1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance events core code:
4 *
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 #include <trace/hooks/perf.h>
59 #include "internal.h"
60
61 #include <asm/irq_regs.h>
62
63 typedef int (*remote_function_f)(void *);
64
65 struct remote_function_call {
66 struct task_struct *p;
67 remote_function_f func;
68 void *info;
69 int ret;
70 };
71
remote_function(void * data)72 static void remote_function(void *data)
73 {
74 struct remote_function_call *tfc = data;
75 struct task_struct *p = tfc->p;
76
77 if (p) {
78 /* -EAGAIN */
79 if (task_cpu(p) != smp_processor_id())
80 return;
81
82 /*
83 * Now that we're on right CPU with IRQs disabled, we can test
84 * if we hit the right task without races.
85 */
86
87 tfc->ret = -ESRCH; /* No such (running) process */
88 if (p != current)
89 return;
90 }
91
92 tfc->ret = tfc->func(tfc->info);
93 }
94
95 /**
96 * task_function_call - call a function on the cpu on which a task runs
97 * @p: the task to evaluate
98 * @func: the function to be called
99 * @info: the function call argument
100 *
101 * Calls the function @func when the task is currently running. This might
102 * be on the current CPU, which just calls the function directly. This will
103 * retry due to any failures in smp_call_function_single(), such as if the
104 * task_cpu() goes offline concurrently.
105 *
106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107 */
108 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 struct remote_function_call data = {
112 .p = p,
113 .func = func,
114 .info = info,
115 .ret = -EAGAIN,
116 };
117 int ret;
118
119 for (;;) {
120 ret = smp_call_function_single(task_cpu(p), remote_function,
121 &data, 1);
122 if (!ret)
123 ret = data.ret;
124
125 if (ret != -EAGAIN)
126 break;
127
128 cond_resched();
129 }
130
131 return ret;
132 }
133
134 /**
135 * cpu_function_call - call a function on the cpu
136 * @cpu: target cpu to queue this function
137 * @func: the function to be called
138 * @info: the function call argument
139 *
140 * Calls the function @func on the remote cpu.
141 *
142 * returns: @func return value or -ENXIO when the cpu is offline
143 */
cpu_function_call(int cpu,remote_function_f func,void * info)144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 struct remote_function_call data = {
147 .p = NULL,
148 .func = func,
149 .info = info,
150 .ret = -ENXIO, /* No such CPU */
151 };
152
153 smp_call_function_single(cpu, remote_function, &data, 1);
154
155 return data.ret;
156 }
157
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 struct perf_event_context *ctx)
160 {
161 raw_spin_lock(&cpuctx->ctx.lock);
162 if (ctx)
163 raw_spin_lock(&ctx->lock);
164 }
165
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 struct perf_event_context *ctx)
168 {
169 if (ctx)
170 raw_spin_unlock(&ctx->lock);
171 raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173
174 #define TASK_TOMBSTONE ((void *)-1L)
175
is_kernel_event(struct perf_event * event)176 static bool is_kernel_event(struct perf_event *event)
177 {
178 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182
perf_cpu_task_ctx(void)183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185 lockdep_assert_irqs_disabled();
186 return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188
189 /*
190 * On task ctx scheduling...
191 *
192 * When !ctx->nr_events a task context will not be scheduled. This means
193 * we can disable the scheduler hooks (for performance) without leaving
194 * pending task ctx state.
195 *
196 * This however results in two special cases:
197 *
198 * - removing the last event from a task ctx; this is relatively straight
199 * forward and is done in __perf_remove_from_context.
200 *
201 * - adding the first event to a task ctx; this is tricky because we cannot
202 * rely on ctx->is_active and therefore cannot use event_function_call().
203 * See perf_install_in_context().
204 *
205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206 */
207
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209 struct perf_event_context *, void *);
210
211 struct event_function_struct {
212 struct perf_event *event;
213 event_f func;
214 void *data;
215 };
216
event_function(void * info)217 static int event_function(void *info)
218 {
219 struct event_function_struct *efs = info;
220 struct perf_event *event = efs->event;
221 struct perf_event_context *ctx = event->ctx;
222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223 struct perf_event_context *task_ctx = cpuctx->task_ctx;
224 int ret = 0;
225
226 lockdep_assert_irqs_disabled();
227
228 perf_ctx_lock(cpuctx, task_ctx);
229 /*
230 * Since we do the IPI call without holding ctx->lock things can have
231 * changed, double check we hit the task we set out to hit.
232 */
233 if (ctx->task) {
234 if (ctx->task != current) {
235 ret = -ESRCH;
236 goto unlock;
237 }
238
239 /*
240 * We only use event_function_call() on established contexts,
241 * and event_function() is only ever called when active (or
242 * rather, we'll have bailed in task_function_call() or the
243 * above ctx->task != current test), therefore we must have
244 * ctx->is_active here.
245 */
246 WARN_ON_ONCE(!ctx->is_active);
247 /*
248 * And since we have ctx->is_active, cpuctx->task_ctx must
249 * match.
250 */
251 WARN_ON_ONCE(task_ctx != ctx);
252 } else {
253 WARN_ON_ONCE(&cpuctx->ctx != ctx);
254 }
255
256 efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258 perf_ctx_unlock(cpuctx, task_ctx);
259
260 return ret;
261 }
262
event_function_call(struct perf_event * event,event_f func,void * data)263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265 struct perf_event_context *ctx = event->ctx;
266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267 struct event_function_struct efs = {
268 .event = event,
269 .func = func,
270 .data = data,
271 };
272
273 if (!event->parent) {
274 /*
275 * If this is a !child event, we must hold ctx::mutex to
276 * stabilize the event->ctx relation. See
277 * perf_event_ctx_lock().
278 */
279 lockdep_assert_held(&ctx->mutex);
280 }
281
282 if (!task) {
283 cpu_function_call(event->cpu, event_function, &efs);
284 return;
285 }
286
287 if (task == TASK_TOMBSTONE)
288 return;
289
290 again:
291 if (!task_function_call(task, event_function, &efs))
292 return;
293
294 raw_spin_lock_irq(&ctx->lock);
295 /*
296 * Reload the task pointer, it might have been changed by
297 * a concurrent perf_event_context_sched_out().
298 */
299 task = ctx->task;
300 if (task == TASK_TOMBSTONE) {
301 raw_spin_unlock_irq(&ctx->lock);
302 return;
303 }
304 if (ctx->is_active) {
305 raw_spin_unlock_irq(&ctx->lock);
306 goto again;
307 }
308 func(event, NULL, ctx, data);
309 raw_spin_unlock_irq(&ctx->lock);
310 }
311
312 /*
313 * Similar to event_function_call() + event_function(), but hard assumes IRQs
314 * are already disabled and we're on the right CPU.
315 */
event_function_local(struct perf_event * event,event_f func,void * data)316 static void event_function_local(struct perf_event *event, event_f func, void *data)
317 {
318 struct perf_event_context *ctx = event->ctx;
319 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
320 struct task_struct *task = READ_ONCE(ctx->task);
321 struct perf_event_context *task_ctx = NULL;
322
323 lockdep_assert_irqs_disabled();
324
325 if (task) {
326 if (task == TASK_TOMBSTONE)
327 return;
328
329 task_ctx = ctx;
330 }
331
332 perf_ctx_lock(cpuctx, task_ctx);
333
334 task = ctx->task;
335 if (task == TASK_TOMBSTONE)
336 goto unlock;
337
338 if (task) {
339 /*
340 * We must be either inactive or active and the right task,
341 * otherwise we're screwed, since we cannot IPI to somewhere
342 * else.
343 */
344 if (ctx->is_active) {
345 if (WARN_ON_ONCE(task != current))
346 goto unlock;
347
348 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349 goto unlock;
350 }
351 } else {
352 WARN_ON_ONCE(&cpuctx->ctx != ctx);
353 }
354
355 func(event, cpuctx, ctx, data);
356 unlock:
357 perf_ctx_unlock(cpuctx, task_ctx);
358 }
359
360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361 PERF_FLAG_FD_OUTPUT |\
362 PERF_FLAG_PID_CGROUP |\
363 PERF_FLAG_FD_CLOEXEC)
364
365 /*
366 * branch priv levels that need permission checks
367 */
368 #define PERF_SAMPLE_BRANCH_PERM_PLM \
369 (PERF_SAMPLE_BRANCH_KERNEL |\
370 PERF_SAMPLE_BRANCH_HV)
371
372 enum event_type_t {
373 EVENT_FLEXIBLE = 0x1,
374 EVENT_PINNED = 0x2,
375 EVENT_TIME = 0x4,
376 /* see ctx_resched() for details */
377 EVENT_CPU = 0x8,
378 EVENT_CGROUP = 0x10,
379 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
380 };
381
382 /*
383 * perf_sched_events : >0 events exist
384 */
385
386 static void perf_sched_delayed(struct work_struct *work);
387 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
389 static DEFINE_MUTEX(perf_sched_mutex);
390 static atomic_t perf_sched_count;
391
392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
393
394 static atomic_t nr_mmap_events __read_mostly;
395 static atomic_t nr_comm_events __read_mostly;
396 static atomic_t nr_namespaces_events __read_mostly;
397 static atomic_t nr_task_events __read_mostly;
398 static atomic_t nr_freq_events __read_mostly;
399 static atomic_t nr_switch_events __read_mostly;
400 static atomic_t nr_ksymbol_events __read_mostly;
401 static atomic_t nr_bpf_events __read_mostly;
402 static atomic_t nr_cgroup_events __read_mostly;
403 static atomic_t nr_text_poke_events __read_mostly;
404 static atomic_t nr_build_id_events __read_mostly;
405
406 static LIST_HEAD(pmus);
407 static DEFINE_MUTEX(pmus_lock);
408 static struct srcu_struct pmus_srcu;
409 static cpumask_var_t perf_online_mask;
410 static struct kmem_cache *perf_event_cache;
411
412 /*
413 * perf event paranoia level:
414 * -1 - not paranoid at all
415 * 0 - disallow raw tracepoint access for unpriv
416 * 1 - disallow cpu events for unpriv
417 * 2 - disallow kernel profiling for unpriv
418 */
419 int sysctl_perf_event_paranoid __read_mostly = 2;
420
421 /* Minimum for 512 kiB + 1 user control page */
422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
423
424 /*
425 * max perf event sample rate
426 */
427 #define DEFAULT_MAX_SAMPLE_RATE 100000
428 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
430
431 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
432
433 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
435
436 static int perf_sample_allowed_ns __read_mostly =
437 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
438
update_perf_cpu_limits(void)439 static void update_perf_cpu_limits(void)
440 {
441 u64 tmp = perf_sample_period_ns;
442
443 tmp *= sysctl_perf_cpu_time_max_percent;
444 tmp = div_u64(tmp, 100);
445 if (!tmp)
446 tmp = 1;
447
448 WRITE_ONCE(perf_sample_allowed_ns, tmp);
449 }
450
451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
452
perf_proc_update_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)453 int perf_proc_update_handler(struct ctl_table *table, int write,
454 void *buffer, size_t *lenp, loff_t *ppos)
455 {
456 int ret;
457 int perf_cpu = sysctl_perf_cpu_time_max_percent;
458 /*
459 * If throttling is disabled don't allow the write:
460 */
461 if (write && (perf_cpu == 100 || perf_cpu == 0))
462 return -EINVAL;
463
464 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 if (ret || !write)
466 return ret;
467
468 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
469 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470 update_perf_cpu_limits();
471
472 return 0;
473 }
474
475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476
perf_cpu_time_max_percent_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
478 void *buffer, size_t *lenp, loff_t *ppos)
479 {
480 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481
482 if (ret || !write)
483 return ret;
484
485 if (sysctl_perf_cpu_time_max_percent == 100 ||
486 sysctl_perf_cpu_time_max_percent == 0) {
487 printk(KERN_WARNING
488 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489 WRITE_ONCE(perf_sample_allowed_ns, 0);
490 } else {
491 update_perf_cpu_limits();
492 }
493
494 return 0;
495 }
496
497 /*
498 * perf samples are done in some very critical code paths (NMIs).
499 * If they take too much CPU time, the system can lock up and not
500 * get any real work done. This will drop the sample rate when
501 * we detect that events are taking too long.
502 */
503 #define NR_ACCUMULATED_SAMPLES 128
504 static DEFINE_PER_CPU(u64, running_sample_length);
505
506 static u64 __report_avg;
507 static u64 __report_allowed;
508
perf_duration_warn(struct irq_work * w)509 static void perf_duration_warn(struct irq_work *w)
510 {
511 printk_ratelimited(KERN_INFO
512 "perf: interrupt took too long (%lld > %lld), lowering "
513 "kernel.perf_event_max_sample_rate to %d\n",
514 __report_avg, __report_allowed,
515 sysctl_perf_event_sample_rate);
516 }
517
518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519
perf_sample_event_took(u64 sample_len_ns)520 void perf_sample_event_took(u64 sample_len_ns)
521 {
522 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523 u64 running_len;
524 u64 avg_len;
525 u32 max;
526
527 if (max_len == 0)
528 return;
529
530 /* Decay the counter by 1 average sample. */
531 running_len = __this_cpu_read(running_sample_length);
532 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533 running_len += sample_len_ns;
534 __this_cpu_write(running_sample_length, running_len);
535
536 /*
537 * Note: this will be biased artifically low until we have
538 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
539 * from having to maintain a count.
540 */
541 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542 if (avg_len <= max_len)
543 return;
544
545 __report_avg = avg_len;
546 __report_allowed = max_len;
547
548 /*
549 * Compute a throttle threshold 25% below the current duration.
550 */
551 avg_len += avg_len / 4;
552 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553 if (avg_len < max)
554 max /= (u32)avg_len;
555 else
556 max = 1;
557
558 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559 WRITE_ONCE(max_samples_per_tick, max);
560
561 sysctl_perf_event_sample_rate = max * HZ;
562 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
563
564 if (!irq_work_queue(&perf_duration_work)) {
565 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
566 "kernel.perf_event_max_sample_rate to %d\n",
567 __report_avg, __report_allowed,
568 sysctl_perf_event_sample_rate);
569 }
570 }
571
572 static atomic64_t perf_event_id;
573
574 static void update_context_time(struct perf_event_context *ctx);
575 static u64 perf_event_time(struct perf_event *event);
576
perf_event_print_debug(void)577 void __weak perf_event_print_debug(void) { }
578
perf_clock(void)579 static inline u64 perf_clock(void)
580 {
581 return local_clock();
582 }
583
perf_event_clock(struct perf_event * event)584 static inline u64 perf_event_clock(struct perf_event *event)
585 {
586 return event->clock();
587 }
588
589 /*
590 * State based event timekeeping...
591 *
592 * The basic idea is to use event->state to determine which (if any) time
593 * fields to increment with the current delta. This means we only need to
594 * update timestamps when we change state or when they are explicitly requested
595 * (read).
596 *
597 * Event groups make things a little more complicated, but not terribly so. The
598 * rules for a group are that if the group leader is OFF the entire group is
599 * OFF, irrespecive of what the group member states are. This results in
600 * __perf_effective_state().
601 *
602 * A futher ramification is that when a group leader flips between OFF and
603 * !OFF, we need to update all group member times.
604 *
605 *
606 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607 * need to make sure the relevant context time is updated before we try and
608 * update our timestamps.
609 */
610
611 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)612 __perf_effective_state(struct perf_event *event)
613 {
614 struct perf_event *leader = event->group_leader;
615
616 if (leader->state <= PERF_EVENT_STATE_OFF)
617 return leader->state;
618
619 return event->state;
620 }
621
622 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624 {
625 enum perf_event_state state = __perf_effective_state(event);
626 u64 delta = now - event->tstamp;
627
628 *enabled = event->total_time_enabled;
629 if (state >= PERF_EVENT_STATE_INACTIVE)
630 *enabled += delta;
631
632 *running = event->total_time_running;
633 if (state >= PERF_EVENT_STATE_ACTIVE)
634 *running += delta;
635 }
636
perf_event_update_time(struct perf_event * event)637 static void perf_event_update_time(struct perf_event *event)
638 {
639 u64 now = perf_event_time(event);
640
641 __perf_update_times(event, now, &event->total_time_enabled,
642 &event->total_time_running);
643 event->tstamp = now;
644 }
645
perf_event_update_sibling_time(struct perf_event * leader)646 static void perf_event_update_sibling_time(struct perf_event *leader)
647 {
648 struct perf_event *sibling;
649
650 for_each_sibling_event(sibling, leader)
651 perf_event_update_time(sibling);
652 }
653
654 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)655 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656 {
657 if (event->state == state)
658 return;
659
660 perf_event_update_time(event);
661 /*
662 * If a group leader gets enabled/disabled all its siblings
663 * are affected too.
664 */
665 if ((event->state < 0) ^ (state < 0))
666 perf_event_update_sibling_time(event);
667
668 WRITE_ONCE(event->state, state);
669 }
670
671 /*
672 * UP store-release, load-acquire
673 */
674
675 #define __store_release(ptr, val) \
676 do { \
677 barrier(); \
678 WRITE_ONCE(*(ptr), (val)); \
679 } while (0)
680
681 #define __load_acquire(ptr) \
682 ({ \
683 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \
684 barrier(); \
685 ___p; \
686 })
687
perf_ctx_disable(struct perf_event_context * ctx,bool cgroup)688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
689 {
690 struct perf_event_pmu_context *pmu_ctx;
691
692 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
693 if (cgroup && !pmu_ctx->nr_cgroups)
694 continue;
695 perf_pmu_disable(pmu_ctx->pmu);
696 }
697 }
698
perf_ctx_enable(struct perf_event_context * ctx,bool cgroup)699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
700 {
701 struct perf_event_pmu_context *pmu_ctx;
702
703 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
704 if (cgroup && !pmu_ctx->nr_cgroups)
705 continue;
706 perf_pmu_enable(pmu_ctx->pmu);
707 }
708 }
709
710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
712
713 #ifdef CONFIG_CGROUP_PERF
714
715 static inline bool
perf_cgroup_match(struct perf_event * event)716 perf_cgroup_match(struct perf_event *event)
717 {
718 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
719
720 /* @event doesn't care about cgroup */
721 if (!event->cgrp)
722 return true;
723
724 /* wants specific cgroup scope but @cpuctx isn't associated with any */
725 if (!cpuctx->cgrp)
726 return false;
727
728 /*
729 * Cgroup scoping is recursive. An event enabled for a cgroup is
730 * also enabled for all its descendant cgroups. If @cpuctx's
731 * cgroup is a descendant of @event's (the test covers identity
732 * case), it's a match.
733 */
734 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
735 event->cgrp->css.cgroup);
736 }
737
perf_detach_cgroup(struct perf_event * event)738 static inline void perf_detach_cgroup(struct perf_event *event)
739 {
740 css_put(&event->cgrp->css);
741 event->cgrp = NULL;
742 }
743
is_cgroup_event(struct perf_event * event)744 static inline int is_cgroup_event(struct perf_event *event)
745 {
746 return event->cgrp != NULL;
747 }
748
perf_cgroup_event_time(struct perf_event * event)749 static inline u64 perf_cgroup_event_time(struct perf_event *event)
750 {
751 struct perf_cgroup_info *t;
752
753 t = per_cpu_ptr(event->cgrp->info, event->cpu);
754 return t->time;
755 }
756
perf_cgroup_event_time_now(struct perf_event * event,u64 now)757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
758 {
759 struct perf_cgroup_info *t;
760
761 t = per_cpu_ptr(event->cgrp->info, event->cpu);
762 if (!__load_acquire(&t->active))
763 return t->time;
764 now += READ_ONCE(t->timeoffset);
765 return now;
766 }
767
__update_cgrp_time(struct perf_cgroup_info * info,u64 now,bool adv)768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
769 {
770 if (adv)
771 info->time += now - info->timestamp;
772 info->timestamp = now;
773 /*
774 * see update_context_time()
775 */
776 WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
777 }
778
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
780 {
781 struct perf_cgroup *cgrp = cpuctx->cgrp;
782 struct cgroup_subsys_state *css;
783 struct perf_cgroup_info *info;
784
785 if (cgrp) {
786 u64 now = perf_clock();
787
788 for (css = &cgrp->css; css; css = css->parent) {
789 cgrp = container_of(css, struct perf_cgroup, css);
790 info = this_cpu_ptr(cgrp->info);
791
792 __update_cgrp_time(info, now, true);
793 if (final)
794 __store_release(&info->active, 0);
795 }
796 }
797 }
798
update_cgrp_time_from_event(struct perf_event * event)799 static inline void update_cgrp_time_from_event(struct perf_event *event)
800 {
801 struct perf_cgroup_info *info;
802
803 /*
804 * ensure we access cgroup data only when needed and
805 * when we know the cgroup is pinned (css_get)
806 */
807 if (!is_cgroup_event(event))
808 return;
809
810 info = this_cpu_ptr(event->cgrp->info);
811 /*
812 * Do not update time when cgroup is not active
813 */
814 if (info->active)
815 __update_cgrp_time(info, perf_clock(), true);
816 }
817
818 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
820 {
821 struct perf_event_context *ctx = &cpuctx->ctx;
822 struct perf_cgroup *cgrp = cpuctx->cgrp;
823 struct perf_cgroup_info *info;
824 struct cgroup_subsys_state *css;
825
826 /*
827 * ctx->lock held by caller
828 * ensure we do not access cgroup data
829 * unless we have the cgroup pinned (css_get)
830 */
831 if (!cgrp)
832 return;
833
834 WARN_ON_ONCE(!ctx->nr_cgroups);
835
836 for (css = &cgrp->css; css; css = css->parent) {
837 cgrp = container_of(css, struct perf_cgroup, css);
838 info = this_cpu_ptr(cgrp->info);
839 __update_cgrp_time(info, ctx->timestamp, false);
840 __store_release(&info->active, 1);
841 }
842 }
843
844 /*
845 * reschedule events based on the cgroup constraint of task.
846 */
perf_cgroup_switch(struct task_struct * task)847 static void perf_cgroup_switch(struct task_struct *task)
848 {
849 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
850 struct perf_cgroup *cgrp;
851
852 /*
853 * cpuctx->cgrp is set when the first cgroup event enabled,
854 * and is cleared when the last cgroup event disabled.
855 */
856 if (READ_ONCE(cpuctx->cgrp) == NULL)
857 return;
858
859 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
860
861 cgrp = perf_cgroup_from_task(task, NULL);
862 if (READ_ONCE(cpuctx->cgrp) == cgrp)
863 return;
864
865 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
866 perf_ctx_disable(&cpuctx->ctx, true);
867
868 ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
869 /*
870 * must not be done before ctxswout due
871 * to update_cgrp_time_from_cpuctx() in
872 * ctx_sched_out()
873 */
874 cpuctx->cgrp = cgrp;
875 /*
876 * set cgrp before ctxsw in to allow
877 * perf_cgroup_set_timestamp() in ctx_sched_in()
878 * to not have to pass task around
879 */
880 ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
881
882 perf_ctx_enable(&cpuctx->ctx, true);
883 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
884 }
885
perf_cgroup_ensure_storage(struct perf_event * event,struct cgroup_subsys_state * css)886 static int perf_cgroup_ensure_storage(struct perf_event *event,
887 struct cgroup_subsys_state *css)
888 {
889 struct perf_cpu_context *cpuctx;
890 struct perf_event **storage;
891 int cpu, heap_size, ret = 0;
892
893 /*
894 * Allow storage to have sufficent space for an iterator for each
895 * possibly nested cgroup plus an iterator for events with no cgroup.
896 */
897 for (heap_size = 1; css; css = css->parent)
898 heap_size++;
899
900 for_each_possible_cpu(cpu) {
901 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
902 if (heap_size <= cpuctx->heap_size)
903 continue;
904
905 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
906 GFP_KERNEL, cpu_to_node(cpu));
907 if (!storage) {
908 ret = -ENOMEM;
909 break;
910 }
911
912 raw_spin_lock_irq(&cpuctx->ctx.lock);
913 if (cpuctx->heap_size < heap_size) {
914 swap(cpuctx->heap, storage);
915 if (storage == cpuctx->heap_default)
916 storage = NULL;
917 cpuctx->heap_size = heap_size;
918 }
919 raw_spin_unlock_irq(&cpuctx->ctx.lock);
920
921 kfree(storage);
922 }
923
924 return ret;
925 }
926
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)927 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
928 struct perf_event_attr *attr,
929 struct perf_event *group_leader)
930 {
931 struct perf_cgroup *cgrp;
932 struct cgroup_subsys_state *css;
933 struct fd f = fdget(fd);
934 int ret = 0;
935
936 if (!f.file)
937 return -EBADF;
938
939 css = css_tryget_online_from_dir(f.file->f_path.dentry,
940 &perf_event_cgrp_subsys);
941 if (IS_ERR(css)) {
942 ret = PTR_ERR(css);
943 goto out;
944 }
945
946 ret = perf_cgroup_ensure_storage(event, css);
947 if (ret)
948 goto out;
949
950 cgrp = container_of(css, struct perf_cgroup, css);
951 event->cgrp = cgrp;
952
953 /*
954 * all events in a group must monitor
955 * the same cgroup because a task belongs
956 * to only one perf cgroup at a time
957 */
958 if (group_leader && group_leader->cgrp != cgrp) {
959 perf_detach_cgroup(event);
960 ret = -EINVAL;
961 }
962 out:
963 fdput(f);
964 return ret;
965 }
966
967 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
969 {
970 struct perf_cpu_context *cpuctx;
971
972 if (!is_cgroup_event(event))
973 return;
974
975 event->pmu_ctx->nr_cgroups++;
976
977 /*
978 * Because cgroup events are always per-cpu events,
979 * @ctx == &cpuctx->ctx.
980 */
981 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
982
983 if (ctx->nr_cgroups++)
984 return;
985
986 cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
987 }
988
989 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
991 {
992 struct perf_cpu_context *cpuctx;
993
994 if (!is_cgroup_event(event))
995 return;
996
997 event->pmu_ctx->nr_cgroups--;
998
999 /*
1000 * Because cgroup events are always per-cpu events,
1001 * @ctx == &cpuctx->ctx.
1002 */
1003 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004
1005 if (--ctx->nr_cgroups)
1006 return;
1007
1008 cpuctx->cgrp = NULL;
1009 }
1010
1011 #else /* !CONFIG_CGROUP_PERF */
1012
1013 static inline bool
perf_cgroup_match(struct perf_event * event)1014 perf_cgroup_match(struct perf_event *event)
1015 {
1016 return true;
1017 }
1018
perf_detach_cgroup(struct perf_event * event)1019 static inline void perf_detach_cgroup(struct perf_event *event)
1020 {}
1021
is_cgroup_event(struct perf_event * event)1022 static inline int is_cgroup_event(struct perf_event *event)
1023 {
1024 return 0;
1025 }
1026
update_cgrp_time_from_event(struct perf_event * event)1027 static inline void update_cgrp_time_from_event(struct perf_event *event)
1028 {
1029 }
1030
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1032 bool final)
1033 {
1034 }
1035
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1037 struct perf_event_attr *attr,
1038 struct perf_event *group_leader)
1039 {
1040 return -EINVAL;
1041 }
1042
1043 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1045 {
1046 }
1047
perf_cgroup_event_time(struct perf_event * event)1048 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1049 {
1050 return 0;
1051 }
1052
perf_cgroup_event_time_now(struct perf_event * event,u64 now)1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1054 {
1055 return 0;
1056 }
1057
1058 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1060 {
1061 }
1062
1063 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1065 {
1066 }
1067
perf_cgroup_switch(struct task_struct * task)1068 static void perf_cgroup_switch(struct task_struct *task)
1069 {
1070 }
1071 #endif
1072
1073 /*
1074 * set default to be dependent on timer tick just
1075 * like original code
1076 */
1077 #define PERF_CPU_HRTIMER (1000 / HZ)
1078 /*
1079 * function must be called with interrupts disabled
1080 */
perf_mux_hrtimer_handler(struct hrtimer * hr)1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1082 {
1083 struct perf_cpu_pmu_context *cpc;
1084 bool rotations;
1085
1086 lockdep_assert_irqs_disabled();
1087
1088 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1089 rotations = perf_rotate_context(cpc);
1090
1091 raw_spin_lock(&cpc->hrtimer_lock);
1092 if (rotations)
1093 hrtimer_forward_now(hr, cpc->hrtimer_interval);
1094 else
1095 cpc->hrtimer_active = 0;
1096 raw_spin_unlock(&cpc->hrtimer_lock);
1097
1098 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1099 }
1100
__perf_mux_hrtimer_init(struct perf_cpu_pmu_context * cpc,int cpu)1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1102 {
1103 struct hrtimer *timer = &cpc->hrtimer;
1104 struct pmu *pmu = cpc->epc.pmu;
1105 u64 interval;
1106
1107 /*
1108 * check default is sane, if not set then force to
1109 * default interval (1/tick)
1110 */
1111 interval = pmu->hrtimer_interval_ms;
1112 if (interval < 1)
1113 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1114
1115 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1116
1117 raw_spin_lock_init(&cpc->hrtimer_lock);
1118 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1119 timer->function = perf_mux_hrtimer_handler;
1120 }
1121
perf_mux_hrtimer_restart(struct perf_cpu_pmu_context * cpc)1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1123 {
1124 struct hrtimer *timer = &cpc->hrtimer;
1125 unsigned long flags;
1126
1127 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1128 if (!cpc->hrtimer_active) {
1129 cpc->hrtimer_active = 1;
1130 hrtimer_forward_now(timer, cpc->hrtimer_interval);
1131 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1132 }
1133 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1134
1135 return 0;
1136 }
1137
perf_mux_hrtimer_restart_ipi(void * arg)1138 static int perf_mux_hrtimer_restart_ipi(void *arg)
1139 {
1140 return perf_mux_hrtimer_restart(arg);
1141 }
1142
perf_pmu_disable(struct pmu * pmu)1143 void perf_pmu_disable(struct pmu *pmu)
1144 {
1145 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146 if (!(*count)++)
1147 pmu->pmu_disable(pmu);
1148 }
1149
perf_pmu_enable(struct pmu * pmu)1150 void perf_pmu_enable(struct pmu *pmu)
1151 {
1152 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1153 if (!--(*count))
1154 pmu->pmu_enable(pmu);
1155 }
1156
perf_assert_pmu_disabled(struct pmu * pmu)1157 static void perf_assert_pmu_disabled(struct pmu *pmu)
1158 {
1159 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1160 }
1161
get_ctx(struct perf_event_context * ctx)1162 static void get_ctx(struct perf_event_context *ctx)
1163 {
1164 refcount_inc(&ctx->refcount);
1165 }
1166
alloc_task_ctx_data(struct pmu * pmu)1167 static void *alloc_task_ctx_data(struct pmu *pmu)
1168 {
1169 if (pmu->task_ctx_cache)
1170 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1171
1172 return NULL;
1173 }
1174
free_task_ctx_data(struct pmu * pmu,void * task_ctx_data)1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1176 {
1177 if (pmu->task_ctx_cache && task_ctx_data)
1178 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1179 }
1180
free_ctx(struct rcu_head * head)1181 static void free_ctx(struct rcu_head *head)
1182 {
1183 struct perf_event_context *ctx;
1184
1185 ctx = container_of(head, struct perf_event_context, rcu_head);
1186 kfree(ctx);
1187 }
1188
put_ctx(struct perf_event_context * ctx)1189 static void put_ctx(struct perf_event_context *ctx)
1190 {
1191 if (refcount_dec_and_test(&ctx->refcount)) {
1192 if (ctx->parent_ctx)
1193 put_ctx(ctx->parent_ctx);
1194 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1195 put_task_struct(ctx->task);
1196 call_rcu(&ctx->rcu_head, free_ctx);
1197 }
1198 }
1199
1200 /*
1201 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1202 * perf_pmu_migrate_context() we need some magic.
1203 *
1204 * Those places that change perf_event::ctx will hold both
1205 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1206 *
1207 * Lock ordering is by mutex address. There are two other sites where
1208 * perf_event_context::mutex nests and those are:
1209 *
1210 * - perf_event_exit_task_context() [ child , 0 ]
1211 * perf_event_exit_event()
1212 * put_event() [ parent, 1 ]
1213 *
1214 * - perf_event_init_context() [ parent, 0 ]
1215 * inherit_task_group()
1216 * inherit_group()
1217 * inherit_event()
1218 * perf_event_alloc()
1219 * perf_init_event()
1220 * perf_try_init_event() [ child , 1 ]
1221 *
1222 * While it appears there is an obvious deadlock here -- the parent and child
1223 * nesting levels are inverted between the two. This is in fact safe because
1224 * life-time rules separate them. That is an exiting task cannot fork, and a
1225 * spawning task cannot (yet) exit.
1226 *
1227 * But remember that these are parent<->child context relations, and
1228 * migration does not affect children, therefore these two orderings should not
1229 * interact.
1230 *
1231 * The change in perf_event::ctx does not affect children (as claimed above)
1232 * because the sys_perf_event_open() case will install a new event and break
1233 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1234 * concerned with cpuctx and that doesn't have children.
1235 *
1236 * The places that change perf_event::ctx will issue:
1237 *
1238 * perf_remove_from_context();
1239 * synchronize_rcu();
1240 * perf_install_in_context();
1241 *
1242 * to affect the change. The remove_from_context() + synchronize_rcu() should
1243 * quiesce the event, after which we can install it in the new location. This
1244 * means that only external vectors (perf_fops, prctl) can perturb the event
1245 * while in transit. Therefore all such accessors should also acquire
1246 * perf_event_context::mutex to serialize against this.
1247 *
1248 * However; because event->ctx can change while we're waiting to acquire
1249 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1250 * function.
1251 *
1252 * Lock order:
1253 * exec_update_lock
1254 * task_struct::perf_event_mutex
1255 * perf_event_context::mutex
1256 * perf_event::child_mutex;
1257 * perf_event_context::lock
1258 * perf_event::mmap_mutex
1259 * mmap_lock
1260 * perf_addr_filters_head::lock
1261 *
1262 * cpu_hotplug_lock
1263 * pmus_lock
1264 * cpuctx->mutex / perf_event_context::mutex
1265 */
1266 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1268 {
1269 struct perf_event_context *ctx;
1270
1271 again:
1272 rcu_read_lock();
1273 ctx = READ_ONCE(event->ctx);
1274 if (!refcount_inc_not_zero(&ctx->refcount)) {
1275 rcu_read_unlock();
1276 goto again;
1277 }
1278 rcu_read_unlock();
1279
1280 mutex_lock_nested(&ctx->mutex, nesting);
1281 if (event->ctx != ctx) {
1282 mutex_unlock(&ctx->mutex);
1283 put_ctx(ctx);
1284 goto again;
1285 }
1286
1287 return ctx;
1288 }
1289
1290 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1291 perf_event_ctx_lock(struct perf_event *event)
1292 {
1293 return perf_event_ctx_lock_nested(event, 0);
1294 }
1295
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1296 static void perf_event_ctx_unlock(struct perf_event *event,
1297 struct perf_event_context *ctx)
1298 {
1299 mutex_unlock(&ctx->mutex);
1300 put_ctx(ctx);
1301 }
1302
1303 /*
1304 * This must be done under the ctx->lock, such as to serialize against
1305 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1306 * calling scheduler related locks and ctx->lock nests inside those.
1307 */
1308 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1309 unclone_ctx(struct perf_event_context *ctx)
1310 {
1311 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1312
1313 lockdep_assert_held(&ctx->lock);
1314
1315 if (parent_ctx)
1316 ctx->parent_ctx = NULL;
1317 ctx->generation++;
1318
1319 return parent_ctx;
1320 }
1321
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1323 enum pid_type type)
1324 {
1325 u32 nr;
1326 /*
1327 * only top level events have the pid namespace they were created in
1328 */
1329 if (event->parent)
1330 event = event->parent;
1331
1332 nr = __task_pid_nr_ns(p, type, event->ns);
1333 /* avoid -1 if it is idle thread or runs in another ns */
1334 if (!nr && !pid_alive(p))
1335 nr = -1;
1336 return nr;
1337 }
1338
perf_event_pid(struct perf_event * event,struct task_struct * p)1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1340 {
1341 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1342 }
1343
perf_event_tid(struct perf_event * event,struct task_struct * p)1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1345 {
1346 return perf_event_pid_type(event, p, PIDTYPE_PID);
1347 }
1348
1349 /*
1350 * If we inherit events we want to return the parent event id
1351 * to userspace.
1352 */
primary_event_id(struct perf_event * event)1353 static u64 primary_event_id(struct perf_event *event)
1354 {
1355 u64 id = event->id;
1356
1357 if (event->parent)
1358 id = event->parent->id;
1359
1360 return id;
1361 }
1362
1363 /*
1364 * Get the perf_event_context for a task and lock it.
1365 *
1366 * This has to cope with the fact that until it is locked,
1367 * the context could get moved to another task.
1368 */
1369 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,unsigned long * flags)1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1371 {
1372 struct perf_event_context *ctx;
1373
1374 retry:
1375 /*
1376 * One of the few rules of preemptible RCU is that one cannot do
1377 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1378 * part of the read side critical section was irqs-enabled -- see
1379 * rcu_read_unlock_special().
1380 *
1381 * Since ctx->lock nests under rq->lock we must ensure the entire read
1382 * side critical section has interrupts disabled.
1383 */
1384 local_irq_save(*flags);
1385 rcu_read_lock();
1386 ctx = rcu_dereference(task->perf_event_ctxp);
1387 if (ctx) {
1388 /*
1389 * If this context is a clone of another, it might
1390 * get swapped for another underneath us by
1391 * perf_event_task_sched_out, though the
1392 * rcu_read_lock() protects us from any context
1393 * getting freed. Lock the context and check if it
1394 * got swapped before we could get the lock, and retry
1395 * if so. If we locked the right context, then it
1396 * can't get swapped on us any more.
1397 */
1398 raw_spin_lock(&ctx->lock);
1399 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1400 raw_spin_unlock(&ctx->lock);
1401 rcu_read_unlock();
1402 local_irq_restore(*flags);
1403 goto retry;
1404 }
1405
1406 if (ctx->task == TASK_TOMBSTONE ||
1407 !refcount_inc_not_zero(&ctx->refcount)) {
1408 raw_spin_unlock(&ctx->lock);
1409 ctx = NULL;
1410 } else {
1411 WARN_ON_ONCE(ctx->task != task);
1412 }
1413 }
1414 rcu_read_unlock();
1415 if (!ctx)
1416 local_irq_restore(*flags);
1417 return ctx;
1418 }
1419
1420 /*
1421 * Get the context for a task and increment its pin_count so it
1422 * can't get swapped to another task. This also increments its
1423 * reference count so that the context can't get freed.
1424 */
1425 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task)1426 perf_pin_task_context(struct task_struct *task)
1427 {
1428 struct perf_event_context *ctx;
1429 unsigned long flags;
1430
1431 ctx = perf_lock_task_context(task, &flags);
1432 if (ctx) {
1433 ++ctx->pin_count;
1434 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1435 }
1436 return ctx;
1437 }
1438
perf_unpin_context(struct perf_event_context * ctx)1439 static void perf_unpin_context(struct perf_event_context *ctx)
1440 {
1441 unsigned long flags;
1442
1443 raw_spin_lock_irqsave(&ctx->lock, flags);
1444 --ctx->pin_count;
1445 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1446 }
1447
1448 /*
1449 * Update the record of the current time in a context.
1450 */
__update_context_time(struct perf_event_context * ctx,bool adv)1451 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1452 {
1453 u64 now = perf_clock();
1454
1455 lockdep_assert_held(&ctx->lock);
1456
1457 if (adv)
1458 ctx->time += now - ctx->timestamp;
1459 ctx->timestamp = now;
1460
1461 /*
1462 * The above: time' = time + (now - timestamp), can be re-arranged
1463 * into: time` = now + (time - timestamp), which gives a single value
1464 * offset to compute future time without locks on.
1465 *
1466 * See perf_event_time_now(), which can be used from NMI context where
1467 * it's (obviously) not possible to acquire ctx->lock in order to read
1468 * both the above values in a consistent manner.
1469 */
1470 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1471 }
1472
update_context_time(struct perf_event_context * ctx)1473 static void update_context_time(struct perf_event_context *ctx)
1474 {
1475 __update_context_time(ctx, true);
1476 }
1477
perf_event_time(struct perf_event * event)1478 static u64 perf_event_time(struct perf_event *event)
1479 {
1480 struct perf_event_context *ctx = event->ctx;
1481
1482 if (unlikely(!ctx))
1483 return 0;
1484
1485 if (is_cgroup_event(event))
1486 return perf_cgroup_event_time(event);
1487
1488 return ctx->time;
1489 }
1490
perf_event_time_now(struct perf_event * event,u64 now)1491 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1492 {
1493 struct perf_event_context *ctx = event->ctx;
1494
1495 if (unlikely(!ctx))
1496 return 0;
1497
1498 if (is_cgroup_event(event))
1499 return perf_cgroup_event_time_now(event, now);
1500
1501 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1502 return ctx->time;
1503
1504 now += READ_ONCE(ctx->timeoffset);
1505 return now;
1506 }
1507
get_event_type(struct perf_event * event)1508 static enum event_type_t get_event_type(struct perf_event *event)
1509 {
1510 struct perf_event_context *ctx = event->ctx;
1511 enum event_type_t event_type;
1512
1513 lockdep_assert_held(&ctx->lock);
1514
1515 /*
1516 * It's 'group type', really, because if our group leader is
1517 * pinned, so are we.
1518 */
1519 if (event->group_leader != event)
1520 event = event->group_leader;
1521
1522 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1523 if (!ctx->task)
1524 event_type |= EVENT_CPU;
1525
1526 return event_type;
1527 }
1528
1529 /*
1530 * Helper function to initialize event group nodes.
1531 */
init_event_group(struct perf_event * event)1532 static void init_event_group(struct perf_event *event)
1533 {
1534 RB_CLEAR_NODE(&event->group_node);
1535 event->group_index = 0;
1536 }
1537
1538 /*
1539 * Extract pinned or flexible groups from the context
1540 * based on event attrs bits.
1541 */
1542 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1544 {
1545 if (event->attr.pinned)
1546 return &ctx->pinned_groups;
1547 else
1548 return &ctx->flexible_groups;
1549 }
1550
1551 /*
1552 * Helper function to initializes perf_event_group trees.
1553 */
perf_event_groups_init(struct perf_event_groups * groups)1554 static void perf_event_groups_init(struct perf_event_groups *groups)
1555 {
1556 groups->tree = RB_ROOT;
1557 groups->index = 0;
1558 }
1559
event_cgroup(const struct perf_event * event)1560 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1561 {
1562 struct cgroup *cgroup = NULL;
1563
1564 #ifdef CONFIG_CGROUP_PERF
1565 if (event->cgrp)
1566 cgroup = event->cgrp->css.cgroup;
1567 #endif
1568
1569 return cgroup;
1570 }
1571
1572 /*
1573 * Compare function for event groups;
1574 *
1575 * Implements complex key that first sorts by CPU and then by virtual index
1576 * which provides ordering when rotating groups for the same CPU.
1577 */
1578 static __always_inline int
perf_event_groups_cmp(const int left_cpu,const struct pmu * left_pmu,const struct cgroup * left_cgroup,const u64 left_group_index,const struct perf_event * right)1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1580 const struct cgroup *left_cgroup, const u64 left_group_index,
1581 const struct perf_event *right)
1582 {
1583 if (left_cpu < right->cpu)
1584 return -1;
1585 if (left_cpu > right->cpu)
1586 return 1;
1587
1588 if (left_pmu) {
1589 if (left_pmu < right->pmu_ctx->pmu)
1590 return -1;
1591 if (left_pmu > right->pmu_ctx->pmu)
1592 return 1;
1593 }
1594
1595 #ifdef CONFIG_CGROUP_PERF
1596 {
1597 const struct cgroup *right_cgroup = event_cgroup(right);
1598
1599 if (left_cgroup != right_cgroup) {
1600 if (!left_cgroup) {
1601 /*
1602 * Left has no cgroup but right does, no
1603 * cgroups come first.
1604 */
1605 return -1;
1606 }
1607 if (!right_cgroup) {
1608 /*
1609 * Right has no cgroup but left does, no
1610 * cgroups come first.
1611 */
1612 return 1;
1613 }
1614 /* Two dissimilar cgroups, order by id. */
1615 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1616 return -1;
1617
1618 return 1;
1619 }
1620 }
1621 #endif
1622
1623 if (left_group_index < right->group_index)
1624 return -1;
1625 if (left_group_index > right->group_index)
1626 return 1;
1627
1628 return 0;
1629 }
1630
1631 #define __node_2_pe(node) \
1632 rb_entry((node), struct perf_event, group_node)
1633
__group_less(struct rb_node * a,const struct rb_node * b)1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1635 {
1636 struct perf_event *e = __node_2_pe(a);
1637 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1638 e->group_index, __node_2_pe(b)) < 0;
1639 }
1640
1641 struct __group_key {
1642 int cpu;
1643 struct pmu *pmu;
1644 struct cgroup *cgroup;
1645 };
1646
__group_cmp(const void * key,const struct rb_node * node)1647 static inline int __group_cmp(const void *key, const struct rb_node *node)
1648 {
1649 const struct __group_key *a = key;
1650 const struct perf_event *b = __node_2_pe(node);
1651
1652 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1653 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1654 }
1655
1656 static inline int
__group_cmp_ignore_cgroup(const void * key,const struct rb_node * node)1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1658 {
1659 const struct __group_key *a = key;
1660 const struct perf_event *b = __node_2_pe(node);
1661
1662 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1663 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1664 b->group_index, b);
1665 }
1666
1667 /*
1668 * Insert @event into @groups' tree; using
1669 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1670 * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1671 */
1672 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1673 perf_event_groups_insert(struct perf_event_groups *groups,
1674 struct perf_event *event)
1675 {
1676 event->group_index = ++groups->index;
1677
1678 rb_add(&event->group_node, &groups->tree, __group_less);
1679 }
1680
1681 /*
1682 * Helper function to insert event into the pinned or flexible groups.
1683 */
1684 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1686 {
1687 struct perf_event_groups *groups;
1688
1689 groups = get_event_groups(event, ctx);
1690 perf_event_groups_insert(groups, event);
1691 }
1692
1693 /*
1694 * Delete a group from a tree.
1695 */
1696 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1697 perf_event_groups_delete(struct perf_event_groups *groups,
1698 struct perf_event *event)
1699 {
1700 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1701 RB_EMPTY_ROOT(&groups->tree));
1702
1703 rb_erase(&event->group_node, &groups->tree);
1704 init_event_group(event);
1705 }
1706
1707 /*
1708 * Helper function to delete event from its groups.
1709 */
1710 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1712 {
1713 struct perf_event_groups *groups;
1714
1715 groups = get_event_groups(event, ctx);
1716 perf_event_groups_delete(groups, event);
1717 }
1718
1719 /*
1720 * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1721 */
1722 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu,struct pmu * pmu,struct cgroup * cgrp)1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1724 struct pmu *pmu, struct cgroup *cgrp)
1725 {
1726 struct __group_key key = {
1727 .cpu = cpu,
1728 .pmu = pmu,
1729 .cgroup = cgrp,
1730 };
1731 struct rb_node *node;
1732
1733 node = rb_find_first(&key, &groups->tree, __group_cmp);
1734 if (node)
1735 return __node_2_pe(node);
1736
1737 return NULL;
1738 }
1739
1740 static struct perf_event *
perf_event_groups_next(struct perf_event * event,struct pmu * pmu)1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1742 {
1743 struct __group_key key = {
1744 .cpu = event->cpu,
1745 .pmu = pmu,
1746 .cgroup = event_cgroup(event),
1747 };
1748 struct rb_node *next;
1749
1750 next = rb_next_match(&key, &event->group_node, __group_cmp);
1751 if (next)
1752 return __node_2_pe(next);
1753
1754 return NULL;
1755 }
1756
1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \
1758 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \
1759 event; event = perf_event_groups_next(event, pmu))
1760
1761 /*
1762 * Iterate through the whole groups tree.
1763 */
1764 #define perf_event_groups_for_each(event, groups) \
1765 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1766 typeof(*event), group_node); event; \
1767 event = rb_entry_safe(rb_next(&event->group_node), \
1768 typeof(*event), group_node))
1769
1770 /*
1771 * Add an event from the lists for its context.
1772 * Must be called with ctx->mutex and ctx->lock held.
1773 */
1774 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1776 {
1777 lockdep_assert_held(&ctx->lock);
1778
1779 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1780 event->attach_state |= PERF_ATTACH_CONTEXT;
1781
1782 event->tstamp = perf_event_time(event);
1783
1784 /*
1785 * If we're a stand alone event or group leader, we go to the context
1786 * list, group events are kept attached to the group so that
1787 * perf_group_detach can, at all times, locate all siblings.
1788 */
1789 if (event->group_leader == event) {
1790 event->group_caps = event->event_caps;
1791 add_event_to_groups(event, ctx);
1792 }
1793
1794 list_add_rcu(&event->event_entry, &ctx->event_list);
1795 ctx->nr_events++;
1796 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1797 ctx->nr_user++;
1798 if (event->attr.inherit_stat)
1799 ctx->nr_stat++;
1800
1801 if (event->state > PERF_EVENT_STATE_OFF)
1802 perf_cgroup_event_enable(event, ctx);
1803
1804 ctx->generation++;
1805 event->pmu_ctx->nr_events++;
1806 }
1807
1808 /*
1809 * Initialize event state based on the perf_event_attr::disabled.
1810 */
perf_event__state_init(struct perf_event * event)1811 static inline void perf_event__state_init(struct perf_event *event)
1812 {
1813 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1814 PERF_EVENT_STATE_INACTIVE;
1815 }
1816
__perf_event_read_size(u64 read_format,int nr_siblings)1817 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1818 {
1819 int entry = sizeof(u64); /* value */
1820 int size = 0;
1821 int nr = 1;
1822
1823 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1824 size += sizeof(u64);
1825
1826 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1827 size += sizeof(u64);
1828
1829 if (read_format & PERF_FORMAT_ID)
1830 entry += sizeof(u64);
1831
1832 if (read_format & PERF_FORMAT_LOST)
1833 entry += sizeof(u64);
1834
1835 if (read_format & PERF_FORMAT_GROUP) {
1836 nr += nr_siblings;
1837 size += sizeof(u64);
1838 }
1839
1840 /*
1841 * Since perf_event_validate_size() limits this to 16k and inhibits
1842 * adding more siblings, this will never overflow.
1843 */
1844 return size + nr * entry;
1845 }
1846
__perf_event_header_size(struct perf_event * event,u64 sample_type)1847 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1848 {
1849 struct perf_sample_data *data;
1850 u16 size = 0;
1851
1852 if (sample_type & PERF_SAMPLE_IP)
1853 size += sizeof(data->ip);
1854
1855 if (sample_type & PERF_SAMPLE_ADDR)
1856 size += sizeof(data->addr);
1857
1858 if (sample_type & PERF_SAMPLE_PERIOD)
1859 size += sizeof(data->period);
1860
1861 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1862 size += sizeof(data->weight.full);
1863
1864 if (sample_type & PERF_SAMPLE_READ)
1865 size += event->read_size;
1866
1867 if (sample_type & PERF_SAMPLE_DATA_SRC)
1868 size += sizeof(data->data_src.val);
1869
1870 if (sample_type & PERF_SAMPLE_TRANSACTION)
1871 size += sizeof(data->txn);
1872
1873 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1874 size += sizeof(data->phys_addr);
1875
1876 if (sample_type & PERF_SAMPLE_CGROUP)
1877 size += sizeof(data->cgroup);
1878
1879 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1880 size += sizeof(data->data_page_size);
1881
1882 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1883 size += sizeof(data->code_page_size);
1884
1885 event->header_size = size;
1886 }
1887
1888 /*
1889 * Called at perf_event creation and when events are attached/detached from a
1890 * group.
1891 */
perf_event__header_size(struct perf_event * event)1892 static void perf_event__header_size(struct perf_event *event)
1893 {
1894 event->read_size =
1895 __perf_event_read_size(event->attr.read_format,
1896 event->group_leader->nr_siblings);
1897 __perf_event_header_size(event, event->attr.sample_type);
1898 }
1899
perf_event__id_header_size(struct perf_event * event)1900 static void perf_event__id_header_size(struct perf_event *event)
1901 {
1902 struct perf_sample_data *data;
1903 u64 sample_type = event->attr.sample_type;
1904 u16 size = 0;
1905
1906 if (sample_type & PERF_SAMPLE_TID)
1907 size += sizeof(data->tid_entry);
1908
1909 if (sample_type & PERF_SAMPLE_TIME)
1910 size += sizeof(data->time);
1911
1912 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1913 size += sizeof(data->id);
1914
1915 if (sample_type & PERF_SAMPLE_ID)
1916 size += sizeof(data->id);
1917
1918 if (sample_type & PERF_SAMPLE_STREAM_ID)
1919 size += sizeof(data->stream_id);
1920
1921 if (sample_type & PERF_SAMPLE_CPU)
1922 size += sizeof(data->cpu_entry);
1923
1924 event->id_header_size = size;
1925 }
1926
1927 /*
1928 * Check that adding an event to the group does not result in anybody
1929 * overflowing the 64k event limit imposed by the output buffer.
1930 *
1931 * Specifically, check that the read_size for the event does not exceed 16k,
1932 * read_size being the one term that grows with groups size. Since read_size
1933 * depends on per-event read_format, also (re)check the existing events.
1934 *
1935 * This leaves 48k for the constant size fields and things like callchains,
1936 * branch stacks and register sets.
1937 */
perf_event_validate_size(struct perf_event * event)1938 static bool perf_event_validate_size(struct perf_event *event)
1939 {
1940 struct perf_event *sibling, *group_leader = event->group_leader;
1941
1942 if (__perf_event_read_size(event->attr.read_format,
1943 group_leader->nr_siblings + 1) > 16*1024)
1944 return false;
1945
1946 if (__perf_event_read_size(group_leader->attr.read_format,
1947 group_leader->nr_siblings + 1) > 16*1024)
1948 return false;
1949
1950 /*
1951 * When creating a new group leader, group_leader->ctx is initialized
1952 * after the size has been validated, but we cannot safely use
1953 * for_each_sibling_event() until group_leader->ctx is set. A new group
1954 * leader cannot have any siblings yet, so we can safely skip checking
1955 * the non-existent siblings.
1956 */
1957 if (event == group_leader)
1958 return true;
1959
1960 for_each_sibling_event(sibling, group_leader) {
1961 if (__perf_event_read_size(sibling->attr.read_format,
1962 group_leader->nr_siblings + 1) > 16*1024)
1963 return false;
1964 }
1965
1966 return true;
1967 }
1968
perf_group_attach(struct perf_event * event)1969 static void perf_group_attach(struct perf_event *event)
1970 {
1971 struct perf_event *group_leader = event->group_leader, *pos;
1972
1973 lockdep_assert_held(&event->ctx->lock);
1974
1975 /*
1976 * We can have double attach due to group movement (move_group) in
1977 * perf_event_open().
1978 */
1979 if (event->attach_state & PERF_ATTACH_GROUP)
1980 return;
1981
1982 event->attach_state |= PERF_ATTACH_GROUP;
1983
1984 if (group_leader == event)
1985 return;
1986
1987 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1988
1989 group_leader->group_caps &= event->event_caps;
1990
1991 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1992 group_leader->nr_siblings++;
1993 group_leader->group_generation++;
1994
1995 perf_event__header_size(group_leader);
1996
1997 for_each_sibling_event(pos, group_leader)
1998 perf_event__header_size(pos);
1999 }
2000
2001 /*
2002 * Remove an event from the lists for its context.
2003 * Must be called with ctx->mutex and ctx->lock held.
2004 */
2005 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)2006 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2007 {
2008 WARN_ON_ONCE(event->ctx != ctx);
2009 lockdep_assert_held(&ctx->lock);
2010
2011 /*
2012 * We can have double detach due to exit/hot-unplug + close.
2013 */
2014 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2015 return;
2016
2017 event->attach_state &= ~PERF_ATTACH_CONTEXT;
2018
2019 ctx->nr_events--;
2020 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2021 ctx->nr_user--;
2022 if (event->attr.inherit_stat)
2023 ctx->nr_stat--;
2024
2025 list_del_rcu(&event->event_entry);
2026
2027 if (event->group_leader == event)
2028 del_event_from_groups(event, ctx);
2029
2030 /*
2031 * If event was in error state, then keep it
2032 * that way, otherwise bogus counts will be
2033 * returned on read(). The only way to get out
2034 * of error state is by explicit re-enabling
2035 * of the event
2036 */
2037 if (event->state > PERF_EVENT_STATE_OFF) {
2038 perf_cgroup_event_disable(event, ctx);
2039 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2040 }
2041
2042 ctx->generation++;
2043 event->pmu_ctx->nr_events--;
2044 }
2045
2046 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)2047 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2048 {
2049 if (!has_aux(aux_event))
2050 return 0;
2051
2052 if (!event->pmu->aux_output_match)
2053 return 0;
2054
2055 return event->pmu->aux_output_match(aux_event);
2056 }
2057
2058 static void put_event(struct perf_event *event);
2059 static void event_sched_out(struct perf_event *event,
2060 struct perf_event_context *ctx);
2061
perf_put_aux_event(struct perf_event * event)2062 static void perf_put_aux_event(struct perf_event *event)
2063 {
2064 struct perf_event_context *ctx = event->ctx;
2065 struct perf_event *iter;
2066
2067 /*
2068 * If event uses aux_event tear down the link
2069 */
2070 if (event->aux_event) {
2071 iter = event->aux_event;
2072 event->aux_event = NULL;
2073 put_event(iter);
2074 return;
2075 }
2076
2077 /*
2078 * If the event is an aux_event, tear down all links to
2079 * it from other events.
2080 */
2081 for_each_sibling_event(iter, event->group_leader) {
2082 if (iter->aux_event != event)
2083 continue;
2084
2085 iter->aux_event = NULL;
2086 put_event(event);
2087
2088 /*
2089 * If it's ACTIVE, schedule it out and put it into ERROR
2090 * state so that we don't try to schedule it again. Note
2091 * that perf_event_enable() will clear the ERROR status.
2092 */
2093 event_sched_out(iter, ctx);
2094 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2095 }
2096 }
2097
perf_need_aux_event(struct perf_event * event)2098 static bool perf_need_aux_event(struct perf_event *event)
2099 {
2100 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2101 }
2102
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)2103 static int perf_get_aux_event(struct perf_event *event,
2104 struct perf_event *group_leader)
2105 {
2106 /*
2107 * Our group leader must be an aux event if we want to be
2108 * an aux_output. This way, the aux event will precede its
2109 * aux_output events in the group, and therefore will always
2110 * schedule first.
2111 */
2112 if (!group_leader)
2113 return 0;
2114
2115 /*
2116 * aux_output and aux_sample_size are mutually exclusive.
2117 */
2118 if (event->attr.aux_output && event->attr.aux_sample_size)
2119 return 0;
2120
2121 if (event->attr.aux_output &&
2122 !perf_aux_output_match(event, group_leader))
2123 return 0;
2124
2125 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2126 return 0;
2127
2128 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2129 return 0;
2130
2131 /*
2132 * Link aux_outputs to their aux event; this is undone in
2133 * perf_group_detach() by perf_put_aux_event(). When the
2134 * group in torn down, the aux_output events loose their
2135 * link to the aux_event and can't schedule any more.
2136 */
2137 event->aux_event = group_leader;
2138
2139 return 1;
2140 }
2141
get_event_list(struct perf_event * event)2142 static inline struct list_head *get_event_list(struct perf_event *event)
2143 {
2144 return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2145 &event->pmu_ctx->flexible_active;
2146 }
2147
2148 /*
2149 * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2150 * cannot exist on their own, schedule them out and move them into the ERROR
2151 * state. Also see _perf_event_enable(), it will not be able to recover
2152 * this ERROR state.
2153 */
perf_remove_sibling_event(struct perf_event * event)2154 static inline void perf_remove_sibling_event(struct perf_event *event)
2155 {
2156 event_sched_out(event, event->ctx);
2157 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2158 }
2159
perf_group_detach(struct perf_event * event)2160 static void perf_group_detach(struct perf_event *event)
2161 {
2162 struct perf_event *leader = event->group_leader;
2163 struct perf_event *sibling, *tmp;
2164 struct perf_event_context *ctx = event->ctx;
2165
2166 lockdep_assert_held(&ctx->lock);
2167
2168 /*
2169 * We can have double detach due to exit/hot-unplug + close.
2170 */
2171 if (!(event->attach_state & PERF_ATTACH_GROUP))
2172 return;
2173
2174 event->attach_state &= ~PERF_ATTACH_GROUP;
2175
2176 perf_put_aux_event(event);
2177
2178 /*
2179 * If this is a sibling, remove it from its group.
2180 */
2181 if (leader != event) {
2182 list_del_init(&event->sibling_list);
2183 event->group_leader->nr_siblings--;
2184 event->group_leader->group_generation++;
2185 goto out;
2186 }
2187
2188 /*
2189 * If this was a group event with sibling events then
2190 * upgrade the siblings to singleton events by adding them
2191 * to whatever list we are on.
2192 */
2193 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2194
2195 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2196 perf_remove_sibling_event(sibling);
2197
2198 sibling->group_leader = sibling;
2199 list_del_init(&sibling->sibling_list);
2200
2201 /* Inherit group flags from the previous leader */
2202 sibling->group_caps = event->group_caps;
2203
2204 if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2205 add_event_to_groups(sibling, event->ctx);
2206
2207 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2208 list_add_tail(&sibling->active_list, get_event_list(sibling));
2209 }
2210
2211 WARN_ON_ONCE(sibling->ctx != event->ctx);
2212 }
2213
2214 out:
2215 for_each_sibling_event(tmp, leader)
2216 perf_event__header_size(tmp);
2217
2218 perf_event__header_size(leader);
2219 }
2220
2221 static void sync_child_event(struct perf_event *child_event);
2222
perf_child_detach(struct perf_event * event)2223 static void perf_child_detach(struct perf_event *event)
2224 {
2225 struct perf_event *parent_event = event->parent;
2226
2227 if (!(event->attach_state & PERF_ATTACH_CHILD))
2228 return;
2229
2230 event->attach_state &= ~PERF_ATTACH_CHILD;
2231
2232 if (WARN_ON_ONCE(!parent_event))
2233 return;
2234
2235 lockdep_assert_held(&parent_event->child_mutex);
2236
2237 sync_child_event(event);
2238 list_del_init(&event->child_list);
2239 }
2240
is_orphaned_event(struct perf_event * event)2241 static bool is_orphaned_event(struct perf_event *event)
2242 {
2243 return event->state == PERF_EVENT_STATE_DEAD;
2244 }
2245
2246 static inline int
event_filter_match(struct perf_event * event)2247 event_filter_match(struct perf_event *event)
2248 {
2249 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2250 perf_cgroup_match(event);
2251 }
2252
2253 static void
event_sched_out(struct perf_event * event,struct perf_event_context * ctx)2254 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2255 {
2256 struct perf_event_pmu_context *epc = event->pmu_ctx;
2257 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2258 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2259
2260 // XXX cpc serialization, probably per-cpu IRQ disabled
2261
2262 WARN_ON_ONCE(event->ctx != ctx);
2263 lockdep_assert_held(&ctx->lock);
2264
2265 if (event->state != PERF_EVENT_STATE_ACTIVE)
2266 return;
2267
2268 /*
2269 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2270 * we can schedule events _OUT_ individually through things like
2271 * __perf_remove_from_context().
2272 */
2273 list_del_init(&event->active_list);
2274
2275 perf_pmu_disable(event->pmu);
2276
2277 event->pmu->del(event, 0);
2278 event->oncpu = -1;
2279
2280 if (event->pending_disable) {
2281 event->pending_disable = 0;
2282 perf_cgroup_event_disable(event, ctx);
2283 state = PERF_EVENT_STATE_OFF;
2284 }
2285
2286 if (event->pending_sigtrap) {
2287 event->pending_sigtrap = 0;
2288 if (state != PERF_EVENT_STATE_OFF &&
2289 !event->pending_work &&
2290 !task_work_add(current, &event->pending_task, TWA_RESUME)) {
2291 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
2292 event->pending_work = 1;
2293 } else {
2294 local_dec(&event->ctx->nr_pending);
2295 }
2296 }
2297
2298 perf_event_set_state(event, state);
2299
2300 if (!is_software_event(event))
2301 cpc->active_oncpu--;
2302 if (event->attr.freq && event->attr.sample_freq)
2303 ctx->nr_freq--;
2304 if (event->attr.exclusive || !cpc->active_oncpu)
2305 cpc->exclusive = 0;
2306
2307 perf_pmu_enable(event->pmu);
2308 }
2309
2310 static void
group_sched_out(struct perf_event * group_event,struct perf_event_context * ctx)2311 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2312 {
2313 struct perf_event *event;
2314
2315 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2316 return;
2317
2318 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2319
2320 event_sched_out(group_event, ctx);
2321
2322 /*
2323 * Schedule out siblings (if any):
2324 */
2325 for_each_sibling_event(event, group_event)
2326 event_sched_out(event, ctx);
2327 }
2328
2329 #define DETACH_GROUP 0x01UL
2330 #define DETACH_CHILD 0x02UL
2331 #define DETACH_DEAD 0x04UL
2332
2333 /*
2334 * Cross CPU call to remove a performance event
2335 *
2336 * We disable the event on the hardware level first. After that we
2337 * remove it from the context list.
2338 */
2339 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2340 __perf_remove_from_context(struct perf_event *event,
2341 struct perf_cpu_context *cpuctx,
2342 struct perf_event_context *ctx,
2343 void *info)
2344 {
2345 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2346 unsigned long flags = (unsigned long)info;
2347
2348 if (ctx->is_active & EVENT_TIME) {
2349 update_context_time(ctx);
2350 update_cgrp_time_from_cpuctx(cpuctx, false);
2351 }
2352
2353 /*
2354 * Ensure event_sched_out() switches to OFF, at the very least
2355 * this avoids raising perf_pending_task() at this time.
2356 */
2357 if (flags & DETACH_DEAD)
2358 event->pending_disable = 1;
2359 event_sched_out(event, ctx);
2360 if (flags & DETACH_GROUP)
2361 perf_group_detach(event);
2362 if (flags & DETACH_CHILD)
2363 perf_child_detach(event);
2364 list_del_event(event, ctx);
2365 if (flags & DETACH_DEAD)
2366 event->state = PERF_EVENT_STATE_DEAD;
2367
2368 if (!pmu_ctx->nr_events) {
2369 pmu_ctx->rotate_necessary = 0;
2370
2371 if (ctx->task && ctx->is_active) {
2372 struct perf_cpu_pmu_context *cpc;
2373
2374 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2375 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2376 cpc->task_epc = NULL;
2377 }
2378 }
2379
2380 if (!ctx->nr_events && ctx->is_active) {
2381 if (ctx == &cpuctx->ctx)
2382 update_cgrp_time_from_cpuctx(cpuctx, true);
2383
2384 ctx->is_active = 0;
2385 if (ctx->task) {
2386 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2387 cpuctx->task_ctx = NULL;
2388 }
2389 }
2390 }
2391
2392 /*
2393 * Remove the event from a task's (or a CPU's) list of events.
2394 *
2395 * If event->ctx is a cloned context, callers must make sure that
2396 * every task struct that event->ctx->task could possibly point to
2397 * remains valid. This is OK when called from perf_release since
2398 * that only calls us on the top-level context, which can't be a clone.
2399 * When called from perf_event_exit_task, it's OK because the
2400 * context has been detached from its task.
2401 */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2402 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2403 {
2404 struct perf_event_context *ctx = event->ctx;
2405
2406 lockdep_assert_held(&ctx->mutex);
2407
2408 /*
2409 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2410 * to work in the face of TASK_TOMBSTONE, unlike every other
2411 * event_function_call() user.
2412 */
2413 raw_spin_lock_irq(&ctx->lock);
2414 if (!ctx->is_active) {
2415 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2416 ctx, (void *)flags);
2417 raw_spin_unlock_irq(&ctx->lock);
2418 return;
2419 }
2420 raw_spin_unlock_irq(&ctx->lock);
2421
2422 event_function_call(event, __perf_remove_from_context, (void *)flags);
2423 }
2424
2425 /*
2426 * Cross CPU call to disable a performance event
2427 */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2428 static void __perf_event_disable(struct perf_event *event,
2429 struct perf_cpu_context *cpuctx,
2430 struct perf_event_context *ctx,
2431 void *info)
2432 {
2433 if (event->state < PERF_EVENT_STATE_INACTIVE)
2434 return;
2435
2436 if (ctx->is_active & EVENT_TIME) {
2437 update_context_time(ctx);
2438 update_cgrp_time_from_event(event);
2439 }
2440
2441 perf_pmu_disable(event->pmu_ctx->pmu);
2442
2443 if (event == event->group_leader)
2444 group_sched_out(event, ctx);
2445 else
2446 event_sched_out(event, ctx);
2447
2448 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2449 perf_cgroup_event_disable(event, ctx);
2450
2451 perf_pmu_enable(event->pmu_ctx->pmu);
2452 }
2453
2454 /*
2455 * Disable an event.
2456 *
2457 * If event->ctx is a cloned context, callers must make sure that
2458 * every task struct that event->ctx->task could possibly point to
2459 * remains valid. This condition is satisfied when called through
2460 * perf_event_for_each_child or perf_event_for_each because they
2461 * hold the top-level event's child_mutex, so any descendant that
2462 * goes to exit will block in perf_event_exit_event().
2463 *
2464 * When called from perf_pending_irq it's OK because event->ctx
2465 * is the current context on this CPU and preemption is disabled,
2466 * hence we can't get into perf_event_task_sched_out for this context.
2467 */
_perf_event_disable(struct perf_event * event)2468 static void _perf_event_disable(struct perf_event *event)
2469 {
2470 struct perf_event_context *ctx = event->ctx;
2471
2472 raw_spin_lock_irq(&ctx->lock);
2473 if (event->state <= PERF_EVENT_STATE_OFF) {
2474 raw_spin_unlock_irq(&ctx->lock);
2475 return;
2476 }
2477 raw_spin_unlock_irq(&ctx->lock);
2478
2479 event_function_call(event, __perf_event_disable, NULL);
2480 }
2481
perf_event_disable_local(struct perf_event * event)2482 void perf_event_disable_local(struct perf_event *event)
2483 {
2484 event_function_local(event, __perf_event_disable, NULL);
2485 }
2486
2487 /*
2488 * Strictly speaking kernel users cannot create groups and therefore this
2489 * interface does not need the perf_event_ctx_lock() magic.
2490 */
perf_event_disable(struct perf_event * event)2491 void perf_event_disable(struct perf_event *event)
2492 {
2493 struct perf_event_context *ctx;
2494
2495 ctx = perf_event_ctx_lock(event);
2496 _perf_event_disable(event);
2497 perf_event_ctx_unlock(event, ctx);
2498 }
2499 EXPORT_SYMBOL_GPL(perf_event_disable);
2500
perf_event_disable_inatomic(struct perf_event * event)2501 void perf_event_disable_inatomic(struct perf_event *event)
2502 {
2503 event->pending_disable = 1;
2504 irq_work_queue(&event->pending_irq);
2505 }
2506
2507 #define MAX_INTERRUPTS (~0ULL)
2508
2509 static void perf_log_throttle(struct perf_event *event, int enable);
2510 static void perf_log_itrace_start(struct perf_event *event);
2511
2512 static int
event_sched_in(struct perf_event * event,struct perf_event_context * ctx)2513 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2514 {
2515 struct perf_event_pmu_context *epc = event->pmu_ctx;
2516 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2517 int ret = 0;
2518
2519 WARN_ON_ONCE(event->ctx != ctx);
2520
2521 lockdep_assert_held(&ctx->lock);
2522
2523 if (event->state <= PERF_EVENT_STATE_OFF)
2524 return 0;
2525
2526 WRITE_ONCE(event->oncpu, smp_processor_id());
2527 /*
2528 * Order event::oncpu write to happen before the ACTIVE state is
2529 * visible. This allows perf_event_{stop,read}() to observe the correct
2530 * ->oncpu if it sees ACTIVE.
2531 */
2532 smp_wmb();
2533 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2534
2535 /*
2536 * Unthrottle events, since we scheduled we might have missed several
2537 * ticks already, also for a heavily scheduling task there is little
2538 * guarantee it'll get a tick in a timely manner.
2539 */
2540 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2541 perf_log_throttle(event, 1);
2542 event->hw.interrupts = 0;
2543 }
2544
2545 perf_pmu_disable(event->pmu);
2546
2547 perf_log_itrace_start(event);
2548
2549 if (event->pmu->add(event, PERF_EF_START)) {
2550 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2551 event->oncpu = -1;
2552 ret = -EAGAIN;
2553 goto out;
2554 }
2555
2556 if (!is_software_event(event))
2557 cpc->active_oncpu++;
2558 if (event->attr.freq && event->attr.sample_freq)
2559 ctx->nr_freq++;
2560
2561 if (event->attr.exclusive)
2562 cpc->exclusive = 1;
2563
2564 out:
2565 perf_pmu_enable(event->pmu);
2566
2567 return ret;
2568 }
2569
2570 static int
group_sched_in(struct perf_event * group_event,struct perf_event_context * ctx)2571 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2572 {
2573 struct perf_event *event, *partial_group = NULL;
2574 struct pmu *pmu = group_event->pmu_ctx->pmu;
2575
2576 if (group_event->state == PERF_EVENT_STATE_OFF)
2577 return 0;
2578
2579 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2580
2581 if (event_sched_in(group_event, ctx))
2582 goto error;
2583
2584 /*
2585 * Schedule in siblings as one group (if any):
2586 */
2587 for_each_sibling_event(event, group_event) {
2588 if (event_sched_in(event, ctx)) {
2589 partial_group = event;
2590 goto group_error;
2591 }
2592 }
2593
2594 if (!pmu->commit_txn(pmu))
2595 return 0;
2596
2597 group_error:
2598 /*
2599 * Groups can be scheduled in as one unit only, so undo any
2600 * partial group before returning:
2601 * The events up to the failed event are scheduled out normally.
2602 */
2603 for_each_sibling_event(event, group_event) {
2604 if (event == partial_group)
2605 break;
2606
2607 event_sched_out(event, ctx);
2608 }
2609 event_sched_out(group_event, ctx);
2610
2611 error:
2612 pmu->cancel_txn(pmu);
2613 return -EAGAIN;
2614 }
2615
2616 /*
2617 * Work out whether we can put this event group on the CPU now.
2618 */
group_can_go_on(struct perf_event * event,int can_add_hw)2619 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2620 {
2621 struct perf_event_pmu_context *epc = event->pmu_ctx;
2622 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2623
2624 /*
2625 * Groups consisting entirely of software events can always go on.
2626 */
2627 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2628 return 1;
2629 /*
2630 * If an exclusive group is already on, no other hardware
2631 * events can go on.
2632 */
2633 if (cpc->exclusive)
2634 return 0;
2635 /*
2636 * If this group is exclusive and there are already
2637 * events on the CPU, it can't go on.
2638 */
2639 if (event->attr.exclusive && !list_empty(get_event_list(event)))
2640 return 0;
2641 /*
2642 * Otherwise, try to add it if all previous groups were able
2643 * to go on.
2644 */
2645 return can_add_hw;
2646 }
2647
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2648 static void add_event_to_ctx(struct perf_event *event,
2649 struct perf_event_context *ctx)
2650 {
2651 list_add_event(event, ctx);
2652 perf_group_attach(event);
2653 }
2654
task_ctx_sched_out(struct perf_event_context * ctx,enum event_type_t event_type)2655 static void task_ctx_sched_out(struct perf_event_context *ctx,
2656 enum event_type_t event_type)
2657 {
2658 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2659
2660 if (!cpuctx->task_ctx)
2661 return;
2662
2663 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2664 return;
2665
2666 ctx_sched_out(ctx, event_type);
2667 }
2668
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2669 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2670 struct perf_event_context *ctx)
2671 {
2672 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2673 if (ctx)
2674 ctx_sched_in(ctx, EVENT_PINNED);
2675 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2676 if (ctx)
2677 ctx_sched_in(ctx, EVENT_FLEXIBLE);
2678 }
2679
2680 /*
2681 * We want to maintain the following priority of scheduling:
2682 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2683 * - task pinned (EVENT_PINNED)
2684 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2685 * - task flexible (EVENT_FLEXIBLE).
2686 *
2687 * In order to avoid unscheduling and scheduling back in everything every
2688 * time an event is added, only do it for the groups of equal priority and
2689 * below.
2690 *
2691 * This can be called after a batch operation on task events, in which case
2692 * event_type is a bit mask of the types of events involved. For CPU events,
2693 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2694 */
2695 /*
2696 * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2697 * event to the context or enabling existing event in the context. We can
2698 * probably optimize it by rescheduling only affected pmu_ctx.
2699 */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,enum event_type_t event_type)2700 static void ctx_resched(struct perf_cpu_context *cpuctx,
2701 struct perf_event_context *task_ctx,
2702 enum event_type_t event_type)
2703 {
2704 bool cpu_event = !!(event_type & EVENT_CPU);
2705
2706 /*
2707 * If pinned groups are involved, flexible groups also need to be
2708 * scheduled out.
2709 */
2710 if (event_type & EVENT_PINNED)
2711 event_type |= EVENT_FLEXIBLE;
2712
2713 event_type &= EVENT_ALL;
2714
2715 perf_ctx_disable(&cpuctx->ctx, false);
2716 if (task_ctx) {
2717 perf_ctx_disable(task_ctx, false);
2718 task_ctx_sched_out(task_ctx, event_type);
2719 }
2720
2721 /*
2722 * Decide which cpu ctx groups to schedule out based on the types
2723 * of events that caused rescheduling:
2724 * - EVENT_CPU: schedule out corresponding groups;
2725 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2726 * - otherwise, do nothing more.
2727 */
2728 if (cpu_event)
2729 ctx_sched_out(&cpuctx->ctx, event_type);
2730 else if (event_type & EVENT_PINNED)
2731 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2732
2733 perf_event_sched_in(cpuctx, task_ctx);
2734
2735 perf_ctx_enable(&cpuctx->ctx, false);
2736 if (task_ctx)
2737 perf_ctx_enable(task_ctx, false);
2738 }
2739
perf_pmu_resched(struct pmu * pmu)2740 void perf_pmu_resched(struct pmu *pmu)
2741 {
2742 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2743 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2744
2745 perf_ctx_lock(cpuctx, task_ctx);
2746 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2747 perf_ctx_unlock(cpuctx, task_ctx);
2748 }
2749
2750 /*
2751 * Cross CPU call to install and enable a performance event
2752 *
2753 * Very similar to remote_function() + event_function() but cannot assume that
2754 * things like ctx->is_active and cpuctx->task_ctx are set.
2755 */
__perf_install_in_context(void * info)2756 static int __perf_install_in_context(void *info)
2757 {
2758 struct perf_event *event = info;
2759 struct perf_event_context *ctx = event->ctx;
2760 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2761 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2762 bool reprogram = true;
2763 int ret = 0;
2764
2765 raw_spin_lock(&cpuctx->ctx.lock);
2766 if (ctx->task) {
2767 raw_spin_lock(&ctx->lock);
2768 task_ctx = ctx;
2769
2770 reprogram = (ctx->task == current);
2771
2772 /*
2773 * If the task is running, it must be running on this CPU,
2774 * otherwise we cannot reprogram things.
2775 *
2776 * If its not running, we don't care, ctx->lock will
2777 * serialize against it becoming runnable.
2778 */
2779 if (task_curr(ctx->task) && !reprogram) {
2780 ret = -ESRCH;
2781 goto unlock;
2782 }
2783
2784 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2785 } else if (task_ctx) {
2786 raw_spin_lock(&task_ctx->lock);
2787 }
2788
2789 #ifdef CONFIG_CGROUP_PERF
2790 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2791 /*
2792 * If the current cgroup doesn't match the event's
2793 * cgroup, we should not try to schedule it.
2794 */
2795 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2796 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2797 event->cgrp->css.cgroup);
2798 }
2799 #endif
2800
2801 if (reprogram) {
2802 ctx_sched_out(ctx, EVENT_TIME);
2803 add_event_to_ctx(event, ctx);
2804 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2805 } else {
2806 add_event_to_ctx(event, ctx);
2807 }
2808
2809 unlock:
2810 perf_ctx_unlock(cpuctx, task_ctx);
2811
2812 return ret;
2813 }
2814
2815 static bool exclusive_event_installable(struct perf_event *event,
2816 struct perf_event_context *ctx);
2817
2818 /*
2819 * Attach a performance event to a context.
2820 *
2821 * Very similar to event_function_call, see comment there.
2822 */
2823 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2824 perf_install_in_context(struct perf_event_context *ctx,
2825 struct perf_event *event,
2826 int cpu)
2827 {
2828 struct task_struct *task = READ_ONCE(ctx->task);
2829
2830 lockdep_assert_held(&ctx->mutex);
2831
2832 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2833
2834 if (event->cpu != -1)
2835 WARN_ON_ONCE(event->cpu != cpu);
2836
2837 /*
2838 * Ensures that if we can observe event->ctx, both the event and ctx
2839 * will be 'complete'. See perf_iterate_sb_cpu().
2840 */
2841 smp_store_release(&event->ctx, ctx);
2842
2843 /*
2844 * perf_event_attr::disabled events will not run and can be initialized
2845 * without IPI. Except when this is the first event for the context, in
2846 * that case we need the magic of the IPI to set ctx->is_active.
2847 *
2848 * The IOC_ENABLE that is sure to follow the creation of a disabled
2849 * event will issue the IPI and reprogram the hardware.
2850 */
2851 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2852 ctx->nr_events && !is_cgroup_event(event)) {
2853 raw_spin_lock_irq(&ctx->lock);
2854 if (ctx->task == TASK_TOMBSTONE) {
2855 raw_spin_unlock_irq(&ctx->lock);
2856 return;
2857 }
2858 add_event_to_ctx(event, ctx);
2859 raw_spin_unlock_irq(&ctx->lock);
2860 return;
2861 }
2862
2863 if (!task) {
2864 cpu_function_call(cpu, __perf_install_in_context, event);
2865 return;
2866 }
2867
2868 /*
2869 * Should not happen, we validate the ctx is still alive before calling.
2870 */
2871 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2872 return;
2873
2874 /*
2875 * Installing events is tricky because we cannot rely on ctx->is_active
2876 * to be set in case this is the nr_events 0 -> 1 transition.
2877 *
2878 * Instead we use task_curr(), which tells us if the task is running.
2879 * However, since we use task_curr() outside of rq::lock, we can race
2880 * against the actual state. This means the result can be wrong.
2881 *
2882 * If we get a false positive, we retry, this is harmless.
2883 *
2884 * If we get a false negative, things are complicated. If we are after
2885 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2886 * value must be correct. If we're before, it doesn't matter since
2887 * perf_event_context_sched_in() will program the counter.
2888 *
2889 * However, this hinges on the remote context switch having observed
2890 * our task->perf_event_ctxp[] store, such that it will in fact take
2891 * ctx::lock in perf_event_context_sched_in().
2892 *
2893 * We do this by task_function_call(), if the IPI fails to hit the task
2894 * we know any future context switch of task must see the
2895 * perf_event_ctpx[] store.
2896 */
2897
2898 /*
2899 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2900 * task_cpu() load, such that if the IPI then does not find the task
2901 * running, a future context switch of that task must observe the
2902 * store.
2903 */
2904 smp_mb();
2905 again:
2906 if (!task_function_call(task, __perf_install_in_context, event))
2907 return;
2908
2909 raw_spin_lock_irq(&ctx->lock);
2910 task = ctx->task;
2911 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2912 /*
2913 * Cannot happen because we already checked above (which also
2914 * cannot happen), and we hold ctx->mutex, which serializes us
2915 * against perf_event_exit_task_context().
2916 */
2917 raw_spin_unlock_irq(&ctx->lock);
2918 return;
2919 }
2920 /*
2921 * If the task is not running, ctx->lock will avoid it becoming so,
2922 * thus we can safely install the event.
2923 */
2924 if (task_curr(task)) {
2925 raw_spin_unlock_irq(&ctx->lock);
2926 goto again;
2927 }
2928 add_event_to_ctx(event, ctx);
2929 raw_spin_unlock_irq(&ctx->lock);
2930 }
2931
2932 /*
2933 * Cross CPU call to enable a performance event
2934 */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2935 static void __perf_event_enable(struct perf_event *event,
2936 struct perf_cpu_context *cpuctx,
2937 struct perf_event_context *ctx,
2938 void *info)
2939 {
2940 struct perf_event *leader = event->group_leader;
2941 struct perf_event_context *task_ctx;
2942
2943 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2944 event->state <= PERF_EVENT_STATE_ERROR)
2945 return;
2946
2947 if (ctx->is_active)
2948 ctx_sched_out(ctx, EVENT_TIME);
2949
2950 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2951 perf_cgroup_event_enable(event, ctx);
2952
2953 if (!ctx->is_active)
2954 return;
2955
2956 if (!event_filter_match(event)) {
2957 ctx_sched_in(ctx, EVENT_TIME);
2958 return;
2959 }
2960
2961 /*
2962 * If the event is in a group and isn't the group leader,
2963 * then don't put it on unless the group is on.
2964 */
2965 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2966 ctx_sched_in(ctx, EVENT_TIME);
2967 return;
2968 }
2969
2970 task_ctx = cpuctx->task_ctx;
2971 if (ctx->task)
2972 WARN_ON_ONCE(task_ctx != ctx);
2973
2974 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2975 }
2976
2977 /*
2978 * Enable an event.
2979 *
2980 * If event->ctx is a cloned context, callers must make sure that
2981 * every task struct that event->ctx->task could possibly point to
2982 * remains valid. This condition is satisfied when called through
2983 * perf_event_for_each_child or perf_event_for_each as described
2984 * for perf_event_disable.
2985 */
_perf_event_enable(struct perf_event * event)2986 static void _perf_event_enable(struct perf_event *event)
2987 {
2988 struct perf_event_context *ctx = event->ctx;
2989
2990 raw_spin_lock_irq(&ctx->lock);
2991 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2992 event->state < PERF_EVENT_STATE_ERROR) {
2993 out:
2994 raw_spin_unlock_irq(&ctx->lock);
2995 return;
2996 }
2997
2998 /*
2999 * If the event is in error state, clear that first.
3000 *
3001 * That way, if we see the event in error state below, we know that it
3002 * has gone back into error state, as distinct from the task having
3003 * been scheduled away before the cross-call arrived.
3004 */
3005 if (event->state == PERF_EVENT_STATE_ERROR) {
3006 /*
3007 * Detached SIBLING events cannot leave ERROR state.
3008 */
3009 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3010 event->group_leader == event)
3011 goto out;
3012
3013 event->state = PERF_EVENT_STATE_OFF;
3014 }
3015 raw_spin_unlock_irq(&ctx->lock);
3016
3017 event_function_call(event, __perf_event_enable, NULL);
3018 }
3019
3020 /*
3021 * See perf_event_disable();
3022 */
perf_event_enable(struct perf_event * event)3023 void perf_event_enable(struct perf_event *event)
3024 {
3025 struct perf_event_context *ctx;
3026
3027 ctx = perf_event_ctx_lock(event);
3028 _perf_event_enable(event);
3029 perf_event_ctx_unlock(event, ctx);
3030 }
3031 EXPORT_SYMBOL_GPL(perf_event_enable);
3032
3033 struct stop_event_data {
3034 struct perf_event *event;
3035 unsigned int restart;
3036 };
3037
__perf_event_stop(void * info)3038 static int __perf_event_stop(void *info)
3039 {
3040 struct stop_event_data *sd = info;
3041 struct perf_event *event = sd->event;
3042
3043 /* if it's already INACTIVE, do nothing */
3044 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3045 return 0;
3046
3047 /* matches smp_wmb() in event_sched_in() */
3048 smp_rmb();
3049
3050 /*
3051 * There is a window with interrupts enabled before we get here,
3052 * so we need to check again lest we try to stop another CPU's event.
3053 */
3054 if (READ_ONCE(event->oncpu) != smp_processor_id())
3055 return -EAGAIN;
3056
3057 event->pmu->stop(event, PERF_EF_UPDATE);
3058
3059 /*
3060 * May race with the actual stop (through perf_pmu_output_stop()),
3061 * but it is only used for events with AUX ring buffer, and such
3062 * events will refuse to restart because of rb::aux_mmap_count==0,
3063 * see comments in perf_aux_output_begin().
3064 *
3065 * Since this is happening on an event-local CPU, no trace is lost
3066 * while restarting.
3067 */
3068 if (sd->restart)
3069 event->pmu->start(event, 0);
3070
3071 return 0;
3072 }
3073
perf_event_stop(struct perf_event * event,int restart)3074 static int perf_event_stop(struct perf_event *event, int restart)
3075 {
3076 struct stop_event_data sd = {
3077 .event = event,
3078 .restart = restart,
3079 };
3080 int ret = 0;
3081
3082 do {
3083 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3084 return 0;
3085
3086 /* matches smp_wmb() in event_sched_in() */
3087 smp_rmb();
3088
3089 /*
3090 * We only want to restart ACTIVE events, so if the event goes
3091 * inactive here (event->oncpu==-1), there's nothing more to do;
3092 * fall through with ret==-ENXIO.
3093 */
3094 ret = cpu_function_call(READ_ONCE(event->oncpu),
3095 __perf_event_stop, &sd);
3096 } while (ret == -EAGAIN);
3097
3098 return ret;
3099 }
3100
3101 /*
3102 * In order to contain the amount of racy and tricky in the address filter
3103 * configuration management, it is a two part process:
3104 *
3105 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3106 * we update the addresses of corresponding vmas in
3107 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
3108 * (p2) when an event is scheduled in (pmu::add), it calls
3109 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3110 * if the generation has changed since the previous call.
3111 *
3112 * If (p1) happens while the event is active, we restart it to force (p2).
3113 *
3114 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3115 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3116 * ioctl;
3117 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3118 * registered mapping, called for every new mmap(), with mm::mmap_lock down
3119 * for reading;
3120 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3121 * of exec.
3122 */
perf_event_addr_filters_sync(struct perf_event * event)3123 void perf_event_addr_filters_sync(struct perf_event *event)
3124 {
3125 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3126
3127 if (!has_addr_filter(event))
3128 return;
3129
3130 raw_spin_lock(&ifh->lock);
3131 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3132 event->pmu->addr_filters_sync(event);
3133 event->hw.addr_filters_gen = event->addr_filters_gen;
3134 }
3135 raw_spin_unlock(&ifh->lock);
3136 }
3137 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3138
_perf_event_refresh(struct perf_event * event,int refresh)3139 static int _perf_event_refresh(struct perf_event *event, int refresh)
3140 {
3141 /*
3142 * not supported on inherited events
3143 */
3144 if (event->attr.inherit || !is_sampling_event(event))
3145 return -EINVAL;
3146
3147 atomic_add(refresh, &event->event_limit);
3148 _perf_event_enable(event);
3149
3150 return 0;
3151 }
3152
3153 /*
3154 * See perf_event_disable()
3155 */
perf_event_refresh(struct perf_event * event,int refresh)3156 int perf_event_refresh(struct perf_event *event, int refresh)
3157 {
3158 struct perf_event_context *ctx;
3159 int ret;
3160
3161 ctx = perf_event_ctx_lock(event);
3162 ret = _perf_event_refresh(event, refresh);
3163 perf_event_ctx_unlock(event, ctx);
3164
3165 return ret;
3166 }
3167 EXPORT_SYMBOL_GPL(perf_event_refresh);
3168
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)3169 static int perf_event_modify_breakpoint(struct perf_event *bp,
3170 struct perf_event_attr *attr)
3171 {
3172 int err;
3173
3174 _perf_event_disable(bp);
3175
3176 err = modify_user_hw_breakpoint_check(bp, attr, true);
3177
3178 if (!bp->attr.disabled)
3179 _perf_event_enable(bp);
3180
3181 return err;
3182 }
3183
3184 /*
3185 * Copy event-type-independent attributes that may be modified.
3186 */
perf_event_modify_copy_attr(struct perf_event_attr * to,const struct perf_event_attr * from)3187 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3188 const struct perf_event_attr *from)
3189 {
3190 to->sig_data = from->sig_data;
3191 }
3192
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3193 static int perf_event_modify_attr(struct perf_event *event,
3194 struct perf_event_attr *attr)
3195 {
3196 int (*func)(struct perf_event *, struct perf_event_attr *);
3197 struct perf_event *child;
3198 int err;
3199
3200 if (event->attr.type != attr->type)
3201 return -EINVAL;
3202
3203 switch (event->attr.type) {
3204 case PERF_TYPE_BREAKPOINT:
3205 func = perf_event_modify_breakpoint;
3206 break;
3207 default:
3208 /* Place holder for future additions. */
3209 return -EOPNOTSUPP;
3210 }
3211
3212 WARN_ON_ONCE(event->ctx->parent_ctx);
3213
3214 mutex_lock(&event->child_mutex);
3215 /*
3216 * Event-type-independent attributes must be copied before event-type
3217 * modification, which will validate that final attributes match the
3218 * source attributes after all relevant attributes have been copied.
3219 */
3220 perf_event_modify_copy_attr(&event->attr, attr);
3221 err = func(event, attr);
3222 if (err)
3223 goto out;
3224 list_for_each_entry(child, &event->child_list, child_list) {
3225 perf_event_modify_copy_attr(&child->attr, attr);
3226 err = func(child, attr);
3227 if (err)
3228 goto out;
3229 }
3230 out:
3231 mutex_unlock(&event->child_mutex);
3232 return err;
3233 }
3234
__pmu_ctx_sched_out(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3235 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3236 enum event_type_t event_type)
3237 {
3238 struct perf_event_context *ctx = pmu_ctx->ctx;
3239 struct perf_event *event, *tmp;
3240 struct pmu *pmu = pmu_ctx->pmu;
3241
3242 if (ctx->task && !ctx->is_active) {
3243 struct perf_cpu_pmu_context *cpc;
3244
3245 cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3246 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3247 cpc->task_epc = NULL;
3248 }
3249
3250 if (!event_type)
3251 return;
3252
3253 perf_pmu_disable(pmu);
3254 if (event_type & EVENT_PINNED) {
3255 list_for_each_entry_safe(event, tmp,
3256 &pmu_ctx->pinned_active,
3257 active_list)
3258 group_sched_out(event, ctx);
3259 }
3260
3261 if (event_type & EVENT_FLEXIBLE) {
3262 list_for_each_entry_safe(event, tmp,
3263 &pmu_ctx->flexible_active,
3264 active_list)
3265 group_sched_out(event, ctx);
3266 /*
3267 * Since we cleared EVENT_FLEXIBLE, also clear
3268 * rotate_necessary, is will be reset by
3269 * ctx_flexible_sched_in() when needed.
3270 */
3271 pmu_ctx->rotate_necessary = 0;
3272 }
3273 perf_pmu_enable(pmu);
3274 }
3275
3276 static void
ctx_sched_out(struct perf_event_context * ctx,enum event_type_t event_type)3277 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3278 {
3279 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3280 struct perf_event_pmu_context *pmu_ctx;
3281 int is_active = ctx->is_active;
3282 bool cgroup = event_type & EVENT_CGROUP;
3283
3284 event_type &= ~EVENT_CGROUP;
3285
3286 lockdep_assert_held(&ctx->lock);
3287
3288 if (likely(!ctx->nr_events)) {
3289 /*
3290 * See __perf_remove_from_context().
3291 */
3292 WARN_ON_ONCE(ctx->is_active);
3293 if (ctx->task)
3294 WARN_ON_ONCE(cpuctx->task_ctx);
3295 return;
3296 }
3297
3298 /*
3299 * Always update time if it was set; not only when it changes.
3300 * Otherwise we can 'forget' to update time for any but the last
3301 * context we sched out. For example:
3302 *
3303 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3304 * ctx_sched_out(.event_type = EVENT_PINNED)
3305 *
3306 * would only update time for the pinned events.
3307 */
3308 if (is_active & EVENT_TIME) {
3309 /* update (and stop) ctx time */
3310 update_context_time(ctx);
3311 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3312 /*
3313 * CPU-release for the below ->is_active store,
3314 * see __load_acquire() in perf_event_time_now()
3315 */
3316 barrier();
3317 }
3318
3319 ctx->is_active &= ~event_type;
3320 if (!(ctx->is_active & EVENT_ALL))
3321 ctx->is_active = 0;
3322
3323 if (ctx->task) {
3324 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3325 if (!ctx->is_active)
3326 cpuctx->task_ctx = NULL;
3327 }
3328
3329 is_active ^= ctx->is_active; /* changed bits */
3330
3331 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3332 if (cgroup && !pmu_ctx->nr_cgroups)
3333 continue;
3334 __pmu_ctx_sched_out(pmu_ctx, is_active);
3335 }
3336 }
3337
3338 /*
3339 * Test whether two contexts are equivalent, i.e. whether they have both been
3340 * cloned from the same version of the same context.
3341 *
3342 * Equivalence is measured using a generation number in the context that is
3343 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3344 * and list_del_event().
3345 */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3346 static int context_equiv(struct perf_event_context *ctx1,
3347 struct perf_event_context *ctx2)
3348 {
3349 lockdep_assert_held(&ctx1->lock);
3350 lockdep_assert_held(&ctx2->lock);
3351
3352 /* Pinning disables the swap optimization */
3353 if (ctx1->pin_count || ctx2->pin_count)
3354 return 0;
3355
3356 /* If ctx1 is the parent of ctx2 */
3357 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3358 return 1;
3359
3360 /* If ctx2 is the parent of ctx1 */
3361 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3362 return 1;
3363
3364 /*
3365 * If ctx1 and ctx2 have the same parent; we flatten the parent
3366 * hierarchy, see perf_event_init_context().
3367 */
3368 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3369 ctx1->parent_gen == ctx2->parent_gen)
3370 return 1;
3371
3372 /* Unmatched */
3373 return 0;
3374 }
3375
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3376 static void __perf_event_sync_stat(struct perf_event *event,
3377 struct perf_event *next_event)
3378 {
3379 u64 value;
3380
3381 if (!event->attr.inherit_stat)
3382 return;
3383
3384 /*
3385 * Update the event value, we cannot use perf_event_read()
3386 * because we're in the middle of a context switch and have IRQs
3387 * disabled, which upsets smp_call_function_single(), however
3388 * we know the event must be on the current CPU, therefore we
3389 * don't need to use it.
3390 */
3391 if (event->state == PERF_EVENT_STATE_ACTIVE)
3392 event->pmu->read(event);
3393
3394 perf_event_update_time(event);
3395
3396 /*
3397 * In order to keep per-task stats reliable we need to flip the event
3398 * values when we flip the contexts.
3399 */
3400 value = local64_read(&next_event->count);
3401 value = local64_xchg(&event->count, value);
3402 local64_set(&next_event->count, value);
3403
3404 swap(event->total_time_enabled, next_event->total_time_enabled);
3405 swap(event->total_time_running, next_event->total_time_running);
3406
3407 /*
3408 * Since we swizzled the values, update the user visible data too.
3409 */
3410 perf_event_update_userpage(event);
3411 perf_event_update_userpage(next_event);
3412 }
3413
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3414 static void perf_event_sync_stat(struct perf_event_context *ctx,
3415 struct perf_event_context *next_ctx)
3416 {
3417 struct perf_event *event, *next_event;
3418
3419 if (!ctx->nr_stat)
3420 return;
3421
3422 update_context_time(ctx);
3423
3424 event = list_first_entry(&ctx->event_list,
3425 struct perf_event, event_entry);
3426
3427 next_event = list_first_entry(&next_ctx->event_list,
3428 struct perf_event, event_entry);
3429
3430 while (&event->event_entry != &ctx->event_list &&
3431 &next_event->event_entry != &next_ctx->event_list) {
3432
3433 __perf_event_sync_stat(event, next_event);
3434
3435 event = list_next_entry(event, event_entry);
3436 next_event = list_next_entry(next_event, event_entry);
3437 }
3438 }
3439
3440 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \
3441 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \
3442 pos2 = list_first_entry(head2, typeof(*pos2), member); \
3443 !list_entry_is_head(pos1, head1, member) && \
3444 !list_entry_is_head(pos2, head2, member); \
3445 pos1 = list_next_entry(pos1, member), \
3446 pos2 = list_next_entry(pos2, member))
3447
perf_event_swap_task_ctx_data(struct perf_event_context * prev_ctx,struct perf_event_context * next_ctx)3448 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3449 struct perf_event_context *next_ctx)
3450 {
3451 struct perf_event_pmu_context *prev_epc, *next_epc;
3452
3453 if (!prev_ctx->nr_task_data)
3454 return;
3455
3456 double_list_for_each_entry(prev_epc, next_epc,
3457 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3458 pmu_ctx_entry) {
3459
3460 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3461 continue;
3462
3463 /*
3464 * PMU specific parts of task perf context can require
3465 * additional synchronization. As an example of such
3466 * synchronization see implementation details of Intel
3467 * LBR call stack data profiling;
3468 */
3469 if (prev_epc->pmu->swap_task_ctx)
3470 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3471 else
3472 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3473 }
3474 }
3475
perf_ctx_sched_task_cb(struct perf_event_context * ctx,bool sched_in)3476 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3477 {
3478 struct perf_event_pmu_context *pmu_ctx;
3479 struct perf_cpu_pmu_context *cpc;
3480
3481 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3482 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3483
3484 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3485 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3486 }
3487 }
3488
3489 static void
perf_event_context_sched_out(struct task_struct * task,struct task_struct * next)3490 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3491 {
3492 struct perf_event_context *ctx = task->perf_event_ctxp;
3493 struct perf_event_context *next_ctx;
3494 struct perf_event_context *parent, *next_parent;
3495 int do_switch = 1;
3496
3497 if (likely(!ctx))
3498 return;
3499
3500 rcu_read_lock();
3501 next_ctx = rcu_dereference(next->perf_event_ctxp);
3502 if (!next_ctx)
3503 goto unlock;
3504
3505 parent = rcu_dereference(ctx->parent_ctx);
3506 next_parent = rcu_dereference(next_ctx->parent_ctx);
3507
3508 /* If neither context have a parent context; they cannot be clones. */
3509 if (!parent && !next_parent)
3510 goto unlock;
3511
3512 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3513 /*
3514 * Looks like the two contexts are clones, so we might be
3515 * able to optimize the context switch. We lock both
3516 * contexts and check that they are clones under the
3517 * lock (including re-checking that neither has been
3518 * uncloned in the meantime). It doesn't matter which
3519 * order we take the locks because no other cpu could
3520 * be trying to lock both of these tasks.
3521 */
3522 raw_spin_lock(&ctx->lock);
3523 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3524 if (context_equiv(ctx, next_ctx)) {
3525
3526 perf_ctx_disable(ctx, false);
3527
3528 /* PMIs are disabled; ctx->nr_pending is stable. */
3529 if (local_read(&ctx->nr_pending) ||
3530 local_read(&next_ctx->nr_pending)) {
3531 /*
3532 * Must not swap out ctx when there's pending
3533 * events that rely on the ctx->task relation.
3534 */
3535 raw_spin_unlock(&next_ctx->lock);
3536 rcu_read_unlock();
3537 goto inside_switch;
3538 }
3539
3540 WRITE_ONCE(ctx->task, next);
3541 WRITE_ONCE(next_ctx->task, task);
3542
3543 perf_ctx_sched_task_cb(ctx, false);
3544 perf_event_swap_task_ctx_data(ctx, next_ctx);
3545
3546 perf_ctx_enable(ctx, false);
3547
3548 /*
3549 * RCU_INIT_POINTER here is safe because we've not
3550 * modified the ctx and the above modification of
3551 * ctx->task and ctx->task_ctx_data are immaterial
3552 * since those values are always verified under
3553 * ctx->lock which we're now holding.
3554 */
3555 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3556 RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3557
3558 do_switch = 0;
3559
3560 perf_event_sync_stat(ctx, next_ctx);
3561 }
3562 raw_spin_unlock(&next_ctx->lock);
3563 raw_spin_unlock(&ctx->lock);
3564 }
3565 unlock:
3566 rcu_read_unlock();
3567
3568 if (do_switch) {
3569 raw_spin_lock(&ctx->lock);
3570 perf_ctx_disable(ctx, false);
3571
3572 inside_switch:
3573 perf_ctx_sched_task_cb(ctx, false);
3574 task_ctx_sched_out(ctx, EVENT_ALL);
3575
3576 perf_ctx_enable(ctx, false);
3577 raw_spin_unlock(&ctx->lock);
3578 }
3579 }
3580
3581 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3582 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3583
perf_sched_cb_dec(struct pmu * pmu)3584 void perf_sched_cb_dec(struct pmu *pmu)
3585 {
3586 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3587
3588 this_cpu_dec(perf_sched_cb_usages);
3589 barrier();
3590
3591 if (!--cpc->sched_cb_usage)
3592 list_del(&cpc->sched_cb_entry);
3593 }
3594
3595
perf_sched_cb_inc(struct pmu * pmu)3596 void perf_sched_cb_inc(struct pmu *pmu)
3597 {
3598 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3599
3600 if (!cpc->sched_cb_usage++)
3601 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3602
3603 barrier();
3604 this_cpu_inc(perf_sched_cb_usages);
3605 }
3606
3607 /*
3608 * This function provides the context switch callback to the lower code
3609 * layer. It is invoked ONLY when the context switch callback is enabled.
3610 *
3611 * This callback is relevant even to per-cpu events; for example multi event
3612 * PEBS requires this to provide PID/TID information. This requires we flush
3613 * all queued PEBS records before we context switch to a new task.
3614 */
__perf_pmu_sched_task(struct perf_cpu_pmu_context * cpc,bool sched_in)3615 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3616 {
3617 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3618 struct pmu *pmu;
3619
3620 pmu = cpc->epc.pmu;
3621
3622 /* software PMUs will not have sched_task */
3623 if (WARN_ON_ONCE(!pmu->sched_task))
3624 return;
3625
3626 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3627 perf_pmu_disable(pmu);
3628
3629 pmu->sched_task(cpc->task_epc, sched_in);
3630
3631 perf_pmu_enable(pmu);
3632 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3633 }
3634
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3635 static void perf_pmu_sched_task(struct task_struct *prev,
3636 struct task_struct *next,
3637 bool sched_in)
3638 {
3639 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3640 struct perf_cpu_pmu_context *cpc;
3641
3642 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3643 if (prev == next || cpuctx->task_ctx)
3644 return;
3645
3646 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3647 __perf_pmu_sched_task(cpc, sched_in);
3648 }
3649
3650 static void perf_event_switch(struct task_struct *task,
3651 struct task_struct *next_prev, bool sched_in);
3652
3653 /*
3654 * Called from scheduler to remove the events of the current task,
3655 * with interrupts disabled.
3656 *
3657 * We stop each event and update the event value in event->count.
3658 *
3659 * This does not protect us against NMI, but disable()
3660 * sets the disabled bit in the control field of event _before_
3661 * accessing the event control register. If a NMI hits, then it will
3662 * not restart the event.
3663 */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3664 void __perf_event_task_sched_out(struct task_struct *task,
3665 struct task_struct *next)
3666 {
3667 if (__this_cpu_read(perf_sched_cb_usages))
3668 perf_pmu_sched_task(task, next, false);
3669
3670 if (atomic_read(&nr_switch_events))
3671 perf_event_switch(task, next, false);
3672
3673 perf_event_context_sched_out(task, next);
3674
3675 /*
3676 * if cgroup events exist on this CPU, then we need
3677 * to check if we have to switch out PMU state.
3678 * cgroup event are system-wide mode only
3679 */
3680 perf_cgroup_switch(next);
3681 }
3682
perf_less_group_idx(const void * l,const void * r)3683 static bool perf_less_group_idx(const void *l, const void *r)
3684 {
3685 const struct perf_event *le = *(const struct perf_event **)l;
3686 const struct perf_event *re = *(const struct perf_event **)r;
3687
3688 return le->group_index < re->group_index;
3689 }
3690
swap_ptr(void * l,void * r)3691 static void swap_ptr(void *l, void *r)
3692 {
3693 void **lp = l, **rp = r;
3694
3695 swap(*lp, *rp);
3696 }
3697
3698 static const struct min_heap_callbacks perf_min_heap = {
3699 .elem_size = sizeof(struct perf_event *),
3700 .less = perf_less_group_idx,
3701 .swp = swap_ptr,
3702 };
3703
__heap_add(struct min_heap * heap,struct perf_event * event)3704 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3705 {
3706 struct perf_event **itrs = heap->data;
3707
3708 if (event) {
3709 itrs[heap->nr] = event;
3710 heap->nr++;
3711 }
3712 }
3713
__link_epc(struct perf_event_pmu_context * pmu_ctx)3714 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3715 {
3716 struct perf_cpu_pmu_context *cpc;
3717
3718 if (!pmu_ctx->ctx->task)
3719 return;
3720
3721 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3722 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3723 cpc->task_epc = pmu_ctx;
3724 }
3725
visit_groups_merge(struct perf_event_context * ctx,struct perf_event_groups * groups,int cpu,struct pmu * pmu,int (* func)(struct perf_event *,void *),void * data)3726 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3727 struct perf_event_groups *groups, int cpu,
3728 struct pmu *pmu,
3729 int (*func)(struct perf_event *, void *),
3730 void *data)
3731 {
3732 #ifdef CONFIG_CGROUP_PERF
3733 struct cgroup_subsys_state *css = NULL;
3734 #endif
3735 struct perf_cpu_context *cpuctx = NULL;
3736 /* Space for per CPU and/or any CPU event iterators. */
3737 struct perf_event *itrs[2];
3738 struct min_heap event_heap;
3739 struct perf_event **evt;
3740 int ret;
3741
3742 if (pmu->filter && pmu->filter(pmu, cpu))
3743 return 0;
3744
3745 if (!ctx->task) {
3746 cpuctx = this_cpu_ptr(&perf_cpu_context);
3747 event_heap = (struct min_heap){
3748 .data = cpuctx->heap,
3749 .nr = 0,
3750 .size = cpuctx->heap_size,
3751 };
3752
3753 lockdep_assert_held(&cpuctx->ctx.lock);
3754
3755 #ifdef CONFIG_CGROUP_PERF
3756 if (cpuctx->cgrp)
3757 css = &cpuctx->cgrp->css;
3758 #endif
3759 } else {
3760 event_heap = (struct min_heap){
3761 .data = itrs,
3762 .nr = 0,
3763 .size = ARRAY_SIZE(itrs),
3764 };
3765 /* Events not within a CPU context may be on any CPU. */
3766 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3767 }
3768 evt = event_heap.data;
3769
3770 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3771
3772 #ifdef CONFIG_CGROUP_PERF
3773 for (; css; css = css->parent)
3774 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3775 #endif
3776
3777 if (event_heap.nr) {
3778 __link_epc((*evt)->pmu_ctx);
3779 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3780 }
3781
3782 min_heapify_all(&event_heap, &perf_min_heap);
3783
3784 while (event_heap.nr) {
3785 ret = func(*evt, data);
3786 if (ret)
3787 return ret;
3788
3789 *evt = perf_event_groups_next(*evt, pmu);
3790 if (*evt)
3791 min_heapify(&event_heap, 0, &perf_min_heap);
3792 else
3793 min_heap_pop(&event_heap, &perf_min_heap);
3794 }
3795
3796 return 0;
3797 }
3798
3799 /*
3800 * Because the userpage is strictly per-event (there is no concept of context,
3801 * so there cannot be a context indirection), every userpage must be updated
3802 * when context time starts :-(
3803 *
3804 * IOW, we must not miss EVENT_TIME edges.
3805 */
event_update_userpage(struct perf_event * event)3806 static inline bool event_update_userpage(struct perf_event *event)
3807 {
3808 if (likely(!atomic_read(&event->mmap_count)))
3809 return false;
3810
3811 perf_event_update_time(event);
3812 perf_event_update_userpage(event);
3813
3814 return true;
3815 }
3816
group_update_userpage(struct perf_event * group_event)3817 static inline void group_update_userpage(struct perf_event *group_event)
3818 {
3819 struct perf_event *event;
3820
3821 if (!event_update_userpage(group_event))
3822 return;
3823
3824 for_each_sibling_event(event, group_event)
3825 event_update_userpage(event);
3826 }
3827
merge_sched_in(struct perf_event * event,void * data)3828 static int merge_sched_in(struct perf_event *event, void *data)
3829 {
3830 struct perf_event_context *ctx = event->ctx;
3831 int *can_add_hw = data;
3832
3833 if (event->state <= PERF_EVENT_STATE_OFF)
3834 return 0;
3835
3836 if (!event_filter_match(event))
3837 return 0;
3838
3839 if (group_can_go_on(event, *can_add_hw)) {
3840 if (!group_sched_in(event, ctx))
3841 list_add_tail(&event->active_list, get_event_list(event));
3842 }
3843
3844 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3845 *can_add_hw = 0;
3846 if (event->attr.pinned) {
3847 perf_cgroup_event_disable(event, ctx);
3848 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3849 } else {
3850 struct perf_cpu_pmu_context *cpc;
3851
3852 event->pmu_ctx->rotate_necessary = 1;
3853 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3854 perf_mux_hrtimer_restart(cpc);
3855 group_update_userpage(event);
3856 }
3857 }
3858
3859 return 0;
3860 }
3861
pmu_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,struct pmu * pmu)3862 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3863 struct perf_event_groups *groups,
3864 struct pmu *pmu)
3865 {
3866 int can_add_hw = 1;
3867 visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3868 merge_sched_in, &can_add_hw);
3869 }
3870
ctx_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,bool cgroup)3871 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3872 struct perf_event_groups *groups,
3873 bool cgroup)
3874 {
3875 struct perf_event_pmu_context *pmu_ctx;
3876
3877 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3878 if (cgroup && !pmu_ctx->nr_cgroups)
3879 continue;
3880 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3881 }
3882 }
3883
__pmu_ctx_sched_in(struct perf_event_context * ctx,struct pmu * pmu)3884 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3885 struct pmu *pmu)
3886 {
3887 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3888 }
3889
3890 static void
ctx_sched_in(struct perf_event_context * ctx,enum event_type_t event_type)3891 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3892 {
3893 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3894 int is_active = ctx->is_active;
3895 bool cgroup = event_type & EVENT_CGROUP;
3896
3897 event_type &= ~EVENT_CGROUP;
3898
3899 lockdep_assert_held(&ctx->lock);
3900
3901 if (likely(!ctx->nr_events))
3902 return;
3903
3904 if (!(is_active & EVENT_TIME)) {
3905 /* start ctx time */
3906 __update_context_time(ctx, false);
3907 perf_cgroup_set_timestamp(cpuctx);
3908 /*
3909 * CPU-release for the below ->is_active store,
3910 * see __load_acquire() in perf_event_time_now()
3911 */
3912 barrier();
3913 }
3914
3915 ctx->is_active |= (event_type | EVENT_TIME);
3916 if (ctx->task) {
3917 if (!is_active)
3918 cpuctx->task_ctx = ctx;
3919 else
3920 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3921 }
3922
3923 is_active ^= ctx->is_active; /* changed bits */
3924
3925 /*
3926 * First go through the list and put on any pinned groups
3927 * in order to give them the best chance of going on.
3928 */
3929 if (is_active & EVENT_PINNED)
3930 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3931
3932 /* Then walk through the lower prio flexible groups */
3933 if (is_active & EVENT_FLEXIBLE)
3934 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3935 }
3936
perf_event_context_sched_in(struct task_struct * task)3937 static void perf_event_context_sched_in(struct task_struct *task)
3938 {
3939 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3940 struct perf_event_context *ctx;
3941
3942 rcu_read_lock();
3943 ctx = rcu_dereference(task->perf_event_ctxp);
3944 if (!ctx)
3945 goto rcu_unlock;
3946
3947 if (cpuctx->task_ctx == ctx) {
3948 perf_ctx_lock(cpuctx, ctx);
3949 perf_ctx_disable(ctx, false);
3950
3951 perf_ctx_sched_task_cb(ctx, true);
3952
3953 perf_ctx_enable(ctx, false);
3954 perf_ctx_unlock(cpuctx, ctx);
3955 goto rcu_unlock;
3956 }
3957
3958 perf_ctx_lock(cpuctx, ctx);
3959 /*
3960 * We must check ctx->nr_events while holding ctx->lock, such
3961 * that we serialize against perf_install_in_context().
3962 */
3963 if (!ctx->nr_events)
3964 goto unlock;
3965
3966 perf_ctx_disable(ctx, false);
3967 /*
3968 * We want to keep the following priority order:
3969 * cpu pinned (that don't need to move), task pinned,
3970 * cpu flexible, task flexible.
3971 *
3972 * However, if task's ctx is not carrying any pinned
3973 * events, no need to flip the cpuctx's events around.
3974 */
3975 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3976 perf_ctx_disable(&cpuctx->ctx, false);
3977 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3978 }
3979
3980 perf_event_sched_in(cpuctx, ctx);
3981
3982 perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3983
3984 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3985 perf_ctx_enable(&cpuctx->ctx, false);
3986
3987 perf_ctx_enable(ctx, false);
3988
3989 unlock:
3990 perf_ctx_unlock(cpuctx, ctx);
3991 rcu_unlock:
3992 rcu_read_unlock();
3993 }
3994
3995 /*
3996 * Called from scheduler to add the events of the current task
3997 * with interrupts disabled.
3998 *
3999 * We restore the event value and then enable it.
4000 *
4001 * This does not protect us against NMI, but enable()
4002 * sets the enabled bit in the control field of event _before_
4003 * accessing the event control register. If a NMI hits, then it will
4004 * keep the event running.
4005 */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)4006 void __perf_event_task_sched_in(struct task_struct *prev,
4007 struct task_struct *task)
4008 {
4009 perf_event_context_sched_in(task);
4010
4011 if (atomic_read(&nr_switch_events))
4012 perf_event_switch(task, prev, true);
4013
4014 if (__this_cpu_read(perf_sched_cb_usages))
4015 perf_pmu_sched_task(prev, task, true);
4016 }
4017
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)4018 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4019 {
4020 u64 frequency = event->attr.sample_freq;
4021 u64 sec = NSEC_PER_SEC;
4022 u64 divisor, dividend;
4023
4024 int count_fls, nsec_fls, frequency_fls, sec_fls;
4025
4026 count_fls = fls64(count);
4027 nsec_fls = fls64(nsec);
4028 frequency_fls = fls64(frequency);
4029 sec_fls = 30;
4030
4031 /*
4032 * We got @count in @nsec, with a target of sample_freq HZ
4033 * the target period becomes:
4034 *
4035 * @count * 10^9
4036 * period = -------------------
4037 * @nsec * sample_freq
4038 *
4039 */
4040
4041 /*
4042 * Reduce accuracy by one bit such that @a and @b converge
4043 * to a similar magnitude.
4044 */
4045 #define REDUCE_FLS(a, b) \
4046 do { \
4047 if (a##_fls > b##_fls) { \
4048 a >>= 1; \
4049 a##_fls--; \
4050 } else { \
4051 b >>= 1; \
4052 b##_fls--; \
4053 } \
4054 } while (0)
4055
4056 /*
4057 * Reduce accuracy until either term fits in a u64, then proceed with
4058 * the other, so that finally we can do a u64/u64 division.
4059 */
4060 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4061 REDUCE_FLS(nsec, frequency);
4062 REDUCE_FLS(sec, count);
4063 }
4064
4065 if (count_fls + sec_fls > 64) {
4066 divisor = nsec * frequency;
4067
4068 while (count_fls + sec_fls > 64) {
4069 REDUCE_FLS(count, sec);
4070 divisor >>= 1;
4071 }
4072
4073 dividend = count * sec;
4074 } else {
4075 dividend = count * sec;
4076
4077 while (nsec_fls + frequency_fls > 64) {
4078 REDUCE_FLS(nsec, frequency);
4079 dividend >>= 1;
4080 }
4081
4082 divisor = nsec * frequency;
4083 }
4084
4085 if (!divisor)
4086 return dividend;
4087
4088 return div64_u64(dividend, divisor);
4089 }
4090
4091 static DEFINE_PER_CPU(int, perf_throttled_count);
4092 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4093
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)4094 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4095 {
4096 struct hw_perf_event *hwc = &event->hw;
4097 s64 period, sample_period;
4098 s64 delta;
4099
4100 period = perf_calculate_period(event, nsec, count);
4101
4102 delta = (s64)(period - hwc->sample_period);
4103 delta = (delta + 7) / 8; /* low pass filter */
4104
4105 sample_period = hwc->sample_period + delta;
4106
4107 if (!sample_period)
4108 sample_period = 1;
4109
4110 hwc->sample_period = sample_period;
4111
4112 if (local64_read(&hwc->period_left) > 8*sample_period) {
4113 if (disable)
4114 event->pmu->stop(event, PERF_EF_UPDATE);
4115
4116 local64_set(&hwc->period_left, 0);
4117
4118 if (disable)
4119 event->pmu->start(event, PERF_EF_RELOAD);
4120 }
4121 }
4122
4123 /*
4124 * combine freq adjustment with unthrottling to avoid two passes over the
4125 * events. At the same time, make sure, having freq events does not change
4126 * the rate of unthrottling as that would introduce bias.
4127 */
4128 static void
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,bool unthrottle)4129 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4130 {
4131 struct perf_event *event;
4132 struct hw_perf_event *hwc;
4133 u64 now, period = TICK_NSEC;
4134 s64 delta;
4135
4136 /*
4137 * only need to iterate over all events iff:
4138 * - context have events in frequency mode (needs freq adjust)
4139 * - there are events to unthrottle on this cpu
4140 */
4141 if (!(ctx->nr_freq || unthrottle))
4142 return;
4143
4144 raw_spin_lock(&ctx->lock);
4145
4146 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4147 if (event->state != PERF_EVENT_STATE_ACTIVE)
4148 continue;
4149
4150 // XXX use visit thingy to avoid the -1,cpu match
4151 if (!event_filter_match(event))
4152 continue;
4153
4154 perf_pmu_disable(event->pmu);
4155
4156 hwc = &event->hw;
4157
4158 if (hwc->interrupts == MAX_INTERRUPTS) {
4159 hwc->interrupts = 0;
4160 perf_log_throttle(event, 1);
4161 event->pmu->start(event, 0);
4162 }
4163
4164 if (!event->attr.freq || !event->attr.sample_freq)
4165 goto next;
4166
4167 /*
4168 * stop the event and update event->count
4169 */
4170 event->pmu->stop(event, PERF_EF_UPDATE);
4171
4172 now = local64_read(&event->count);
4173 delta = now - hwc->freq_count_stamp;
4174 hwc->freq_count_stamp = now;
4175
4176 /*
4177 * restart the event
4178 * reload only if value has changed
4179 * we have stopped the event so tell that
4180 * to perf_adjust_period() to avoid stopping it
4181 * twice.
4182 */
4183 if (delta > 0)
4184 perf_adjust_period(event, period, delta, false);
4185
4186 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4187 next:
4188 perf_pmu_enable(event->pmu);
4189 }
4190
4191 raw_spin_unlock(&ctx->lock);
4192 }
4193
4194 /*
4195 * Move @event to the tail of the @ctx's elegible events.
4196 */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)4197 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4198 {
4199 /*
4200 * Rotate the first entry last of non-pinned groups. Rotation might be
4201 * disabled by the inheritance code.
4202 */
4203 if (ctx->rotate_disable)
4204 return;
4205
4206 perf_event_groups_delete(&ctx->flexible_groups, event);
4207 perf_event_groups_insert(&ctx->flexible_groups, event);
4208 }
4209
4210 /* pick an event from the flexible_groups to rotate */
4211 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_pmu_context * pmu_ctx)4212 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4213 {
4214 struct perf_event *event;
4215 struct rb_node *node;
4216 struct rb_root *tree;
4217 struct __group_key key = {
4218 .pmu = pmu_ctx->pmu,
4219 };
4220
4221 /* pick the first active flexible event */
4222 event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4223 struct perf_event, active_list);
4224 if (event)
4225 goto out;
4226
4227 /* if no active flexible event, pick the first event */
4228 tree = &pmu_ctx->ctx->flexible_groups.tree;
4229
4230 if (!pmu_ctx->ctx->task) {
4231 key.cpu = smp_processor_id();
4232
4233 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4234 if (node)
4235 event = __node_2_pe(node);
4236 goto out;
4237 }
4238
4239 key.cpu = -1;
4240 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4241 if (node) {
4242 event = __node_2_pe(node);
4243 goto out;
4244 }
4245
4246 key.cpu = smp_processor_id();
4247 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4248 if (node)
4249 event = __node_2_pe(node);
4250
4251 out:
4252 /*
4253 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4254 * finds there are unschedulable events, it will set it again.
4255 */
4256 pmu_ctx->rotate_necessary = 0;
4257
4258 return event;
4259 }
4260
perf_rotate_context(struct perf_cpu_pmu_context * cpc)4261 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4262 {
4263 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4264 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4265 struct perf_event *cpu_event = NULL, *task_event = NULL;
4266 int cpu_rotate, task_rotate;
4267 struct pmu *pmu;
4268
4269 /*
4270 * Since we run this from IRQ context, nobody can install new
4271 * events, thus the event count values are stable.
4272 */
4273
4274 cpu_epc = &cpc->epc;
4275 pmu = cpu_epc->pmu;
4276 task_epc = cpc->task_epc;
4277
4278 cpu_rotate = cpu_epc->rotate_necessary;
4279 task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4280
4281 if (!(cpu_rotate || task_rotate))
4282 return false;
4283
4284 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4285 perf_pmu_disable(pmu);
4286
4287 trace_android_rvh_perf_rotate_context(cpc);
4288
4289 if (task_rotate)
4290 task_event = ctx_event_to_rotate(task_epc);
4291 if (cpu_rotate)
4292 cpu_event = ctx_event_to_rotate(cpu_epc);
4293
4294 /*
4295 * As per the order given at ctx_resched() first 'pop' task flexible
4296 * and then, if needed CPU flexible.
4297 */
4298 if (task_event || (task_epc && cpu_event)) {
4299 update_context_time(task_epc->ctx);
4300 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4301 }
4302
4303 if (cpu_event) {
4304 update_context_time(&cpuctx->ctx);
4305 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4306 rotate_ctx(&cpuctx->ctx, cpu_event);
4307 __pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4308 }
4309
4310 if (task_event)
4311 rotate_ctx(task_epc->ctx, task_event);
4312
4313 if (task_event || (task_epc && cpu_event))
4314 __pmu_ctx_sched_in(task_epc->ctx, pmu);
4315
4316 perf_pmu_enable(pmu);
4317 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4318
4319 return true;
4320 }
4321
perf_event_task_tick(void)4322 void perf_event_task_tick(void)
4323 {
4324 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4325 struct perf_event_context *ctx;
4326 int throttled;
4327
4328 lockdep_assert_irqs_disabled();
4329
4330 __this_cpu_inc(perf_throttled_seq);
4331 throttled = __this_cpu_xchg(perf_throttled_count, 0);
4332 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4333
4334 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4335
4336 rcu_read_lock();
4337 ctx = rcu_dereference(current->perf_event_ctxp);
4338 if (ctx)
4339 perf_adjust_freq_unthr_context(ctx, !!throttled);
4340 rcu_read_unlock();
4341 }
4342
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)4343 static int event_enable_on_exec(struct perf_event *event,
4344 struct perf_event_context *ctx)
4345 {
4346 if (!event->attr.enable_on_exec)
4347 return 0;
4348
4349 event->attr.enable_on_exec = 0;
4350 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4351 return 0;
4352
4353 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4354
4355 return 1;
4356 }
4357
4358 /*
4359 * Enable all of a task's events that have been marked enable-on-exec.
4360 * This expects task == current.
4361 */
perf_event_enable_on_exec(struct perf_event_context * ctx)4362 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4363 {
4364 struct perf_event_context *clone_ctx = NULL;
4365 enum event_type_t event_type = 0;
4366 struct perf_cpu_context *cpuctx;
4367 struct perf_event *event;
4368 unsigned long flags;
4369 int enabled = 0;
4370
4371 local_irq_save(flags);
4372 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4373 goto out;
4374
4375 if (!ctx->nr_events)
4376 goto out;
4377
4378 cpuctx = this_cpu_ptr(&perf_cpu_context);
4379 perf_ctx_lock(cpuctx, ctx);
4380 ctx_sched_out(ctx, EVENT_TIME);
4381
4382 list_for_each_entry(event, &ctx->event_list, event_entry) {
4383 enabled |= event_enable_on_exec(event, ctx);
4384 event_type |= get_event_type(event);
4385 }
4386
4387 /*
4388 * Unclone and reschedule this context if we enabled any event.
4389 */
4390 if (enabled) {
4391 clone_ctx = unclone_ctx(ctx);
4392 ctx_resched(cpuctx, ctx, event_type);
4393 } else {
4394 ctx_sched_in(ctx, EVENT_TIME);
4395 }
4396 perf_ctx_unlock(cpuctx, ctx);
4397
4398 out:
4399 local_irq_restore(flags);
4400
4401 if (clone_ctx)
4402 put_ctx(clone_ctx);
4403 }
4404
4405 static void perf_remove_from_owner(struct perf_event *event);
4406 static void perf_event_exit_event(struct perf_event *event,
4407 struct perf_event_context *ctx);
4408
4409 /*
4410 * Removes all events from the current task that have been marked
4411 * remove-on-exec, and feeds their values back to parent events.
4412 */
perf_event_remove_on_exec(struct perf_event_context * ctx)4413 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4414 {
4415 struct perf_event_context *clone_ctx = NULL;
4416 struct perf_event *event, *next;
4417 unsigned long flags;
4418 bool modified = false;
4419
4420 mutex_lock(&ctx->mutex);
4421
4422 if (WARN_ON_ONCE(ctx->task != current))
4423 goto unlock;
4424
4425 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4426 if (!event->attr.remove_on_exec)
4427 continue;
4428
4429 if (!is_kernel_event(event))
4430 perf_remove_from_owner(event);
4431
4432 modified = true;
4433
4434 perf_event_exit_event(event, ctx);
4435 }
4436
4437 raw_spin_lock_irqsave(&ctx->lock, flags);
4438 if (modified)
4439 clone_ctx = unclone_ctx(ctx);
4440 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4441
4442 unlock:
4443 mutex_unlock(&ctx->mutex);
4444
4445 if (clone_ctx)
4446 put_ctx(clone_ctx);
4447 }
4448
4449 struct perf_read_data {
4450 struct perf_event *event;
4451 bool group;
4452 int ret;
4453 };
4454
__perf_event_read_cpu(struct perf_event * event,int event_cpu)4455 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4456 {
4457 u16 local_pkg, event_pkg;
4458
4459 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4460 int local_cpu = smp_processor_id();
4461
4462 event_pkg = topology_physical_package_id(event_cpu);
4463 local_pkg = topology_physical_package_id(local_cpu);
4464
4465 if (event_pkg == local_pkg)
4466 return local_cpu;
4467 }
4468
4469 return event_cpu;
4470 }
4471
4472 /*
4473 * Cross CPU call to read the hardware event
4474 */
__perf_event_read(void * info)4475 static void __perf_event_read(void *info)
4476 {
4477 struct perf_read_data *data = info;
4478 struct perf_event *sub, *event = data->event;
4479 struct perf_event_context *ctx = event->ctx;
4480 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4481 struct pmu *pmu = event->pmu;
4482
4483 /*
4484 * If this is a task context, we need to check whether it is
4485 * the current task context of this cpu. If not it has been
4486 * scheduled out before the smp call arrived. In that case
4487 * event->count would have been updated to a recent sample
4488 * when the event was scheduled out.
4489 */
4490 if (ctx->task && cpuctx->task_ctx != ctx)
4491 return;
4492
4493 raw_spin_lock(&ctx->lock);
4494 if (ctx->is_active & EVENT_TIME) {
4495 update_context_time(ctx);
4496 update_cgrp_time_from_event(event);
4497 }
4498
4499 perf_event_update_time(event);
4500 if (data->group)
4501 perf_event_update_sibling_time(event);
4502
4503 if (event->state != PERF_EVENT_STATE_ACTIVE)
4504 goto unlock;
4505
4506 if (!data->group) {
4507 pmu->read(event);
4508 data->ret = 0;
4509 goto unlock;
4510 }
4511
4512 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4513
4514 pmu->read(event);
4515
4516 for_each_sibling_event(sub, event) {
4517 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4518 /*
4519 * Use sibling's PMU rather than @event's since
4520 * sibling could be on different (eg: software) PMU.
4521 */
4522 sub->pmu->read(sub);
4523 }
4524 }
4525
4526 data->ret = pmu->commit_txn(pmu);
4527
4528 unlock:
4529 raw_spin_unlock(&ctx->lock);
4530 }
4531
perf_event_count(struct perf_event * event)4532 static inline u64 perf_event_count(struct perf_event *event)
4533 {
4534 return local64_read(&event->count) + atomic64_read(&event->child_count);
4535 }
4536
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4537 static void calc_timer_values(struct perf_event *event,
4538 u64 *now,
4539 u64 *enabled,
4540 u64 *running)
4541 {
4542 u64 ctx_time;
4543
4544 *now = perf_clock();
4545 ctx_time = perf_event_time_now(event, *now);
4546 __perf_update_times(event, ctx_time, enabled, running);
4547 }
4548
4549 /*
4550 * NMI-safe method to read a local event, that is an event that
4551 * is:
4552 * - either for the current task, or for this CPU
4553 * - does not have inherit set, for inherited task events
4554 * will not be local and we cannot read them atomically
4555 * - must not have a pmu::count method
4556 */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4557 int perf_event_read_local(struct perf_event *event, u64 *value,
4558 u64 *enabled, u64 *running)
4559 {
4560 unsigned long flags;
4561 int ret = 0;
4562
4563 /*
4564 * Disabling interrupts avoids all counter scheduling (context
4565 * switches, timer based rotation and IPIs).
4566 */
4567 local_irq_save(flags);
4568
4569 /*
4570 * It must not be an event with inherit set, we cannot read
4571 * all child counters from atomic context.
4572 */
4573 if (event->attr.inherit) {
4574 ret = -EOPNOTSUPP;
4575 goto out;
4576 }
4577
4578 /* If this is a per-task event, it must be for current */
4579 if ((event->attach_state & PERF_ATTACH_TASK) &&
4580 event->hw.target != current) {
4581 ret = -EINVAL;
4582 goto out;
4583 }
4584
4585 /* If this is a per-CPU event, it must be for this CPU */
4586 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4587 event->cpu != smp_processor_id()) {
4588 ret = -EINVAL;
4589 goto out;
4590 }
4591
4592 /* If this is a pinned event it must be running on this CPU */
4593 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4594 ret = -EBUSY;
4595 goto out;
4596 }
4597
4598 /*
4599 * If the event is currently on this CPU, its either a per-task event,
4600 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4601 * oncpu == -1).
4602 */
4603 if (event->oncpu == smp_processor_id())
4604 event->pmu->read(event);
4605
4606 *value = local64_read(&event->count);
4607 if (enabled || running) {
4608 u64 __enabled, __running, __now;
4609
4610 calc_timer_values(event, &__now, &__enabled, &__running);
4611 if (enabled)
4612 *enabled = __enabled;
4613 if (running)
4614 *running = __running;
4615 }
4616 out:
4617 local_irq_restore(flags);
4618
4619 return ret;
4620 }
4621 EXPORT_SYMBOL_GPL(perf_event_read_local);
4622
perf_event_read(struct perf_event * event,bool group)4623 static int perf_event_read(struct perf_event *event, bool group)
4624 {
4625 enum perf_event_state state = READ_ONCE(event->state);
4626 int event_cpu, ret = 0;
4627
4628 /*
4629 * If event is enabled and currently active on a CPU, update the
4630 * value in the event structure:
4631 */
4632 again:
4633 if (state == PERF_EVENT_STATE_ACTIVE) {
4634 struct perf_read_data data;
4635
4636 /*
4637 * Orders the ->state and ->oncpu loads such that if we see
4638 * ACTIVE we must also see the right ->oncpu.
4639 *
4640 * Matches the smp_wmb() from event_sched_in().
4641 */
4642 smp_rmb();
4643
4644 event_cpu = READ_ONCE(event->oncpu);
4645 if ((unsigned)event_cpu >= nr_cpu_ids)
4646 return 0;
4647
4648 data = (struct perf_read_data){
4649 .event = event,
4650 .group = group,
4651 .ret = 0,
4652 };
4653
4654 preempt_disable();
4655 event_cpu = __perf_event_read_cpu(event, event_cpu);
4656
4657 /*
4658 * Purposely ignore the smp_call_function_single() return
4659 * value.
4660 *
4661 * If event_cpu isn't a valid CPU it means the event got
4662 * scheduled out and that will have updated the event count.
4663 *
4664 * Therefore, either way, we'll have an up-to-date event count
4665 * after this.
4666 */
4667 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4668 preempt_enable();
4669 ret = data.ret;
4670
4671 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4672 struct perf_event_context *ctx = event->ctx;
4673 unsigned long flags;
4674
4675 raw_spin_lock_irqsave(&ctx->lock, flags);
4676 state = event->state;
4677 if (state != PERF_EVENT_STATE_INACTIVE) {
4678 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4679 goto again;
4680 }
4681
4682 /*
4683 * May read while context is not active (e.g., thread is
4684 * blocked), in that case we cannot update context time
4685 */
4686 if (ctx->is_active & EVENT_TIME) {
4687 update_context_time(ctx);
4688 update_cgrp_time_from_event(event);
4689 }
4690
4691 perf_event_update_time(event);
4692 if (group)
4693 perf_event_update_sibling_time(event);
4694 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4695 }
4696
4697 return ret;
4698 }
4699
4700 /*
4701 * Initialize the perf_event context in a task_struct:
4702 */
__perf_event_init_context(struct perf_event_context * ctx)4703 static void __perf_event_init_context(struct perf_event_context *ctx)
4704 {
4705 raw_spin_lock_init(&ctx->lock);
4706 mutex_init(&ctx->mutex);
4707 INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4708 perf_event_groups_init(&ctx->pinned_groups);
4709 perf_event_groups_init(&ctx->flexible_groups);
4710 INIT_LIST_HEAD(&ctx->event_list);
4711 refcount_set(&ctx->refcount, 1);
4712 }
4713
4714 static void
__perf_init_event_pmu_context(struct perf_event_pmu_context * epc,struct pmu * pmu)4715 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4716 {
4717 epc->pmu = pmu;
4718 INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4719 INIT_LIST_HEAD(&epc->pinned_active);
4720 INIT_LIST_HEAD(&epc->flexible_active);
4721 atomic_set(&epc->refcount, 1);
4722 }
4723
4724 static struct perf_event_context *
alloc_perf_context(struct task_struct * task)4725 alloc_perf_context(struct task_struct *task)
4726 {
4727 struct perf_event_context *ctx;
4728
4729 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4730 if (!ctx)
4731 return NULL;
4732
4733 __perf_event_init_context(ctx);
4734 if (task)
4735 ctx->task = get_task_struct(task);
4736
4737 return ctx;
4738 }
4739
4740 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4741 find_lively_task_by_vpid(pid_t vpid)
4742 {
4743 struct task_struct *task;
4744
4745 rcu_read_lock();
4746 if (!vpid)
4747 task = current;
4748 else
4749 task = find_task_by_vpid(vpid);
4750 if (task)
4751 get_task_struct(task);
4752 rcu_read_unlock();
4753
4754 if (!task)
4755 return ERR_PTR(-ESRCH);
4756
4757 return task;
4758 }
4759
4760 /*
4761 * Returns a matching context with refcount and pincount.
4762 */
4763 static struct perf_event_context *
find_get_context(struct task_struct * task,struct perf_event * event)4764 find_get_context(struct task_struct *task, struct perf_event *event)
4765 {
4766 struct perf_event_context *ctx, *clone_ctx = NULL;
4767 struct perf_cpu_context *cpuctx;
4768 unsigned long flags;
4769 int err;
4770
4771 if (!task) {
4772 /* Must be root to operate on a CPU event: */
4773 err = perf_allow_cpu(&event->attr);
4774 if (err)
4775 return ERR_PTR(err);
4776
4777 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4778 ctx = &cpuctx->ctx;
4779 get_ctx(ctx);
4780 raw_spin_lock_irqsave(&ctx->lock, flags);
4781 ++ctx->pin_count;
4782 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4783
4784 return ctx;
4785 }
4786
4787 err = -EINVAL;
4788 retry:
4789 ctx = perf_lock_task_context(task, &flags);
4790 if (ctx) {
4791 clone_ctx = unclone_ctx(ctx);
4792 ++ctx->pin_count;
4793
4794 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4795
4796 if (clone_ctx)
4797 put_ctx(clone_ctx);
4798 } else {
4799 ctx = alloc_perf_context(task);
4800 err = -ENOMEM;
4801 if (!ctx)
4802 goto errout;
4803
4804 err = 0;
4805 mutex_lock(&task->perf_event_mutex);
4806 /*
4807 * If it has already passed perf_event_exit_task().
4808 * we must see PF_EXITING, it takes this mutex too.
4809 */
4810 if (task->flags & PF_EXITING)
4811 err = -ESRCH;
4812 else if (task->perf_event_ctxp)
4813 err = -EAGAIN;
4814 else {
4815 get_ctx(ctx);
4816 ++ctx->pin_count;
4817 rcu_assign_pointer(task->perf_event_ctxp, ctx);
4818 }
4819 mutex_unlock(&task->perf_event_mutex);
4820
4821 if (unlikely(err)) {
4822 put_ctx(ctx);
4823
4824 if (err == -EAGAIN)
4825 goto retry;
4826 goto errout;
4827 }
4828 }
4829
4830 return ctx;
4831
4832 errout:
4833 return ERR_PTR(err);
4834 }
4835
4836 static struct perf_event_pmu_context *
find_get_pmu_context(struct pmu * pmu,struct perf_event_context * ctx,struct perf_event * event)4837 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4838 struct perf_event *event)
4839 {
4840 struct perf_event_pmu_context *new = NULL, *epc;
4841 void *task_ctx_data = NULL;
4842
4843 if (!ctx->task) {
4844 /*
4845 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4846 * relies on the fact that find_get_pmu_context() cannot fail
4847 * for CPU contexts.
4848 */
4849 struct perf_cpu_pmu_context *cpc;
4850
4851 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4852 epc = &cpc->epc;
4853 raw_spin_lock_irq(&ctx->lock);
4854 if (!epc->ctx) {
4855 atomic_set(&epc->refcount, 1);
4856 epc->embedded = 1;
4857 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4858 epc->ctx = ctx;
4859 } else {
4860 WARN_ON_ONCE(epc->ctx != ctx);
4861 atomic_inc(&epc->refcount);
4862 }
4863 raw_spin_unlock_irq(&ctx->lock);
4864 return epc;
4865 }
4866
4867 new = kzalloc(sizeof(*epc), GFP_KERNEL);
4868 if (!new)
4869 return ERR_PTR(-ENOMEM);
4870
4871 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4872 task_ctx_data = alloc_task_ctx_data(pmu);
4873 if (!task_ctx_data) {
4874 kfree(new);
4875 return ERR_PTR(-ENOMEM);
4876 }
4877 }
4878
4879 __perf_init_event_pmu_context(new, pmu);
4880
4881 /*
4882 * XXX
4883 *
4884 * lockdep_assert_held(&ctx->mutex);
4885 *
4886 * can't because perf_event_init_task() doesn't actually hold the
4887 * child_ctx->mutex.
4888 */
4889
4890 raw_spin_lock_irq(&ctx->lock);
4891 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4892 if (epc->pmu == pmu) {
4893 WARN_ON_ONCE(epc->ctx != ctx);
4894 atomic_inc(&epc->refcount);
4895 goto found_epc;
4896 }
4897 }
4898
4899 epc = new;
4900 new = NULL;
4901
4902 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4903 epc->ctx = ctx;
4904
4905 found_epc:
4906 if (task_ctx_data && !epc->task_ctx_data) {
4907 epc->task_ctx_data = task_ctx_data;
4908 task_ctx_data = NULL;
4909 ctx->nr_task_data++;
4910 }
4911 raw_spin_unlock_irq(&ctx->lock);
4912
4913 free_task_ctx_data(pmu, task_ctx_data);
4914 kfree(new);
4915
4916 return epc;
4917 }
4918
get_pmu_ctx(struct perf_event_pmu_context * epc)4919 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4920 {
4921 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4922 }
4923
free_epc_rcu(struct rcu_head * head)4924 static void free_epc_rcu(struct rcu_head *head)
4925 {
4926 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4927
4928 kfree(epc->task_ctx_data);
4929 kfree(epc);
4930 }
4931
put_pmu_ctx(struct perf_event_pmu_context * epc)4932 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4933 {
4934 struct perf_event_context *ctx = epc->ctx;
4935 unsigned long flags;
4936
4937 /*
4938 * XXX
4939 *
4940 * lockdep_assert_held(&ctx->mutex);
4941 *
4942 * can't because of the call-site in _free_event()/put_event()
4943 * which isn't always called under ctx->mutex.
4944 */
4945 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4946 return;
4947
4948 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4949
4950 list_del_init(&epc->pmu_ctx_entry);
4951 epc->ctx = NULL;
4952
4953 WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4954 WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4955
4956 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4957
4958 if (epc->embedded)
4959 return;
4960
4961 call_rcu(&epc->rcu_head, free_epc_rcu);
4962 }
4963
4964 static void perf_event_free_filter(struct perf_event *event);
4965
free_event_rcu(struct rcu_head * head)4966 static void free_event_rcu(struct rcu_head *head)
4967 {
4968 struct perf_event *event = container_of(head, typeof(*event), rcu_head);
4969
4970 if (event->ns)
4971 put_pid_ns(event->ns);
4972 perf_event_free_filter(event);
4973 kmem_cache_free(perf_event_cache, event);
4974 }
4975
4976 static void ring_buffer_attach(struct perf_event *event,
4977 struct perf_buffer *rb);
4978
detach_sb_event(struct perf_event * event)4979 static void detach_sb_event(struct perf_event *event)
4980 {
4981 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4982
4983 raw_spin_lock(&pel->lock);
4984 list_del_rcu(&event->sb_list);
4985 raw_spin_unlock(&pel->lock);
4986 }
4987
is_sb_event(struct perf_event * event)4988 static bool is_sb_event(struct perf_event *event)
4989 {
4990 struct perf_event_attr *attr = &event->attr;
4991
4992 if (event->parent)
4993 return false;
4994
4995 if (event->attach_state & PERF_ATTACH_TASK)
4996 return false;
4997
4998 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4999 attr->comm || attr->comm_exec ||
5000 attr->task || attr->ksymbol ||
5001 attr->context_switch || attr->text_poke ||
5002 attr->bpf_event)
5003 return true;
5004 return false;
5005 }
5006
unaccount_pmu_sb_event(struct perf_event * event)5007 static void unaccount_pmu_sb_event(struct perf_event *event)
5008 {
5009 if (is_sb_event(event))
5010 detach_sb_event(event);
5011 }
5012
5013 #ifdef CONFIG_NO_HZ_FULL
5014 static DEFINE_SPINLOCK(nr_freq_lock);
5015 #endif
5016
unaccount_freq_event_nohz(void)5017 static void unaccount_freq_event_nohz(void)
5018 {
5019 #ifdef CONFIG_NO_HZ_FULL
5020 spin_lock(&nr_freq_lock);
5021 if (atomic_dec_and_test(&nr_freq_events))
5022 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5023 spin_unlock(&nr_freq_lock);
5024 #endif
5025 }
5026
unaccount_freq_event(void)5027 static void unaccount_freq_event(void)
5028 {
5029 if (tick_nohz_full_enabled())
5030 unaccount_freq_event_nohz();
5031 else
5032 atomic_dec(&nr_freq_events);
5033 }
5034
unaccount_event(struct perf_event * event)5035 static void unaccount_event(struct perf_event *event)
5036 {
5037 bool dec = false;
5038
5039 if (event->parent)
5040 return;
5041
5042 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5043 dec = true;
5044 if (event->attr.mmap || event->attr.mmap_data)
5045 atomic_dec(&nr_mmap_events);
5046 if (event->attr.build_id)
5047 atomic_dec(&nr_build_id_events);
5048 if (event->attr.comm)
5049 atomic_dec(&nr_comm_events);
5050 if (event->attr.namespaces)
5051 atomic_dec(&nr_namespaces_events);
5052 if (event->attr.cgroup)
5053 atomic_dec(&nr_cgroup_events);
5054 if (event->attr.task)
5055 atomic_dec(&nr_task_events);
5056 if (event->attr.freq)
5057 unaccount_freq_event();
5058 if (event->attr.context_switch) {
5059 dec = true;
5060 atomic_dec(&nr_switch_events);
5061 }
5062 if (is_cgroup_event(event))
5063 dec = true;
5064 if (has_branch_stack(event))
5065 dec = true;
5066 if (event->attr.ksymbol)
5067 atomic_dec(&nr_ksymbol_events);
5068 if (event->attr.bpf_event)
5069 atomic_dec(&nr_bpf_events);
5070 if (event->attr.text_poke)
5071 atomic_dec(&nr_text_poke_events);
5072
5073 if (dec) {
5074 if (!atomic_add_unless(&perf_sched_count, -1, 1))
5075 schedule_delayed_work(&perf_sched_work, HZ);
5076 }
5077
5078 unaccount_pmu_sb_event(event);
5079 }
5080
perf_sched_delayed(struct work_struct * work)5081 static void perf_sched_delayed(struct work_struct *work)
5082 {
5083 mutex_lock(&perf_sched_mutex);
5084 if (atomic_dec_and_test(&perf_sched_count))
5085 static_branch_disable(&perf_sched_events);
5086 mutex_unlock(&perf_sched_mutex);
5087 }
5088
5089 /*
5090 * The following implement mutual exclusion of events on "exclusive" pmus
5091 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5092 * at a time, so we disallow creating events that might conflict, namely:
5093 *
5094 * 1) cpu-wide events in the presence of per-task events,
5095 * 2) per-task events in the presence of cpu-wide events,
5096 * 3) two matching events on the same perf_event_context.
5097 *
5098 * The former two cases are handled in the allocation path (perf_event_alloc(),
5099 * _free_event()), the latter -- before the first perf_install_in_context().
5100 */
exclusive_event_init(struct perf_event * event)5101 static int exclusive_event_init(struct perf_event *event)
5102 {
5103 struct pmu *pmu = event->pmu;
5104
5105 if (!is_exclusive_pmu(pmu))
5106 return 0;
5107
5108 /*
5109 * Prevent co-existence of per-task and cpu-wide events on the
5110 * same exclusive pmu.
5111 *
5112 * Negative pmu::exclusive_cnt means there are cpu-wide
5113 * events on this "exclusive" pmu, positive means there are
5114 * per-task events.
5115 *
5116 * Since this is called in perf_event_alloc() path, event::ctx
5117 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5118 * to mean "per-task event", because unlike other attach states it
5119 * never gets cleared.
5120 */
5121 if (event->attach_state & PERF_ATTACH_TASK) {
5122 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5123 return -EBUSY;
5124 } else {
5125 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5126 return -EBUSY;
5127 }
5128
5129 return 0;
5130 }
5131
exclusive_event_destroy(struct perf_event * event)5132 static void exclusive_event_destroy(struct perf_event *event)
5133 {
5134 struct pmu *pmu = event->pmu;
5135
5136 if (!is_exclusive_pmu(pmu))
5137 return;
5138
5139 /* see comment in exclusive_event_init() */
5140 if (event->attach_state & PERF_ATTACH_TASK)
5141 atomic_dec(&pmu->exclusive_cnt);
5142 else
5143 atomic_inc(&pmu->exclusive_cnt);
5144 }
5145
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)5146 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5147 {
5148 if ((e1->pmu == e2->pmu) &&
5149 (e1->cpu == e2->cpu ||
5150 e1->cpu == -1 ||
5151 e2->cpu == -1))
5152 return true;
5153 return false;
5154 }
5155
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)5156 static bool exclusive_event_installable(struct perf_event *event,
5157 struct perf_event_context *ctx)
5158 {
5159 struct perf_event *iter_event;
5160 struct pmu *pmu = event->pmu;
5161
5162 lockdep_assert_held(&ctx->mutex);
5163
5164 if (!is_exclusive_pmu(pmu))
5165 return true;
5166
5167 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5168 if (exclusive_event_match(iter_event, event))
5169 return false;
5170 }
5171
5172 return true;
5173 }
5174
5175 static void perf_addr_filters_splice(struct perf_event *event,
5176 struct list_head *head);
5177
_free_event(struct perf_event * event)5178 static void _free_event(struct perf_event *event)
5179 {
5180 irq_work_sync(&event->pending_irq);
5181
5182 unaccount_event(event);
5183
5184 security_perf_event_free(event);
5185
5186 if (event->rb) {
5187 /*
5188 * Can happen when we close an event with re-directed output.
5189 *
5190 * Since we have a 0 refcount, perf_mmap_close() will skip
5191 * over us; possibly making our ring_buffer_put() the last.
5192 */
5193 mutex_lock(&event->mmap_mutex);
5194 ring_buffer_attach(event, NULL);
5195 mutex_unlock(&event->mmap_mutex);
5196 }
5197
5198 if (is_cgroup_event(event))
5199 perf_detach_cgroup(event);
5200
5201 if (!event->parent) {
5202 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5203 put_callchain_buffers();
5204 }
5205
5206 perf_event_free_bpf_prog(event);
5207 perf_addr_filters_splice(event, NULL);
5208 kfree(event->addr_filter_ranges);
5209
5210 if (event->destroy)
5211 event->destroy(event);
5212
5213 /*
5214 * Must be after ->destroy(), due to uprobe_perf_close() using
5215 * hw.target.
5216 */
5217 if (event->hw.target)
5218 put_task_struct(event->hw.target);
5219
5220 if (event->pmu_ctx)
5221 put_pmu_ctx(event->pmu_ctx);
5222
5223 /*
5224 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5225 * all task references must be cleaned up.
5226 */
5227 if (event->ctx)
5228 put_ctx(event->ctx);
5229
5230 exclusive_event_destroy(event);
5231 module_put(event->pmu->module);
5232
5233 call_rcu(&event->rcu_head, free_event_rcu);
5234 }
5235
5236 /*
5237 * Used to free events which have a known refcount of 1, such as in error paths
5238 * where the event isn't exposed yet and inherited events.
5239 */
free_event(struct perf_event * event)5240 static void free_event(struct perf_event *event)
5241 {
5242 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5243 "unexpected event refcount: %ld; ptr=%p\n",
5244 atomic_long_read(&event->refcount), event)) {
5245 /* leak to avoid use-after-free */
5246 return;
5247 }
5248
5249 _free_event(event);
5250 }
5251
5252 /*
5253 * Remove user event from the owner task.
5254 */
perf_remove_from_owner(struct perf_event * event)5255 static void perf_remove_from_owner(struct perf_event *event)
5256 {
5257 struct task_struct *owner;
5258
5259 rcu_read_lock();
5260 /*
5261 * Matches the smp_store_release() in perf_event_exit_task(). If we
5262 * observe !owner it means the list deletion is complete and we can
5263 * indeed free this event, otherwise we need to serialize on
5264 * owner->perf_event_mutex.
5265 */
5266 owner = READ_ONCE(event->owner);
5267 if (owner) {
5268 /*
5269 * Since delayed_put_task_struct() also drops the last
5270 * task reference we can safely take a new reference
5271 * while holding the rcu_read_lock().
5272 */
5273 get_task_struct(owner);
5274 }
5275 rcu_read_unlock();
5276
5277 if (owner) {
5278 /*
5279 * If we're here through perf_event_exit_task() we're already
5280 * holding ctx->mutex which would be an inversion wrt. the
5281 * normal lock order.
5282 *
5283 * However we can safely take this lock because its the child
5284 * ctx->mutex.
5285 */
5286 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5287
5288 /*
5289 * We have to re-check the event->owner field, if it is cleared
5290 * we raced with perf_event_exit_task(), acquiring the mutex
5291 * ensured they're done, and we can proceed with freeing the
5292 * event.
5293 */
5294 if (event->owner) {
5295 list_del_init(&event->owner_entry);
5296 smp_store_release(&event->owner, NULL);
5297 }
5298 mutex_unlock(&owner->perf_event_mutex);
5299 put_task_struct(owner);
5300 }
5301 }
5302
put_event(struct perf_event * event)5303 static void put_event(struct perf_event *event)
5304 {
5305 if (!atomic_long_dec_and_test(&event->refcount))
5306 return;
5307
5308 _free_event(event);
5309 }
5310
5311 /*
5312 * Kill an event dead; while event:refcount will preserve the event
5313 * object, it will not preserve its functionality. Once the last 'user'
5314 * gives up the object, we'll destroy the thing.
5315 */
perf_event_release_kernel(struct perf_event * event)5316 int perf_event_release_kernel(struct perf_event *event)
5317 {
5318 struct perf_event_context *ctx = event->ctx;
5319 struct perf_event *child, *tmp;
5320 LIST_HEAD(free_list);
5321
5322 /*
5323 * If we got here through err_alloc: free_event(event); we will not
5324 * have attached to a context yet.
5325 */
5326 if (!ctx) {
5327 WARN_ON_ONCE(event->attach_state &
5328 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5329 goto no_ctx;
5330 }
5331
5332 if (!is_kernel_event(event))
5333 perf_remove_from_owner(event);
5334
5335 ctx = perf_event_ctx_lock(event);
5336 WARN_ON_ONCE(ctx->parent_ctx);
5337
5338 /*
5339 * Mark this event as STATE_DEAD, there is no external reference to it
5340 * anymore.
5341 *
5342 * Anybody acquiring event->child_mutex after the below loop _must_
5343 * also see this, most importantly inherit_event() which will avoid
5344 * placing more children on the list.
5345 *
5346 * Thus this guarantees that we will in fact observe and kill _ALL_
5347 * child events.
5348 */
5349 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5350
5351 perf_event_ctx_unlock(event, ctx);
5352
5353 again:
5354 mutex_lock(&event->child_mutex);
5355 list_for_each_entry(child, &event->child_list, child_list) {
5356 void *var = NULL;
5357
5358 /*
5359 * Cannot change, child events are not migrated, see the
5360 * comment with perf_event_ctx_lock_nested().
5361 */
5362 ctx = READ_ONCE(child->ctx);
5363 /*
5364 * Since child_mutex nests inside ctx::mutex, we must jump
5365 * through hoops. We start by grabbing a reference on the ctx.
5366 *
5367 * Since the event cannot get freed while we hold the
5368 * child_mutex, the context must also exist and have a !0
5369 * reference count.
5370 */
5371 get_ctx(ctx);
5372
5373 /*
5374 * Now that we have a ctx ref, we can drop child_mutex, and
5375 * acquire ctx::mutex without fear of it going away. Then we
5376 * can re-acquire child_mutex.
5377 */
5378 mutex_unlock(&event->child_mutex);
5379 mutex_lock(&ctx->mutex);
5380 mutex_lock(&event->child_mutex);
5381
5382 /*
5383 * Now that we hold ctx::mutex and child_mutex, revalidate our
5384 * state, if child is still the first entry, it didn't get freed
5385 * and we can continue doing so.
5386 */
5387 tmp = list_first_entry_or_null(&event->child_list,
5388 struct perf_event, child_list);
5389 if (tmp == child) {
5390 perf_remove_from_context(child, DETACH_GROUP);
5391 list_move(&child->child_list, &free_list);
5392 /*
5393 * This matches the refcount bump in inherit_event();
5394 * this can't be the last reference.
5395 */
5396 put_event(event);
5397 } else {
5398 var = &ctx->refcount;
5399 }
5400
5401 mutex_unlock(&event->child_mutex);
5402 mutex_unlock(&ctx->mutex);
5403 put_ctx(ctx);
5404
5405 if (var) {
5406 /*
5407 * If perf_event_free_task() has deleted all events from the
5408 * ctx while the child_mutex got released above, make sure to
5409 * notify about the preceding put_ctx().
5410 */
5411 smp_mb(); /* pairs with wait_var_event() */
5412 wake_up_var(var);
5413 }
5414 goto again;
5415 }
5416 mutex_unlock(&event->child_mutex);
5417
5418 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5419 void *var = &child->ctx->refcount;
5420
5421 list_del(&child->child_list);
5422 free_event(child);
5423
5424 /*
5425 * Wake any perf_event_free_task() waiting for this event to be
5426 * freed.
5427 */
5428 smp_mb(); /* pairs with wait_var_event() */
5429 wake_up_var(var);
5430 }
5431
5432 no_ctx:
5433 put_event(event); /* Must be the 'last' reference */
5434 return 0;
5435 }
5436 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5437
5438 /*
5439 * Called when the last reference to the file is gone.
5440 */
perf_release(struct inode * inode,struct file * file)5441 static int perf_release(struct inode *inode, struct file *file)
5442 {
5443 perf_event_release_kernel(file->private_data);
5444 return 0;
5445 }
5446
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5447 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5448 {
5449 struct perf_event *child;
5450 u64 total = 0;
5451
5452 *enabled = 0;
5453 *running = 0;
5454
5455 mutex_lock(&event->child_mutex);
5456
5457 (void)perf_event_read(event, false);
5458 total += perf_event_count(event);
5459
5460 *enabled += event->total_time_enabled +
5461 atomic64_read(&event->child_total_time_enabled);
5462 *running += event->total_time_running +
5463 atomic64_read(&event->child_total_time_running);
5464
5465 list_for_each_entry(child, &event->child_list, child_list) {
5466 (void)perf_event_read(child, false);
5467 total += perf_event_count(child);
5468 *enabled += child->total_time_enabled;
5469 *running += child->total_time_running;
5470 }
5471 mutex_unlock(&event->child_mutex);
5472
5473 return total;
5474 }
5475
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5476 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5477 {
5478 struct perf_event_context *ctx;
5479 u64 count;
5480
5481 ctx = perf_event_ctx_lock(event);
5482 count = __perf_event_read_value(event, enabled, running);
5483 perf_event_ctx_unlock(event, ctx);
5484
5485 return count;
5486 }
5487 EXPORT_SYMBOL_GPL(perf_event_read_value);
5488
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)5489 static int __perf_read_group_add(struct perf_event *leader,
5490 u64 read_format, u64 *values)
5491 {
5492 struct perf_event_context *ctx = leader->ctx;
5493 struct perf_event *sub, *parent;
5494 unsigned long flags;
5495 int n = 1; /* skip @nr */
5496 int ret;
5497
5498 ret = perf_event_read(leader, true);
5499 if (ret)
5500 return ret;
5501
5502 raw_spin_lock_irqsave(&ctx->lock, flags);
5503 /*
5504 * Verify the grouping between the parent and child (inherited)
5505 * events is still in tact.
5506 *
5507 * Specifically:
5508 * - leader->ctx->lock pins leader->sibling_list
5509 * - parent->child_mutex pins parent->child_list
5510 * - parent->ctx->mutex pins parent->sibling_list
5511 *
5512 * Because parent->ctx != leader->ctx (and child_list nests inside
5513 * ctx->mutex), group destruction is not atomic between children, also
5514 * see perf_event_release_kernel(). Additionally, parent can grow the
5515 * group.
5516 *
5517 * Therefore it is possible to have parent and child groups in a
5518 * different configuration and summing over such a beast makes no sense
5519 * what so ever.
5520 *
5521 * Reject this.
5522 */
5523 parent = leader->parent;
5524 if (parent &&
5525 (parent->group_generation != leader->group_generation ||
5526 parent->nr_siblings != leader->nr_siblings)) {
5527 ret = -ECHILD;
5528 goto unlock;
5529 }
5530
5531 /*
5532 * Since we co-schedule groups, {enabled,running} times of siblings
5533 * will be identical to those of the leader, so we only publish one
5534 * set.
5535 */
5536 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5537 values[n++] += leader->total_time_enabled +
5538 atomic64_read(&leader->child_total_time_enabled);
5539 }
5540
5541 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5542 values[n++] += leader->total_time_running +
5543 atomic64_read(&leader->child_total_time_running);
5544 }
5545
5546 /*
5547 * Write {count,id} tuples for every sibling.
5548 */
5549 values[n++] += perf_event_count(leader);
5550 if (read_format & PERF_FORMAT_ID)
5551 values[n++] = primary_event_id(leader);
5552 if (read_format & PERF_FORMAT_LOST)
5553 values[n++] = atomic64_read(&leader->lost_samples);
5554
5555 for_each_sibling_event(sub, leader) {
5556 values[n++] += perf_event_count(sub);
5557 if (read_format & PERF_FORMAT_ID)
5558 values[n++] = primary_event_id(sub);
5559 if (read_format & PERF_FORMAT_LOST)
5560 values[n++] = atomic64_read(&sub->lost_samples);
5561 }
5562
5563 unlock:
5564 raw_spin_unlock_irqrestore(&ctx->lock, flags);
5565 return ret;
5566 }
5567
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)5568 static int perf_read_group(struct perf_event *event,
5569 u64 read_format, char __user *buf)
5570 {
5571 struct perf_event *leader = event->group_leader, *child;
5572 struct perf_event_context *ctx = leader->ctx;
5573 int ret;
5574 u64 *values;
5575
5576 lockdep_assert_held(&ctx->mutex);
5577
5578 values = kzalloc(event->read_size, GFP_KERNEL);
5579 if (!values)
5580 return -ENOMEM;
5581
5582 values[0] = 1 + leader->nr_siblings;
5583
5584 mutex_lock(&leader->child_mutex);
5585
5586 ret = __perf_read_group_add(leader, read_format, values);
5587 if (ret)
5588 goto unlock;
5589
5590 list_for_each_entry(child, &leader->child_list, child_list) {
5591 ret = __perf_read_group_add(child, read_format, values);
5592 if (ret)
5593 goto unlock;
5594 }
5595
5596 mutex_unlock(&leader->child_mutex);
5597
5598 ret = event->read_size;
5599 if (copy_to_user(buf, values, event->read_size))
5600 ret = -EFAULT;
5601 goto out;
5602
5603 unlock:
5604 mutex_unlock(&leader->child_mutex);
5605 out:
5606 kfree(values);
5607 return ret;
5608 }
5609
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)5610 static int perf_read_one(struct perf_event *event,
5611 u64 read_format, char __user *buf)
5612 {
5613 u64 enabled, running;
5614 u64 values[5];
5615 int n = 0;
5616
5617 values[n++] = __perf_event_read_value(event, &enabled, &running);
5618 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5619 values[n++] = enabled;
5620 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5621 values[n++] = running;
5622 if (read_format & PERF_FORMAT_ID)
5623 values[n++] = primary_event_id(event);
5624 if (read_format & PERF_FORMAT_LOST)
5625 values[n++] = atomic64_read(&event->lost_samples);
5626
5627 if (copy_to_user(buf, values, n * sizeof(u64)))
5628 return -EFAULT;
5629
5630 return n * sizeof(u64);
5631 }
5632
is_event_hup(struct perf_event * event)5633 static bool is_event_hup(struct perf_event *event)
5634 {
5635 bool no_children;
5636
5637 if (event->state > PERF_EVENT_STATE_EXIT)
5638 return false;
5639
5640 mutex_lock(&event->child_mutex);
5641 no_children = list_empty(&event->child_list);
5642 mutex_unlock(&event->child_mutex);
5643 return no_children;
5644 }
5645
5646 /*
5647 * Read the performance event - simple non blocking version for now
5648 */
5649 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)5650 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5651 {
5652 u64 read_format = event->attr.read_format;
5653 int ret;
5654
5655 /*
5656 * Return end-of-file for a read on an event that is in
5657 * error state (i.e. because it was pinned but it couldn't be
5658 * scheduled on to the CPU at some point).
5659 */
5660 if (event->state == PERF_EVENT_STATE_ERROR)
5661 return 0;
5662
5663 if (count < event->read_size)
5664 return -ENOSPC;
5665
5666 WARN_ON_ONCE(event->ctx->parent_ctx);
5667 if (read_format & PERF_FORMAT_GROUP)
5668 ret = perf_read_group(event, read_format, buf);
5669 else
5670 ret = perf_read_one(event, read_format, buf);
5671
5672 return ret;
5673 }
5674
5675 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)5676 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5677 {
5678 struct perf_event *event = file->private_data;
5679 struct perf_event_context *ctx;
5680 int ret;
5681
5682 ret = security_perf_event_read(event);
5683 if (ret)
5684 return ret;
5685
5686 ctx = perf_event_ctx_lock(event);
5687 ret = __perf_read(event, buf, count);
5688 perf_event_ctx_unlock(event, ctx);
5689
5690 return ret;
5691 }
5692
perf_poll(struct file * file,poll_table * wait)5693 static __poll_t perf_poll(struct file *file, poll_table *wait)
5694 {
5695 struct perf_event *event = file->private_data;
5696 struct perf_buffer *rb;
5697 __poll_t events = EPOLLHUP;
5698
5699 poll_wait(file, &event->waitq, wait);
5700
5701 if (is_event_hup(event))
5702 return events;
5703
5704 /*
5705 * Pin the event->rb by taking event->mmap_mutex; otherwise
5706 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5707 */
5708 mutex_lock(&event->mmap_mutex);
5709 rb = event->rb;
5710 if (rb)
5711 events = atomic_xchg(&rb->poll, 0);
5712 mutex_unlock(&event->mmap_mutex);
5713 return events;
5714 }
5715
_perf_event_reset(struct perf_event * event)5716 static void _perf_event_reset(struct perf_event *event)
5717 {
5718 (void)perf_event_read(event, false);
5719 local64_set(&event->count, 0);
5720 perf_event_update_userpage(event);
5721 }
5722
5723 /* Assume it's not an event with inherit set. */
perf_event_pause(struct perf_event * event,bool reset)5724 u64 perf_event_pause(struct perf_event *event, bool reset)
5725 {
5726 struct perf_event_context *ctx;
5727 u64 count;
5728
5729 ctx = perf_event_ctx_lock(event);
5730 WARN_ON_ONCE(event->attr.inherit);
5731 _perf_event_disable(event);
5732 count = local64_read(&event->count);
5733 if (reset)
5734 local64_set(&event->count, 0);
5735 perf_event_ctx_unlock(event, ctx);
5736
5737 return count;
5738 }
5739 EXPORT_SYMBOL_GPL(perf_event_pause);
5740
5741 /*
5742 * Holding the top-level event's child_mutex means that any
5743 * descendant process that has inherited this event will block
5744 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5745 * task existence requirements of perf_event_enable/disable.
5746 */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))5747 static void perf_event_for_each_child(struct perf_event *event,
5748 void (*func)(struct perf_event *))
5749 {
5750 struct perf_event *child;
5751
5752 WARN_ON_ONCE(event->ctx->parent_ctx);
5753
5754 mutex_lock(&event->child_mutex);
5755 func(event);
5756 list_for_each_entry(child, &event->child_list, child_list)
5757 func(child);
5758 mutex_unlock(&event->child_mutex);
5759 }
5760
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))5761 static void perf_event_for_each(struct perf_event *event,
5762 void (*func)(struct perf_event *))
5763 {
5764 struct perf_event_context *ctx = event->ctx;
5765 struct perf_event *sibling;
5766
5767 lockdep_assert_held(&ctx->mutex);
5768
5769 event = event->group_leader;
5770
5771 perf_event_for_each_child(event, func);
5772 for_each_sibling_event(sibling, event)
5773 perf_event_for_each_child(sibling, func);
5774 }
5775
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)5776 static void __perf_event_period(struct perf_event *event,
5777 struct perf_cpu_context *cpuctx,
5778 struct perf_event_context *ctx,
5779 void *info)
5780 {
5781 u64 value = *((u64 *)info);
5782 bool active;
5783
5784 if (event->attr.freq) {
5785 event->attr.sample_freq = value;
5786 } else {
5787 event->attr.sample_period = value;
5788 event->hw.sample_period = value;
5789 }
5790
5791 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5792 if (active) {
5793 perf_pmu_disable(event->pmu);
5794 /*
5795 * We could be throttled; unthrottle now to avoid the tick
5796 * trying to unthrottle while we already re-started the event.
5797 */
5798 if (event->hw.interrupts == MAX_INTERRUPTS) {
5799 event->hw.interrupts = 0;
5800 perf_log_throttle(event, 1);
5801 }
5802 event->pmu->stop(event, PERF_EF_UPDATE);
5803 }
5804
5805 local64_set(&event->hw.period_left, 0);
5806
5807 if (active) {
5808 event->pmu->start(event, PERF_EF_RELOAD);
5809 perf_pmu_enable(event->pmu);
5810 }
5811 }
5812
perf_event_check_period(struct perf_event * event,u64 value)5813 static int perf_event_check_period(struct perf_event *event, u64 value)
5814 {
5815 return event->pmu->check_period(event, value);
5816 }
5817
_perf_event_period(struct perf_event * event,u64 value)5818 static int _perf_event_period(struct perf_event *event, u64 value)
5819 {
5820 if (!is_sampling_event(event))
5821 return -EINVAL;
5822
5823 if (!value)
5824 return -EINVAL;
5825
5826 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5827 return -EINVAL;
5828
5829 if (perf_event_check_period(event, value))
5830 return -EINVAL;
5831
5832 if (!event->attr.freq && (value & (1ULL << 63)))
5833 return -EINVAL;
5834
5835 event_function_call(event, __perf_event_period, &value);
5836
5837 return 0;
5838 }
5839
perf_event_period(struct perf_event * event,u64 value)5840 int perf_event_period(struct perf_event *event, u64 value)
5841 {
5842 struct perf_event_context *ctx;
5843 int ret;
5844
5845 ctx = perf_event_ctx_lock(event);
5846 ret = _perf_event_period(event, value);
5847 perf_event_ctx_unlock(event, ctx);
5848
5849 return ret;
5850 }
5851 EXPORT_SYMBOL_GPL(perf_event_period);
5852
5853 static const struct file_operations perf_fops;
5854
perf_fget_light(int fd,struct fd * p)5855 static inline int perf_fget_light(int fd, struct fd *p)
5856 {
5857 struct fd f = fdget(fd);
5858 if (!f.file)
5859 return -EBADF;
5860
5861 if (f.file->f_op != &perf_fops) {
5862 fdput(f);
5863 return -EBADF;
5864 }
5865 *p = f;
5866 return 0;
5867 }
5868
5869 static int perf_event_set_output(struct perf_event *event,
5870 struct perf_event *output_event);
5871 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5872 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5873 struct perf_event_attr *attr);
5874
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)5875 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5876 {
5877 void (*func)(struct perf_event *);
5878 u32 flags = arg;
5879
5880 switch (cmd) {
5881 case PERF_EVENT_IOC_ENABLE:
5882 func = _perf_event_enable;
5883 break;
5884 case PERF_EVENT_IOC_DISABLE:
5885 func = _perf_event_disable;
5886 break;
5887 case PERF_EVENT_IOC_RESET:
5888 func = _perf_event_reset;
5889 break;
5890
5891 case PERF_EVENT_IOC_REFRESH:
5892 return _perf_event_refresh(event, arg);
5893
5894 case PERF_EVENT_IOC_PERIOD:
5895 {
5896 u64 value;
5897
5898 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5899 return -EFAULT;
5900
5901 return _perf_event_period(event, value);
5902 }
5903 case PERF_EVENT_IOC_ID:
5904 {
5905 u64 id = primary_event_id(event);
5906
5907 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5908 return -EFAULT;
5909 return 0;
5910 }
5911
5912 case PERF_EVENT_IOC_SET_OUTPUT:
5913 {
5914 int ret;
5915 if (arg != -1) {
5916 struct perf_event *output_event;
5917 struct fd output;
5918 ret = perf_fget_light(arg, &output);
5919 if (ret)
5920 return ret;
5921 output_event = output.file->private_data;
5922 ret = perf_event_set_output(event, output_event);
5923 fdput(output);
5924 } else {
5925 ret = perf_event_set_output(event, NULL);
5926 }
5927 return ret;
5928 }
5929
5930 case PERF_EVENT_IOC_SET_FILTER:
5931 return perf_event_set_filter(event, (void __user *)arg);
5932
5933 case PERF_EVENT_IOC_SET_BPF:
5934 {
5935 struct bpf_prog *prog;
5936 int err;
5937
5938 prog = bpf_prog_get(arg);
5939 if (IS_ERR(prog))
5940 return PTR_ERR(prog);
5941
5942 err = perf_event_set_bpf_prog(event, prog, 0);
5943 if (err) {
5944 bpf_prog_put(prog);
5945 return err;
5946 }
5947
5948 return 0;
5949 }
5950
5951 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5952 struct perf_buffer *rb;
5953
5954 rcu_read_lock();
5955 rb = rcu_dereference(event->rb);
5956 if (!rb || !rb->nr_pages) {
5957 rcu_read_unlock();
5958 return -EINVAL;
5959 }
5960 rb_toggle_paused(rb, !!arg);
5961 rcu_read_unlock();
5962 return 0;
5963 }
5964
5965 case PERF_EVENT_IOC_QUERY_BPF:
5966 return perf_event_query_prog_array(event, (void __user *)arg);
5967
5968 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5969 struct perf_event_attr new_attr;
5970 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5971 &new_attr);
5972
5973 if (err)
5974 return err;
5975
5976 return perf_event_modify_attr(event, &new_attr);
5977 }
5978 default:
5979 return -ENOTTY;
5980 }
5981
5982 if (flags & PERF_IOC_FLAG_GROUP)
5983 perf_event_for_each(event, func);
5984 else
5985 perf_event_for_each_child(event, func);
5986
5987 return 0;
5988 }
5989
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5990 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5991 {
5992 struct perf_event *event = file->private_data;
5993 struct perf_event_context *ctx;
5994 long ret;
5995
5996 /* Treat ioctl like writes as it is likely a mutating operation. */
5997 ret = security_perf_event_write(event);
5998 if (ret)
5999 return ret;
6000
6001 ctx = perf_event_ctx_lock(event);
6002 ret = _perf_ioctl(event, cmd, arg);
6003 perf_event_ctx_unlock(event, ctx);
6004
6005 return ret;
6006 }
6007
6008 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6009 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6010 unsigned long arg)
6011 {
6012 switch (_IOC_NR(cmd)) {
6013 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6014 case _IOC_NR(PERF_EVENT_IOC_ID):
6015 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6016 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6017 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6018 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6019 cmd &= ~IOCSIZE_MASK;
6020 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6021 }
6022 break;
6023 }
6024 return perf_ioctl(file, cmd, arg);
6025 }
6026 #else
6027 # define perf_compat_ioctl NULL
6028 #endif
6029
perf_event_task_enable(void)6030 int perf_event_task_enable(void)
6031 {
6032 struct perf_event_context *ctx;
6033 struct perf_event *event;
6034
6035 mutex_lock(¤t->perf_event_mutex);
6036 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
6037 ctx = perf_event_ctx_lock(event);
6038 perf_event_for_each_child(event, _perf_event_enable);
6039 perf_event_ctx_unlock(event, ctx);
6040 }
6041 mutex_unlock(¤t->perf_event_mutex);
6042
6043 return 0;
6044 }
6045
perf_event_task_disable(void)6046 int perf_event_task_disable(void)
6047 {
6048 struct perf_event_context *ctx;
6049 struct perf_event *event;
6050
6051 mutex_lock(¤t->perf_event_mutex);
6052 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
6053 ctx = perf_event_ctx_lock(event);
6054 perf_event_for_each_child(event, _perf_event_disable);
6055 perf_event_ctx_unlock(event, ctx);
6056 }
6057 mutex_unlock(¤t->perf_event_mutex);
6058
6059 return 0;
6060 }
6061
perf_event_index(struct perf_event * event)6062 static int perf_event_index(struct perf_event *event)
6063 {
6064 if (event->hw.state & PERF_HES_STOPPED)
6065 return 0;
6066
6067 if (event->state != PERF_EVENT_STATE_ACTIVE)
6068 return 0;
6069
6070 return event->pmu->event_idx(event);
6071 }
6072
perf_event_init_userpage(struct perf_event * event)6073 static void perf_event_init_userpage(struct perf_event *event)
6074 {
6075 struct perf_event_mmap_page *userpg;
6076 struct perf_buffer *rb;
6077
6078 rcu_read_lock();
6079 rb = rcu_dereference(event->rb);
6080 if (!rb)
6081 goto unlock;
6082
6083 userpg = rb->user_page;
6084
6085 /* Allow new userspace to detect that bit 0 is deprecated */
6086 userpg->cap_bit0_is_deprecated = 1;
6087 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6088 userpg->data_offset = PAGE_SIZE;
6089 userpg->data_size = perf_data_size(rb);
6090
6091 unlock:
6092 rcu_read_unlock();
6093 }
6094
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)6095 void __weak arch_perf_update_userpage(
6096 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6097 {
6098 }
6099
6100 /*
6101 * Callers need to ensure there can be no nesting of this function, otherwise
6102 * the seqlock logic goes bad. We can not serialize this because the arch
6103 * code calls this from NMI context.
6104 */
perf_event_update_userpage(struct perf_event * event)6105 void perf_event_update_userpage(struct perf_event *event)
6106 {
6107 struct perf_event_mmap_page *userpg;
6108 struct perf_buffer *rb;
6109 u64 enabled, running, now;
6110
6111 rcu_read_lock();
6112 rb = rcu_dereference(event->rb);
6113 if (!rb)
6114 goto unlock;
6115
6116 /*
6117 * compute total_time_enabled, total_time_running
6118 * based on snapshot values taken when the event
6119 * was last scheduled in.
6120 *
6121 * we cannot simply called update_context_time()
6122 * because of locking issue as we can be called in
6123 * NMI context
6124 */
6125 calc_timer_values(event, &now, &enabled, &running);
6126
6127 userpg = rb->user_page;
6128 /*
6129 * Disable preemption to guarantee consistent time stamps are stored to
6130 * the user page.
6131 */
6132 preempt_disable();
6133 ++userpg->lock;
6134 barrier();
6135 userpg->index = perf_event_index(event);
6136 userpg->offset = perf_event_count(event);
6137 if (userpg->index)
6138 userpg->offset -= local64_read(&event->hw.prev_count);
6139
6140 userpg->time_enabled = enabled +
6141 atomic64_read(&event->child_total_time_enabled);
6142
6143 userpg->time_running = running +
6144 atomic64_read(&event->child_total_time_running);
6145
6146 arch_perf_update_userpage(event, userpg, now);
6147
6148 barrier();
6149 ++userpg->lock;
6150 preempt_enable();
6151 unlock:
6152 rcu_read_unlock();
6153 }
6154 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6155
perf_mmap_fault(struct vm_fault * vmf)6156 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6157 {
6158 struct perf_event *event = vmf->vma->vm_file->private_data;
6159 struct perf_buffer *rb;
6160 vm_fault_t ret = VM_FAULT_SIGBUS;
6161
6162 if (vmf->flags & FAULT_FLAG_MKWRITE) {
6163 if (vmf->pgoff == 0)
6164 ret = 0;
6165 return ret;
6166 }
6167
6168 rcu_read_lock();
6169 rb = rcu_dereference(event->rb);
6170 if (!rb)
6171 goto unlock;
6172
6173 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6174 goto unlock;
6175
6176 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6177 if (!vmf->page)
6178 goto unlock;
6179
6180 get_page(vmf->page);
6181 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6182 vmf->page->index = vmf->pgoff;
6183
6184 ret = 0;
6185 unlock:
6186 rcu_read_unlock();
6187
6188 return ret;
6189 }
6190
ring_buffer_attach(struct perf_event * event,struct perf_buffer * rb)6191 static void ring_buffer_attach(struct perf_event *event,
6192 struct perf_buffer *rb)
6193 {
6194 struct perf_buffer *old_rb = NULL;
6195 unsigned long flags;
6196
6197 WARN_ON_ONCE(event->parent);
6198
6199 if (event->rb) {
6200 /*
6201 * Should be impossible, we set this when removing
6202 * event->rb_entry and wait/clear when adding event->rb_entry.
6203 */
6204 WARN_ON_ONCE(event->rcu_pending);
6205
6206 old_rb = event->rb;
6207 spin_lock_irqsave(&old_rb->event_lock, flags);
6208 list_del_rcu(&event->rb_entry);
6209 spin_unlock_irqrestore(&old_rb->event_lock, flags);
6210
6211 event->rcu_batches = get_state_synchronize_rcu();
6212 event->rcu_pending = 1;
6213 }
6214
6215 if (rb) {
6216 if (event->rcu_pending) {
6217 cond_synchronize_rcu(event->rcu_batches);
6218 event->rcu_pending = 0;
6219 }
6220
6221 spin_lock_irqsave(&rb->event_lock, flags);
6222 list_add_rcu(&event->rb_entry, &rb->event_list);
6223 spin_unlock_irqrestore(&rb->event_lock, flags);
6224 }
6225
6226 /*
6227 * Avoid racing with perf_mmap_close(AUX): stop the event
6228 * before swizzling the event::rb pointer; if it's getting
6229 * unmapped, its aux_mmap_count will be 0 and it won't
6230 * restart. See the comment in __perf_pmu_output_stop().
6231 *
6232 * Data will inevitably be lost when set_output is done in
6233 * mid-air, but then again, whoever does it like this is
6234 * not in for the data anyway.
6235 */
6236 if (has_aux(event))
6237 perf_event_stop(event, 0);
6238
6239 rcu_assign_pointer(event->rb, rb);
6240
6241 if (old_rb) {
6242 ring_buffer_put(old_rb);
6243 /*
6244 * Since we detached before setting the new rb, so that we
6245 * could attach the new rb, we could have missed a wakeup.
6246 * Provide it now.
6247 */
6248 wake_up_all(&event->waitq);
6249 }
6250 }
6251
ring_buffer_wakeup(struct perf_event * event)6252 static void ring_buffer_wakeup(struct perf_event *event)
6253 {
6254 struct perf_buffer *rb;
6255
6256 if (event->parent)
6257 event = event->parent;
6258
6259 rcu_read_lock();
6260 rb = rcu_dereference(event->rb);
6261 if (rb) {
6262 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6263 wake_up_all(&event->waitq);
6264 }
6265 rcu_read_unlock();
6266 }
6267
ring_buffer_get(struct perf_event * event)6268 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6269 {
6270 struct perf_buffer *rb;
6271
6272 if (event->parent)
6273 event = event->parent;
6274
6275 rcu_read_lock();
6276 rb = rcu_dereference(event->rb);
6277 if (rb) {
6278 if (!refcount_inc_not_zero(&rb->refcount))
6279 rb = NULL;
6280 }
6281 rcu_read_unlock();
6282
6283 return rb;
6284 }
6285
ring_buffer_put(struct perf_buffer * rb)6286 void ring_buffer_put(struct perf_buffer *rb)
6287 {
6288 if (!refcount_dec_and_test(&rb->refcount))
6289 return;
6290
6291 WARN_ON_ONCE(!list_empty(&rb->event_list));
6292
6293 call_rcu(&rb->rcu_head, rb_free_rcu);
6294 }
6295
perf_mmap_open(struct vm_area_struct * vma)6296 static void perf_mmap_open(struct vm_area_struct *vma)
6297 {
6298 struct perf_event *event = vma->vm_file->private_data;
6299
6300 atomic_inc(&event->mmap_count);
6301 atomic_inc(&event->rb->mmap_count);
6302
6303 if (vma->vm_pgoff)
6304 atomic_inc(&event->rb->aux_mmap_count);
6305
6306 if (event->pmu->event_mapped)
6307 event->pmu->event_mapped(event, vma->vm_mm);
6308 }
6309
6310 static void perf_pmu_output_stop(struct perf_event *event);
6311
6312 /*
6313 * A buffer can be mmap()ed multiple times; either directly through the same
6314 * event, or through other events by use of perf_event_set_output().
6315 *
6316 * In order to undo the VM accounting done by perf_mmap() we need to destroy
6317 * the buffer here, where we still have a VM context. This means we need
6318 * to detach all events redirecting to us.
6319 */
perf_mmap_close(struct vm_area_struct * vma)6320 static void perf_mmap_close(struct vm_area_struct *vma)
6321 {
6322 struct perf_event *event = vma->vm_file->private_data;
6323 struct perf_buffer *rb = ring_buffer_get(event);
6324 struct user_struct *mmap_user = rb->mmap_user;
6325 int mmap_locked = rb->mmap_locked;
6326 unsigned long size = perf_data_size(rb);
6327 bool detach_rest = false;
6328
6329 if (event->pmu->event_unmapped)
6330 event->pmu->event_unmapped(event, vma->vm_mm);
6331
6332 /*
6333 * rb->aux_mmap_count will always drop before rb->mmap_count and
6334 * event->mmap_count, so it is ok to use event->mmap_mutex to
6335 * serialize with perf_mmap here.
6336 */
6337 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6338 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6339 /*
6340 * Stop all AUX events that are writing to this buffer,
6341 * so that we can free its AUX pages and corresponding PMU
6342 * data. Note that after rb::aux_mmap_count dropped to zero,
6343 * they won't start any more (see perf_aux_output_begin()).
6344 */
6345 perf_pmu_output_stop(event);
6346
6347 /* now it's safe to free the pages */
6348 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6349 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6350
6351 /* this has to be the last one */
6352 rb_free_aux(rb);
6353 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6354
6355 mutex_unlock(&event->mmap_mutex);
6356 }
6357
6358 if (atomic_dec_and_test(&rb->mmap_count))
6359 detach_rest = true;
6360
6361 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6362 goto out_put;
6363
6364 ring_buffer_attach(event, NULL);
6365 mutex_unlock(&event->mmap_mutex);
6366
6367 /* If there's still other mmap()s of this buffer, we're done. */
6368 if (!detach_rest)
6369 goto out_put;
6370
6371 /*
6372 * No other mmap()s, detach from all other events that might redirect
6373 * into the now unreachable buffer. Somewhat complicated by the
6374 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6375 */
6376 again:
6377 rcu_read_lock();
6378 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6379 if (!atomic_long_inc_not_zero(&event->refcount)) {
6380 /*
6381 * This event is en-route to free_event() which will
6382 * detach it and remove it from the list.
6383 */
6384 continue;
6385 }
6386 rcu_read_unlock();
6387
6388 mutex_lock(&event->mmap_mutex);
6389 /*
6390 * Check we didn't race with perf_event_set_output() which can
6391 * swizzle the rb from under us while we were waiting to
6392 * acquire mmap_mutex.
6393 *
6394 * If we find a different rb; ignore this event, a next
6395 * iteration will no longer find it on the list. We have to
6396 * still restart the iteration to make sure we're not now
6397 * iterating the wrong list.
6398 */
6399 if (event->rb == rb)
6400 ring_buffer_attach(event, NULL);
6401
6402 mutex_unlock(&event->mmap_mutex);
6403 put_event(event);
6404
6405 /*
6406 * Restart the iteration; either we're on the wrong list or
6407 * destroyed its integrity by doing a deletion.
6408 */
6409 goto again;
6410 }
6411 rcu_read_unlock();
6412
6413 /*
6414 * It could be there's still a few 0-ref events on the list; they'll
6415 * get cleaned up by free_event() -- they'll also still have their
6416 * ref on the rb and will free it whenever they are done with it.
6417 *
6418 * Aside from that, this buffer is 'fully' detached and unmapped,
6419 * undo the VM accounting.
6420 */
6421
6422 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6423 &mmap_user->locked_vm);
6424 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6425 free_uid(mmap_user);
6426
6427 out_put:
6428 ring_buffer_put(rb); /* could be last */
6429 }
6430
6431 static const struct vm_operations_struct perf_mmap_vmops = {
6432 .open = perf_mmap_open,
6433 .close = perf_mmap_close, /* non mergeable */
6434 .fault = perf_mmap_fault,
6435 .page_mkwrite = perf_mmap_fault,
6436 };
6437
perf_mmap(struct file * file,struct vm_area_struct * vma)6438 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6439 {
6440 struct perf_event *event = file->private_data;
6441 unsigned long user_locked, user_lock_limit;
6442 struct user_struct *user = current_user();
6443 struct perf_buffer *rb = NULL;
6444 unsigned long locked, lock_limit;
6445 unsigned long vma_size;
6446 unsigned long nr_pages;
6447 long user_extra = 0, extra = 0;
6448 int ret = 0, flags = 0;
6449
6450 /*
6451 * Don't allow mmap() of inherited per-task counters. This would
6452 * create a performance issue due to all children writing to the
6453 * same rb.
6454 */
6455 if (event->cpu == -1 && event->attr.inherit)
6456 return -EINVAL;
6457
6458 if (!(vma->vm_flags & VM_SHARED))
6459 return -EINVAL;
6460
6461 ret = security_perf_event_read(event);
6462 if (ret)
6463 return ret;
6464
6465 vma_size = vma->vm_end - vma->vm_start;
6466
6467 if (vma->vm_pgoff == 0) {
6468 nr_pages = (vma_size / PAGE_SIZE) - 1;
6469 } else {
6470 /*
6471 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6472 * mapped, all subsequent mappings should have the same size
6473 * and offset. Must be above the normal perf buffer.
6474 */
6475 u64 aux_offset, aux_size;
6476
6477 if (!event->rb)
6478 return -EINVAL;
6479
6480 nr_pages = vma_size / PAGE_SIZE;
6481 if (nr_pages > INT_MAX)
6482 return -ENOMEM;
6483
6484 mutex_lock(&event->mmap_mutex);
6485 ret = -EINVAL;
6486
6487 rb = event->rb;
6488 if (!rb)
6489 goto aux_unlock;
6490
6491 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6492 aux_size = READ_ONCE(rb->user_page->aux_size);
6493
6494 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6495 goto aux_unlock;
6496
6497 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6498 goto aux_unlock;
6499
6500 /* already mapped with a different offset */
6501 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6502 goto aux_unlock;
6503
6504 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6505 goto aux_unlock;
6506
6507 /* already mapped with a different size */
6508 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6509 goto aux_unlock;
6510
6511 if (!is_power_of_2(nr_pages))
6512 goto aux_unlock;
6513
6514 if (!atomic_inc_not_zero(&rb->mmap_count))
6515 goto aux_unlock;
6516
6517 if (rb_has_aux(rb)) {
6518 atomic_inc(&rb->aux_mmap_count);
6519 ret = 0;
6520 goto unlock;
6521 }
6522
6523 atomic_set(&rb->aux_mmap_count, 1);
6524 user_extra = nr_pages;
6525
6526 goto accounting;
6527 }
6528
6529 /*
6530 * If we have rb pages ensure they're a power-of-two number, so we
6531 * can do bitmasks instead of modulo.
6532 */
6533 if (nr_pages != 0 && !is_power_of_2(nr_pages))
6534 return -EINVAL;
6535
6536 if (vma_size != PAGE_SIZE * (1 + nr_pages))
6537 return -EINVAL;
6538
6539 WARN_ON_ONCE(event->ctx->parent_ctx);
6540 again:
6541 mutex_lock(&event->mmap_mutex);
6542 if (event->rb) {
6543 if (data_page_nr(event->rb) != nr_pages) {
6544 ret = -EINVAL;
6545 goto unlock;
6546 }
6547
6548 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6549 /*
6550 * Raced against perf_mmap_close(); remove the
6551 * event and try again.
6552 */
6553 ring_buffer_attach(event, NULL);
6554 mutex_unlock(&event->mmap_mutex);
6555 goto again;
6556 }
6557
6558 goto unlock;
6559 }
6560
6561 user_extra = nr_pages + 1;
6562
6563 accounting:
6564 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6565
6566 /*
6567 * Increase the limit linearly with more CPUs:
6568 */
6569 user_lock_limit *= num_online_cpus();
6570
6571 user_locked = atomic_long_read(&user->locked_vm);
6572
6573 /*
6574 * sysctl_perf_event_mlock may have changed, so that
6575 * user->locked_vm > user_lock_limit
6576 */
6577 if (user_locked > user_lock_limit)
6578 user_locked = user_lock_limit;
6579 user_locked += user_extra;
6580
6581 if (user_locked > user_lock_limit) {
6582 /*
6583 * charge locked_vm until it hits user_lock_limit;
6584 * charge the rest from pinned_vm
6585 */
6586 extra = user_locked - user_lock_limit;
6587 user_extra -= extra;
6588 }
6589
6590 lock_limit = rlimit(RLIMIT_MEMLOCK);
6591 lock_limit >>= PAGE_SHIFT;
6592 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6593
6594 if ((locked > lock_limit) && perf_is_paranoid() &&
6595 !capable(CAP_IPC_LOCK)) {
6596 ret = -EPERM;
6597 goto unlock;
6598 }
6599
6600 WARN_ON(!rb && event->rb);
6601
6602 if (vma->vm_flags & VM_WRITE)
6603 flags |= RING_BUFFER_WRITABLE;
6604
6605 if (!rb) {
6606 rb = rb_alloc(nr_pages,
6607 event->attr.watermark ? event->attr.wakeup_watermark : 0,
6608 event->cpu, flags);
6609
6610 if (!rb) {
6611 ret = -ENOMEM;
6612 goto unlock;
6613 }
6614
6615 atomic_set(&rb->mmap_count, 1);
6616 rb->mmap_user = get_current_user();
6617 rb->mmap_locked = extra;
6618
6619 ring_buffer_attach(event, rb);
6620
6621 perf_event_update_time(event);
6622 perf_event_init_userpage(event);
6623 perf_event_update_userpage(event);
6624 } else {
6625 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6626 event->attr.aux_watermark, flags);
6627 if (!ret)
6628 rb->aux_mmap_locked = extra;
6629 }
6630
6631 unlock:
6632 if (!ret) {
6633 atomic_long_add(user_extra, &user->locked_vm);
6634 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6635
6636 atomic_inc(&event->mmap_count);
6637 } else if (rb) {
6638 atomic_dec(&rb->mmap_count);
6639 }
6640 aux_unlock:
6641 mutex_unlock(&event->mmap_mutex);
6642
6643 /*
6644 * Since pinned accounting is per vm we cannot allow fork() to copy our
6645 * vma.
6646 */
6647 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6648 vma->vm_ops = &perf_mmap_vmops;
6649
6650 if (event->pmu->event_mapped)
6651 event->pmu->event_mapped(event, vma->vm_mm);
6652
6653 return ret;
6654 }
6655
perf_fasync(int fd,struct file * filp,int on)6656 static int perf_fasync(int fd, struct file *filp, int on)
6657 {
6658 struct inode *inode = file_inode(filp);
6659 struct perf_event *event = filp->private_data;
6660 int retval;
6661
6662 inode_lock(inode);
6663 retval = fasync_helper(fd, filp, on, &event->fasync);
6664 inode_unlock(inode);
6665
6666 if (retval < 0)
6667 return retval;
6668
6669 return 0;
6670 }
6671
6672 static const struct file_operations perf_fops = {
6673 .llseek = no_llseek,
6674 .release = perf_release,
6675 .read = perf_read,
6676 .poll = perf_poll,
6677 .unlocked_ioctl = perf_ioctl,
6678 .compat_ioctl = perf_compat_ioctl,
6679 .mmap = perf_mmap,
6680 .fasync = perf_fasync,
6681 };
6682
6683 /*
6684 * Perf event wakeup
6685 *
6686 * If there's data, ensure we set the poll() state and publish everything
6687 * to user-space before waking everybody up.
6688 */
6689
perf_event_fasync(struct perf_event * event)6690 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6691 {
6692 /* only the parent has fasync state */
6693 if (event->parent)
6694 event = event->parent;
6695 return &event->fasync;
6696 }
6697
perf_event_wakeup(struct perf_event * event)6698 void perf_event_wakeup(struct perf_event *event)
6699 {
6700 ring_buffer_wakeup(event);
6701
6702 if (event->pending_kill) {
6703 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6704 event->pending_kill = 0;
6705 }
6706 }
6707
perf_sigtrap(struct perf_event * event)6708 static void perf_sigtrap(struct perf_event *event)
6709 {
6710 /*
6711 * We'd expect this to only occur if the irq_work is delayed and either
6712 * ctx->task or current has changed in the meantime. This can be the
6713 * case on architectures that do not implement arch_irq_work_raise().
6714 */
6715 if (WARN_ON_ONCE(event->ctx->task != current))
6716 return;
6717
6718 /*
6719 * Both perf_pending_task() and perf_pending_irq() can race with the
6720 * task exiting.
6721 */
6722 if (current->flags & PF_EXITING)
6723 return;
6724
6725 send_sig_perf((void __user *)event->pending_addr,
6726 event->orig_type, event->attr.sig_data);
6727 }
6728
6729 /*
6730 * Deliver the pending work in-event-context or follow the context.
6731 */
__perf_pending_irq(struct perf_event * event)6732 static void __perf_pending_irq(struct perf_event *event)
6733 {
6734 int cpu = READ_ONCE(event->oncpu);
6735
6736 /*
6737 * If the event isn't running; we done. event_sched_out() will have
6738 * taken care of things.
6739 */
6740 if (cpu < 0)
6741 return;
6742
6743 /*
6744 * Yay, we hit home and are in the context of the event.
6745 */
6746 if (cpu == smp_processor_id()) {
6747 if (event->pending_sigtrap) {
6748 event->pending_sigtrap = 0;
6749 perf_sigtrap(event);
6750 local_dec(&event->ctx->nr_pending);
6751 }
6752 if (event->pending_disable) {
6753 event->pending_disable = 0;
6754 perf_event_disable_local(event);
6755 }
6756 return;
6757 }
6758
6759 /*
6760 * CPU-A CPU-B
6761 *
6762 * perf_event_disable_inatomic()
6763 * @pending_disable = CPU-A;
6764 * irq_work_queue();
6765 *
6766 * sched-out
6767 * @pending_disable = -1;
6768 *
6769 * sched-in
6770 * perf_event_disable_inatomic()
6771 * @pending_disable = CPU-B;
6772 * irq_work_queue(); // FAILS
6773 *
6774 * irq_work_run()
6775 * perf_pending_irq()
6776 *
6777 * But the event runs on CPU-B and wants disabling there.
6778 */
6779 irq_work_queue_on(&event->pending_irq, cpu);
6780 }
6781
perf_pending_irq(struct irq_work * entry)6782 static void perf_pending_irq(struct irq_work *entry)
6783 {
6784 struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6785 int rctx;
6786
6787 /*
6788 * If we 'fail' here, that's OK, it means recursion is already disabled
6789 * and we won't recurse 'further'.
6790 */
6791 rctx = perf_swevent_get_recursion_context();
6792
6793 /*
6794 * The wakeup isn't bound to the context of the event -- it can happen
6795 * irrespective of where the event is.
6796 */
6797 if (event->pending_wakeup) {
6798 event->pending_wakeup = 0;
6799 perf_event_wakeup(event);
6800 }
6801
6802 __perf_pending_irq(event);
6803
6804 if (rctx >= 0)
6805 perf_swevent_put_recursion_context(rctx);
6806 }
6807
perf_pending_task(struct callback_head * head)6808 static void perf_pending_task(struct callback_head *head)
6809 {
6810 struct perf_event *event = container_of(head, struct perf_event, pending_task);
6811 int rctx;
6812
6813 /*
6814 * If we 'fail' here, that's OK, it means recursion is already disabled
6815 * and we won't recurse 'further'.
6816 */
6817 preempt_disable_notrace();
6818 rctx = perf_swevent_get_recursion_context();
6819
6820 if (event->pending_work) {
6821 event->pending_work = 0;
6822 perf_sigtrap(event);
6823 local_dec(&event->ctx->nr_pending);
6824 }
6825
6826 if (rctx >= 0)
6827 perf_swevent_put_recursion_context(rctx);
6828 preempt_enable_notrace();
6829
6830 put_event(event);
6831 }
6832
6833 #ifdef CONFIG_GUEST_PERF_EVENTS
6834 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6835
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6836 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6837 {
6838 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6839 return;
6840
6841 rcu_assign_pointer(perf_guest_cbs, cbs);
6842 }
6843 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6844
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6845 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6846 {
6847 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6848 return;
6849
6850 rcu_assign_pointer(perf_guest_cbs, NULL);
6851 synchronize_rcu();
6852 }
6853 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6854 #endif
6855
6856 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)6857 perf_output_sample_regs(struct perf_output_handle *handle,
6858 struct pt_regs *regs, u64 mask)
6859 {
6860 int bit;
6861 DECLARE_BITMAP(_mask, 64);
6862
6863 bitmap_from_u64(_mask, mask);
6864 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6865 u64 val;
6866
6867 val = perf_reg_value(regs, bit);
6868 perf_output_put(handle, val);
6869 }
6870 }
6871
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs)6872 static void perf_sample_regs_user(struct perf_regs *regs_user,
6873 struct pt_regs *regs)
6874 {
6875 if (user_mode(regs)) {
6876 regs_user->abi = perf_reg_abi(current);
6877 regs_user->regs = regs;
6878 } else if (!(current->flags & PF_KTHREAD)) {
6879 perf_get_regs_user(regs_user, regs);
6880 } else {
6881 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6882 regs_user->regs = NULL;
6883 }
6884 }
6885
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)6886 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6887 struct pt_regs *regs)
6888 {
6889 regs_intr->regs = regs;
6890 regs_intr->abi = perf_reg_abi(current);
6891 }
6892
6893
6894 /*
6895 * Get remaining task size from user stack pointer.
6896 *
6897 * It'd be better to take stack vma map and limit this more
6898 * precisely, but there's no way to get it safely under interrupt,
6899 * so using TASK_SIZE as limit.
6900 */
perf_ustack_task_size(struct pt_regs * regs)6901 static u64 perf_ustack_task_size(struct pt_regs *regs)
6902 {
6903 unsigned long addr = perf_user_stack_pointer(regs);
6904
6905 if (!addr || addr >= TASK_SIZE)
6906 return 0;
6907
6908 return TASK_SIZE - addr;
6909 }
6910
6911 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)6912 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6913 struct pt_regs *regs)
6914 {
6915 u64 task_size;
6916
6917 /* No regs, no stack pointer, no dump. */
6918 if (!regs)
6919 return 0;
6920
6921 /*
6922 * Check if we fit in with the requested stack size into the:
6923 * - TASK_SIZE
6924 * If we don't, we limit the size to the TASK_SIZE.
6925 *
6926 * - remaining sample size
6927 * If we don't, we customize the stack size to
6928 * fit in to the remaining sample size.
6929 */
6930
6931 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6932 stack_size = min(stack_size, (u16) task_size);
6933
6934 /* Current header size plus static size and dynamic size. */
6935 header_size += 2 * sizeof(u64);
6936
6937 /* Do we fit in with the current stack dump size? */
6938 if ((u16) (header_size + stack_size) < header_size) {
6939 /*
6940 * If we overflow the maximum size for the sample,
6941 * we customize the stack dump size to fit in.
6942 */
6943 stack_size = USHRT_MAX - header_size - sizeof(u64);
6944 stack_size = round_up(stack_size, sizeof(u64));
6945 }
6946
6947 return stack_size;
6948 }
6949
6950 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)6951 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6952 struct pt_regs *regs)
6953 {
6954 /* Case of a kernel thread, nothing to dump */
6955 if (!regs) {
6956 u64 size = 0;
6957 perf_output_put(handle, size);
6958 } else {
6959 unsigned long sp;
6960 unsigned int rem;
6961 u64 dyn_size;
6962
6963 /*
6964 * We dump:
6965 * static size
6966 * - the size requested by user or the best one we can fit
6967 * in to the sample max size
6968 * data
6969 * - user stack dump data
6970 * dynamic size
6971 * - the actual dumped size
6972 */
6973
6974 /* Static size. */
6975 perf_output_put(handle, dump_size);
6976
6977 /* Data. */
6978 sp = perf_user_stack_pointer(regs);
6979 rem = __output_copy_user(handle, (void *) sp, dump_size);
6980 dyn_size = dump_size - rem;
6981
6982 perf_output_skip(handle, rem);
6983
6984 /* Dynamic size. */
6985 perf_output_put(handle, dyn_size);
6986 }
6987 }
6988
perf_prepare_sample_aux(struct perf_event * event,struct perf_sample_data * data,size_t size)6989 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6990 struct perf_sample_data *data,
6991 size_t size)
6992 {
6993 struct perf_event *sampler = event->aux_event;
6994 struct perf_buffer *rb;
6995
6996 data->aux_size = 0;
6997
6998 if (!sampler)
6999 goto out;
7000
7001 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7002 goto out;
7003
7004 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7005 goto out;
7006
7007 rb = ring_buffer_get(sampler);
7008 if (!rb)
7009 goto out;
7010
7011 /*
7012 * If this is an NMI hit inside sampling code, don't take
7013 * the sample. See also perf_aux_sample_output().
7014 */
7015 if (READ_ONCE(rb->aux_in_sampling)) {
7016 data->aux_size = 0;
7017 } else {
7018 size = min_t(size_t, size, perf_aux_size(rb));
7019 data->aux_size = ALIGN(size, sizeof(u64));
7020 }
7021 ring_buffer_put(rb);
7022
7023 out:
7024 return data->aux_size;
7025 }
7026
perf_pmu_snapshot_aux(struct perf_buffer * rb,struct perf_event * event,struct perf_output_handle * handle,unsigned long size)7027 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7028 struct perf_event *event,
7029 struct perf_output_handle *handle,
7030 unsigned long size)
7031 {
7032 unsigned long flags;
7033 long ret;
7034
7035 /*
7036 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7037 * paths. If we start calling them in NMI context, they may race with
7038 * the IRQ ones, that is, for example, re-starting an event that's just
7039 * been stopped, which is why we're using a separate callback that
7040 * doesn't change the event state.
7041 *
7042 * IRQs need to be disabled to prevent IPIs from racing with us.
7043 */
7044 local_irq_save(flags);
7045 /*
7046 * Guard against NMI hits inside the critical section;
7047 * see also perf_prepare_sample_aux().
7048 */
7049 WRITE_ONCE(rb->aux_in_sampling, 1);
7050 barrier();
7051
7052 ret = event->pmu->snapshot_aux(event, handle, size);
7053
7054 barrier();
7055 WRITE_ONCE(rb->aux_in_sampling, 0);
7056 local_irq_restore(flags);
7057
7058 return ret;
7059 }
7060
perf_aux_sample_output(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * data)7061 static void perf_aux_sample_output(struct perf_event *event,
7062 struct perf_output_handle *handle,
7063 struct perf_sample_data *data)
7064 {
7065 struct perf_event *sampler = event->aux_event;
7066 struct perf_buffer *rb;
7067 unsigned long pad;
7068 long size;
7069
7070 if (WARN_ON_ONCE(!sampler || !data->aux_size))
7071 return;
7072
7073 rb = ring_buffer_get(sampler);
7074 if (!rb)
7075 return;
7076
7077 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7078
7079 /*
7080 * An error here means that perf_output_copy() failed (returned a
7081 * non-zero surplus that it didn't copy), which in its current
7082 * enlightened implementation is not possible. If that changes, we'd
7083 * like to know.
7084 */
7085 if (WARN_ON_ONCE(size < 0))
7086 goto out_put;
7087
7088 /*
7089 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7090 * perf_prepare_sample_aux(), so should not be more than that.
7091 */
7092 pad = data->aux_size - size;
7093 if (WARN_ON_ONCE(pad >= sizeof(u64)))
7094 pad = 8;
7095
7096 if (pad) {
7097 u64 zero = 0;
7098 perf_output_copy(handle, &zero, pad);
7099 }
7100
7101 out_put:
7102 ring_buffer_put(rb);
7103 }
7104
7105 /*
7106 * A set of common sample data types saved even for non-sample records
7107 * when event->attr.sample_id_all is set.
7108 */
7109 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \
7110 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \
7111 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7112
__perf_event_header__init_id(struct perf_sample_data * data,struct perf_event * event,u64 sample_type)7113 static void __perf_event_header__init_id(struct perf_sample_data *data,
7114 struct perf_event *event,
7115 u64 sample_type)
7116 {
7117 data->type = event->attr.sample_type;
7118 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7119
7120 if (sample_type & PERF_SAMPLE_TID) {
7121 /* namespace issues */
7122 data->tid_entry.pid = perf_event_pid(event, current);
7123 data->tid_entry.tid = perf_event_tid(event, current);
7124 }
7125
7126 if (sample_type & PERF_SAMPLE_TIME)
7127 data->time = perf_event_clock(event);
7128
7129 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7130 data->id = primary_event_id(event);
7131
7132 if (sample_type & PERF_SAMPLE_STREAM_ID)
7133 data->stream_id = event->id;
7134
7135 if (sample_type & PERF_SAMPLE_CPU) {
7136 data->cpu_entry.cpu = raw_smp_processor_id();
7137 data->cpu_entry.reserved = 0;
7138 }
7139 }
7140
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7141 void perf_event_header__init_id(struct perf_event_header *header,
7142 struct perf_sample_data *data,
7143 struct perf_event *event)
7144 {
7145 if (event->attr.sample_id_all) {
7146 header->size += event->id_header_size;
7147 __perf_event_header__init_id(data, event, event->attr.sample_type);
7148 }
7149 }
7150
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)7151 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7152 struct perf_sample_data *data)
7153 {
7154 u64 sample_type = data->type;
7155
7156 if (sample_type & PERF_SAMPLE_TID)
7157 perf_output_put(handle, data->tid_entry);
7158
7159 if (sample_type & PERF_SAMPLE_TIME)
7160 perf_output_put(handle, data->time);
7161
7162 if (sample_type & PERF_SAMPLE_ID)
7163 perf_output_put(handle, data->id);
7164
7165 if (sample_type & PERF_SAMPLE_STREAM_ID)
7166 perf_output_put(handle, data->stream_id);
7167
7168 if (sample_type & PERF_SAMPLE_CPU)
7169 perf_output_put(handle, data->cpu_entry);
7170
7171 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7172 perf_output_put(handle, data->id);
7173 }
7174
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)7175 void perf_event__output_id_sample(struct perf_event *event,
7176 struct perf_output_handle *handle,
7177 struct perf_sample_data *sample)
7178 {
7179 if (event->attr.sample_id_all)
7180 __perf_event__output_id_sample(handle, sample);
7181 }
7182
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7183 static void perf_output_read_one(struct perf_output_handle *handle,
7184 struct perf_event *event,
7185 u64 enabled, u64 running)
7186 {
7187 u64 read_format = event->attr.read_format;
7188 u64 values[5];
7189 int n = 0;
7190
7191 values[n++] = perf_event_count(event);
7192 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7193 values[n++] = enabled +
7194 atomic64_read(&event->child_total_time_enabled);
7195 }
7196 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7197 values[n++] = running +
7198 atomic64_read(&event->child_total_time_running);
7199 }
7200 if (read_format & PERF_FORMAT_ID)
7201 values[n++] = primary_event_id(event);
7202 if (read_format & PERF_FORMAT_LOST)
7203 values[n++] = atomic64_read(&event->lost_samples);
7204
7205 __output_copy(handle, values, n * sizeof(u64));
7206 }
7207
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7208 static void perf_output_read_group(struct perf_output_handle *handle,
7209 struct perf_event *event,
7210 u64 enabled, u64 running)
7211 {
7212 struct perf_event *leader = event->group_leader, *sub;
7213 u64 read_format = event->attr.read_format;
7214 unsigned long flags;
7215 u64 values[6];
7216 int n = 0;
7217
7218 /*
7219 * Disabling interrupts avoids all counter scheduling
7220 * (context switches, timer based rotation and IPIs).
7221 */
7222 local_irq_save(flags);
7223
7224 values[n++] = 1 + leader->nr_siblings;
7225
7226 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7227 values[n++] = enabled;
7228
7229 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7230 values[n++] = running;
7231
7232 if ((leader != event) &&
7233 (leader->state == PERF_EVENT_STATE_ACTIVE))
7234 leader->pmu->read(leader);
7235
7236 values[n++] = perf_event_count(leader);
7237 if (read_format & PERF_FORMAT_ID)
7238 values[n++] = primary_event_id(leader);
7239 if (read_format & PERF_FORMAT_LOST)
7240 values[n++] = atomic64_read(&leader->lost_samples);
7241
7242 __output_copy(handle, values, n * sizeof(u64));
7243
7244 for_each_sibling_event(sub, leader) {
7245 n = 0;
7246
7247 if ((sub != event) &&
7248 (sub->state == PERF_EVENT_STATE_ACTIVE))
7249 sub->pmu->read(sub);
7250
7251 values[n++] = perf_event_count(sub);
7252 if (read_format & PERF_FORMAT_ID)
7253 values[n++] = primary_event_id(sub);
7254 if (read_format & PERF_FORMAT_LOST)
7255 values[n++] = atomic64_read(&sub->lost_samples);
7256
7257 __output_copy(handle, values, n * sizeof(u64));
7258 }
7259
7260 local_irq_restore(flags);
7261 }
7262
7263 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7264 PERF_FORMAT_TOTAL_TIME_RUNNING)
7265
7266 /*
7267 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7268 *
7269 * The problem is that its both hard and excessively expensive to iterate the
7270 * child list, not to mention that its impossible to IPI the children running
7271 * on another CPU, from interrupt/NMI context.
7272 */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)7273 static void perf_output_read(struct perf_output_handle *handle,
7274 struct perf_event *event)
7275 {
7276 u64 enabled = 0, running = 0, now;
7277 u64 read_format = event->attr.read_format;
7278
7279 /*
7280 * compute total_time_enabled, total_time_running
7281 * based on snapshot values taken when the event
7282 * was last scheduled in.
7283 *
7284 * we cannot simply called update_context_time()
7285 * because of locking issue as we are called in
7286 * NMI context
7287 */
7288 if (read_format & PERF_FORMAT_TOTAL_TIMES)
7289 calc_timer_values(event, &now, &enabled, &running);
7290
7291 if (event->attr.read_format & PERF_FORMAT_GROUP)
7292 perf_output_read_group(handle, event, enabled, running);
7293 else
7294 perf_output_read_one(handle, event, enabled, running);
7295 }
7296
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7297 void perf_output_sample(struct perf_output_handle *handle,
7298 struct perf_event_header *header,
7299 struct perf_sample_data *data,
7300 struct perf_event *event)
7301 {
7302 u64 sample_type = data->type;
7303
7304 perf_output_put(handle, *header);
7305
7306 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7307 perf_output_put(handle, data->id);
7308
7309 if (sample_type & PERF_SAMPLE_IP)
7310 perf_output_put(handle, data->ip);
7311
7312 if (sample_type & PERF_SAMPLE_TID)
7313 perf_output_put(handle, data->tid_entry);
7314
7315 if (sample_type & PERF_SAMPLE_TIME)
7316 perf_output_put(handle, data->time);
7317
7318 if (sample_type & PERF_SAMPLE_ADDR)
7319 perf_output_put(handle, data->addr);
7320
7321 if (sample_type & PERF_SAMPLE_ID)
7322 perf_output_put(handle, data->id);
7323
7324 if (sample_type & PERF_SAMPLE_STREAM_ID)
7325 perf_output_put(handle, data->stream_id);
7326
7327 if (sample_type & PERF_SAMPLE_CPU)
7328 perf_output_put(handle, data->cpu_entry);
7329
7330 if (sample_type & PERF_SAMPLE_PERIOD)
7331 perf_output_put(handle, data->period);
7332
7333 if (sample_type & PERF_SAMPLE_READ)
7334 perf_output_read(handle, event);
7335
7336 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7337 int size = 1;
7338
7339 size += data->callchain->nr;
7340 size *= sizeof(u64);
7341 __output_copy(handle, data->callchain, size);
7342 }
7343
7344 if (sample_type & PERF_SAMPLE_RAW) {
7345 struct perf_raw_record *raw = data->raw;
7346
7347 if (raw) {
7348 struct perf_raw_frag *frag = &raw->frag;
7349
7350 perf_output_put(handle, raw->size);
7351 do {
7352 if (frag->copy) {
7353 __output_custom(handle, frag->copy,
7354 frag->data, frag->size);
7355 } else {
7356 __output_copy(handle, frag->data,
7357 frag->size);
7358 }
7359 if (perf_raw_frag_last(frag))
7360 break;
7361 frag = frag->next;
7362 } while (1);
7363 if (frag->pad)
7364 __output_skip(handle, NULL, frag->pad);
7365 } else {
7366 struct {
7367 u32 size;
7368 u32 data;
7369 } raw = {
7370 .size = sizeof(u32),
7371 .data = 0,
7372 };
7373 perf_output_put(handle, raw);
7374 }
7375 }
7376
7377 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7378 if (data->br_stack) {
7379 size_t size;
7380
7381 size = data->br_stack->nr
7382 * sizeof(struct perf_branch_entry);
7383
7384 perf_output_put(handle, data->br_stack->nr);
7385 if (branch_sample_hw_index(event))
7386 perf_output_put(handle, data->br_stack->hw_idx);
7387 perf_output_copy(handle, data->br_stack->entries, size);
7388 } else {
7389 /*
7390 * we always store at least the value of nr
7391 */
7392 u64 nr = 0;
7393 perf_output_put(handle, nr);
7394 }
7395 }
7396
7397 if (sample_type & PERF_SAMPLE_REGS_USER) {
7398 u64 abi = data->regs_user.abi;
7399
7400 /*
7401 * If there are no regs to dump, notice it through
7402 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7403 */
7404 perf_output_put(handle, abi);
7405
7406 if (abi) {
7407 u64 mask = event->attr.sample_regs_user;
7408 perf_output_sample_regs(handle,
7409 data->regs_user.regs,
7410 mask);
7411 }
7412 }
7413
7414 if (sample_type & PERF_SAMPLE_STACK_USER) {
7415 perf_output_sample_ustack(handle,
7416 data->stack_user_size,
7417 data->regs_user.regs);
7418 }
7419
7420 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7421 perf_output_put(handle, data->weight.full);
7422
7423 if (sample_type & PERF_SAMPLE_DATA_SRC)
7424 perf_output_put(handle, data->data_src.val);
7425
7426 if (sample_type & PERF_SAMPLE_TRANSACTION)
7427 perf_output_put(handle, data->txn);
7428
7429 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7430 u64 abi = data->regs_intr.abi;
7431 /*
7432 * If there are no regs to dump, notice it through
7433 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7434 */
7435 perf_output_put(handle, abi);
7436
7437 if (abi) {
7438 u64 mask = event->attr.sample_regs_intr;
7439
7440 perf_output_sample_regs(handle,
7441 data->regs_intr.regs,
7442 mask);
7443 }
7444 }
7445
7446 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7447 perf_output_put(handle, data->phys_addr);
7448
7449 if (sample_type & PERF_SAMPLE_CGROUP)
7450 perf_output_put(handle, data->cgroup);
7451
7452 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7453 perf_output_put(handle, data->data_page_size);
7454
7455 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7456 perf_output_put(handle, data->code_page_size);
7457
7458 if (sample_type & PERF_SAMPLE_AUX) {
7459 perf_output_put(handle, data->aux_size);
7460
7461 if (data->aux_size)
7462 perf_aux_sample_output(event, handle, data);
7463 }
7464
7465 if (!event->attr.watermark) {
7466 int wakeup_events = event->attr.wakeup_events;
7467
7468 if (wakeup_events) {
7469 struct perf_buffer *rb = handle->rb;
7470 int events = local_inc_return(&rb->events);
7471
7472 if (events >= wakeup_events) {
7473 local_sub(wakeup_events, &rb->events);
7474 local_inc(&rb->wakeup);
7475 }
7476 }
7477 }
7478 }
7479
perf_virt_to_phys(u64 virt)7480 static u64 perf_virt_to_phys(u64 virt)
7481 {
7482 u64 phys_addr = 0;
7483
7484 if (!virt)
7485 return 0;
7486
7487 if (virt >= TASK_SIZE) {
7488 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7489 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7490 !(virt >= VMALLOC_START && virt < VMALLOC_END))
7491 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7492 } else {
7493 /*
7494 * Walking the pages tables for user address.
7495 * Interrupts are disabled, so it prevents any tear down
7496 * of the page tables.
7497 * Try IRQ-safe get_user_page_fast_only first.
7498 * If failed, leave phys_addr as 0.
7499 */
7500 if (current->mm != NULL) {
7501 struct page *p;
7502
7503 pagefault_disable();
7504 if (get_user_page_fast_only(virt, 0, &p)) {
7505 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7506 put_page(p);
7507 }
7508 pagefault_enable();
7509 }
7510 }
7511
7512 return phys_addr;
7513 }
7514
7515 /*
7516 * Return the pagetable size of a given virtual address.
7517 */
perf_get_pgtable_size(struct mm_struct * mm,unsigned long addr)7518 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7519 {
7520 u64 size = 0;
7521
7522 #ifdef CONFIG_HAVE_FAST_GUP
7523 pgd_t *pgdp, pgd;
7524 p4d_t *p4dp, p4d;
7525 pud_t *pudp, pud;
7526 pmd_t *pmdp, pmd;
7527 pte_t *ptep, pte;
7528
7529 pgdp = pgd_offset(mm, addr);
7530 pgd = READ_ONCE(*pgdp);
7531 if (pgd_none(pgd))
7532 return 0;
7533
7534 if (pgd_leaf(pgd))
7535 return pgd_leaf_size(pgd);
7536
7537 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7538 p4d = READ_ONCE(*p4dp);
7539 if (!p4d_present(p4d))
7540 return 0;
7541
7542 if (p4d_leaf(p4d))
7543 return p4d_leaf_size(p4d);
7544
7545 pudp = pud_offset_lockless(p4dp, p4d, addr);
7546 pud = READ_ONCE(*pudp);
7547 if (!pud_present(pud))
7548 return 0;
7549
7550 if (pud_leaf(pud))
7551 return pud_leaf_size(pud);
7552
7553 pmdp = pmd_offset_lockless(pudp, pud, addr);
7554 again:
7555 pmd = pmdp_get_lockless(pmdp);
7556 if (!pmd_present(pmd))
7557 return 0;
7558
7559 if (pmd_leaf(pmd))
7560 return pmd_leaf_size(pmd);
7561
7562 ptep = pte_offset_map(&pmd, addr);
7563 if (!ptep)
7564 goto again;
7565
7566 pte = ptep_get_lockless(ptep);
7567 if (pte_present(pte))
7568 size = pte_leaf_size(pte);
7569 pte_unmap(ptep);
7570 #endif /* CONFIG_HAVE_FAST_GUP */
7571
7572 return size;
7573 }
7574
perf_get_page_size(unsigned long addr)7575 static u64 perf_get_page_size(unsigned long addr)
7576 {
7577 struct mm_struct *mm;
7578 unsigned long flags;
7579 u64 size;
7580
7581 if (!addr)
7582 return 0;
7583
7584 /*
7585 * Software page-table walkers must disable IRQs,
7586 * which prevents any tear down of the page tables.
7587 */
7588 local_irq_save(flags);
7589
7590 mm = current->mm;
7591 if (!mm) {
7592 /*
7593 * For kernel threads and the like, use init_mm so that
7594 * we can find kernel memory.
7595 */
7596 mm = &init_mm;
7597 }
7598
7599 size = perf_get_pgtable_size(mm, addr);
7600
7601 local_irq_restore(flags);
7602
7603 return size;
7604 }
7605
7606 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7607
7608 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)7609 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7610 {
7611 bool kernel = !event->attr.exclude_callchain_kernel;
7612 bool user = !event->attr.exclude_callchain_user;
7613 /* Disallow cross-task user callchains. */
7614 bool crosstask = event->ctx->task && event->ctx->task != current;
7615 const u32 max_stack = event->attr.sample_max_stack;
7616 struct perf_callchain_entry *callchain;
7617
7618 if (!kernel && !user)
7619 return &__empty_callchain;
7620
7621 callchain = get_perf_callchain(regs, 0, kernel, user,
7622 max_stack, crosstask, true);
7623 return callchain ?: &__empty_callchain;
7624 }
7625
__cond_set(u64 flags,u64 s,u64 d)7626 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7627 {
7628 return d * !!(flags & s);
7629 }
7630
perf_prepare_sample(struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7631 void perf_prepare_sample(struct perf_sample_data *data,
7632 struct perf_event *event,
7633 struct pt_regs *regs)
7634 {
7635 u64 sample_type = event->attr.sample_type;
7636 u64 filtered_sample_type;
7637
7638 /*
7639 * Add the sample flags that are dependent to others. And clear the
7640 * sample flags that have already been done by the PMU driver.
7641 */
7642 filtered_sample_type = sample_type;
7643 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7644 PERF_SAMPLE_IP);
7645 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7646 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7647 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7648 PERF_SAMPLE_REGS_USER);
7649 filtered_sample_type &= ~data->sample_flags;
7650
7651 if (filtered_sample_type == 0) {
7652 /* Make sure it has the correct data->type for output */
7653 data->type = event->attr.sample_type;
7654 return;
7655 }
7656
7657 __perf_event_header__init_id(data, event, filtered_sample_type);
7658
7659 if (filtered_sample_type & PERF_SAMPLE_IP) {
7660 data->ip = perf_instruction_pointer(regs);
7661 data->sample_flags |= PERF_SAMPLE_IP;
7662 }
7663
7664 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7665 perf_sample_save_callchain(data, event, regs);
7666
7667 if (filtered_sample_type & PERF_SAMPLE_RAW) {
7668 data->raw = NULL;
7669 data->dyn_size += sizeof(u64);
7670 data->sample_flags |= PERF_SAMPLE_RAW;
7671 }
7672
7673 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7674 data->br_stack = NULL;
7675 data->dyn_size += sizeof(u64);
7676 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7677 }
7678
7679 if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7680 perf_sample_regs_user(&data->regs_user, regs);
7681
7682 /*
7683 * It cannot use the filtered_sample_type here as REGS_USER can be set
7684 * by STACK_USER (using __cond_set() above) and we don't want to update
7685 * the dyn_size if it's not requested by users.
7686 */
7687 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7688 /* regs dump ABI info */
7689 int size = sizeof(u64);
7690
7691 if (data->regs_user.regs) {
7692 u64 mask = event->attr.sample_regs_user;
7693 size += hweight64(mask) * sizeof(u64);
7694 }
7695
7696 data->dyn_size += size;
7697 data->sample_flags |= PERF_SAMPLE_REGS_USER;
7698 }
7699
7700 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7701 /*
7702 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7703 * processed as the last one or have additional check added
7704 * in case new sample type is added, because we could eat
7705 * up the rest of the sample size.
7706 */
7707 u16 stack_size = event->attr.sample_stack_user;
7708 u16 header_size = perf_sample_data_size(data, event);
7709 u16 size = sizeof(u64);
7710
7711 stack_size = perf_sample_ustack_size(stack_size, header_size,
7712 data->regs_user.regs);
7713
7714 /*
7715 * If there is something to dump, add space for the dump
7716 * itself and for the field that tells the dynamic size,
7717 * which is how many have been actually dumped.
7718 */
7719 if (stack_size)
7720 size += sizeof(u64) + stack_size;
7721
7722 data->stack_user_size = stack_size;
7723 data->dyn_size += size;
7724 data->sample_flags |= PERF_SAMPLE_STACK_USER;
7725 }
7726
7727 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7728 data->weight.full = 0;
7729 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7730 }
7731
7732 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7733 data->data_src.val = PERF_MEM_NA;
7734 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7735 }
7736
7737 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7738 data->txn = 0;
7739 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7740 }
7741
7742 if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7743 data->addr = 0;
7744 data->sample_flags |= PERF_SAMPLE_ADDR;
7745 }
7746
7747 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7748 /* regs dump ABI info */
7749 int size = sizeof(u64);
7750
7751 perf_sample_regs_intr(&data->regs_intr, regs);
7752
7753 if (data->regs_intr.regs) {
7754 u64 mask = event->attr.sample_regs_intr;
7755
7756 size += hweight64(mask) * sizeof(u64);
7757 }
7758
7759 data->dyn_size += size;
7760 data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7761 }
7762
7763 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7764 data->phys_addr = perf_virt_to_phys(data->addr);
7765 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7766 }
7767
7768 #ifdef CONFIG_CGROUP_PERF
7769 if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7770 struct cgroup *cgrp;
7771
7772 /* protected by RCU */
7773 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7774 data->cgroup = cgroup_id(cgrp);
7775 data->sample_flags |= PERF_SAMPLE_CGROUP;
7776 }
7777 #endif
7778
7779 /*
7780 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7781 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7782 * but the value will not dump to the userspace.
7783 */
7784 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7785 data->data_page_size = perf_get_page_size(data->addr);
7786 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7787 }
7788
7789 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7790 data->code_page_size = perf_get_page_size(data->ip);
7791 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7792 }
7793
7794 if (filtered_sample_type & PERF_SAMPLE_AUX) {
7795 u64 size;
7796 u16 header_size = perf_sample_data_size(data, event);
7797
7798 header_size += sizeof(u64); /* size */
7799
7800 /*
7801 * Given the 16bit nature of header::size, an AUX sample can
7802 * easily overflow it, what with all the preceding sample bits.
7803 * Make sure this doesn't happen by using up to U16_MAX bytes
7804 * per sample in total (rounded down to 8 byte boundary).
7805 */
7806 size = min_t(size_t, U16_MAX - header_size,
7807 event->attr.aux_sample_size);
7808 size = rounddown(size, 8);
7809 size = perf_prepare_sample_aux(event, data, size);
7810
7811 WARN_ON_ONCE(size + header_size > U16_MAX);
7812 data->dyn_size += size + sizeof(u64); /* size above */
7813 data->sample_flags |= PERF_SAMPLE_AUX;
7814 }
7815 }
7816
perf_prepare_header(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7817 void perf_prepare_header(struct perf_event_header *header,
7818 struct perf_sample_data *data,
7819 struct perf_event *event,
7820 struct pt_regs *regs)
7821 {
7822 header->type = PERF_RECORD_SAMPLE;
7823 header->size = perf_sample_data_size(data, event);
7824 header->misc = perf_misc_flags(regs);
7825
7826 /*
7827 * If you're adding more sample types here, you likely need to do
7828 * something about the overflowing header::size, like repurpose the
7829 * lowest 3 bits of size, which should be always zero at the moment.
7830 * This raises a more important question, do we really need 512k sized
7831 * samples and why, so good argumentation is in order for whatever you
7832 * do here next.
7833 */
7834 WARN_ON_ONCE(header->size & 7);
7835 }
7836
7837 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_sample_data *,struct perf_event *,unsigned int))7838 __perf_event_output(struct perf_event *event,
7839 struct perf_sample_data *data,
7840 struct pt_regs *regs,
7841 int (*output_begin)(struct perf_output_handle *,
7842 struct perf_sample_data *,
7843 struct perf_event *,
7844 unsigned int))
7845 {
7846 struct perf_output_handle handle;
7847 struct perf_event_header header;
7848 int err;
7849
7850 /* protect the callchain buffers */
7851 rcu_read_lock();
7852
7853 perf_prepare_sample(data, event, regs);
7854 perf_prepare_header(&header, data, event, regs);
7855
7856 err = output_begin(&handle, data, event, header.size);
7857 if (err)
7858 goto exit;
7859
7860 perf_output_sample(&handle, &header, data, event);
7861
7862 perf_output_end(&handle);
7863
7864 exit:
7865 rcu_read_unlock();
7866 return err;
7867 }
7868
7869 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7870 perf_event_output_forward(struct perf_event *event,
7871 struct perf_sample_data *data,
7872 struct pt_regs *regs)
7873 {
7874 __perf_event_output(event, data, regs, perf_output_begin_forward);
7875 }
7876
7877 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7878 perf_event_output_backward(struct perf_event *event,
7879 struct perf_sample_data *data,
7880 struct pt_regs *regs)
7881 {
7882 __perf_event_output(event, data, regs, perf_output_begin_backward);
7883 }
7884
7885 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7886 perf_event_output(struct perf_event *event,
7887 struct perf_sample_data *data,
7888 struct pt_regs *regs)
7889 {
7890 return __perf_event_output(event, data, regs, perf_output_begin);
7891 }
7892
7893 /*
7894 * read event_id
7895 */
7896
7897 struct perf_read_event {
7898 struct perf_event_header header;
7899
7900 u32 pid;
7901 u32 tid;
7902 };
7903
7904 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)7905 perf_event_read_event(struct perf_event *event,
7906 struct task_struct *task)
7907 {
7908 struct perf_output_handle handle;
7909 struct perf_sample_data sample;
7910 struct perf_read_event read_event = {
7911 .header = {
7912 .type = PERF_RECORD_READ,
7913 .misc = 0,
7914 .size = sizeof(read_event) + event->read_size,
7915 },
7916 .pid = perf_event_pid(event, task),
7917 .tid = perf_event_tid(event, task),
7918 };
7919 int ret;
7920
7921 perf_event_header__init_id(&read_event.header, &sample, event);
7922 ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7923 if (ret)
7924 return;
7925
7926 perf_output_put(&handle, read_event);
7927 perf_output_read(&handle, event);
7928 perf_event__output_id_sample(event, &handle, &sample);
7929
7930 perf_output_end(&handle);
7931 }
7932
7933 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7934
7935 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)7936 perf_iterate_ctx(struct perf_event_context *ctx,
7937 perf_iterate_f output,
7938 void *data, bool all)
7939 {
7940 struct perf_event *event;
7941
7942 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7943 if (!all) {
7944 if (event->state < PERF_EVENT_STATE_INACTIVE)
7945 continue;
7946 if (!event_filter_match(event))
7947 continue;
7948 }
7949
7950 output(event, data);
7951 }
7952 }
7953
perf_iterate_sb_cpu(perf_iterate_f output,void * data)7954 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7955 {
7956 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7957 struct perf_event *event;
7958
7959 list_for_each_entry_rcu(event, &pel->list, sb_list) {
7960 /*
7961 * Skip events that are not fully formed yet; ensure that
7962 * if we observe event->ctx, both event and ctx will be
7963 * complete enough. See perf_install_in_context().
7964 */
7965 if (!smp_load_acquire(&event->ctx))
7966 continue;
7967
7968 if (event->state < PERF_EVENT_STATE_INACTIVE)
7969 continue;
7970 if (!event_filter_match(event))
7971 continue;
7972 output(event, data);
7973 }
7974 }
7975
7976 /*
7977 * Iterate all events that need to receive side-band events.
7978 *
7979 * For new callers; ensure that account_pmu_sb_event() includes
7980 * your event, otherwise it might not get delivered.
7981 */
7982 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)7983 perf_iterate_sb(perf_iterate_f output, void *data,
7984 struct perf_event_context *task_ctx)
7985 {
7986 struct perf_event_context *ctx;
7987
7988 rcu_read_lock();
7989 preempt_disable();
7990
7991 /*
7992 * If we have task_ctx != NULL we only notify the task context itself.
7993 * The task_ctx is set only for EXIT events before releasing task
7994 * context.
7995 */
7996 if (task_ctx) {
7997 perf_iterate_ctx(task_ctx, output, data, false);
7998 goto done;
7999 }
8000
8001 perf_iterate_sb_cpu(output, data);
8002
8003 ctx = rcu_dereference(current->perf_event_ctxp);
8004 if (ctx)
8005 perf_iterate_ctx(ctx, output, data, false);
8006 done:
8007 preempt_enable();
8008 rcu_read_unlock();
8009 }
8010
8011 /*
8012 * Clear all file-based filters at exec, they'll have to be
8013 * re-instated when/if these objects are mmapped again.
8014 */
perf_event_addr_filters_exec(struct perf_event * event,void * data)8015 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8016 {
8017 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8018 struct perf_addr_filter *filter;
8019 unsigned int restart = 0, count = 0;
8020 unsigned long flags;
8021
8022 if (!has_addr_filter(event))
8023 return;
8024
8025 raw_spin_lock_irqsave(&ifh->lock, flags);
8026 list_for_each_entry(filter, &ifh->list, entry) {
8027 if (filter->path.dentry) {
8028 event->addr_filter_ranges[count].start = 0;
8029 event->addr_filter_ranges[count].size = 0;
8030 restart++;
8031 }
8032
8033 count++;
8034 }
8035
8036 if (restart)
8037 event->addr_filters_gen++;
8038 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8039
8040 if (restart)
8041 perf_event_stop(event, 1);
8042 }
8043
perf_event_exec(void)8044 void perf_event_exec(void)
8045 {
8046 struct perf_event_context *ctx;
8047
8048 ctx = perf_pin_task_context(current);
8049 if (!ctx)
8050 return;
8051
8052 perf_event_enable_on_exec(ctx);
8053 perf_event_remove_on_exec(ctx);
8054 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8055
8056 perf_unpin_context(ctx);
8057 put_ctx(ctx);
8058 }
8059
8060 struct remote_output {
8061 struct perf_buffer *rb;
8062 int err;
8063 };
8064
__perf_event_output_stop(struct perf_event * event,void * data)8065 static void __perf_event_output_stop(struct perf_event *event, void *data)
8066 {
8067 struct perf_event *parent = event->parent;
8068 struct remote_output *ro = data;
8069 struct perf_buffer *rb = ro->rb;
8070 struct stop_event_data sd = {
8071 .event = event,
8072 };
8073
8074 if (!has_aux(event))
8075 return;
8076
8077 if (!parent)
8078 parent = event;
8079
8080 /*
8081 * In case of inheritance, it will be the parent that links to the
8082 * ring-buffer, but it will be the child that's actually using it.
8083 *
8084 * We are using event::rb to determine if the event should be stopped,
8085 * however this may race with ring_buffer_attach() (through set_output),
8086 * which will make us skip the event that actually needs to be stopped.
8087 * So ring_buffer_attach() has to stop an aux event before re-assigning
8088 * its rb pointer.
8089 */
8090 if (rcu_dereference(parent->rb) == rb)
8091 ro->err = __perf_event_stop(&sd);
8092 }
8093
__perf_pmu_output_stop(void * info)8094 static int __perf_pmu_output_stop(void *info)
8095 {
8096 struct perf_event *event = info;
8097 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8098 struct remote_output ro = {
8099 .rb = event->rb,
8100 };
8101
8102 rcu_read_lock();
8103 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8104 if (cpuctx->task_ctx)
8105 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8106 &ro, false);
8107 rcu_read_unlock();
8108
8109 return ro.err;
8110 }
8111
perf_pmu_output_stop(struct perf_event * event)8112 static void perf_pmu_output_stop(struct perf_event *event)
8113 {
8114 struct perf_event *iter;
8115 int err, cpu;
8116
8117 restart:
8118 rcu_read_lock();
8119 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8120 /*
8121 * For per-CPU events, we need to make sure that neither they
8122 * nor their children are running; for cpu==-1 events it's
8123 * sufficient to stop the event itself if it's active, since
8124 * it can't have children.
8125 */
8126 cpu = iter->cpu;
8127 if (cpu == -1)
8128 cpu = READ_ONCE(iter->oncpu);
8129
8130 if (cpu == -1)
8131 continue;
8132
8133 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8134 if (err == -EAGAIN) {
8135 rcu_read_unlock();
8136 goto restart;
8137 }
8138 }
8139 rcu_read_unlock();
8140 }
8141
8142 /*
8143 * task tracking -- fork/exit
8144 *
8145 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8146 */
8147
8148 struct perf_task_event {
8149 struct task_struct *task;
8150 struct perf_event_context *task_ctx;
8151
8152 struct {
8153 struct perf_event_header header;
8154
8155 u32 pid;
8156 u32 ppid;
8157 u32 tid;
8158 u32 ptid;
8159 u64 time;
8160 } event_id;
8161 };
8162
perf_event_task_match(struct perf_event * event)8163 static int perf_event_task_match(struct perf_event *event)
8164 {
8165 return event->attr.comm || event->attr.mmap ||
8166 event->attr.mmap2 || event->attr.mmap_data ||
8167 event->attr.task;
8168 }
8169
perf_event_task_output(struct perf_event * event,void * data)8170 static void perf_event_task_output(struct perf_event *event,
8171 void *data)
8172 {
8173 struct perf_task_event *task_event = data;
8174 struct perf_output_handle handle;
8175 struct perf_sample_data sample;
8176 struct task_struct *task = task_event->task;
8177 int ret, size = task_event->event_id.header.size;
8178
8179 if (!perf_event_task_match(event))
8180 return;
8181
8182 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8183
8184 ret = perf_output_begin(&handle, &sample, event,
8185 task_event->event_id.header.size);
8186 if (ret)
8187 goto out;
8188
8189 task_event->event_id.pid = perf_event_pid(event, task);
8190 task_event->event_id.tid = perf_event_tid(event, task);
8191
8192 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8193 task_event->event_id.ppid = perf_event_pid(event,
8194 task->real_parent);
8195 task_event->event_id.ptid = perf_event_pid(event,
8196 task->real_parent);
8197 } else { /* PERF_RECORD_FORK */
8198 task_event->event_id.ppid = perf_event_pid(event, current);
8199 task_event->event_id.ptid = perf_event_tid(event, current);
8200 }
8201
8202 task_event->event_id.time = perf_event_clock(event);
8203
8204 perf_output_put(&handle, task_event->event_id);
8205
8206 perf_event__output_id_sample(event, &handle, &sample);
8207
8208 perf_output_end(&handle);
8209 out:
8210 task_event->event_id.header.size = size;
8211 }
8212
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)8213 static void perf_event_task(struct task_struct *task,
8214 struct perf_event_context *task_ctx,
8215 int new)
8216 {
8217 struct perf_task_event task_event;
8218
8219 if (!atomic_read(&nr_comm_events) &&
8220 !atomic_read(&nr_mmap_events) &&
8221 !atomic_read(&nr_task_events))
8222 return;
8223
8224 task_event = (struct perf_task_event){
8225 .task = task,
8226 .task_ctx = task_ctx,
8227 .event_id = {
8228 .header = {
8229 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8230 .misc = 0,
8231 .size = sizeof(task_event.event_id),
8232 },
8233 /* .pid */
8234 /* .ppid */
8235 /* .tid */
8236 /* .ptid */
8237 /* .time */
8238 },
8239 };
8240
8241 perf_iterate_sb(perf_event_task_output,
8242 &task_event,
8243 task_ctx);
8244 }
8245
perf_event_fork(struct task_struct * task)8246 void perf_event_fork(struct task_struct *task)
8247 {
8248 perf_event_task(task, NULL, 1);
8249 perf_event_namespaces(task);
8250 }
8251
8252 /*
8253 * comm tracking
8254 */
8255
8256 struct perf_comm_event {
8257 struct task_struct *task;
8258 char *comm;
8259 int comm_size;
8260
8261 struct {
8262 struct perf_event_header header;
8263
8264 u32 pid;
8265 u32 tid;
8266 } event_id;
8267 };
8268
perf_event_comm_match(struct perf_event * event)8269 static int perf_event_comm_match(struct perf_event *event)
8270 {
8271 return event->attr.comm;
8272 }
8273
perf_event_comm_output(struct perf_event * event,void * data)8274 static void perf_event_comm_output(struct perf_event *event,
8275 void *data)
8276 {
8277 struct perf_comm_event *comm_event = data;
8278 struct perf_output_handle handle;
8279 struct perf_sample_data sample;
8280 int size = comm_event->event_id.header.size;
8281 int ret;
8282
8283 if (!perf_event_comm_match(event))
8284 return;
8285
8286 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8287 ret = perf_output_begin(&handle, &sample, event,
8288 comm_event->event_id.header.size);
8289
8290 if (ret)
8291 goto out;
8292
8293 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8294 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8295
8296 perf_output_put(&handle, comm_event->event_id);
8297 __output_copy(&handle, comm_event->comm,
8298 comm_event->comm_size);
8299
8300 perf_event__output_id_sample(event, &handle, &sample);
8301
8302 perf_output_end(&handle);
8303 out:
8304 comm_event->event_id.header.size = size;
8305 }
8306
perf_event_comm_event(struct perf_comm_event * comm_event)8307 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8308 {
8309 char comm[TASK_COMM_LEN];
8310 unsigned int size;
8311
8312 memset(comm, 0, sizeof(comm));
8313 strscpy(comm, comm_event->task->comm, sizeof(comm));
8314 size = ALIGN(strlen(comm)+1, sizeof(u64));
8315
8316 comm_event->comm = comm;
8317 comm_event->comm_size = size;
8318
8319 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8320
8321 perf_iterate_sb(perf_event_comm_output,
8322 comm_event,
8323 NULL);
8324 }
8325
perf_event_comm(struct task_struct * task,bool exec)8326 void perf_event_comm(struct task_struct *task, bool exec)
8327 {
8328 struct perf_comm_event comm_event;
8329
8330 if (!atomic_read(&nr_comm_events))
8331 return;
8332
8333 comm_event = (struct perf_comm_event){
8334 .task = task,
8335 /* .comm */
8336 /* .comm_size */
8337 .event_id = {
8338 .header = {
8339 .type = PERF_RECORD_COMM,
8340 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8341 /* .size */
8342 },
8343 /* .pid */
8344 /* .tid */
8345 },
8346 };
8347
8348 perf_event_comm_event(&comm_event);
8349 }
8350
8351 /*
8352 * namespaces tracking
8353 */
8354
8355 struct perf_namespaces_event {
8356 struct task_struct *task;
8357
8358 struct {
8359 struct perf_event_header header;
8360
8361 u32 pid;
8362 u32 tid;
8363 u64 nr_namespaces;
8364 struct perf_ns_link_info link_info[NR_NAMESPACES];
8365 } event_id;
8366 };
8367
perf_event_namespaces_match(struct perf_event * event)8368 static int perf_event_namespaces_match(struct perf_event *event)
8369 {
8370 return event->attr.namespaces;
8371 }
8372
perf_event_namespaces_output(struct perf_event * event,void * data)8373 static void perf_event_namespaces_output(struct perf_event *event,
8374 void *data)
8375 {
8376 struct perf_namespaces_event *namespaces_event = data;
8377 struct perf_output_handle handle;
8378 struct perf_sample_data sample;
8379 u16 header_size = namespaces_event->event_id.header.size;
8380 int ret;
8381
8382 if (!perf_event_namespaces_match(event))
8383 return;
8384
8385 perf_event_header__init_id(&namespaces_event->event_id.header,
8386 &sample, event);
8387 ret = perf_output_begin(&handle, &sample, event,
8388 namespaces_event->event_id.header.size);
8389 if (ret)
8390 goto out;
8391
8392 namespaces_event->event_id.pid = perf_event_pid(event,
8393 namespaces_event->task);
8394 namespaces_event->event_id.tid = perf_event_tid(event,
8395 namespaces_event->task);
8396
8397 perf_output_put(&handle, namespaces_event->event_id);
8398
8399 perf_event__output_id_sample(event, &handle, &sample);
8400
8401 perf_output_end(&handle);
8402 out:
8403 namespaces_event->event_id.header.size = header_size;
8404 }
8405
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)8406 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8407 struct task_struct *task,
8408 const struct proc_ns_operations *ns_ops)
8409 {
8410 struct path ns_path;
8411 struct inode *ns_inode;
8412 int error;
8413
8414 error = ns_get_path(&ns_path, task, ns_ops);
8415 if (!error) {
8416 ns_inode = ns_path.dentry->d_inode;
8417 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8418 ns_link_info->ino = ns_inode->i_ino;
8419 path_put(&ns_path);
8420 }
8421 }
8422
perf_event_namespaces(struct task_struct * task)8423 void perf_event_namespaces(struct task_struct *task)
8424 {
8425 struct perf_namespaces_event namespaces_event;
8426 struct perf_ns_link_info *ns_link_info;
8427
8428 if (!atomic_read(&nr_namespaces_events))
8429 return;
8430
8431 namespaces_event = (struct perf_namespaces_event){
8432 .task = task,
8433 .event_id = {
8434 .header = {
8435 .type = PERF_RECORD_NAMESPACES,
8436 .misc = 0,
8437 .size = sizeof(namespaces_event.event_id),
8438 },
8439 /* .pid */
8440 /* .tid */
8441 .nr_namespaces = NR_NAMESPACES,
8442 /* .link_info[NR_NAMESPACES] */
8443 },
8444 };
8445
8446 ns_link_info = namespaces_event.event_id.link_info;
8447
8448 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8449 task, &mntns_operations);
8450
8451 #ifdef CONFIG_USER_NS
8452 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8453 task, &userns_operations);
8454 #endif
8455 #ifdef CONFIG_NET_NS
8456 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8457 task, &netns_operations);
8458 #endif
8459 #ifdef CONFIG_UTS_NS
8460 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8461 task, &utsns_operations);
8462 #endif
8463 #ifdef CONFIG_IPC_NS
8464 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8465 task, &ipcns_operations);
8466 #endif
8467 #ifdef CONFIG_PID_NS
8468 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8469 task, &pidns_operations);
8470 #endif
8471 #ifdef CONFIG_CGROUPS
8472 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8473 task, &cgroupns_operations);
8474 #endif
8475
8476 perf_iterate_sb(perf_event_namespaces_output,
8477 &namespaces_event,
8478 NULL);
8479 }
8480
8481 /*
8482 * cgroup tracking
8483 */
8484 #ifdef CONFIG_CGROUP_PERF
8485
8486 struct perf_cgroup_event {
8487 char *path;
8488 int path_size;
8489 struct {
8490 struct perf_event_header header;
8491 u64 id;
8492 char path[];
8493 } event_id;
8494 };
8495
perf_event_cgroup_match(struct perf_event * event)8496 static int perf_event_cgroup_match(struct perf_event *event)
8497 {
8498 return event->attr.cgroup;
8499 }
8500
perf_event_cgroup_output(struct perf_event * event,void * data)8501 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8502 {
8503 struct perf_cgroup_event *cgroup_event = data;
8504 struct perf_output_handle handle;
8505 struct perf_sample_data sample;
8506 u16 header_size = cgroup_event->event_id.header.size;
8507 int ret;
8508
8509 if (!perf_event_cgroup_match(event))
8510 return;
8511
8512 perf_event_header__init_id(&cgroup_event->event_id.header,
8513 &sample, event);
8514 ret = perf_output_begin(&handle, &sample, event,
8515 cgroup_event->event_id.header.size);
8516 if (ret)
8517 goto out;
8518
8519 perf_output_put(&handle, cgroup_event->event_id);
8520 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8521
8522 perf_event__output_id_sample(event, &handle, &sample);
8523
8524 perf_output_end(&handle);
8525 out:
8526 cgroup_event->event_id.header.size = header_size;
8527 }
8528
perf_event_cgroup(struct cgroup * cgrp)8529 static void perf_event_cgroup(struct cgroup *cgrp)
8530 {
8531 struct perf_cgroup_event cgroup_event;
8532 char path_enomem[16] = "//enomem";
8533 char *pathname;
8534 size_t size;
8535
8536 if (!atomic_read(&nr_cgroup_events))
8537 return;
8538
8539 cgroup_event = (struct perf_cgroup_event){
8540 .event_id = {
8541 .header = {
8542 .type = PERF_RECORD_CGROUP,
8543 .misc = 0,
8544 .size = sizeof(cgroup_event.event_id),
8545 },
8546 .id = cgroup_id(cgrp),
8547 },
8548 };
8549
8550 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8551 if (pathname == NULL) {
8552 cgroup_event.path = path_enomem;
8553 } else {
8554 /* just to be sure to have enough space for alignment */
8555 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8556 cgroup_event.path = pathname;
8557 }
8558
8559 /*
8560 * Since our buffer works in 8 byte units we need to align our string
8561 * size to a multiple of 8. However, we must guarantee the tail end is
8562 * zero'd out to avoid leaking random bits to userspace.
8563 */
8564 size = strlen(cgroup_event.path) + 1;
8565 while (!IS_ALIGNED(size, sizeof(u64)))
8566 cgroup_event.path[size++] = '\0';
8567
8568 cgroup_event.event_id.header.size += size;
8569 cgroup_event.path_size = size;
8570
8571 perf_iterate_sb(perf_event_cgroup_output,
8572 &cgroup_event,
8573 NULL);
8574
8575 kfree(pathname);
8576 }
8577
8578 #endif
8579
8580 /*
8581 * mmap tracking
8582 */
8583
8584 struct perf_mmap_event {
8585 struct vm_area_struct *vma;
8586
8587 const char *file_name;
8588 int file_size;
8589 int maj, min;
8590 u64 ino;
8591 u64 ino_generation;
8592 u32 prot, flags;
8593 u8 build_id[BUILD_ID_SIZE_MAX];
8594 u32 build_id_size;
8595
8596 struct {
8597 struct perf_event_header header;
8598
8599 u32 pid;
8600 u32 tid;
8601 u64 start;
8602 u64 len;
8603 u64 pgoff;
8604 } event_id;
8605 };
8606
perf_event_mmap_match(struct perf_event * event,void * data)8607 static int perf_event_mmap_match(struct perf_event *event,
8608 void *data)
8609 {
8610 struct perf_mmap_event *mmap_event = data;
8611 struct vm_area_struct *vma = mmap_event->vma;
8612 int executable = vma->vm_flags & VM_EXEC;
8613
8614 return (!executable && event->attr.mmap_data) ||
8615 (executable && (event->attr.mmap || event->attr.mmap2));
8616 }
8617
perf_event_mmap_output(struct perf_event * event,void * data)8618 static void perf_event_mmap_output(struct perf_event *event,
8619 void *data)
8620 {
8621 struct perf_mmap_event *mmap_event = data;
8622 struct perf_output_handle handle;
8623 struct perf_sample_data sample;
8624 int size = mmap_event->event_id.header.size;
8625 u32 type = mmap_event->event_id.header.type;
8626 bool use_build_id;
8627 int ret;
8628
8629 if (!perf_event_mmap_match(event, data))
8630 return;
8631
8632 if (event->attr.mmap2) {
8633 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8634 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8635 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8636 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8637 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8638 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8639 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8640 }
8641
8642 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8643 ret = perf_output_begin(&handle, &sample, event,
8644 mmap_event->event_id.header.size);
8645 if (ret)
8646 goto out;
8647
8648 mmap_event->event_id.pid = perf_event_pid(event, current);
8649 mmap_event->event_id.tid = perf_event_tid(event, current);
8650
8651 use_build_id = event->attr.build_id && mmap_event->build_id_size;
8652
8653 if (event->attr.mmap2 && use_build_id)
8654 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8655
8656 perf_output_put(&handle, mmap_event->event_id);
8657
8658 if (event->attr.mmap2) {
8659 if (use_build_id) {
8660 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8661
8662 __output_copy(&handle, size, 4);
8663 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8664 } else {
8665 perf_output_put(&handle, mmap_event->maj);
8666 perf_output_put(&handle, mmap_event->min);
8667 perf_output_put(&handle, mmap_event->ino);
8668 perf_output_put(&handle, mmap_event->ino_generation);
8669 }
8670 perf_output_put(&handle, mmap_event->prot);
8671 perf_output_put(&handle, mmap_event->flags);
8672 }
8673
8674 __output_copy(&handle, mmap_event->file_name,
8675 mmap_event->file_size);
8676
8677 perf_event__output_id_sample(event, &handle, &sample);
8678
8679 perf_output_end(&handle);
8680 out:
8681 mmap_event->event_id.header.size = size;
8682 mmap_event->event_id.header.type = type;
8683 }
8684
perf_event_mmap_event(struct perf_mmap_event * mmap_event)8685 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8686 {
8687 struct vm_area_struct *vma = mmap_event->vma;
8688 struct file *file = vma->vm_file;
8689 int maj = 0, min = 0;
8690 u64 ino = 0, gen = 0;
8691 u32 prot = 0, flags = 0;
8692 unsigned int size;
8693 char tmp[16];
8694 char *buf = NULL;
8695 char *name = NULL;
8696
8697 if (vma->vm_flags & VM_READ)
8698 prot |= PROT_READ;
8699 if (vma->vm_flags & VM_WRITE)
8700 prot |= PROT_WRITE;
8701 if (vma->vm_flags & VM_EXEC)
8702 prot |= PROT_EXEC;
8703
8704 if (vma->vm_flags & VM_MAYSHARE)
8705 flags = MAP_SHARED;
8706 else
8707 flags = MAP_PRIVATE;
8708
8709 if (vma->vm_flags & VM_LOCKED)
8710 flags |= MAP_LOCKED;
8711 if (is_vm_hugetlb_page(vma))
8712 flags |= MAP_HUGETLB;
8713
8714 if (file) {
8715 struct inode *inode;
8716 dev_t dev;
8717
8718 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8719 if (!buf) {
8720 name = "//enomem";
8721 goto cpy_name;
8722 }
8723 /*
8724 * d_path() works from the end of the rb backwards, so we
8725 * need to add enough zero bytes after the string to handle
8726 * the 64bit alignment we do later.
8727 */
8728 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8729 if (IS_ERR(name)) {
8730 name = "//toolong";
8731 goto cpy_name;
8732 }
8733 inode = file_inode(vma->vm_file);
8734 dev = inode->i_sb->s_dev;
8735 ino = inode->i_ino;
8736 gen = inode->i_generation;
8737 maj = MAJOR(dev);
8738 min = MINOR(dev);
8739
8740 goto got_name;
8741 } else {
8742 if (vma->vm_ops && vma->vm_ops->name)
8743 name = (char *) vma->vm_ops->name(vma);
8744 if (!name)
8745 name = (char *)arch_vma_name(vma);
8746 if (!name) {
8747 if (vma_is_initial_heap(vma))
8748 name = "[heap]";
8749 else if (vma_is_initial_stack(vma))
8750 name = "[stack]";
8751 else
8752 name = "//anon";
8753 }
8754 }
8755
8756 cpy_name:
8757 strscpy(tmp, name, sizeof(tmp));
8758 name = tmp;
8759 got_name:
8760 /*
8761 * Since our buffer works in 8 byte units we need to align our string
8762 * size to a multiple of 8. However, we must guarantee the tail end is
8763 * zero'd out to avoid leaking random bits to userspace.
8764 */
8765 size = strlen(name)+1;
8766 while (!IS_ALIGNED(size, sizeof(u64)))
8767 name[size++] = '\0';
8768
8769 mmap_event->file_name = name;
8770 mmap_event->file_size = size;
8771 mmap_event->maj = maj;
8772 mmap_event->min = min;
8773 mmap_event->ino = ino;
8774 mmap_event->ino_generation = gen;
8775 mmap_event->prot = prot;
8776 mmap_event->flags = flags;
8777
8778 if (!(vma->vm_flags & VM_EXEC))
8779 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8780
8781 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8782
8783 if (atomic_read(&nr_build_id_events))
8784 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8785
8786 perf_iterate_sb(perf_event_mmap_output,
8787 mmap_event,
8788 NULL);
8789
8790 kfree(buf);
8791 }
8792
8793 /*
8794 * Check whether inode and address range match filter criteria.
8795 */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)8796 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8797 struct file *file, unsigned long offset,
8798 unsigned long size)
8799 {
8800 /* d_inode(NULL) won't be equal to any mapped user-space file */
8801 if (!filter->path.dentry)
8802 return false;
8803
8804 if (d_inode(filter->path.dentry) != file_inode(file))
8805 return false;
8806
8807 if (filter->offset > offset + size)
8808 return false;
8809
8810 if (filter->offset + filter->size < offset)
8811 return false;
8812
8813 return true;
8814 }
8815
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)8816 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8817 struct vm_area_struct *vma,
8818 struct perf_addr_filter_range *fr)
8819 {
8820 unsigned long vma_size = vma->vm_end - vma->vm_start;
8821 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8822 struct file *file = vma->vm_file;
8823
8824 if (!perf_addr_filter_match(filter, file, off, vma_size))
8825 return false;
8826
8827 if (filter->offset < off) {
8828 fr->start = vma->vm_start;
8829 fr->size = min(vma_size, filter->size - (off - filter->offset));
8830 } else {
8831 fr->start = vma->vm_start + filter->offset - off;
8832 fr->size = min(vma->vm_end - fr->start, filter->size);
8833 }
8834
8835 return true;
8836 }
8837
__perf_addr_filters_adjust(struct perf_event * event,void * data)8838 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8839 {
8840 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8841 struct vm_area_struct *vma = data;
8842 struct perf_addr_filter *filter;
8843 unsigned int restart = 0, count = 0;
8844 unsigned long flags;
8845
8846 if (!has_addr_filter(event))
8847 return;
8848
8849 if (!vma->vm_file)
8850 return;
8851
8852 raw_spin_lock_irqsave(&ifh->lock, flags);
8853 list_for_each_entry(filter, &ifh->list, entry) {
8854 if (perf_addr_filter_vma_adjust(filter, vma,
8855 &event->addr_filter_ranges[count]))
8856 restart++;
8857
8858 count++;
8859 }
8860
8861 if (restart)
8862 event->addr_filters_gen++;
8863 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8864
8865 if (restart)
8866 perf_event_stop(event, 1);
8867 }
8868
8869 /*
8870 * Adjust all task's events' filters to the new vma
8871 */
perf_addr_filters_adjust(struct vm_area_struct * vma)8872 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8873 {
8874 struct perf_event_context *ctx;
8875
8876 /*
8877 * Data tracing isn't supported yet and as such there is no need
8878 * to keep track of anything that isn't related to executable code:
8879 */
8880 if (!(vma->vm_flags & VM_EXEC))
8881 return;
8882
8883 rcu_read_lock();
8884 ctx = rcu_dereference(current->perf_event_ctxp);
8885 if (ctx)
8886 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8887 rcu_read_unlock();
8888 }
8889
perf_event_mmap(struct vm_area_struct * vma)8890 void perf_event_mmap(struct vm_area_struct *vma)
8891 {
8892 struct perf_mmap_event mmap_event;
8893
8894 if (!atomic_read(&nr_mmap_events))
8895 return;
8896
8897 mmap_event = (struct perf_mmap_event){
8898 .vma = vma,
8899 /* .file_name */
8900 /* .file_size */
8901 .event_id = {
8902 .header = {
8903 .type = PERF_RECORD_MMAP,
8904 .misc = PERF_RECORD_MISC_USER,
8905 /* .size */
8906 },
8907 /* .pid */
8908 /* .tid */
8909 .start = vma->vm_start,
8910 .len = vma->vm_end - vma->vm_start,
8911 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
8912 },
8913 /* .maj (attr_mmap2 only) */
8914 /* .min (attr_mmap2 only) */
8915 /* .ino (attr_mmap2 only) */
8916 /* .ino_generation (attr_mmap2 only) */
8917 /* .prot (attr_mmap2 only) */
8918 /* .flags (attr_mmap2 only) */
8919 };
8920
8921 perf_addr_filters_adjust(vma);
8922 perf_event_mmap_event(&mmap_event);
8923 }
8924
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)8925 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8926 unsigned long size, u64 flags)
8927 {
8928 struct perf_output_handle handle;
8929 struct perf_sample_data sample;
8930 struct perf_aux_event {
8931 struct perf_event_header header;
8932 u64 offset;
8933 u64 size;
8934 u64 flags;
8935 } rec = {
8936 .header = {
8937 .type = PERF_RECORD_AUX,
8938 .misc = 0,
8939 .size = sizeof(rec),
8940 },
8941 .offset = head,
8942 .size = size,
8943 .flags = flags,
8944 };
8945 int ret;
8946
8947 perf_event_header__init_id(&rec.header, &sample, event);
8948 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8949
8950 if (ret)
8951 return;
8952
8953 perf_output_put(&handle, rec);
8954 perf_event__output_id_sample(event, &handle, &sample);
8955
8956 perf_output_end(&handle);
8957 }
8958
8959 /*
8960 * Lost/dropped samples logging
8961 */
perf_log_lost_samples(struct perf_event * event,u64 lost)8962 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8963 {
8964 struct perf_output_handle handle;
8965 struct perf_sample_data sample;
8966 int ret;
8967
8968 struct {
8969 struct perf_event_header header;
8970 u64 lost;
8971 } lost_samples_event = {
8972 .header = {
8973 .type = PERF_RECORD_LOST_SAMPLES,
8974 .misc = 0,
8975 .size = sizeof(lost_samples_event),
8976 },
8977 .lost = lost,
8978 };
8979
8980 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8981
8982 ret = perf_output_begin(&handle, &sample, event,
8983 lost_samples_event.header.size);
8984 if (ret)
8985 return;
8986
8987 perf_output_put(&handle, lost_samples_event);
8988 perf_event__output_id_sample(event, &handle, &sample);
8989 perf_output_end(&handle);
8990 }
8991
8992 /*
8993 * context_switch tracking
8994 */
8995
8996 struct perf_switch_event {
8997 struct task_struct *task;
8998 struct task_struct *next_prev;
8999
9000 struct {
9001 struct perf_event_header header;
9002 u32 next_prev_pid;
9003 u32 next_prev_tid;
9004 } event_id;
9005 };
9006
perf_event_switch_match(struct perf_event * event)9007 static int perf_event_switch_match(struct perf_event *event)
9008 {
9009 return event->attr.context_switch;
9010 }
9011
perf_event_switch_output(struct perf_event * event,void * data)9012 static void perf_event_switch_output(struct perf_event *event, void *data)
9013 {
9014 struct perf_switch_event *se = data;
9015 struct perf_output_handle handle;
9016 struct perf_sample_data sample;
9017 int ret;
9018
9019 if (!perf_event_switch_match(event))
9020 return;
9021
9022 /* Only CPU-wide events are allowed to see next/prev pid/tid */
9023 if (event->ctx->task) {
9024 se->event_id.header.type = PERF_RECORD_SWITCH;
9025 se->event_id.header.size = sizeof(se->event_id.header);
9026 } else {
9027 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9028 se->event_id.header.size = sizeof(se->event_id);
9029 se->event_id.next_prev_pid =
9030 perf_event_pid(event, se->next_prev);
9031 se->event_id.next_prev_tid =
9032 perf_event_tid(event, se->next_prev);
9033 }
9034
9035 perf_event_header__init_id(&se->event_id.header, &sample, event);
9036
9037 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9038 if (ret)
9039 return;
9040
9041 if (event->ctx->task)
9042 perf_output_put(&handle, se->event_id.header);
9043 else
9044 perf_output_put(&handle, se->event_id);
9045
9046 perf_event__output_id_sample(event, &handle, &sample);
9047
9048 perf_output_end(&handle);
9049 }
9050
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)9051 static void perf_event_switch(struct task_struct *task,
9052 struct task_struct *next_prev, bool sched_in)
9053 {
9054 struct perf_switch_event switch_event;
9055
9056 /* N.B. caller checks nr_switch_events != 0 */
9057
9058 switch_event = (struct perf_switch_event){
9059 .task = task,
9060 .next_prev = next_prev,
9061 .event_id = {
9062 .header = {
9063 /* .type */
9064 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9065 /* .size */
9066 },
9067 /* .next_prev_pid */
9068 /* .next_prev_tid */
9069 },
9070 };
9071
9072 if (!sched_in && task->on_rq) {
9073 switch_event.event_id.header.misc |=
9074 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9075 }
9076
9077 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9078 }
9079
9080 /*
9081 * IRQ throttle logging
9082 */
9083
perf_log_throttle(struct perf_event * event,int enable)9084 static void perf_log_throttle(struct perf_event *event, int enable)
9085 {
9086 struct perf_output_handle handle;
9087 struct perf_sample_data sample;
9088 int ret;
9089
9090 struct {
9091 struct perf_event_header header;
9092 u64 time;
9093 u64 id;
9094 u64 stream_id;
9095 } throttle_event = {
9096 .header = {
9097 .type = PERF_RECORD_THROTTLE,
9098 .misc = 0,
9099 .size = sizeof(throttle_event),
9100 },
9101 .time = perf_event_clock(event),
9102 .id = primary_event_id(event),
9103 .stream_id = event->id,
9104 };
9105
9106 if (enable)
9107 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9108
9109 perf_event_header__init_id(&throttle_event.header, &sample, event);
9110
9111 ret = perf_output_begin(&handle, &sample, event,
9112 throttle_event.header.size);
9113 if (ret)
9114 return;
9115
9116 perf_output_put(&handle, throttle_event);
9117 perf_event__output_id_sample(event, &handle, &sample);
9118 perf_output_end(&handle);
9119 }
9120
9121 /*
9122 * ksymbol register/unregister tracking
9123 */
9124
9125 struct perf_ksymbol_event {
9126 const char *name;
9127 int name_len;
9128 struct {
9129 struct perf_event_header header;
9130 u64 addr;
9131 u32 len;
9132 u16 ksym_type;
9133 u16 flags;
9134 } event_id;
9135 };
9136
perf_event_ksymbol_match(struct perf_event * event)9137 static int perf_event_ksymbol_match(struct perf_event *event)
9138 {
9139 return event->attr.ksymbol;
9140 }
9141
perf_event_ksymbol_output(struct perf_event * event,void * data)9142 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9143 {
9144 struct perf_ksymbol_event *ksymbol_event = data;
9145 struct perf_output_handle handle;
9146 struct perf_sample_data sample;
9147 int ret;
9148
9149 if (!perf_event_ksymbol_match(event))
9150 return;
9151
9152 perf_event_header__init_id(&ksymbol_event->event_id.header,
9153 &sample, event);
9154 ret = perf_output_begin(&handle, &sample, event,
9155 ksymbol_event->event_id.header.size);
9156 if (ret)
9157 return;
9158
9159 perf_output_put(&handle, ksymbol_event->event_id);
9160 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9161 perf_event__output_id_sample(event, &handle, &sample);
9162
9163 perf_output_end(&handle);
9164 }
9165
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)9166 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9167 const char *sym)
9168 {
9169 struct perf_ksymbol_event ksymbol_event;
9170 char name[KSYM_NAME_LEN];
9171 u16 flags = 0;
9172 int name_len;
9173
9174 if (!atomic_read(&nr_ksymbol_events))
9175 return;
9176
9177 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9178 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9179 goto err;
9180
9181 strscpy(name, sym, KSYM_NAME_LEN);
9182 name_len = strlen(name) + 1;
9183 while (!IS_ALIGNED(name_len, sizeof(u64)))
9184 name[name_len++] = '\0';
9185 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9186
9187 if (unregister)
9188 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9189
9190 ksymbol_event = (struct perf_ksymbol_event){
9191 .name = name,
9192 .name_len = name_len,
9193 .event_id = {
9194 .header = {
9195 .type = PERF_RECORD_KSYMBOL,
9196 .size = sizeof(ksymbol_event.event_id) +
9197 name_len,
9198 },
9199 .addr = addr,
9200 .len = len,
9201 .ksym_type = ksym_type,
9202 .flags = flags,
9203 },
9204 };
9205
9206 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9207 return;
9208 err:
9209 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9210 }
9211
9212 /*
9213 * bpf program load/unload tracking
9214 */
9215
9216 struct perf_bpf_event {
9217 struct bpf_prog *prog;
9218 struct {
9219 struct perf_event_header header;
9220 u16 type;
9221 u16 flags;
9222 u32 id;
9223 u8 tag[BPF_TAG_SIZE];
9224 } event_id;
9225 };
9226
perf_event_bpf_match(struct perf_event * event)9227 static int perf_event_bpf_match(struct perf_event *event)
9228 {
9229 return event->attr.bpf_event;
9230 }
9231
perf_event_bpf_output(struct perf_event * event,void * data)9232 static void perf_event_bpf_output(struct perf_event *event, void *data)
9233 {
9234 struct perf_bpf_event *bpf_event = data;
9235 struct perf_output_handle handle;
9236 struct perf_sample_data sample;
9237 int ret;
9238
9239 if (!perf_event_bpf_match(event))
9240 return;
9241
9242 perf_event_header__init_id(&bpf_event->event_id.header,
9243 &sample, event);
9244 ret = perf_output_begin(&handle, &sample, event,
9245 bpf_event->event_id.header.size);
9246 if (ret)
9247 return;
9248
9249 perf_output_put(&handle, bpf_event->event_id);
9250 perf_event__output_id_sample(event, &handle, &sample);
9251
9252 perf_output_end(&handle);
9253 }
9254
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)9255 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9256 enum perf_bpf_event_type type)
9257 {
9258 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9259 int i;
9260
9261 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9262 (u64)(unsigned long)prog->bpf_func,
9263 prog->jited_len, unregister,
9264 prog->aux->ksym.name);
9265
9266 for (i = 1; i < prog->aux->func_cnt; i++) {
9267 struct bpf_prog *subprog = prog->aux->func[i];
9268
9269 perf_event_ksymbol(
9270 PERF_RECORD_KSYMBOL_TYPE_BPF,
9271 (u64)(unsigned long)subprog->bpf_func,
9272 subprog->jited_len, unregister,
9273 subprog->aux->ksym.name);
9274 }
9275 }
9276
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)9277 void perf_event_bpf_event(struct bpf_prog *prog,
9278 enum perf_bpf_event_type type,
9279 u16 flags)
9280 {
9281 struct perf_bpf_event bpf_event;
9282
9283 if (type <= PERF_BPF_EVENT_UNKNOWN ||
9284 type >= PERF_BPF_EVENT_MAX)
9285 return;
9286
9287 switch (type) {
9288 case PERF_BPF_EVENT_PROG_LOAD:
9289 case PERF_BPF_EVENT_PROG_UNLOAD:
9290 if (atomic_read(&nr_ksymbol_events))
9291 perf_event_bpf_emit_ksymbols(prog, type);
9292 break;
9293 default:
9294 break;
9295 }
9296
9297 if (!atomic_read(&nr_bpf_events))
9298 return;
9299
9300 bpf_event = (struct perf_bpf_event){
9301 .prog = prog,
9302 .event_id = {
9303 .header = {
9304 .type = PERF_RECORD_BPF_EVENT,
9305 .size = sizeof(bpf_event.event_id),
9306 },
9307 .type = type,
9308 .flags = flags,
9309 .id = prog->aux->id,
9310 },
9311 };
9312
9313 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9314
9315 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9316 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9317 }
9318
9319 struct perf_text_poke_event {
9320 const void *old_bytes;
9321 const void *new_bytes;
9322 size_t pad;
9323 u16 old_len;
9324 u16 new_len;
9325
9326 struct {
9327 struct perf_event_header header;
9328
9329 u64 addr;
9330 } event_id;
9331 };
9332
perf_event_text_poke_match(struct perf_event * event)9333 static int perf_event_text_poke_match(struct perf_event *event)
9334 {
9335 return event->attr.text_poke;
9336 }
9337
perf_event_text_poke_output(struct perf_event * event,void * data)9338 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9339 {
9340 struct perf_text_poke_event *text_poke_event = data;
9341 struct perf_output_handle handle;
9342 struct perf_sample_data sample;
9343 u64 padding = 0;
9344 int ret;
9345
9346 if (!perf_event_text_poke_match(event))
9347 return;
9348
9349 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9350
9351 ret = perf_output_begin(&handle, &sample, event,
9352 text_poke_event->event_id.header.size);
9353 if (ret)
9354 return;
9355
9356 perf_output_put(&handle, text_poke_event->event_id);
9357 perf_output_put(&handle, text_poke_event->old_len);
9358 perf_output_put(&handle, text_poke_event->new_len);
9359
9360 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9361 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9362
9363 if (text_poke_event->pad)
9364 __output_copy(&handle, &padding, text_poke_event->pad);
9365
9366 perf_event__output_id_sample(event, &handle, &sample);
9367
9368 perf_output_end(&handle);
9369 }
9370
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)9371 void perf_event_text_poke(const void *addr, const void *old_bytes,
9372 size_t old_len, const void *new_bytes, size_t new_len)
9373 {
9374 struct perf_text_poke_event text_poke_event;
9375 size_t tot, pad;
9376
9377 if (!atomic_read(&nr_text_poke_events))
9378 return;
9379
9380 tot = sizeof(text_poke_event.old_len) + old_len;
9381 tot += sizeof(text_poke_event.new_len) + new_len;
9382 pad = ALIGN(tot, sizeof(u64)) - tot;
9383
9384 text_poke_event = (struct perf_text_poke_event){
9385 .old_bytes = old_bytes,
9386 .new_bytes = new_bytes,
9387 .pad = pad,
9388 .old_len = old_len,
9389 .new_len = new_len,
9390 .event_id = {
9391 .header = {
9392 .type = PERF_RECORD_TEXT_POKE,
9393 .misc = PERF_RECORD_MISC_KERNEL,
9394 .size = sizeof(text_poke_event.event_id) + tot + pad,
9395 },
9396 .addr = (unsigned long)addr,
9397 },
9398 };
9399
9400 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9401 }
9402
perf_event_itrace_started(struct perf_event * event)9403 void perf_event_itrace_started(struct perf_event *event)
9404 {
9405 event->attach_state |= PERF_ATTACH_ITRACE;
9406 }
9407
perf_log_itrace_start(struct perf_event * event)9408 static void perf_log_itrace_start(struct perf_event *event)
9409 {
9410 struct perf_output_handle handle;
9411 struct perf_sample_data sample;
9412 struct perf_aux_event {
9413 struct perf_event_header header;
9414 u32 pid;
9415 u32 tid;
9416 } rec;
9417 int ret;
9418
9419 if (event->parent)
9420 event = event->parent;
9421
9422 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9423 event->attach_state & PERF_ATTACH_ITRACE)
9424 return;
9425
9426 rec.header.type = PERF_RECORD_ITRACE_START;
9427 rec.header.misc = 0;
9428 rec.header.size = sizeof(rec);
9429 rec.pid = perf_event_pid(event, current);
9430 rec.tid = perf_event_tid(event, current);
9431
9432 perf_event_header__init_id(&rec.header, &sample, event);
9433 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9434
9435 if (ret)
9436 return;
9437
9438 perf_output_put(&handle, rec);
9439 perf_event__output_id_sample(event, &handle, &sample);
9440
9441 perf_output_end(&handle);
9442 }
9443
perf_report_aux_output_id(struct perf_event * event,u64 hw_id)9444 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9445 {
9446 struct perf_output_handle handle;
9447 struct perf_sample_data sample;
9448 struct perf_aux_event {
9449 struct perf_event_header header;
9450 u64 hw_id;
9451 } rec;
9452 int ret;
9453
9454 if (event->parent)
9455 event = event->parent;
9456
9457 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9458 rec.header.misc = 0;
9459 rec.header.size = sizeof(rec);
9460 rec.hw_id = hw_id;
9461
9462 perf_event_header__init_id(&rec.header, &sample, event);
9463 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9464
9465 if (ret)
9466 return;
9467
9468 perf_output_put(&handle, rec);
9469 perf_event__output_id_sample(event, &handle, &sample);
9470
9471 perf_output_end(&handle);
9472 }
9473 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9474
9475 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)9476 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9477 {
9478 struct hw_perf_event *hwc = &event->hw;
9479 int ret = 0;
9480 u64 seq;
9481
9482 seq = __this_cpu_read(perf_throttled_seq);
9483 if (seq != hwc->interrupts_seq) {
9484 hwc->interrupts_seq = seq;
9485 hwc->interrupts = 1;
9486 } else {
9487 hwc->interrupts++;
9488 if (unlikely(throttle &&
9489 hwc->interrupts > max_samples_per_tick)) {
9490 __this_cpu_inc(perf_throttled_count);
9491 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9492 hwc->interrupts = MAX_INTERRUPTS;
9493 perf_log_throttle(event, 0);
9494 ret = 1;
9495 }
9496 }
9497
9498 if (event->attr.freq) {
9499 u64 now = perf_clock();
9500 s64 delta = now - hwc->freq_time_stamp;
9501
9502 hwc->freq_time_stamp = now;
9503
9504 if (delta > 0 && delta < 2*TICK_NSEC)
9505 perf_adjust_period(event, delta, hwc->last_period, true);
9506 }
9507
9508 return ret;
9509 }
9510
perf_event_account_interrupt(struct perf_event * event)9511 int perf_event_account_interrupt(struct perf_event *event)
9512 {
9513 return __perf_event_account_interrupt(event, 1);
9514 }
9515
sample_is_allowed(struct perf_event * event,struct pt_regs * regs)9516 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9517 {
9518 /*
9519 * Due to interrupt latency (AKA "skid"), we may enter the
9520 * kernel before taking an overflow, even if the PMU is only
9521 * counting user events.
9522 */
9523 if (event->attr.exclude_kernel && !user_mode(regs))
9524 return false;
9525
9526 return true;
9527 }
9528
9529 /*
9530 * Generic event overflow handling, sampling.
9531 */
9532
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)9533 static int __perf_event_overflow(struct perf_event *event,
9534 int throttle, struct perf_sample_data *data,
9535 struct pt_regs *regs)
9536 {
9537 int events = atomic_read(&event->event_limit);
9538 int ret = 0;
9539
9540 /*
9541 * Non-sampling counters might still use the PMI to fold short
9542 * hardware counters, ignore those.
9543 */
9544 if (unlikely(!is_sampling_event(event)))
9545 return 0;
9546
9547 ret = __perf_event_account_interrupt(event, throttle);
9548
9549 /*
9550 * XXX event_limit might not quite work as expected on inherited
9551 * events
9552 */
9553
9554 event->pending_kill = POLL_IN;
9555 if (events && atomic_dec_and_test(&event->event_limit)) {
9556 ret = 1;
9557 event->pending_kill = POLL_HUP;
9558 perf_event_disable_inatomic(event);
9559 }
9560
9561 if (event->attr.sigtrap) {
9562 /*
9563 * The desired behaviour of sigtrap vs invalid samples is a bit
9564 * tricky; on the one hand, one should not loose the SIGTRAP if
9565 * it is the first event, on the other hand, we should also not
9566 * trigger the WARN or override the data address.
9567 */
9568 bool valid_sample = sample_is_allowed(event, regs);
9569 unsigned int pending_id = 1;
9570
9571 if (regs)
9572 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9573 if (!event->pending_sigtrap) {
9574 event->pending_sigtrap = pending_id;
9575 local_inc(&event->ctx->nr_pending);
9576 } else if (event->attr.exclude_kernel && valid_sample) {
9577 /*
9578 * Should not be able to return to user space without
9579 * consuming pending_sigtrap; with exceptions:
9580 *
9581 * 1. Where !exclude_kernel, events can overflow again
9582 * in the kernel without returning to user space.
9583 *
9584 * 2. Events that can overflow again before the IRQ-
9585 * work without user space progress (e.g. hrtimer).
9586 * To approximate progress (with false negatives),
9587 * check 32-bit hash of the current IP.
9588 */
9589 WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9590 }
9591
9592 event->pending_addr = 0;
9593 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9594 event->pending_addr = data->addr;
9595 irq_work_queue(&event->pending_irq);
9596 }
9597
9598 READ_ONCE(event->overflow_handler)(event, data, regs);
9599
9600 if (*perf_event_fasync(event) && event->pending_kill) {
9601 event->pending_wakeup = 1;
9602 irq_work_queue(&event->pending_irq);
9603 }
9604
9605 return ret;
9606 }
9607
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9608 int perf_event_overflow(struct perf_event *event,
9609 struct perf_sample_data *data,
9610 struct pt_regs *regs)
9611 {
9612 return __perf_event_overflow(event, 1, data, regs);
9613 }
9614
9615 /*
9616 * Generic software event infrastructure
9617 */
9618
9619 struct swevent_htable {
9620 struct swevent_hlist *swevent_hlist;
9621 struct mutex hlist_mutex;
9622 int hlist_refcount;
9623
9624 /* Recursion avoidance in each contexts */
9625 int recursion[PERF_NR_CONTEXTS];
9626 };
9627
9628 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9629
9630 /*
9631 * We directly increment event->count and keep a second value in
9632 * event->hw.period_left to count intervals. This period event
9633 * is kept in the range [-sample_period, 0] so that we can use the
9634 * sign as trigger.
9635 */
9636
perf_swevent_set_period(struct perf_event * event)9637 u64 perf_swevent_set_period(struct perf_event *event)
9638 {
9639 struct hw_perf_event *hwc = &event->hw;
9640 u64 period = hwc->last_period;
9641 u64 nr, offset;
9642 s64 old, val;
9643
9644 hwc->last_period = hwc->sample_period;
9645
9646 old = local64_read(&hwc->period_left);
9647 do {
9648 val = old;
9649 if (val < 0)
9650 return 0;
9651
9652 nr = div64_u64(period + val, period);
9653 offset = nr * period;
9654 val -= offset;
9655 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9656
9657 return nr;
9658 }
9659
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)9660 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9661 struct perf_sample_data *data,
9662 struct pt_regs *regs)
9663 {
9664 struct hw_perf_event *hwc = &event->hw;
9665 int throttle = 0;
9666
9667 if (!overflow)
9668 overflow = perf_swevent_set_period(event);
9669
9670 if (hwc->interrupts == MAX_INTERRUPTS)
9671 return;
9672
9673 for (; overflow; overflow--) {
9674 if (__perf_event_overflow(event, throttle,
9675 data, regs)) {
9676 /*
9677 * We inhibit the overflow from happening when
9678 * hwc->interrupts == MAX_INTERRUPTS.
9679 */
9680 break;
9681 }
9682 throttle = 1;
9683 }
9684 }
9685
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9686 static void perf_swevent_event(struct perf_event *event, u64 nr,
9687 struct perf_sample_data *data,
9688 struct pt_regs *regs)
9689 {
9690 struct hw_perf_event *hwc = &event->hw;
9691
9692 local64_add(nr, &event->count);
9693
9694 if (!regs)
9695 return;
9696
9697 if (!is_sampling_event(event))
9698 return;
9699
9700 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9701 data->period = nr;
9702 return perf_swevent_overflow(event, 1, data, regs);
9703 } else
9704 data->period = event->hw.last_period;
9705
9706 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9707 return perf_swevent_overflow(event, 1, data, regs);
9708
9709 if (local64_add_negative(nr, &hwc->period_left))
9710 return;
9711
9712 perf_swevent_overflow(event, 0, data, regs);
9713 }
9714
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)9715 static int perf_exclude_event(struct perf_event *event,
9716 struct pt_regs *regs)
9717 {
9718 if (event->hw.state & PERF_HES_STOPPED)
9719 return 1;
9720
9721 if (regs) {
9722 if (event->attr.exclude_user && user_mode(regs))
9723 return 1;
9724
9725 if (event->attr.exclude_kernel && !user_mode(regs))
9726 return 1;
9727 }
9728
9729 return 0;
9730 }
9731
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)9732 static int perf_swevent_match(struct perf_event *event,
9733 enum perf_type_id type,
9734 u32 event_id,
9735 struct perf_sample_data *data,
9736 struct pt_regs *regs)
9737 {
9738 if (event->attr.type != type)
9739 return 0;
9740
9741 if (event->attr.config != event_id)
9742 return 0;
9743
9744 if (perf_exclude_event(event, regs))
9745 return 0;
9746
9747 return 1;
9748 }
9749
swevent_hash(u64 type,u32 event_id)9750 static inline u64 swevent_hash(u64 type, u32 event_id)
9751 {
9752 u64 val = event_id | (type << 32);
9753
9754 return hash_64(val, SWEVENT_HLIST_BITS);
9755 }
9756
9757 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)9758 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9759 {
9760 u64 hash = swevent_hash(type, event_id);
9761
9762 return &hlist->heads[hash];
9763 }
9764
9765 /* For the read side: events when they trigger */
9766 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)9767 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9768 {
9769 struct swevent_hlist *hlist;
9770
9771 hlist = rcu_dereference(swhash->swevent_hlist);
9772 if (!hlist)
9773 return NULL;
9774
9775 return __find_swevent_head(hlist, type, event_id);
9776 }
9777
9778 /* For the event head insertion and removal in the hlist */
9779 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)9780 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9781 {
9782 struct swevent_hlist *hlist;
9783 u32 event_id = event->attr.config;
9784 u64 type = event->attr.type;
9785
9786 /*
9787 * Event scheduling is always serialized against hlist allocation
9788 * and release. Which makes the protected version suitable here.
9789 * The context lock guarantees that.
9790 */
9791 hlist = rcu_dereference_protected(swhash->swevent_hlist,
9792 lockdep_is_held(&event->ctx->lock));
9793 if (!hlist)
9794 return NULL;
9795
9796 return __find_swevent_head(hlist, type, event_id);
9797 }
9798
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9799 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9800 u64 nr,
9801 struct perf_sample_data *data,
9802 struct pt_regs *regs)
9803 {
9804 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9805 struct perf_event *event;
9806 struct hlist_head *head;
9807
9808 rcu_read_lock();
9809 head = find_swevent_head_rcu(swhash, type, event_id);
9810 if (!head)
9811 goto end;
9812
9813 hlist_for_each_entry_rcu(event, head, hlist_entry) {
9814 if (perf_swevent_match(event, type, event_id, data, regs))
9815 perf_swevent_event(event, nr, data, regs);
9816 }
9817 end:
9818 rcu_read_unlock();
9819 }
9820
9821 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9822
perf_swevent_get_recursion_context(void)9823 int perf_swevent_get_recursion_context(void)
9824 {
9825 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9826
9827 return get_recursion_context(swhash->recursion);
9828 }
9829 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9830
perf_swevent_put_recursion_context(int rctx)9831 void perf_swevent_put_recursion_context(int rctx)
9832 {
9833 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9834
9835 put_recursion_context(swhash->recursion, rctx);
9836 }
9837
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9838 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9839 {
9840 struct perf_sample_data data;
9841
9842 if (WARN_ON_ONCE(!regs))
9843 return;
9844
9845 perf_sample_data_init(&data, addr, 0);
9846 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9847 }
9848
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9849 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9850 {
9851 int rctx;
9852
9853 preempt_disable_notrace();
9854 rctx = perf_swevent_get_recursion_context();
9855 if (unlikely(rctx < 0))
9856 goto fail;
9857
9858 ___perf_sw_event(event_id, nr, regs, addr);
9859
9860 perf_swevent_put_recursion_context(rctx);
9861 fail:
9862 preempt_enable_notrace();
9863 }
9864
perf_swevent_read(struct perf_event * event)9865 static void perf_swevent_read(struct perf_event *event)
9866 {
9867 }
9868
perf_swevent_add(struct perf_event * event,int flags)9869 static int perf_swevent_add(struct perf_event *event, int flags)
9870 {
9871 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9872 struct hw_perf_event *hwc = &event->hw;
9873 struct hlist_head *head;
9874
9875 if (is_sampling_event(event)) {
9876 hwc->last_period = hwc->sample_period;
9877 perf_swevent_set_period(event);
9878 }
9879
9880 hwc->state = !(flags & PERF_EF_START);
9881
9882 head = find_swevent_head(swhash, event);
9883 if (WARN_ON_ONCE(!head))
9884 return -EINVAL;
9885
9886 hlist_add_head_rcu(&event->hlist_entry, head);
9887 perf_event_update_userpage(event);
9888
9889 return 0;
9890 }
9891
perf_swevent_del(struct perf_event * event,int flags)9892 static void perf_swevent_del(struct perf_event *event, int flags)
9893 {
9894 hlist_del_rcu(&event->hlist_entry);
9895 }
9896
perf_swevent_start(struct perf_event * event,int flags)9897 static void perf_swevent_start(struct perf_event *event, int flags)
9898 {
9899 event->hw.state = 0;
9900 }
9901
perf_swevent_stop(struct perf_event * event,int flags)9902 static void perf_swevent_stop(struct perf_event *event, int flags)
9903 {
9904 event->hw.state = PERF_HES_STOPPED;
9905 }
9906
9907 /* Deref the hlist from the update side */
9908 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)9909 swevent_hlist_deref(struct swevent_htable *swhash)
9910 {
9911 return rcu_dereference_protected(swhash->swevent_hlist,
9912 lockdep_is_held(&swhash->hlist_mutex));
9913 }
9914
swevent_hlist_release(struct swevent_htable * swhash)9915 static void swevent_hlist_release(struct swevent_htable *swhash)
9916 {
9917 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9918
9919 if (!hlist)
9920 return;
9921
9922 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9923 kfree_rcu(hlist, rcu_head);
9924 }
9925
swevent_hlist_put_cpu(int cpu)9926 static void swevent_hlist_put_cpu(int cpu)
9927 {
9928 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9929
9930 mutex_lock(&swhash->hlist_mutex);
9931
9932 if (!--swhash->hlist_refcount)
9933 swevent_hlist_release(swhash);
9934
9935 mutex_unlock(&swhash->hlist_mutex);
9936 }
9937
swevent_hlist_put(void)9938 static void swevent_hlist_put(void)
9939 {
9940 int cpu;
9941
9942 for_each_possible_cpu(cpu)
9943 swevent_hlist_put_cpu(cpu);
9944 }
9945
swevent_hlist_get_cpu(int cpu)9946 static int swevent_hlist_get_cpu(int cpu)
9947 {
9948 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9949 int err = 0;
9950
9951 mutex_lock(&swhash->hlist_mutex);
9952 if (!swevent_hlist_deref(swhash) &&
9953 cpumask_test_cpu(cpu, perf_online_mask)) {
9954 struct swevent_hlist *hlist;
9955
9956 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9957 if (!hlist) {
9958 err = -ENOMEM;
9959 goto exit;
9960 }
9961 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9962 }
9963 swhash->hlist_refcount++;
9964 exit:
9965 mutex_unlock(&swhash->hlist_mutex);
9966
9967 return err;
9968 }
9969
swevent_hlist_get(void)9970 static int swevent_hlist_get(void)
9971 {
9972 int err, cpu, failed_cpu;
9973
9974 mutex_lock(&pmus_lock);
9975 for_each_possible_cpu(cpu) {
9976 err = swevent_hlist_get_cpu(cpu);
9977 if (err) {
9978 failed_cpu = cpu;
9979 goto fail;
9980 }
9981 }
9982 mutex_unlock(&pmus_lock);
9983 return 0;
9984 fail:
9985 for_each_possible_cpu(cpu) {
9986 if (cpu == failed_cpu)
9987 break;
9988 swevent_hlist_put_cpu(cpu);
9989 }
9990 mutex_unlock(&pmus_lock);
9991 return err;
9992 }
9993
9994 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9995
sw_perf_event_destroy(struct perf_event * event)9996 static void sw_perf_event_destroy(struct perf_event *event)
9997 {
9998 u64 event_id = event->attr.config;
9999
10000 WARN_ON(event->parent);
10001
10002 static_key_slow_dec(&perf_swevent_enabled[event_id]);
10003 swevent_hlist_put();
10004 }
10005
10006 static struct pmu perf_cpu_clock; /* fwd declaration */
10007 static struct pmu perf_task_clock;
10008
perf_swevent_init(struct perf_event * event)10009 static int perf_swevent_init(struct perf_event *event)
10010 {
10011 u64 event_id = event->attr.config;
10012
10013 if (event->attr.type != PERF_TYPE_SOFTWARE)
10014 return -ENOENT;
10015
10016 /*
10017 * no branch sampling for software events
10018 */
10019 if (has_branch_stack(event))
10020 return -EOPNOTSUPP;
10021
10022 switch (event_id) {
10023 case PERF_COUNT_SW_CPU_CLOCK:
10024 event->attr.type = perf_cpu_clock.type;
10025 return -ENOENT;
10026 case PERF_COUNT_SW_TASK_CLOCK:
10027 event->attr.type = perf_task_clock.type;
10028 return -ENOENT;
10029
10030 default:
10031 break;
10032 }
10033
10034 if (event_id >= PERF_COUNT_SW_MAX)
10035 return -ENOENT;
10036
10037 if (!event->parent) {
10038 int err;
10039
10040 err = swevent_hlist_get();
10041 if (err)
10042 return err;
10043
10044 static_key_slow_inc(&perf_swevent_enabled[event_id]);
10045 event->destroy = sw_perf_event_destroy;
10046 }
10047
10048 return 0;
10049 }
10050
10051 static struct pmu perf_swevent = {
10052 .task_ctx_nr = perf_sw_context,
10053
10054 .capabilities = PERF_PMU_CAP_NO_NMI,
10055
10056 .event_init = perf_swevent_init,
10057 .add = perf_swevent_add,
10058 .del = perf_swevent_del,
10059 .start = perf_swevent_start,
10060 .stop = perf_swevent_stop,
10061 .read = perf_swevent_read,
10062 };
10063
10064 #ifdef CONFIG_EVENT_TRACING
10065
tp_perf_event_destroy(struct perf_event * event)10066 static void tp_perf_event_destroy(struct perf_event *event)
10067 {
10068 perf_trace_destroy(event);
10069 }
10070
perf_tp_event_init(struct perf_event * event)10071 static int perf_tp_event_init(struct perf_event *event)
10072 {
10073 int err;
10074
10075 if (event->attr.type != PERF_TYPE_TRACEPOINT)
10076 return -ENOENT;
10077
10078 /*
10079 * no branch sampling for tracepoint events
10080 */
10081 if (has_branch_stack(event))
10082 return -EOPNOTSUPP;
10083
10084 err = perf_trace_init(event);
10085 if (err)
10086 return err;
10087
10088 event->destroy = tp_perf_event_destroy;
10089
10090 return 0;
10091 }
10092
10093 static struct pmu perf_tracepoint = {
10094 .task_ctx_nr = perf_sw_context,
10095
10096 .event_init = perf_tp_event_init,
10097 .add = perf_trace_add,
10098 .del = perf_trace_del,
10099 .start = perf_swevent_start,
10100 .stop = perf_swevent_stop,
10101 .read = perf_swevent_read,
10102 };
10103
perf_tp_filter_match(struct perf_event * event,struct perf_raw_record * raw)10104 static int perf_tp_filter_match(struct perf_event *event,
10105 struct perf_raw_record *raw)
10106 {
10107 void *record = raw->frag.data;
10108
10109 /* only top level events have filters set */
10110 if (event->parent)
10111 event = event->parent;
10112
10113 if (likely(!event->filter) || filter_match_preds(event->filter, record))
10114 return 1;
10115 return 0;
10116 }
10117
perf_tp_event_match(struct perf_event * event,struct perf_raw_record * raw,struct pt_regs * regs)10118 static int perf_tp_event_match(struct perf_event *event,
10119 struct perf_raw_record *raw,
10120 struct pt_regs *regs)
10121 {
10122 if (event->hw.state & PERF_HES_STOPPED)
10123 return 0;
10124 /*
10125 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10126 */
10127 if (event->attr.exclude_kernel && !user_mode(regs))
10128 return 0;
10129
10130 if (!perf_tp_filter_match(event, raw))
10131 return 0;
10132
10133 return 1;
10134 }
10135
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)10136 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10137 struct trace_event_call *call, u64 count,
10138 struct pt_regs *regs, struct hlist_head *head,
10139 struct task_struct *task)
10140 {
10141 if (bpf_prog_array_valid(call)) {
10142 *(struct pt_regs **)raw_data = regs;
10143 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10144 perf_swevent_put_recursion_context(rctx);
10145 return;
10146 }
10147 }
10148 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10149 rctx, task);
10150 }
10151 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10152
__perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event * event)10153 static void __perf_tp_event_target_task(u64 count, void *record,
10154 struct pt_regs *regs,
10155 struct perf_sample_data *data,
10156 struct perf_raw_record *raw,
10157 struct perf_event *event)
10158 {
10159 struct trace_entry *entry = record;
10160
10161 if (event->attr.config != entry->type)
10162 return;
10163 /* Cannot deliver synchronous signal to other task. */
10164 if (event->attr.sigtrap)
10165 return;
10166 if (perf_tp_event_match(event, raw, regs)) {
10167 perf_sample_data_init(data, 0, 0);
10168 perf_sample_save_raw_data(data, event, raw);
10169 perf_swevent_event(event, count, data, regs);
10170 }
10171 }
10172
perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event_context * ctx)10173 static void perf_tp_event_target_task(u64 count, void *record,
10174 struct pt_regs *regs,
10175 struct perf_sample_data *data,
10176 struct perf_raw_record *raw,
10177 struct perf_event_context *ctx)
10178 {
10179 unsigned int cpu = smp_processor_id();
10180 struct pmu *pmu = &perf_tracepoint;
10181 struct perf_event *event, *sibling;
10182
10183 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10184 __perf_tp_event_target_task(count, record, regs, data, raw, event);
10185 for_each_sibling_event(sibling, event)
10186 __perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10187 }
10188
10189 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10190 __perf_tp_event_target_task(count, record, regs, data, raw, event);
10191 for_each_sibling_event(sibling, event)
10192 __perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10193 }
10194 }
10195
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)10196 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10197 struct pt_regs *regs, struct hlist_head *head, int rctx,
10198 struct task_struct *task)
10199 {
10200 struct perf_sample_data data;
10201 struct perf_event *event;
10202
10203 struct perf_raw_record raw = {
10204 .frag = {
10205 .size = entry_size,
10206 .data = record,
10207 },
10208 };
10209
10210 perf_trace_buf_update(record, event_type);
10211
10212 hlist_for_each_entry_rcu(event, head, hlist_entry) {
10213 if (perf_tp_event_match(event, &raw, regs)) {
10214 /*
10215 * Here use the same on-stack perf_sample_data,
10216 * some members in data are event-specific and
10217 * need to be re-computed for different sweveents.
10218 * Re-initialize data->sample_flags safely to avoid
10219 * the problem that next event skips preparing data
10220 * because data->sample_flags is set.
10221 */
10222 perf_sample_data_init(&data, 0, 0);
10223 perf_sample_save_raw_data(&data, event, &raw);
10224 perf_swevent_event(event, count, &data, regs);
10225 }
10226 }
10227
10228 /*
10229 * If we got specified a target task, also iterate its context and
10230 * deliver this event there too.
10231 */
10232 if (task && task != current) {
10233 struct perf_event_context *ctx;
10234
10235 rcu_read_lock();
10236 ctx = rcu_dereference(task->perf_event_ctxp);
10237 if (!ctx)
10238 goto unlock;
10239
10240 raw_spin_lock(&ctx->lock);
10241 perf_tp_event_target_task(count, record, regs, &data, &raw, ctx);
10242 raw_spin_unlock(&ctx->lock);
10243 unlock:
10244 rcu_read_unlock();
10245 }
10246
10247 perf_swevent_put_recursion_context(rctx);
10248 }
10249 EXPORT_SYMBOL_GPL(perf_tp_event);
10250
10251 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10252 /*
10253 * Flags in config, used by dynamic PMU kprobe and uprobe
10254 * The flags should match following PMU_FORMAT_ATTR().
10255 *
10256 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10257 * if not set, create kprobe/uprobe
10258 *
10259 * The following values specify a reference counter (or semaphore in the
10260 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10261 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10262 *
10263 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
10264 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
10265 */
10266 enum perf_probe_config {
10267 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
10268 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10269 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10270 };
10271
10272 PMU_FORMAT_ATTR(retprobe, "config:0");
10273 #endif
10274
10275 #ifdef CONFIG_KPROBE_EVENTS
10276 static struct attribute *kprobe_attrs[] = {
10277 &format_attr_retprobe.attr,
10278 NULL,
10279 };
10280
10281 static struct attribute_group kprobe_format_group = {
10282 .name = "format",
10283 .attrs = kprobe_attrs,
10284 };
10285
10286 static const struct attribute_group *kprobe_attr_groups[] = {
10287 &kprobe_format_group,
10288 NULL,
10289 };
10290
10291 static int perf_kprobe_event_init(struct perf_event *event);
10292 static struct pmu perf_kprobe = {
10293 .task_ctx_nr = perf_sw_context,
10294 .event_init = perf_kprobe_event_init,
10295 .add = perf_trace_add,
10296 .del = perf_trace_del,
10297 .start = perf_swevent_start,
10298 .stop = perf_swevent_stop,
10299 .read = perf_swevent_read,
10300 .attr_groups = kprobe_attr_groups,
10301 };
10302
perf_kprobe_event_init(struct perf_event * event)10303 static int perf_kprobe_event_init(struct perf_event *event)
10304 {
10305 int err;
10306 bool is_retprobe;
10307
10308 if (event->attr.type != perf_kprobe.type)
10309 return -ENOENT;
10310
10311 if (!perfmon_capable())
10312 return -EACCES;
10313
10314 /*
10315 * no branch sampling for probe events
10316 */
10317 if (has_branch_stack(event))
10318 return -EOPNOTSUPP;
10319
10320 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10321 err = perf_kprobe_init(event, is_retprobe);
10322 if (err)
10323 return err;
10324
10325 event->destroy = perf_kprobe_destroy;
10326
10327 return 0;
10328 }
10329 #endif /* CONFIG_KPROBE_EVENTS */
10330
10331 #ifdef CONFIG_UPROBE_EVENTS
10332 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10333
10334 static struct attribute *uprobe_attrs[] = {
10335 &format_attr_retprobe.attr,
10336 &format_attr_ref_ctr_offset.attr,
10337 NULL,
10338 };
10339
10340 static struct attribute_group uprobe_format_group = {
10341 .name = "format",
10342 .attrs = uprobe_attrs,
10343 };
10344
10345 static const struct attribute_group *uprobe_attr_groups[] = {
10346 &uprobe_format_group,
10347 NULL,
10348 };
10349
10350 static int perf_uprobe_event_init(struct perf_event *event);
10351 static struct pmu perf_uprobe = {
10352 .task_ctx_nr = perf_sw_context,
10353 .event_init = perf_uprobe_event_init,
10354 .add = perf_trace_add,
10355 .del = perf_trace_del,
10356 .start = perf_swevent_start,
10357 .stop = perf_swevent_stop,
10358 .read = perf_swevent_read,
10359 .attr_groups = uprobe_attr_groups,
10360 };
10361
perf_uprobe_event_init(struct perf_event * event)10362 static int perf_uprobe_event_init(struct perf_event *event)
10363 {
10364 int err;
10365 unsigned long ref_ctr_offset;
10366 bool is_retprobe;
10367
10368 if (event->attr.type != perf_uprobe.type)
10369 return -ENOENT;
10370
10371 if (!perfmon_capable())
10372 return -EACCES;
10373
10374 /*
10375 * no branch sampling for probe events
10376 */
10377 if (has_branch_stack(event))
10378 return -EOPNOTSUPP;
10379
10380 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10381 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10382 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10383 if (err)
10384 return err;
10385
10386 event->destroy = perf_uprobe_destroy;
10387
10388 return 0;
10389 }
10390 #endif /* CONFIG_UPROBE_EVENTS */
10391
perf_tp_register(void)10392 static inline void perf_tp_register(void)
10393 {
10394 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10395 #ifdef CONFIG_KPROBE_EVENTS
10396 perf_pmu_register(&perf_kprobe, "kprobe", -1);
10397 #endif
10398 #ifdef CONFIG_UPROBE_EVENTS
10399 perf_pmu_register(&perf_uprobe, "uprobe", -1);
10400 #endif
10401 }
10402
perf_event_free_filter(struct perf_event * event)10403 static void perf_event_free_filter(struct perf_event *event)
10404 {
10405 ftrace_profile_free_filter(event);
10406 }
10407
10408 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10409 static void bpf_overflow_handler(struct perf_event *event,
10410 struct perf_sample_data *data,
10411 struct pt_regs *regs)
10412 {
10413 struct bpf_perf_event_data_kern ctx = {
10414 .data = data,
10415 .event = event,
10416 };
10417 struct bpf_prog *prog;
10418 int ret = 0;
10419
10420 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10421 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10422 goto out;
10423 rcu_read_lock();
10424 prog = READ_ONCE(event->prog);
10425 if (prog) {
10426 perf_prepare_sample(data, event, regs);
10427 ret = bpf_prog_run(prog, &ctx);
10428 }
10429 rcu_read_unlock();
10430 out:
10431 __this_cpu_dec(bpf_prog_active);
10432 if (!ret)
10433 return;
10434
10435 event->orig_overflow_handler(event, data, regs);
10436 }
10437
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10438 static int perf_event_set_bpf_handler(struct perf_event *event,
10439 struct bpf_prog *prog,
10440 u64 bpf_cookie)
10441 {
10442 if (event->overflow_handler_context)
10443 /* hw breakpoint or kernel counter */
10444 return -EINVAL;
10445
10446 if (event->prog)
10447 return -EEXIST;
10448
10449 if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10450 return -EINVAL;
10451
10452 if (event->attr.precise_ip &&
10453 prog->call_get_stack &&
10454 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10455 event->attr.exclude_callchain_kernel ||
10456 event->attr.exclude_callchain_user)) {
10457 /*
10458 * On perf_event with precise_ip, calling bpf_get_stack()
10459 * may trigger unwinder warnings and occasional crashes.
10460 * bpf_get_[stack|stackid] works around this issue by using
10461 * callchain attached to perf_sample_data. If the
10462 * perf_event does not full (kernel and user) callchain
10463 * attached to perf_sample_data, do not allow attaching BPF
10464 * program that calls bpf_get_[stack|stackid].
10465 */
10466 return -EPROTO;
10467 }
10468
10469 event->prog = prog;
10470 event->bpf_cookie = bpf_cookie;
10471 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10472 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10473 return 0;
10474 }
10475
perf_event_free_bpf_handler(struct perf_event * event)10476 static void perf_event_free_bpf_handler(struct perf_event *event)
10477 {
10478 struct bpf_prog *prog = event->prog;
10479
10480 if (!prog)
10481 return;
10482
10483 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10484 event->prog = NULL;
10485 bpf_prog_put(prog);
10486 }
10487 #else
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10488 static int perf_event_set_bpf_handler(struct perf_event *event,
10489 struct bpf_prog *prog,
10490 u64 bpf_cookie)
10491 {
10492 return -EOPNOTSUPP;
10493 }
perf_event_free_bpf_handler(struct perf_event * event)10494 static void perf_event_free_bpf_handler(struct perf_event *event)
10495 {
10496 }
10497 #endif
10498
10499 /*
10500 * returns true if the event is a tracepoint, or a kprobe/upprobe created
10501 * with perf_event_open()
10502 */
perf_event_is_tracing(struct perf_event * event)10503 static inline bool perf_event_is_tracing(struct perf_event *event)
10504 {
10505 if (event->pmu == &perf_tracepoint)
10506 return true;
10507 #ifdef CONFIG_KPROBE_EVENTS
10508 if (event->pmu == &perf_kprobe)
10509 return true;
10510 #endif
10511 #ifdef CONFIG_UPROBE_EVENTS
10512 if (event->pmu == &perf_uprobe)
10513 return true;
10514 #endif
10515 return false;
10516 }
10517
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10518 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10519 u64 bpf_cookie)
10520 {
10521 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10522
10523 if (!perf_event_is_tracing(event))
10524 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10525
10526 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10527 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10528 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10529 is_syscall_tp = is_syscall_trace_event(event->tp_event);
10530 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10531 /* bpf programs can only be attached to u/kprobe or tracepoint */
10532 return -EINVAL;
10533
10534 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10535 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10536 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10537 return -EINVAL;
10538
10539 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10540 /* only uprobe programs are allowed to be sleepable */
10541 return -EINVAL;
10542
10543 /* Kprobe override only works for kprobes, not uprobes. */
10544 if (prog->kprobe_override && !is_kprobe)
10545 return -EINVAL;
10546
10547 if (is_tracepoint || is_syscall_tp) {
10548 int off = trace_event_get_offsets(event->tp_event);
10549
10550 if (prog->aux->max_ctx_offset > off)
10551 return -EACCES;
10552 }
10553
10554 return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10555 }
10556
perf_event_free_bpf_prog(struct perf_event * event)10557 void perf_event_free_bpf_prog(struct perf_event *event)
10558 {
10559 if (!perf_event_is_tracing(event)) {
10560 perf_event_free_bpf_handler(event);
10561 return;
10562 }
10563 perf_event_detach_bpf_prog(event);
10564 }
10565
10566 #else
10567
perf_tp_register(void)10568 static inline void perf_tp_register(void)
10569 {
10570 }
10571
perf_event_free_filter(struct perf_event * event)10572 static void perf_event_free_filter(struct perf_event *event)
10573 {
10574 }
10575
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10576 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10577 u64 bpf_cookie)
10578 {
10579 return -ENOENT;
10580 }
10581
perf_event_free_bpf_prog(struct perf_event * event)10582 void perf_event_free_bpf_prog(struct perf_event *event)
10583 {
10584 }
10585 #endif /* CONFIG_EVENT_TRACING */
10586
10587 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)10588 void perf_bp_event(struct perf_event *bp, void *data)
10589 {
10590 struct perf_sample_data sample;
10591 struct pt_regs *regs = data;
10592
10593 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10594
10595 if (!bp->hw.state && !perf_exclude_event(bp, regs))
10596 perf_swevent_event(bp, 1, &sample, regs);
10597 }
10598 #endif
10599
10600 /*
10601 * Allocate a new address filter
10602 */
10603 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)10604 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10605 {
10606 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10607 struct perf_addr_filter *filter;
10608
10609 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10610 if (!filter)
10611 return NULL;
10612
10613 INIT_LIST_HEAD(&filter->entry);
10614 list_add_tail(&filter->entry, filters);
10615
10616 return filter;
10617 }
10618
free_filters_list(struct list_head * filters)10619 static void free_filters_list(struct list_head *filters)
10620 {
10621 struct perf_addr_filter *filter, *iter;
10622
10623 list_for_each_entry_safe(filter, iter, filters, entry) {
10624 path_put(&filter->path);
10625 list_del(&filter->entry);
10626 kfree(filter);
10627 }
10628 }
10629
10630 /*
10631 * Free existing address filters and optionally install new ones
10632 */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)10633 static void perf_addr_filters_splice(struct perf_event *event,
10634 struct list_head *head)
10635 {
10636 unsigned long flags;
10637 LIST_HEAD(list);
10638
10639 if (!has_addr_filter(event))
10640 return;
10641
10642 /* don't bother with children, they don't have their own filters */
10643 if (event->parent)
10644 return;
10645
10646 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10647
10648 list_splice_init(&event->addr_filters.list, &list);
10649 if (head)
10650 list_splice(head, &event->addr_filters.list);
10651
10652 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10653
10654 free_filters_list(&list);
10655 }
10656
10657 /*
10658 * Scan through mm's vmas and see if one of them matches the
10659 * @filter; if so, adjust filter's address range.
10660 * Called with mm::mmap_lock down for reading.
10661 */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)10662 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10663 struct mm_struct *mm,
10664 struct perf_addr_filter_range *fr)
10665 {
10666 struct vm_area_struct *vma;
10667 VMA_ITERATOR(vmi, mm, 0);
10668
10669 for_each_vma(vmi, vma) {
10670 if (!vma->vm_file)
10671 continue;
10672
10673 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10674 return;
10675 }
10676 }
10677
10678 /*
10679 * Update event's address range filters based on the
10680 * task's existing mappings, if any.
10681 */
perf_event_addr_filters_apply(struct perf_event * event)10682 static void perf_event_addr_filters_apply(struct perf_event *event)
10683 {
10684 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10685 struct task_struct *task = READ_ONCE(event->ctx->task);
10686 struct perf_addr_filter *filter;
10687 struct mm_struct *mm = NULL;
10688 unsigned int count = 0;
10689 unsigned long flags;
10690
10691 /*
10692 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10693 * will stop on the parent's child_mutex that our caller is also holding
10694 */
10695 if (task == TASK_TOMBSTONE)
10696 return;
10697
10698 if (ifh->nr_file_filters) {
10699 mm = get_task_mm(task);
10700 if (!mm)
10701 goto restart;
10702
10703 mmap_read_lock(mm);
10704 }
10705
10706 raw_spin_lock_irqsave(&ifh->lock, flags);
10707 list_for_each_entry(filter, &ifh->list, entry) {
10708 if (filter->path.dentry) {
10709 /*
10710 * Adjust base offset if the filter is associated to a
10711 * binary that needs to be mapped:
10712 */
10713 event->addr_filter_ranges[count].start = 0;
10714 event->addr_filter_ranges[count].size = 0;
10715
10716 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10717 } else {
10718 event->addr_filter_ranges[count].start = filter->offset;
10719 event->addr_filter_ranges[count].size = filter->size;
10720 }
10721
10722 count++;
10723 }
10724
10725 event->addr_filters_gen++;
10726 raw_spin_unlock_irqrestore(&ifh->lock, flags);
10727
10728 if (ifh->nr_file_filters) {
10729 mmap_read_unlock(mm);
10730
10731 mmput(mm);
10732 }
10733
10734 restart:
10735 perf_event_stop(event, 1);
10736 }
10737
10738 /*
10739 * Address range filtering: limiting the data to certain
10740 * instruction address ranges. Filters are ioctl()ed to us from
10741 * userspace as ascii strings.
10742 *
10743 * Filter string format:
10744 *
10745 * ACTION RANGE_SPEC
10746 * where ACTION is one of the
10747 * * "filter": limit the trace to this region
10748 * * "start": start tracing from this address
10749 * * "stop": stop tracing at this address/region;
10750 * RANGE_SPEC is
10751 * * for kernel addresses: <start address>[/<size>]
10752 * * for object files: <start address>[/<size>]@</path/to/object/file>
10753 *
10754 * if <size> is not specified or is zero, the range is treated as a single
10755 * address; not valid for ACTION=="filter".
10756 */
10757 enum {
10758 IF_ACT_NONE = -1,
10759 IF_ACT_FILTER,
10760 IF_ACT_START,
10761 IF_ACT_STOP,
10762 IF_SRC_FILE,
10763 IF_SRC_KERNEL,
10764 IF_SRC_FILEADDR,
10765 IF_SRC_KERNELADDR,
10766 };
10767
10768 enum {
10769 IF_STATE_ACTION = 0,
10770 IF_STATE_SOURCE,
10771 IF_STATE_END,
10772 };
10773
10774 static const match_table_t if_tokens = {
10775 { IF_ACT_FILTER, "filter" },
10776 { IF_ACT_START, "start" },
10777 { IF_ACT_STOP, "stop" },
10778 { IF_SRC_FILE, "%u/%u@%s" },
10779 { IF_SRC_KERNEL, "%u/%u" },
10780 { IF_SRC_FILEADDR, "%u@%s" },
10781 { IF_SRC_KERNELADDR, "%u" },
10782 { IF_ACT_NONE, NULL },
10783 };
10784
10785 /*
10786 * Address filter string parser
10787 */
10788 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)10789 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10790 struct list_head *filters)
10791 {
10792 struct perf_addr_filter *filter = NULL;
10793 char *start, *orig, *filename = NULL;
10794 substring_t args[MAX_OPT_ARGS];
10795 int state = IF_STATE_ACTION, token;
10796 unsigned int kernel = 0;
10797 int ret = -EINVAL;
10798
10799 orig = fstr = kstrdup(fstr, GFP_KERNEL);
10800 if (!fstr)
10801 return -ENOMEM;
10802
10803 while ((start = strsep(&fstr, " ,\n")) != NULL) {
10804 static const enum perf_addr_filter_action_t actions[] = {
10805 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10806 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
10807 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
10808 };
10809 ret = -EINVAL;
10810
10811 if (!*start)
10812 continue;
10813
10814 /* filter definition begins */
10815 if (state == IF_STATE_ACTION) {
10816 filter = perf_addr_filter_new(event, filters);
10817 if (!filter)
10818 goto fail;
10819 }
10820
10821 token = match_token(start, if_tokens, args);
10822 switch (token) {
10823 case IF_ACT_FILTER:
10824 case IF_ACT_START:
10825 case IF_ACT_STOP:
10826 if (state != IF_STATE_ACTION)
10827 goto fail;
10828
10829 filter->action = actions[token];
10830 state = IF_STATE_SOURCE;
10831 break;
10832
10833 case IF_SRC_KERNELADDR:
10834 case IF_SRC_KERNEL:
10835 kernel = 1;
10836 fallthrough;
10837
10838 case IF_SRC_FILEADDR:
10839 case IF_SRC_FILE:
10840 if (state != IF_STATE_SOURCE)
10841 goto fail;
10842
10843 *args[0].to = 0;
10844 ret = kstrtoul(args[0].from, 0, &filter->offset);
10845 if (ret)
10846 goto fail;
10847
10848 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10849 *args[1].to = 0;
10850 ret = kstrtoul(args[1].from, 0, &filter->size);
10851 if (ret)
10852 goto fail;
10853 }
10854
10855 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10856 int fpos = token == IF_SRC_FILE ? 2 : 1;
10857
10858 kfree(filename);
10859 filename = match_strdup(&args[fpos]);
10860 if (!filename) {
10861 ret = -ENOMEM;
10862 goto fail;
10863 }
10864 }
10865
10866 state = IF_STATE_END;
10867 break;
10868
10869 default:
10870 goto fail;
10871 }
10872
10873 /*
10874 * Filter definition is fully parsed, validate and install it.
10875 * Make sure that it doesn't contradict itself or the event's
10876 * attribute.
10877 */
10878 if (state == IF_STATE_END) {
10879 ret = -EINVAL;
10880
10881 /*
10882 * ACTION "filter" must have a non-zero length region
10883 * specified.
10884 */
10885 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10886 !filter->size)
10887 goto fail;
10888
10889 if (!kernel) {
10890 if (!filename)
10891 goto fail;
10892
10893 /*
10894 * For now, we only support file-based filters
10895 * in per-task events; doing so for CPU-wide
10896 * events requires additional context switching
10897 * trickery, since same object code will be
10898 * mapped at different virtual addresses in
10899 * different processes.
10900 */
10901 ret = -EOPNOTSUPP;
10902 if (!event->ctx->task)
10903 goto fail;
10904
10905 /* look up the path and grab its inode */
10906 ret = kern_path(filename, LOOKUP_FOLLOW,
10907 &filter->path);
10908 if (ret)
10909 goto fail;
10910
10911 ret = -EINVAL;
10912 if (!filter->path.dentry ||
10913 !S_ISREG(d_inode(filter->path.dentry)
10914 ->i_mode))
10915 goto fail;
10916
10917 event->addr_filters.nr_file_filters++;
10918 }
10919
10920 /* ready to consume more filters */
10921 kfree(filename);
10922 filename = NULL;
10923 state = IF_STATE_ACTION;
10924 filter = NULL;
10925 kernel = 0;
10926 }
10927 }
10928
10929 if (state != IF_STATE_ACTION)
10930 goto fail;
10931
10932 kfree(filename);
10933 kfree(orig);
10934
10935 return 0;
10936
10937 fail:
10938 kfree(filename);
10939 free_filters_list(filters);
10940 kfree(orig);
10941
10942 return ret;
10943 }
10944
10945 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)10946 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10947 {
10948 LIST_HEAD(filters);
10949 int ret;
10950
10951 /*
10952 * Since this is called in perf_ioctl() path, we're already holding
10953 * ctx::mutex.
10954 */
10955 lockdep_assert_held(&event->ctx->mutex);
10956
10957 if (WARN_ON_ONCE(event->parent))
10958 return -EINVAL;
10959
10960 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10961 if (ret)
10962 goto fail_clear_files;
10963
10964 ret = event->pmu->addr_filters_validate(&filters);
10965 if (ret)
10966 goto fail_free_filters;
10967
10968 /* remove existing filters, if any */
10969 perf_addr_filters_splice(event, &filters);
10970
10971 /* install new filters */
10972 perf_event_for_each_child(event, perf_event_addr_filters_apply);
10973
10974 return ret;
10975
10976 fail_free_filters:
10977 free_filters_list(&filters);
10978
10979 fail_clear_files:
10980 event->addr_filters.nr_file_filters = 0;
10981
10982 return ret;
10983 }
10984
perf_event_set_filter(struct perf_event * event,void __user * arg)10985 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10986 {
10987 int ret = -EINVAL;
10988 char *filter_str;
10989
10990 filter_str = strndup_user(arg, PAGE_SIZE);
10991 if (IS_ERR(filter_str))
10992 return PTR_ERR(filter_str);
10993
10994 #ifdef CONFIG_EVENT_TRACING
10995 if (perf_event_is_tracing(event)) {
10996 struct perf_event_context *ctx = event->ctx;
10997
10998 /*
10999 * Beware, here be dragons!!
11000 *
11001 * the tracepoint muck will deadlock against ctx->mutex, but
11002 * the tracepoint stuff does not actually need it. So
11003 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11004 * already have a reference on ctx.
11005 *
11006 * This can result in event getting moved to a different ctx,
11007 * but that does not affect the tracepoint state.
11008 */
11009 mutex_unlock(&ctx->mutex);
11010 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11011 mutex_lock(&ctx->mutex);
11012 } else
11013 #endif
11014 if (has_addr_filter(event))
11015 ret = perf_event_set_addr_filter(event, filter_str);
11016
11017 kfree(filter_str);
11018 return ret;
11019 }
11020
11021 /*
11022 * hrtimer based swevent callback
11023 */
11024
perf_swevent_hrtimer(struct hrtimer * hrtimer)11025 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11026 {
11027 enum hrtimer_restart ret = HRTIMER_RESTART;
11028 struct perf_sample_data data;
11029 struct pt_regs *regs;
11030 struct perf_event *event;
11031 u64 period;
11032
11033 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11034
11035 if (event->state != PERF_EVENT_STATE_ACTIVE)
11036 return HRTIMER_NORESTART;
11037
11038 event->pmu->read(event);
11039
11040 perf_sample_data_init(&data, 0, event->hw.last_period);
11041 regs = get_irq_regs();
11042
11043 if (regs && !perf_exclude_event(event, regs)) {
11044 if (!(event->attr.exclude_idle && is_idle_task(current)))
11045 if (__perf_event_overflow(event, 1, &data, regs))
11046 ret = HRTIMER_NORESTART;
11047 }
11048
11049 period = max_t(u64, 10000, event->hw.sample_period);
11050 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11051
11052 return ret;
11053 }
11054
perf_swevent_start_hrtimer(struct perf_event * event)11055 static void perf_swevent_start_hrtimer(struct perf_event *event)
11056 {
11057 struct hw_perf_event *hwc = &event->hw;
11058 s64 period;
11059
11060 if (!is_sampling_event(event))
11061 return;
11062
11063 period = local64_read(&hwc->period_left);
11064 if (period) {
11065 if (period < 0)
11066 period = 10000;
11067
11068 local64_set(&hwc->period_left, 0);
11069 } else {
11070 period = max_t(u64, 10000, hwc->sample_period);
11071 }
11072 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11073 HRTIMER_MODE_REL_PINNED_HARD);
11074 }
11075
perf_swevent_cancel_hrtimer(struct perf_event * event)11076 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11077 {
11078 struct hw_perf_event *hwc = &event->hw;
11079
11080 if (is_sampling_event(event)) {
11081 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11082 local64_set(&hwc->period_left, ktime_to_ns(remaining));
11083
11084 hrtimer_cancel(&hwc->hrtimer);
11085 }
11086 }
11087
perf_swevent_init_hrtimer(struct perf_event * event)11088 static void perf_swevent_init_hrtimer(struct perf_event *event)
11089 {
11090 struct hw_perf_event *hwc = &event->hw;
11091
11092 if (!is_sampling_event(event))
11093 return;
11094
11095 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11096 hwc->hrtimer.function = perf_swevent_hrtimer;
11097
11098 /*
11099 * Since hrtimers have a fixed rate, we can do a static freq->period
11100 * mapping and avoid the whole period adjust feedback stuff.
11101 */
11102 if (event->attr.freq) {
11103 long freq = event->attr.sample_freq;
11104
11105 event->attr.sample_period = NSEC_PER_SEC / freq;
11106 hwc->sample_period = event->attr.sample_period;
11107 local64_set(&hwc->period_left, hwc->sample_period);
11108 hwc->last_period = hwc->sample_period;
11109 event->attr.freq = 0;
11110 }
11111 }
11112
11113 /*
11114 * Software event: cpu wall time clock
11115 */
11116
cpu_clock_event_update(struct perf_event * event)11117 static void cpu_clock_event_update(struct perf_event *event)
11118 {
11119 s64 prev;
11120 u64 now;
11121
11122 now = local_clock();
11123 prev = local64_xchg(&event->hw.prev_count, now);
11124 local64_add(now - prev, &event->count);
11125 }
11126
cpu_clock_event_start(struct perf_event * event,int flags)11127 static void cpu_clock_event_start(struct perf_event *event, int flags)
11128 {
11129 local64_set(&event->hw.prev_count, local_clock());
11130 perf_swevent_start_hrtimer(event);
11131 }
11132
cpu_clock_event_stop(struct perf_event * event,int flags)11133 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11134 {
11135 perf_swevent_cancel_hrtimer(event);
11136 cpu_clock_event_update(event);
11137 }
11138
cpu_clock_event_add(struct perf_event * event,int flags)11139 static int cpu_clock_event_add(struct perf_event *event, int flags)
11140 {
11141 if (flags & PERF_EF_START)
11142 cpu_clock_event_start(event, flags);
11143 perf_event_update_userpage(event);
11144
11145 return 0;
11146 }
11147
cpu_clock_event_del(struct perf_event * event,int flags)11148 static void cpu_clock_event_del(struct perf_event *event, int flags)
11149 {
11150 cpu_clock_event_stop(event, flags);
11151 }
11152
cpu_clock_event_read(struct perf_event * event)11153 static void cpu_clock_event_read(struct perf_event *event)
11154 {
11155 cpu_clock_event_update(event);
11156 }
11157
cpu_clock_event_init(struct perf_event * event)11158 static int cpu_clock_event_init(struct perf_event *event)
11159 {
11160 if (event->attr.type != perf_cpu_clock.type)
11161 return -ENOENT;
11162
11163 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11164 return -ENOENT;
11165
11166 /*
11167 * no branch sampling for software events
11168 */
11169 if (has_branch_stack(event))
11170 return -EOPNOTSUPP;
11171
11172 perf_swevent_init_hrtimer(event);
11173
11174 return 0;
11175 }
11176
11177 static struct pmu perf_cpu_clock = {
11178 .task_ctx_nr = perf_sw_context,
11179
11180 .capabilities = PERF_PMU_CAP_NO_NMI,
11181 .dev = PMU_NULL_DEV,
11182
11183 .event_init = cpu_clock_event_init,
11184 .add = cpu_clock_event_add,
11185 .del = cpu_clock_event_del,
11186 .start = cpu_clock_event_start,
11187 .stop = cpu_clock_event_stop,
11188 .read = cpu_clock_event_read,
11189 };
11190
11191 /*
11192 * Software event: task time clock
11193 */
11194
task_clock_event_update(struct perf_event * event,u64 now)11195 static void task_clock_event_update(struct perf_event *event, u64 now)
11196 {
11197 u64 prev;
11198 s64 delta;
11199
11200 prev = local64_xchg(&event->hw.prev_count, now);
11201 delta = now - prev;
11202 local64_add(delta, &event->count);
11203 }
11204
task_clock_event_start(struct perf_event * event,int flags)11205 static void task_clock_event_start(struct perf_event *event, int flags)
11206 {
11207 local64_set(&event->hw.prev_count, event->ctx->time);
11208 perf_swevent_start_hrtimer(event);
11209 }
11210
task_clock_event_stop(struct perf_event * event,int flags)11211 static void task_clock_event_stop(struct perf_event *event, int flags)
11212 {
11213 perf_swevent_cancel_hrtimer(event);
11214 task_clock_event_update(event, event->ctx->time);
11215 }
11216
task_clock_event_add(struct perf_event * event,int flags)11217 static int task_clock_event_add(struct perf_event *event, int flags)
11218 {
11219 if (flags & PERF_EF_START)
11220 task_clock_event_start(event, flags);
11221 perf_event_update_userpage(event);
11222
11223 return 0;
11224 }
11225
task_clock_event_del(struct perf_event * event,int flags)11226 static void task_clock_event_del(struct perf_event *event, int flags)
11227 {
11228 task_clock_event_stop(event, PERF_EF_UPDATE);
11229 }
11230
task_clock_event_read(struct perf_event * event)11231 static void task_clock_event_read(struct perf_event *event)
11232 {
11233 u64 now = perf_clock();
11234 u64 delta = now - event->ctx->timestamp;
11235 u64 time = event->ctx->time + delta;
11236
11237 task_clock_event_update(event, time);
11238 }
11239
task_clock_event_init(struct perf_event * event)11240 static int task_clock_event_init(struct perf_event *event)
11241 {
11242 if (event->attr.type != perf_task_clock.type)
11243 return -ENOENT;
11244
11245 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11246 return -ENOENT;
11247
11248 /*
11249 * no branch sampling for software events
11250 */
11251 if (has_branch_stack(event))
11252 return -EOPNOTSUPP;
11253
11254 perf_swevent_init_hrtimer(event);
11255
11256 return 0;
11257 }
11258
11259 static struct pmu perf_task_clock = {
11260 .task_ctx_nr = perf_sw_context,
11261
11262 .capabilities = PERF_PMU_CAP_NO_NMI,
11263 .dev = PMU_NULL_DEV,
11264
11265 .event_init = task_clock_event_init,
11266 .add = task_clock_event_add,
11267 .del = task_clock_event_del,
11268 .start = task_clock_event_start,
11269 .stop = task_clock_event_stop,
11270 .read = task_clock_event_read,
11271 };
11272
perf_pmu_nop_void(struct pmu * pmu)11273 static void perf_pmu_nop_void(struct pmu *pmu)
11274 {
11275 }
11276
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)11277 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11278 {
11279 }
11280
perf_pmu_nop_int(struct pmu * pmu)11281 static int perf_pmu_nop_int(struct pmu *pmu)
11282 {
11283 return 0;
11284 }
11285
perf_event_nop_int(struct perf_event * event,u64 value)11286 static int perf_event_nop_int(struct perf_event *event, u64 value)
11287 {
11288 return 0;
11289 }
11290
11291 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11292
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)11293 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11294 {
11295 __this_cpu_write(nop_txn_flags, flags);
11296
11297 if (flags & ~PERF_PMU_TXN_ADD)
11298 return;
11299
11300 perf_pmu_disable(pmu);
11301 }
11302
perf_pmu_commit_txn(struct pmu * pmu)11303 static int perf_pmu_commit_txn(struct pmu *pmu)
11304 {
11305 unsigned int flags = __this_cpu_read(nop_txn_flags);
11306
11307 __this_cpu_write(nop_txn_flags, 0);
11308
11309 if (flags & ~PERF_PMU_TXN_ADD)
11310 return 0;
11311
11312 perf_pmu_enable(pmu);
11313 return 0;
11314 }
11315
perf_pmu_cancel_txn(struct pmu * pmu)11316 static void perf_pmu_cancel_txn(struct pmu *pmu)
11317 {
11318 unsigned int flags = __this_cpu_read(nop_txn_flags);
11319
11320 __this_cpu_write(nop_txn_flags, 0);
11321
11322 if (flags & ~PERF_PMU_TXN_ADD)
11323 return;
11324
11325 perf_pmu_enable(pmu);
11326 }
11327
perf_event_idx_default(struct perf_event * event)11328 static int perf_event_idx_default(struct perf_event *event)
11329 {
11330 return 0;
11331 }
11332
free_pmu_context(struct pmu * pmu)11333 static void free_pmu_context(struct pmu *pmu)
11334 {
11335 free_percpu(pmu->cpu_pmu_context);
11336 }
11337
11338 /*
11339 * Let userspace know that this PMU supports address range filtering:
11340 */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)11341 static ssize_t nr_addr_filters_show(struct device *dev,
11342 struct device_attribute *attr,
11343 char *page)
11344 {
11345 struct pmu *pmu = dev_get_drvdata(dev);
11346
11347 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11348 }
11349 DEVICE_ATTR_RO(nr_addr_filters);
11350
11351 static struct idr pmu_idr;
11352
11353 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)11354 type_show(struct device *dev, struct device_attribute *attr, char *page)
11355 {
11356 struct pmu *pmu = dev_get_drvdata(dev);
11357
11358 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11359 }
11360 static DEVICE_ATTR_RO(type);
11361
11362 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)11363 perf_event_mux_interval_ms_show(struct device *dev,
11364 struct device_attribute *attr,
11365 char *page)
11366 {
11367 struct pmu *pmu = dev_get_drvdata(dev);
11368
11369 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11370 }
11371
11372 static DEFINE_MUTEX(mux_interval_mutex);
11373
11374 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)11375 perf_event_mux_interval_ms_store(struct device *dev,
11376 struct device_attribute *attr,
11377 const char *buf, size_t count)
11378 {
11379 struct pmu *pmu = dev_get_drvdata(dev);
11380 int timer, cpu, ret;
11381
11382 ret = kstrtoint(buf, 0, &timer);
11383 if (ret)
11384 return ret;
11385
11386 if (timer < 1)
11387 return -EINVAL;
11388
11389 /* same value, noting to do */
11390 if (timer == pmu->hrtimer_interval_ms)
11391 return count;
11392
11393 mutex_lock(&mux_interval_mutex);
11394 pmu->hrtimer_interval_ms = timer;
11395
11396 /* update all cpuctx for this PMU */
11397 cpus_read_lock();
11398 for_each_online_cpu(cpu) {
11399 struct perf_cpu_pmu_context *cpc;
11400 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11401 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11402
11403 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11404 }
11405 cpus_read_unlock();
11406 mutex_unlock(&mux_interval_mutex);
11407
11408 return count;
11409 }
11410 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11411
11412 static struct attribute *pmu_dev_attrs[] = {
11413 &dev_attr_type.attr,
11414 &dev_attr_perf_event_mux_interval_ms.attr,
11415 &dev_attr_nr_addr_filters.attr,
11416 NULL,
11417 };
11418
pmu_dev_is_visible(struct kobject * kobj,struct attribute * a,int n)11419 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11420 {
11421 struct device *dev = kobj_to_dev(kobj);
11422 struct pmu *pmu = dev_get_drvdata(dev);
11423
11424 if (n == 2 && !pmu->nr_addr_filters)
11425 return 0;
11426
11427 return a->mode;
11428 }
11429
11430 static struct attribute_group pmu_dev_attr_group = {
11431 .is_visible = pmu_dev_is_visible,
11432 .attrs = pmu_dev_attrs,
11433 };
11434
11435 static const struct attribute_group *pmu_dev_groups[] = {
11436 &pmu_dev_attr_group,
11437 NULL,
11438 };
11439
11440 static int pmu_bus_running;
11441 static struct bus_type pmu_bus = {
11442 .name = "event_source",
11443 .dev_groups = pmu_dev_groups,
11444 };
11445
pmu_dev_release(struct device * dev)11446 static void pmu_dev_release(struct device *dev)
11447 {
11448 kfree(dev);
11449 }
11450
pmu_dev_alloc(struct pmu * pmu)11451 static int pmu_dev_alloc(struct pmu *pmu)
11452 {
11453 int ret = -ENOMEM;
11454
11455 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11456 if (!pmu->dev)
11457 goto out;
11458
11459 pmu->dev->groups = pmu->attr_groups;
11460 device_initialize(pmu->dev);
11461
11462 dev_set_drvdata(pmu->dev, pmu);
11463 pmu->dev->bus = &pmu_bus;
11464 pmu->dev->parent = pmu->parent;
11465 pmu->dev->release = pmu_dev_release;
11466
11467 ret = dev_set_name(pmu->dev, "%s", pmu->name);
11468 if (ret)
11469 goto free_dev;
11470
11471 ret = device_add(pmu->dev);
11472 if (ret)
11473 goto free_dev;
11474
11475 if (pmu->attr_update) {
11476 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11477 if (ret)
11478 goto del_dev;
11479 }
11480
11481 out:
11482 return ret;
11483
11484 del_dev:
11485 device_del(pmu->dev);
11486
11487 free_dev:
11488 put_device(pmu->dev);
11489 goto out;
11490 }
11491
11492 static struct lock_class_key cpuctx_mutex;
11493 static struct lock_class_key cpuctx_lock;
11494
perf_pmu_register(struct pmu * pmu,const char * name,int type)11495 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11496 {
11497 int cpu, ret, max = PERF_TYPE_MAX;
11498
11499 mutex_lock(&pmus_lock);
11500 ret = -ENOMEM;
11501 pmu->pmu_disable_count = alloc_percpu(int);
11502 if (!pmu->pmu_disable_count)
11503 goto unlock;
11504
11505 pmu->type = -1;
11506 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11507 ret = -EINVAL;
11508 goto free_pdc;
11509 }
11510
11511 pmu->name = name;
11512
11513 if (type >= 0)
11514 max = type;
11515
11516 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11517 if (ret < 0)
11518 goto free_pdc;
11519
11520 WARN_ON(type >= 0 && ret != type);
11521
11522 type = ret;
11523 pmu->type = type;
11524
11525 if (pmu_bus_running && !pmu->dev) {
11526 ret = pmu_dev_alloc(pmu);
11527 if (ret)
11528 goto free_idr;
11529 }
11530
11531 ret = -ENOMEM;
11532 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11533 if (!pmu->cpu_pmu_context)
11534 goto free_dev;
11535
11536 for_each_possible_cpu(cpu) {
11537 struct perf_cpu_pmu_context *cpc;
11538
11539 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11540 __perf_init_event_pmu_context(&cpc->epc, pmu);
11541 __perf_mux_hrtimer_init(cpc, cpu);
11542 }
11543
11544 if (!pmu->start_txn) {
11545 if (pmu->pmu_enable) {
11546 /*
11547 * If we have pmu_enable/pmu_disable calls, install
11548 * transaction stubs that use that to try and batch
11549 * hardware accesses.
11550 */
11551 pmu->start_txn = perf_pmu_start_txn;
11552 pmu->commit_txn = perf_pmu_commit_txn;
11553 pmu->cancel_txn = perf_pmu_cancel_txn;
11554 } else {
11555 pmu->start_txn = perf_pmu_nop_txn;
11556 pmu->commit_txn = perf_pmu_nop_int;
11557 pmu->cancel_txn = perf_pmu_nop_void;
11558 }
11559 }
11560
11561 if (!pmu->pmu_enable) {
11562 pmu->pmu_enable = perf_pmu_nop_void;
11563 pmu->pmu_disable = perf_pmu_nop_void;
11564 }
11565
11566 if (!pmu->check_period)
11567 pmu->check_period = perf_event_nop_int;
11568
11569 if (!pmu->event_idx)
11570 pmu->event_idx = perf_event_idx_default;
11571
11572 list_add_rcu(&pmu->entry, &pmus);
11573 atomic_set(&pmu->exclusive_cnt, 0);
11574 ret = 0;
11575 unlock:
11576 mutex_unlock(&pmus_lock);
11577
11578 return ret;
11579
11580 free_dev:
11581 if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11582 device_del(pmu->dev);
11583 put_device(pmu->dev);
11584 }
11585
11586 free_idr:
11587 idr_remove(&pmu_idr, pmu->type);
11588
11589 free_pdc:
11590 free_percpu(pmu->pmu_disable_count);
11591 goto unlock;
11592 }
11593 EXPORT_SYMBOL_GPL(perf_pmu_register);
11594
perf_pmu_unregister(struct pmu * pmu)11595 void perf_pmu_unregister(struct pmu *pmu)
11596 {
11597 mutex_lock(&pmus_lock);
11598 list_del_rcu(&pmu->entry);
11599
11600 /*
11601 * We dereference the pmu list under both SRCU and regular RCU, so
11602 * synchronize against both of those.
11603 */
11604 synchronize_srcu(&pmus_srcu);
11605 synchronize_rcu();
11606
11607 free_percpu(pmu->pmu_disable_count);
11608 idr_remove(&pmu_idr, pmu->type);
11609 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11610 if (pmu->nr_addr_filters)
11611 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11612 device_del(pmu->dev);
11613 put_device(pmu->dev);
11614 }
11615 free_pmu_context(pmu);
11616 mutex_unlock(&pmus_lock);
11617 }
11618 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11619
has_extended_regs(struct perf_event * event)11620 static inline bool has_extended_regs(struct perf_event *event)
11621 {
11622 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11623 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11624 }
11625
perf_try_init_event(struct pmu * pmu,struct perf_event * event)11626 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11627 {
11628 struct perf_event_context *ctx = NULL;
11629 int ret;
11630
11631 if (!try_module_get(pmu->module))
11632 return -ENODEV;
11633
11634 /*
11635 * A number of pmu->event_init() methods iterate the sibling_list to,
11636 * for example, validate if the group fits on the PMU. Therefore,
11637 * if this is a sibling event, acquire the ctx->mutex to protect
11638 * the sibling_list.
11639 */
11640 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11641 /*
11642 * This ctx->mutex can nest when we're called through
11643 * inheritance. See the perf_event_ctx_lock_nested() comment.
11644 */
11645 ctx = perf_event_ctx_lock_nested(event->group_leader,
11646 SINGLE_DEPTH_NESTING);
11647 BUG_ON(!ctx);
11648 }
11649
11650 event->pmu = pmu;
11651 ret = pmu->event_init(event);
11652
11653 if (ctx)
11654 perf_event_ctx_unlock(event->group_leader, ctx);
11655
11656 if (!ret) {
11657 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11658 has_extended_regs(event))
11659 ret = -EOPNOTSUPP;
11660
11661 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11662 event_has_any_exclude_flag(event))
11663 ret = -EINVAL;
11664
11665 if (ret && event->destroy)
11666 event->destroy(event);
11667 }
11668
11669 if (ret)
11670 module_put(pmu->module);
11671
11672 return ret;
11673 }
11674
perf_init_event(struct perf_event * event)11675 static struct pmu *perf_init_event(struct perf_event *event)
11676 {
11677 bool extended_type = false;
11678 int idx, type, ret;
11679 struct pmu *pmu;
11680
11681 idx = srcu_read_lock(&pmus_srcu);
11682
11683 /*
11684 * Save original type before calling pmu->event_init() since certain
11685 * pmus overwrites event->attr.type to forward event to another pmu.
11686 */
11687 event->orig_type = event->attr.type;
11688
11689 /* Try parent's PMU first: */
11690 if (event->parent && event->parent->pmu) {
11691 pmu = event->parent->pmu;
11692 ret = perf_try_init_event(pmu, event);
11693 if (!ret)
11694 goto unlock;
11695 }
11696
11697 /*
11698 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11699 * are often aliases for PERF_TYPE_RAW.
11700 */
11701 type = event->attr.type;
11702 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11703 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11704 if (!type) {
11705 type = PERF_TYPE_RAW;
11706 } else {
11707 extended_type = true;
11708 event->attr.config &= PERF_HW_EVENT_MASK;
11709 }
11710 }
11711
11712 again:
11713 rcu_read_lock();
11714 pmu = idr_find(&pmu_idr, type);
11715 rcu_read_unlock();
11716 if (pmu) {
11717 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11718 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11719 goto fail;
11720
11721 ret = perf_try_init_event(pmu, event);
11722 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11723 type = event->attr.type;
11724 goto again;
11725 }
11726
11727 if (ret)
11728 pmu = ERR_PTR(ret);
11729
11730 goto unlock;
11731 }
11732
11733 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11734 ret = perf_try_init_event(pmu, event);
11735 if (!ret)
11736 goto unlock;
11737
11738 if (ret != -ENOENT) {
11739 pmu = ERR_PTR(ret);
11740 goto unlock;
11741 }
11742 }
11743 fail:
11744 pmu = ERR_PTR(-ENOENT);
11745 unlock:
11746 srcu_read_unlock(&pmus_srcu, idx);
11747
11748 return pmu;
11749 }
11750
attach_sb_event(struct perf_event * event)11751 static void attach_sb_event(struct perf_event *event)
11752 {
11753 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11754
11755 raw_spin_lock(&pel->lock);
11756 list_add_rcu(&event->sb_list, &pel->list);
11757 raw_spin_unlock(&pel->lock);
11758 }
11759
11760 /*
11761 * We keep a list of all !task (and therefore per-cpu) events
11762 * that need to receive side-band records.
11763 *
11764 * This avoids having to scan all the various PMU per-cpu contexts
11765 * looking for them.
11766 */
account_pmu_sb_event(struct perf_event * event)11767 static void account_pmu_sb_event(struct perf_event *event)
11768 {
11769 if (is_sb_event(event))
11770 attach_sb_event(event);
11771 }
11772
11773 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)11774 static void account_freq_event_nohz(void)
11775 {
11776 #ifdef CONFIG_NO_HZ_FULL
11777 /* Lock so we don't race with concurrent unaccount */
11778 spin_lock(&nr_freq_lock);
11779 if (atomic_inc_return(&nr_freq_events) == 1)
11780 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11781 spin_unlock(&nr_freq_lock);
11782 #endif
11783 }
11784
account_freq_event(void)11785 static void account_freq_event(void)
11786 {
11787 if (tick_nohz_full_enabled())
11788 account_freq_event_nohz();
11789 else
11790 atomic_inc(&nr_freq_events);
11791 }
11792
11793
account_event(struct perf_event * event)11794 static void account_event(struct perf_event *event)
11795 {
11796 bool inc = false;
11797
11798 if (event->parent)
11799 return;
11800
11801 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11802 inc = true;
11803 if (event->attr.mmap || event->attr.mmap_data)
11804 atomic_inc(&nr_mmap_events);
11805 if (event->attr.build_id)
11806 atomic_inc(&nr_build_id_events);
11807 if (event->attr.comm)
11808 atomic_inc(&nr_comm_events);
11809 if (event->attr.namespaces)
11810 atomic_inc(&nr_namespaces_events);
11811 if (event->attr.cgroup)
11812 atomic_inc(&nr_cgroup_events);
11813 if (event->attr.task)
11814 atomic_inc(&nr_task_events);
11815 if (event->attr.freq)
11816 account_freq_event();
11817 if (event->attr.context_switch) {
11818 atomic_inc(&nr_switch_events);
11819 inc = true;
11820 }
11821 if (has_branch_stack(event))
11822 inc = true;
11823 if (is_cgroup_event(event))
11824 inc = true;
11825 if (event->attr.ksymbol)
11826 atomic_inc(&nr_ksymbol_events);
11827 if (event->attr.bpf_event)
11828 atomic_inc(&nr_bpf_events);
11829 if (event->attr.text_poke)
11830 atomic_inc(&nr_text_poke_events);
11831
11832 if (inc) {
11833 /*
11834 * We need the mutex here because static_branch_enable()
11835 * must complete *before* the perf_sched_count increment
11836 * becomes visible.
11837 */
11838 if (atomic_inc_not_zero(&perf_sched_count))
11839 goto enabled;
11840
11841 mutex_lock(&perf_sched_mutex);
11842 if (!atomic_read(&perf_sched_count)) {
11843 static_branch_enable(&perf_sched_events);
11844 /*
11845 * Guarantee that all CPUs observe they key change and
11846 * call the perf scheduling hooks before proceeding to
11847 * install events that need them.
11848 */
11849 synchronize_rcu();
11850 }
11851 /*
11852 * Now that we have waited for the sync_sched(), allow further
11853 * increments to by-pass the mutex.
11854 */
11855 atomic_inc(&perf_sched_count);
11856 mutex_unlock(&perf_sched_mutex);
11857 }
11858 enabled:
11859
11860 account_pmu_sb_event(event);
11861 }
11862
11863 /*
11864 * Allocate and initialize an event structure
11865 */
11866 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)11867 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11868 struct task_struct *task,
11869 struct perf_event *group_leader,
11870 struct perf_event *parent_event,
11871 perf_overflow_handler_t overflow_handler,
11872 void *context, int cgroup_fd)
11873 {
11874 struct pmu *pmu;
11875 struct perf_event *event;
11876 struct hw_perf_event *hwc;
11877 long err = -EINVAL;
11878 int node;
11879
11880 if ((unsigned)cpu >= nr_cpu_ids) {
11881 if (!task || cpu != -1)
11882 return ERR_PTR(-EINVAL);
11883 }
11884 if (attr->sigtrap && !task) {
11885 /* Requires a task: avoid signalling random tasks. */
11886 return ERR_PTR(-EINVAL);
11887 }
11888
11889 node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11890 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11891 node);
11892 if (!event)
11893 return ERR_PTR(-ENOMEM);
11894
11895 /*
11896 * Single events are their own group leaders, with an
11897 * empty sibling list:
11898 */
11899 if (!group_leader)
11900 group_leader = event;
11901
11902 mutex_init(&event->child_mutex);
11903 INIT_LIST_HEAD(&event->child_list);
11904
11905 INIT_LIST_HEAD(&event->event_entry);
11906 INIT_LIST_HEAD(&event->sibling_list);
11907 INIT_LIST_HEAD(&event->active_list);
11908 init_event_group(event);
11909 INIT_LIST_HEAD(&event->rb_entry);
11910 INIT_LIST_HEAD(&event->active_entry);
11911 INIT_LIST_HEAD(&event->addr_filters.list);
11912 INIT_HLIST_NODE(&event->hlist_entry);
11913
11914
11915 init_waitqueue_head(&event->waitq);
11916 init_irq_work(&event->pending_irq, perf_pending_irq);
11917 init_task_work(&event->pending_task, perf_pending_task);
11918
11919 mutex_init(&event->mmap_mutex);
11920 raw_spin_lock_init(&event->addr_filters.lock);
11921
11922 atomic_long_set(&event->refcount, 1);
11923 event->cpu = cpu;
11924 event->attr = *attr;
11925 event->group_leader = group_leader;
11926 event->pmu = NULL;
11927 event->oncpu = -1;
11928
11929 event->parent = parent_event;
11930
11931 event->ns = get_pid_ns(task_active_pid_ns(current));
11932 event->id = atomic64_inc_return(&perf_event_id);
11933
11934 event->state = PERF_EVENT_STATE_INACTIVE;
11935
11936 if (parent_event)
11937 event->event_caps = parent_event->event_caps;
11938
11939 if (task) {
11940 event->attach_state = PERF_ATTACH_TASK;
11941 /*
11942 * XXX pmu::event_init needs to know what task to account to
11943 * and we cannot use the ctx information because we need the
11944 * pmu before we get a ctx.
11945 */
11946 event->hw.target = get_task_struct(task);
11947 }
11948
11949 event->clock = &local_clock;
11950 if (parent_event)
11951 event->clock = parent_event->clock;
11952
11953 if (!overflow_handler && parent_event) {
11954 overflow_handler = parent_event->overflow_handler;
11955 context = parent_event->overflow_handler_context;
11956 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11957 if (overflow_handler == bpf_overflow_handler) {
11958 struct bpf_prog *prog = parent_event->prog;
11959
11960 bpf_prog_inc(prog);
11961 event->prog = prog;
11962 event->orig_overflow_handler =
11963 parent_event->orig_overflow_handler;
11964 }
11965 #endif
11966 }
11967
11968 if (overflow_handler) {
11969 event->overflow_handler = overflow_handler;
11970 event->overflow_handler_context = context;
11971 } else if (is_write_backward(event)){
11972 event->overflow_handler = perf_event_output_backward;
11973 event->overflow_handler_context = NULL;
11974 } else {
11975 event->overflow_handler = perf_event_output_forward;
11976 event->overflow_handler_context = NULL;
11977 }
11978
11979 perf_event__state_init(event);
11980
11981 pmu = NULL;
11982
11983 hwc = &event->hw;
11984 hwc->sample_period = attr->sample_period;
11985 if (attr->freq && attr->sample_freq)
11986 hwc->sample_period = 1;
11987 hwc->last_period = hwc->sample_period;
11988
11989 local64_set(&hwc->period_left, hwc->sample_period);
11990
11991 /*
11992 * We currently do not support PERF_SAMPLE_READ on inherited events.
11993 * See perf_output_read().
11994 */
11995 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11996 goto err_ns;
11997
11998 if (!has_branch_stack(event))
11999 event->attr.branch_sample_type = 0;
12000
12001 pmu = perf_init_event(event);
12002 if (IS_ERR(pmu)) {
12003 err = PTR_ERR(pmu);
12004 goto err_ns;
12005 }
12006
12007 /*
12008 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12009 * events (they don't make sense as the cgroup will be different
12010 * on other CPUs in the uncore mask).
12011 */
12012 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12013 err = -EINVAL;
12014 goto err_pmu;
12015 }
12016
12017 if (event->attr.aux_output &&
12018 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12019 err = -EOPNOTSUPP;
12020 goto err_pmu;
12021 }
12022
12023 if (cgroup_fd != -1) {
12024 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12025 if (err)
12026 goto err_pmu;
12027 }
12028
12029 err = exclusive_event_init(event);
12030 if (err)
12031 goto err_pmu;
12032
12033 if (has_addr_filter(event)) {
12034 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12035 sizeof(struct perf_addr_filter_range),
12036 GFP_KERNEL);
12037 if (!event->addr_filter_ranges) {
12038 err = -ENOMEM;
12039 goto err_per_task;
12040 }
12041
12042 /*
12043 * Clone the parent's vma offsets: they are valid until exec()
12044 * even if the mm is not shared with the parent.
12045 */
12046 if (event->parent) {
12047 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12048
12049 raw_spin_lock_irq(&ifh->lock);
12050 memcpy(event->addr_filter_ranges,
12051 event->parent->addr_filter_ranges,
12052 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12053 raw_spin_unlock_irq(&ifh->lock);
12054 }
12055
12056 /* force hw sync on the address filters */
12057 event->addr_filters_gen = 1;
12058 }
12059
12060 if (!event->parent) {
12061 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12062 err = get_callchain_buffers(attr->sample_max_stack);
12063 if (err)
12064 goto err_addr_filters;
12065 }
12066 }
12067
12068 err = security_perf_event_alloc(event);
12069 if (err)
12070 goto err_callchain_buffer;
12071
12072 /* symmetric to unaccount_event() in _free_event() */
12073 account_event(event);
12074
12075 return event;
12076
12077 err_callchain_buffer:
12078 if (!event->parent) {
12079 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12080 put_callchain_buffers();
12081 }
12082 err_addr_filters:
12083 kfree(event->addr_filter_ranges);
12084
12085 err_per_task:
12086 exclusive_event_destroy(event);
12087
12088 err_pmu:
12089 if (is_cgroup_event(event))
12090 perf_detach_cgroup(event);
12091 if (event->destroy)
12092 event->destroy(event);
12093 module_put(pmu->module);
12094 err_ns:
12095 if (event->hw.target)
12096 put_task_struct(event->hw.target);
12097 call_rcu(&event->rcu_head, free_event_rcu);
12098
12099 return ERR_PTR(err);
12100 }
12101
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)12102 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12103 struct perf_event_attr *attr)
12104 {
12105 u32 size;
12106 int ret;
12107
12108 /* Zero the full structure, so that a short copy will be nice. */
12109 memset(attr, 0, sizeof(*attr));
12110
12111 ret = get_user(size, &uattr->size);
12112 if (ret)
12113 return ret;
12114
12115 /* ABI compatibility quirk: */
12116 if (!size)
12117 size = PERF_ATTR_SIZE_VER0;
12118 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12119 goto err_size;
12120
12121 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12122 if (ret) {
12123 if (ret == -E2BIG)
12124 goto err_size;
12125 return ret;
12126 }
12127
12128 attr->size = size;
12129
12130 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12131 return -EINVAL;
12132
12133 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12134 return -EINVAL;
12135
12136 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12137 return -EINVAL;
12138
12139 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12140 u64 mask = attr->branch_sample_type;
12141
12142 /* only using defined bits */
12143 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12144 return -EINVAL;
12145
12146 /* at least one branch bit must be set */
12147 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12148 return -EINVAL;
12149
12150 /* propagate priv level, when not set for branch */
12151 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12152
12153 /* exclude_kernel checked on syscall entry */
12154 if (!attr->exclude_kernel)
12155 mask |= PERF_SAMPLE_BRANCH_KERNEL;
12156
12157 if (!attr->exclude_user)
12158 mask |= PERF_SAMPLE_BRANCH_USER;
12159
12160 if (!attr->exclude_hv)
12161 mask |= PERF_SAMPLE_BRANCH_HV;
12162 /*
12163 * adjust user setting (for HW filter setup)
12164 */
12165 attr->branch_sample_type = mask;
12166 }
12167 /* privileged levels capture (kernel, hv): check permissions */
12168 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12169 ret = perf_allow_kernel(attr);
12170 if (ret)
12171 return ret;
12172 }
12173 }
12174
12175 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12176 ret = perf_reg_validate(attr->sample_regs_user);
12177 if (ret)
12178 return ret;
12179 }
12180
12181 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12182 if (!arch_perf_have_user_stack_dump())
12183 return -ENOSYS;
12184
12185 /*
12186 * We have __u32 type for the size, but so far
12187 * we can only use __u16 as maximum due to the
12188 * __u16 sample size limit.
12189 */
12190 if (attr->sample_stack_user >= USHRT_MAX)
12191 return -EINVAL;
12192 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12193 return -EINVAL;
12194 }
12195
12196 if (!attr->sample_max_stack)
12197 attr->sample_max_stack = sysctl_perf_event_max_stack;
12198
12199 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12200 ret = perf_reg_validate(attr->sample_regs_intr);
12201
12202 #ifndef CONFIG_CGROUP_PERF
12203 if (attr->sample_type & PERF_SAMPLE_CGROUP)
12204 return -EINVAL;
12205 #endif
12206 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12207 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12208 return -EINVAL;
12209
12210 if (!attr->inherit && attr->inherit_thread)
12211 return -EINVAL;
12212
12213 if (attr->remove_on_exec && attr->enable_on_exec)
12214 return -EINVAL;
12215
12216 if (attr->sigtrap && !attr->remove_on_exec)
12217 return -EINVAL;
12218
12219 out:
12220 return ret;
12221
12222 err_size:
12223 put_user(sizeof(*attr), &uattr->size);
12224 ret = -E2BIG;
12225 goto out;
12226 }
12227
mutex_lock_double(struct mutex * a,struct mutex * b)12228 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12229 {
12230 if (b < a)
12231 swap(a, b);
12232
12233 mutex_lock(a);
12234 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12235 }
12236
12237 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)12238 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12239 {
12240 struct perf_buffer *rb = NULL;
12241 int ret = -EINVAL;
12242
12243 if (!output_event) {
12244 mutex_lock(&event->mmap_mutex);
12245 goto set;
12246 }
12247
12248 /* don't allow circular references */
12249 if (event == output_event)
12250 goto out;
12251
12252 /*
12253 * Don't allow cross-cpu buffers
12254 */
12255 if (output_event->cpu != event->cpu)
12256 goto out;
12257
12258 /*
12259 * If its not a per-cpu rb, it must be the same task.
12260 */
12261 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12262 goto out;
12263
12264 /*
12265 * Mixing clocks in the same buffer is trouble you don't need.
12266 */
12267 if (output_event->clock != event->clock)
12268 goto out;
12269
12270 /*
12271 * Either writing ring buffer from beginning or from end.
12272 * Mixing is not allowed.
12273 */
12274 if (is_write_backward(output_event) != is_write_backward(event))
12275 goto out;
12276
12277 /*
12278 * If both events generate aux data, they must be on the same PMU
12279 */
12280 if (has_aux(event) && has_aux(output_event) &&
12281 event->pmu != output_event->pmu)
12282 goto out;
12283
12284 /*
12285 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since
12286 * output_event is already on rb->event_list, and the list iteration
12287 * restarts after every removal, it is guaranteed this new event is
12288 * observed *OR* if output_event is already removed, it's guaranteed we
12289 * observe !rb->mmap_count.
12290 */
12291 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12292 set:
12293 /* Can't redirect output if we've got an active mmap() */
12294 if (atomic_read(&event->mmap_count))
12295 goto unlock;
12296
12297 if (output_event) {
12298 /* get the rb we want to redirect to */
12299 rb = ring_buffer_get(output_event);
12300 if (!rb)
12301 goto unlock;
12302
12303 /* did we race against perf_mmap_close() */
12304 if (!atomic_read(&rb->mmap_count)) {
12305 ring_buffer_put(rb);
12306 goto unlock;
12307 }
12308 }
12309
12310 ring_buffer_attach(event, rb);
12311
12312 ret = 0;
12313 unlock:
12314 mutex_unlock(&event->mmap_mutex);
12315 if (output_event)
12316 mutex_unlock(&output_event->mmap_mutex);
12317
12318 out:
12319 return ret;
12320 }
12321
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)12322 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12323 {
12324 bool nmi_safe = false;
12325
12326 switch (clk_id) {
12327 case CLOCK_MONOTONIC:
12328 event->clock = &ktime_get_mono_fast_ns;
12329 nmi_safe = true;
12330 break;
12331
12332 case CLOCK_MONOTONIC_RAW:
12333 event->clock = &ktime_get_raw_fast_ns;
12334 nmi_safe = true;
12335 break;
12336
12337 case CLOCK_REALTIME:
12338 event->clock = &ktime_get_real_ns;
12339 break;
12340
12341 case CLOCK_BOOTTIME:
12342 event->clock = &ktime_get_boottime_ns;
12343 break;
12344
12345 case CLOCK_TAI:
12346 event->clock = &ktime_get_clocktai_ns;
12347 break;
12348
12349 default:
12350 return -EINVAL;
12351 }
12352
12353 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12354 return -EINVAL;
12355
12356 return 0;
12357 }
12358
12359 static bool
perf_check_permission(struct perf_event_attr * attr,struct task_struct * task)12360 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12361 {
12362 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12363 bool is_capable = perfmon_capable();
12364
12365 if (attr->sigtrap) {
12366 /*
12367 * perf_event_attr::sigtrap sends signals to the other task.
12368 * Require the current task to also have CAP_KILL.
12369 */
12370 rcu_read_lock();
12371 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12372 rcu_read_unlock();
12373
12374 /*
12375 * If the required capabilities aren't available, checks for
12376 * ptrace permissions: upgrade to ATTACH, since sending signals
12377 * can effectively change the target task.
12378 */
12379 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12380 }
12381
12382 /*
12383 * Preserve ptrace permission check for backwards compatibility. The
12384 * ptrace check also includes checks that the current task and other
12385 * task have matching uids, and is therefore not done here explicitly.
12386 */
12387 return is_capable || ptrace_may_access(task, ptrace_mode);
12388 }
12389
12390 /**
12391 * sys_perf_event_open - open a performance event, associate it to a task/cpu
12392 *
12393 * @attr_uptr: event_id type attributes for monitoring/sampling
12394 * @pid: target pid
12395 * @cpu: target cpu
12396 * @group_fd: group leader event fd
12397 * @flags: perf event open flags
12398 */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)12399 SYSCALL_DEFINE5(perf_event_open,
12400 struct perf_event_attr __user *, attr_uptr,
12401 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12402 {
12403 struct perf_event *group_leader = NULL, *output_event = NULL;
12404 struct perf_event_pmu_context *pmu_ctx;
12405 struct perf_event *event, *sibling;
12406 struct perf_event_attr attr;
12407 struct perf_event_context *ctx;
12408 struct file *event_file = NULL;
12409 struct fd group = {NULL, 0};
12410 struct task_struct *task = NULL;
12411 struct pmu *pmu;
12412 int event_fd;
12413 int move_group = 0;
12414 int err;
12415 int f_flags = O_RDWR;
12416 int cgroup_fd = -1;
12417
12418 /* for future expandability... */
12419 if (flags & ~PERF_FLAG_ALL)
12420 return -EINVAL;
12421
12422 err = perf_copy_attr(attr_uptr, &attr);
12423 if (err)
12424 return err;
12425
12426 /* Do we allow access to perf_event_open(2) ? */
12427 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12428 if (err)
12429 return err;
12430
12431 if (!attr.exclude_kernel) {
12432 err = perf_allow_kernel(&attr);
12433 if (err)
12434 return err;
12435 }
12436
12437 if (attr.namespaces) {
12438 if (!perfmon_capable())
12439 return -EACCES;
12440 }
12441
12442 if (attr.freq) {
12443 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12444 return -EINVAL;
12445 } else {
12446 if (attr.sample_period & (1ULL << 63))
12447 return -EINVAL;
12448 }
12449
12450 /* Only privileged users can get physical addresses */
12451 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12452 err = perf_allow_kernel(&attr);
12453 if (err)
12454 return err;
12455 }
12456
12457 /* REGS_INTR can leak data, lockdown must prevent this */
12458 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12459 err = security_locked_down(LOCKDOWN_PERF);
12460 if (err)
12461 return err;
12462 }
12463
12464 /*
12465 * In cgroup mode, the pid argument is used to pass the fd
12466 * opened to the cgroup directory in cgroupfs. The cpu argument
12467 * designates the cpu on which to monitor threads from that
12468 * cgroup.
12469 */
12470 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12471 return -EINVAL;
12472
12473 if (flags & PERF_FLAG_FD_CLOEXEC)
12474 f_flags |= O_CLOEXEC;
12475
12476 event_fd = get_unused_fd_flags(f_flags);
12477 if (event_fd < 0)
12478 return event_fd;
12479
12480 if (group_fd != -1) {
12481 err = perf_fget_light(group_fd, &group);
12482 if (err)
12483 goto err_fd;
12484 group_leader = group.file->private_data;
12485 if (flags & PERF_FLAG_FD_OUTPUT)
12486 output_event = group_leader;
12487 if (flags & PERF_FLAG_FD_NO_GROUP)
12488 group_leader = NULL;
12489 }
12490
12491 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12492 task = find_lively_task_by_vpid(pid);
12493 if (IS_ERR(task)) {
12494 err = PTR_ERR(task);
12495 goto err_group_fd;
12496 }
12497 }
12498
12499 if (task && group_leader &&
12500 group_leader->attr.inherit != attr.inherit) {
12501 err = -EINVAL;
12502 goto err_task;
12503 }
12504
12505 if (flags & PERF_FLAG_PID_CGROUP)
12506 cgroup_fd = pid;
12507
12508 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12509 NULL, NULL, cgroup_fd);
12510 if (IS_ERR(event)) {
12511 err = PTR_ERR(event);
12512 goto err_task;
12513 }
12514
12515 if (is_sampling_event(event)) {
12516 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12517 err = -EOPNOTSUPP;
12518 goto err_alloc;
12519 }
12520 }
12521
12522 /*
12523 * Special case software events and allow them to be part of
12524 * any hardware group.
12525 */
12526 pmu = event->pmu;
12527
12528 if (attr.use_clockid) {
12529 err = perf_event_set_clock(event, attr.clockid);
12530 if (err)
12531 goto err_alloc;
12532 }
12533
12534 if (pmu->task_ctx_nr == perf_sw_context)
12535 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12536
12537 if (task) {
12538 err = down_read_interruptible(&task->signal->exec_update_lock);
12539 if (err)
12540 goto err_alloc;
12541
12542 /*
12543 * We must hold exec_update_lock across this and any potential
12544 * perf_install_in_context() call for this new event to
12545 * serialize against exec() altering our credentials (and the
12546 * perf_event_exit_task() that could imply).
12547 */
12548 err = -EACCES;
12549 if (!perf_check_permission(&attr, task))
12550 goto err_cred;
12551 }
12552
12553 /*
12554 * Get the target context (task or percpu):
12555 */
12556 ctx = find_get_context(task, event);
12557 if (IS_ERR(ctx)) {
12558 err = PTR_ERR(ctx);
12559 goto err_cred;
12560 }
12561
12562 mutex_lock(&ctx->mutex);
12563
12564 if (ctx->task == TASK_TOMBSTONE) {
12565 err = -ESRCH;
12566 goto err_locked;
12567 }
12568
12569 if (!task) {
12570 /*
12571 * Check if the @cpu we're creating an event for is online.
12572 *
12573 * We use the perf_cpu_context::ctx::mutex to serialize against
12574 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12575 */
12576 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12577
12578 if (!cpuctx->online) {
12579 err = -ENODEV;
12580 goto err_locked;
12581 }
12582 }
12583
12584 if (group_leader) {
12585 err = -EINVAL;
12586
12587 /*
12588 * Do not allow a recursive hierarchy (this new sibling
12589 * becoming part of another group-sibling):
12590 */
12591 if (group_leader->group_leader != group_leader)
12592 goto err_locked;
12593
12594 /* All events in a group should have the same clock */
12595 if (group_leader->clock != event->clock)
12596 goto err_locked;
12597
12598 /*
12599 * Make sure we're both events for the same CPU;
12600 * grouping events for different CPUs is broken; since
12601 * you can never concurrently schedule them anyhow.
12602 */
12603 if (group_leader->cpu != event->cpu)
12604 goto err_locked;
12605
12606 /*
12607 * Make sure we're both on the same context; either task or cpu.
12608 */
12609 if (group_leader->ctx != ctx)
12610 goto err_locked;
12611
12612 /*
12613 * Only a group leader can be exclusive or pinned
12614 */
12615 if (attr.exclusive || attr.pinned)
12616 goto err_locked;
12617
12618 if (is_software_event(event) &&
12619 !in_software_context(group_leader)) {
12620 /*
12621 * If the event is a sw event, but the group_leader
12622 * is on hw context.
12623 *
12624 * Allow the addition of software events to hw
12625 * groups, this is safe because software events
12626 * never fail to schedule.
12627 *
12628 * Note the comment that goes with struct
12629 * perf_event_pmu_context.
12630 */
12631 pmu = group_leader->pmu_ctx->pmu;
12632 } else if (!is_software_event(event)) {
12633 if (is_software_event(group_leader) &&
12634 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12635 /*
12636 * In case the group is a pure software group, and we
12637 * try to add a hardware event, move the whole group to
12638 * the hardware context.
12639 */
12640 move_group = 1;
12641 }
12642
12643 /* Don't allow group of multiple hw events from different pmus */
12644 if (!in_software_context(group_leader) &&
12645 group_leader->pmu_ctx->pmu != pmu)
12646 goto err_locked;
12647 }
12648 }
12649
12650 /*
12651 * Now that we're certain of the pmu; find the pmu_ctx.
12652 */
12653 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12654 if (IS_ERR(pmu_ctx)) {
12655 err = PTR_ERR(pmu_ctx);
12656 goto err_locked;
12657 }
12658 event->pmu_ctx = pmu_ctx;
12659
12660 if (output_event) {
12661 err = perf_event_set_output(event, output_event);
12662 if (err)
12663 goto err_context;
12664 }
12665
12666 if (!perf_event_validate_size(event)) {
12667 err = -E2BIG;
12668 goto err_context;
12669 }
12670
12671 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12672 err = -EINVAL;
12673 goto err_context;
12674 }
12675
12676 /*
12677 * Must be under the same ctx::mutex as perf_install_in_context(),
12678 * because we need to serialize with concurrent event creation.
12679 */
12680 if (!exclusive_event_installable(event, ctx)) {
12681 err = -EBUSY;
12682 goto err_context;
12683 }
12684
12685 WARN_ON_ONCE(ctx->parent_ctx);
12686
12687 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12688 if (IS_ERR(event_file)) {
12689 err = PTR_ERR(event_file);
12690 event_file = NULL;
12691 goto err_context;
12692 }
12693
12694 /*
12695 * This is the point on no return; we cannot fail hereafter. This is
12696 * where we start modifying current state.
12697 */
12698
12699 if (move_group) {
12700 perf_remove_from_context(group_leader, 0);
12701 put_pmu_ctx(group_leader->pmu_ctx);
12702
12703 for_each_sibling_event(sibling, group_leader) {
12704 perf_remove_from_context(sibling, 0);
12705 put_pmu_ctx(sibling->pmu_ctx);
12706 }
12707
12708 /*
12709 * Install the group siblings before the group leader.
12710 *
12711 * Because a group leader will try and install the entire group
12712 * (through the sibling list, which is still in-tact), we can
12713 * end up with siblings installed in the wrong context.
12714 *
12715 * By installing siblings first we NO-OP because they're not
12716 * reachable through the group lists.
12717 */
12718 for_each_sibling_event(sibling, group_leader) {
12719 sibling->pmu_ctx = pmu_ctx;
12720 get_pmu_ctx(pmu_ctx);
12721 perf_event__state_init(sibling);
12722 perf_install_in_context(ctx, sibling, sibling->cpu);
12723 }
12724
12725 /*
12726 * Removing from the context ends up with disabled
12727 * event. What we want here is event in the initial
12728 * startup state, ready to be add into new context.
12729 */
12730 group_leader->pmu_ctx = pmu_ctx;
12731 get_pmu_ctx(pmu_ctx);
12732 perf_event__state_init(group_leader);
12733 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12734 }
12735
12736 /*
12737 * Precalculate sample_data sizes; do while holding ctx::mutex such
12738 * that we're serialized against further additions and before
12739 * perf_install_in_context() which is the point the event is active and
12740 * can use these values.
12741 */
12742 perf_event__header_size(event);
12743 perf_event__id_header_size(event);
12744
12745 event->owner = current;
12746
12747 perf_install_in_context(ctx, event, event->cpu);
12748 perf_unpin_context(ctx);
12749
12750 mutex_unlock(&ctx->mutex);
12751
12752 if (task) {
12753 up_read(&task->signal->exec_update_lock);
12754 put_task_struct(task);
12755 }
12756
12757 mutex_lock(¤t->perf_event_mutex);
12758 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
12759 mutex_unlock(¤t->perf_event_mutex);
12760
12761 /*
12762 * Drop the reference on the group_event after placing the
12763 * new event on the sibling_list. This ensures destruction
12764 * of the group leader will find the pointer to itself in
12765 * perf_group_detach().
12766 */
12767 fdput(group);
12768 fd_install(event_fd, event_file);
12769 return event_fd;
12770
12771 err_context:
12772 put_pmu_ctx(event->pmu_ctx);
12773 event->pmu_ctx = NULL; /* _free_event() */
12774 err_locked:
12775 mutex_unlock(&ctx->mutex);
12776 perf_unpin_context(ctx);
12777 put_ctx(ctx);
12778 err_cred:
12779 if (task)
12780 up_read(&task->signal->exec_update_lock);
12781 err_alloc:
12782 free_event(event);
12783 err_task:
12784 if (task)
12785 put_task_struct(task);
12786 err_group_fd:
12787 fdput(group);
12788 err_fd:
12789 put_unused_fd(event_fd);
12790 return err;
12791 }
12792
12793 /**
12794 * perf_event_create_kernel_counter
12795 *
12796 * @attr: attributes of the counter to create
12797 * @cpu: cpu in which the counter is bound
12798 * @task: task to profile (NULL for percpu)
12799 * @overflow_handler: callback to trigger when we hit the event
12800 * @context: context data could be used in overflow_handler callback
12801 */
12802 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)12803 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12804 struct task_struct *task,
12805 perf_overflow_handler_t overflow_handler,
12806 void *context)
12807 {
12808 struct perf_event_pmu_context *pmu_ctx;
12809 struct perf_event_context *ctx;
12810 struct perf_event *event;
12811 struct pmu *pmu;
12812 int err;
12813
12814 /*
12815 * Grouping is not supported for kernel events, neither is 'AUX',
12816 * make sure the caller's intentions are adjusted.
12817 */
12818 if (attr->aux_output)
12819 return ERR_PTR(-EINVAL);
12820
12821 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12822 overflow_handler, context, -1);
12823 if (IS_ERR(event)) {
12824 err = PTR_ERR(event);
12825 goto err;
12826 }
12827
12828 /* Mark owner so we could distinguish it from user events. */
12829 event->owner = TASK_TOMBSTONE;
12830 pmu = event->pmu;
12831
12832 if (pmu->task_ctx_nr == perf_sw_context)
12833 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12834
12835 /*
12836 * Get the target context (task or percpu):
12837 */
12838 ctx = find_get_context(task, event);
12839 if (IS_ERR(ctx)) {
12840 err = PTR_ERR(ctx);
12841 goto err_alloc;
12842 }
12843
12844 WARN_ON_ONCE(ctx->parent_ctx);
12845 mutex_lock(&ctx->mutex);
12846 if (ctx->task == TASK_TOMBSTONE) {
12847 err = -ESRCH;
12848 goto err_unlock;
12849 }
12850
12851 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12852 if (IS_ERR(pmu_ctx)) {
12853 err = PTR_ERR(pmu_ctx);
12854 goto err_unlock;
12855 }
12856 event->pmu_ctx = pmu_ctx;
12857
12858 if (!task) {
12859 /*
12860 * Check if the @cpu we're creating an event for is online.
12861 *
12862 * We use the perf_cpu_context::ctx::mutex to serialize against
12863 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12864 */
12865 struct perf_cpu_context *cpuctx =
12866 container_of(ctx, struct perf_cpu_context, ctx);
12867 if (!cpuctx->online) {
12868 err = -ENODEV;
12869 goto err_pmu_ctx;
12870 }
12871 }
12872
12873 if (!exclusive_event_installable(event, ctx)) {
12874 err = -EBUSY;
12875 goto err_pmu_ctx;
12876 }
12877
12878 perf_install_in_context(ctx, event, event->cpu);
12879 perf_unpin_context(ctx);
12880 mutex_unlock(&ctx->mutex);
12881
12882 return event;
12883
12884 err_pmu_ctx:
12885 put_pmu_ctx(pmu_ctx);
12886 event->pmu_ctx = NULL; /* _free_event() */
12887 err_unlock:
12888 mutex_unlock(&ctx->mutex);
12889 perf_unpin_context(ctx);
12890 put_ctx(ctx);
12891 err_alloc:
12892 free_event(event);
12893 err:
12894 return ERR_PTR(err);
12895 }
12896 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12897
__perf_pmu_remove(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct perf_event_groups * groups,struct list_head * events)12898 static void __perf_pmu_remove(struct perf_event_context *ctx,
12899 int cpu, struct pmu *pmu,
12900 struct perf_event_groups *groups,
12901 struct list_head *events)
12902 {
12903 struct perf_event *event, *sibling;
12904
12905 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12906 perf_remove_from_context(event, 0);
12907 put_pmu_ctx(event->pmu_ctx);
12908 list_add(&event->migrate_entry, events);
12909
12910 for_each_sibling_event(sibling, event) {
12911 perf_remove_from_context(sibling, 0);
12912 put_pmu_ctx(sibling->pmu_ctx);
12913 list_add(&sibling->migrate_entry, events);
12914 }
12915 }
12916 }
12917
__perf_pmu_install_event(struct pmu * pmu,struct perf_event_context * ctx,int cpu,struct perf_event * event)12918 static void __perf_pmu_install_event(struct pmu *pmu,
12919 struct perf_event_context *ctx,
12920 int cpu, struct perf_event *event)
12921 {
12922 struct perf_event_pmu_context *epc;
12923 struct perf_event_context *old_ctx = event->ctx;
12924
12925 get_ctx(ctx); /* normally find_get_context() */
12926
12927 event->cpu = cpu;
12928 epc = find_get_pmu_context(pmu, ctx, event);
12929 event->pmu_ctx = epc;
12930
12931 if (event->state >= PERF_EVENT_STATE_OFF)
12932 event->state = PERF_EVENT_STATE_INACTIVE;
12933 perf_install_in_context(ctx, event, cpu);
12934
12935 /*
12936 * Now that event->ctx is updated and visible, put the old ctx.
12937 */
12938 put_ctx(old_ctx);
12939 }
12940
__perf_pmu_install(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct list_head * events)12941 static void __perf_pmu_install(struct perf_event_context *ctx,
12942 int cpu, struct pmu *pmu, struct list_head *events)
12943 {
12944 struct perf_event *event, *tmp;
12945
12946 /*
12947 * Re-instate events in 2 passes.
12948 *
12949 * Skip over group leaders and only install siblings on this first
12950 * pass, siblings will not get enabled without a leader, however a
12951 * leader will enable its siblings, even if those are still on the old
12952 * context.
12953 */
12954 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12955 if (event->group_leader == event)
12956 continue;
12957
12958 list_del(&event->migrate_entry);
12959 __perf_pmu_install_event(pmu, ctx, cpu, event);
12960 }
12961
12962 /*
12963 * Once all the siblings are setup properly, install the group leaders
12964 * to make it go.
12965 */
12966 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12967 list_del(&event->migrate_entry);
12968 __perf_pmu_install_event(pmu, ctx, cpu, event);
12969 }
12970 }
12971
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)12972 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12973 {
12974 struct perf_event_context *src_ctx, *dst_ctx;
12975 LIST_HEAD(events);
12976
12977 /*
12978 * Since per-cpu context is persistent, no need to grab an extra
12979 * reference.
12980 */
12981 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
12982 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
12983
12984 /*
12985 * See perf_event_ctx_lock() for comments on the details
12986 * of swizzling perf_event::ctx.
12987 */
12988 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12989
12990 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
12991 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
12992
12993 if (!list_empty(&events)) {
12994 /*
12995 * Wait for the events to quiesce before re-instating them.
12996 */
12997 synchronize_rcu();
12998
12999 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13000 }
13001
13002 mutex_unlock(&dst_ctx->mutex);
13003 mutex_unlock(&src_ctx->mutex);
13004 }
13005 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13006
sync_child_event(struct perf_event * child_event)13007 static void sync_child_event(struct perf_event *child_event)
13008 {
13009 struct perf_event *parent_event = child_event->parent;
13010 u64 child_val;
13011
13012 if (child_event->attr.inherit_stat) {
13013 struct task_struct *task = child_event->ctx->task;
13014
13015 if (task && task != TASK_TOMBSTONE)
13016 perf_event_read_event(child_event, task);
13017 }
13018
13019 child_val = perf_event_count(child_event);
13020
13021 /*
13022 * Add back the child's count to the parent's count:
13023 */
13024 atomic64_add(child_val, &parent_event->child_count);
13025 atomic64_add(child_event->total_time_enabled,
13026 &parent_event->child_total_time_enabled);
13027 atomic64_add(child_event->total_time_running,
13028 &parent_event->child_total_time_running);
13029 }
13030
13031 static void
perf_event_exit_event(struct perf_event * event,struct perf_event_context * ctx)13032 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13033 {
13034 struct perf_event *parent_event = event->parent;
13035 unsigned long detach_flags = 0;
13036
13037 if (parent_event) {
13038 /*
13039 * Do not destroy the 'original' grouping; because of the
13040 * context switch optimization the original events could've
13041 * ended up in a random child task.
13042 *
13043 * If we were to destroy the original group, all group related
13044 * operations would cease to function properly after this
13045 * random child dies.
13046 *
13047 * Do destroy all inherited groups, we don't care about those
13048 * and being thorough is better.
13049 */
13050 detach_flags = DETACH_GROUP | DETACH_CHILD;
13051 mutex_lock(&parent_event->child_mutex);
13052 }
13053
13054 perf_remove_from_context(event, detach_flags);
13055
13056 raw_spin_lock_irq(&ctx->lock);
13057 if (event->state > PERF_EVENT_STATE_EXIT)
13058 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13059 raw_spin_unlock_irq(&ctx->lock);
13060
13061 /*
13062 * Child events can be freed.
13063 */
13064 if (parent_event) {
13065 mutex_unlock(&parent_event->child_mutex);
13066 /*
13067 * Kick perf_poll() for is_event_hup();
13068 */
13069 perf_event_wakeup(parent_event);
13070 free_event(event);
13071 put_event(parent_event);
13072 return;
13073 }
13074
13075 /*
13076 * Parent events are governed by their filedesc, retain them.
13077 */
13078 perf_event_wakeup(event);
13079 }
13080
perf_event_exit_task_context(struct task_struct * child)13081 static void perf_event_exit_task_context(struct task_struct *child)
13082 {
13083 struct perf_event_context *child_ctx, *clone_ctx = NULL;
13084 struct perf_event *child_event, *next;
13085
13086 WARN_ON_ONCE(child != current);
13087
13088 child_ctx = perf_pin_task_context(child);
13089 if (!child_ctx)
13090 return;
13091
13092 /*
13093 * In order to reduce the amount of tricky in ctx tear-down, we hold
13094 * ctx::mutex over the entire thing. This serializes against almost
13095 * everything that wants to access the ctx.
13096 *
13097 * The exception is sys_perf_event_open() /
13098 * perf_event_create_kernel_count() which does find_get_context()
13099 * without ctx::mutex (it cannot because of the move_group double mutex
13100 * lock thing). See the comments in perf_install_in_context().
13101 */
13102 mutex_lock(&child_ctx->mutex);
13103
13104 /*
13105 * In a single ctx::lock section, de-schedule the events and detach the
13106 * context from the task such that we cannot ever get it scheduled back
13107 * in.
13108 */
13109 raw_spin_lock_irq(&child_ctx->lock);
13110 task_ctx_sched_out(child_ctx, EVENT_ALL);
13111
13112 /*
13113 * Now that the context is inactive, destroy the task <-> ctx relation
13114 * and mark the context dead.
13115 */
13116 RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13117 put_ctx(child_ctx); /* cannot be last */
13118 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13119 put_task_struct(current); /* cannot be last */
13120
13121 clone_ctx = unclone_ctx(child_ctx);
13122 raw_spin_unlock_irq(&child_ctx->lock);
13123
13124 if (clone_ctx)
13125 put_ctx(clone_ctx);
13126
13127 /*
13128 * Report the task dead after unscheduling the events so that we
13129 * won't get any samples after PERF_RECORD_EXIT. We can however still
13130 * get a few PERF_RECORD_READ events.
13131 */
13132 perf_event_task(child, child_ctx, 0);
13133
13134 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13135 perf_event_exit_event(child_event, child_ctx);
13136
13137 mutex_unlock(&child_ctx->mutex);
13138
13139 put_ctx(child_ctx);
13140 }
13141
13142 /*
13143 * When a child task exits, feed back event values to parent events.
13144 *
13145 * Can be called with exec_update_lock held when called from
13146 * setup_new_exec().
13147 */
perf_event_exit_task(struct task_struct * child)13148 void perf_event_exit_task(struct task_struct *child)
13149 {
13150 struct perf_event *event, *tmp;
13151
13152 mutex_lock(&child->perf_event_mutex);
13153 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13154 owner_entry) {
13155 list_del_init(&event->owner_entry);
13156
13157 /*
13158 * Ensure the list deletion is visible before we clear
13159 * the owner, closes a race against perf_release() where
13160 * we need to serialize on the owner->perf_event_mutex.
13161 */
13162 smp_store_release(&event->owner, NULL);
13163 }
13164 mutex_unlock(&child->perf_event_mutex);
13165
13166 perf_event_exit_task_context(child);
13167
13168 /*
13169 * The perf_event_exit_task_context calls perf_event_task
13170 * with child's task_ctx, which generates EXIT events for
13171 * child contexts and sets child->perf_event_ctxp[] to NULL.
13172 * At this point we need to send EXIT events to cpu contexts.
13173 */
13174 perf_event_task(child, NULL, 0);
13175 }
13176
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)13177 static void perf_free_event(struct perf_event *event,
13178 struct perf_event_context *ctx)
13179 {
13180 struct perf_event *parent = event->parent;
13181
13182 if (WARN_ON_ONCE(!parent))
13183 return;
13184
13185 mutex_lock(&parent->child_mutex);
13186 list_del_init(&event->child_list);
13187 mutex_unlock(&parent->child_mutex);
13188
13189 put_event(parent);
13190
13191 raw_spin_lock_irq(&ctx->lock);
13192 perf_group_detach(event);
13193 list_del_event(event, ctx);
13194 raw_spin_unlock_irq(&ctx->lock);
13195 free_event(event);
13196 }
13197
13198 /*
13199 * Free a context as created by inheritance by perf_event_init_task() below,
13200 * used by fork() in case of fail.
13201 *
13202 * Even though the task has never lived, the context and events have been
13203 * exposed through the child_list, so we must take care tearing it all down.
13204 */
perf_event_free_task(struct task_struct * task)13205 void perf_event_free_task(struct task_struct *task)
13206 {
13207 struct perf_event_context *ctx;
13208 struct perf_event *event, *tmp;
13209
13210 ctx = rcu_access_pointer(task->perf_event_ctxp);
13211 if (!ctx)
13212 return;
13213
13214 mutex_lock(&ctx->mutex);
13215 raw_spin_lock_irq(&ctx->lock);
13216 /*
13217 * Destroy the task <-> ctx relation and mark the context dead.
13218 *
13219 * This is important because even though the task hasn't been
13220 * exposed yet the context has been (through child_list).
13221 */
13222 RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13223 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13224 put_task_struct(task); /* cannot be last */
13225 raw_spin_unlock_irq(&ctx->lock);
13226
13227
13228 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13229 perf_free_event(event, ctx);
13230
13231 mutex_unlock(&ctx->mutex);
13232
13233 /*
13234 * perf_event_release_kernel() could've stolen some of our
13235 * child events and still have them on its free_list. In that
13236 * case we must wait for these events to have been freed (in
13237 * particular all their references to this task must've been
13238 * dropped).
13239 *
13240 * Without this copy_process() will unconditionally free this
13241 * task (irrespective of its reference count) and
13242 * _free_event()'s put_task_struct(event->hw.target) will be a
13243 * use-after-free.
13244 *
13245 * Wait for all events to drop their context reference.
13246 */
13247 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13248 put_ctx(ctx); /* must be last */
13249 }
13250
perf_event_delayed_put(struct task_struct * task)13251 void perf_event_delayed_put(struct task_struct *task)
13252 {
13253 WARN_ON_ONCE(task->perf_event_ctxp);
13254 }
13255
perf_event_get(unsigned int fd)13256 struct file *perf_event_get(unsigned int fd)
13257 {
13258 struct file *file = fget(fd);
13259 if (!file)
13260 return ERR_PTR(-EBADF);
13261
13262 if (file->f_op != &perf_fops) {
13263 fput(file);
13264 return ERR_PTR(-EBADF);
13265 }
13266
13267 return file;
13268 }
13269
perf_get_event(struct file * file)13270 const struct perf_event *perf_get_event(struct file *file)
13271 {
13272 if (file->f_op != &perf_fops)
13273 return ERR_PTR(-EINVAL);
13274
13275 return file->private_data;
13276 }
13277
perf_event_attrs(struct perf_event * event)13278 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13279 {
13280 if (!event)
13281 return ERR_PTR(-EINVAL);
13282
13283 return &event->attr;
13284 }
13285
13286 /*
13287 * Inherit an event from parent task to child task.
13288 *
13289 * Returns:
13290 * - valid pointer on success
13291 * - NULL for orphaned events
13292 * - IS_ERR() on error
13293 */
13294 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)13295 inherit_event(struct perf_event *parent_event,
13296 struct task_struct *parent,
13297 struct perf_event_context *parent_ctx,
13298 struct task_struct *child,
13299 struct perf_event *group_leader,
13300 struct perf_event_context *child_ctx)
13301 {
13302 enum perf_event_state parent_state = parent_event->state;
13303 struct perf_event_pmu_context *pmu_ctx;
13304 struct perf_event *child_event;
13305 unsigned long flags;
13306
13307 /*
13308 * Instead of creating recursive hierarchies of events,
13309 * we link inherited events back to the original parent,
13310 * which has a filp for sure, which we use as the reference
13311 * count:
13312 */
13313 if (parent_event->parent)
13314 parent_event = parent_event->parent;
13315
13316 child_event = perf_event_alloc(&parent_event->attr,
13317 parent_event->cpu,
13318 child,
13319 group_leader, parent_event,
13320 NULL, NULL, -1);
13321 if (IS_ERR(child_event))
13322 return child_event;
13323
13324 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13325 if (IS_ERR(pmu_ctx)) {
13326 free_event(child_event);
13327 return ERR_CAST(pmu_ctx);
13328 }
13329 child_event->pmu_ctx = pmu_ctx;
13330
13331 /*
13332 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13333 * must be under the same lock in order to serialize against
13334 * perf_event_release_kernel(), such that either we must observe
13335 * is_orphaned_event() or they will observe us on the child_list.
13336 */
13337 mutex_lock(&parent_event->child_mutex);
13338 if (is_orphaned_event(parent_event) ||
13339 !atomic_long_inc_not_zero(&parent_event->refcount)) {
13340 mutex_unlock(&parent_event->child_mutex);
13341 /* task_ctx_data is freed with child_ctx */
13342 free_event(child_event);
13343 return NULL;
13344 }
13345
13346 get_ctx(child_ctx);
13347
13348 /*
13349 * Make the child state follow the state of the parent event,
13350 * not its attr.disabled bit. We hold the parent's mutex,
13351 * so we won't race with perf_event_{en, dis}able_family.
13352 */
13353 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13354 child_event->state = PERF_EVENT_STATE_INACTIVE;
13355 else
13356 child_event->state = PERF_EVENT_STATE_OFF;
13357
13358 if (parent_event->attr.freq) {
13359 u64 sample_period = parent_event->hw.sample_period;
13360 struct hw_perf_event *hwc = &child_event->hw;
13361
13362 hwc->sample_period = sample_period;
13363 hwc->last_period = sample_period;
13364
13365 local64_set(&hwc->period_left, sample_period);
13366 }
13367
13368 child_event->ctx = child_ctx;
13369 child_event->overflow_handler = parent_event->overflow_handler;
13370 child_event->overflow_handler_context
13371 = parent_event->overflow_handler_context;
13372
13373 /*
13374 * Precalculate sample_data sizes
13375 */
13376 perf_event__header_size(child_event);
13377 perf_event__id_header_size(child_event);
13378
13379 /*
13380 * Link it up in the child's context:
13381 */
13382 raw_spin_lock_irqsave(&child_ctx->lock, flags);
13383 add_event_to_ctx(child_event, child_ctx);
13384 child_event->attach_state |= PERF_ATTACH_CHILD;
13385 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13386
13387 /*
13388 * Link this into the parent event's child list
13389 */
13390 list_add_tail(&child_event->child_list, &parent_event->child_list);
13391 mutex_unlock(&parent_event->child_mutex);
13392
13393 return child_event;
13394 }
13395
13396 /*
13397 * Inherits an event group.
13398 *
13399 * This will quietly suppress orphaned events; !inherit_event() is not an error.
13400 * This matches with perf_event_release_kernel() removing all child events.
13401 *
13402 * Returns:
13403 * - 0 on success
13404 * - <0 on error
13405 */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)13406 static int inherit_group(struct perf_event *parent_event,
13407 struct task_struct *parent,
13408 struct perf_event_context *parent_ctx,
13409 struct task_struct *child,
13410 struct perf_event_context *child_ctx)
13411 {
13412 struct perf_event *leader;
13413 struct perf_event *sub;
13414 struct perf_event *child_ctr;
13415
13416 leader = inherit_event(parent_event, parent, parent_ctx,
13417 child, NULL, child_ctx);
13418 if (IS_ERR(leader))
13419 return PTR_ERR(leader);
13420 /*
13421 * @leader can be NULL here because of is_orphaned_event(). In this
13422 * case inherit_event() will create individual events, similar to what
13423 * perf_group_detach() would do anyway.
13424 */
13425 for_each_sibling_event(sub, parent_event) {
13426 child_ctr = inherit_event(sub, parent, parent_ctx,
13427 child, leader, child_ctx);
13428 if (IS_ERR(child_ctr))
13429 return PTR_ERR(child_ctr);
13430
13431 if (sub->aux_event == parent_event && child_ctr &&
13432 !perf_get_aux_event(child_ctr, leader))
13433 return -EINVAL;
13434 }
13435 if (leader)
13436 leader->group_generation = parent_event->group_generation;
13437 return 0;
13438 }
13439
13440 /*
13441 * Creates the child task context and tries to inherit the event-group.
13442 *
13443 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13444 * inherited_all set when we 'fail' to inherit an orphaned event; this is
13445 * consistent with perf_event_release_kernel() removing all child events.
13446 *
13447 * Returns:
13448 * - 0 on success
13449 * - <0 on error
13450 */
13451 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,u64 clone_flags,int * inherited_all)13452 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13453 struct perf_event_context *parent_ctx,
13454 struct task_struct *child,
13455 u64 clone_flags, int *inherited_all)
13456 {
13457 struct perf_event_context *child_ctx;
13458 int ret;
13459
13460 if (!event->attr.inherit ||
13461 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13462 /* Do not inherit if sigtrap and signal handlers were cleared. */
13463 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13464 *inherited_all = 0;
13465 return 0;
13466 }
13467
13468 child_ctx = child->perf_event_ctxp;
13469 if (!child_ctx) {
13470 /*
13471 * This is executed from the parent task context, so
13472 * inherit events that have been marked for cloning.
13473 * First allocate and initialize a context for the
13474 * child.
13475 */
13476 child_ctx = alloc_perf_context(child);
13477 if (!child_ctx)
13478 return -ENOMEM;
13479
13480 child->perf_event_ctxp = child_ctx;
13481 }
13482
13483 ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13484 if (ret)
13485 *inherited_all = 0;
13486
13487 return ret;
13488 }
13489
13490 /*
13491 * Initialize the perf_event context in task_struct
13492 */
perf_event_init_context(struct task_struct * child,u64 clone_flags)13493 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13494 {
13495 struct perf_event_context *child_ctx, *parent_ctx;
13496 struct perf_event_context *cloned_ctx;
13497 struct perf_event *event;
13498 struct task_struct *parent = current;
13499 int inherited_all = 1;
13500 unsigned long flags;
13501 int ret = 0;
13502
13503 if (likely(!parent->perf_event_ctxp))
13504 return 0;
13505
13506 /*
13507 * If the parent's context is a clone, pin it so it won't get
13508 * swapped under us.
13509 */
13510 parent_ctx = perf_pin_task_context(parent);
13511 if (!parent_ctx)
13512 return 0;
13513
13514 /*
13515 * No need to check if parent_ctx != NULL here; since we saw
13516 * it non-NULL earlier, the only reason for it to become NULL
13517 * is if we exit, and since we're currently in the middle of
13518 * a fork we can't be exiting at the same time.
13519 */
13520
13521 /*
13522 * Lock the parent list. No need to lock the child - not PID
13523 * hashed yet and not running, so nobody can access it.
13524 */
13525 mutex_lock(&parent_ctx->mutex);
13526
13527 /*
13528 * We dont have to disable NMIs - we are only looking at
13529 * the list, not manipulating it:
13530 */
13531 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13532 ret = inherit_task_group(event, parent, parent_ctx,
13533 child, clone_flags, &inherited_all);
13534 if (ret)
13535 goto out_unlock;
13536 }
13537
13538 /*
13539 * We can't hold ctx->lock when iterating the ->flexible_group list due
13540 * to allocations, but we need to prevent rotation because
13541 * rotate_ctx() will change the list from interrupt context.
13542 */
13543 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13544 parent_ctx->rotate_disable = 1;
13545 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13546
13547 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13548 ret = inherit_task_group(event, parent, parent_ctx,
13549 child, clone_flags, &inherited_all);
13550 if (ret)
13551 goto out_unlock;
13552 }
13553
13554 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13555 parent_ctx->rotate_disable = 0;
13556
13557 child_ctx = child->perf_event_ctxp;
13558
13559 if (child_ctx && inherited_all) {
13560 /*
13561 * Mark the child context as a clone of the parent
13562 * context, or of whatever the parent is a clone of.
13563 *
13564 * Note that if the parent is a clone, the holding of
13565 * parent_ctx->lock avoids it from being uncloned.
13566 */
13567 cloned_ctx = parent_ctx->parent_ctx;
13568 if (cloned_ctx) {
13569 child_ctx->parent_ctx = cloned_ctx;
13570 child_ctx->parent_gen = parent_ctx->parent_gen;
13571 } else {
13572 child_ctx->parent_ctx = parent_ctx;
13573 child_ctx->parent_gen = parent_ctx->generation;
13574 }
13575 get_ctx(child_ctx->parent_ctx);
13576 }
13577
13578 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13579 out_unlock:
13580 mutex_unlock(&parent_ctx->mutex);
13581
13582 perf_unpin_context(parent_ctx);
13583 put_ctx(parent_ctx);
13584
13585 return ret;
13586 }
13587
13588 /*
13589 * Initialize the perf_event context in task_struct
13590 */
perf_event_init_task(struct task_struct * child,u64 clone_flags)13591 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13592 {
13593 int ret;
13594
13595 child->perf_event_ctxp = NULL;
13596 mutex_init(&child->perf_event_mutex);
13597 INIT_LIST_HEAD(&child->perf_event_list);
13598
13599 ret = perf_event_init_context(child, clone_flags);
13600 if (ret) {
13601 perf_event_free_task(child);
13602 return ret;
13603 }
13604
13605 return 0;
13606 }
13607
perf_event_init_all_cpus(void)13608 static void __init perf_event_init_all_cpus(void)
13609 {
13610 struct swevent_htable *swhash;
13611 struct perf_cpu_context *cpuctx;
13612 int cpu;
13613
13614 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13615
13616 for_each_possible_cpu(cpu) {
13617 swhash = &per_cpu(swevent_htable, cpu);
13618 mutex_init(&swhash->hlist_mutex);
13619
13620 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13621 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13622
13623 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13624
13625 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13626 __perf_event_init_context(&cpuctx->ctx);
13627 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13628 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13629 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13630 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13631 cpuctx->heap = cpuctx->heap_default;
13632 }
13633 }
13634
perf_swevent_init_cpu(unsigned int cpu)13635 static void perf_swevent_init_cpu(unsigned int cpu)
13636 {
13637 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13638
13639 mutex_lock(&swhash->hlist_mutex);
13640 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13641 struct swevent_hlist *hlist;
13642
13643 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13644 WARN_ON(!hlist);
13645 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13646 }
13647 mutex_unlock(&swhash->hlist_mutex);
13648 }
13649
13650 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)13651 static void __perf_event_exit_context(void *__info)
13652 {
13653 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13654 struct perf_event_context *ctx = __info;
13655 struct perf_event *event;
13656
13657 raw_spin_lock(&ctx->lock);
13658 ctx_sched_out(ctx, EVENT_TIME);
13659 list_for_each_entry(event, &ctx->event_list, event_entry)
13660 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13661 raw_spin_unlock(&ctx->lock);
13662 }
13663
perf_event_exit_cpu_context(int cpu)13664 static void perf_event_exit_cpu_context(int cpu)
13665 {
13666 struct perf_cpu_context *cpuctx;
13667 struct perf_event_context *ctx;
13668
13669 // XXX simplify cpuctx->online
13670 mutex_lock(&pmus_lock);
13671 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13672 ctx = &cpuctx->ctx;
13673
13674 mutex_lock(&ctx->mutex);
13675 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13676 cpuctx->online = 0;
13677 mutex_unlock(&ctx->mutex);
13678 cpumask_clear_cpu(cpu, perf_online_mask);
13679 mutex_unlock(&pmus_lock);
13680 }
13681 #else
13682
perf_event_exit_cpu_context(int cpu)13683 static void perf_event_exit_cpu_context(int cpu) { }
13684
13685 #endif
13686
perf_event_init_cpu(unsigned int cpu)13687 int perf_event_init_cpu(unsigned int cpu)
13688 {
13689 struct perf_cpu_context *cpuctx;
13690 struct perf_event_context *ctx;
13691
13692 perf_swevent_init_cpu(cpu);
13693
13694 mutex_lock(&pmus_lock);
13695 cpumask_set_cpu(cpu, perf_online_mask);
13696 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13697 ctx = &cpuctx->ctx;
13698
13699 mutex_lock(&ctx->mutex);
13700 cpuctx->online = 1;
13701 mutex_unlock(&ctx->mutex);
13702 mutex_unlock(&pmus_lock);
13703
13704 return 0;
13705 }
13706
perf_event_exit_cpu(unsigned int cpu)13707 int perf_event_exit_cpu(unsigned int cpu)
13708 {
13709 perf_event_exit_cpu_context(cpu);
13710 return 0;
13711 }
13712
13713 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)13714 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13715 {
13716 int cpu;
13717
13718 for_each_online_cpu(cpu)
13719 perf_event_exit_cpu(cpu);
13720
13721 return NOTIFY_OK;
13722 }
13723
13724 /*
13725 * Run the perf reboot notifier at the very last possible moment so that
13726 * the generic watchdog code runs as long as possible.
13727 */
13728 static struct notifier_block perf_reboot_notifier = {
13729 .notifier_call = perf_reboot,
13730 .priority = INT_MIN,
13731 };
13732
perf_event_init(void)13733 void __init perf_event_init(void)
13734 {
13735 int ret;
13736
13737 idr_init(&pmu_idr);
13738
13739 perf_event_init_all_cpus();
13740 init_srcu_struct(&pmus_srcu);
13741 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13742 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13743 perf_pmu_register(&perf_task_clock, "task_clock", -1);
13744 perf_tp_register();
13745 perf_event_init_cpu(smp_processor_id());
13746 register_reboot_notifier(&perf_reboot_notifier);
13747
13748 ret = init_hw_breakpoint();
13749 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13750
13751 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13752
13753 /*
13754 * Build time assertion that we keep the data_head at the intended
13755 * location. IOW, validation we got the __reserved[] size right.
13756 */
13757 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13758 != 1024);
13759 }
13760
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)13761 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13762 char *page)
13763 {
13764 struct perf_pmu_events_attr *pmu_attr =
13765 container_of(attr, struct perf_pmu_events_attr, attr);
13766
13767 if (pmu_attr->event_str)
13768 return sprintf(page, "%s\n", pmu_attr->event_str);
13769
13770 return 0;
13771 }
13772 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13773
perf_event_sysfs_init(void)13774 static int __init perf_event_sysfs_init(void)
13775 {
13776 struct pmu *pmu;
13777 int ret;
13778
13779 mutex_lock(&pmus_lock);
13780
13781 ret = bus_register(&pmu_bus);
13782 if (ret)
13783 goto unlock;
13784
13785 list_for_each_entry(pmu, &pmus, entry) {
13786 if (pmu->dev)
13787 continue;
13788
13789 ret = pmu_dev_alloc(pmu);
13790 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13791 }
13792 pmu_bus_running = 1;
13793 ret = 0;
13794
13795 unlock:
13796 mutex_unlock(&pmus_lock);
13797
13798 return ret;
13799 }
13800 device_initcall(perf_event_sysfs_init);
13801
13802 #ifdef CONFIG_CGROUP_PERF
13803 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)13804 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13805 {
13806 struct perf_cgroup *jc;
13807
13808 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13809 if (!jc)
13810 return ERR_PTR(-ENOMEM);
13811
13812 jc->info = alloc_percpu(struct perf_cgroup_info);
13813 if (!jc->info) {
13814 kfree(jc);
13815 return ERR_PTR(-ENOMEM);
13816 }
13817
13818 return &jc->css;
13819 }
13820
perf_cgroup_css_free(struct cgroup_subsys_state * css)13821 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13822 {
13823 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13824
13825 free_percpu(jc->info);
13826 kfree(jc);
13827 }
13828
perf_cgroup_css_online(struct cgroup_subsys_state * css)13829 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13830 {
13831 perf_event_cgroup(css->cgroup);
13832 return 0;
13833 }
13834
__perf_cgroup_move(void * info)13835 static int __perf_cgroup_move(void *info)
13836 {
13837 struct task_struct *task = info;
13838
13839 preempt_disable();
13840 perf_cgroup_switch(task);
13841 preempt_enable();
13842
13843 return 0;
13844 }
13845
perf_cgroup_attach(struct cgroup_taskset * tset)13846 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13847 {
13848 struct task_struct *task;
13849 struct cgroup_subsys_state *css;
13850
13851 cgroup_taskset_for_each(task, css, tset)
13852 task_function_call(task, __perf_cgroup_move, task);
13853 }
13854
13855 struct cgroup_subsys perf_event_cgrp_subsys = {
13856 .css_alloc = perf_cgroup_css_alloc,
13857 .css_free = perf_cgroup_css_free,
13858 .css_online = perf_cgroup_css_online,
13859 .attach = perf_cgroup_attach,
13860 /*
13861 * Implicitly enable on dfl hierarchy so that perf events can
13862 * always be filtered by cgroup2 path as long as perf_event
13863 * controller is not mounted on a legacy hierarchy.
13864 */
13865 .implicit_on_dfl = true,
13866 .threaded = true,
13867 };
13868 #endif /* CONFIG_CGROUP_PERF */
13869
13870 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13871