1 /*
2 * Compressed RAM block device
3 *
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
13 */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
33 #include <linux/debugfs.h>
34 #include <linux/cpuhotplug.h>
35 #include <linux/part_stat.h>
36
37 #include "zram_drv.h"
38
39 static DEFINE_IDR(zram_index_idr);
40 /* idr index must be protected */
41 static DEFINE_MUTEX(zram_index_mutex);
42
43 static int zram_major;
44 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP;
45
46 /* Module params (documentation at end) */
47 static unsigned int num_devices = 1;
48 /*
49 * Pages that compress to sizes equals or greater than this are stored
50 * uncompressed in memory.
51 */
52 static size_t huge_class_size;
53
54 static const struct block_device_operations zram_devops;
55
56 static void zram_free_page(struct zram *zram, size_t index);
57 static int zram_read_page(struct zram *zram, struct page *page, u32 index,
58 struct bio *parent);
59
zram_slot_trylock(struct zram * zram,u32 index)60 static int zram_slot_trylock(struct zram *zram, u32 index)
61 {
62 return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags);
63 }
64
zram_slot_lock(struct zram * zram,u32 index)65 static void zram_slot_lock(struct zram *zram, u32 index)
66 {
67 bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags);
68 }
69
zram_slot_unlock(struct zram * zram,u32 index)70 static void zram_slot_unlock(struct zram *zram, u32 index)
71 {
72 bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags);
73 }
74
init_done(struct zram * zram)75 static inline bool init_done(struct zram *zram)
76 {
77 return zram->disksize;
78 }
79
dev_to_zram(struct device * dev)80 static inline struct zram *dev_to_zram(struct device *dev)
81 {
82 return (struct zram *)dev_to_disk(dev)->private_data;
83 }
84
zram_get_handle(struct zram * zram,u32 index)85 static unsigned long zram_get_handle(struct zram *zram, u32 index)
86 {
87 return zram->table[index].handle;
88 }
89
zram_set_handle(struct zram * zram,u32 index,unsigned long handle)90 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
91 {
92 zram->table[index].handle = handle;
93 }
94
95 /* flag operations require table entry bit_spin_lock() being held */
zram_test_flag(struct zram * zram,u32 index,enum zram_pageflags flag)96 static bool zram_test_flag(struct zram *zram, u32 index,
97 enum zram_pageflags flag)
98 {
99 return zram->table[index].flags & BIT(flag);
100 }
101
zram_set_flag(struct zram * zram,u32 index,enum zram_pageflags flag)102 static void zram_set_flag(struct zram *zram, u32 index,
103 enum zram_pageflags flag)
104 {
105 zram->table[index].flags |= BIT(flag);
106 }
107
zram_clear_flag(struct zram * zram,u32 index,enum zram_pageflags flag)108 static void zram_clear_flag(struct zram *zram, u32 index,
109 enum zram_pageflags flag)
110 {
111 zram->table[index].flags &= ~BIT(flag);
112 }
113
zram_set_element(struct zram * zram,u32 index,unsigned long element)114 static inline void zram_set_element(struct zram *zram, u32 index,
115 unsigned long element)
116 {
117 zram->table[index].element = element;
118 }
119
zram_get_element(struct zram * zram,u32 index)120 static unsigned long zram_get_element(struct zram *zram, u32 index)
121 {
122 return zram->table[index].element;
123 }
124
zram_get_obj_size(struct zram * zram,u32 index)125 static size_t zram_get_obj_size(struct zram *zram, u32 index)
126 {
127 return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
128 }
129
zram_set_obj_size(struct zram * zram,u32 index,size_t size)130 static void zram_set_obj_size(struct zram *zram,
131 u32 index, size_t size)
132 {
133 unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
134
135 zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
136 }
137
zram_allocated(struct zram * zram,u32 index)138 static inline bool zram_allocated(struct zram *zram, u32 index)
139 {
140 return zram_get_obj_size(zram, index) ||
141 zram_test_flag(zram, index, ZRAM_SAME) ||
142 zram_test_flag(zram, index, ZRAM_WB);
143 }
144
145 #if PAGE_SIZE != 4096
is_partial_io(struct bio_vec * bvec)146 static inline bool is_partial_io(struct bio_vec *bvec)
147 {
148 return bvec->bv_len != PAGE_SIZE;
149 }
150 #define ZRAM_PARTIAL_IO 1
151 #else
is_partial_io(struct bio_vec * bvec)152 static inline bool is_partial_io(struct bio_vec *bvec)
153 {
154 return false;
155 }
156 #endif
157
zram_set_priority(struct zram * zram,u32 index,u32 prio)158 static inline void zram_set_priority(struct zram *zram, u32 index, u32 prio)
159 {
160 prio &= ZRAM_COMP_PRIORITY_MASK;
161 /*
162 * Clear previous priority value first, in case if we recompress
163 * further an already recompressed page
164 */
165 zram->table[index].flags &= ~(ZRAM_COMP_PRIORITY_MASK <<
166 ZRAM_COMP_PRIORITY_BIT1);
167 zram->table[index].flags |= (prio << ZRAM_COMP_PRIORITY_BIT1);
168 }
169
zram_get_priority(struct zram * zram,u32 index)170 static inline u32 zram_get_priority(struct zram *zram, u32 index)
171 {
172 u32 prio = zram->table[index].flags >> ZRAM_COMP_PRIORITY_BIT1;
173
174 return prio & ZRAM_COMP_PRIORITY_MASK;
175 }
176
update_used_max(struct zram * zram,const unsigned long pages)177 static inline void update_used_max(struct zram *zram,
178 const unsigned long pages)
179 {
180 unsigned long cur_max = atomic_long_read(&zram->stats.max_used_pages);
181
182 do {
183 if (cur_max >= pages)
184 return;
185 } while (!atomic_long_try_cmpxchg(&zram->stats.max_used_pages,
186 &cur_max, pages));
187 }
188
zram_fill_page(void * ptr,unsigned long len,unsigned long value)189 static inline void zram_fill_page(void *ptr, unsigned long len,
190 unsigned long value)
191 {
192 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
193 memset_l(ptr, value, len / sizeof(unsigned long));
194 }
195
page_same_filled(void * ptr,unsigned long * element)196 static bool page_same_filled(void *ptr, unsigned long *element)
197 {
198 unsigned long *page;
199 unsigned long val;
200 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
201
202 page = (unsigned long *)ptr;
203 val = page[0];
204
205 if (val != page[last_pos])
206 return false;
207
208 for (pos = 1; pos < last_pos; pos++) {
209 if (val != page[pos])
210 return false;
211 }
212
213 *element = val;
214
215 return true;
216 }
217
initstate_show(struct device * dev,struct device_attribute * attr,char * buf)218 static ssize_t initstate_show(struct device *dev,
219 struct device_attribute *attr, char *buf)
220 {
221 u32 val;
222 struct zram *zram = dev_to_zram(dev);
223
224 down_read(&zram->init_lock);
225 val = init_done(zram);
226 up_read(&zram->init_lock);
227
228 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
229 }
230
disksize_show(struct device * dev,struct device_attribute * attr,char * buf)231 static ssize_t disksize_show(struct device *dev,
232 struct device_attribute *attr, char *buf)
233 {
234 struct zram *zram = dev_to_zram(dev);
235
236 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
237 }
238
mem_limit_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)239 static ssize_t mem_limit_store(struct device *dev,
240 struct device_attribute *attr, const char *buf, size_t len)
241 {
242 u64 limit;
243 char *tmp;
244 struct zram *zram = dev_to_zram(dev);
245
246 limit = memparse(buf, &tmp);
247 if (buf == tmp) /* no chars parsed, invalid input */
248 return -EINVAL;
249
250 down_write(&zram->init_lock);
251 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
252 up_write(&zram->init_lock);
253
254 return len;
255 }
256
mem_used_max_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)257 static ssize_t mem_used_max_store(struct device *dev,
258 struct device_attribute *attr, const char *buf, size_t len)
259 {
260 int err;
261 unsigned long val;
262 struct zram *zram = dev_to_zram(dev);
263
264 err = kstrtoul(buf, 10, &val);
265 if (err || val != 0)
266 return -EINVAL;
267
268 down_read(&zram->init_lock);
269 if (init_done(zram)) {
270 atomic_long_set(&zram->stats.max_used_pages,
271 zs_get_total_pages(zram->mem_pool));
272 }
273 up_read(&zram->init_lock);
274
275 return len;
276 }
277
278 /*
279 * Mark all pages which are older than or equal to cutoff as IDLE.
280 * Callers should hold the zram init lock in read mode
281 */
mark_idle(struct zram * zram,ktime_t cutoff)282 static void mark_idle(struct zram *zram, ktime_t cutoff)
283 {
284 int is_idle = 1;
285 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
286 int index;
287
288 for (index = 0; index < nr_pages; index++) {
289 /*
290 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race.
291 * See the comment in writeback_store.
292 */
293 zram_slot_lock(zram, index);
294 if (zram_allocated(zram, index) &&
295 !zram_test_flag(zram, index, ZRAM_UNDER_WB)) {
296 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
297 is_idle = !cutoff || ktime_after(cutoff, zram->table[index].ac_time);
298 #endif
299 if (is_idle)
300 zram_set_flag(zram, index, ZRAM_IDLE);
301 }
302 zram_slot_unlock(zram, index);
303 }
304 }
305
idle_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)306 static ssize_t idle_store(struct device *dev,
307 struct device_attribute *attr, const char *buf, size_t len)
308 {
309 struct zram *zram = dev_to_zram(dev);
310 ktime_t cutoff_time = 0;
311 ssize_t rv = -EINVAL;
312
313 if (!sysfs_streq(buf, "all")) {
314 /*
315 * If it did not parse as 'all' try to treat it as an integer
316 * when we have memory tracking enabled.
317 */
318 u64 age_sec;
319
320 if (IS_ENABLED(CONFIG_ZRAM_MEMORY_TRACKING) && !kstrtoull(buf, 0, &age_sec))
321 cutoff_time = ktime_sub(ktime_get_boottime(),
322 ns_to_ktime(age_sec * NSEC_PER_SEC));
323 else
324 goto out;
325 }
326
327 down_read(&zram->init_lock);
328 if (!init_done(zram))
329 goto out_unlock;
330
331 /*
332 * A cutoff_time of 0 marks everything as idle, this is the
333 * "all" behavior.
334 */
335 mark_idle(zram, cutoff_time);
336 rv = len;
337
338 out_unlock:
339 up_read(&zram->init_lock);
340 out:
341 return rv;
342 }
343
344 #ifdef CONFIG_ZRAM_WRITEBACK
writeback_limit_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)345 static ssize_t writeback_limit_enable_store(struct device *dev,
346 struct device_attribute *attr, const char *buf, size_t len)
347 {
348 struct zram *zram = dev_to_zram(dev);
349 u64 val;
350 ssize_t ret = -EINVAL;
351
352 if (kstrtoull(buf, 10, &val))
353 return ret;
354
355 down_read(&zram->init_lock);
356 spin_lock(&zram->wb_limit_lock);
357 zram->wb_limit_enable = val;
358 spin_unlock(&zram->wb_limit_lock);
359 up_read(&zram->init_lock);
360 ret = len;
361
362 return ret;
363 }
364
writeback_limit_enable_show(struct device * dev,struct device_attribute * attr,char * buf)365 static ssize_t writeback_limit_enable_show(struct device *dev,
366 struct device_attribute *attr, char *buf)
367 {
368 bool val;
369 struct zram *zram = dev_to_zram(dev);
370
371 down_read(&zram->init_lock);
372 spin_lock(&zram->wb_limit_lock);
373 val = zram->wb_limit_enable;
374 spin_unlock(&zram->wb_limit_lock);
375 up_read(&zram->init_lock);
376
377 return scnprintf(buf, PAGE_SIZE, "%d\n", val);
378 }
379
writeback_limit_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)380 static ssize_t writeback_limit_store(struct device *dev,
381 struct device_attribute *attr, const char *buf, size_t len)
382 {
383 struct zram *zram = dev_to_zram(dev);
384 u64 val;
385 ssize_t ret = -EINVAL;
386
387 if (kstrtoull(buf, 10, &val))
388 return ret;
389
390 down_read(&zram->init_lock);
391 spin_lock(&zram->wb_limit_lock);
392 zram->bd_wb_limit = val;
393 spin_unlock(&zram->wb_limit_lock);
394 up_read(&zram->init_lock);
395 ret = len;
396
397 return ret;
398 }
399
writeback_limit_show(struct device * dev,struct device_attribute * attr,char * buf)400 static ssize_t writeback_limit_show(struct device *dev,
401 struct device_attribute *attr, char *buf)
402 {
403 u64 val;
404 struct zram *zram = dev_to_zram(dev);
405
406 down_read(&zram->init_lock);
407 spin_lock(&zram->wb_limit_lock);
408 val = zram->bd_wb_limit;
409 spin_unlock(&zram->wb_limit_lock);
410 up_read(&zram->init_lock);
411
412 return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
413 }
414
reset_bdev(struct zram * zram)415 static void reset_bdev(struct zram *zram)
416 {
417 struct block_device *bdev;
418
419 if (!zram->backing_dev)
420 return;
421
422 bdev = zram->bdev;
423 blkdev_put(bdev, zram);
424 /* hope filp_close flush all of IO */
425 filp_close(zram->backing_dev, NULL);
426 zram->backing_dev = NULL;
427 zram->bdev = NULL;
428 zram->disk->fops = &zram_devops;
429 kvfree(zram->bitmap);
430 zram->bitmap = NULL;
431 }
432
backing_dev_show(struct device * dev,struct device_attribute * attr,char * buf)433 static ssize_t backing_dev_show(struct device *dev,
434 struct device_attribute *attr, char *buf)
435 {
436 struct file *file;
437 struct zram *zram = dev_to_zram(dev);
438 char *p;
439 ssize_t ret;
440
441 down_read(&zram->init_lock);
442 file = zram->backing_dev;
443 if (!file) {
444 memcpy(buf, "none\n", 5);
445 up_read(&zram->init_lock);
446 return 5;
447 }
448
449 p = file_path(file, buf, PAGE_SIZE - 1);
450 if (IS_ERR(p)) {
451 ret = PTR_ERR(p);
452 goto out;
453 }
454
455 ret = strlen(p);
456 memmove(buf, p, ret);
457 buf[ret++] = '\n';
458 out:
459 up_read(&zram->init_lock);
460 return ret;
461 }
462
backing_dev_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)463 static ssize_t backing_dev_store(struct device *dev,
464 struct device_attribute *attr, const char *buf, size_t len)
465 {
466 char *file_name;
467 size_t sz;
468 struct file *backing_dev = NULL;
469 struct inode *inode;
470 struct address_space *mapping;
471 unsigned int bitmap_sz;
472 unsigned long nr_pages, *bitmap = NULL;
473 struct block_device *bdev = NULL;
474 int err;
475 struct zram *zram = dev_to_zram(dev);
476
477 file_name = kmalloc(PATH_MAX, GFP_KERNEL);
478 if (!file_name)
479 return -ENOMEM;
480
481 down_write(&zram->init_lock);
482 if (init_done(zram)) {
483 pr_info("Can't setup backing device for initialized device\n");
484 err = -EBUSY;
485 goto out;
486 }
487
488 strscpy(file_name, buf, PATH_MAX);
489 /* ignore trailing newline */
490 sz = strlen(file_name);
491 if (sz > 0 && file_name[sz - 1] == '\n')
492 file_name[sz - 1] = 0x00;
493
494 backing_dev = filp_open_block(file_name, O_RDWR|O_LARGEFILE, 0);
495 if (IS_ERR(backing_dev)) {
496 err = PTR_ERR(backing_dev);
497 backing_dev = NULL;
498 goto out;
499 }
500
501 mapping = backing_dev->f_mapping;
502 inode = mapping->host;
503
504 /* Support only block device in this moment */
505 if (!S_ISBLK(inode->i_mode)) {
506 err = -ENOTBLK;
507 goto out;
508 }
509
510 bdev = blkdev_get_by_dev(inode->i_rdev, BLK_OPEN_READ | BLK_OPEN_WRITE,
511 zram, NULL);
512 if (IS_ERR(bdev)) {
513 err = PTR_ERR(bdev);
514 bdev = NULL;
515 goto out;
516 }
517
518 nr_pages = i_size_read(inode) >> PAGE_SHIFT;
519 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
520 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
521 if (!bitmap) {
522 err = -ENOMEM;
523 goto out;
524 }
525
526 reset_bdev(zram);
527
528 zram->bdev = bdev;
529 zram->backing_dev = backing_dev;
530 zram->bitmap = bitmap;
531 zram->nr_pages = nr_pages;
532 up_write(&zram->init_lock);
533
534 pr_info("setup backing device %s\n", file_name);
535 kfree(file_name);
536
537 return len;
538 out:
539 kvfree(bitmap);
540
541 if (bdev)
542 blkdev_put(bdev, zram);
543
544 if (backing_dev)
545 filp_close(backing_dev, NULL);
546
547 up_write(&zram->init_lock);
548
549 kfree(file_name);
550
551 return err;
552 }
553
alloc_block_bdev(struct zram * zram)554 static unsigned long alloc_block_bdev(struct zram *zram)
555 {
556 unsigned long blk_idx = 1;
557 retry:
558 /* skip 0 bit to confuse zram.handle = 0 */
559 blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
560 if (blk_idx == zram->nr_pages)
561 return 0;
562
563 if (test_and_set_bit(blk_idx, zram->bitmap))
564 goto retry;
565
566 atomic64_inc(&zram->stats.bd_count);
567 return blk_idx;
568 }
569
free_block_bdev(struct zram * zram,unsigned long blk_idx)570 static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
571 {
572 int was_set;
573
574 was_set = test_and_clear_bit(blk_idx, zram->bitmap);
575 WARN_ON_ONCE(!was_set);
576 atomic64_dec(&zram->stats.bd_count);
577 }
578
read_from_bdev_async(struct zram * zram,struct page * page,unsigned long entry,struct bio * parent)579 static void read_from_bdev_async(struct zram *zram, struct page *page,
580 unsigned long entry, struct bio *parent)
581 {
582 struct bio *bio;
583
584 bio = bio_alloc(zram->bdev, 1, parent->bi_opf, GFP_NOIO);
585 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
586 __bio_add_page(bio, page, PAGE_SIZE, 0);
587 bio_chain(bio, parent);
588 submit_bio(bio);
589 }
590
591 #define PAGE_WB_SIG "page_index="
592
593 #define PAGE_WRITEBACK 0
594 #define HUGE_WRITEBACK (1<<0)
595 #define IDLE_WRITEBACK (1<<1)
596 #define INCOMPRESSIBLE_WRITEBACK (1<<2)
597
writeback_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)598 static ssize_t writeback_store(struct device *dev,
599 struct device_attribute *attr, const char *buf, size_t len)
600 {
601 struct zram *zram = dev_to_zram(dev);
602 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
603 unsigned long index = 0;
604 struct bio bio;
605 struct bio_vec bio_vec;
606 struct page *page;
607 ssize_t ret = len;
608 int mode, err;
609 unsigned long blk_idx = 0;
610
611 if (sysfs_streq(buf, "idle"))
612 mode = IDLE_WRITEBACK;
613 else if (sysfs_streq(buf, "huge"))
614 mode = HUGE_WRITEBACK;
615 else if (sysfs_streq(buf, "huge_idle"))
616 mode = IDLE_WRITEBACK | HUGE_WRITEBACK;
617 else if (sysfs_streq(buf, "incompressible"))
618 mode = INCOMPRESSIBLE_WRITEBACK;
619 else {
620 if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1))
621 return -EINVAL;
622
623 if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) ||
624 index >= nr_pages)
625 return -EINVAL;
626
627 nr_pages = 1;
628 mode = PAGE_WRITEBACK;
629 }
630
631 down_read(&zram->init_lock);
632 if (!init_done(zram)) {
633 ret = -EINVAL;
634 goto release_init_lock;
635 }
636
637 if (!zram->backing_dev) {
638 ret = -ENODEV;
639 goto release_init_lock;
640 }
641
642 page = alloc_page(GFP_KERNEL);
643 if (!page) {
644 ret = -ENOMEM;
645 goto release_init_lock;
646 }
647
648 for (; nr_pages != 0; index++, nr_pages--) {
649 spin_lock(&zram->wb_limit_lock);
650 if (zram->wb_limit_enable && !zram->bd_wb_limit) {
651 spin_unlock(&zram->wb_limit_lock);
652 ret = -EIO;
653 break;
654 }
655 spin_unlock(&zram->wb_limit_lock);
656
657 if (!blk_idx) {
658 blk_idx = alloc_block_bdev(zram);
659 if (!blk_idx) {
660 ret = -ENOSPC;
661 break;
662 }
663 }
664
665 zram_slot_lock(zram, index);
666 if (!zram_allocated(zram, index))
667 goto next;
668
669 if (zram_test_flag(zram, index, ZRAM_WB) ||
670 zram_test_flag(zram, index, ZRAM_SAME) ||
671 zram_test_flag(zram, index, ZRAM_UNDER_WB))
672 goto next;
673
674 if (mode & IDLE_WRITEBACK &&
675 !zram_test_flag(zram, index, ZRAM_IDLE))
676 goto next;
677 if (mode & HUGE_WRITEBACK &&
678 !zram_test_flag(zram, index, ZRAM_HUGE))
679 goto next;
680 if (mode & INCOMPRESSIBLE_WRITEBACK &&
681 !zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE))
682 goto next;
683
684 /*
685 * Clearing ZRAM_UNDER_WB is duty of caller.
686 * IOW, zram_free_page never clear it.
687 */
688 zram_set_flag(zram, index, ZRAM_UNDER_WB);
689 /* Need for hugepage writeback racing */
690 zram_set_flag(zram, index, ZRAM_IDLE);
691 zram_slot_unlock(zram, index);
692 if (zram_read_page(zram, page, index, NULL)) {
693 zram_slot_lock(zram, index);
694 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
695 zram_clear_flag(zram, index, ZRAM_IDLE);
696 zram_slot_unlock(zram, index);
697 continue;
698 }
699
700 bio_init(&bio, zram->bdev, &bio_vec, 1,
701 REQ_OP_WRITE | REQ_SYNC);
702 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
703 __bio_add_page(&bio, page, PAGE_SIZE, 0);
704
705 /*
706 * XXX: A single page IO would be inefficient for write
707 * but it would be not bad as starter.
708 */
709 err = submit_bio_wait(&bio);
710 if (err) {
711 zram_slot_lock(zram, index);
712 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
713 zram_clear_flag(zram, index, ZRAM_IDLE);
714 zram_slot_unlock(zram, index);
715 /*
716 * BIO errors are not fatal, we continue and simply
717 * attempt to writeback the remaining objects (pages).
718 * At the same time we need to signal user-space that
719 * some writes (at least one, but also could be all of
720 * them) were not successful and we do so by returning
721 * the most recent BIO error.
722 */
723 ret = err;
724 continue;
725 }
726
727 atomic64_inc(&zram->stats.bd_writes);
728 /*
729 * We released zram_slot_lock so need to check if the slot was
730 * changed. If there is freeing for the slot, we can catch it
731 * easily by zram_allocated.
732 * A subtle case is the slot is freed/reallocated/marked as
733 * ZRAM_IDLE again. To close the race, idle_store doesn't
734 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB.
735 * Thus, we could close the race by checking ZRAM_IDLE bit.
736 */
737 zram_slot_lock(zram, index);
738 if (!zram_allocated(zram, index) ||
739 !zram_test_flag(zram, index, ZRAM_IDLE)) {
740 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
741 zram_clear_flag(zram, index, ZRAM_IDLE);
742 goto next;
743 }
744
745 zram_free_page(zram, index);
746 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
747 zram_set_flag(zram, index, ZRAM_WB);
748 zram_set_element(zram, index, blk_idx);
749 blk_idx = 0;
750 atomic64_inc(&zram->stats.pages_stored);
751 spin_lock(&zram->wb_limit_lock);
752 if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
753 zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12);
754 spin_unlock(&zram->wb_limit_lock);
755 next:
756 zram_slot_unlock(zram, index);
757 }
758
759 if (blk_idx)
760 free_block_bdev(zram, blk_idx);
761 __free_page(page);
762 release_init_lock:
763 up_read(&zram->init_lock);
764
765 return ret;
766 }
767
768 struct zram_work {
769 struct work_struct work;
770 struct zram *zram;
771 unsigned long entry;
772 struct page *page;
773 int error;
774 };
775
zram_sync_read(struct work_struct * work)776 static void zram_sync_read(struct work_struct *work)
777 {
778 struct zram_work *zw = container_of(work, struct zram_work, work);
779 struct bio_vec bv;
780 struct bio bio;
781
782 bio_init(&bio, zw->zram->bdev, &bv, 1, REQ_OP_READ);
783 bio.bi_iter.bi_sector = zw->entry * (PAGE_SIZE >> 9);
784 __bio_add_page(&bio, zw->page, PAGE_SIZE, 0);
785 zw->error = submit_bio_wait(&bio);
786 }
787
788 /*
789 * Block layer want one ->submit_bio to be active at a time, so if we use
790 * chained IO with parent IO in same context, it's a deadlock. To avoid that,
791 * use a worker thread context.
792 */
read_from_bdev_sync(struct zram * zram,struct page * page,unsigned long entry)793 static int read_from_bdev_sync(struct zram *zram, struct page *page,
794 unsigned long entry)
795 {
796 struct zram_work work;
797
798 work.page = page;
799 work.zram = zram;
800 work.entry = entry;
801
802 INIT_WORK_ONSTACK(&work.work, zram_sync_read);
803 queue_work(system_unbound_wq, &work.work);
804 flush_work(&work.work);
805 destroy_work_on_stack(&work.work);
806
807 return work.error;
808 }
809
read_from_bdev(struct zram * zram,struct page * page,unsigned long entry,struct bio * parent)810 static int read_from_bdev(struct zram *zram, struct page *page,
811 unsigned long entry, struct bio *parent)
812 {
813 atomic64_inc(&zram->stats.bd_reads);
814 if (!parent) {
815 if (WARN_ON_ONCE(!IS_ENABLED(ZRAM_PARTIAL_IO)))
816 return -EIO;
817 return read_from_bdev_sync(zram, page, entry);
818 }
819 read_from_bdev_async(zram, page, entry, parent);
820 return 0;
821 }
822 #else
reset_bdev(struct zram * zram)823 static inline void reset_bdev(struct zram *zram) {};
read_from_bdev(struct zram * zram,struct page * page,unsigned long entry,struct bio * parent)824 static int read_from_bdev(struct zram *zram, struct page *page,
825 unsigned long entry, struct bio *parent)
826 {
827 return -EIO;
828 }
829
free_block_bdev(struct zram * zram,unsigned long blk_idx)830 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
831 #endif
832
833 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
834
835 static struct dentry *zram_debugfs_root;
836
zram_debugfs_create(void)837 static void zram_debugfs_create(void)
838 {
839 zram_debugfs_root = debugfs_create_dir("zram", NULL);
840 }
841
zram_debugfs_destroy(void)842 static void zram_debugfs_destroy(void)
843 {
844 debugfs_remove_recursive(zram_debugfs_root);
845 }
846
zram_accessed(struct zram * zram,u32 index)847 static void zram_accessed(struct zram *zram, u32 index)
848 {
849 zram_clear_flag(zram, index, ZRAM_IDLE);
850 zram->table[index].ac_time = ktime_get_boottime();
851 }
852
read_block_state(struct file * file,char __user * buf,size_t count,loff_t * ppos)853 static ssize_t read_block_state(struct file *file, char __user *buf,
854 size_t count, loff_t *ppos)
855 {
856 char *kbuf;
857 ssize_t index, written = 0;
858 struct zram *zram = file->private_data;
859 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
860 struct timespec64 ts;
861
862 kbuf = kvmalloc(count, GFP_KERNEL);
863 if (!kbuf)
864 return -ENOMEM;
865
866 down_read(&zram->init_lock);
867 if (!init_done(zram)) {
868 up_read(&zram->init_lock);
869 kvfree(kbuf);
870 return -EINVAL;
871 }
872
873 for (index = *ppos; index < nr_pages; index++) {
874 int copied;
875
876 zram_slot_lock(zram, index);
877 if (!zram_allocated(zram, index))
878 goto next;
879
880 ts = ktime_to_timespec64(zram->table[index].ac_time);
881 copied = snprintf(kbuf + written, count,
882 "%12zd %12lld.%06lu %c%c%c%c%c%c\n",
883 index, (s64)ts.tv_sec,
884 ts.tv_nsec / NSEC_PER_USEC,
885 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
886 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
887 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
888 zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.',
889 zram_get_priority(zram, index) ? 'r' : '.',
890 zram_test_flag(zram, index,
891 ZRAM_INCOMPRESSIBLE) ? 'n' : '.');
892
893 if (count <= copied) {
894 zram_slot_unlock(zram, index);
895 break;
896 }
897 written += copied;
898 count -= copied;
899 next:
900 zram_slot_unlock(zram, index);
901 *ppos += 1;
902 }
903
904 up_read(&zram->init_lock);
905 if (copy_to_user(buf, kbuf, written))
906 written = -EFAULT;
907 kvfree(kbuf);
908
909 return written;
910 }
911
912 static const struct file_operations proc_zram_block_state_op = {
913 .open = simple_open,
914 .read = read_block_state,
915 .llseek = default_llseek,
916 };
917
zram_debugfs_register(struct zram * zram)918 static void zram_debugfs_register(struct zram *zram)
919 {
920 if (!zram_debugfs_root)
921 return;
922
923 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
924 zram_debugfs_root);
925 debugfs_create_file("block_state", 0400, zram->debugfs_dir,
926 zram, &proc_zram_block_state_op);
927 }
928
zram_debugfs_unregister(struct zram * zram)929 static void zram_debugfs_unregister(struct zram *zram)
930 {
931 debugfs_remove_recursive(zram->debugfs_dir);
932 }
933 #else
zram_debugfs_create(void)934 static void zram_debugfs_create(void) {};
zram_debugfs_destroy(void)935 static void zram_debugfs_destroy(void) {};
zram_accessed(struct zram * zram,u32 index)936 static void zram_accessed(struct zram *zram, u32 index)
937 {
938 zram_clear_flag(zram, index, ZRAM_IDLE);
939 };
zram_debugfs_register(struct zram * zram)940 static void zram_debugfs_register(struct zram *zram) {};
zram_debugfs_unregister(struct zram * zram)941 static void zram_debugfs_unregister(struct zram *zram) {};
942 #endif
943
944 /*
945 * We switched to per-cpu streams and this attr is not needed anymore.
946 * However, we will keep it around for some time, because:
947 * a) we may revert per-cpu streams in the future
948 * b) it's visible to user space and we need to follow our 2 years
949 * retirement rule; but we already have a number of 'soon to be
950 * altered' attrs, so max_comp_streams need to wait for the next
951 * layoff cycle.
952 */
max_comp_streams_show(struct device * dev,struct device_attribute * attr,char * buf)953 static ssize_t max_comp_streams_show(struct device *dev,
954 struct device_attribute *attr, char *buf)
955 {
956 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
957 }
958
max_comp_streams_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)959 static ssize_t max_comp_streams_store(struct device *dev,
960 struct device_attribute *attr, const char *buf, size_t len)
961 {
962 return len;
963 }
964
comp_algorithm_set(struct zram * zram,u32 prio,const char * alg)965 static void comp_algorithm_set(struct zram *zram, u32 prio, const char *alg)
966 {
967 /* Do not free statically defined compression algorithms */
968 if (zram->comp_algs[prio] != default_compressor)
969 kfree(zram->comp_algs[prio]);
970
971 zram->comp_algs[prio] = alg;
972 }
973
__comp_algorithm_show(struct zram * zram,u32 prio,char * buf)974 static ssize_t __comp_algorithm_show(struct zram *zram, u32 prio, char *buf)
975 {
976 ssize_t sz;
977
978 down_read(&zram->init_lock);
979 sz = zcomp_available_show(zram->comp_algs[prio], buf);
980 up_read(&zram->init_lock);
981
982 return sz;
983 }
984
__comp_algorithm_store(struct zram * zram,u32 prio,const char * buf)985 static int __comp_algorithm_store(struct zram *zram, u32 prio, const char *buf)
986 {
987 char *compressor;
988 size_t sz;
989
990 sz = strlen(buf);
991 if (sz >= CRYPTO_MAX_ALG_NAME)
992 return -E2BIG;
993
994 compressor = kstrdup(buf, GFP_KERNEL);
995 if (!compressor)
996 return -ENOMEM;
997
998 /* ignore trailing newline */
999 if (sz > 0 && compressor[sz - 1] == '\n')
1000 compressor[sz - 1] = 0x00;
1001
1002 if (!zcomp_available_algorithm(compressor)) {
1003 kfree(compressor);
1004 return -EINVAL;
1005 }
1006
1007 down_write(&zram->init_lock);
1008 if (init_done(zram)) {
1009 up_write(&zram->init_lock);
1010 kfree(compressor);
1011 pr_info("Can't change algorithm for initialized device\n");
1012 return -EBUSY;
1013 }
1014
1015 comp_algorithm_set(zram, prio, compressor);
1016 up_write(&zram->init_lock);
1017 return 0;
1018 }
1019
comp_algorithm_show(struct device * dev,struct device_attribute * attr,char * buf)1020 static ssize_t comp_algorithm_show(struct device *dev,
1021 struct device_attribute *attr,
1022 char *buf)
1023 {
1024 struct zram *zram = dev_to_zram(dev);
1025
1026 return __comp_algorithm_show(zram, ZRAM_PRIMARY_COMP, buf);
1027 }
1028
comp_algorithm_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1029 static ssize_t comp_algorithm_store(struct device *dev,
1030 struct device_attribute *attr,
1031 const char *buf,
1032 size_t len)
1033 {
1034 struct zram *zram = dev_to_zram(dev);
1035 int ret;
1036
1037 ret = __comp_algorithm_store(zram, ZRAM_PRIMARY_COMP, buf);
1038 return ret ? ret : len;
1039 }
1040
1041 #ifdef CONFIG_ZRAM_MULTI_COMP
recomp_algorithm_show(struct device * dev,struct device_attribute * attr,char * buf)1042 static ssize_t recomp_algorithm_show(struct device *dev,
1043 struct device_attribute *attr,
1044 char *buf)
1045 {
1046 struct zram *zram = dev_to_zram(dev);
1047 ssize_t sz = 0;
1048 u32 prio;
1049
1050 for (prio = ZRAM_SECONDARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
1051 if (!zram->comp_algs[prio])
1052 continue;
1053
1054 sz += scnprintf(buf + sz, PAGE_SIZE - sz - 2, "#%d: ", prio);
1055 sz += __comp_algorithm_show(zram, prio, buf + sz);
1056 }
1057
1058 return sz;
1059 }
1060
recomp_algorithm_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1061 static ssize_t recomp_algorithm_store(struct device *dev,
1062 struct device_attribute *attr,
1063 const char *buf,
1064 size_t len)
1065 {
1066 struct zram *zram = dev_to_zram(dev);
1067 int prio = ZRAM_SECONDARY_COMP;
1068 char *args, *param, *val;
1069 char *alg = NULL;
1070 int ret;
1071
1072 args = skip_spaces(buf);
1073 while (*args) {
1074 args = next_arg(args, ¶m, &val);
1075
1076 if (!val || !*val)
1077 return -EINVAL;
1078
1079 if (!strcmp(param, "algo")) {
1080 alg = val;
1081 continue;
1082 }
1083
1084 if (!strcmp(param, "priority")) {
1085 ret = kstrtoint(val, 10, &prio);
1086 if (ret)
1087 return ret;
1088 continue;
1089 }
1090 }
1091
1092 if (!alg)
1093 return -EINVAL;
1094
1095 if (prio < ZRAM_SECONDARY_COMP || prio >= ZRAM_MAX_COMPS)
1096 return -EINVAL;
1097
1098 ret = __comp_algorithm_store(zram, prio, alg);
1099 return ret ? ret : len;
1100 }
1101 #endif
1102
compact_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1103 static ssize_t compact_store(struct device *dev,
1104 struct device_attribute *attr, const char *buf, size_t len)
1105 {
1106 struct zram *zram = dev_to_zram(dev);
1107
1108 down_read(&zram->init_lock);
1109 if (!init_done(zram)) {
1110 up_read(&zram->init_lock);
1111 return -EINVAL;
1112 }
1113
1114 zs_compact(zram->mem_pool);
1115 up_read(&zram->init_lock);
1116
1117 return len;
1118 }
1119
io_stat_show(struct device * dev,struct device_attribute * attr,char * buf)1120 static ssize_t io_stat_show(struct device *dev,
1121 struct device_attribute *attr, char *buf)
1122 {
1123 struct zram *zram = dev_to_zram(dev);
1124 ssize_t ret;
1125
1126 down_read(&zram->init_lock);
1127 ret = scnprintf(buf, PAGE_SIZE,
1128 "%8llu %8llu 0 %8llu\n",
1129 (u64)atomic64_read(&zram->stats.failed_reads),
1130 (u64)atomic64_read(&zram->stats.failed_writes),
1131 (u64)atomic64_read(&zram->stats.notify_free));
1132 up_read(&zram->init_lock);
1133
1134 return ret;
1135 }
1136
mm_stat_show(struct device * dev,struct device_attribute * attr,char * buf)1137 static ssize_t mm_stat_show(struct device *dev,
1138 struct device_attribute *attr, char *buf)
1139 {
1140 struct zram *zram = dev_to_zram(dev);
1141 struct zs_pool_stats pool_stats;
1142 u64 orig_size, mem_used = 0;
1143 long max_used;
1144 ssize_t ret;
1145
1146 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1147
1148 down_read(&zram->init_lock);
1149 if (init_done(zram)) {
1150 mem_used = zs_get_total_pages(zram->mem_pool);
1151 zs_pool_stats(zram->mem_pool, &pool_stats);
1152 }
1153
1154 orig_size = atomic64_read(&zram->stats.pages_stored);
1155 max_used = atomic_long_read(&zram->stats.max_used_pages);
1156
1157 ret = scnprintf(buf, PAGE_SIZE,
1158 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n",
1159 orig_size << PAGE_SHIFT,
1160 (u64)atomic64_read(&zram->stats.compr_data_size),
1161 mem_used << PAGE_SHIFT,
1162 zram->limit_pages << PAGE_SHIFT,
1163 max_used << PAGE_SHIFT,
1164 (u64)atomic64_read(&zram->stats.same_pages),
1165 atomic_long_read(&pool_stats.pages_compacted),
1166 (u64)atomic64_read(&zram->stats.huge_pages),
1167 (u64)atomic64_read(&zram->stats.huge_pages_since));
1168 up_read(&zram->init_lock);
1169
1170 return ret;
1171 }
1172
1173 #ifdef CONFIG_ZRAM_WRITEBACK
1174 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
bd_stat_show(struct device * dev,struct device_attribute * attr,char * buf)1175 static ssize_t bd_stat_show(struct device *dev,
1176 struct device_attribute *attr, char *buf)
1177 {
1178 struct zram *zram = dev_to_zram(dev);
1179 ssize_t ret;
1180
1181 down_read(&zram->init_lock);
1182 ret = scnprintf(buf, PAGE_SIZE,
1183 "%8llu %8llu %8llu\n",
1184 FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1185 FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1186 FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1187 up_read(&zram->init_lock);
1188
1189 return ret;
1190 }
1191 #endif
1192
debug_stat_show(struct device * dev,struct device_attribute * attr,char * buf)1193 static ssize_t debug_stat_show(struct device *dev,
1194 struct device_attribute *attr, char *buf)
1195 {
1196 int version = 1;
1197 struct zram *zram = dev_to_zram(dev);
1198 ssize_t ret;
1199
1200 down_read(&zram->init_lock);
1201 ret = scnprintf(buf, PAGE_SIZE,
1202 "version: %d\n%8llu %8llu\n",
1203 version,
1204 (u64)atomic64_read(&zram->stats.writestall),
1205 (u64)atomic64_read(&zram->stats.miss_free));
1206 up_read(&zram->init_lock);
1207
1208 return ret;
1209 }
1210
1211 static DEVICE_ATTR_RO(io_stat);
1212 static DEVICE_ATTR_RO(mm_stat);
1213 #ifdef CONFIG_ZRAM_WRITEBACK
1214 static DEVICE_ATTR_RO(bd_stat);
1215 #endif
1216 static DEVICE_ATTR_RO(debug_stat);
1217
zram_meta_free(struct zram * zram,u64 disksize)1218 static void zram_meta_free(struct zram *zram, u64 disksize)
1219 {
1220 size_t num_pages = disksize >> PAGE_SHIFT;
1221 size_t index;
1222
1223 /* Free all pages that are still in this zram device */
1224 for (index = 0; index < num_pages; index++)
1225 zram_free_page(zram, index);
1226
1227 zs_destroy_pool(zram->mem_pool);
1228 vfree(zram->table);
1229 }
1230
zram_meta_alloc(struct zram * zram,u64 disksize)1231 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1232 {
1233 size_t num_pages;
1234
1235 num_pages = disksize >> PAGE_SHIFT;
1236 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1237 if (!zram->table)
1238 return false;
1239
1240 zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1241 if (!zram->mem_pool) {
1242 vfree(zram->table);
1243 return false;
1244 }
1245
1246 if (!huge_class_size)
1247 huge_class_size = zs_huge_class_size(zram->mem_pool);
1248 return true;
1249 }
1250
1251 /*
1252 * To protect concurrent access to the same index entry,
1253 * caller should hold this table index entry's bit_spinlock to
1254 * indicate this index entry is accessing.
1255 */
zram_free_page(struct zram * zram,size_t index)1256 static void zram_free_page(struct zram *zram, size_t index)
1257 {
1258 unsigned long handle;
1259
1260 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
1261 zram->table[index].ac_time = 0;
1262 #endif
1263 if (zram_test_flag(zram, index, ZRAM_IDLE))
1264 zram_clear_flag(zram, index, ZRAM_IDLE);
1265
1266 if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1267 zram_clear_flag(zram, index, ZRAM_HUGE);
1268 atomic64_dec(&zram->stats.huge_pages);
1269 }
1270
1271 if (zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE))
1272 zram_clear_flag(zram, index, ZRAM_INCOMPRESSIBLE);
1273
1274 zram_set_priority(zram, index, 0);
1275
1276 if (zram_test_flag(zram, index, ZRAM_WB)) {
1277 zram_clear_flag(zram, index, ZRAM_WB);
1278 free_block_bdev(zram, zram_get_element(zram, index));
1279 goto out;
1280 }
1281
1282 /*
1283 * No memory is allocated for same element filled pages.
1284 * Simply clear same page flag.
1285 */
1286 if (zram_test_flag(zram, index, ZRAM_SAME)) {
1287 zram_clear_flag(zram, index, ZRAM_SAME);
1288 atomic64_dec(&zram->stats.same_pages);
1289 goto out;
1290 }
1291
1292 handle = zram_get_handle(zram, index);
1293 if (!handle)
1294 return;
1295
1296 zs_free(zram->mem_pool, handle);
1297
1298 atomic64_sub(zram_get_obj_size(zram, index),
1299 &zram->stats.compr_data_size);
1300 out:
1301 atomic64_dec(&zram->stats.pages_stored);
1302 zram_set_handle(zram, index, 0);
1303 zram_set_obj_size(zram, index, 0);
1304 WARN_ON_ONCE(zram->table[index].flags &
1305 ~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB));
1306 }
1307
1308 /*
1309 * Reads (decompresses if needed) a page from zspool (zsmalloc).
1310 * Corresponding ZRAM slot should be locked.
1311 */
zram_read_from_zspool(struct zram * zram,struct page * page,u32 index)1312 static int zram_read_from_zspool(struct zram *zram, struct page *page,
1313 u32 index)
1314 {
1315 struct zcomp_strm *zstrm;
1316 unsigned long handle;
1317 unsigned int size;
1318 void *src, *dst;
1319 u32 prio;
1320 int ret;
1321
1322 handle = zram_get_handle(zram, index);
1323 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1324 unsigned long value;
1325 void *mem;
1326
1327 value = handle ? zram_get_element(zram, index) : 0;
1328 mem = kmap_atomic(page);
1329 zram_fill_page(mem, PAGE_SIZE, value);
1330 kunmap_atomic(mem);
1331 return 0;
1332 }
1333
1334 size = zram_get_obj_size(zram, index);
1335
1336 if (size != PAGE_SIZE) {
1337 prio = zram_get_priority(zram, index);
1338 zstrm = zcomp_stream_get(zram->comps[prio]);
1339 }
1340
1341 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1342 if (size == PAGE_SIZE) {
1343 dst = kmap_atomic(page);
1344 memcpy(dst, src, PAGE_SIZE);
1345 kunmap_atomic(dst);
1346 ret = 0;
1347 } else {
1348 dst = kmap_atomic(page);
1349 ret = zcomp_decompress(zstrm, src, size, dst);
1350 kunmap_atomic(dst);
1351 zcomp_stream_put(zram->comps[prio]);
1352 }
1353 zs_unmap_object(zram->mem_pool, handle);
1354 return ret;
1355 }
1356
zram_read_page(struct zram * zram,struct page * page,u32 index,struct bio * parent)1357 static int zram_read_page(struct zram *zram, struct page *page, u32 index,
1358 struct bio *parent)
1359 {
1360 int ret;
1361
1362 zram_slot_lock(zram, index);
1363 if (!zram_test_flag(zram, index, ZRAM_WB)) {
1364 /* Slot should be locked through out the function call */
1365 ret = zram_read_from_zspool(zram, page, index);
1366 zram_slot_unlock(zram, index);
1367 } else {
1368 /*
1369 * The slot should be unlocked before reading from the backing
1370 * device.
1371 */
1372 zram_slot_unlock(zram, index);
1373
1374 ret = read_from_bdev(zram, page, zram_get_element(zram, index),
1375 parent);
1376 }
1377
1378 /* Should NEVER happen. Return bio error if it does. */
1379 if (WARN_ON(ret < 0))
1380 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1381
1382 return ret;
1383 }
1384
1385 /*
1386 * Use a temporary buffer to decompress the page, as the decompressor
1387 * always expects a full page for the output.
1388 */
zram_bvec_read_partial(struct zram * zram,struct bio_vec * bvec,u32 index,int offset)1389 static int zram_bvec_read_partial(struct zram *zram, struct bio_vec *bvec,
1390 u32 index, int offset)
1391 {
1392 struct page *page = alloc_page(GFP_NOIO);
1393 int ret;
1394
1395 if (!page)
1396 return -ENOMEM;
1397 ret = zram_read_page(zram, page, index, NULL);
1398 if (likely(!ret))
1399 memcpy_to_bvec(bvec, page_address(page) + offset);
1400 __free_page(page);
1401 return ret;
1402 }
1403
zram_bvec_read(struct zram * zram,struct bio_vec * bvec,u32 index,int offset,struct bio * bio)1404 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1405 u32 index, int offset, struct bio *bio)
1406 {
1407 if (is_partial_io(bvec))
1408 return zram_bvec_read_partial(zram, bvec, index, offset);
1409 return zram_read_page(zram, bvec->bv_page, index, bio);
1410 }
1411
zram_write_page(struct zram * zram,struct page * page,u32 index)1412 static int zram_write_page(struct zram *zram, struct page *page, u32 index)
1413 {
1414 int ret = 0;
1415 unsigned long alloced_pages;
1416 unsigned long handle = -ENOMEM;
1417 unsigned int comp_len = 0;
1418 void *src, *dst, *mem;
1419 struct zcomp_strm *zstrm;
1420 unsigned long element = 0;
1421 enum zram_pageflags flags = 0;
1422
1423 mem = kmap_atomic(page);
1424 if (page_same_filled(mem, &element)) {
1425 kunmap_atomic(mem);
1426 /* Free memory associated with this sector now. */
1427 flags = ZRAM_SAME;
1428 atomic64_inc(&zram->stats.same_pages);
1429 goto out;
1430 }
1431 kunmap_atomic(mem);
1432
1433 compress_again:
1434 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]);
1435 src = kmap_atomic(page);
1436 ret = zcomp_compress(zstrm, src, &comp_len);
1437 kunmap_atomic(src);
1438
1439 if (unlikely(ret)) {
1440 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
1441 pr_err("Compression failed! err=%d\n", ret);
1442 zs_free(zram->mem_pool, handle);
1443 return ret;
1444 }
1445
1446 if (comp_len >= huge_class_size)
1447 comp_len = PAGE_SIZE;
1448 /*
1449 * handle allocation has 2 paths:
1450 * a) fast path is executed with preemption disabled (for
1451 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1452 * since we can't sleep;
1453 * b) slow path enables preemption and attempts to allocate
1454 * the page with __GFP_DIRECT_RECLAIM bit set. we have to
1455 * put per-cpu compression stream and, thus, to re-do
1456 * the compression once handle is allocated.
1457 *
1458 * if we have a 'non-null' handle here then we are coming
1459 * from the slow path and handle has already been allocated.
1460 */
1461 if (IS_ERR_VALUE(handle))
1462 handle = zs_malloc(zram->mem_pool, comp_len,
1463 __GFP_KSWAPD_RECLAIM |
1464 __GFP_NOWARN |
1465 __GFP_HIGHMEM |
1466 __GFP_MOVABLE |
1467 __GFP_CMA);
1468 if (IS_ERR_VALUE(handle)) {
1469 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
1470 atomic64_inc(&zram->stats.writestall);
1471 handle = zs_malloc(zram->mem_pool, comp_len,
1472 GFP_NOIO | __GFP_HIGHMEM |
1473 __GFP_MOVABLE | __GFP_CMA);
1474 if (IS_ERR_VALUE(handle))
1475 return PTR_ERR((void *)handle);
1476
1477 if (comp_len != PAGE_SIZE)
1478 goto compress_again;
1479 /*
1480 * If the page is not compressible, you need to acquire the
1481 * lock and execute the code below. The zcomp_stream_get()
1482 * call is needed to disable the cpu hotplug and grab the
1483 * zstrm buffer back. It is necessary that the dereferencing
1484 * of the zstrm variable below occurs correctly.
1485 */
1486 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]);
1487 }
1488
1489 alloced_pages = zs_get_total_pages(zram->mem_pool);
1490 update_used_max(zram, alloced_pages);
1491
1492 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1493 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
1494 zs_free(zram->mem_pool, handle);
1495 return -ENOMEM;
1496 }
1497
1498 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1499
1500 src = zstrm->buffer;
1501 if (comp_len == PAGE_SIZE)
1502 src = kmap_atomic(page);
1503 memcpy(dst, src, comp_len);
1504 if (comp_len == PAGE_SIZE)
1505 kunmap_atomic(src);
1506
1507 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
1508 zs_unmap_object(zram->mem_pool, handle);
1509 atomic64_add(comp_len, &zram->stats.compr_data_size);
1510 out:
1511 /*
1512 * Free memory associated with this sector
1513 * before overwriting unused sectors.
1514 */
1515 zram_slot_lock(zram, index);
1516 zram_free_page(zram, index);
1517
1518 if (comp_len == PAGE_SIZE) {
1519 zram_set_flag(zram, index, ZRAM_HUGE);
1520 atomic64_inc(&zram->stats.huge_pages);
1521 atomic64_inc(&zram->stats.huge_pages_since);
1522 }
1523
1524 if (flags) {
1525 zram_set_flag(zram, index, flags);
1526 zram_set_element(zram, index, element);
1527 } else {
1528 zram_set_handle(zram, index, handle);
1529 zram_set_obj_size(zram, index, comp_len);
1530 }
1531 zram_slot_unlock(zram, index);
1532
1533 /* Update stats */
1534 atomic64_inc(&zram->stats.pages_stored);
1535 return ret;
1536 }
1537
1538 /*
1539 * This is a partial IO. Read the full page before writing the changes.
1540 */
zram_bvec_write_partial(struct zram * zram,struct bio_vec * bvec,u32 index,int offset,struct bio * bio)1541 static int zram_bvec_write_partial(struct zram *zram, struct bio_vec *bvec,
1542 u32 index, int offset, struct bio *bio)
1543 {
1544 struct page *page = alloc_page(GFP_NOIO);
1545 int ret;
1546
1547 if (!page)
1548 return -ENOMEM;
1549
1550 ret = zram_read_page(zram, page, index, bio);
1551 if (!ret) {
1552 memcpy_from_bvec(page_address(page) + offset, bvec);
1553 ret = zram_write_page(zram, page, index);
1554 }
1555 __free_page(page);
1556 return ret;
1557 }
1558
zram_bvec_write(struct zram * zram,struct bio_vec * bvec,u32 index,int offset,struct bio * bio)1559 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1560 u32 index, int offset, struct bio *bio)
1561 {
1562 if (is_partial_io(bvec))
1563 return zram_bvec_write_partial(zram, bvec, index, offset, bio);
1564 return zram_write_page(zram, bvec->bv_page, index);
1565 }
1566
1567 #ifdef CONFIG_ZRAM_MULTI_COMP
1568 /*
1569 * This function will decompress (unless it's ZRAM_HUGE) the page and then
1570 * attempt to compress it using provided compression algorithm priority
1571 * (which is potentially more effective).
1572 *
1573 * Corresponding ZRAM slot should be locked.
1574 */
zram_recompress(struct zram * zram,u32 index,struct page * page,u32 threshold,u32 prio,u32 prio_max)1575 static int zram_recompress(struct zram *zram, u32 index, struct page *page,
1576 u32 threshold, u32 prio, u32 prio_max)
1577 {
1578 struct zcomp_strm *zstrm = NULL;
1579 unsigned long handle_old;
1580 unsigned long handle_new;
1581 unsigned int comp_len_old;
1582 unsigned int comp_len_new;
1583 unsigned int class_index_old;
1584 unsigned int class_index_new;
1585 u32 num_recomps = 0;
1586 void *src, *dst;
1587 int ret;
1588
1589 handle_old = zram_get_handle(zram, index);
1590 if (!handle_old)
1591 return -EINVAL;
1592
1593 comp_len_old = zram_get_obj_size(zram, index);
1594 /*
1595 * Do not recompress objects that are already "small enough".
1596 */
1597 if (comp_len_old < threshold)
1598 return 0;
1599
1600 ret = zram_read_from_zspool(zram, page, index);
1601 if (ret)
1602 return ret;
1603
1604 class_index_old = zs_lookup_class_index(zram->mem_pool, comp_len_old);
1605 /*
1606 * Iterate the secondary comp algorithms list (in order of priority)
1607 * and try to recompress the page.
1608 */
1609 for (; prio < prio_max; prio++) {
1610 if (!zram->comps[prio])
1611 continue;
1612
1613 /*
1614 * Skip if the object is already re-compressed with a higher
1615 * priority algorithm (or same algorithm).
1616 */
1617 if (prio <= zram_get_priority(zram, index))
1618 continue;
1619
1620 num_recomps++;
1621 zstrm = zcomp_stream_get(zram->comps[prio]);
1622 src = kmap_atomic(page);
1623 ret = zcomp_compress(zstrm, src, &comp_len_new);
1624 kunmap_atomic(src);
1625
1626 if (ret) {
1627 zcomp_stream_put(zram->comps[prio]);
1628 return ret;
1629 }
1630
1631 class_index_new = zs_lookup_class_index(zram->mem_pool,
1632 comp_len_new);
1633
1634 /* Continue until we make progress */
1635 if (class_index_new >= class_index_old ||
1636 (threshold && comp_len_new >= threshold)) {
1637 zcomp_stream_put(zram->comps[prio]);
1638 continue;
1639 }
1640
1641 /* Recompression was successful so break out */
1642 break;
1643 }
1644
1645 /*
1646 * We did not try to recompress, e.g. when we have only one
1647 * secondary algorithm and the page is already recompressed
1648 * using that algorithm
1649 */
1650 if (!zstrm)
1651 return 0;
1652
1653 if (class_index_new >= class_index_old) {
1654 /*
1655 * Secondary algorithms failed to re-compress the page
1656 * in a way that would save memory, mark the object as
1657 * incompressible so that we will not try to compress
1658 * it again.
1659 *
1660 * We need to make sure that all secondary algorithms have
1661 * failed, so we test if the number of recompressions matches
1662 * the number of active secondary algorithms.
1663 */
1664 if (num_recomps == zram->num_active_comps - 1)
1665 zram_set_flag(zram, index, ZRAM_INCOMPRESSIBLE);
1666 return 0;
1667 }
1668
1669 /* Successful recompression but above threshold */
1670 if (threshold && comp_len_new >= threshold)
1671 return 0;
1672
1673 /*
1674 * No direct reclaim (slow path) for handle allocation and no
1675 * re-compression attempt (unlike in zram_write_bvec()) since
1676 * we already have stored that object in zsmalloc. If we cannot
1677 * alloc memory for recompressed object then we bail out and
1678 * simply keep the old (existing) object in zsmalloc.
1679 */
1680 handle_new = zs_malloc(zram->mem_pool, comp_len_new,
1681 __GFP_KSWAPD_RECLAIM |
1682 __GFP_NOWARN |
1683 __GFP_HIGHMEM |
1684 __GFP_MOVABLE);
1685 if (IS_ERR_VALUE(handle_new)) {
1686 zcomp_stream_put(zram->comps[prio]);
1687 return PTR_ERR((void *)handle_new);
1688 }
1689
1690 dst = zs_map_object(zram->mem_pool, handle_new, ZS_MM_WO);
1691 memcpy(dst, zstrm->buffer, comp_len_new);
1692 zcomp_stream_put(zram->comps[prio]);
1693
1694 zs_unmap_object(zram->mem_pool, handle_new);
1695
1696 zram_free_page(zram, index);
1697 zram_set_handle(zram, index, handle_new);
1698 zram_set_obj_size(zram, index, comp_len_new);
1699 zram_set_priority(zram, index, prio);
1700
1701 atomic64_add(comp_len_new, &zram->stats.compr_data_size);
1702 atomic64_inc(&zram->stats.pages_stored);
1703
1704 return 0;
1705 }
1706
1707 #define RECOMPRESS_IDLE (1 << 0)
1708 #define RECOMPRESS_HUGE (1 << 1)
1709
recompress_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1710 static ssize_t recompress_store(struct device *dev,
1711 struct device_attribute *attr,
1712 const char *buf, size_t len)
1713 {
1714 u32 prio = ZRAM_SECONDARY_COMP, prio_max = ZRAM_MAX_COMPS;
1715 struct zram *zram = dev_to_zram(dev);
1716 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
1717 char *args, *param, *val, *algo = NULL;
1718 u32 mode = 0, threshold = 0;
1719 unsigned long index;
1720 struct page *page;
1721 ssize_t ret;
1722
1723 args = skip_spaces(buf);
1724 while (*args) {
1725 args = next_arg(args, ¶m, &val);
1726
1727 if (!val || !*val)
1728 return -EINVAL;
1729
1730 if (!strcmp(param, "type")) {
1731 if (!strcmp(val, "idle"))
1732 mode = RECOMPRESS_IDLE;
1733 if (!strcmp(val, "huge"))
1734 mode = RECOMPRESS_HUGE;
1735 if (!strcmp(val, "huge_idle"))
1736 mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE;
1737 continue;
1738 }
1739
1740 if (!strcmp(param, "threshold")) {
1741 /*
1742 * We will re-compress only idle objects equal or
1743 * greater in size than watermark.
1744 */
1745 ret = kstrtouint(val, 10, &threshold);
1746 if (ret)
1747 return ret;
1748 continue;
1749 }
1750
1751 if (!strcmp(param, "algo")) {
1752 algo = val;
1753 continue;
1754 }
1755 }
1756
1757 if (threshold >= huge_class_size)
1758 return -EINVAL;
1759
1760 down_read(&zram->init_lock);
1761 if (!init_done(zram)) {
1762 ret = -EINVAL;
1763 goto release_init_lock;
1764 }
1765
1766 if (algo) {
1767 bool found = false;
1768
1769 for (; prio < ZRAM_MAX_COMPS; prio++) {
1770 if (!zram->comp_algs[prio])
1771 continue;
1772
1773 if (!strcmp(zram->comp_algs[prio], algo)) {
1774 prio_max = min(prio + 1, ZRAM_MAX_COMPS);
1775 found = true;
1776 break;
1777 }
1778 }
1779
1780 if (!found) {
1781 ret = -EINVAL;
1782 goto release_init_lock;
1783 }
1784 }
1785
1786 page = alloc_page(GFP_KERNEL);
1787 if (!page) {
1788 ret = -ENOMEM;
1789 goto release_init_lock;
1790 }
1791
1792 ret = len;
1793 for (index = 0; index < nr_pages; index++) {
1794 int err = 0;
1795
1796 zram_slot_lock(zram, index);
1797
1798 if (!zram_allocated(zram, index))
1799 goto next;
1800
1801 if (mode & RECOMPRESS_IDLE &&
1802 !zram_test_flag(zram, index, ZRAM_IDLE))
1803 goto next;
1804
1805 if (mode & RECOMPRESS_HUGE &&
1806 !zram_test_flag(zram, index, ZRAM_HUGE))
1807 goto next;
1808
1809 if (zram_test_flag(zram, index, ZRAM_WB) ||
1810 zram_test_flag(zram, index, ZRAM_UNDER_WB) ||
1811 zram_test_flag(zram, index, ZRAM_SAME) ||
1812 zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE))
1813 goto next;
1814
1815 err = zram_recompress(zram, index, page, threshold,
1816 prio, prio_max);
1817 next:
1818 zram_slot_unlock(zram, index);
1819 if (err) {
1820 ret = err;
1821 break;
1822 }
1823
1824 cond_resched();
1825 }
1826
1827 __free_page(page);
1828
1829 release_init_lock:
1830 up_read(&zram->init_lock);
1831 return ret;
1832 }
1833 #endif
1834
zram_bio_discard(struct zram * zram,struct bio * bio)1835 static void zram_bio_discard(struct zram *zram, struct bio *bio)
1836 {
1837 size_t n = bio->bi_iter.bi_size;
1838 u32 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1839 u32 offset = (bio->bi_iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
1840 SECTOR_SHIFT;
1841
1842 /*
1843 * zram manages data in physical block size units. Because logical block
1844 * size isn't identical with physical block size on some arch, we
1845 * could get a discard request pointing to a specific offset within a
1846 * certain physical block. Although we can handle this request by
1847 * reading that physiclal block and decompressing and partially zeroing
1848 * and re-compressing and then re-storing it, this isn't reasonable
1849 * because our intent with a discard request is to save memory. So
1850 * skipping this logical block is appropriate here.
1851 */
1852 if (offset) {
1853 if (n <= (PAGE_SIZE - offset))
1854 return;
1855
1856 n -= (PAGE_SIZE - offset);
1857 index++;
1858 }
1859
1860 while (n >= PAGE_SIZE) {
1861 zram_slot_lock(zram, index);
1862 zram_free_page(zram, index);
1863 zram_slot_unlock(zram, index);
1864 atomic64_inc(&zram->stats.notify_free);
1865 index++;
1866 n -= PAGE_SIZE;
1867 }
1868
1869 bio_endio(bio);
1870 }
1871
zram_bio_read(struct zram * zram,struct bio * bio)1872 static void zram_bio_read(struct zram *zram, struct bio *bio)
1873 {
1874 unsigned long start_time = bio_start_io_acct(bio);
1875 struct bvec_iter iter = bio->bi_iter;
1876
1877 do {
1878 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1879 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
1880 SECTOR_SHIFT;
1881 struct bio_vec bv = bio_iter_iovec(bio, iter);
1882
1883 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
1884
1885 if (zram_bvec_read(zram, &bv, index, offset, bio) < 0) {
1886 atomic64_inc(&zram->stats.failed_reads);
1887 bio->bi_status = BLK_STS_IOERR;
1888 break;
1889 }
1890 flush_dcache_page(bv.bv_page);
1891
1892 zram_slot_lock(zram, index);
1893 zram_accessed(zram, index);
1894 zram_slot_unlock(zram, index);
1895
1896 bio_advance_iter_single(bio, &iter, bv.bv_len);
1897 } while (iter.bi_size);
1898
1899 bio_end_io_acct(bio, start_time);
1900 bio_endio(bio);
1901 }
1902
zram_bio_write(struct zram * zram,struct bio * bio)1903 static void zram_bio_write(struct zram *zram, struct bio *bio)
1904 {
1905 unsigned long start_time = bio_start_io_acct(bio);
1906 struct bvec_iter iter = bio->bi_iter;
1907
1908 do {
1909 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1910 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
1911 SECTOR_SHIFT;
1912 struct bio_vec bv = bio_iter_iovec(bio, iter);
1913
1914 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
1915
1916 if (zram_bvec_write(zram, &bv, index, offset, bio) < 0) {
1917 atomic64_inc(&zram->stats.failed_writes);
1918 bio->bi_status = BLK_STS_IOERR;
1919 break;
1920 }
1921
1922 zram_slot_lock(zram, index);
1923 zram_accessed(zram, index);
1924 zram_slot_unlock(zram, index);
1925
1926 bio_advance_iter_single(bio, &iter, bv.bv_len);
1927 } while (iter.bi_size);
1928
1929 bio_end_io_acct(bio, start_time);
1930 bio_endio(bio);
1931 }
1932
1933 /*
1934 * Handler function for all zram I/O requests.
1935 */
zram_submit_bio(struct bio * bio)1936 static void zram_submit_bio(struct bio *bio)
1937 {
1938 struct zram *zram = bio->bi_bdev->bd_disk->private_data;
1939
1940 switch (bio_op(bio)) {
1941 case REQ_OP_READ:
1942 zram_bio_read(zram, bio);
1943 break;
1944 case REQ_OP_WRITE:
1945 zram_bio_write(zram, bio);
1946 break;
1947 case REQ_OP_DISCARD:
1948 case REQ_OP_WRITE_ZEROES:
1949 zram_bio_discard(zram, bio);
1950 break;
1951 default:
1952 WARN_ON_ONCE(1);
1953 bio_endio(bio);
1954 }
1955 }
1956
zram_slot_free_notify(struct block_device * bdev,unsigned long index)1957 static void zram_slot_free_notify(struct block_device *bdev,
1958 unsigned long index)
1959 {
1960 struct zram *zram;
1961
1962 zram = bdev->bd_disk->private_data;
1963
1964 atomic64_inc(&zram->stats.notify_free);
1965 if (!zram_slot_trylock(zram, index)) {
1966 atomic64_inc(&zram->stats.miss_free);
1967 return;
1968 }
1969
1970 zram_free_page(zram, index);
1971 zram_slot_unlock(zram, index);
1972 }
1973
zram_destroy_comps(struct zram * zram)1974 static void zram_destroy_comps(struct zram *zram)
1975 {
1976 u32 prio;
1977
1978 for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) {
1979 struct zcomp *comp = zram->comps[prio];
1980
1981 zram->comps[prio] = NULL;
1982 if (!comp)
1983 continue;
1984 zcomp_destroy(comp);
1985 zram->num_active_comps--;
1986 }
1987 }
1988
zram_reset_device(struct zram * zram)1989 static void zram_reset_device(struct zram *zram)
1990 {
1991 down_write(&zram->init_lock);
1992
1993 zram->limit_pages = 0;
1994
1995 if (!init_done(zram)) {
1996 up_write(&zram->init_lock);
1997 return;
1998 }
1999
2000 set_capacity_and_notify(zram->disk, 0);
2001 part_stat_set_all(zram->disk->part0, 0);
2002
2003 /* I/O operation under all of CPU are done so let's free */
2004 zram_meta_free(zram, zram->disksize);
2005 zram->disksize = 0;
2006 zram_destroy_comps(zram);
2007 memset(&zram->stats, 0, sizeof(zram->stats));
2008 reset_bdev(zram);
2009
2010 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor);
2011 up_write(&zram->init_lock);
2012 }
2013
disksize_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)2014 static ssize_t disksize_store(struct device *dev,
2015 struct device_attribute *attr, const char *buf, size_t len)
2016 {
2017 u64 disksize;
2018 struct zcomp *comp;
2019 struct zram *zram = dev_to_zram(dev);
2020 int err;
2021 u32 prio;
2022
2023 disksize = memparse(buf, NULL);
2024 if (!disksize)
2025 return -EINVAL;
2026
2027 down_write(&zram->init_lock);
2028 if (init_done(zram)) {
2029 pr_info("Cannot change disksize for initialized device\n");
2030 err = -EBUSY;
2031 goto out_unlock;
2032 }
2033
2034 disksize = PAGE_ALIGN(disksize);
2035 if (!zram_meta_alloc(zram, disksize)) {
2036 err = -ENOMEM;
2037 goto out_unlock;
2038 }
2039
2040 for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) {
2041 if (!zram->comp_algs[prio])
2042 continue;
2043
2044 comp = zcomp_create(zram->comp_algs[prio]);
2045 if (IS_ERR(comp)) {
2046 pr_err("Cannot initialise %s compressing backend\n",
2047 zram->comp_algs[prio]);
2048 err = PTR_ERR(comp);
2049 goto out_free_comps;
2050 }
2051
2052 zram->comps[prio] = comp;
2053 zram->num_active_comps++;
2054 }
2055 zram->disksize = disksize;
2056 set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT);
2057 up_write(&zram->init_lock);
2058
2059 return len;
2060
2061 out_free_comps:
2062 zram_destroy_comps(zram);
2063 zram_meta_free(zram, disksize);
2064 out_unlock:
2065 up_write(&zram->init_lock);
2066 return err;
2067 }
2068
reset_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)2069 static ssize_t reset_store(struct device *dev,
2070 struct device_attribute *attr, const char *buf, size_t len)
2071 {
2072 int ret;
2073 unsigned short do_reset;
2074 struct zram *zram;
2075 struct gendisk *disk;
2076
2077 ret = kstrtou16(buf, 10, &do_reset);
2078 if (ret)
2079 return ret;
2080
2081 if (!do_reset)
2082 return -EINVAL;
2083
2084 zram = dev_to_zram(dev);
2085 disk = zram->disk;
2086
2087 mutex_lock(&disk->open_mutex);
2088 /* Do not reset an active device or claimed device */
2089 if (disk_openers(disk) || zram->claim) {
2090 mutex_unlock(&disk->open_mutex);
2091 return -EBUSY;
2092 }
2093
2094 /* From now on, anyone can't open /dev/zram[0-9] */
2095 zram->claim = true;
2096 mutex_unlock(&disk->open_mutex);
2097
2098 /* Make sure all the pending I/O are finished */
2099 sync_blockdev(disk->part0);
2100 zram_reset_device(zram);
2101
2102 mutex_lock(&disk->open_mutex);
2103 zram->claim = false;
2104 mutex_unlock(&disk->open_mutex);
2105
2106 return len;
2107 }
2108
zram_open(struct gendisk * disk,blk_mode_t mode)2109 static int zram_open(struct gendisk *disk, blk_mode_t mode)
2110 {
2111 struct zram *zram = disk->private_data;
2112
2113 WARN_ON(!mutex_is_locked(&disk->open_mutex));
2114
2115 /* zram was claimed to reset so open request fails */
2116 if (zram->claim)
2117 return -EBUSY;
2118 return 0;
2119 }
2120
2121 static const struct block_device_operations zram_devops = {
2122 .open = zram_open,
2123 .submit_bio = zram_submit_bio,
2124 .swap_slot_free_notify = zram_slot_free_notify,
2125 .owner = THIS_MODULE
2126 };
2127
2128 static DEVICE_ATTR_WO(compact);
2129 static DEVICE_ATTR_RW(disksize);
2130 static DEVICE_ATTR_RO(initstate);
2131 static DEVICE_ATTR_WO(reset);
2132 static DEVICE_ATTR_WO(mem_limit);
2133 static DEVICE_ATTR_WO(mem_used_max);
2134 static DEVICE_ATTR_WO(idle);
2135 static DEVICE_ATTR_RW(max_comp_streams);
2136 static DEVICE_ATTR_RW(comp_algorithm);
2137 #ifdef CONFIG_ZRAM_WRITEBACK
2138 static DEVICE_ATTR_RW(backing_dev);
2139 static DEVICE_ATTR_WO(writeback);
2140 static DEVICE_ATTR_RW(writeback_limit);
2141 static DEVICE_ATTR_RW(writeback_limit_enable);
2142 #endif
2143 #ifdef CONFIG_ZRAM_MULTI_COMP
2144 static DEVICE_ATTR_RW(recomp_algorithm);
2145 static DEVICE_ATTR_WO(recompress);
2146 #endif
2147
2148 static struct attribute *zram_disk_attrs[] = {
2149 &dev_attr_disksize.attr,
2150 &dev_attr_initstate.attr,
2151 &dev_attr_reset.attr,
2152 &dev_attr_compact.attr,
2153 &dev_attr_mem_limit.attr,
2154 &dev_attr_mem_used_max.attr,
2155 &dev_attr_idle.attr,
2156 &dev_attr_max_comp_streams.attr,
2157 &dev_attr_comp_algorithm.attr,
2158 #ifdef CONFIG_ZRAM_WRITEBACK
2159 &dev_attr_backing_dev.attr,
2160 &dev_attr_writeback.attr,
2161 &dev_attr_writeback_limit.attr,
2162 &dev_attr_writeback_limit_enable.attr,
2163 #endif
2164 &dev_attr_io_stat.attr,
2165 &dev_attr_mm_stat.attr,
2166 #ifdef CONFIG_ZRAM_WRITEBACK
2167 &dev_attr_bd_stat.attr,
2168 #endif
2169 &dev_attr_debug_stat.attr,
2170 #ifdef CONFIG_ZRAM_MULTI_COMP
2171 &dev_attr_recomp_algorithm.attr,
2172 &dev_attr_recompress.attr,
2173 #endif
2174 NULL,
2175 };
2176
2177 ATTRIBUTE_GROUPS(zram_disk);
2178
2179 /*
2180 * Allocate and initialize new zram device. the function returns
2181 * '>= 0' device_id upon success, and negative value otherwise.
2182 */
zram_add(void)2183 static int zram_add(void)
2184 {
2185 struct zram *zram;
2186 int ret, device_id;
2187
2188 zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
2189 if (!zram)
2190 return -ENOMEM;
2191
2192 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
2193 if (ret < 0)
2194 goto out_free_dev;
2195 device_id = ret;
2196
2197 init_rwsem(&zram->init_lock);
2198 #ifdef CONFIG_ZRAM_WRITEBACK
2199 spin_lock_init(&zram->wb_limit_lock);
2200 #endif
2201
2202 /* gendisk structure */
2203 zram->disk = blk_alloc_disk(NUMA_NO_NODE);
2204 if (!zram->disk) {
2205 pr_err("Error allocating disk structure for device %d\n",
2206 device_id);
2207 ret = -ENOMEM;
2208 goto out_free_idr;
2209 }
2210
2211 zram->disk->major = zram_major;
2212 zram->disk->first_minor = device_id;
2213 zram->disk->minors = 1;
2214 zram->disk->flags |= GENHD_FL_NO_PART;
2215 zram->disk->fops = &zram_devops;
2216 zram->disk->private_data = zram;
2217 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
2218
2219 /* Actual capacity set using sysfs (/sys/block/zram<id>/disksize */
2220 set_capacity(zram->disk, 0);
2221 /* zram devices sort of resembles non-rotational disks */
2222 blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
2223 blk_queue_flag_set(QUEUE_FLAG_SYNCHRONOUS, zram->disk->queue);
2224
2225 /*
2226 * To ensure that we always get PAGE_SIZE aligned
2227 * and n*PAGE_SIZED sized I/O requests.
2228 */
2229 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
2230 blk_queue_logical_block_size(zram->disk->queue,
2231 ZRAM_LOGICAL_BLOCK_SIZE);
2232 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
2233 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
2234 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
2235 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
2236
2237 /*
2238 * zram_bio_discard() will clear all logical blocks if logical block
2239 * size is identical with physical block size(PAGE_SIZE). But if it is
2240 * different, we will skip discarding some parts of logical blocks in
2241 * the part of the request range which isn't aligned to physical block
2242 * size. So we can't ensure that all discarded logical blocks are
2243 * zeroed.
2244 */
2245 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
2246 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
2247
2248 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, zram->disk->queue);
2249 ret = device_add_disk(NULL, zram->disk, zram_disk_groups);
2250 if (ret)
2251 goto out_cleanup_disk;
2252
2253 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor);
2254
2255 zram_debugfs_register(zram);
2256 pr_info("Added device: %s\n", zram->disk->disk_name);
2257 return device_id;
2258
2259 out_cleanup_disk:
2260 put_disk(zram->disk);
2261 out_free_idr:
2262 idr_remove(&zram_index_idr, device_id);
2263 out_free_dev:
2264 kfree(zram);
2265 return ret;
2266 }
2267
zram_remove(struct zram * zram)2268 static int zram_remove(struct zram *zram)
2269 {
2270 bool claimed;
2271
2272 mutex_lock(&zram->disk->open_mutex);
2273 if (disk_openers(zram->disk)) {
2274 mutex_unlock(&zram->disk->open_mutex);
2275 return -EBUSY;
2276 }
2277
2278 claimed = zram->claim;
2279 if (!claimed)
2280 zram->claim = true;
2281 mutex_unlock(&zram->disk->open_mutex);
2282
2283 zram_debugfs_unregister(zram);
2284
2285 if (claimed) {
2286 /*
2287 * If we were claimed by reset_store(), del_gendisk() will
2288 * wait until reset_store() is done, so nothing need to do.
2289 */
2290 ;
2291 } else {
2292 /* Make sure all the pending I/O are finished */
2293 sync_blockdev(zram->disk->part0);
2294 zram_reset_device(zram);
2295 }
2296
2297 pr_info("Removed device: %s\n", zram->disk->disk_name);
2298
2299 del_gendisk(zram->disk);
2300
2301 /* del_gendisk drains pending reset_store */
2302 WARN_ON_ONCE(claimed && zram->claim);
2303
2304 /*
2305 * disksize_store() may be called in between zram_reset_device()
2306 * and del_gendisk(), so run the last reset to avoid leaking
2307 * anything allocated with disksize_store()
2308 */
2309 zram_reset_device(zram);
2310
2311 put_disk(zram->disk);
2312 kfree(zram);
2313 return 0;
2314 }
2315
2316 /* zram-control sysfs attributes */
2317
2318 /*
2319 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
2320 * sense that reading from this file does alter the state of your system -- it
2321 * creates a new un-initialized zram device and returns back this device's
2322 * device_id (or an error code if it fails to create a new device).
2323 */
hot_add_show(const struct class * class,const struct class_attribute * attr,char * buf)2324 static ssize_t hot_add_show(const struct class *class,
2325 const struct class_attribute *attr,
2326 char *buf)
2327 {
2328 int ret;
2329
2330 mutex_lock(&zram_index_mutex);
2331 ret = zram_add();
2332 mutex_unlock(&zram_index_mutex);
2333
2334 if (ret < 0)
2335 return ret;
2336 return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
2337 }
2338 /* This attribute must be set to 0400, so CLASS_ATTR_RO() can not be used */
2339 static struct class_attribute class_attr_hot_add =
2340 __ATTR(hot_add, 0400, hot_add_show, NULL);
2341
hot_remove_store(const struct class * class,const struct class_attribute * attr,const char * buf,size_t count)2342 static ssize_t hot_remove_store(const struct class *class,
2343 const struct class_attribute *attr,
2344 const char *buf,
2345 size_t count)
2346 {
2347 struct zram *zram;
2348 int ret, dev_id;
2349
2350 /* dev_id is gendisk->first_minor, which is `int' */
2351 ret = kstrtoint(buf, 10, &dev_id);
2352 if (ret)
2353 return ret;
2354 if (dev_id < 0)
2355 return -EINVAL;
2356
2357 mutex_lock(&zram_index_mutex);
2358
2359 zram = idr_find(&zram_index_idr, dev_id);
2360 if (zram) {
2361 ret = zram_remove(zram);
2362 if (!ret)
2363 idr_remove(&zram_index_idr, dev_id);
2364 } else {
2365 ret = -ENODEV;
2366 }
2367
2368 mutex_unlock(&zram_index_mutex);
2369 return ret ? ret : count;
2370 }
2371 static CLASS_ATTR_WO(hot_remove);
2372
2373 static struct attribute *zram_control_class_attrs[] = {
2374 &class_attr_hot_add.attr,
2375 &class_attr_hot_remove.attr,
2376 NULL,
2377 };
2378 ATTRIBUTE_GROUPS(zram_control_class);
2379
2380 static struct class zram_control_class = {
2381 .name = "zram-control",
2382 .class_groups = zram_control_class_groups,
2383 };
2384
zram_remove_cb(int id,void * ptr,void * data)2385 static int zram_remove_cb(int id, void *ptr, void *data)
2386 {
2387 WARN_ON_ONCE(zram_remove(ptr));
2388 return 0;
2389 }
2390
destroy_devices(void)2391 static void destroy_devices(void)
2392 {
2393 class_unregister(&zram_control_class);
2394 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
2395 zram_debugfs_destroy();
2396 idr_destroy(&zram_index_idr);
2397 unregister_blkdev(zram_major, "zram");
2398 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2399 }
2400
zram_init(void)2401 static int __init zram_init(void)
2402 {
2403 int ret;
2404
2405 BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > BITS_PER_LONG);
2406
2407 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
2408 zcomp_cpu_up_prepare, zcomp_cpu_dead);
2409 if (ret < 0)
2410 return ret;
2411
2412 ret = class_register(&zram_control_class);
2413 if (ret) {
2414 pr_err("Unable to register zram-control class\n");
2415 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2416 return ret;
2417 }
2418
2419 zram_debugfs_create();
2420 zram_major = register_blkdev(0, "zram");
2421 if (zram_major <= 0) {
2422 pr_err("Unable to get major number\n");
2423 class_unregister(&zram_control_class);
2424 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2425 return -EBUSY;
2426 }
2427
2428 while (num_devices != 0) {
2429 mutex_lock(&zram_index_mutex);
2430 ret = zram_add();
2431 mutex_unlock(&zram_index_mutex);
2432 if (ret < 0)
2433 goto out_error;
2434 num_devices--;
2435 }
2436
2437 return 0;
2438
2439 out_error:
2440 destroy_devices();
2441 return ret;
2442 }
2443
zram_exit(void)2444 static void __exit zram_exit(void)
2445 {
2446 destroy_devices();
2447 }
2448
2449 module_init(zram_init);
2450 module_exit(zram_exit);
2451
2452 module_param(num_devices, uint, 0);
2453 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2454
2455 MODULE_LICENSE("Dual BSD/GPL");
2456 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2457 MODULE_DESCRIPTION("Compressed RAM Block Device");
2458