fdt_getprop(blob, node, "compatible", &cplen);
784 if (cp == NULL)
785 return 0;
786 while (cplen > 0) {
787 score++;
788 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
789 return score;
790 l = strlen(cp) + 1;
791 cp += l;
792 cplen -= l;
793 }
794
795 return 0;
796 }
797
798 /**
799 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
800 * @node: node to test
801 * @compat: compatible string to compare with compatible list.
802 */
of_flat_dt_is_compatible(unsigned long node,const char * compat)803 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
804 {
805 return of_fdt_is_compatible(initial_boot_params, node, compat);
806 }
807
808 /*
809 * of_flat_dt_match - Return true if node matches a list of compatible values
810 */
of_flat_dt_match(unsigned long node,const char * const * compat)811 static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
812 {
813 unsigned int tmp, score = 0;
814
815 if (!compat)
816 return 0;
817
818 while (*compat) {
819 tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
820 if (tmp && (score == 0 || (tmp < score)))
821 score = tmp;
822 compat++;
823 }
824
825 return score;
826 }
827
828 /*
829 * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle
830 */
of_get_flat_dt_phandle(unsigned long node)831 uint32_t __init of_get_flat_dt_phandle(unsigned long node)
832 {
833 return fdt_get_phandle(initial_boot_params, node);
834 }
835
of_flat_dt_get_machine_name(void)836 const char * __init of_flat_dt_get_machine_name(void)
837 {
838 const char *name;
839 unsigned long dt_root = of_get_flat_dt_root();
840
841 name = of_get_flat_dt_prop(dt_root, "model", NULL);
842 if (!name)
843 name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
844 return name;
845 }
846
847 /**
848 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
849 *
850 * @default_match: A machine specific ptr to return in case of no match.
851 * @get_next_compat: callback function to return next compatible match table.
852 *
853 * Iterate through machine match tables to find the best match for the machine
854 * compatible string in the FDT.
855 */
of_flat_dt_match_machine(const void * default_match,const void * (* get_next_compat)(const char * const **))856 const void * __init of_flat_dt_match_machine(const void *default_match,
857 const void * (*get_next_compat)(const char * const**))
858 {
859 const void *data = NULL;
860 const void *best_data = default_match;
861 const char *const *compat;
862 unsigned long dt_root;
863 unsigned int best_score = ~1, score = 0;
864
865 dt_root = of_get_flat_dt_root();
866 while ((data = get_next_compat(&compat))) {
867 score = of_flat_dt_match(dt_root, compat);
868 if (score > 0 && score < best_score) {
869 best_data = data;
870 best_score = score;
871 }
872 }
873 if (!best_data) {
874 const char *prop;
875 int size;
876
877 pr_err("\n unrecognized device tree list:\n[ ");
878
879 prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
880 if (prop) {
881 while (size > 0) {
882 printk("'%s' ", prop);
883 size -= strlen(prop) + 1;
884 prop += strlen(prop) + 1;
885 }
886 }
887 printk("]\n\n");
888 return NULL;
889 }
890
891 pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
892
893 return best_data;
894 }
895
__early_init_dt_declare_initrd(unsigned long start,unsigned long end)896 static void __early_init_dt_declare_initrd(unsigned long start,
897 unsigned long end)
898 {
899 /*
900 * __va() is not yet available this early on some platforms. In that
901 * case, the platform uses phys_initrd_start/phys_initrd_size instead
902 * and does the VA conversion itself.
903 */
904 if (!IS_ENABLED(CONFIG_ARM64) &&
905 !(IS_ENABLED(CONFIG_RISCV) && IS_ENABLED(CONFIG_64BIT))) {
906 initrd_start = (unsigned long)__va(start);
907 initrd_end = (unsigned long)__va(end);
908 initrd_below_start_ok = 1;
909 }
910 }
911
912 /**
913 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
914 * @node: reference to node containing initrd location ('chosen')
915 */
early_init_dt_check_for_initrd(unsigned long node)916 static void __init early_init_dt_check_for_initrd(unsigned long node)
917 {
918 u64 start, end;
919 int len;
920 const __be32 *prop;
921
922 if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD))
923 return;
924
925 pr_debug("Looking for initrd properties... ");
926
927 prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
928 if (!prop)
929 return;
930 start = of_read_number(prop, len/4);
931
932 prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
933 if (!prop)
934 return;
935 end = of_read_number(prop, len/4);
936 if (start > end)
937 return;
938
939 __early_init_dt_declare_initrd(start, end);
940 phys_initrd_start = start;
941 phys_initrd_size = end - start;
942
943 pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n", start, end);
944 }
945
946 /**
947 * early_init_dt_check_for_elfcorehdr - Decode elfcorehdr location from flat
948 * tree
949 * @node: reference to node containing elfcorehdr location ('chosen')
950 */
early_init_dt_check_for_elfcorehdr(unsigned long node)951 static void __init early_init_dt_check_for_elfcorehdr(unsigned long node)
952 {
953 const __be32 *prop;
954 int len;
955
956 if (!IS_ENABLED(CONFIG_CRASH_DUMP))
957 return;
958
959 pr_debug("Looking for elfcorehdr property... ");
960
961 prop = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
962 if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells)))
963 return;
964
965 elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &prop);
966 elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &prop);
967
968 pr_debug("elfcorehdr_start=0x%llx elfcorehdr_size=0x%llx\n",
969 elfcorehdr_addr, elfcorehdr_size);
970 }
971
972 static unsigned long chosen_node_offset = -FDT_ERR_NOTFOUND;
973
974 /*
975 * The main usage of linux,usable-memory-range is for crash dump kernel.
976 * Originally, the number of usable-memory regions is one. Now there may
977 * be two regions, low region and high region.
978 * To make compatibility with existing user-space and older kdump, the low
979 * region is always the last range of linux,usable-memory-range if exist.
980 */
981 #define MAX_USABLE_RANGES 2
982
983 /**
984 * early_init_dt_check_for_usable_mem_range - Decode usable memory range
985 * location from flat tree
986 */
early_init_dt_check_for_usable_mem_range(void)987 void __init early_init_dt_check_for_usable_mem_range(void)
988 {
989 struct memblock_region rgn[MAX_USABLE_RANGES] = {0};
990 const __be32 *prop, *endp;
991 int len, i;
992 unsigned long node = chosen_node_offset;
993
994 if ((long)node < 0)
995 return;
996
997 pr_debug("Looking for usable-memory-range property... ");
998
999 prop = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
1000 if (!prop || (len % (dt_root_addr_cells + dt_root_size_cells)))
1001 return;
1002
1003 endp = prop + (len / sizeof(__be32));
1004 for (i = 0; i < MAX_USABLE_RANGES && prop < endp; i++) {
1005 rgn[i].base = dt_mem_next_cell(dt_root_addr_cells, &prop);
1006 rgn[i].size = dt_mem_next_cell(dt_root_size_cells, &prop);
1007
1008 pr_debug("cap_mem_regions[%d]: base=%pa, size=%pa\n",
1009 i, &rgn[i].base, &rgn[i].size);
1010 }
1011
1012 memblock_cap_memory_range(rgn[0].base, rgn[0].size);
1013 for (i = 1; i < MAX_USABLE_RANGES && rgn[i].size; i++)
1014 memblock_add(rgn[i].base, rgn[i].size);
1015 }
1016
1017 #ifdef CONFIG_SERIAL_EARLYCON
1018
early_init_dt_scan_chosen_stdout(void)1019 int __init early_init_dt_scan_chosen_stdout(void)
1020 {
1021 int offset;
1022 const char *p, *q, *options = NULL;
1023 int l;
1024 const struct earlycon_id *match;
1025 const void *fdt = initial_boot_params;
1026 int ret;
1027
1028 offset = fdt_path_offset(fdt, "/chosen");
1029 if (offset < 0)
1030 offset = fdt_path_offset(fdt, "/chosen@0");
1031 if (offset < 0)
1032 return -ENOENT;
1033
1034 p = fdt_getprop(fdt, offset, "stdout-path", &l);
1035 if (!p)
1036 p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
1037 if (!p || !l)
1038 return -ENOENT;
1039
1040 q = strchrnul(p, ':');
1041 if (*q != '\0')
1042 options = q + 1;
1043 l = q - p;
1044
1045 /* Get the node specified by stdout-path */
1046 offset = fdt_path_offset_namelen(fdt, p, l);
1047 if (offset < 0) {
1048 pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
1049 return 0;
1050 }
1051
1052 for (match = __earlycon_table; match < __earlycon_table_end; match++) {
1053 if (!match->compatible[0])
1054 continue;
1055
1056 if (fdt_node_check_compatible(fdt, offset, match->compatible))
1057 continue;
1058
1059 ret = of_setup_earlycon(match, offset, options);
1060 if (!ret || ret == -EALREADY)
1061 return 0;
1062 }
1063 return -ENODEV;
1064 }
1065 #endif
1066
1067 /*
1068 * early_init_dt_scan_root - fetch the top level address and size cells
1069 */
early_init_dt_scan_root(void)1070 int __init early_init_dt_scan_root(void)
1071 {
1072 const __be32 *prop;
1073 const void *fdt = initial_boot_params;
1074 int node = fdt_path_offset(fdt, "/");
1075
1076 if (node < 0)
1077 return -ENODEV;
1078
1079 dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
1080 dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
1081
1082 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1083 if (prop)
1084 dt_root_size_cells = be32_to_cpup(prop);
1085 pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
1086
1087 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1088 if (prop)
1089 dt_root_addr_cells = be32_to_cpup(prop);
1090 pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1091
1092 return 0;
1093 }
1094
dt_mem_next_cell(int s,const __be32 ** cellp)1095 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1096 {
1097 const __be32 *p = *cellp;
1098
1099 *cellp = p + s;
1100 return of_read_number(p, s);
1101 }
1102
1103 /*
1104 * early_init_dt_scan_memory - Look for and parse memory nodes
1105 */
early_init_dt_scan_memory(void)1106 int __init early_init_dt_scan_memory(void)
1107 {
1108 int node, found_memory = 0;
1109 const void *fdt = initial_boot_params;
1110
1111 fdt_for_each_subnode(node, fdt, 0) {
1112 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1113 const __be32 *reg, *endp;
1114 int l;
1115 bool hotpluggable;
1116
1117 /* We are scanning "memory" nodes only */
1118 if (type == NULL || strcmp(type, "memory") != 0)
1119 continue;
1120
1121 if (!of_fdt_device_is_available(fdt, node))
1122 continue;
1123
1124 reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1125 if (reg == NULL)
1126 reg = of_get_flat_dt_prop(node, "reg", &l);
1127 if (reg == NULL)
1128 continue;
1129
1130 endp = reg + (l / sizeof(__be32));
1131 hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1132
1133 pr_debug("memory scan node %s, reg size %d,\n",
1134 fdt_get_name(fdt, node, NULL), l);
1135
1136 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1137 u64 base, size;
1138
1139 base = dt_mem_next_cell(dt_root_addr_cells, ®);
1140 size = dt_mem_next_cell(dt_root_size_cells, ®);
1141
1142 if (size == 0)
1143 continue;
1144 pr_debug(" - %llx, %llx\n", base, size);
1145
1146 early_init_dt_add_memory_arch(base, size);
1147
1148 found_memory = 1;
1149
1150 if (!hotpluggable)
1151 continue;
1152
1153 if (memblock_mark_hotplug(base, size))
1154 pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1155 base, base + size);
1156 }
1157 }
1158 return found_memory;
1159 }
1160
1161 /*
1162 * Convert configs to something easy to use in C code
1163 */
1164 #if defined(CONFIG_CMDLINE_FORCE)
1165 static const int overwrite_incoming_cmdline = 1;
1166 static const int read_dt_cmdline;
1167 static const int concat_cmdline;
1168 #elif defined(CONFIG_CMDLINE_EXTEND)
1169 static const int overwrite_incoming_cmdline;
1170 static const int read_dt_cmdline = 1;
1171 static const int concat_cmdline = 1;
1172 #else /* CMDLINE_FROM_BOOTLOADER */
1173 static const int overwrite_incoming_cmdline;
1174 static const int read_dt_cmdline = 1;
1175 static const int concat_cmdline;
1176 #endif
1177
1178 #ifdef CONFIG_CMDLINE
1179 static const char *config_cmdline = CONFIG_CMDLINE;
1180 #else
1181 static const char *config_cmdline = "";
1182 #endif
1183
early_init_dt_scan_chosen(char * cmdline)1184 int __init early_init_dt_scan_chosen(char *cmdline)
1185 {
1186 int l = 0, node;
1187 const char *p = NULL;
1188 const void *rng_seed;
1189 const void *fdt = initial_boot_params;
1190
1191 node = fdt_path_offset(fdt, "/chosen");
1192 if (node < 0)
1193 node = fdt_path_offset(fdt, "/chosen@0");
1194 if (node < 0)
1195 /* Handle the cmdline config options even if no /chosen node */
1196 goto handle_cmdline;
1197
1198 chosen_node_offset = node;
1199
1200 early_init_dt_check_for_initrd(node);
1201 early_init_dt_check_for_elfcorehdr(node);
1202
1203 rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1204 if (rng_seed && l > 0) {
1205 add_bootloader_randomness(rng_seed, l);
1206
1207 /* try to clear seed so it won't be found. */
1208 fdt_nop_property(initial_boot_params, node, "rng-seed");
1209
1210 /* update CRC check value */
1211 of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1212 fdt_totalsize(initial_boot_params));
1213 }
1214
1215 /* Put CONFIG_CMDLINE in if forced or if data had nothing in it to start */
1216 if (overwrite_incoming_cmdline || !cmdline[0])
1217 strscpy(cmdline, config_cmdline, COMMAND_LINE_SIZE);
1218
1219 /* Retrieve command line unless forcing */
1220 if (read_dt_cmdline)
1221 p = of_get_flat_dt_prop(node, "bootargs", &l);
1222 if (p != NULL && l > 0) {
1223 if (concat_cmdline) {
1224 int cmdline_len;
1225 int copy_len;
1226 strlcat(cmdline, " ", COMMAND_LINE_SIZE);
1227 cmdline_len = strlen(cmdline);
1228 copy_len = COMMAND_LINE_SIZE - cmdline_len - 1;
1229 copy_len = min((int)l, copy_len);
1230 strncpy(cmdline + cmdline_len, p, copy_len);
1231 cmdline[cmdline_len + copy_len] = '\0';
1232 } else {
1233 strscpy(cmdline, p, min(l, COMMAND_LINE_SIZE));
1234 }
1235 }
1236
1237 handle_cmdline:
1238 pr_debug("Command line is: %s\n", (char *)cmdline);
1239
1240 return 0;
1241 }
1242
1243 #ifndef MIN_MEMBLOCK_ADDR
1244 #define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET)
1245 #endif
1246 #ifndef MAX_MEMBLOCK_ADDR
1247 #define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0)
1248 #endif
1249
early_init_dt_add_memory_arch(u64 base,u64 size)1250 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1251 {
1252 const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1253
1254 if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1255 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1256 base, base + size);
1257 return;
1258 }
1259
1260 if (!PAGE_ALIGNED(base)) {
1261 size -= PAGE_SIZE - (base & ~PAGE_MASK);
1262 base = PAGE_ALIGN(base);
1263 }
1264 size &= PAGE_MASK;
1265
1266 if (base > MAX_MEMBLOCK_ADDR) {
1267 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1268 base, base + size);
1269 return;
1270 }
1271
1272 if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1273 pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1274 ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1275 size = MAX_MEMBLOCK_ADDR - base + 1;
1276 }
1277
1278 if (base + size < phys_offset) {
1279 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1280 base, base + size);
1281 return;
1282 }
1283 if (base < phys_offset) {
1284 pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1285 base, phys_offset);
1286 size -= phys_offset - base;
1287 base = phys_offset;
1288 }
1289 memblock_add(base, size);
1290 }
1291
early_init_dt_alloc_memory_arch(u64 size,u64 align)1292 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1293 {
1294 void *ptr = memblock_alloc(size, align);
1295
1296 if (!ptr)
1297 panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1298 __func__, size, align);
1299
1300 return ptr;
1301 }
1302
early_init_dt_verify(void * params)1303 bool __init early_init_dt_verify(void *params)
1304 {
1305 if (!params)
1306 return false;
1307
1308 /* check device tree validity */
1309 if (fdt_check_header(params))
1310 return false;
1311
1312 /* Setup flat device-tree pointer */
1313 initial_boot_params = params;
1314 of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1315 fdt_totalsize(initial_boot_params));
1316 return true;
1317 }
1318
1319
early_init_dt_scan_nodes(void)1320 void __init early_init_dt_scan_nodes(void)
1321 {
1322 int rc;
1323
1324 /* Initialize {size,address}-cells info */
1325 early_init_dt_scan_root();
1326
1327 /* Retrieve various information from the /chosen node */
1328 rc = early_init_dt_scan_chosen(boot_command_line);
1329 if (rc)
1330 pr_warn("No chosen node found, continuing without\n");
1331
1332 /* Setup memory, calling early_init_dt_add_memory_arch */
1333 early_init_dt_scan_memory();
1334
1335 /* Handle linux,usable-memory-range property */
1336 early_init_dt_check_for_usable_mem_range();
1337 }
1338
early_init_dt_scan(void * params)1339 bool __init early_init_dt_scan(void *params)
1340 {
1341 bool status;
1342
1343 status = early_init_dt_verify(params);
1344 if (!status)
1345 return false;
1346
1347 early_init_dt_scan_nodes();
1348 return true;
1349 }
1350
1351 /**
1352 * unflatten_device_tree - create tree of device_nodes from flat blob
1353 *
1354 * unflattens the device-tree passed by the firmware, creating the
1355 * tree of struct device_node. It also fills the "name" and "type"
1356 * pointers of the nodes so the normal device-tree walking functions
1357 * can be used.
1358 */
unflatten_device_tree(void)1359 void __init unflatten_device_tree(void)
1360 {
1361 __unflatten_device_tree(initial_boot_params, NULL, &of_root,
1362 early_init_dt_alloc_memory_arch, false);
1363
1364 /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1365 of_alias_scan(early_init_dt_alloc_memory_arch);
1366
1367 unittest_unflatten_overlay_base();
1368 }
1369
1370 /**
1371 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1372 *
1373 * Copies and unflattens the device-tree passed by the firmware, creating the
1374 * tree of struct device_node. It also fills the "name" and "type"
1375 * pointers of the nodes so the normal device-tree walking functions
1376 * can be used. This should only be used when the FDT memory has not been
1377 * reserved such is the case when the FDT is built-in to the kernel init
1378 * section. If the FDT memory is reserved already then unflatten_device_tree
1379 * should be used instead.
1380 */
unflatten_and_copy_device_tree(void)1381 void __init unflatten_and_copy_device_tree(void)
1382 {
1383 int size;
1384 void *dt;
1385
1386 if (!initial_boot_params) {
1387 pr_warn("No valid device tree found, continuing without\n");
1388 return;
1389 }
1390
1391 size = fdt_totalsize(initial_boot_params);
1392 dt = early_init_dt_alloc_memory_arch(size,
1393 roundup_pow_of_two(FDT_V17_SIZE));
1394
1395 if (dt) {
1396 memcpy(dt, initial_boot_params, size);
1397 initial_boot_params = dt;
1398 }
1399 unflatten_device_tree();
1400 }
1401
1402 #ifdef CONFIG_SYSFS
of_fdt_raw_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)1403 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1404 struct bin_attribute *bin_attr,
1405 char *buf, loff_t off, size_t count)
1406 {
1407 memcpy(buf, initial_boot_params + off, count);
1408 return count;
1409 }
1410
of_fdt_raw_init(void)1411 static int __init of_fdt_raw_init(void)
1412 {
1413 static struct bin_attribute of_fdt_raw_attr =
1414 __BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1415
1416 if (!initial_boot_params)
1417 return 0;
1418
1419 if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1420 fdt_totalsize(initial_boot_params))) {
1421 pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1422 return 0;
1423 }
1424 of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1425 return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1426 }
1427 late_initcall(of_fdt_raw_init);
1428 #endif
1429
1430 #endif /* CONFIG_OF_EARLY_FLATTREE */
1431