• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 #include <trace/hooks/perf.h>
59 #include "internal.h"
60 
61 #include <asm/irq_regs.h>
62 
63 typedef int (*remote_function_f)(void *);
64 
65 struct remote_function_call {
66 	struct task_struct	*p;
67 	remote_function_f	func;
68 	void			*info;
69 	int			ret;
70 };
71 
remote_function(void * data)72 static void remote_function(void *data)
73 {
74 	struct remote_function_call *tfc = data;
75 	struct task_struct *p = tfc->p;
76 
77 	if (p) {
78 		/* -EAGAIN */
79 		if (task_cpu(p) != smp_processor_id())
80 			return;
81 
82 		/*
83 		 * Now that we're on right CPU with IRQs disabled, we can test
84 		 * if we hit the right task without races.
85 		 */
86 
87 		tfc->ret = -ESRCH; /* No such (running) process */
88 		if (p != current)
89 			return;
90 	}
91 
92 	tfc->ret = tfc->func(tfc->info);
93 }
94 
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:		the task to evaluate
98  * @func:	the function to be called
99  * @info:	the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 	struct remote_function_call data = {
112 		.p	= p,
113 		.func	= func,
114 		.info	= info,
115 		.ret	= -EAGAIN,
116 	};
117 	int ret;
118 
119 	for (;;) {
120 		ret = smp_call_function_single(task_cpu(p), remote_function,
121 					       &data, 1);
122 		if (!ret)
123 			ret = data.ret;
124 
125 		if (ret != -EAGAIN)
126 			break;
127 
128 		cond_resched();
129 	}
130 
131 	return ret;
132 }
133 
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:	target cpu to queue this function
137  * @func:	the function to be called
138  * @info:	the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
cpu_function_call(int cpu,remote_function_f func,void * info)144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 	struct remote_function_call data = {
147 		.p	= NULL,
148 		.func	= func,
149 		.info	= info,
150 		.ret	= -ENXIO, /* No such CPU */
151 	};
152 
153 	smp_call_function_single(cpu, remote_function, &data, 1);
154 
155 	return data.ret;
156 }
157 
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 			  struct perf_event_context *ctx)
160 {
161 	raw_spin_lock(&cpuctx->ctx.lock);
162 	if (ctx)
163 		raw_spin_lock(&ctx->lock);
164 }
165 
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 			    struct perf_event_context *ctx)
168 {
169 	if (ctx)
170 		raw_spin_unlock(&ctx->lock);
171 	raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173 
174 #define TASK_TOMBSTONE ((void *)-1L)
175 
is_kernel_event(struct perf_event * event)176 static bool is_kernel_event(struct perf_event *event)
177 {
178 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180 
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182 
perf_cpu_task_ctx(void)183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185 	lockdep_assert_irqs_disabled();
186 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188 
189 /*
190  * On task ctx scheduling...
191  *
192  * When !ctx->nr_events a task context will not be scheduled. This means
193  * we can disable the scheduler hooks (for performance) without leaving
194  * pending task ctx state.
195  *
196  * This however results in two special cases:
197  *
198  *  - removing the last event from a task ctx; this is relatively straight
199  *    forward and is done in __perf_remove_from_context.
200  *
201  *  - adding the first event to a task ctx; this is tricky because we cannot
202  *    rely on ctx->is_active and therefore cannot use event_function_call().
203  *    See perf_install_in_context().
204  *
205  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206  */
207 
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209 			struct perf_event_context *, void *);
210 
211 struct event_function_struct {
212 	struct perf_event *event;
213 	event_f func;
214 	void *data;
215 };
216 
event_function(void * info)217 static int event_function(void *info)
218 {
219 	struct event_function_struct *efs = info;
220 	struct perf_event *event = efs->event;
221 	struct perf_event_context *ctx = event->ctx;
222 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
224 	int ret = 0;
225 
226 	lockdep_assert_irqs_disabled();
227 
228 	perf_ctx_lock(cpuctx, task_ctx);
229 	/*
230 	 * Since we do the IPI call without holding ctx->lock things can have
231 	 * changed, double check we hit the task we set out to hit.
232 	 */
233 	if (ctx->task) {
234 		if (ctx->task != current) {
235 			ret = -ESRCH;
236 			goto unlock;
237 		}
238 
239 		/*
240 		 * We only use event_function_call() on established contexts,
241 		 * and event_function() is only ever called when active (or
242 		 * rather, we'll have bailed in task_function_call() or the
243 		 * above ctx->task != current test), therefore we must have
244 		 * ctx->is_active here.
245 		 */
246 		WARN_ON_ONCE(!ctx->is_active);
247 		/*
248 		 * And since we have ctx->is_active, cpuctx->task_ctx must
249 		 * match.
250 		 */
251 		WARN_ON_ONCE(task_ctx != ctx);
252 	} else {
253 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
254 	}
255 
256 	efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258 	perf_ctx_unlock(cpuctx, task_ctx);
259 
260 	return ret;
261 }
262 
event_function_call(struct perf_event * event,event_f func,void * data)263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265 	struct perf_event_context *ctx = event->ctx;
266 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267 	struct event_function_struct efs = {
268 		.event = event,
269 		.func = func,
270 		.data = data,
271 	};
272 
273 	if (!event->parent) {
274 		/*
275 		 * If this is a !child event, we must hold ctx::mutex to
276 		 * stabilize the event->ctx relation. See
277 		 * perf_event_ctx_lock().
278 		 */
279 		lockdep_assert_held(&ctx->mutex);
280 	}
281 
282 	if (!task) {
283 		cpu_function_call(event->cpu, event_function, &efs);
284 		return;
285 	}
286 
287 	if (task == TASK_TOMBSTONE)
288 		return;
289 
290 again:
291 	if (!task_function_call(task, event_function, &efs))
292 		return;
293 
294 	raw_spin_lock_irq(&ctx->lock);
295 	/*
296 	 * Reload the task pointer, it might have been changed by
297 	 * a concurrent perf_event_context_sched_out().
298 	 */
299 	task = ctx->task;
300 	if (task == TASK_TOMBSTONE) {
301 		raw_spin_unlock_irq(&ctx->lock);
302 		return;
303 	}
304 	if (ctx->is_active) {
305 		raw_spin_unlock_irq(&ctx->lock);
306 		goto again;
307 	}
308 	func(event, NULL, ctx, data);
309 	raw_spin_unlock_irq(&ctx->lock);
310 }
311 
312 /*
313  * Similar to event_function_call() + event_function(), but hard assumes IRQs
314  * are already disabled and we're on the right CPU.
315  */
event_function_local(struct perf_event * event,event_f func,void * data)316 static void event_function_local(struct perf_event *event, event_f func, void *data)
317 {
318 	struct perf_event_context *ctx = event->ctx;
319 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
320 	struct task_struct *task = READ_ONCE(ctx->task);
321 	struct perf_event_context *task_ctx = NULL;
322 
323 	lockdep_assert_irqs_disabled();
324 
325 	if (task) {
326 		if (task == TASK_TOMBSTONE)
327 			return;
328 
329 		task_ctx = ctx;
330 	}
331 
332 	perf_ctx_lock(cpuctx, task_ctx);
333 
334 	task = ctx->task;
335 	if (task == TASK_TOMBSTONE)
336 		goto unlock;
337 
338 	if (task) {
339 		/*
340 		 * We must be either inactive or active and the right task,
341 		 * otherwise we're screwed, since we cannot IPI to somewhere
342 		 * else.
343 		 */
344 		if (ctx->is_active) {
345 			if (WARN_ON_ONCE(task != current))
346 				goto unlock;
347 
348 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349 				goto unlock;
350 		}
351 	} else {
352 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
353 	}
354 
355 	func(event, cpuctx, ctx, data);
356 unlock:
357 	perf_ctx_unlock(cpuctx, task_ctx);
358 }
359 
360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361 		       PERF_FLAG_FD_OUTPUT  |\
362 		       PERF_FLAG_PID_CGROUP |\
363 		       PERF_FLAG_FD_CLOEXEC)
364 
365 /*
366  * branch priv levels that need permission checks
367  */
368 #define PERF_SAMPLE_BRANCH_PERM_PLM \
369 	(PERF_SAMPLE_BRANCH_KERNEL |\
370 	 PERF_SAMPLE_BRANCH_HV)
371 
372 enum event_type_t {
373 	EVENT_FLEXIBLE = 0x1,
374 	EVENT_PINNED = 0x2,
375 	EVENT_TIME = 0x4,
376 	/* see ctx_resched() for details */
377 	EVENT_CPU = 0x8,
378 	EVENT_CGROUP = 0x10,
379 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
380 };
381 
382 /*
383  * perf_sched_events : >0 events exist
384  */
385 
386 static void perf_sched_delayed(struct work_struct *work);
387 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
389 static DEFINE_MUTEX(perf_sched_mutex);
390 static atomic_t perf_sched_count;
391 
392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
393 
394 static atomic_t nr_mmap_events __read_mostly;
395 static atomic_t nr_comm_events __read_mostly;
396 static atomic_t nr_namespaces_events __read_mostly;
397 static atomic_t nr_task_events __read_mostly;
398 static atomic_t nr_freq_events __read_mostly;
399 static atomic_t nr_switch_events __read_mostly;
400 static atomic_t nr_ksymbol_events __read_mostly;
401 static atomic_t nr_bpf_events __read_mostly;
402 static atomic_t nr_cgroup_events __read_mostly;
403 static atomic_t nr_text_poke_events __read_mostly;
404 static atomic_t nr_build_id_events __read_mostly;
405 
406 static LIST_HEAD(pmus);
407 static DEFINE_MUTEX(pmus_lock);
408 static struct srcu_struct pmus_srcu;
409 static cpumask_var_t perf_online_mask;
410 static struct kmem_cache *perf_event_cache;
411 
412 /*
413  * perf event paranoia level:
414  *  -1 - not paranoid at all
415  *   0 - disallow raw tracepoint access for unpriv
416  *   1 - disallow cpu events for unpriv
417  *   2 - disallow kernel profiling for unpriv
418  */
419 int sysctl_perf_event_paranoid __read_mostly = 2;
420 
421 /* Minimum for 512 kiB + 1 user control page */
422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
423 
424 /*
425  * max perf event sample rate
426  */
427 #define DEFAULT_MAX_SAMPLE_RATE		100000
428 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
430 
431 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
432 
433 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
435 
436 static int perf_sample_allowed_ns __read_mostly =
437 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
438 
update_perf_cpu_limits(void)439 static void update_perf_cpu_limits(void)
440 {
441 	u64 tmp = perf_sample_period_ns;
442 
443 	tmp *= sysctl_perf_cpu_time_max_percent;
444 	tmp = div_u64(tmp, 100);
445 	if (!tmp)
446 		tmp = 1;
447 
448 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
449 }
450 
451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
452 
perf_proc_update_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)453 int perf_proc_update_handler(struct ctl_table *table, int write,
454 		void *buffer, size_t *lenp, loff_t *ppos)
455 {
456 	int ret;
457 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
458 	/*
459 	 * If throttling is disabled don't allow the write:
460 	 */
461 	if (write && (perf_cpu == 100 || perf_cpu == 0))
462 		return -EINVAL;
463 
464 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 	if (ret || !write)
466 		return ret;
467 
468 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
469 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470 	update_perf_cpu_limits();
471 
472 	return 0;
473 }
474 
475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476 
perf_cpu_time_max_percent_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
478 		void *buffer, size_t *lenp, loff_t *ppos)
479 {
480 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481 
482 	if (ret || !write)
483 		return ret;
484 
485 	if (sysctl_perf_cpu_time_max_percent == 100 ||
486 	    sysctl_perf_cpu_time_max_percent == 0) {
487 		printk(KERN_WARNING
488 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489 		WRITE_ONCE(perf_sample_allowed_ns, 0);
490 	} else {
491 		update_perf_cpu_limits();
492 	}
493 
494 	return 0;
495 }
496 
497 /*
498  * perf samples are done in some very critical code paths (NMIs).
499  * If they take too much CPU time, the system can lock up and not
500  * get any real work done.  This will drop the sample rate when
501  * we detect that events are taking too long.
502  */
503 #define NR_ACCUMULATED_SAMPLES 128
504 static DEFINE_PER_CPU(u64, running_sample_length);
505 
506 static u64 __report_avg;
507 static u64 __report_allowed;
508 
perf_duration_warn(struct irq_work * w)509 static void perf_duration_warn(struct irq_work *w)
510 {
511 	printk_ratelimited(KERN_INFO
512 		"perf: interrupt took too long (%lld > %lld), lowering "
513 		"kernel.perf_event_max_sample_rate to %d\n",
514 		__report_avg, __report_allowed,
515 		sysctl_perf_event_sample_rate);
516 }
517 
518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519 
perf_sample_event_took(u64 sample_len_ns)520 void perf_sample_event_took(u64 sample_len_ns)
521 {
522 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523 	u64 running_len;
524 	u64 avg_len;
525 	u32 max;
526 
527 	if (max_len == 0)
528 		return;
529 
530 	/* Decay the counter by 1 average sample. */
531 	running_len = __this_cpu_read(running_sample_length);
532 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533 	running_len += sample_len_ns;
534 	__this_cpu_write(running_sample_length, running_len);
535 
536 	/*
537 	 * Note: this will be biased artifically low until we have
538 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
539 	 * from having to maintain a count.
540 	 */
541 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542 	if (avg_len <= max_len)
543 		return;
544 
545 	__report_avg = avg_len;
546 	__report_allowed = max_len;
547 
548 	/*
549 	 * Compute a throttle threshold 25% below the current duration.
550 	 */
551 	avg_len += avg_len / 4;
552 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553 	if (avg_len < max)
554 		max /= (u32)avg_len;
555 	else
556 		max = 1;
557 
558 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559 	WRITE_ONCE(max_samples_per_tick, max);
560 
561 	sysctl_perf_event_sample_rate = max * HZ;
562 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
563 
564 	if (!irq_work_queue(&perf_duration_work)) {
565 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
566 			     "kernel.perf_event_max_sample_rate to %d\n",
567 			     __report_avg, __report_allowed,
568 			     sysctl_perf_event_sample_rate);
569 	}
570 }
571 
572 static atomic64_t perf_event_id;
573 
574 static void update_context_time(struct perf_event_context *ctx);
575 static u64 perf_event_time(struct perf_event *event);
576 
perf_event_print_debug(void)577 void __weak perf_event_print_debug(void)	{ }
578 
perf_clock(void)579 static inline u64 perf_clock(void)
580 {
581 	return local_clock();
582 }
583 
perf_event_clock(struct perf_event * event)584 static inline u64 perf_event_clock(struct perf_event *event)
585 {
586 	return event->clock();
587 }
588 
589 /*
590  * State based event timekeeping...
591  *
592  * The basic idea is to use event->state to determine which (if any) time
593  * fields to increment with the current delta. This means we only need to
594  * update timestamps when we change state or when they are explicitly requested
595  * (read).
596  *
597  * Event groups make things a little more complicated, but not terribly so. The
598  * rules for a group are that if the group leader is OFF the entire group is
599  * OFF, irrespecive of what the group member states are. This results in
600  * __perf_effective_state().
601  *
602  * A futher ramification is that when a group leader flips between OFF and
603  * !OFF, we need to update all group member times.
604  *
605  *
606  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607  * need to make sure the relevant context time is updated before we try and
608  * update our timestamps.
609  */
610 
611 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)612 __perf_effective_state(struct perf_event *event)
613 {
614 	struct perf_event *leader = event->group_leader;
615 
616 	if (leader->state <= PERF_EVENT_STATE_OFF)
617 		return leader->state;
618 
619 	return event->state;
620 }
621 
622 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624 {
625 	enum perf_event_state state = __perf_effective_state(event);
626 	u64 delta = now - event->tstamp;
627 
628 	*enabled = event->total_time_enabled;
629 	if (state >= PERF_EVENT_STATE_INACTIVE)
630 		*enabled += delta;
631 
632 	*running = event->total_time_running;
633 	if (state >= PERF_EVENT_STATE_ACTIVE)
634 		*running += delta;
635 }
636 
perf_event_update_time(struct perf_event * event)637 static void perf_event_update_time(struct perf_event *event)
638 {
639 	u64 now = perf_event_time(event);
640 
641 	__perf_update_times(event, now, &event->total_time_enabled,
642 					&event->total_time_running);
643 	event->tstamp = now;
644 }
645 
perf_event_update_sibling_time(struct perf_event * leader)646 static void perf_event_update_sibling_time(struct perf_event *leader)
647 {
648 	struct perf_event *sibling;
649 
650 	for_each_sibling_event(sibling, leader)
651 		perf_event_update_time(sibling);
652 }
653 
654 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)655 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656 {
657 	if (event->state == state)
658 		return;
659 
660 	perf_event_update_time(event);
661 	/*
662 	 * If a group leader gets enabled/disabled all its siblings
663 	 * are affected too.
664 	 */
665 	if ((event->state < 0) ^ (state < 0))
666 		perf_event_update_sibling_time(event);
667 
668 	WRITE_ONCE(event->state, state);
669 }
670 
671 /*
672  * UP store-release, load-acquire
673  */
674 
675 #define __store_release(ptr, val)					\
676 do {									\
677 	barrier();							\
678 	WRITE_ONCE(*(ptr), (val));					\
679 } while (0)
680 
681 #define __load_acquire(ptr)						\
682 ({									\
683 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
684 	barrier();							\
685 	___p;								\
686 })
687 
perf_ctx_disable(struct perf_event_context * ctx,bool cgroup)688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
689 {
690 	struct perf_event_pmu_context *pmu_ctx;
691 
692 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
693 		if (cgroup && !pmu_ctx->nr_cgroups)
694 			continue;
695 		perf_pmu_disable(pmu_ctx->pmu);
696 	}
697 }
698 
perf_ctx_enable(struct perf_event_context * ctx,bool cgroup)699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
700 {
701 	struct perf_event_pmu_context *pmu_ctx;
702 
703 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
704 		if (cgroup && !pmu_ctx->nr_cgroups)
705 			continue;
706 		perf_pmu_enable(pmu_ctx->pmu);
707 	}
708 }
709 
710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
712 
713 #ifdef CONFIG_CGROUP_PERF
714 
715 static inline bool
perf_cgroup_match(struct perf_event * event)716 perf_cgroup_match(struct perf_event *event)
717 {
718 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
719 
720 	/* @event doesn't care about cgroup */
721 	if (!event->cgrp)
722 		return true;
723 
724 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
725 	if (!cpuctx->cgrp)
726 		return false;
727 
728 	/*
729 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
730 	 * also enabled for all its descendant cgroups.  If @cpuctx's
731 	 * cgroup is a descendant of @event's (the test covers identity
732 	 * case), it's a match.
733 	 */
734 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
735 				    event->cgrp->css.cgroup);
736 }
737 
perf_detach_cgroup(struct perf_event * event)738 static inline void perf_detach_cgroup(struct perf_event *event)
739 {
740 	css_put(&event->cgrp->css);
741 	event->cgrp = NULL;
742 }
743 
is_cgroup_event(struct perf_event * event)744 static inline int is_cgroup_event(struct perf_event *event)
745 {
746 	return event->cgrp != NULL;
747 }
748 
perf_cgroup_event_time(struct perf_event * event)749 static inline u64 perf_cgroup_event_time(struct perf_event *event)
750 {
751 	struct perf_cgroup_info *t;
752 
753 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
754 	return t->time;
755 }
756 
perf_cgroup_event_time_now(struct perf_event * event,u64 now)757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
758 {
759 	struct perf_cgroup_info *t;
760 
761 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
762 	if (!__load_acquire(&t->active))
763 		return t->time;
764 	now += READ_ONCE(t->timeoffset);
765 	return now;
766 }
767 
__update_cgrp_time(struct perf_cgroup_info * info,u64 now,bool adv)768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
769 {
770 	if (adv)
771 		info->time += now - info->timestamp;
772 	info->timestamp = now;
773 	/*
774 	 * see update_context_time()
775 	 */
776 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
777 }
778 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
780 {
781 	struct perf_cgroup *cgrp = cpuctx->cgrp;
782 	struct cgroup_subsys_state *css;
783 	struct perf_cgroup_info *info;
784 
785 	if (cgrp) {
786 		u64 now = perf_clock();
787 
788 		for (css = &cgrp->css; css; css = css->parent) {
789 			cgrp = container_of(css, struct perf_cgroup, css);
790 			info = this_cpu_ptr(cgrp->info);
791 
792 			__update_cgrp_time(info, now, true);
793 			if (final)
794 				__store_release(&info->active, 0);
795 		}
796 	}
797 }
798 
update_cgrp_time_from_event(struct perf_event * event)799 static inline void update_cgrp_time_from_event(struct perf_event *event)
800 {
801 	struct perf_cgroup_info *info;
802 
803 	/*
804 	 * ensure we access cgroup data only when needed and
805 	 * when we know the cgroup is pinned (css_get)
806 	 */
807 	if (!is_cgroup_event(event))
808 		return;
809 
810 	info = this_cpu_ptr(event->cgrp->info);
811 	/*
812 	 * Do not update time when cgroup is not active
813 	 */
814 	if (info->active)
815 		__update_cgrp_time(info, perf_clock(), true);
816 }
817 
818 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
820 {
821 	struct perf_event_context *ctx = &cpuctx->ctx;
822 	struct perf_cgroup *cgrp = cpuctx->cgrp;
823 	struct perf_cgroup_info *info;
824 	struct cgroup_subsys_state *css;
825 
826 	/*
827 	 * ctx->lock held by caller
828 	 * ensure we do not access cgroup data
829 	 * unless we have the cgroup pinned (css_get)
830 	 */
831 	if (!cgrp)
832 		return;
833 
834 	WARN_ON_ONCE(!ctx->nr_cgroups);
835 
836 	for (css = &cgrp->css; css; css = css->parent) {
837 		cgrp = container_of(css, struct perf_cgroup, css);
838 		info = this_cpu_ptr(cgrp->info);
839 		__update_cgrp_time(info, ctx->timestamp, false);
840 		__store_release(&info->active, 1);
841 	}
842 }
843 
844 /*
845  * reschedule events based on the cgroup constraint of task.
846  */
perf_cgroup_switch(struct task_struct * task)847 static void perf_cgroup_switch(struct task_struct *task)
848 {
849 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
850 	struct perf_cgroup *cgrp;
851 
852 	/*
853 	 * cpuctx->cgrp is set when the first cgroup event enabled,
854 	 * and is cleared when the last cgroup event disabled.
855 	 */
856 	if (READ_ONCE(cpuctx->cgrp) == NULL)
857 		return;
858 
859 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
860 
861 	cgrp = perf_cgroup_from_task(task, NULL);
862 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
863 		return;
864 
865 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
866 	perf_ctx_disable(&cpuctx->ctx, true);
867 
868 	ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
869 	/*
870 	 * must not be done before ctxswout due
871 	 * to update_cgrp_time_from_cpuctx() in
872 	 * ctx_sched_out()
873 	 */
874 	cpuctx->cgrp = cgrp;
875 	/*
876 	 * set cgrp before ctxsw in to allow
877 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
878 	 * to not have to pass task around
879 	 */
880 	ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
881 
882 	perf_ctx_enable(&cpuctx->ctx, true);
883 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
884 }
885 
perf_cgroup_ensure_storage(struct perf_event * event,struct cgroup_subsys_state * css)886 static int perf_cgroup_ensure_storage(struct perf_event *event,
887 				struct cgroup_subsys_state *css)
888 {
889 	struct perf_cpu_context *cpuctx;
890 	struct perf_event **storage;
891 	int cpu, heap_size, ret = 0;
892 
893 	/*
894 	 * Allow storage to have sufficent space for an iterator for each
895 	 * possibly nested cgroup plus an iterator for events with no cgroup.
896 	 */
897 	for (heap_size = 1; css; css = css->parent)
898 		heap_size++;
899 
900 	for_each_possible_cpu(cpu) {
901 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
902 		if (heap_size <= cpuctx->heap_size)
903 			continue;
904 
905 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
906 				       GFP_KERNEL, cpu_to_node(cpu));
907 		if (!storage) {
908 			ret = -ENOMEM;
909 			break;
910 		}
911 
912 		raw_spin_lock_irq(&cpuctx->ctx.lock);
913 		if (cpuctx->heap_size < heap_size) {
914 			swap(cpuctx->heap, storage);
915 			if (storage == cpuctx->heap_default)
916 				storage = NULL;
917 			cpuctx->heap_size = heap_size;
918 		}
919 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
920 
921 		kfree(storage);
922 	}
923 
924 	return ret;
925 }
926 
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)927 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
928 				      struct perf_event_attr *attr,
929 				      struct perf_event *group_leader)
930 {
931 	struct perf_cgroup *cgrp;
932 	struct cgroup_subsys_state *css;
933 	struct fd f = fdget(fd);
934 	int ret = 0;
935 
936 	if (!f.file)
937 		return -EBADF;
938 
939 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
940 					 &perf_event_cgrp_subsys);
941 	if (IS_ERR(css)) {
942 		ret = PTR_ERR(css);
943 		goto out;
944 	}
945 
946 	ret = perf_cgroup_ensure_storage(event, css);
947 	if (ret)
948 		goto out;
949 
950 	cgrp = container_of(css, struct perf_cgroup, css);
951 	event->cgrp = cgrp;
952 
953 	/*
954 	 * all events in a group must monitor
955 	 * the same cgroup because a task belongs
956 	 * to only one perf cgroup at a time
957 	 */
958 	if (group_leader && group_leader->cgrp != cgrp) {
959 		perf_detach_cgroup(event);
960 		ret = -EINVAL;
961 	}
962 out:
963 	fdput(f);
964 	return ret;
965 }
966 
967 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
969 {
970 	struct perf_cpu_context *cpuctx;
971 
972 	if (!is_cgroup_event(event))
973 		return;
974 
975 	event->pmu_ctx->nr_cgroups++;
976 
977 	/*
978 	 * Because cgroup events are always per-cpu events,
979 	 * @ctx == &cpuctx->ctx.
980 	 */
981 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
982 
983 	if (ctx->nr_cgroups++)
984 		return;
985 
986 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
987 }
988 
989 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
991 {
992 	struct perf_cpu_context *cpuctx;
993 
994 	if (!is_cgroup_event(event))
995 		return;
996 
997 	event->pmu_ctx->nr_cgroups--;
998 
999 	/*
1000 	 * Because cgroup events are always per-cpu events,
1001 	 * @ctx == &cpuctx->ctx.
1002 	 */
1003 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004 
1005 	if (--ctx->nr_cgroups)
1006 		return;
1007 
1008 	cpuctx->cgrp = NULL;
1009 }
1010 
1011 #else /* !CONFIG_CGROUP_PERF */
1012 
1013 static inline bool
perf_cgroup_match(struct perf_event * event)1014 perf_cgroup_match(struct perf_event *event)
1015 {
1016 	return true;
1017 }
1018 
perf_detach_cgroup(struct perf_event * event)1019 static inline void perf_detach_cgroup(struct perf_event *event)
1020 {}
1021 
is_cgroup_event(struct perf_event * event)1022 static inline int is_cgroup_event(struct perf_event *event)
1023 {
1024 	return 0;
1025 }
1026 
update_cgrp_time_from_event(struct perf_event * event)1027 static inline void update_cgrp_time_from_event(struct perf_event *event)
1028 {
1029 }
1030 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1032 						bool final)
1033 {
1034 }
1035 
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1037 				      struct perf_event_attr *attr,
1038 				      struct perf_event *group_leader)
1039 {
1040 	return -EINVAL;
1041 }
1042 
1043 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1045 {
1046 }
1047 
perf_cgroup_event_time(struct perf_event * event)1048 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1049 {
1050 	return 0;
1051 }
1052 
perf_cgroup_event_time_now(struct perf_event * event,u64 now)1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1054 {
1055 	return 0;
1056 }
1057 
1058 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1060 {
1061 }
1062 
1063 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1065 {
1066 }
1067 
perf_cgroup_switch(struct task_struct * task)1068 static void perf_cgroup_switch(struct task_struct *task)
1069 {
1070 }
1071 #endif
1072 
1073 /*
1074  * set default to be dependent on timer tick just
1075  * like original code
1076  */
1077 #define PERF_CPU_HRTIMER (1000 / HZ)
1078 /*
1079  * function must be called with interrupts disabled
1080  */
perf_mux_hrtimer_handler(struct hrtimer * hr)1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1082 {
1083 	struct perf_cpu_pmu_context *cpc;
1084 	bool rotations;
1085 
1086 	lockdep_assert_irqs_disabled();
1087 
1088 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1089 	rotations = perf_rotate_context(cpc);
1090 
1091 	raw_spin_lock(&cpc->hrtimer_lock);
1092 	if (rotations)
1093 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1094 	else
1095 		cpc->hrtimer_active = 0;
1096 	raw_spin_unlock(&cpc->hrtimer_lock);
1097 
1098 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1099 }
1100 
__perf_mux_hrtimer_init(struct perf_cpu_pmu_context * cpc,int cpu)1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1102 {
1103 	struct hrtimer *timer = &cpc->hrtimer;
1104 	struct pmu *pmu = cpc->epc.pmu;
1105 	u64 interval;
1106 
1107 	/*
1108 	 * check default is sane, if not set then force to
1109 	 * default interval (1/tick)
1110 	 */
1111 	interval = pmu->hrtimer_interval_ms;
1112 	if (interval < 1)
1113 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1114 
1115 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1116 
1117 	raw_spin_lock_init(&cpc->hrtimer_lock);
1118 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1119 	timer->function = perf_mux_hrtimer_handler;
1120 }
1121 
perf_mux_hrtimer_restart(struct perf_cpu_pmu_context * cpc)1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1123 {
1124 	struct hrtimer *timer = &cpc->hrtimer;
1125 	unsigned long flags;
1126 
1127 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1128 	if (!cpc->hrtimer_active) {
1129 		cpc->hrtimer_active = 1;
1130 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1131 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1132 	}
1133 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1134 
1135 	return 0;
1136 }
1137 
perf_mux_hrtimer_restart_ipi(void * arg)1138 static int perf_mux_hrtimer_restart_ipi(void *arg)
1139 {
1140 	return perf_mux_hrtimer_restart(arg);
1141 }
1142 
perf_pmu_disable(struct pmu * pmu)1143 void perf_pmu_disable(struct pmu *pmu)
1144 {
1145 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146 	if (!(*count)++)
1147 		pmu->pmu_disable(pmu);
1148 }
1149 
perf_pmu_enable(struct pmu * pmu)1150 void perf_pmu_enable(struct pmu *pmu)
1151 {
1152 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1153 	if (!--(*count))
1154 		pmu->pmu_enable(pmu);
1155 }
1156 
perf_assert_pmu_disabled(struct pmu * pmu)1157 static void perf_assert_pmu_disabled(struct pmu *pmu)
1158 {
1159 	WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1160 }
1161 
get_ctx(struct perf_event_context * ctx)1162 static void get_ctx(struct perf_event_context *ctx)
1163 {
1164 	refcount_inc(&ctx->refcount);
1165 }
1166 
alloc_task_ctx_data(struct pmu * pmu)1167 static void *alloc_task_ctx_data(struct pmu *pmu)
1168 {
1169 	if (pmu->task_ctx_cache)
1170 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1171 
1172 	return NULL;
1173 }
1174 
free_task_ctx_data(struct pmu * pmu,void * task_ctx_data)1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1176 {
1177 	if (pmu->task_ctx_cache && task_ctx_data)
1178 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1179 }
1180 
free_ctx(struct rcu_head * head)1181 static void free_ctx(struct rcu_head *head)
1182 {
1183 	struct perf_event_context *ctx;
1184 
1185 	ctx = container_of(head, struct perf_event_context, rcu_head);
1186 	kfree(ctx);
1187 }
1188 
put_ctx(struct perf_event_context * ctx)1189 static void put_ctx(struct perf_event_context *ctx)
1190 {
1191 	if (refcount_dec_and_test(&ctx->refcount)) {
1192 		if (ctx->parent_ctx)
1193 			put_ctx(ctx->parent_ctx);
1194 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1195 			put_task_struct(ctx->task);
1196 		call_rcu(&ctx->rcu_head, free_ctx);
1197 	}
1198 }
1199 
1200 /*
1201  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1202  * perf_pmu_migrate_context() we need some magic.
1203  *
1204  * Those places that change perf_event::ctx will hold both
1205  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1206  *
1207  * Lock ordering is by mutex address. There are two other sites where
1208  * perf_event_context::mutex nests and those are:
1209  *
1210  *  - perf_event_exit_task_context()	[ child , 0 ]
1211  *      perf_event_exit_event()
1212  *        put_event()			[ parent, 1 ]
1213  *
1214  *  - perf_event_init_context()		[ parent, 0 ]
1215  *      inherit_task_group()
1216  *        inherit_group()
1217  *          inherit_event()
1218  *            perf_event_alloc()
1219  *              perf_init_event()
1220  *                perf_try_init_event()	[ child , 1 ]
1221  *
1222  * While it appears there is an obvious deadlock here -- the parent and child
1223  * nesting levels are inverted between the two. This is in fact safe because
1224  * life-time rules separate them. That is an exiting task cannot fork, and a
1225  * spawning task cannot (yet) exit.
1226  *
1227  * But remember that these are parent<->child context relations, and
1228  * migration does not affect children, therefore these two orderings should not
1229  * interact.
1230  *
1231  * The change in perf_event::ctx does not affect children (as claimed above)
1232  * because the sys_perf_event_open() case will install a new event and break
1233  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1234  * concerned with cpuctx and that doesn't have children.
1235  *
1236  * The places that change perf_event::ctx will issue:
1237  *
1238  *   perf_remove_from_context();
1239  *   synchronize_rcu();
1240  *   perf_install_in_context();
1241  *
1242  * to affect the change. The remove_from_context() + synchronize_rcu() should
1243  * quiesce the event, after which we can install it in the new location. This
1244  * means that only external vectors (perf_fops, prctl) can perturb the event
1245  * while in transit. Therefore all such accessors should also acquire
1246  * perf_event_context::mutex to serialize against this.
1247  *
1248  * However; because event->ctx can change while we're waiting to acquire
1249  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1250  * function.
1251  *
1252  * Lock order:
1253  *    exec_update_lock
1254  *	task_struct::perf_event_mutex
1255  *	  perf_event_context::mutex
1256  *	    perf_event::child_mutex;
1257  *	      perf_event_context::lock
1258  *	    perf_event::mmap_mutex
1259  *	    mmap_lock
1260  *	      perf_addr_filters_head::lock
1261  *
1262  *    cpu_hotplug_lock
1263  *      pmus_lock
1264  *	  cpuctx->mutex / perf_event_context::mutex
1265  */
1266 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1268 {
1269 	struct perf_event_context *ctx;
1270 
1271 again:
1272 	rcu_read_lock();
1273 	ctx = READ_ONCE(event->ctx);
1274 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1275 		rcu_read_unlock();
1276 		goto again;
1277 	}
1278 	rcu_read_unlock();
1279 
1280 	mutex_lock_nested(&ctx->mutex, nesting);
1281 	if (event->ctx != ctx) {
1282 		mutex_unlock(&ctx->mutex);
1283 		put_ctx(ctx);
1284 		goto again;
1285 	}
1286 
1287 	return ctx;
1288 }
1289 
1290 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1291 perf_event_ctx_lock(struct perf_event *event)
1292 {
1293 	return perf_event_ctx_lock_nested(event, 0);
1294 }
1295 
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1296 static void perf_event_ctx_unlock(struct perf_event *event,
1297 				  struct perf_event_context *ctx)
1298 {
1299 	mutex_unlock(&ctx->mutex);
1300 	put_ctx(ctx);
1301 }
1302 
1303 /*
1304  * This must be done under the ctx->lock, such as to serialize against
1305  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1306  * calling scheduler related locks and ctx->lock nests inside those.
1307  */
1308 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1309 unclone_ctx(struct perf_event_context *ctx)
1310 {
1311 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1312 
1313 	lockdep_assert_held(&ctx->lock);
1314 
1315 	if (parent_ctx)
1316 		ctx->parent_ctx = NULL;
1317 	ctx->generation++;
1318 
1319 	return parent_ctx;
1320 }
1321 
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1323 				enum pid_type type)
1324 {
1325 	u32 nr;
1326 	/*
1327 	 * only top level events have the pid namespace they were created in
1328 	 */
1329 	if (event->parent)
1330 		event = event->parent;
1331 
1332 	nr = __task_pid_nr_ns(p, type, event->ns);
1333 	/* avoid -1 if it is idle thread or runs in another ns */
1334 	if (!nr && !pid_alive(p))
1335 		nr = -1;
1336 	return nr;
1337 }
1338 
perf_event_pid(struct perf_event * event,struct task_struct * p)1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1340 {
1341 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1342 }
1343 
perf_event_tid(struct perf_event * event,struct task_struct * p)1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1345 {
1346 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1347 }
1348 
1349 /*
1350  * If we inherit events we want to return the parent event id
1351  * to userspace.
1352  */
primary_event_id(struct perf_event * event)1353 static u64 primary_event_id(struct perf_event *event)
1354 {
1355 	u64 id = event->id;
1356 
1357 	if (event->parent)
1358 		id = event->parent->id;
1359 
1360 	return id;
1361 }
1362 
1363 /*
1364  * Get the perf_event_context for a task and lock it.
1365  *
1366  * This has to cope with the fact that until it is locked,
1367  * the context could get moved to another task.
1368  */
1369 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,unsigned long * flags)1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1371 {
1372 	struct perf_event_context *ctx;
1373 
1374 retry:
1375 	/*
1376 	 * One of the few rules of preemptible RCU is that one cannot do
1377 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1378 	 * part of the read side critical section was irqs-enabled -- see
1379 	 * rcu_read_unlock_special().
1380 	 *
1381 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1382 	 * side critical section has interrupts disabled.
1383 	 */
1384 	local_irq_save(*flags);
1385 	rcu_read_lock();
1386 	ctx = rcu_dereference(task->perf_event_ctxp);
1387 	if (ctx) {
1388 		/*
1389 		 * If this context is a clone of another, it might
1390 		 * get swapped for another underneath us by
1391 		 * perf_event_task_sched_out, though the
1392 		 * rcu_read_lock() protects us from any context
1393 		 * getting freed.  Lock the context and check if it
1394 		 * got swapped before we could get the lock, and retry
1395 		 * if so.  If we locked the right context, then it
1396 		 * can't get swapped on us any more.
1397 		 */
1398 		raw_spin_lock(&ctx->lock);
1399 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1400 			raw_spin_unlock(&ctx->lock);
1401 			rcu_read_unlock();
1402 			local_irq_restore(*flags);
1403 			goto retry;
1404 		}
1405 
1406 		if (ctx->task == TASK_TOMBSTONE ||
1407 		    !refcount_inc_not_zero(&ctx->refcount)) {
1408 			raw_spin_unlock(&ctx->lock);
1409 			ctx = NULL;
1410 		} else {
1411 			WARN_ON_ONCE(ctx->task != task);
1412 		}
1413 	}
1414 	rcu_read_unlock();
1415 	if (!ctx)
1416 		local_irq_restore(*flags);
1417 	return ctx;
1418 }
1419 
1420 /*
1421  * Get the context for a task and increment its pin_count so it
1422  * can't get swapped to another task.  This also increments its
1423  * reference count so that the context can't get freed.
1424  */
1425 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task)1426 perf_pin_task_context(struct task_struct *task)
1427 {
1428 	struct perf_event_context *ctx;
1429 	unsigned long flags;
1430 
1431 	ctx = perf_lock_task_context(task, &flags);
1432 	if (ctx) {
1433 		++ctx->pin_count;
1434 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1435 	}
1436 	return ctx;
1437 }
1438 
perf_unpin_context(struct perf_event_context * ctx)1439 static void perf_unpin_context(struct perf_event_context *ctx)
1440 {
1441 	unsigned long flags;
1442 
1443 	raw_spin_lock_irqsave(&ctx->lock, flags);
1444 	--ctx->pin_count;
1445 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1446 }
1447 
1448 /*
1449  * Update the record of the current time in a context.
1450  */
__update_context_time(struct perf_event_context * ctx,bool adv)1451 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1452 {
1453 	u64 now = perf_clock();
1454 
1455 	lockdep_assert_held(&ctx->lock);
1456 
1457 	if (adv)
1458 		ctx->time += now - ctx->timestamp;
1459 	ctx->timestamp = now;
1460 
1461 	/*
1462 	 * The above: time' = time + (now - timestamp), can be re-arranged
1463 	 * into: time` = now + (time - timestamp), which gives a single value
1464 	 * offset to compute future time without locks on.
1465 	 *
1466 	 * See perf_event_time_now(), which can be used from NMI context where
1467 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1468 	 * both the above values in a consistent manner.
1469 	 */
1470 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1471 }
1472 
update_context_time(struct perf_event_context * ctx)1473 static void update_context_time(struct perf_event_context *ctx)
1474 {
1475 	__update_context_time(ctx, true);
1476 }
1477 
perf_event_time(struct perf_event * event)1478 static u64 perf_event_time(struct perf_event *event)
1479 {
1480 	struct perf_event_context *ctx = event->ctx;
1481 
1482 	if (unlikely(!ctx))
1483 		return 0;
1484 
1485 	if (is_cgroup_event(event))
1486 		return perf_cgroup_event_time(event);
1487 
1488 	return ctx->time;
1489 }
1490 
perf_event_time_now(struct perf_event * event,u64 now)1491 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1492 {
1493 	struct perf_event_context *ctx = event->ctx;
1494 
1495 	if (unlikely(!ctx))
1496 		return 0;
1497 
1498 	if (is_cgroup_event(event))
1499 		return perf_cgroup_event_time_now(event, now);
1500 
1501 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1502 		return ctx->time;
1503 
1504 	now += READ_ONCE(ctx->timeoffset);
1505 	return now;
1506 }
1507 
get_event_type(struct perf_event * event)1508 static enum event_type_t get_event_type(struct perf_event *event)
1509 {
1510 	struct perf_event_context *ctx = event->ctx;
1511 	enum event_type_t event_type;
1512 
1513 	lockdep_assert_held(&ctx->lock);
1514 
1515 	/*
1516 	 * It's 'group type', really, because if our group leader is
1517 	 * pinned, so are we.
1518 	 */
1519 	if (event->group_leader != event)
1520 		event = event->group_leader;
1521 
1522 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1523 	if (!ctx->task)
1524 		event_type |= EVENT_CPU;
1525 
1526 	return event_type;
1527 }
1528 
1529 /*
1530  * Helper function to initialize event group nodes.
1531  */
init_event_group(struct perf_event * event)1532 static void init_event_group(struct perf_event *event)
1533 {
1534 	RB_CLEAR_NODE(&event->group_node);
1535 	event->group_index = 0;
1536 }
1537 
1538 /*
1539  * Extract pinned or flexible groups from the context
1540  * based on event attrs bits.
1541  */
1542 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1544 {
1545 	if (event->attr.pinned)
1546 		return &ctx->pinned_groups;
1547 	else
1548 		return &ctx->flexible_groups;
1549 }
1550 
1551 /*
1552  * Helper function to initializes perf_event_group trees.
1553  */
perf_event_groups_init(struct perf_event_groups * groups)1554 static void perf_event_groups_init(struct perf_event_groups *groups)
1555 {
1556 	groups->tree = RB_ROOT;
1557 	groups->index = 0;
1558 }
1559 
event_cgroup(const struct perf_event * event)1560 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1561 {
1562 	struct cgroup *cgroup = NULL;
1563 
1564 #ifdef CONFIG_CGROUP_PERF
1565 	if (event->cgrp)
1566 		cgroup = event->cgrp->css.cgroup;
1567 #endif
1568 
1569 	return cgroup;
1570 }
1571 
1572 /*
1573  * Compare function for event groups;
1574  *
1575  * Implements complex key that first sorts by CPU and then by virtual index
1576  * which provides ordering when rotating groups for the same CPU.
1577  */
1578 static __always_inline int
perf_event_groups_cmp(const int left_cpu,const struct pmu * left_pmu,const struct cgroup * left_cgroup,const u64 left_group_index,const struct perf_event * right)1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1580 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1581 		      const struct perf_event *right)
1582 {
1583 	if (left_cpu < right->cpu)
1584 		return -1;
1585 	if (left_cpu > right->cpu)
1586 		return 1;
1587 
1588 	if (left_pmu) {
1589 		if (left_pmu < right->pmu_ctx->pmu)
1590 			return -1;
1591 		if (left_pmu > right->pmu_ctx->pmu)
1592 			return 1;
1593 	}
1594 
1595 #ifdef CONFIG_CGROUP_PERF
1596 	{
1597 		const struct cgroup *right_cgroup = event_cgroup(right);
1598 
1599 		if (left_cgroup != right_cgroup) {
1600 			if (!left_cgroup) {
1601 				/*
1602 				 * Left has no cgroup but right does, no
1603 				 * cgroups come first.
1604 				 */
1605 				return -1;
1606 			}
1607 			if (!right_cgroup) {
1608 				/*
1609 				 * Right has no cgroup but left does, no
1610 				 * cgroups come first.
1611 				 */
1612 				return 1;
1613 			}
1614 			/* Two dissimilar cgroups, order by id. */
1615 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1616 				return -1;
1617 
1618 			return 1;
1619 		}
1620 	}
1621 #endif
1622 
1623 	if (left_group_index < right->group_index)
1624 		return -1;
1625 	if (left_group_index > right->group_index)
1626 		return 1;
1627 
1628 	return 0;
1629 }
1630 
1631 #define __node_2_pe(node) \
1632 	rb_entry((node), struct perf_event, group_node)
1633 
__group_less(struct rb_node * a,const struct rb_node * b)1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1635 {
1636 	struct perf_event *e = __node_2_pe(a);
1637 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1638 				     e->group_index, __node_2_pe(b)) < 0;
1639 }
1640 
1641 struct __group_key {
1642 	int cpu;
1643 	struct pmu *pmu;
1644 	struct cgroup *cgroup;
1645 };
1646 
__group_cmp(const void * key,const struct rb_node * node)1647 static inline int __group_cmp(const void *key, const struct rb_node *node)
1648 {
1649 	const struct __group_key *a = key;
1650 	const struct perf_event *b = __node_2_pe(node);
1651 
1652 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1653 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1654 }
1655 
1656 static inline int
__group_cmp_ignore_cgroup(const void * key,const struct rb_node * node)1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1658 {
1659 	const struct __group_key *a = key;
1660 	const struct perf_event *b = __node_2_pe(node);
1661 
1662 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1663 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1664 				     b->group_index, b);
1665 }
1666 
1667 /*
1668  * Insert @event into @groups' tree; using
1669  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1670  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1671  */
1672 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1673 perf_event_groups_insert(struct perf_event_groups *groups,
1674 			 struct perf_event *event)
1675 {
1676 	event->group_index = ++groups->index;
1677 
1678 	rb_add(&event->group_node, &groups->tree, __group_less);
1679 }
1680 
1681 /*
1682  * Helper function to insert event into the pinned or flexible groups.
1683  */
1684 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1686 {
1687 	struct perf_event_groups *groups;
1688 
1689 	groups = get_event_groups(event, ctx);
1690 	perf_event_groups_insert(groups, event);
1691 }
1692 
1693 /*
1694  * Delete a group from a tree.
1695  */
1696 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1697 perf_event_groups_delete(struct perf_event_groups *groups,
1698 			 struct perf_event *event)
1699 {
1700 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1701 		     RB_EMPTY_ROOT(&groups->tree));
1702 
1703 	rb_erase(&event->group_node, &groups->tree);
1704 	init_event_group(event);
1705 }
1706 
1707 /*
1708  * Helper function to delete event from its groups.
1709  */
1710 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1712 {
1713 	struct perf_event_groups *groups;
1714 
1715 	groups = get_event_groups(event, ctx);
1716 	perf_event_groups_delete(groups, event);
1717 }
1718 
1719 /*
1720  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1721  */
1722 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu,struct pmu * pmu,struct cgroup * cgrp)1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1724 			struct pmu *pmu, struct cgroup *cgrp)
1725 {
1726 	struct __group_key key = {
1727 		.cpu = cpu,
1728 		.pmu = pmu,
1729 		.cgroup = cgrp,
1730 	};
1731 	struct rb_node *node;
1732 
1733 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1734 	if (node)
1735 		return __node_2_pe(node);
1736 
1737 	return NULL;
1738 }
1739 
1740 static struct perf_event *
perf_event_groups_next(struct perf_event * event,struct pmu * pmu)1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1742 {
1743 	struct __group_key key = {
1744 		.cpu = event->cpu,
1745 		.pmu = pmu,
1746 		.cgroup = event_cgroup(event),
1747 	};
1748 	struct rb_node *next;
1749 
1750 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1751 	if (next)
1752 		return __node_2_pe(next);
1753 
1754 	return NULL;
1755 }
1756 
1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1758 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1759 	     event; event = perf_event_groups_next(event, pmu))
1760 
1761 /*
1762  * Iterate through the whole groups tree.
1763  */
1764 #define perf_event_groups_for_each(event, groups)			\
1765 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1766 				typeof(*event), group_node); event;	\
1767 		event = rb_entry_safe(rb_next(&event->group_node),	\
1768 				typeof(*event), group_node))
1769 
1770 /*
1771  * Add an event from the lists for its context.
1772  * Must be called with ctx->mutex and ctx->lock held.
1773  */
1774 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1776 {
1777 	lockdep_assert_held(&ctx->lock);
1778 
1779 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1780 	event->attach_state |= PERF_ATTACH_CONTEXT;
1781 
1782 	event->tstamp = perf_event_time(event);
1783 
1784 	/*
1785 	 * If we're a stand alone event or group leader, we go to the context
1786 	 * list, group events are kept attached to the group so that
1787 	 * perf_group_detach can, at all times, locate all siblings.
1788 	 */
1789 	if (event->group_leader == event) {
1790 		event->group_caps = event->event_caps;
1791 		add_event_to_groups(event, ctx);
1792 	}
1793 
1794 	list_add_rcu(&event->event_entry, &ctx->event_list);
1795 	ctx->nr_events++;
1796 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1797 		ctx->nr_user++;
1798 	if (event->attr.inherit_stat)
1799 		ctx->nr_stat++;
1800 
1801 	if (event->state > PERF_EVENT_STATE_OFF)
1802 		perf_cgroup_event_enable(event, ctx);
1803 
1804 	ctx->generation++;
1805 	event->pmu_ctx->nr_events++;
1806 }
1807 
1808 /*
1809  * Initialize event state based on the perf_event_attr::disabled.
1810  */
perf_event__state_init(struct perf_event * event)1811 static inline void perf_event__state_init(struct perf_event *event)
1812 {
1813 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1814 					      PERF_EVENT_STATE_INACTIVE;
1815 }
1816 
__perf_event_read_size(u64 read_format,int nr_siblings)1817 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1818 {
1819 	int entry = sizeof(u64); /* value */
1820 	int size = 0;
1821 	int nr = 1;
1822 
1823 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1824 		size += sizeof(u64);
1825 
1826 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1827 		size += sizeof(u64);
1828 
1829 	if (read_format & PERF_FORMAT_ID)
1830 		entry += sizeof(u64);
1831 
1832 	if (read_format & PERF_FORMAT_LOST)
1833 		entry += sizeof(u64);
1834 
1835 	if (read_format & PERF_FORMAT_GROUP) {
1836 		nr += nr_siblings;
1837 		size += sizeof(u64);
1838 	}
1839 
1840 	/*
1841 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1842 	 * adding more siblings, this will never overflow.
1843 	 */
1844 	return size + nr * entry;
1845 }
1846 
__perf_event_header_size(struct perf_event * event,u64 sample_type)1847 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1848 {
1849 	struct perf_sample_data *data;
1850 	u16 size = 0;
1851 
1852 	if (sample_type & PERF_SAMPLE_IP)
1853 		size += sizeof(data->ip);
1854 
1855 	if (sample_type & PERF_SAMPLE_ADDR)
1856 		size += sizeof(data->addr);
1857 
1858 	if (sample_type & PERF_SAMPLE_PERIOD)
1859 		size += sizeof(data->period);
1860 
1861 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1862 		size += sizeof(data->weight.full);
1863 
1864 	if (sample_type & PERF_SAMPLE_READ)
1865 		size += event->read_size;
1866 
1867 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1868 		size += sizeof(data->data_src.val);
1869 
1870 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1871 		size += sizeof(data->txn);
1872 
1873 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1874 		size += sizeof(data->phys_addr);
1875 
1876 	if (sample_type & PERF_SAMPLE_CGROUP)
1877 		size += sizeof(data->cgroup);
1878 
1879 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1880 		size += sizeof(data->data_page_size);
1881 
1882 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1883 		size += sizeof(data->code_page_size);
1884 
1885 	event->header_size = size;
1886 }
1887 
1888 /*
1889  * Called at perf_event creation and when events are attached/detached from a
1890  * group.
1891  */
perf_event__header_size(struct perf_event * event)1892 static void perf_event__header_size(struct perf_event *event)
1893 {
1894 	event->read_size =
1895 		__perf_event_read_size(event->attr.read_format,
1896 				       event->group_leader->nr_siblings);
1897 	__perf_event_header_size(event, event->attr.sample_type);
1898 }
1899 
perf_event__id_header_size(struct perf_event * event)1900 static void perf_event__id_header_size(struct perf_event *event)
1901 {
1902 	struct perf_sample_data *data;
1903 	u64 sample_type = event->attr.sample_type;
1904 	u16 size = 0;
1905 
1906 	if (sample_type & PERF_SAMPLE_TID)
1907 		size += sizeof(data->tid_entry);
1908 
1909 	if (sample_type & PERF_SAMPLE_TIME)
1910 		size += sizeof(data->time);
1911 
1912 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1913 		size += sizeof(data->id);
1914 
1915 	if (sample_type & PERF_SAMPLE_ID)
1916 		size += sizeof(data->id);
1917 
1918 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1919 		size += sizeof(data->stream_id);
1920 
1921 	if (sample_type & PERF_SAMPLE_CPU)
1922 		size += sizeof(data->cpu_entry);
1923 
1924 	event->id_header_size = size;
1925 }
1926 
1927 /*
1928  * Check that adding an event to the group does not result in anybody
1929  * overflowing the 64k event limit imposed by the output buffer.
1930  *
1931  * Specifically, check that the read_size for the event does not exceed 16k,
1932  * read_size being the one term that grows with groups size. Since read_size
1933  * depends on per-event read_format, also (re)check the existing events.
1934  *
1935  * This leaves 48k for the constant size fields and things like callchains,
1936  * branch stacks and register sets.
1937  */
perf_event_validate_size(struct perf_event * event)1938 static bool perf_event_validate_size(struct perf_event *event)
1939 {
1940 	struct perf_event *sibling, *group_leader = event->group_leader;
1941 
1942 	if (__perf_event_read_size(event->attr.read_format,
1943 				   group_leader->nr_siblings + 1) > 16*1024)
1944 		return false;
1945 
1946 	if (__perf_event_read_size(group_leader->attr.read_format,
1947 				   group_leader->nr_siblings + 1) > 16*1024)
1948 		return false;
1949 
1950 	/*
1951 	 * When creating a new group leader, group_leader->ctx is initialized
1952 	 * after the size has been validated, but we cannot safely use
1953 	 * for_each_sibling_event() until group_leader->ctx is set. A new group
1954 	 * leader cannot have any siblings yet, so we can safely skip checking
1955 	 * the non-existent siblings.
1956 	 */
1957 	if (event == group_leader)
1958 		return true;
1959 
1960 	for_each_sibling_event(sibling, group_leader) {
1961 		if (__perf_event_read_size(sibling->attr.read_format,
1962 					   group_leader->nr_siblings + 1) > 16*1024)
1963 			return false;
1964 	}
1965 
1966 	return true;
1967 }
1968 
perf_group_attach(struct perf_event * event)1969 static void perf_group_attach(struct perf_event *event)
1970 {
1971 	struct perf_event *group_leader = event->group_leader, *pos;
1972 
1973 	lockdep_assert_held(&event->ctx->lock);
1974 
1975 	/*
1976 	 * We can have double attach due to group movement (move_group) in
1977 	 * perf_event_open().
1978 	 */
1979 	if (event->attach_state & PERF_ATTACH_GROUP)
1980 		return;
1981 
1982 	event->attach_state |= PERF_ATTACH_GROUP;
1983 
1984 	if (group_leader == event)
1985 		return;
1986 
1987 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1988 
1989 	group_leader->group_caps &= event->event_caps;
1990 
1991 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1992 	group_leader->nr_siblings++;
1993 	group_leader->group_generation++;
1994 
1995 	perf_event__header_size(group_leader);
1996 
1997 	for_each_sibling_event(pos, group_leader)
1998 		perf_event__header_size(pos);
1999 }
2000 
2001 /*
2002  * Remove an event from the lists for its context.
2003  * Must be called with ctx->mutex and ctx->lock held.
2004  */
2005 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)2006 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2007 {
2008 	WARN_ON_ONCE(event->ctx != ctx);
2009 	lockdep_assert_held(&ctx->lock);
2010 
2011 	/*
2012 	 * We can have double detach due to exit/hot-unplug + close.
2013 	 */
2014 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2015 		return;
2016 
2017 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2018 
2019 	ctx->nr_events--;
2020 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2021 		ctx->nr_user--;
2022 	if (event->attr.inherit_stat)
2023 		ctx->nr_stat--;
2024 
2025 	list_del_rcu(&event->event_entry);
2026 
2027 	if (event->group_leader == event)
2028 		del_event_from_groups(event, ctx);
2029 
2030 	/*
2031 	 * If event was in error state, then keep it
2032 	 * that way, otherwise bogus counts will be
2033 	 * returned on read(). The only way to get out
2034 	 * of error state is by explicit re-enabling
2035 	 * of the event
2036 	 */
2037 	if (event->state > PERF_EVENT_STATE_OFF) {
2038 		perf_cgroup_event_disable(event, ctx);
2039 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2040 	}
2041 
2042 	ctx->generation++;
2043 	event->pmu_ctx->nr_events--;
2044 }
2045 
2046 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)2047 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2048 {
2049 	if (!has_aux(aux_event))
2050 		return 0;
2051 
2052 	if (!event->pmu->aux_output_match)
2053 		return 0;
2054 
2055 	return event->pmu->aux_output_match(aux_event);
2056 }
2057 
2058 static void put_event(struct perf_event *event);
2059 static void event_sched_out(struct perf_event *event,
2060 			    struct perf_event_context *ctx);
2061 
perf_put_aux_event(struct perf_event * event)2062 static void perf_put_aux_event(struct perf_event *event)
2063 {
2064 	struct perf_event_context *ctx = event->ctx;
2065 	struct perf_event *iter;
2066 
2067 	/*
2068 	 * If event uses aux_event tear down the link
2069 	 */
2070 	if (event->aux_event) {
2071 		iter = event->aux_event;
2072 		event->aux_event = NULL;
2073 		put_event(iter);
2074 		return;
2075 	}
2076 
2077 	/*
2078 	 * If the event is an aux_event, tear down all links to
2079 	 * it from other events.
2080 	 */
2081 	for_each_sibling_event(iter, event->group_leader) {
2082 		if (iter->aux_event != event)
2083 			continue;
2084 
2085 		iter->aux_event = NULL;
2086 		put_event(event);
2087 
2088 		/*
2089 		 * If it's ACTIVE, schedule it out and put it into ERROR
2090 		 * state so that we don't try to schedule it again. Note
2091 		 * that perf_event_enable() will clear the ERROR status.
2092 		 */
2093 		event_sched_out(iter, ctx);
2094 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2095 	}
2096 }
2097 
perf_need_aux_event(struct perf_event * event)2098 static bool perf_need_aux_event(struct perf_event *event)
2099 {
2100 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2101 }
2102 
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)2103 static int perf_get_aux_event(struct perf_event *event,
2104 			      struct perf_event *group_leader)
2105 {
2106 	/*
2107 	 * Our group leader must be an aux event if we want to be
2108 	 * an aux_output. This way, the aux event will precede its
2109 	 * aux_output events in the group, and therefore will always
2110 	 * schedule first.
2111 	 */
2112 	if (!group_leader)
2113 		return 0;
2114 
2115 	/*
2116 	 * aux_output and aux_sample_size are mutually exclusive.
2117 	 */
2118 	if (event->attr.aux_output && event->attr.aux_sample_size)
2119 		return 0;
2120 
2121 	if (event->attr.aux_output &&
2122 	    !perf_aux_output_match(event, group_leader))
2123 		return 0;
2124 
2125 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2126 		return 0;
2127 
2128 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2129 		return 0;
2130 
2131 	/*
2132 	 * Link aux_outputs to their aux event; this is undone in
2133 	 * perf_group_detach() by perf_put_aux_event(). When the
2134 	 * group in torn down, the aux_output events loose their
2135 	 * link to the aux_event and can't schedule any more.
2136 	 */
2137 	event->aux_event = group_leader;
2138 
2139 	return 1;
2140 }
2141 
get_event_list(struct perf_event * event)2142 static inline struct list_head *get_event_list(struct perf_event *event)
2143 {
2144 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2145 				    &event->pmu_ctx->flexible_active;
2146 }
2147 
2148 /*
2149  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2150  * cannot exist on their own, schedule them out and move them into the ERROR
2151  * state. Also see _perf_event_enable(), it will not be able to recover
2152  * this ERROR state.
2153  */
perf_remove_sibling_event(struct perf_event * event)2154 static inline void perf_remove_sibling_event(struct perf_event *event)
2155 {
2156 	event_sched_out(event, event->ctx);
2157 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2158 }
2159 
perf_group_detach(struct perf_event * event)2160 static void perf_group_detach(struct perf_event *event)
2161 {
2162 	struct perf_event *leader = event->group_leader;
2163 	struct perf_event *sibling, *tmp;
2164 	struct perf_event_context *ctx = event->ctx;
2165 
2166 	lockdep_assert_held(&ctx->lock);
2167 
2168 	/*
2169 	 * We can have double detach due to exit/hot-unplug + close.
2170 	 */
2171 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2172 		return;
2173 
2174 	event->attach_state &= ~PERF_ATTACH_GROUP;
2175 
2176 	perf_put_aux_event(event);
2177 
2178 	/*
2179 	 * If this is a sibling, remove it from its group.
2180 	 */
2181 	if (leader != event) {
2182 		list_del_init(&event->sibling_list);
2183 		event->group_leader->nr_siblings--;
2184 		event->group_leader->group_generation++;
2185 		goto out;
2186 	}
2187 
2188 	/*
2189 	 * If this was a group event with sibling events then
2190 	 * upgrade the siblings to singleton events by adding them
2191 	 * to whatever list we are on.
2192 	 */
2193 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2194 
2195 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2196 			perf_remove_sibling_event(sibling);
2197 
2198 		sibling->group_leader = sibling;
2199 		list_del_init(&sibling->sibling_list);
2200 
2201 		/* Inherit group flags from the previous leader */
2202 		sibling->group_caps = event->group_caps;
2203 
2204 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2205 			add_event_to_groups(sibling, event->ctx);
2206 
2207 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2208 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2209 		}
2210 
2211 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2212 	}
2213 
2214 out:
2215 	for_each_sibling_event(tmp, leader)
2216 		perf_event__header_size(tmp);
2217 
2218 	perf_event__header_size(leader);
2219 }
2220 
2221 static void sync_child_event(struct perf_event *child_event);
2222 
perf_child_detach(struct perf_event * event)2223 static void perf_child_detach(struct perf_event *event)
2224 {
2225 	struct perf_event *parent_event = event->parent;
2226 
2227 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2228 		return;
2229 
2230 	event->attach_state &= ~PERF_ATTACH_CHILD;
2231 
2232 	if (WARN_ON_ONCE(!parent_event))
2233 		return;
2234 
2235 	lockdep_assert_held(&parent_event->child_mutex);
2236 
2237 	sync_child_event(event);
2238 	list_del_init(&event->child_list);
2239 }
2240 
is_orphaned_event(struct perf_event * event)2241 static bool is_orphaned_event(struct perf_event *event)
2242 {
2243 	return event->state == PERF_EVENT_STATE_DEAD;
2244 }
2245 
2246 static inline int
event_filter_match(struct perf_event * event)2247 event_filter_match(struct perf_event *event)
2248 {
2249 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2250 	       perf_cgroup_match(event);
2251 }
2252 
2253 static void
event_sched_out(struct perf_event * event,struct perf_event_context * ctx)2254 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2255 {
2256 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2257 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2258 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2259 
2260 	// XXX cpc serialization, probably per-cpu IRQ disabled
2261 
2262 	WARN_ON_ONCE(event->ctx != ctx);
2263 	lockdep_assert_held(&ctx->lock);
2264 
2265 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2266 		return;
2267 
2268 	/*
2269 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2270 	 * we can schedule events _OUT_ individually through things like
2271 	 * __perf_remove_from_context().
2272 	 */
2273 	list_del_init(&event->active_list);
2274 
2275 	perf_pmu_disable(event->pmu);
2276 
2277 	event->pmu->del(event, 0);
2278 	event->oncpu = -1;
2279 
2280 	if (event->pending_disable) {
2281 		event->pending_disable = 0;
2282 		perf_cgroup_event_disable(event, ctx);
2283 		state = PERF_EVENT_STATE_OFF;
2284 	}
2285 
2286 	if (event->pending_sigtrap) {
2287 		event->pending_sigtrap = 0;
2288 		if (state != PERF_EVENT_STATE_OFF &&
2289 		    !event->pending_work &&
2290 		    !task_work_add(current, &event->pending_task, TWA_RESUME)) {
2291 			WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
2292 			event->pending_work = 1;
2293 		} else {
2294 			local_dec(&event->ctx->nr_pending);
2295 		}
2296 	}
2297 
2298 	perf_event_set_state(event, state);
2299 
2300 	if (!is_software_event(event))
2301 		cpc->active_oncpu--;
2302 	if (event->attr.freq && event->attr.sample_freq)
2303 		ctx->nr_freq--;
2304 	if (event->attr.exclusive || !cpc->active_oncpu)
2305 		cpc->exclusive = 0;
2306 
2307 	perf_pmu_enable(event->pmu);
2308 }
2309 
2310 static void
group_sched_out(struct perf_event * group_event,struct perf_event_context * ctx)2311 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2312 {
2313 	struct perf_event *event;
2314 
2315 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2316 		return;
2317 
2318 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2319 
2320 	event_sched_out(group_event, ctx);
2321 
2322 	/*
2323 	 * Schedule out siblings (if any):
2324 	 */
2325 	for_each_sibling_event(event, group_event)
2326 		event_sched_out(event, ctx);
2327 }
2328 
2329 #define DETACH_GROUP	0x01UL
2330 #define DETACH_CHILD	0x02UL
2331 #define DETACH_DEAD	0x04UL
2332 
2333 /*
2334  * Cross CPU call to remove a performance event
2335  *
2336  * We disable the event on the hardware level first. After that we
2337  * remove it from the context list.
2338  */
2339 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2340 __perf_remove_from_context(struct perf_event *event,
2341 			   struct perf_cpu_context *cpuctx,
2342 			   struct perf_event_context *ctx,
2343 			   void *info)
2344 {
2345 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2346 	unsigned long flags = (unsigned long)info;
2347 
2348 	if (ctx->is_active & EVENT_TIME) {
2349 		update_context_time(ctx);
2350 		update_cgrp_time_from_cpuctx(cpuctx, false);
2351 	}
2352 
2353 	/*
2354 	 * Ensure event_sched_out() switches to OFF, at the very least
2355 	 * this avoids raising perf_pending_task() at this time.
2356 	 */
2357 	if (flags & DETACH_DEAD)
2358 		event->pending_disable = 1;
2359 	event_sched_out(event, ctx);
2360 	if (flags & DETACH_GROUP)
2361 		perf_group_detach(event);
2362 	if (flags & DETACH_CHILD)
2363 		perf_child_detach(event);
2364 	list_del_event(event, ctx);
2365 	if (flags & DETACH_DEAD)
2366 		event->state = PERF_EVENT_STATE_DEAD;
2367 
2368 	if (!pmu_ctx->nr_events) {
2369 		pmu_ctx->rotate_necessary = 0;
2370 
2371 		if (ctx->task && ctx->is_active) {
2372 			struct perf_cpu_pmu_context *cpc;
2373 
2374 			cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2375 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2376 			cpc->task_epc = NULL;
2377 		}
2378 	}
2379 
2380 	if (!ctx->nr_events && ctx->is_active) {
2381 		if (ctx == &cpuctx->ctx)
2382 			update_cgrp_time_from_cpuctx(cpuctx, true);
2383 
2384 		ctx->is_active = 0;
2385 		if (ctx->task) {
2386 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2387 			cpuctx->task_ctx = NULL;
2388 		}
2389 	}
2390 }
2391 
2392 /*
2393  * Remove the event from a task's (or a CPU's) list of events.
2394  *
2395  * If event->ctx is a cloned context, callers must make sure that
2396  * every task struct that event->ctx->task could possibly point to
2397  * remains valid.  This is OK when called from perf_release since
2398  * that only calls us on the top-level context, which can't be a clone.
2399  * When called from perf_event_exit_task, it's OK because the
2400  * context has been detached from its task.
2401  */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2402 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2403 {
2404 	struct perf_event_context *ctx = event->ctx;
2405 
2406 	lockdep_assert_held(&ctx->mutex);
2407 
2408 	/*
2409 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2410 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2411 	 * event_function_call() user.
2412 	 */
2413 	raw_spin_lock_irq(&ctx->lock);
2414 	if (!ctx->is_active) {
2415 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2416 					   ctx, (void *)flags);
2417 		raw_spin_unlock_irq(&ctx->lock);
2418 		return;
2419 	}
2420 	raw_spin_unlock_irq(&ctx->lock);
2421 
2422 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2423 }
2424 
2425 /*
2426  * Cross CPU call to disable a performance event
2427  */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2428 static void __perf_event_disable(struct perf_event *event,
2429 				 struct perf_cpu_context *cpuctx,
2430 				 struct perf_event_context *ctx,
2431 				 void *info)
2432 {
2433 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2434 		return;
2435 
2436 	if (ctx->is_active & EVENT_TIME) {
2437 		update_context_time(ctx);
2438 		update_cgrp_time_from_event(event);
2439 	}
2440 
2441 	perf_pmu_disable(event->pmu_ctx->pmu);
2442 
2443 	if (event == event->group_leader)
2444 		group_sched_out(event, ctx);
2445 	else
2446 		event_sched_out(event, ctx);
2447 
2448 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2449 	perf_cgroup_event_disable(event, ctx);
2450 
2451 	perf_pmu_enable(event->pmu_ctx->pmu);
2452 }
2453 
2454 /*
2455  * Disable an event.
2456  *
2457  * If event->ctx is a cloned context, callers must make sure that
2458  * every task struct that event->ctx->task could possibly point to
2459  * remains valid.  This condition is satisfied when called through
2460  * perf_event_for_each_child or perf_event_for_each because they
2461  * hold the top-level event's child_mutex, so any descendant that
2462  * goes to exit will block in perf_event_exit_event().
2463  *
2464  * When called from perf_pending_irq it's OK because event->ctx
2465  * is the current context on this CPU and preemption is disabled,
2466  * hence we can't get into perf_event_task_sched_out for this context.
2467  */
_perf_event_disable(struct perf_event * event)2468 static void _perf_event_disable(struct perf_event *event)
2469 {
2470 	struct perf_event_context *ctx = event->ctx;
2471 
2472 	raw_spin_lock_irq(&ctx->lock);
2473 	if (event->state <= PERF_EVENT_STATE_OFF) {
2474 		raw_spin_unlock_irq(&ctx->lock);
2475 		return;
2476 	}
2477 	raw_spin_unlock_irq(&ctx->lock);
2478 
2479 	event_function_call(event, __perf_event_disable, NULL);
2480 }
2481 
perf_event_disable_local(struct perf_event * event)2482 void perf_event_disable_local(struct perf_event *event)
2483 {
2484 	event_function_local(event, __perf_event_disable, NULL);
2485 }
2486 
2487 /*
2488  * Strictly speaking kernel users cannot create groups and therefore this
2489  * interface does not need the perf_event_ctx_lock() magic.
2490  */
perf_event_disable(struct perf_event * event)2491 void perf_event_disable(struct perf_event *event)
2492 {
2493 	struct perf_event_context *ctx;
2494 
2495 	ctx = perf_event_ctx_lock(event);
2496 	_perf_event_disable(event);
2497 	perf_event_ctx_unlock(event, ctx);
2498 }
2499 EXPORT_SYMBOL_GPL(perf_event_disable);
2500 
perf_event_disable_inatomic(struct perf_event * event)2501 void perf_event_disable_inatomic(struct perf_event *event)
2502 {
2503 	event->pending_disable = 1;
2504 	irq_work_queue(&event->pending_irq);
2505 }
2506 
2507 #define MAX_INTERRUPTS (~0ULL)
2508 
2509 static void perf_log_throttle(struct perf_event *event, int enable);
2510 static void perf_log_itrace_start(struct perf_event *event);
2511 
2512 static int
event_sched_in(struct perf_event * event,struct perf_event_context * ctx)2513 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2514 {
2515 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2516 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2517 	int ret = 0;
2518 
2519 	WARN_ON_ONCE(event->ctx != ctx);
2520 
2521 	lockdep_assert_held(&ctx->lock);
2522 
2523 	if (event->state <= PERF_EVENT_STATE_OFF)
2524 		return 0;
2525 
2526 	WRITE_ONCE(event->oncpu, smp_processor_id());
2527 	/*
2528 	 * Order event::oncpu write to happen before the ACTIVE state is
2529 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2530 	 * ->oncpu if it sees ACTIVE.
2531 	 */
2532 	smp_wmb();
2533 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2534 
2535 	/*
2536 	 * Unthrottle events, since we scheduled we might have missed several
2537 	 * ticks already, also for a heavily scheduling task there is little
2538 	 * guarantee it'll get a tick in a timely manner.
2539 	 */
2540 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2541 		perf_log_throttle(event, 1);
2542 		event->hw.interrupts = 0;
2543 	}
2544 
2545 	perf_pmu_disable(event->pmu);
2546 
2547 	perf_log_itrace_start(event);
2548 
2549 	if (event->pmu->add(event, PERF_EF_START)) {
2550 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2551 		event->oncpu = -1;
2552 		ret = -EAGAIN;
2553 		goto out;
2554 	}
2555 
2556 	if (!is_software_event(event))
2557 		cpc->active_oncpu++;
2558 	if (event->attr.freq && event->attr.sample_freq)
2559 		ctx->nr_freq++;
2560 
2561 	if (event->attr.exclusive)
2562 		cpc->exclusive = 1;
2563 
2564 out:
2565 	perf_pmu_enable(event->pmu);
2566 
2567 	return ret;
2568 }
2569 
2570 static int
group_sched_in(struct perf_event * group_event,struct perf_event_context * ctx)2571 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2572 {
2573 	struct perf_event *event, *partial_group = NULL;
2574 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2575 
2576 	if (group_event->state == PERF_EVENT_STATE_OFF)
2577 		return 0;
2578 
2579 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2580 
2581 	if (event_sched_in(group_event, ctx))
2582 		goto error;
2583 
2584 	/*
2585 	 * Schedule in siblings as one group (if any):
2586 	 */
2587 	for_each_sibling_event(event, group_event) {
2588 		if (event_sched_in(event, ctx)) {
2589 			partial_group = event;
2590 			goto group_error;
2591 		}
2592 	}
2593 
2594 	if (!pmu->commit_txn(pmu))
2595 		return 0;
2596 
2597 group_error:
2598 	/*
2599 	 * Groups can be scheduled in as one unit only, so undo any
2600 	 * partial group before returning:
2601 	 * The events up to the failed event are scheduled out normally.
2602 	 */
2603 	for_each_sibling_event(event, group_event) {
2604 		if (event == partial_group)
2605 			break;
2606 
2607 		event_sched_out(event, ctx);
2608 	}
2609 	event_sched_out(group_event, ctx);
2610 
2611 error:
2612 	pmu->cancel_txn(pmu);
2613 	return -EAGAIN;
2614 }
2615 
2616 /*
2617  * Work out whether we can put this event group on the CPU now.
2618  */
group_can_go_on(struct perf_event * event,int can_add_hw)2619 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2620 {
2621 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2622 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2623 
2624 	/*
2625 	 * Groups consisting entirely of software events can always go on.
2626 	 */
2627 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2628 		return 1;
2629 	/*
2630 	 * If an exclusive group is already on, no other hardware
2631 	 * events can go on.
2632 	 */
2633 	if (cpc->exclusive)
2634 		return 0;
2635 	/*
2636 	 * If this group is exclusive and there are already
2637 	 * events on the CPU, it can't go on.
2638 	 */
2639 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2640 		return 0;
2641 	/*
2642 	 * Otherwise, try to add it if all previous groups were able
2643 	 * to go on.
2644 	 */
2645 	return can_add_hw;
2646 }
2647 
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2648 static void add_event_to_ctx(struct perf_event *event,
2649 			       struct perf_event_context *ctx)
2650 {
2651 	list_add_event(event, ctx);
2652 	perf_group_attach(event);
2653 }
2654 
task_ctx_sched_out(struct perf_event_context * ctx,enum event_type_t event_type)2655 static void task_ctx_sched_out(struct perf_event_context *ctx,
2656 				enum event_type_t event_type)
2657 {
2658 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2659 
2660 	if (!cpuctx->task_ctx)
2661 		return;
2662 
2663 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2664 		return;
2665 
2666 	ctx_sched_out(ctx, event_type);
2667 }
2668 
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2669 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2670 				struct perf_event_context *ctx)
2671 {
2672 	ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2673 	if (ctx)
2674 		 ctx_sched_in(ctx, EVENT_PINNED);
2675 	ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2676 	if (ctx)
2677 		 ctx_sched_in(ctx, EVENT_FLEXIBLE);
2678 }
2679 
2680 /*
2681  * We want to maintain the following priority of scheduling:
2682  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2683  *  - task pinned (EVENT_PINNED)
2684  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2685  *  - task flexible (EVENT_FLEXIBLE).
2686  *
2687  * In order to avoid unscheduling and scheduling back in everything every
2688  * time an event is added, only do it for the groups of equal priority and
2689  * below.
2690  *
2691  * This can be called after a batch operation on task events, in which case
2692  * event_type is a bit mask of the types of events involved. For CPU events,
2693  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2694  */
2695 /*
2696  * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2697  * event to the context or enabling existing event in the context. We can
2698  * probably optimize it by rescheduling only affected pmu_ctx.
2699  */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,enum event_type_t event_type)2700 static void ctx_resched(struct perf_cpu_context *cpuctx,
2701 			struct perf_event_context *task_ctx,
2702 			enum event_type_t event_type)
2703 {
2704 	bool cpu_event = !!(event_type & EVENT_CPU);
2705 
2706 	/*
2707 	 * If pinned groups are involved, flexible groups also need to be
2708 	 * scheduled out.
2709 	 */
2710 	if (event_type & EVENT_PINNED)
2711 		event_type |= EVENT_FLEXIBLE;
2712 
2713 	event_type &= EVENT_ALL;
2714 
2715 	perf_ctx_disable(&cpuctx->ctx, false);
2716 	if (task_ctx) {
2717 		perf_ctx_disable(task_ctx, false);
2718 		task_ctx_sched_out(task_ctx, event_type);
2719 	}
2720 
2721 	/*
2722 	 * Decide which cpu ctx groups to schedule out based on the types
2723 	 * of events that caused rescheduling:
2724 	 *  - EVENT_CPU: schedule out corresponding groups;
2725 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2726 	 *  - otherwise, do nothing more.
2727 	 */
2728 	if (cpu_event)
2729 		ctx_sched_out(&cpuctx->ctx, event_type);
2730 	else if (event_type & EVENT_PINNED)
2731 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2732 
2733 	perf_event_sched_in(cpuctx, task_ctx);
2734 
2735 	perf_ctx_enable(&cpuctx->ctx, false);
2736 	if (task_ctx)
2737 		perf_ctx_enable(task_ctx, false);
2738 }
2739 
perf_pmu_resched(struct pmu * pmu)2740 void perf_pmu_resched(struct pmu *pmu)
2741 {
2742 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2743 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2744 
2745 	perf_ctx_lock(cpuctx, task_ctx);
2746 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2747 	perf_ctx_unlock(cpuctx, task_ctx);
2748 }
2749 
2750 /*
2751  * Cross CPU call to install and enable a performance event
2752  *
2753  * Very similar to remote_function() + event_function() but cannot assume that
2754  * things like ctx->is_active and cpuctx->task_ctx are set.
2755  */
__perf_install_in_context(void * info)2756 static int  __perf_install_in_context(void *info)
2757 {
2758 	struct perf_event *event = info;
2759 	struct perf_event_context *ctx = event->ctx;
2760 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2761 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2762 	bool reprogram = true;
2763 	int ret = 0;
2764 
2765 	raw_spin_lock(&cpuctx->ctx.lock);
2766 	if (ctx->task) {
2767 		raw_spin_lock(&ctx->lock);
2768 		task_ctx = ctx;
2769 
2770 		reprogram = (ctx->task == current);
2771 
2772 		/*
2773 		 * If the task is running, it must be running on this CPU,
2774 		 * otherwise we cannot reprogram things.
2775 		 *
2776 		 * If its not running, we don't care, ctx->lock will
2777 		 * serialize against it becoming runnable.
2778 		 */
2779 		if (task_curr(ctx->task) && !reprogram) {
2780 			ret = -ESRCH;
2781 			goto unlock;
2782 		}
2783 
2784 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2785 	} else if (task_ctx) {
2786 		raw_spin_lock(&task_ctx->lock);
2787 	}
2788 
2789 #ifdef CONFIG_CGROUP_PERF
2790 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2791 		/*
2792 		 * If the current cgroup doesn't match the event's
2793 		 * cgroup, we should not try to schedule it.
2794 		 */
2795 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2796 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2797 					event->cgrp->css.cgroup);
2798 	}
2799 #endif
2800 
2801 	if (reprogram) {
2802 		ctx_sched_out(ctx, EVENT_TIME);
2803 		add_event_to_ctx(event, ctx);
2804 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2805 	} else {
2806 		add_event_to_ctx(event, ctx);
2807 	}
2808 
2809 unlock:
2810 	perf_ctx_unlock(cpuctx, task_ctx);
2811 
2812 	return ret;
2813 }
2814 
2815 static bool exclusive_event_installable(struct perf_event *event,
2816 					struct perf_event_context *ctx);
2817 
2818 /*
2819  * Attach a performance event to a context.
2820  *
2821  * Very similar to event_function_call, see comment there.
2822  */
2823 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2824 perf_install_in_context(struct perf_event_context *ctx,
2825 			struct perf_event *event,
2826 			int cpu)
2827 {
2828 	struct task_struct *task = READ_ONCE(ctx->task);
2829 
2830 	lockdep_assert_held(&ctx->mutex);
2831 
2832 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2833 
2834 	if (event->cpu != -1)
2835 		WARN_ON_ONCE(event->cpu != cpu);
2836 
2837 	/*
2838 	 * Ensures that if we can observe event->ctx, both the event and ctx
2839 	 * will be 'complete'. See perf_iterate_sb_cpu().
2840 	 */
2841 	smp_store_release(&event->ctx, ctx);
2842 
2843 	/*
2844 	 * perf_event_attr::disabled events will not run and can be initialized
2845 	 * without IPI. Except when this is the first event for the context, in
2846 	 * that case we need the magic of the IPI to set ctx->is_active.
2847 	 *
2848 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2849 	 * event will issue the IPI and reprogram the hardware.
2850 	 */
2851 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2852 	    ctx->nr_events && !is_cgroup_event(event)) {
2853 		raw_spin_lock_irq(&ctx->lock);
2854 		if (ctx->task == TASK_TOMBSTONE) {
2855 			raw_spin_unlock_irq(&ctx->lock);
2856 			return;
2857 		}
2858 		add_event_to_ctx(event, ctx);
2859 		raw_spin_unlock_irq(&ctx->lock);
2860 		return;
2861 	}
2862 
2863 	if (!task) {
2864 		cpu_function_call(cpu, __perf_install_in_context, event);
2865 		return;
2866 	}
2867 
2868 	/*
2869 	 * Should not happen, we validate the ctx is still alive before calling.
2870 	 */
2871 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2872 		return;
2873 
2874 	/*
2875 	 * Installing events is tricky because we cannot rely on ctx->is_active
2876 	 * to be set in case this is the nr_events 0 -> 1 transition.
2877 	 *
2878 	 * Instead we use task_curr(), which tells us if the task is running.
2879 	 * However, since we use task_curr() outside of rq::lock, we can race
2880 	 * against the actual state. This means the result can be wrong.
2881 	 *
2882 	 * If we get a false positive, we retry, this is harmless.
2883 	 *
2884 	 * If we get a false negative, things are complicated. If we are after
2885 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2886 	 * value must be correct. If we're before, it doesn't matter since
2887 	 * perf_event_context_sched_in() will program the counter.
2888 	 *
2889 	 * However, this hinges on the remote context switch having observed
2890 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2891 	 * ctx::lock in perf_event_context_sched_in().
2892 	 *
2893 	 * We do this by task_function_call(), if the IPI fails to hit the task
2894 	 * we know any future context switch of task must see the
2895 	 * perf_event_ctpx[] store.
2896 	 */
2897 
2898 	/*
2899 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2900 	 * task_cpu() load, such that if the IPI then does not find the task
2901 	 * running, a future context switch of that task must observe the
2902 	 * store.
2903 	 */
2904 	smp_mb();
2905 again:
2906 	if (!task_function_call(task, __perf_install_in_context, event))
2907 		return;
2908 
2909 	raw_spin_lock_irq(&ctx->lock);
2910 	task = ctx->task;
2911 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2912 		/*
2913 		 * Cannot happen because we already checked above (which also
2914 		 * cannot happen), and we hold ctx->mutex, which serializes us
2915 		 * against perf_event_exit_task_context().
2916 		 */
2917 		raw_spin_unlock_irq(&ctx->lock);
2918 		return;
2919 	}
2920 	/*
2921 	 * If the task is not running, ctx->lock will avoid it becoming so,
2922 	 * thus we can safely install the event.
2923 	 */
2924 	if (task_curr(task)) {
2925 		raw_spin_unlock_irq(&ctx->lock);
2926 		goto again;
2927 	}
2928 	add_event_to_ctx(event, ctx);
2929 	raw_spin_unlock_irq(&ctx->lock);
2930 }
2931 
2932 /*
2933  * Cross CPU call to enable a performance event
2934  */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2935 static void __perf_event_enable(struct perf_event *event,
2936 				struct perf_cpu_context *cpuctx,
2937 				struct perf_event_context *ctx,
2938 				void *info)
2939 {
2940 	struct perf_event *leader = event->group_leader;
2941 	struct perf_event_context *task_ctx;
2942 
2943 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2944 	    event->state <= PERF_EVENT_STATE_ERROR)
2945 		return;
2946 
2947 	if (ctx->is_active)
2948 		ctx_sched_out(ctx, EVENT_TIME);
2949 
2950 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2951 	perf_cgroup_event_enable(event, ctx);
2952 
2953 	if (!ctx->is_active)
2954 		return;
2955 
2956 	if (!event_filter_match(event)) {
2957 		ctx_sched_in(ctx, EVENT_TIME);
2958 		return;
2959 	}
2960 
2961 	/*
2962 	 * If the event is in a group and isn't the group leader,
2963 	 * then don't put it on unless the group is on.
2964 	 */
2965 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2966 		ctx_sched_in(ctx, EVENT_TIME);
2967 		return;
2968 	}
2969 
2970 	task_ctx = cpuctx->task_ctx;
2971 	if (ctx->task)
2972 		WARN_ON_ONCE(task_ctx != ctx);
2973 
2974 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2975 }
2976 
2977 /*
2978  * Enable an event.
2979  *
2980  * If event->ctx is a cloned context, callers must make sure that
2981  * every task struct that event->ctx->task could possibly point to
2982  * remains valid.  This condition is satisfied when called through
2983  * perf_event_for_each_child or perf_event_for_each as described
2984  * for perf_event_disable.
2985  */
_perf_event_enable(struct perf_event * event)2986 static void _perf_event_enable(struct perf_event *event)
2987 {
2988 	struct perf_event_context *ctx = event->ctx;
2989 
2990 	raw_spin_lock_irq(&ctx->lock);
2991 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2992 	    event->state <  PERF_EVENT_STATE_ERROR) {
2993 out:
2994 		raw_spin_unlock_irq(&ctx->lock);
2995 		return;
2996 	}
2997 
2998 	/*
2999 	 * If the event is in error state, clear that first.
3000 	 *
3001 	 * That way, if we see the event in error state below, we know that it
3002 	 * has gone back into error state, as distinct from the task having
3003 	 * been scheduled away before the cross-call arrived.
3004 	 */
3005 	if (event->state == PERF_EVENT_STATE_ERROR) {
3006 		/*
3007 		 * Detached SIBLING events cannot leave ERROR state.
3008 		 */
3009 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3010 		    event->group_leader == event)
3011 			goto out;
3012 
3013 		event->state = PERF_EVENT_STATE_OFF;
3014 	}
3015 	raw_spin_unlock_irq(&ctx->lock);
3016 
3017 	event_function_call(event, __perf_event_enable, NULL);
3018 }
3019 
3020 /*
3021  * See perf_event_disable();
3022  */
perf_event_enable(struct perf_event * event)3023 void perf_event_enable(struct perf_event *event)
3024 {
3025 	struct perf_event_context *ctx;
3026 
3027 	ctx = perf_event_ctx_lock(event);
3028 	_perf_event_enable(event);
3029 	perf_event_ctx_unlock(event, ctx);
3030 }
3031 EXPORT_SYMBOL_GPL(perf_event_enable);
3032 
3033 struct stop_event_data {
3034 	struct perf_event	*event;
3035 	unsigned int		restart;
3036 };
3037 
__perf_event_stop(void * info)3038 static int __perf_event_stop(void *info)
3039 {
3040 	struct stop_event_data *sd = info;
3041 	struct perf_event *event = sd->event;
3042 
3043 	/* if it's already INACTIVE, do nothing */
3044 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3045 		return 0;
3046 
3047 	/* matches smp_wmb() in event_sched_in() */
3048 	smp_rmb();
3049 
3050 	/*
3051 	 * There is a window with interrupts enabled before we get here,
3052 	 * so we need to check again lest we try to stop another CPU's event.
3053 	 */
3054 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3055 		return -EAGAIN;
3056 
3057 	event->pmu->stop(event, PERF_EF_UPDATE);
3058 
3059 	/*
3060 	 * May race with the actual stop (through perf_pmu_output_stop()),
3061 	 * but it is only used for events with AUX ring buffer, and such
3062 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3063 	 * see comments in perf_aux_output_begin().
3064 	 *
3065 	 * Since this is happening on an event-local CPU, no trace is lost
3066 	 * while restarting.
3067 	 */
3068 	if (sd->restart)
3069 		event->pmu->start(event, 0);
3070 
3071 	return 0;
3072 }
3073 
perf_event_stop(struct perf_event * event,int restart)3074 static int perf_event_stop(struct perf_event *event, int restart)
3075 {
3076 	struct stop_event_data sd = {
3077 		.event		= event,
3078 		.restart	= restart,
3079 	};
3080 	int ret = 0;
3081 
3082 	do {
3083 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3084 			return 0;
3085 
3086 		/* matches smp_wmb() in event_sched_in() */
3087 		smp_rmb();
3088 
3089 		/*
3090 		 * We only want to restart ACTIVE events, so if the event goes
3091 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3092 		 * fall through with ret==-ENXIO.
3093 		 */
3094 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3095 					__perf_event_stop, &sd);
3096 	} while (ret == -EAGAIN);
3097 
3098 	return ret;
3099 }
3100 
3101 /*
3102  * In order to contain the amount of racy and tricky in the address filter
3103  * configuration management, it is a two part process:
3104  *
3105  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3106  *      we update the addresses of corresponding vmas in
3107  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3108  * (p2) when an event is scheduled in (pmu::add), it calls
3109  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3110  *      if the generation has changed since the previous call.
3111  *
3112  * If (p1) happens while the event is active, we restart it to force (p2).
3113  *
3114  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3115  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3116  *     ioctl;
3117  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3118  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3119  *     for reading;
3120  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3121  *     of exec.
3122  */
perf_event_addr_filters_sync(struct perf_event * event)3123 void perf_event_addr_filters_sync(struct perf_event *event)
3124 {
3125 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3126 
3127 	if (!has_addr_filter(event))
3128 		return;
3129 
3130 	raw_spin_lock(&ifh->lock);
3131 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3132 		event->pmu->addr_filters_sync(event);
3133 		event->hw.addr_filters_gen = event->addr_filters_gen;
3134 	}
3135 	raw_spin_unlock(&ifh->lock);
3136 }
3137 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3138 
_perf_event_refresh(struct perf_event * event,int refresh)3139 static int _perf_event_refresh(struct perf_event *event, int refresh)
3140 {
3141 	/*
3142 	 * not supported on inherited events
3143 	 */
3144 	if (event->attr.inherit || !is_sampling_event(event))
3145 		return -EINVAL;
3146 
3147 	atomic_add(refresh, &event->event_limit);
3148 	_perf_event_enable(event);
3149 
3150 	return 0;
3151 }
3152 
3153 /*
3154  * See perf_event_disable()
3155  */
perf_event_refresh(struct perf_event * event,int refresh)3156 int perf_event_refresh(struct perf_event *event, int refresh)
3157 {
3158 	struct perf_event_context *ctx;
3159 	int ret;
3160 
3161 	ctx = perf_event_ctx_lock(event);
3162 	ret = _perf_event_refresh(event, refresh);
3163 	perf_event_ctx_unlock(event, ctx);
3164 
3165 	return ret;
3166 }
3167 EXPORT_SYMBOL_GPL(perf_event_refresh);
3168 
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)3169 static int perf_event_modify_breakpoint(struct perf_event *bp,
3170 					 struct perf_event_attr *attr)
3171 {
3172 	int err;
3173 
3174 	_perf_event_disable(bp);
3175 
3176 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3177 
3178 	if (!bp->attr.disabled)
3179 		_perf_event_enable(bp);
3180 
3181 	return err;
3182 }
3183 
3184 /*
3185  * Copy event-type-independent attributes that may be modified.
3186  */
perf_event_modify_copy_attr(struct perf_event_attr * to,const struct perf_event_attr * from)3187 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3188 					const struct perf_event_attr *from)
3189 {
3190 	to->sig_data = from->sig_data;
3191 }
3192 
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3193 static int perf_event_modify_attr(struct perf_event *event,
3194 				  struct perf_event_attr *attr)
3195 {
3196 	int (*func)(struct perf_event *, struct perf_event_attr *);
3197 	struct perf_event *child;
3198 	int err;
3199 
3200 	if (event->attr.type != attr->type)
3201 		return -EINVAL;
3202 
3203 	switch (event->attr.type) {
3204 	case PERF_TYPE_BREAKPOINT:
3205 		func = perf_event_modify_breakpoint;
3206 		break;
3207 	default:
3208 		/* Place holder for future additions. */
3209 		return -EOPNOTSUPP;
3210 	}
3211 
3212 	WARN_ON_ONCE(event->ctx->parent_ctx);
3213 
3214 	mutex_lock(&event->child_mutex);
3215 	/*
3216 	 * Event-type-independent attributes must be copied before event-type
3217 	 * modification, which will validate that final attributes match the
3218 	 * source attributes after all relevant attributes have been copied.
3219 	 */
3220 	perf_event_modify_copy_attr(&event->attr, attr);
3221 	err = func(event, attr);
3222 	if (err)
3223 		goto out;
3224 	list_for_each_entry(child, &event->child_list, child_list) {
3225 		perf_event_modify_copy_attr(&child->attr, attr);
3226 		err = func(child, attr);
3227 		if (err)
3228 			goto out;
3229 	}
3230 out:
3231 	mutex_unlock(&event->child_mutex);
3232 	return err;
3233 }
3234 
__pmu_ctx_sched_out(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3235 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3236 				enum event_type_t event_type)
3237 {
3238 	struct perf_event_context *ctx = pmu_ctx->ctx;
3239 	struct perf_event *event, *tmp;
3240 	struct pmu *pmu = pmu_ctx->pmu;
3241 
3242 	if (ctx->task && !ctx->is_active) {
3243 		struct perf_cpu_pmu_context *cpc;
3244 
3245 		cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3246 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3247 		cpc->task_epc = NULL;
3248 	}
3249 
3250 	if (!event_type)
3251 		return;
3252 
3253 	perf_pmu_disable(pmu);
3254 	if (event_type & EVENT_PINNED) {
3255 		list_for_each_entry_safe(event, tmp,
3256 					 &pmu_ctx->pinned_active,
3257 					 active_list)
3258 			group_sched_out(event, ctx);
3259 	}
3260 
3261 	if (event_type & EVENT_FLEXIBLE) {
3262 		list_for_each_entry_safe(event, tmp,
3263 					 &pmu_ctx->flexible_active,
3264 					 active_list)
3265 			group_sched_out(event, ctx);
3266 		/*
3267 		 * Since we cleared EVENT_FLEXIBLE, also clear
3268 		 * rotate_necessary, is will be reset by
3269 		 * ctx_flexible_sched_in() when needed.
3270 		 */
3271 		pmu_ctx->rotate_necessary = 0;
3272 	}
3273 	perf_pmu_enable(pmu);
3274 }
3275 
3276 static void
ctx_sched_out(struct perf_event_context * ctx,enum event_type_t event_type)3277 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3278 {
3279 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3280 	struct perf_event_pmu_context *pmu_ctx;
3281 	int is_active = ctx->is_active;
3282 	bool cgroup = event_type & EVENT_CGROUP;
3283 
3284 	event_type &= ~EVENT_CGROUP;
3285 
3286 	lockdep_assert_held(&ctx->lock);
3287 
3288 	if (likely(!ctx->nr_events)) {
3289 		/*
3290 		 * See __perf_remove_from_context().
3291 		 */
3292 		WARN_ON_ONCE(ctx->is_active);
3293 		if (ctx->task)
3294 			WARN_ON_ONCE(cpuctx->task_ctx);
3295 		return;
3296 	}
3297 
3298 	/*
3299 	 * Always update time if it was set; not only when it changes.
3300 	 * Otherwise we can 'forget' to update time for any but the last
3301 	 * context we sched out. For example:
3302 	 *
3303 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3304 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3305 	 *
3306 	 * would only update time for the pinned events.
3307 	 */
3308 	if (is_active & EVENT_TIME) {
3309 		/* update (and stop) ctx time */
3310 		update_context_time(ctx);
3311 		update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3312 		/*
3313 		 * CPU-release for the below ->is_active store,
3314 		 * see __load_acquire() in perf_event_time_now()
3315 		 */
3316 		barrier();
3317 	}
3318 
3319 	ctx->is_active &= ~event_type;
3320 	if (!(ctx->is_active & EVENT_ALL))
3321 		ctx->is_active = 0;
3322 
3323 	if (ctx->task) {
3324 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3325 		if (!ctx->is_active)
3326 			cpuctx->task_ctx = NULL;
3327 	}
3328 
3329 	is_active ^= ctx->is_active; /* changed bits */
3330 
3331 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3332 		if (cgroup && !pmu_ctx->nr_cgroups)
3333 			continue;
3334 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3335 	}
3336 }
3337 
3338 /*
3339  * Test whether two contexts are equivalent, i.e. whether they have both been
3340  * cloned from the same version of the same context.
3341  *
3342  * Equivalence is measured using a generation number in the context that is
3343  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3344  * and list_del_event().
3345  */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3346 static int context_equiv(struct perf_event_context *ctx1,
3347 			 struct perf_event_context *ctx2)
3348 {
3349 	lockdep_assert_held(&ctx1->lock);
3350 	lockdep_assert_held(&ctx2->lock);
3351 
3352 	/* Pinning disables the swap optimization */
3353 	if (ctx1->pin_count || ctx2->pin_count)
3354 		return 0;
3355 
3356 	/* If ctx1 is the parent of ctx2 */
3357 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3358 		return 1;
3359 
3360 	/* If ctx2 is the parent of ctx1 */
3361 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3362 		return 1;
3363 
3364 	/*
3365 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3366 	 * hierarchy, see perf_event_init_context().
3367 	 */
3368 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3369 			ctx1->parent_gen == ctx2->parent_gen)
3370 		return 1;
3371 
3372 	/* Unmatched */
3373 	return 0;
3374 }
3375 
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3376 static void __perf_event_sync_stat(struct perf_event *event,
3377 				     struct perf_event *next_event)
3378 {
3379 	u64 value;
3380 
3381 	if (!event->attr.inherit_stat)
3382 		return;
3383 
3384 	/*
3385 	 * Update the event value, we cannot use perf_event_read()
3386 	 * because we're in the middle of a context switch and have IRQs
3387 	 * disabled, which upsets smp_call_function_single(), however
3388 	 * we know the event must be on the current CPU, therefore we
3389 	 * don't need to use it.
3390 	 */
3391 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3392 		event->pmu->read(event);
3393 
3394 	perf_event_update_time(event);
3395 
3396 	/*
3397 	 * In order to keep per-task stats reliable we need to flip the event
3398 	 * values when we flip the contexts.
3399 	 */
3400 	value = local64_read(&next_event->count);
3401 	value = local64_xchg(&event->count, value);
3402 	local64_set(&next_event->count, value);
3403 
3404 	swap(event->total_time_enabled, next_event->total_time_enabled);
3405 	swap(event->total_time_running, next_event->total_time_running);
3406 
3407 	/*
3408 	 * Since we swizzled the values, update the user visible data too.
3409 	 */
3410 	perf_event_update_userpage(event);
3411 	perf_event_update_userpage(next_event);
3412 }
3413 
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3414 static void perf_event_sync_stat(struct perf_event_context *ctx,
3415 				   struct perf_event_context *next_ctx)
3416 {
3417 	struct perf_event *event, *next_event;
3418 
3419 	if (!ctx->nr_stat)
3420 		return;
3421 
3422 	update_context_time(ctx);
3423 
3424 	event = list_first_entry(&ctx->event_list,
3425 				   struct perf_event, event_entry);
3426 
3427 	next_event = list_first_entry(&next_ctx->event_list,
3428 					struct perf_event, event_entry);
3429 
3430 	while (&event->event_entry != &ctx->event_list &&
3431 	       &next_event->event_entry != &next_ctx->event_list) {
3432 
3433 		__perf_event_sync_stat(event, next_event);
3434 
3435 		event = list_next_entry(event, event_entry);
3436 		next_event = list_next_entry(next_event, event_entry);
3437 	}
3438 }
3439 
3440 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)	\
3441 	for (pos1 = list_first_entry(head1, typeof(*pos1), member),	\
3442 	     pos2 = list_first_entry(head2, typeof(*pos2), member);	\
3443 	     !list_entry_is_head(pos1, head1, member) &&		\
3444 	     !list_entry_is_head(pos2, head2, member);			\
3445 	     pos1 = list_next_entry(pos1, member),			\
3446 	     pos2 = list_next_entry(pos2, member))
3447 
perf_event_swap_task_ctx_data(struct perf_event_context * prev_ctx,struct perf_event_context * next_ctx)3448 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3449 					  struct perf_event_context *next_ctx)
3450 {
3451 	struct perf_event_pmu_context *prev_epc, *next_epc;
3452 
3453 	if (!prev_ctx->nr_task_data)
3454 		return;
3455 
3456 	double_list_for_each_entry(prev_epc, next_epc,
3457 				   &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3458 				   pmu_ctx_entry) {
3459 
3460 		if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3461 			continue;
3462 
3463 		/*
3464 		 * PMU specific parts of task perf context can require
3465 		 * additional synchronization. As an example of such
3466 		 * synchronization see implementation details of Intel
3467 		 * LBR call stack data profiling;
3468 		 */
3469 		if (prev_epc->pmu->swap_task_ctx)
3470 			prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3471 		else
3472 			swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3473 	}
3474 }
3475 
perf_ctx_sched_task_cb(struct perf_event_context * ctx,bool sched_in)3476 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3477 {
3478 	struct perf_event_pmu_context *pmu_ctx;
3479 	struct perf_cpu_pmu_context *cpc;
3480 
3481 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3482 		cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3483 
3484 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3485 			pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3486 	}
3487 }
3488 
3489 static void
perf_event_context_sched_out(struct task_struct * task,struct task_struct * next)3490 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3491 {
3492 	struct perf_event_context *ctx = task->perf_event_ctxp;
3493 	struct perf_event_context *next_ctx;
3494 	struct perf_event_context *parent, *next_parent;
3495 	int do_switch = 1;
3496 
3497 	if (likely(!ctx))
3498 		return;
3499 
3500 	rcu_read_lock();
3501 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3502 	if (!next_ctx)
3503 		goto unlock;
3504 
3505 	parent = rcu_dereference(ctx->parent_ctx);
3506 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3507 
3508 	/* If neither context have a parent context; they cannot be clones. */
3509 	if (!parent && !next_parent)
3510 		goto unlock;
3511 
3512 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3513 		/*
3514 		 * Looks like the two contexts are clones, so we might be
3515 		 * able to optimize the context switch.  We lock both
3516 		 * contexts and check that they are clones under the
3517 		 * lock (including re-checking that neither has been
3518 		 * uncloned in the meantime).  It doesn't matter which
3519 		 * order we take the locks because no other cpu could
3520 		 * be trying to lock both of these tasks.
3521 		 */
3522 		raw_spin_lock(&ctx->lock);
3523 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3524 		if (context_equiv(ctx, next_ctx)) {
3525 
3526 			perf_ctx_disable(ctx, false);
3527 
3528 			/* PMIs are disabled; ctx->nr_pending is stable. */
3529 			if (local_read(&ctx->nr_pending) ||
3530 			    local_read(&next_ctx->nr_pending)) {
3531 				/*
3532 				 * Must not swap out ctx when there's pending
3533 				 * events that rely on the ctx->task relation.
3534 				 */
3535 				raw_spin_unlock(&next_ctx->lock);
3536 				rcu_read_unlock();
3537 				goto inside_switch;
3538 			}
3539 
3540 			WRITE_ONCE(ctx->task, next);
3541 			WRITE_ONCE(next_ctx->task, task);
3542 
3543 			perf_ctx_sched_task_cb(ctx, false);
3544 			perf_event_swap_task_ctx_data(ctx, next_ctx);
3545 
3546 			perf_ctx_enable(ctx, false);
3547 
3548 			/*
3549 			 * RCU_INIT_POINTER here is safe because we've not
3550 			 * modified the ctx and the above modification of
3551 			 * ctx->task and ctx->task_ctx_data are immaterial
3552 			 * since those values are always verified under
3553 			 * ctx->lock which we're now holding.
3554 			 */
3555 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3556 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3557 
3558 			do_switch = 0;
3559 
3560 			perf_event_sync_stat(ctx, next_ctx);
3561 		}
3562 		raw_spin_unlock(&next_ctx->lock);
3563 		raw_spin_unlock(&ctx->lock);
3564 	}
3565 unlock:
3566 	rcu_read_unlock();
3567 
3568 	if (do_switch) {
3569 		raw_spin_lock(&ctx->lock);
3570 		perf_ctx_disable(ctx, false);
3571 
3572 inside_switch:
3573 		perf_ctx_sched_task_cb(ctx, false);
3574 		task_ctx_sched_out(ctx, EVENT_ALL);
3575 
3576 		perf_ctx_enable(ctx, false);
3577 		raw_spin_unlock(&ctx->lock);
3578 	}
3579 }
3580 
3581 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3582 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3583 
perf_sched_cb_dec(struct pmu * pmu)3584 void perf_sched_cb_dec(struct pmu *pmu)
3585 {
3586 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3587 
3588 	this_cpu_dec(perf_sched_cb_usages);
3589 	barrier();
3590 
3591 	if (!--cpc->sched_cb_usage)
3592 		list_del(&cpc->sched_cb_entry);
3593 }
3594 
3595 
perf_sched_cb_inc(struct pmu * pmu)3596 void perf_sched_cb_inc(struct pmu *pmu)
3597 {
3598 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3599 
3600 	if (!cpc->sched_cb_usage++)
3601 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3602 
3603 	barrier();
3604 	this_cpu_inc(perf_sched_cb_usages);
3605 }
3606 
3607 /*
3608  * This function provides the context switch callback to the lower code
3609  * layer. It is invoked ONLY when the context switch callback is enabled.
3610  *
3611  * This callback is relevant even to per-cpu events; for example multi event
3612  * PEBS requires this to provide PID/TID information. This requires we flush
3613  * all queued PEBS records before we context switch to a new task.
3614  */
__perf_pmu_sched_task(struct perf_cpu_pmu_context * cpc,bool sched_in)3615 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3616 {
3617 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3618 	struct pmu *pmu;
3619 
3620 	pmu = cpc->epc.pmu;
3621 
3622 	/* software PMUs will not have sched_task */
3623 	if (WARN_ON_ONCE(!pmu->sched_task))
3624 		return;
3625 
3626 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3627 	perf_pmu_disable(pmu);
3628 
3629 	pmu->sched_task(cpc->task_epc, sched_in);
3630 
3631 	perf_pmu_enable(pmu);
3632 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3633 }
3634 
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3635 static void perf_pmu_sched_task(struct task_struct *prev,
3636 				struct task_struct *next,
3637 				bool sched_in)
3638 {
3639 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3640 	struct perf_cpu_pmu_context *cpc;
3641 
3642 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3643 	if (prev == next || cpuctx->task_ctx)
3644 		return;
3645 
3646 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3647 		__perf_pmu_sched_task(cpc, sched_in);
3648 }
3649 
3650 static void perf_event_switch(struct task_struct *task,
3651 			      struct task_struct *next_prev, bool sched_in);
3652 
3653 /*
3654  * Called from scheduler to remove the events of the current task,
3655  * with interrupts disabled.
3656  *
3657  * We stop each event and update the event value in event->count.
3658  *
3659  * This does not protect us against NMI, but disable()
3660  * sets the disabled bit in the control field of event _before_
3661  * accessing the event control register. If a NMI hits, then it will
3662  * not restart the event.
3663  */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3664 void __perf_event_task_sched_out(struct task_struct *task,
3665 				 struct task_struct *next)
3666 {
3667 	if (__this_cpu_read(perf_sched_cb_usages))
3668 		perf_pmu_sched_task(task, next, false);
3669 
3670 	if (atomic_read(&nr_switch_events))
3671 		perf_event_switch(task, next, false);
3672 
3673 	perf_event_context_sched_out(task, next);
3674 
3675 	/*
3676 	 * if cgroup events exist on this CPU, then we need
3677 	 * to check if we have to switch out PMU state.
3678 	 * cgroup event are system-wide mode only
3679 	 */
3680 	perf_cgroup_switch(next);
3681 }
3682 
perf_less_group_idx(const void * l,const void * r)3683 static bool perf_less_group_idx(const void *l, const void *r)
3684 {
3685 	const struct perf_event *le = *(const struct perf_event **)l;
3686 	const struct perf_event *re = *(const struct perf_event **)r;
3687 
3688 	return le->group_index < re->group_index;
3689 }
3690 
swap_ptr(void * l,void * r)3691 static void swap_ptr(void *l, void *r)
3692 {
3693 	void **lp = l, **rp = r;
3694 
3695 	swap(*lp, *rp);
3696 }
3697 
3698 static const struct min_heap_callbacks perf_min_heap = {
3699 	.elem_size = sizeof(struct perf_event *),
3700 	.less = perf_less_group_idx,
3701 	.swp = swap_ptr,
3702 };
3703 
__heap_add(struct min_heap * heap,struct perf_event * event)3704 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3705 {
3706 	struct perf_event **itrs = heap->data;
3707 
3708 	if (event) {
3709 		itrs[heap->nr] = event;
3710 		heap->nr++;
3711 	}
3712 }
3713 
__link_epc(struct perf_event_pmu_context * pmu_ctx)3714 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3715 {
3716 	struct perf_cpu_pmu_context *cpc;
3717 
3718 	if (!pmu_ctx->ctx->task)
3719 		return;
3720 
3721 	cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3722 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3723 	cpc->task_epc = pmu_ctx;
3724 }
3725 
visit_groups_merge(struct perf_event_context * ctx,struct perf_event_groups * groups,int cpu,struct pmu * pmu,int (* func)(struct perf_event *,void *),void * data)3726 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3727 				struct perf_event_groups *groups, int cpu,
3728 				struct pmu *pmu,
3729 				int (*func)(struct perf_event *, void *),
3730 				void *data)
3731 {
3732 #ifdef CONFIG_CGROUP_PERF
3733 	struct cgroup_subsys_state *css = NULL;
3734 #endif
3735 	struct perf_cpu_context *cpuctx = NULL;
3736 	/* Space for per CPU and/or any CPU event iterators. */
3737 	struct perf_event *itrs[2];
3738 	struct min_heap event_heap;
3739 	struct perf_event **evt;
3740 	int ret;
3741 
3742 	if (pmu->filter && pmu->filter(pmu, cpu))
3743 		return 0;
3744 
3745 	if (!ctx->task) {
3746 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3747 		event_heap = (struct min_heap){
3748 			.data = cpuctx->heap,
3749 			.nr = 0,
3750 			.size = cpuctx->heap_size,
3751 		};
3752 
3753 		lockdep_assert_held(&cpuctx->ctx.lock);
3754 
3755 #ifdef CONFIG_CGROUP_PERF
3756 		if (cpuctx->cgrp)
3757 			css = &cpuctx->cgrp->css;
3758 #endif
3759 	} else {
3760 		event_heap = (struct min_heap){
3761 			.data = itrs,
3762 			.nr = 0,
3763 			.size = ARRAY_SIZE(itrs),
3764 		};
3765 		/* Events not within a CPU context may be on any CPU. */
3766 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3767 	}
3768 	evt = event_heap.data;
3769 
3770 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3771 
3772 #ifdef CONFIG_CGROUP_PERF
3773 	for (; css; css = css->parent)
3774 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3775 #endif
3776 
3777 	if (event_heap.nr) {
3778 		__link_epc((*evt)->pmu_ctx);
3779 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3780 	}
3781 
3782 	min_heapify_all(&event_heap, &perf_min_heap);
3783 
3784 	while (event_heap.nr) {
3785 		ret = func(*evt, data);
3786 		if (ret)
3787 			return ret;
3788 
3789 		*evt = perf_event_groups_next(*evt, pmu);
3790 		if (*evt)
3791 			min_heapify(&event_heap, 0, &perf_min_heap);
3792 		else
3793 			min_heap_pop(&event_heap, &perf_min_heap);
3794 	}
3795 
3796 	return 0;
3797 }
3798 
3799 /*
3800  * Because the userpage is strictly per-event (there is no concept of context,
3801  * so there cannot be a context indirection), every userpage must be updated
3802  * when context time starts :-(
3803  *
3804  * IOW, we must not miss EVENT_TIME edges.
3805  */
event_update_userpage(struct perf_event * event)3806 static inline bool event_update_userpage(struct perf_event *event)
3807 {
3808 	if (likely(!atomic_read(&event->mmap_count)))
3809 		return false;
3810 
3811 	perf_event_update_time(event);
3812 	perf_event_update_userpage(event);
3813 
3814 	return true;
3815 }
3816 
group_update_userpage(struct perf_event * group_event)3817 static inline void group_update_userpage(struct perf_event *group_event)
3818 {
3819 	struct perf_event *event;
3820 
3821 	if (!event_update_userpage(group_event))
3822 		return;
3823 
3824 	for_each_sibling_event(event, group_event)
3825 		event_update_userpage(event);
3826 }
3827 
merge_sched_in(struct perf_event * event,void * data)3828 static int merge_sched_in(struct perf_event *event, void *data)
3829 {
3830 	struct perf_event_context *ctx = event->ctx;
3831 	int *can_add_hw = data;
3832 
3833 	if (event->state <= PERF_EVENT_STATE_OFF)
3834 		return 0;
3835 
3836 	if (!event_filter_match(event))
3837 		return 0;
3838 
3839 	if (group_can_go_on(event, *can_add_hw)) {
3840 		if (!group_sched_in(event, ctx))
3841 			list_add_tail(&event->active_list, get_event_list(event));
3842 	}
3843 
3844 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3845 		*can_add_hw = 0;
3846 		if (event->attr.pinned) {
3847 			perf_cgroup_event_disable(event, ctx);
3848 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3849 		} else {
3850 			struct perf_cpu_pmu_context *cpc;
3851 
3852 			event->pmu_ctx->rotate_necessary = 1;
3853 			cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3854 			perf_mux_hrtimer_restart(cpc);
3855 			group_update_userpage(event);
3856 		}
3857 	}
3858 
3859 	return 0;
3860 }
3861 
pmu_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,struct pmu * pmu)3862 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3863 				struct perf_event_groups *groups,
3864 				struct pmu *pmu)
3865 {
3866 	int can_add_hw = 1;
3867 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3868 			   merge_sched_in, &can_add_hw);
3869 }
3870 
ctx_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,bool cgroup)3871 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3872 				struct perf_event_groups *groups,
3873 				bool cgroup)
3874 {
3875 	struct perf_event_pmu_context *pmu_ctx;
3876 
3877 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3878 		if (cgroup && !pmu_ctx->nr_cgroups)
3879 			continue;
3880 		pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3881 	}
3882 }
3883 
__pmu_ctx_sched_in(struct perf_event_context * ctx,struct pmu * pmu)3884 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3885 			       struct pmu *pmu)
3886 {
3887 	pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3888 }
3889 
3890 static void
ctx_sched_in(struct perf_event_context * ctx,enum event_type_t event_type)3891 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3892 {
3893 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3894 	int is_active = ctx->is_active;
3895 	bool cgroup = event_type & EVENT_CGROUP;
3896 
3897 	event_type &= ~EVENT_CGROUP;
3898 
3899 	lockdep_assert_held(&ctx->lock);
3900 
3901 	if (likely(!ctx->nr_events))
3902 		return;
3903 
3904 	if (!(is_active & EVENT_TIME)) {
3905 		/* start ctx time */
3906 		__update_context_time(ctx, false);
3907 		perf_cgroup_set_timestamp(cpuctx);
3908 		/*
3909 		 * CPU-release for the below ->is_active store,
3910 		 * see __load_acquire() in perf_event_time_now()
3911 		 */
3912 		barrier();
3913 	}
3914 
3915 	ctx->is_active |= (event_type | EVENT_TIME);
3916 	if (ctx->task) {
3917 		if (!is_active)
3918 			cpuctx->task_ctx = ctx;
3919 		else
3920 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3921 	}
3922 
3923 	is_active ^= ctx->is_active; /* changed bits */
3924 
3925 	/*
3926 	 * First go through the list and put on any pinned groups
3927 	 * in order to give them the best chance of going on.
3928 	 */
3929 	if (is_active & EVENT_PINNED)
3930 		ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3931 
3932 	/* Then walk through the lower prio flexible groups */
3933 	if (is_active & EVENT_FLEXIBLE)
3934 		ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3935 }
3936 
perf_event_context_sched_in(struct task_struct * task)3937 static void perf_event_context_sched_in(struct task_struct *task)
3938 {
3939 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3940 	struct perf_event_context *ctx;
3941 
3942 	rcu_read_lock();
3943 	ctx = rcu_dereference(task->perf_event_ctxp);
3944 	if (!ctx)
3945 		goto rcu_unlock;
3946 
3947 	if (cpuctx->task_ctx == ctx) {
3948 		perf_ctx_lock(cpuctx, ctx);
3949 		perf_ctx_disable(ctx, false);
3950 
3951 		perf_ctx_sched_task_cb(ctx, true);
3952 
3953 		perf_ctx_enable(ctx, false);
3954 		perf_ctx_unlock(cpuctx, ctx);
3955 		goto rcu_unlock;
3956 	}
3957 
3958 	perf_ctx_lock(cpuctx, ctx);
3959 	/*
3960 	 * We must check ctx->nr_events while holding ctx->lock, such
3961 	 * that we serialize against perf_install_in_context().
3962 	 */
3963 	if (!ctx->nr_events)
3964 		goto unlock;
3965 
3966 	perf_ctx_disable(ctx, false);
3967 	/*
3968 	 * We want to keep the following priority order:
3969 	 * cpu pinned (that don't need to move), task pinned,
3970 	 * cpu flexible, task flexible.
3971 	 *
3972 	 * However, if task's ctx is not carrying any pinned
3973 	 * events, no need to flip the cpuctx's events around.
3974 	 */
3975 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3976 		perf_ctx_disable(&cpuctx->ctx, false);
3977 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3978 	}
3979 
3980 	perf_event_sched_in(cpuctx, ctx);
3981 
3982 	perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3983 
3984 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3985 		perf_ctx_enable(&cpuctx->ctx, false);
3986 
3987 	perf_ctx_enable(ctx, false);
3988 
3989 unlock:
3990 	perf_ctx_unlock(cpuctx, ctx);
3991 rcu_unlock:
3992 	rcu_read_unlock();
3993 }
3994 
3995 /*
3996  * Called from scheduler to add the events of the current task
3997  * with interrupts disabled.
3998  *
3999  * We restore the event value and then enable it.
4000  *
4001  * This does not protect us against NMI, but enable()
4002  * sets the enabled bit in the control field of event _before_
4003  * accessing the event control register. If a NMI hits, then it will
4004  * keep the event running.
4005  */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)4006 void __perf_event_task_sched_in(struct task_struct *prev,
4007 				struct task_struct *task)
4008 {
4009 	perf_event_context_sched_in(task);
4010 
4011 	if (atomic_read(&nr_switch_events))
4012 		perf_event_switch(task, prev, true);
4013 
4014 	if (__this_cpu_read(perf_sched_cb_usages))
4015 		perf_pmu_sched_task(prev, task, true);
4016 }
4017 
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)4018 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4019 {
4020 	u64 frequency = event->attr.sample_freq;
4021 	u64 sec = NSEC_PER_SEC;
4022 	u64 divisor, dividend;
4023 
4024 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4025 
4026 	count_fls = fls64(count);
4027 	nsec_fls = fls64(nsec);
4028 	frequency_fls = fls64(frequency);
4029 	sec_fls = 30;
4030 
4031 	/*
4032 	 * We got @count in @nsec, with a target of sample_freq HZ
4033 	 * the target period becomes:
4034 	 *
4035 	 *             @count * 10^9
4036 	 * period = -------------------
4037 	 *          @nsec * sample_freq
4038 	 *
4039 	 */
4040 
4041 	/*
4042 	 * Reduce accuracy by one bit such that @a and @b converge
4043 	 * to a similar magnitude.
4044 	 */
4045 #define REDUCE_FLS(a, b)		\
4046 do {					\
4047 	if (a##_fls > b##_fls) {	\
4048 		a >>= 1;		\
4049 		a##_fls--;		\
4050 	} else {			\
4051 		b >>= 1;		\
4052 		b##_fls--;		\
4053 	}				\
4054 } while (0)
4055 
4056 	/*
4057 	 * Reduce accuracy until either term fits in a u64, then proceed with
4058 	 * the other, so that finally we can do a u64/u64 division.
4059 	 */
4060 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4061 		REDUCE_FLS(nsec, frequency);
4062 		REDUCE_FLS(sec, count);
4063 	}
4064 
4065 	if (count_fls + sec_fls > 64) {
4066 		divisor = nsec * frequency;
4067 
4068 		while (count_fls + sec_fls > 64) {
4069 			REDUCE_FLS(count, sec);
4070 			divisor >>= 1;
4071 		}
4072 
4073 		dividend = count * sec;
4074 	} else {
4075 		dividend = count * sec;
4076 
4077 		while (nsec_fls + frequency_fls > 64) {
4078 			REDUCE_FLS(nsec, frequency);
4079 			dividend >>= 1;
4080 		}
4081 
4082 		divisor = nsec * frequency;
4083 	}
4084 
4085 	if (!divisor)
4086 		return dividend;
4087 
4088 	return div64_u64(dividend, divisor);
4089 }
4090 
4091 static DEFINE_PER_CPU(int, perf_throttled_count);
4092 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4093 
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)4094 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4095 {
4096 	struct hw_perf_event *hwc = &event->hw;
4097 	s64 period, sample_period;
4098 	s64 delta;
4099 
4100 	period = perf_calculate_period(event, nsec, count);
4101 
4102 	delta = (s64)(period - hwc->sample_period);
4103 	delta = (delta + 7) / 8; /* low pass filter */
4104 
4105 	sample_period = hwc->sample_period + delta;
4106 
4107 	if (!sample_period)
4108 		sample_period = 1;
4109 
4110 	hwc->sample_period = sample_period;
4111 
4112 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4113 		if (disable)
4114 			event->pmu->stop(event, PERF_EF_UPDATE);
4115 
4116 		local64_set(&hwc->period_left, 0);
4117 
4118 		if (disable)
4119 			event->pmu->start(event, PERF_EF_RELOAD);
4120 	}
4121 }
4122 
4123 /*
4124  * combine freq adjustment with unthrottling to avoid two passes over the
4125  * events. At the same time, make sure, having freq events does not change
4126  * the rate of unthrottling as that would introduce bias.
4127  */
4128 static void
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,bool unthrottle)4129 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4130 {
4131 	struct perf_event *event;
4132 	struct hw_perf_event *hwc;
4133 	u64 now, period = TICK_NSEC;
4134 	s64 delta;
4135 
4136 	/*
4137 	 * only need to iterate over all events iff:
4138 	 * - context have events in frequency mode (needs freq adjust)
4139 	 * - there are events to unthrottle on this cpu
4140 	 */
4141 	if (!(ctx->nr_freq || unthrottle))
4142 		return;
4143 
4144 	raw_spin_lock(&ctx->lock);
4145 
4146 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4147 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4148 			continue;
4149 
4150 		// XXX use visit thingy to avoid the -1,cpu match
4151 		if (!event_filter_match(event))
4152 			continue;
4153 
4154 		perf_pmu_disable(event->pmu);
4155 
4156 		hwc = &event->hw;
4157 
4158 		if (hwc->interrupts == MAX_INTERRUPTS) {
4159 			hwc->interrupts = 0;
4160 			perf_log_throttle(event, 1);
4161 			event->pmu->start(event, 0);
4162 		}
4163 
4164 		if (!event->attr.freq || !event->attr.sample_freq)
4165 			goto next;
4166 
4167 		/*
4168 		 * stop the event and update event->count
4169 		 */
4170 		event->pmu->stop(event, PERF_EF_UPDATE);
4171 
4172 		now = local64_read(&event->count);
4173 		delta = now - hwc->freq_count_stamp;
4174 		hwc->freq_count_stamp = now;
4175 
4176 		/*
4177 		 * restart the event
4178 		 * reload only if value has changed
4179 		 * we have stopped the event so tell that
4180 		 * to perf_adjust_period() to avoid stopping it
4181 		 * twice.
4182 		 */
4183 		if (delta > 0)
4184 			perf_adjust_period(event, period, delta, false);
4185 
4186 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4187 	next:
4188 		perf_pmu_enable(event->pmu);
4189 	}
4190 
4191 	raw_spin_unlock(&ctx->lock);
4192 }
4193 
4194 /*
4195  * Move @event to the tail of the @ctx's elegible events.
4196  */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)4197 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4198 {
4199 	/*
4200 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4201 	 * disabled by the inheritance code.
4202 	 */
4203 	if (ctx->rotate_disable)
4204 		return;
4205 
4206 	perf_event_groups_delete(&ctx->flexible_groups, event);
4207 	perf_event_groups_insert(&ctx->flexible_groups, event);
4208 }
4209 
4210 /* pick an event from the flexible_groups to rotate */
4211 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_pmu_context * pmu_ctx)4212 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4213 {
4214 	struct perf_event *event;
4215 	struct rb_node *node;
4216 	struct rb_root *tree;
4217 	struct __group_key key = {
4218 		.pmu = pmu_ctx->pmu,
4219 	};
4220 
4221 	/* pick the first active flexible event */
4222 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4223 					 struct perf_event, active_list);
4224 	if (event)
4225 		goto out;
4226 
4227 	/* if no active flexible event, pick the first event */
4228 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4229 
4230 	if (!pmu_ctx->ctx->task) {
4231 		key.cpu = smp_processor_id();
4232 
4233 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4234 		if (node)
4235 			event = __node_2_pe(node);
4236 		goto out;
4237 	}
4238 
4239 	key.cpu = -1;
4240 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4241 	if (node) {
4242 		event = __node_2_pe(node);
4243 		goto out;
4244 	}
4245 
4246 	key.cpu = smp_processor_id();
4247 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4248 	if (node)
4249 		event = __node_2_pe(node);
4250 
4251 out:
4252 	/*
4253 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4254 	 * finds there are unschedulable events, it will set it again.
4255 	 */
4256 	pmu_ctx->rotate_necessary = 0;
4257 
4258 	return event;
4259 }
4260 
perf_rotate_context(struct perf_cpu_pmu_context * cpc)4261 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4262 {
4263 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4264 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4265 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4266 	int cpu_rotate, task_rotate;
4267 	struct pmu *pmu;
4268 
4269 	/*
4270 	 * Since we run this from IRQ context, nobody can install new
4271 	 * events, thus the event count values are stable.
4272 	 */
4273 
4274 	cpu_epc = &cpc->epc;
4275 	pmu = cpu_epc->pmu;
4276 	task_epc = cpc->task_epc;
4277 
4278 	cpu_rotate = cpu_epc->rotate_necessary;
4279 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4280 
4281 	if (!(cpu_rotate || task_rotate))
4282 		return false;
4283 
4284 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4285 	perf_pmu_disable(pmu);
4286 
4287 	trace_android_rvh_perf_rotate_context(cpc);
4288 
4289 	if (task_rotate)
4290 		task_event = ctx_event_to_rotate(task_epc);
4291 	if (cpu_rotate)
4292 		cpu_event = ctx_event_to_rotate(cpu_epc);
4293 
4294 	/*
4295 	 * As per the order given at ctx_resched() first 'pop' task flexible
4296 	 * and then, if needed CPU flexible.
4297 	 */
4298 	if (task_event || (task_epc && cpu_event)) {
4299 		update_context_time(task_epc->ctx);
4300 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4301 	}
4302 
4303 	if (cpu_event) {
4304 		update_context_time(&cpuctx->ctx);
4305 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4306 		rotate_ctx(&cpuctx->ctx, cpu_event);
4307 		__pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4308 	}
4309 
4310 	if (task_event)
4311 		rotate_ctx(task_epc->ctx, task_event);
4312 
4313 	if (task_event || (task_epc && cpu_event))
4314 		__pmu_ctx_sched_in(task_epc->ctx, pmu);
4315 
4316 	perf_pmu_enable(pmu);
4317 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4318 
4319 	return true;
4320 }
4321 
perf_event_task_tick(void)4322 void perf_event_task_tick(void)
4323 {
4324 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4325 	struct perf_event_context *ctx;
4326 	int throttled;
4327 
4328 	lockdep_assert_irqs_disabled();
4329 
4330 	__this_cpu_inc(perf_throttled_seq);
4331 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4332 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4333 
4334 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4335 
4336 	rcu_read_lock();
4337 	ctx = rcu_dereference(current->perf_event_ctxp);
4338 	if (ctx)
4339 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4340 	rcu_read_unlock();
4341 }
4342 
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)4343 static int event_enable_on_exec(struct perf_event *event,
4344 				struct perf_event_context *ctx)
4345 {
4346 	if (!event->attr.enable_on_exec)
4347 		return 0;
4348 
4349 	event->attr.enable_on_exec = 0;
4350 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4351 		return 0;
4352 
4353 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4354 
4355 	return 1;
4356 }
4357 
4358 /*
4359  * Enable all of a task's events that have been marked enable-on-exec.
4360  * This expects task == current.
4361  */
perf_event_enable_on_exec(struct perf_event_context * ctx)4362 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4363 {
4364 	struct perf_event_context *clone_ctx = NULL;
4365 	enum event_type_t event_type = 0;
4366 	struct perf_cpu_context *cpuctx;
4367 	struct perf_event *event;
4368 	unsigned long flags;
4369 	int enabled = 0;
4370 
4371 	local_irq_save(flags);
4372 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4373 		goto out;
4374 
4375 	if (!ctx->nr_events)
4376 		goto out;
4377 
4378 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4379 	perf_ctx_lock(cpuctx, ctx);
4380 	ctx_sched_out(ctx, EVENT_TIME);
4381 
4382 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4383 		enabled |= event_enable_on_exec(event, ctx);
4384 		event_type |= get_event_type(event);
4385 	}
4386 
4387 	/*
4388 	 * Unclone and reschedule this context if we enabled any event.
4389 	 */
4390 	if (enabled) {
4391 		clone_ctx = unclone_ctx(ctx);
4392 		ctx_resched(cpuctx, ctx, event_type);
4393 	} else {
4394 		ctx_sched_in(ctx, EVENT_TIME);
4395 	}
4396 	perf_ctx_unlock(cpuctx, ctx);
4397 
4398 out:
4399 	local_irq_restore(flags);
4400 
4401 	if (clone_ctx)
4402 		put_ctx(clone_ctx);
4403 }
4404 
4405 static void perf_remove_from_owner(struct perf_event *event);
4406 static void perf_event_exit_event(struct perf_event *event,
4407 				  struct perf_event_context *ctx);
4408 
4409 /*
4410  * Removes all events from the current task that have been marked
4411  * remove-on-exec, and feeds their values back to parent events.
4412  */
perf_event_remove_on_exec(struct perf_event_context * ctx)4413 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4414 {
4415 	struct perf_event_context *clone_ctx = NULL;
4416 	struct perf_event *event, *next;
4417 	unsigned long flags;
4418 	bool modified = false;
4419 
4420 	mutex_lock(&ctx->mutex);
4421 
4422 	if (WARN_ON_ONCE(ctx->task != current))
4423 		goto unlock;
4424 
4425 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4426 		if (!event->attr.remove_on_exec)
4427 			continue;
4428 
4429 		if (!is_kernel_event(event))
4430 			perf_remove_from_owner(event);
4431 
4432 		modified = true;
4433 
4434 		perf_event_exit_event(event, ctx);
4435 	}
4436 
4437 	raw_spin_lock_irqsave(&ctx->lock, flags);
4438 	if (modified)
4439 		clone_ctx = unclone_ctx(ctx);
4440 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4441 
4442 unlock:
4443 	mutex_unlock(&ctx->mutex);
4444 
4445 	if (clone_ctx)
4446 		put_ctx(clone_ctx);
4447 }
4448 
4449 struct perf_read_data {
4450 	struct perf_event *event;
4451 	bool group;
4452 	int ret;
4453 };
4454 
__perf_event_read_cpu(struct perf_event * event,int event_cpu)4455 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4456 {
4457 	u16 local_pkg, event_pkg;
4458 
4459 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4460 		int local_cpu = smp_processor_id();
4461 
4462 		event_pkg = topology_physical_package_id(event_cpu);
4463 		local_pkg = topology_physical_package_id(local_cpu);
4464 
4465 		if (event_pkg == local_pkg)
4466 			return local_cpu;
4467 	}
4468 
4469 	return event_cpu;
4470 }
4471 
4472 /*
4473  * Cross CPU call to read the hardware event
4474  */
__perf_event_read(void * info)4475 static void __perf_event_read(void *info)
4476 {
4477 	struct perf_read_data *data = info;
4478 	struct perf_event *sub, *event = data->event;
4479 	struct perf_event_context *ctx = event->ctx;
4480 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4481 	struct pmu *pmu = event->pmu;
4482 
4483 	/*
4484 	 * If this is a task context, we need to check whether it is
4485 	 * the current task context of this cpu.  If not it has been
4486 	 * scheduled out before the smp call arrived.  In that case
4487 	 * event->count would have been updated to a recent sample
4488 	 * when the event was scheduled out.
4489 	 */
4490 	if (ctx->task && cpuctx->task_ctx != ctx)
4491 		return;
4492 
4493 	raw_spin_lock(&ctx->lock);
4494 	if (ctx->is_active & EVENT_TIME) {
4495 		update_context_time(ctx);
4496 		update_cgrp_time_from_event(event);
4497 	}
4498 
4499 	perf_event_update_time(event);
4500 	if (data->group)
4501 		perf_event_update_sibling_time(event);
4502 
4503 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4504 		goto unlock;
4505 
4506 	if (!data->group) {
4507 		pmu->read(event);
4508 		data->ret = 0;
4509 		goto unlock;
4510 	}
4511 
4512 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4513 
4514 	pmu->read(event);
4515 
4516 	for_each_sibling_event(sub, event) {
4517 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4518 			/*
4519 			 * Use sibling's PMU rather than @event's since
4520 			 * sibling could be on different (eg: software) PMU.
4521 			 */
4522 			sub->pmu->read(sub);
4523 		}
4524 	}
4525 
4526 	data->ret = pmu->commit_txn(pmu);
4527 
4528 unlock:
4529 	raw_spin_unlock(&ctx->lock);
4530 }
4531 
perf_event_count(struct perf_event * event)4532 static inline u64 perf_event_count(struct perf_event *event)
4533 {
4534 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4535 }
4536 
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4537 static void calc_timer_values(struct perf_event *event,
4538 				u64 *now,
4539 				u64 *enabled,
4540 				u64 *running)
4541 {
4542 	u64 ctx_time;
4543 
4544 	*now = perf_clock();
4545 	ctx_time = perf_event_time_now(event, *now);
4546 	__perf_update_times(event, ctx_time, enabled, running);
4547 }
4548 
4549 /*
4550  * NMI-safe method to read a local event, that is an event that
4551  * is:
4552  *   - either for the current task, or for this CPU
4553  *   - does not have inherit set, for inherited task events
4554  *     will not be local and we cannot read them atomically
4555  *   - must not have a pmu::count method
4556  */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4557 int perf_event_read_local(struct perf_event *event, u64 *value,
4558 			  u64 *enabled, u64 *running)
4559 {
4560 	unsigned long flags;
4561 	int ret = 0;
4562 
4563 	/*
4564 	 * Disabling interrupts avoids all counter scheduling (context
4565 	 * switches, timer based rotation and IPIs).
4566 	 */
4567 	local_irq_save(flags);
4568 
4569 	/*
4570 	 * It must not be an event with inherit set, we cannot read
4571 	 * all child counters from atomic context.
4572 	 */
4573 	if (event->attr.inherit) {
4574 		ret = -EOPNOTSUPP;
4575 		goto out;
4576 	}
4577 
4578 	/* If this is a per-task event, it must be for current */
4579 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4580 	    event->hw.target != current) {
4581 		ret = -EINVAL;
4582 		goto out;
4583 	}
4584 
4585 	/* If this is a per-CPU event, it must be for this CPU */
4586 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4587 	    event->cpu != smp_processor_id()) {
4588 		ret = -EINVAL;
4589 		goto out;
4590 	}
4591 
4592 	/* If this is a pinned event it must be running on this CPU */
4593 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4594 		ret = -EBUSY;
4595 		goto out;
4596 	}
4597 
4598 	/*
4599 	 * If the event is currently on this CPU, its either a per-task event,
4600 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4601 	 * oncpu == -1).
4602 	 */
4603 	if (event->oncpu == smp_processor_id())
4604 		event->pmu->read(event);
4605 
4606 	*value = local64_read(&event->count);
4607 	if (enabled || running) {
4608 		u64 __enabled, __running, __now;
4609 
4610 		calc_timer_values(event, &__now, &__enabled, &__running);
4611 		if (enabled)
4612 			*enabled = __enabled;
4613 		if (running)
4614 			*running = __running;
4615 	}
4616 out:
4617 	local_irq_restore(flags);
4618 
4619 	return ret;
4620 }
4621 EXPORT_SYMBOL_GPL(perf_event_read_local);
4622 
perf_event_read(struct perf_event * event,bool group)4623 static int perf_event_read(struct perf_event *event, bool group)
4624 {
4625 	enum perf_event_state state = READ_ONCE(event->state);
4626 	int event_cpu, ret = 0;
4627 
4628 	/*
4629 	 * If event is enabled and currently active on a CPU, update the
4630 	 * value in the event structure:
4631 	 */
4632 again:
4633 	if (state == PERF_EVENT_STATE_ACTIVE) {
4634 		struct perf_read_data data;
4635 
4636 		/*
4637 		 * Orders the ->state and ->oncpu loads such that if we see
4638 		 * ACTIVE we must also see the right ->oncpu.
4639 		 *
4640 		 * Matches the smp_wmb() from event_sched_in().
4641 		 */
4642 		smp_rmb();
4643 
4644 		event_cpu = READ_ONCE(event->oncpu);
4645 		if ((unsigned)event_cpu >= nr_cpu_ids)
4646 			return 0;
4647 
4648 		data = (struct perf_read_data){
4649 			.event = event,
4650 			.group = group,
4651 			.ret = 0,
4652 		};
4653 
4654 		preempt_disable();
4655 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4656 
4657 		/*
4658 		 * Purposely ignore the smp_call_function_single() return
4659 		 * value.
4660 		 *
4661 		 * If event_cpu isn't a valid CPU it means the event got
4662 		 * scheduled out and that will have updated the event count.
4663 		 *
4664 		 * Therefore, either way, we'll have an up-to-date event count
4665 		 * after this.
4666 		 */
4667 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4668 		preempt_enable();
4669 		ret = data.ret;
4670 
4671 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4672 		struct perf_event_context *ctx = event->ctx;
4673 		unsigned long flags;
4674 
4675 		raw_spin_lock_irqsave(&ctx->lock, flags);
4676 		state = event->state;
4677 		if (state != PERF_EVENT_STATE_INACTIVE) {
4678 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4679 			goto again;
4680 		}
4681 
4682 		/*
4683 		 * May read while context is not active (e.g., thread is
4684 		 * blocked), in that case we cannot update context time
4685 		 */
4686 		if (ctx->is_active & EVENT_TIME) {
4687 			update_context_time(ctx);
4688 			update_cgrp_time_from_event(event);
4689 		}
4690 
4691 		perf_event_update_time(event);
4692 		if (group)
4693 			perf_event_update_sibling_time(event);
4694 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4695 	}
4696 
4697 	return ret;
4698 }
4699 
4700 /*
4701  * Initialize the perf_event context in a task_struct:
4702  */
__perf_event_init_context(struct perf_event_context * ctx)4703 static void __perf_event_init_context(struct perf_event_context *ctx)
4704 {
4705 	raw_spin_lock_init(&ctx->lock);
4706 	mutex_init(&ctx->mutex);
4707 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4708 	perf_event_groups_init(&ctx->pinned_groups);
4709 	perf_event_groups_init(&ctx->flexible_groups);
4710 	INIT_LIST_HEAD(&ctx->event_list);
4711 	refcount_set(&ctx->refcount, 1);
4712 }
4713 
4714 static void
__perf_init_event_pmu_context(struct perf_event_pmu_context * epc,struct pmu * pmu)4715 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4716 {
4717 	epc->pmu = pmu;
4718 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4719 	INIT_LIST_HEAD(&epc->pinned_active);
4720 	INIT_LIST_HEAD(&epc->flexible_active);
4721 	atomic_set(&epc->refcount, 1);
4722 }
4723 
4724 static struct perf_event_context *
alloc_perf_context(struct task_struct * task)4725 alloc_perf_context(struct task_struct *task)
4726 {
4727 	struct perf_event_context *ctx;
4728 
4729 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4730 	if (!ctx)
4731 		return NULL;
4732 
4733 	__perf_event_init_context(ctx);
4734 	if (task)
4735 		ctx->task = get_task_struct(task);
4736 
4737 	return ctx;
4738 }
4739 
4740 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4741 find_lively_task_by_vpid(pid_t vpid)
4742 {
4743 	struct task_struct *task;
4744 
4745 	rcu_read_lock();
4746 	if (!vpid)
4747 		task = current;
4748 	else
4749 		task = find_task_by_vpid(vpid);
4750 	if (task)
4751 		get_task_struct(task);
4752 	rcu_read_unlock();
4753 
4754 	if (!task)
4755 		return ERR_PTR(-ESRCH);
4756 
4757 	return task;
4758 }
4759 
4760 /*
4761  * Returns a matching context with refcount and pincount.
4762  */
4763 static struct perf_event_context *
find_get_context(struct task_struct * task,struct perf_event * event)4764 find_get_context(struct task_struct *task, struct perf_event *event)
4765 {
4766 	struct perf_event_context *ctx, *clone_ctx = NULL;
4767 	struct perf_cpu_context *cpuctx;
4768 	unsigned long flags;
4769 	int err;
4770 
4771 	if (!task) {
4772 		/* Must be root to operate on a CPU event: */
4773 		err = perf_allow_cpu(&event->attr);
4774 		if (err)
4775 			return ERR_PTR(err);
4776 
4777 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4778 		ctx = &cpuctx->ctx;
4779 		get_ctx(ctx);
4780 		raw_spin_lock_irqsave(&ctx->lock, flags);
4781 		++ctx->pin_count;
4782 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4783 
4784 		return ctx;
4785 	}
4786 
4787 	err = -EINVAL;
4788 retry:
4789 	ctx = perf_lock_task_context(task, &flags);
4790 	if (ctx) {
4791 		clone_ctx = unclone_ctx(ctx);
4792 		++ctx->pin_count;
4793 
4794 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4795 
4796 		if (clone_ctx)
4797 			put_ctx(clone_ctx);
4798 	} else {
4799 		ctx = alloc_perf_context(task);
4800 		err = -ENOMEM;
4801 		if (!ctx)
4802 			goto errout;
4803 
4804 		err = 0;
4805 		mutex_lock(&task->perf_event_mutex);
4806 		/*
4807 		 * If it has already passed perf_event_exit_task().
4808 		 * we must see PF_EXITING, it takes this mutex too.
4809 		 */
4810 		if (task->flags & PF_EXITING)
4811 			err = -ESRCH;
4812 		else if (task->perf_event_ctxp)
4813 			err = -EAGAIN;
4814 		else {
4815 			get_ctx(ctx);
4816 			++ctx->pin_count;
4817 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4818 		}
4819 		mutex_unlock(&task->perf_event_mutex);
4820 
4821 		if (unlikely(err)) {
4822 			put_ctx(ctx);
4823 
4824 			if (err == -EAGAIN)
4825 				goto retry;
4826 			goto errout;
4827 		}
4828 	}
4829 
4830 	return ctx;
4831 
4832 errout:
4833 	return ERR_PTR(err);
4834 }
4835 
4836 static struct perf_event_pmu_context *
find_get_pmu_context(struct pmu * pmu,struct perf_event_context * ctx,struct perf_event * event)4837 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4838 		     struct perf_event *event)
4839 {
4840 	struct perf_event_pmu_context *new = NULL, *epc;
4841 	void *task_ctx_data = NULL;
4842 
4843 	if (!ctx->task) {
4844 		/*
4845 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4846 		 * relies on the fact that find_get_pmu_context() cannot fail
4847 		 * for CPU contexts.
4848 		 */
4849 		struct perf_cpu_pmu_context *cpc;
4850 
4851 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4852 		epc = &cpc->epc;
4853 		raw_spin_lock_irq(&ctx->lock);
4854 		if (!epc->ctx) {
4855 			atomic_set(&epc->refcount, 1);
4856 			epc->embedded = 1;
4857 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4858 			epc->ctx = ctx;
4859 		} else {
4860 			WARN_ON_ONCE(epc->ctx != ctx);
4861 			atomic_inc(&epc->refcount);
4862 		}
4863 		raw_spin_unlock_irq(&ctx->lock);
4864 		return epc;
4865 	}
4866 
4867 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
4868 	if (!new)
4869 		return ERR_PTR(-ENOMEM);
4870 
4871 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4872 		task_ctx_data = alloc_task_ctx_data(pmu);
4873 		if (!task_ctx_data) {
4874 			kfree(new);
4875 			return ERR_PTR(-ENOMEM);
4876 		}
4877 	}
4878 
4879 	__perf_init_event_pmu_context(new, pmu);
4880 
4881 	/*
4882 	 * XXX
4883 	 *
4884 	 * lockdep_assert_held(&ctx->mutex);
4885 	 *
4886 	 * can't because perf_event_init_task() doesn't actually hold the
4887 	 * child_ctx->mutex.
4888 	 */
4889 
4890 	raw_spin_lock_irq(&ctx->lock);
4891 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4892 		if (epc->pmu == pmu) {
4893 			WARN_ON_ONCE(epc->ctx != ctx);
4894 			atomic_inc(&epc->refcount);
4895 			goto found_epc;
4896 		}
4897 	}
4898 
4899 	epc = new;
4900 	new = NULL;
4901 
4902 	list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4903 	epc->ctx = ctx;
4904 
4905 found_epc:
4906 	if (task_ctx_data && !epc->task_ctx_data) {
4907 		epc->task_ctx_data = task_ctx_data;
4908 		task_ctx_data = NULL;
4909 		ctx->nr_task_data++;
4910 	}
4911 	raw_spin_unlock_irq(&ctx->lock);
4912 
4913 	free_task_ctx_data(pmu, task_ctx_data);
4914 	kfree(new);
4915 
4916 	return epc;
4917 }
4918 
get_pmu_ctx(struct perf_event_pmu_context * epc)4919 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4920 {
4921 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4922 }
4923 
free_epc_rcu(struct rcu_head * head)4924 static void free_epc_rcu(struct rcu_head *head)
4925 {
4926 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4927 
4928 	kfree(epc->task_ctx_data);
4929 	kfree(epc);
4930 }
4931 
put_pmu_ctx(struct perf_event_pmu_context * epc)4932 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4933 {
4934 	struct perf_event_context *ctx = epc->ctx;
4935 	unsigned long flags;
4936 
4937 	/*
4938 	 * XXX
4939 	 *
4940 	 * lockdep_assert_held(&ctx->mutex);
4941 	 *
4942 	 * can't because of the call-site in _free_event()/put_event()
4943 	 * which isn't always called under ctx->mutex.
4944 	 */
4945 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4946 		return;
4947 
4948 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4949 
4950 	list_del_init(&epc->pmu_ctx_entry);
4951 	epc->ctx = NULL;
4952 
4953 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4954 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4955 
4956 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4957 
4958 	if (epc->embedded)
4959 		return;
4960 
4961 	call_rcu(&epc->rcu_head, free_epc_rcu);
4962 }
4963 
4964 static void perf_event_free_filter(struct perf_event *event);
4965 
free_event_rcu(struct rcu_head * head)4966 static void free_event_rcu(struct rcu_head *head)
4967 {
4968 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
4969 
4970 	if (event->ns)
4971 		put_pid_ns(event->ns);
4972 	perf_event_free_filter(event);
4973 	kmem_cache_free(perf_event_cache, event);
4974 }
4975 
4976 static void ring_buffer_attach(struct perf_event *event,
4977 			       struct perf_buffer *rb);
4978 
detach_sb_event(struct perf_event * event)4979 static void detach_sb_event(struct perf_event *event)
4980 {
4981 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4982 
4983 	raw_spin_lock(&pel->lock);
4984 	list_del_rcu(&event->sb_list);
4985 	raw_spin_unlock(&pel->lock);
4986 }
4987 
is_sb_event(struct perf_event * event)4988 static bool is_sb_event(struct perf_event *event)
4989 {
4990 	struct perf_event_attr *attr = &event->attr;
4991 
4992 	if (event->parent)
4993 		return false;
4994 
4995 	if (event->attach_state & PERF_ATTACH_TASK)
4996 		return false;
4997 
4998 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4999 	    attr->comm || attr->comm_exec ||
5000 	    attr->task || attr->ksymbol ||
5001 	    attr->context_switch || attr->text_poke ||
5002 	    attr->bpf_event)
5003 		return true;
5004 	return false;
5005 }
5006 
unaccount_pmu_sb_event(struct perf_event * event)5007 static void unaccount_pmu_sb_event(struct perf_event *event)
5008 {
5009 	if (is_sb_event(event))
5010 		detach_sb_event(event);
5011 }
5012 
5013 #ifdef CONFIG_NO_HZ_FULL
5014 static DEFINE_SPINLOCK(nr_freq_lock);
5015 #endif
5016 
unaccount_freq_event_nohz(void)5017 static void unaccount_freq_event_nohz(void)
5018 {
5019 #ifdef CONFIG_NO_HZ_FULL
5020 	spin_lock(&nr_freq_lock);
5021 	if (atomic_dec_and_test(&nr_freq_events))
5022 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5023 	spin_unlock(&nr_freq_lock);
5024 #endif
5025 }
5026 
unaccount_freq_event(void)5027 static void unaccount_freq_event(void)
5028 {
5029 	if (tick_nohz_full_enabled())
5030 		unaccount_freq_event_nohz();
5031 	else
5032 		atomic_dec(&nr_freq_events);
5033 }
5034 
unaccount_event(struct perf_event * event)5035 static void unaccount_event(struct perf_event *event)
5036 {
5037 	bool dec = false;
5038 
5039 	if (event->parent)
5040 		return;
5041 
5042 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5043 		dec = true;
5044 	if (event->attr.mmap || event->attr.mmap_data)
5045 		atomic_dec(&nr_mmap_events);
5046 	if (event->attr.build_id)
5047 		atomic_dec(&nr_build_id_events);
5048 	if (event->attr.comm)
5049 		atomic_dec(&nr_comm_events);
5050 	if (event->attr.namespaces)
5051 		atomic_dec(&nr_namespaces_events);
5052 	if (event->attr.cgroup)
5053 		atomic_dec(&nr_cgroup_events);
5054 	if (event->attr.task)
5055 		atomic_dec(&nr_task_events);
5056 	if (event->attr.freq)
5057 		unaccount_freq_event();
5058 	if (event->attr.context_switch) {
5059 		dec = true;
5060 		atomic_dec(&nr_switch_events);
5061 	}
5062 	if (is_cgroup_event(event))
5063 		dec = true;
5064 	if (has_branch_stack(event))
5065 		dec = true;
5066 	if (event->attr.ksymbol)
5067 		atomic_dec(&nr_ksymbol_events);
5068 	if (event->attr.bpf_event)
5069 		atomic_dec(&nr_bpf_events);
5070 	if (event->attr.text_poke)
5071 		atomic_dec(&nr_text_poke_events);
5072 
5073 	if (dec) {
5074 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5075 			schedule_delayed_work(&perf_sched_work, HZ);
5076 	}
5077 
5078 	unaccount_pmu_sb_event(event);
5079 }
5080 
perf_sched_delayed(struct work_struct * work)5081 static void perf_sched_delayed(struct work_struct *work)
5082 {
5083 	mutex_lock(&perf_sched_mutex);
5084 	if (atomic_dec_and_test(&perf_sched_count))
5085 		static_branch_disable(&perf_sched_events);
5086 	mutex_unlock(&perf_sched_mutex);
5087 }
5088 
5089 /*
5090  * The following implement mutual exclusion of events on "exclusive" pmus
5091  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5092  * at a time, so we disallow creating events that might conflict, namely:
5093  *
5094  *  1) cpu-wide events in the presence of per-task events,
5095  *  2) per-task events in the presence of cpu-wide events,
5096  *  3) two matching events on the same perf_event_context.
5097  *
5098  * The former two cases are handled in the allocation path (perf_event_alloc(),
5099  * _free_event()), the latter -- before the first perf_install_in_context().
5100  */
exclusive_event_init(struct perf_event * event)5101 static int exclusive_event_init(struct perf_event *event)
5102 {
5103 	struct pmu *pmu = event->pmu;
5104 
5105 	if (!is_exclusive_pmu(pmu))
5106 		return 0;
5107 
5108 	/*
5109 	 * Prevent co-existence of per-task and cpu-wide events on the
5110 	 * same exclusive pmu.
5111 	 *
5112 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5113 	 * events on this "exclusive" pmu, positive means there are
5114 	 * per-task events.
5115 	 *
5116 	 * Since this is called in perf_event_alloc() path, event::ctx
5117 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5118 	 * to mean "per-task event", because unlike other attach states it
5119 	 * never gets cleared.
5120 	 */
5121 	if (event->attach_state & PERF_ATTACH_TASK) {
5122 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5123 			return -EBUSY;
5124 	} else {
5125 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5126 			return -EBUSY;
5127 	}
5128 
5129 	return 0;
5130 }
5131 
exclusive_event_destroy(struct perf_event * event)5132 static void exclusive_event_destroy(struct perf_event *event)
5133 {
5134 	struct pmu *pmu = event->pmu;
5135 
5136 	if (!is_exclusive_pmu(pmu))
5137 		return;
5138 
5139 	/* see comment in exclusive_event_init() */
5140 	if (event->attach_state & PERF_ATTACH_TASK)
5141 		atomic_dec(&pmu->exclusive_cnt);
5142 	else
5143 		atomic_inc(&pmu->exclusive_cnt);
5144 }
5145 
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)5146 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5147 {
5148 	if ((e1->pmu == e2->pmu) &&
5149 	    (e1->cpu == e2->cpu ||
5150 	     e1->cpu == -1 ||
5151 	     e2->cpu == -1))
5152 		return true;
5153 	return false;
5154 }
5155 
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)5156 static bool exclusive_event_installable(struct perf_event *event,
5157 					struct perf_event_context *ctx)
5158 {
5159 	struct perf_event *iter_event;
5160 	struct pmu *pmu = event->pmu;
5161 
5162 	lockdep_assert_held(&ctx->mutex);
5163 
5164 	if (!is_exclusive_pmu(pmu))
5165 		return true;
5166 
5167 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5168 		if (exclusive_event_match(iter_event, event))
5169 			return false;
5170 	}
5171 
5172 	return true;
5173 }
5174 
5175 static void perf_addr_filters_splice(struct perf_event *event,
5176 				       struct list_head *head);
5177 
_free_event(struct perf_event * event)5178 static void _free_event(struct perf_event *event)
5179 {
5180 	irq_work_sync(&event->pending_irq);
5181 
5182 	unaccount_event(event);
5183 
5184 	security_perf_event_free(event);
5185 
5186 	if (event->rb) {
5187 		/*
5188 		 * Can happen when we close an event with re-directed output.
5189 		 *
5190 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5191 		 * over us; possibly making our ring_buffer_put() the last.
5192 		 */
5193 		mutex_lock(&event->mmap_mutex);
5194 		ring_buffer_attach(event, NULL);
5195 		mutex_unlock(&event->mmap_mutex);
5196 	}
5197 
5198 	if (is_cgroup_event(event))
5199 		perf_detach_cgroup(event);
5200 
5201 	if (!event->parent) {
5202 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5203 			put_callchain_buffers();
5204 	}
5205 
5206 	perf_event_free_bpf_prog(event);
5207 	perf_addr_filters_splice(event, NULL);
5208 	kfree(event->addr_filter_ranges);
5209 
5210 	if (event->destroy)
5211 		event->destroy(event);
5212 
5213 	/*
5214 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5215 	 * hw.target.
5216 	 */
5217 	if (event->hw.target)
5218 		put_task_struct(event->hw.target);
5219 
5220 	if (event->pmu_ctx)
5221 		put_pmu_ctx(event->pmu_ctx);
5222 
5223 	/*
5224 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5225 	 * all task references must be cleaned up.
5226 	 */
5227 	if (event->ctx)
5228 		put_ctx(event->ctx);
5229 
5230 	exclusive_event_destroy(event);
5231 	module_put(event->pmu->module);
5232 
5233 	call_rcu(&event->rcu_head, free_event_rcu);
5234 }
5235 
5236 /*
5237  * Used to free events which have a known refcount of 1, such as in error paths
5238  * where the event isn't exposed yet and inherited events.
5239  */
free_event(struct perf_event * event)5240 static void free_event(struct perf_event *event)
5241 {
5242 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5243 				"unexpected event refcount: %ld; ptr=%p\n",
5244 				atomic_long_read(&event->refcount), event)) {
5245 		/* leak to avoid use-after-free */
5246 		return;
5247 	}
5248 
5249 	_free_event(event);
5250 }
5251 
5252 /*
5253  * Remove user event from the owner task.
5254  */
perf_remove_from_owner(struct perf_event * event)5255 static void perf_remove_from_owner(struct perf_event *event)
5256 {
5257 	struct task_struct *owner;
5258 
5259 	rcu_read_lock();
5260 	/*
5261 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5262 	 * observe !owner it means the list deletion is complete and we can
5263 	 * indeed free this event, otherwise we need to serialize on
5264 	 * owner->perf_event_mutex.
5265 	 */
5266 	owner = READ_ONCE(event->owner);
5267 	if (owner) {
5268 		/*
5269 		 * Since delayed_put_task_struct() also drops the last
5270 		 * task reference we can safely take a new reference
5271 		 * while holding the rcu_read_lock().
5272 		 */
5273 		get_task_struct(owner);
5274 	}
5275 	rcu_read_unlock();
5276 
5277 	if (owner) {
5278 		/*
5279 		 * If we're here through perf_event_exit_task() we're already
5280 		 * holding ctx->mutex which would be an inversion wrt. the
5281 		 * normal lock order.
5282 		 *
5283 		 * However we can safely take this lock because its the child
5284 		 * ctx->mutex.
5285 		 */
5286 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5287 
5288 		/*
5289 		 * We have to re-check the event->owner field, if it is cleared
5290 		 * we raced with perf_event_exit_task(), acquiring the mutex
5291 		 * ensured they're done, and we can proceed with freeing the
5292 		 * event.
5293 		 */
5294 		if (event->owner) {
5295 			list_del_init(&event->owner_entry);
5296 			smp_store_release(&event->owner, NULL);
5297 		}
5298 		mutex_unlock(&owner->perf_event_mutex);
5299 		put_task_struct(owner);
5300 	}
5301 }
5302 
put_event(struct perf_event * event)5303 static void put_event(struct perf_event *event)
5304 {
5305 	if (!atomic_long_dec_and_test(&event->refcount))
5306 		return;
5307 
5308 	_free_event(event);
5309 }
5310 
5311 /*
5312  * Kill an event dead; while event:refcount will preserve the event
5313  * object, it will not preserve its functionality. Once the last 'user'
5314  * gives up the object, we'll destroy the thing.
5315  */
perf_event_release_kernel(struct perf_event * event)5316 int perf_event_release_kernel(struct perf_event *event)
5317 {
5318 	struct perf_event_context *ctx = event->ctx;
5319 	struct perf_event *child, *tmp;
5320 	LIST_HEAD(free_list);
5321 
5322 	/*
5323 	 * If we got here through err_alloc: free_event(event); we will not
5324 	 * have attached to a context yet.
5325 	 */
5326 	if (!ctx) {
5327 		WARN_ON_ONCE(event->attach_state &
5328 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5329 		goto no_ctx;
5330 	}
5331 
5332 	if (!is_kernel_event(event))
5333 		perf_remove_from_owner(event);
5334 
5335 	ctx = perf_event_ctx_lock(event);
5336 	WARN_ON_ONCE(ctx->parent_ctx);
5337 
5338 	/*
5339 	 * Mark this event as STATE_DEAD, there is no external reference to it
5340 	 * anymore.
5341 	 *
5342 	 * Anybody acquiring event->child_mutex after the below loop _must_
5343 	 * also see this, most importantly inherit_event() which will avoid
5344 	 * placing more children on the list.
5345 	 *
5346 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5347 	 * child events.
5348 	 */
5349 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5350 
5351 	perf_event_ctx_unlock(event, ctx);
5352 
5353 again:
5354 	mutex_lock(&event->child_mutex);
5355 	list_for_each_entry(child, &event->child_list, child_list) {
5356 		void *var = NULL;
5357 
5358 		/*
5359 		 * Cannot change, child events are not migrated, see the
5360 		 * comment with perf_event_ctx_lock_nested().
5361 		 */
5362 		ctx = READ_ONCE(child->ctx);
5363 		/*
5364 		 * Since child_mutex nests inside ctx::mutex, we must jump
5365 		 * through hoops. We start by grabbing a reference on the ctx.
5366 		 *
5367 		 * Since the event cannot get freed while we hold the
5368 		 * child_mutex, the context must also exist and have a !0
5369 		 * reference count.
5370 		 */
5371 		get_ctx(ctx);
5372 
5373 		/*
5374 		 * Now that we have a ctx ref, we can drop child_mutex, and
5375 		 * acquire ctx::mutex without fear of it going away. Then we
5376 		 * can re-acquire child_mutex.
5377 		 */
5378 		mutex_unlock(&event->child_mutex);
5379 		mutex_lock(&ctx->mutex);
5380 		mutex_lock(&event->child_mutex);
5381 
5382 		/*
5383 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5384 		 * state, if child is still the first entry, it didn't get freed
5385 		 * and we can continue doing so.
5386 		 */
5387 		tmp = list_first_entry_or_null(&event->child_list,
5388 					       struct perf_event, child_list);
5389 		if (tmp == child) {
5390 			perf_remove_from_context(child, DETACH_GROUP);
5391 			list_move(&child->child_list, &free_list);
5392 			/*
5393 			 * This matches the refcount bump in inherit_event();
5394 			 * this can't be the last reference.
5395 			 */
5396 			put_event(event);
5397 		} else {
5398 			var = &ctx->refcount;
5399 		}
5400 
5401 		mutex_unlock(&event->child_mutex);
5402 		mutex_unlock(&ctx->mutex);
5403 		put_ctx(ctx);
5404 
5405 		if (var) {
5406 			/*
5407 			 * If perf_event_free_task() has deleted all events from the
5408 			 * ctx while the child_mutex got released above, make sure to
5409 			 * notify about the preceding put_ctx().
5410 			 */
5411 			smp_mb(); /* pairs with wait_var_event() */
5412 			wake_up_var(var);
5413 		}
5414 		goto again;
5415 	}
5416 	mutex_unlock(&event->child_mutex);
5417 
5418 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5419 		void *var = &child->ctx->refcount;
5420 
5421 		list_del(&child->child_list);
5422 		free_event(child);
5423 
5424 		/*
5425 		 * Wake any perf_event_free_task() waiting for this event to be
5426 		 * freed.
5427 		 */
5428 		smp_mb(); /* pairs with wait_var_event() */
5429 		wake_up_var(var);
5430 	}
5431 
5432 no_ctx:
5433 	put_event(event); /* Must be the 'last' reference */
5434 	return 0;
5435 }
5436 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5437 
5438 /*
5439  * Called when the last reference to the file is gone.
5440  */
perf_release(struct inode * inode,struct file * file)5441 static int perf_release(struct inode *inode, struct file *file)
5442 {
5443 	perf_event_release_kernel(file->private_data);
5444 	return 0;
5445 }
5446 
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5447 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5448 {
5449 	struct perf_event *child;
5450 	u64 total = 0;
5451 
5452 	*enabled = 0;
5453 	*running = 0;
5454 
5455 	mutex_lock(&event->child_mutex);
5456 
5457 	(void)perf_event_read(event, false);
5458 	total += perf_event_count(event);
5459 
5460 	*enabled += event->total_time_enabled +
5461 			atomic64_read(&event->child_total_time_enabled);
5462 	*running += event->total_time_running +
5463 			atomic64_read(&event->child_total_time_running);
5464 
5465 	list_for_each_entry(child, &event->child_list, child_list) {
5466 		(void)perf_event_read(child, false);
5467 		total += perf_event_count(child);
5468 		*enabled += child->total_time_enabled;
5469 		*running += child->total_time_running;
5470 	}
5471 	mutex_unlock(&event->child_mutex);
5472 
5473 	return total;
5474 }
5475 
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5476 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5477 {
5478 	struct perf_event_context *ctx;
5479 	u64 count;
5480 
5481 	ctx = perf_event_ctx_lock(event);
5482 	count = __perf_event_read_value(event, enabled, running);
5483 	perf_event_ctx_unlock(event, ctx);
5484 
5485 	return count;
5486 }
5487 EXPORT_SYMBOL_GPL(perf_event_read_value);
5488 
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)5489 static int __perf_read_group_add(struct perf_event *leader,
5490 					u64 read_format, u64 *values)
5491 {
5492 	struct perf_event_context *ctx = leader->ctx;
5493 	struct perf_event *sub, *parent;
5494 	unsigned long flags;
5495 	int n = 1; /* skip @nr */
5496 	int ret;
5497 
5498 	ret = perf_event_read(leader, true);
5499 	if (ret)
5500 		return ret;
5501 
5502 	raw_spin_lock_irqsave(&ctx->lock, flags);
5503 	/*
5504 	 * Verify the grouping between the parent and child (inherited)
5505 	 * events is still in tact.
5506 	 *
5507 	 * Specifically:
5508 	 *  - leader->ctx->lock pins leader->sibling_list
5509 	 *  - parent->child_mutex pins parent->child_list
5510 	 *  - parent->ctx->mutex pins parent->sibling_list
5511 	 *
5512 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5513 	 * ctx->mutex), group destruction is not atomic between children, also
5514 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5515 	 * group.
5516 	 *
5517 	 * Therefore it is possible to have parent and child groups in a
5518 	 * different configuration and summing over such a beast makes no sense
5519 	 * what so ever.
5520 	 *
5521 	 * Reject this.
5522 	 */
5523 	parent = leader->parent;
5524 	if (parent &&
5525 	    (parent->group_generation != leader->group_generation ||
5526 	     parent->nr_siblings != leader->nr_siblings)) {
5527 		ret = -ECHILD;
5528 		goto unlock;
5529 	}
5530 
5531 	/*
5532 	 * Since we co-schedule groups, {enabled,running} times of siblings
5533 	 * will be identical to those of the leader, so we only publish one
5534 	 * set.
5535 	 */
5536 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5537 		values[n++] += leader->total_time_enabled +
5538 			atomic64_read(&leader->child_total_time_enabled);
5539 	}
5540 
5541 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5542 		values[n++] += leader->total_time_running +
5543 			atomic64_read(&leader->child_total_time_running);
5544 	}
5545 
5546 	/*
5547 	 * Write {count,id} tuples for every sibling.
5548 	 */
5549 	values[n++] += perf_event_count(leader);
5550 	if (read_format & PERF_FORMAT_ID)
5551 		values[n++] = primary_event_id(leader);
5552 	if (read_format & PERF_FORMAT_LOST)
5553 		values[n++] = atomic64_read(&leader->lost_samples);
5554 
5555 	for_each_sibling_event(sub, leader) {
5556 		values[n++] += perf_event_count(sub);
5557 		if (read_format & PERF_FORMAT_ID)
5558 			values[n++] = primary_event_id(sub);
5559 		if (read_format & PERF_FORMAT_LOST)
5560 			values[n++] = atomic64_read(&sub->lost_samples);
5561 	}
5562 
5563 unlock:
5564 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5565 	return ret;
5566 }
5567 
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)5568 static int perf_read_group(struct perf_event *event,
5569 				   u64 read_format, char __user *buf)
5570 {
5571 	struct perf_event *leader = event->group_leader, *child;
5572 	struct perf_event_context *ctx = leader->ctx;
5573 	int ret;
5574 	u64 *values;
5575 
5576 	lockdep_assert_held(&ctx->mutex);
5577 
5578 	values = kzalloc(event->read_size, GFP_KERNEL);
5579 	if (!values)
5580 		return -ENOMEM;
5581 
5582 	values[0] = 1 + leader->nr_siblings;
5583 
5584 	mutex_lock(&leader->child_mutex);
5585 
5586 	ret = __perf_read_group_add(leader, read_format, values);
5587 	if (ret)
5588 		goto unlock;
5589 
5590 	list_for_each_entry(child, &leader->child_list, child_list) {
5591 		ret = __perf_read_group_add(child, read_format, values);
5592 		if (ret)
5593 			goto unlock;
5594 	}
5595 
5596 	mutex_unlock(&leader->child_mutex);
5597 
5598 	ret = event->read_size;
5599 	if (copy_to_user(buf, values, event->read_size))
5600 		ret = -EFAULT;
5601 	goto out;
5602 
5603 unlock:
5604 	mutex_unlock(&leader->child_mutex);
5605 out:
5606 	kfree(values);
5607 	return ret;
5608 }
5609 
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)5610 static int perf_read_one(struct perf_event *event,
5611 				 u64 read_format, char __user *buf)
5612 {
5613 	u64 enabled, running;
5614 	u64 values[5];
5615 	int n = 0;
5616 
5617 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5618 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5619 		values[n++] = enabled;
5620 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5621 		values[n++] = running;
5622 	if (read_format & PERF_FORMAT_ID)
5623 		values[n++] = primary_event_id(event);
5624 	if (read_format & PERF_FORMAT_LOST)
5625 		values[n++] = atomic64_read(&event->lost_samples);
5626 
5627 	if (copy_to_user(buf, values, n * sizeof(u64)))
5628 		return -EFAULT;
5629 
5630 	return n * sizeof(u64);
5631 }
5632 
is_event_hup(struct perf_event * event)5633 static bool is_event_hup(struct perf_event *event)
5634 {
5635 	bool no_children;
5636 
5637 	if (event->state > PERF_EVENT_STATE_EXIT)
5638 		return false;
5639 
5640 	mutex_lock(&event->child_mutex);
5641 	no_children = list_empty(&event->child_list);
5642 	mutex_unlock(&event->child_mutex);
5643 	return no_children;
5644 }
5645 
5646 /*
5647  * Read the performance event - simple non blocking version for now
5648  */
5649 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)5650 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5651 {
5652 	u64 read_format = event->attr.read_format;
5653 	int ret;
5654 
5655 	/*
5656 	 * Return end-of-file for a read on an event that is in
5657 	 * error state (i.e. because it was pinned but it couldn't be
5658 	 * scheduled on to the CPU at some point).
5659 	 */
5660 	if (event->state == PERF_EVENT_STATE_ERROR)
5661 		return 0;
5662 
5663 	if (count < event->read_size)
5664 		return -ENOSPC;
5665 
5666 	WARN_ON_ONCE(event->ctx->parent_ctx);
5667 	if (read_format & PERF_FORMAT_GROUP)
5668 		ret = perf_read_group(event, read_format, buf);
5669 	else
5670 		ret = perf_read_one(event, read_format, buf);
5671 
5672 	return ret;
5673 }
5674 
5675 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)5676 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5677 {
5678 	struct perf_event *event = file->private_data;
5679 	struct perf_event_context *ctx;
5680 	int ret;
5681 
5682 	ret = security_perf_event_read(event);
5683 	if (ret)
5684 		return ret;
5685 
5686 	ctx = perf_event_ctx_lock(event);
5687 	ret = __perf_read(event, buf, count);
5688 	perf_event_ctx_unlock(event, ctx);
5689 
5690 	return ret;
5691 }
5692 
perf_poll(struct file * file,poll_table * wait)5693 static __poll_t perf_poll(struct file *file, poll_table *wait)
5694 {
5695 	struct perf_event *event = file->private_data;
5696 	struct perf_buffer *rb;
5697 	__poll_t events = EPOLLHUP;
5698 
5699 	poll_wait(file, &event->waitq, wait);
5700 
5701 	if (is_event_hup(event))
5702 		return events;
5703 
5704 	/*
5705 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5706 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5707 	 */
5708 	mutex_lock(&event->mmap_mutex);
5709 	rb = event->rb;
5710 	if (rb)
5711 		events = atomic_xchg(&rb->poll, 0);
5712 	mutex_unlock(&event->mmap_mutex);
5713 	return events;
5714 }
5715 
_perf_event_reset(struct perf_event * event)5716 static void _perf_event_reset(struct perf_event *event)
5717 {
5718 	(void)perf_event_read(event, false);
5719 	local64_set(&event->count, 0);
5720 	perf_event_update_userpage(event);
5721 }
5722 
5723 /* Assume it's not an event with inherit set. */
perf_event_pause(struct perf_event * event,bool reset)5724 u64 perf_event_pause(struct perf_event *event, bool reset)
5725 {
5726 	struct perf_event_context *ctx;
5727 	u64 count;
5728 
5729 	ctx = perf_event_ctx_lock(event);
5730 	WARN_ON_ONCE(event->attr.inherit);
5731 	_perf_event_disable(event);
5732 	count = local64_read(&event->count);
5733 	if (reset)
5734 		local64_set(&event->count, 0);
5735 	perf_event_ctx_unlock(event, ctx);
5736 
5737 	return count;
5738 }
5739 EXPORT_SYMBOL_GPL(perf_event_pause);
5740 
5741 /*
5742  * Holding the top-level event's child_mutex means that any
5743  * descendant process that has inherited this event will block
5744  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5745  * task existence requirements of perf_event_enable/disable.
5746  */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))5747 static void perf_event_for_each_child(struct perf_event *event,
5748 					void (*func)(struct perf_event *))
5749 {
5750 	struct perf_event *child;
5751 
5752 	WARN_ON_ONCE(event->ctx->parent_ctx);
5753 
5754 	mutex_lock(&event->child_mutex);
5755 	func(event);
5756 	list_for_each_entry(child, &event->child_list, child_list)
5757 		func(child);
5758 	mutex_unlock(&event->child_mutex);
5759 }
5760 
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))5761 static void perf_event_for_each(struct perf_event *event,
5762 				  void (*func)(struct perf_event *))
5763 {
5764 	struct perf_event_context *ctx = event->ctx;
5765 	struct perf_event *sibling;
5766 
5767 	lockdep_assert_held(&ctx->mutex);
5768 
5769 	event = event->group_leader;
5770 
5771 	perf_event_for_each_child(event, func);
5772 	for_each_sibling_event(sibling, event)
5773 		perf_event_for_each_child(sibling, func);
5774 }
5775 
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)5776 static void __perf_event_period(struct perf_event *event,
5777 				struct perf_cpu_context *cpuctx,
5778 				struct perf_event_context *ctx,
5779 				void *info)
5780 {
5781 	u64 value = *((u64 *)info);
5782 	bool active;
5783 
5784 	if (event->attr.freq) {
5785 		event->attr.sample_freq = value;
5786 	} else {
5787 		event->attr.sample_period = value;
5788 		event->hw.sample_period = value;
5789 	}
5790 
5791 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5792 	if (active) {
5793 		perf_pmu_disable(event->pmu);
5794 		/*
5795 		 * We could be throttled; unthrottle now to avoid the tick
5796 		 * trying to unthrottle while we already re-started the event.
5797 		 */
5798 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5799 			event->hw.interrupts = 0;
5800 			perf_log_throttle(event, 1);
5801 		}
5802 		event->pmu->stop(event, PERF_EF_UPDATE);
5803 	}
5804 
5805 	local64_set(&event->hw.period_left, 0);
5806 
5807 	if (active) {
5808 		event->pmu->start(event, PERF_EF_RELOAD);
5809 		perf_pmu_enable(event->pmu);
5810 	}
5811 }
5812 
perf_event_check_period(struct perf_event * event,u64 value)5813 static int perf_event_check_period(struct perf_event *event, u64 value)
5814 {
5815 	return event->pmu->check_period(event, value);
5816 }
5817 
_perf_event_period(struct perf_event * event,u64 value)5818 static int _perf_event_period(struct perf_event *event, u64 value)
5819 {
5820 	if (!is_sampling_event(event))
5821 		return -EINVAL;
5822 
5823 	if (!value)
5824 		return -EINVAL;
5825 
5826 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5827 		return -EINVAL;
5828 
5829 	if (perf_event_check_period(event, value))
5830 		return -EINVAL;
5831 
5832 	if (!event->attr.freq && (value & (1ULL << 63)))
5833 		return -EINVAL;
5834 
5835 	event_function_call(event, __perf_event_period, &value);
5836 
5837 	return 0;
5838 }
5839 
perf_event_period(struct perf_event * event,u64 value)5840 int perf_event_period(struct perf_event *event, u64 value)
5841 {
5842 	struct perf_event_context *ctx;
5843 	int ret;
5844 
5845 	ctx = perf_event_ctx_lock(event);
5846 	ret = _perf_event_period(event, value);
5847 	perf_event_ctx_unlock(event, ctx);
5848 
5849 	return ret;
5850 }
5851 EXPORT_SYMBOL_GPL(perf_event_period);
5852 
5853 static const struct file_operations perf_fops;
5854 
perf_fget_light(int fd,struct fd * p)5855 static inline int perf_fget_light(int fd, struct fd *p)
5856 {
5857 	struct fd f = fdget(fd);
5858 	if (!f.file)
5859 		return -EBADF;
5860 
5861 	if (f.file->f_op != &perf_fops) {
5862 		fdput(f);
5863 		return -EBADF;
5864 	}
5865 	*p = f;
5866 	return 0;
5867 }
5868 
5869 static int perf_event_set_output(struct perf_event *event,
5870 				 struct perf_event *output_event);
5871 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5872 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5873 			  struct perf_event_attr *attr);
5874 
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)5875 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5876 {
5877 	void (*func)(struct perf_event *);
5878 	u32 flags = arg;
5879 
5880 	switch (cmd) {
5881 	case PERF_EVENT_IOC_ENABLE:
5882 		func = _perf_event_enable;
5883 		break;
5884 	case PERF_EVENT_IOC_DISABLE:
5885 		func = _perf_event_disable;
5886 		break;
5887 	case PERF_EVENT_IOC_RESET:
5888 		func = _perf_event_reset;
5889 		break;
5890 
5891 	case PERF_EVENT_IOC_REFRESH:
5892 		return _perf_event_refresh(event, arg);
5893 
5894 	case PERF_EVENT_IOC_PERIOD:
5895 	{
5896 		u64 value;
5897 
5898 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5899 			return -EFAULT;
5900 
5901 		return _perf_event_period(event, value);
5902 	}
5903 	case PERF_EVENT_IOC_ID:
5904 	{
5905 		u64 id = primary_event_id(event);
5906 
5907 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5908 			return -EFAULT;
5909 		return 0;
5910 	}
5911 
5912 	case PERF_EVENT_IOC_SET_OUTPUT:
5913 	{
5914 		int ret;
5915 		if (arg != -1) {
5916 			struct perf_event *output_event;
5917 			struct fd output;
5918 			ret = perf_fget_light(arg, &output);
5919 			if (ret)
5920 				return ret;
5921 			output_event = output.file->private_data;
5922 			ret = perf_event_set_output(event, output_event);
5923 			fdput(output);
5924 		} else {
5925 			ret = perf_event_set_output(event, NULL);
5926 		}
5927 		return ret;
5928 	}
5929 
5930 	case PERF_EVENT_IOC_SET_FILTER:
5931 		return perf_event_set_filter(event, (void __user *)arg);
5932 
5933 	case PERF_EVENT_IOC_SET_BPF:
5934 	{
5935 		struct bpf_prog *prog;
5936 		int err;
5937 
5938 		prog = bpf_prog_get(arg);
5939 		if (IS_ERR(prog))
5940 			return PTR_ERR(prog);
5941 
5942 		err = perf_event_set_bpf_prog(event, prog, 0);
5943 		if (err) {
5944 			bpf_prog_put(prog);
5945 			return err;
5946 		}
5947 
5948 		return 0;
5949 	}
5950 
5951 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5952 		struct perf_buffer *rb;
5953 
5954 		rcu_read_lock();
5955 		rb = rcu_dereference(event->rb);
5956 		if (!rb || !rb->nr_pages) {
5957 			rcu_read_unlock();
5958 			return -EINVAL;
5959 		}
5960 		rb_toggle_paused(rb, !!arg);
5961 		rcu_read_unlock();
5962 		return 0;
5963 	}
5964 
5965 	case PERF_EVENT_IOC_QUERY_BPF:
5966 		return perf_event_query_prog_array(event, (void __user *)arg);
5967 
5968 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5969 		struct perf_event_attr new_attr;
5970 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5971 					 &new_attr);
5972 
5973 		if (err)
5974 			return err;
5975 
5976 		return perf_event_modify_attr(event,  &new_attr);
5977 	}
5978 	default:
5979 		return -ENOTTY;
5980 	}
5981 
5982 	if (flags & PERF_IOC_FLAG_GROUP)
5983 		perf_event_for_each(event, func);
5984 	else
5985 		perf_event_for_each_child(event, func);
5986 
5987 	return 0;
5988 }
5989 
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5990 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5991 {
5992 	struct perf_event *event = file->private_data;
5993 	struct perf_event_context *ctx;
5994 	long ret;
5995 
5996 	/* Treat ioctl like writes as it is likely a mutating operation. */
5997 	ret = security_perf_event_write(event);
5998 	if (ret)
5999 		return ret;
6000 
6001 	ctx = perf_event_ctx_lock(event);
6002 	ret = _perf_ioctl(event, cmd, arg);
6003 	perf_event_ctx_unlock(event, ctx);
6004 
6005 	return ret;
6006 }
6007 
6008 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6009 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6010 				unsigned long arg)
6011 {
6012 	switch (_IOC_NR(cmd)) {
6013 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6014 	case _IOC_NR(PERF_EVENT_IOC_ID):
6015 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6016 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6017 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6018 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6019 			cmd &= ~IOCSIZE_MASK;
6020 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6021 		}
6022 		break;
6023 	}
6024 	return perf_ioctl(file, cmd, arg);
6025 }
6026 #else
6027 # define perf_compat_ioctl NULL
6028 #endif
6029 
perf_event_task_enable(void)6030 int perf_event_task_enable(void)
6031 {
6032 	struct perf_event_context *ctx;
6033 	struct perf_event *event;
6034 
6035 	mutex_lock(&current->perf_event_mutex);
6036 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6037 		ctx = perf_event_ctx_lock(event);
6038 		perf_event_for_each_child(event, _perf_event_enable);
6039 		perf_event_ctx_unlock(event, ctx);
6040 	}
6041 	mutex_unlock(&current->perf_event_mutex);
6042 
6043 	return 0;
6044 }
6045 
perf_event_task_disable(void)6046 int perf_event_task_disable(void)
6047 {
6048 	struct perf_event_context *ctx;
6049 	struct perf_event *event;
6050 
6051 	mutex_lock(&current->perf_event_mutex);
6052 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6053 		ctx = perf_event_ctx_lock(event);
6054 		perf_event_for_each_child(event, _perf_event_disable);
6055 		perf_event_ctx_unlock(event, ctx);
6056 	}
6057 	mutex_unlock(&current->perf_event_mutex);
6058 
6059 	return 0;
6060 }
6061 
perf_event_index(struct perf_event * event)6062 static int perf_event_index(struct perf_event *event)
6063 {
6064 	if (event->hw.state & PERF_HES_STOPPED)
6065 		return 0;
6066 
6067 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6068 		return 0;
6069 
6070 	return event->pmu->event_idx(event);
6071 }
6072 
perf_event_init_userpage(struct perf_event * event)6073 static void perf_event_init_userpage(struct perf_event *event)
6074 {
6075 	struct perf_event_mmap_page *userpg;
6076 	struct perf_buffer *rb;
6077 
6078 	rcu_read_lock();
6079 	rb = rcu_dereference(event->rb);
6080 	if (!rb)
6081 		goto unlock;
6082 
6083 	userpg = rb->user_page;
6084 
6085 	/* Allow new userspace to detect that bit 0 is deprecated */
6086 	userpg->cap_bit0_is_deprecated = 1;
6087 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6088 	userpg->data_offset = PAGE_SIZE;
6089 	userpg->data_size = perf_data_size(rb);
6090 
6091 unlock:
6092 	rcu_read_unlock();
6093 }
6094 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)6095 void __weak arch_perf_update_userpage(
6096 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6097 {
6098 }
6099 
6100 /*
6101  * Callers need to ensure there can be no nesting of this function, otherwise
6102  * the seqlock logic goes bad. We can not serialize this because the arch
6103  * code calls this from NMI context.
6104  */
perf_event_update_userpage(struct perf_event * event)6105 void perf_event_update_userpage(struct perf_event *event)
6106 {
6107 	struct perf_event_mmap_page *userpg;
6108 	struct perf_buffer *rb;
6109 	u64 enabled, running, now;
6110 
6111 	rcu_read_lock();
6112 	rb = rcu_dereference(event->rb);
6113 	if (!rb)
6114 		goto unlock;
6115 
6116 	/*
6117 	 * compute total_time_enabled, total_time_running
6118 	 * based on snapshot values taken when the event
6119 	 * was last scheduled in.
6120 	 *
6121 	 * we cannot simply called update_context_time()
6122 	 * because of locking issue as we can be called in
6123 	 * NMI context
6124 	 */
6125 	calc_timer_values(event, &now, &enabled, &running);
6126 
6127 	userpg = rb->user_page;
6128 	/*
6129 	 * Disable preemption to guarantee consistent time stamps are stored to
6130 	 * the user page.
6131 	 */
6132 	preempt_disable();
6133 	++userpg->lock;
6134 	barrier();
6135 	userpg->index = perf_event_index(event);
6136 	userpg->offset = perf_event_count(event);
6137 	if (userpg->index)
6138 		userpg->offset -= local64_read(&event->hw.prev_count);
6139 
6140 	userpg->time_enabled = enabled +
6141 			atomic64_read(&event->child_total_time_enabled);
6142 
6143 	userpg->time_running = running +
6144 			atomic64_read(&event->child_total_time_running);
6145 
6146 	arch_perf_update_userpage(event, userpg, now);
6147 
6148 	barrier();
6149 	++userpg->lock;
6150 	preempt_enable();
6151 unlock:
6152 	rcu_read_unlock();
6153 }
6154 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6155 
perf_mmap_fault(struct vm_fault * vmf)6156 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6157 {
6158 	struct perf_event *event = vmf->vma->vm_file->private_data;
6159 	struct perf_buffer *rb;
6160 	vm_fault_t ret = VM_FAULT_SIGBUS;
6161 
6162 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
6163 		if (vmf->pgoff == 0)
6164 			ret = 0;
6165 		return ret;
6166 	}
6167 
6168 	rcu_read_lock();
6169 	rb = rcu_dereference(event->rb);
6170 	if (!rb)
6171 		goto unlock;
6172 
6173 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6174 		goto unlock;
6175 
6176 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6177 	if (!vmf->page)
6178 		goto unlock;
6179 
6180 	get_page(vmf->page);
6181 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6182 	vmf->page->index   = vmf->pgoff;
6183 
6184 	ret = 0;
6185 unlock:
6186 	rcu_read_unlock();
6187 
6188 	return ret;
6189 }
6190 
ring_buffer_attach(struct perf_event * event,struct perf_buffer * rb)6191 static void ring_buffer_attach(struct perf_event *event,
6192 			       struct perf_buffer *rb)
6193 {
6194 	struct perf_buffer *old_rb = NULL;
6195 	unsigned long flags;
6196 
6197 	WARN_ON_ONCE(event->parent);
6198 
6199 	if (event->rb) {
6200 		/*
6201 		 * Should be impossible, we set this when removing
6202 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6203 		 */
6204 		WARN_ON_ONCE(event->rcu_pending);
6205 
6206 		old_rb = event->rb;
6207 		spin_lock_irqsave(&old_rb->event_lock, flags);
6208 		list_del_rcu(&event->rb_entry);
6209 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6210 
6211 		event->rcu_batches = get_state_synchronize_rcu();
6212 		event->rcu_pending = 1;
6213 	}
6214 
6215 	if (rb) {
6216 		if (event->rcu_pending) {
6217 			cond_synchronize_rcu(event->rcu_batches);
6218 			event->rcu_pending = 0;
6219 		}
6220 
6221 		spin_lock_irqsave(&rb->event_lock, flags);
6222 		list_add_rcu(&event->rb_entry, &rb->event_list);
6223 		spin_unlock_irqrestore(&rb->event_lock, flags);
6224 	}
6225 
6226 	/*
6227 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6228 	 * before swizzling the event::rb pointer; if it's getting
6229 	 * unmapped, its aux_mmap_count will be 0 and it won't
6230 	 * restart. See the comment in __perf_pmu_output_stop().
6231 	 *
6232 	 * Data will inevitably be lost when set_output is done in
6233 	 * mid-air, but then again, whoever does it like this is
6234 	 * not in for the data anyway.
6235 	 */
6236 	if (has_aux(event))
6237 		perf_event_stop(event, 0);
6238 
6239 	rcu_assign_pointer(event->rb, rb);
6240 
6241 	if (old_rb) {
6242 		ring_buffer_put(old_rb);
6243 		/*
6244 		 * Since we detached before setting the new rb, so that we
6245 		 * could attach the new rb, we could have missed a wakeup.
6246 		 * Provide it now.
6247 		 */
6248 		wake_up_all(&event->waitq);
6249 	}
6250 }
6251 
ring_buffer_wakeup(struct perf_event * event)6252 static void ring_buffer_wakeup(struct perf_event *event)
6253 {
6254 	struct perf_buffer *rb;
6255 
6256 	if (event->parent)
6257 		event = event->parent;
6258 
6259 	rcu_read_lock();
6260 	rb = rcu_dereference(event->rb);
6261 	if (rb) {
6262 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6263 			wake_up_all(&event->waitq);
6264 	}
6265 	rcu_read_unlock();
6266 }
6267 
ring_buffer_get(struct perf_event * event)6268 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6269 {
6270 	struct perf_buffer *rb;
6271 
6272 	if (event->parent)
6273 		event = event->parent;
6274 
6275 	rcu_read_lock();
6276 	rb = rcu_dereference(event->rb);
6277 	if (rb) {
6278 		if (!refcount_inc_not_zero(&rb->refcount))
6279 			rb = NULL;
6280 	}
6281 	rcu_read_unlock();
6282 
6283 	return rb;
6284 }
6285 
ring_buffer_put(struct perf_buffer * rb)6286 void ring_buffer_put(struct perf_buffer *rb)
6287 {
6288 	if (!refcount_dec_and_test(&rb->refcount))
6289 		return;
6290 
6291 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6292 
6293 	call_rcu(&rb->rcu_head, rb_free_rcu);
6294 }
6295 
perf_mmap_open(struct vm_area_struct * vma)6296 static void perf_mmap_open(struct vm_area_struct *vma)
6297 {
6298 	struct perf_event *event = vma->vm_file->private_data;
6299 
6300 	atomic_inc(&event->mmap_count);
6301 	atomic_inc(&event->rb->mmap_count);
6302 
6303 	if (vma->vm_pgoff)
6304 		atomic_inc(&event->rb->aux_mmap_count);
6305 
6306 	if (event->pmu->event_mapped)
6307 		event->pmu->event_mapped(event, vma->vm_mm);
6308 }
6309 
6310 static void perf_pmu_output_stop(struct perf_event *event);
6311 
6312 /*
6313  * A buffer can be mmap()ed multiple times; either directly through the same
6314  * event, or through other events by use of perf_event_set_output().
6315  *
6316  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6317  * the buffer here, where we still have a VM context. This means we need
6318  * to detach all events redirecting to us.
6319  */
perf_mmap_close(struct vm_area_struct * vma)6320 static void perf_mmap_close(struct vm_area_struct *vma)
6321 {
6322 	struct perf_event *event = vma->vm_file->private_data;
6323 	struct perf_buffer *rb = ring_buffer_get(event);
6324 	struct user_struct *mmap_user = rb->mmap_user;
6325 	int mmap_locked = rb->mmap_locked;
6326 	unsigned long size = perf_data_size(rb);
6327 	bool detach_rest = false;
6328 
6329 	if (event->pmu->event_unmapped)
6330 		event->pmu->event_unmapped(event, vma->vm_mm);
6331 
6332 	/*
6333 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6334 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6335 	 * serialize with perf_mmap here.
6336 	 */
6337 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6338 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6339 		/*
6340 		 * Stop all AUX events that are writing to this buffer,
6341 		 * so that we can free its AUX pages and corresponding PMU
6342 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6343 		 * they won't start any more (see perf_aux_output_begin()).
6344 		 */
6345 		perf_pmu_output_stop(event);
6346 
6347 		/* now it's safe to free the pages */
6348 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6349 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6350 
6351 		/* this has to be the last one */
6352 		rb_free_aux(rb);
6353 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6354 
6355 		mutex_unlock(&event->mmap_mutex);
6356 	}
6357 
6358 	if (atomic_dec_and_test(&rb->mmap_count))
6359 		detach_rest = true;
6360 
6361 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6362 		goto out_put;
6363 
6364 	ring_buffer_attach(event, NULL);
6365 	mutex_unlock(&event->mmap_mutex);
6366 
6367 	/* If there's still other mmap()s of this buffer, we're done. */
6368 	if (!detach_rest)
6369 		goto out_put;
6370 
6371 	/*
6372 	 * No other mmap()s, detach from all other events that might redirect
6373 	 * into the now unreachable buffer. Somewhat complicated by the
6374 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6375 	 */
6376 again:
6377 	rcu_read_lock();
6378 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6379 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6380 			/*
6381 			 * This event is en-route to free_event() which will
6382 			 * detach it and remove it from the list.
6383 			 */
6384 			continue;
6385 		}
6386 		rcu_read_unlock();
6387 
6388 		mutex_lock(&event->mmap_mutex);
6389 		/*
6390 		 * Check we didn't race with perf_event_set_output() which can
6391 		 * swizzle the rb from under us while we were waiting to
6392 		 * acquire mmap_mutex.
6393 		 *
6394 		 * If we find a different rb; ignore this event, a next
6395 		 * iteration will no longer find it on the list. We have to
6396 		 * still restart the iteration to make sure we're not now
6397 		 * iterating the wrong list.
6398 		 */
6399 		if (event->rb == rb)
6400 			ring_buffer_attach(event, NULL);
6401 
6402 		mutex_unlock(&event->mmap_mutex);
6403 		put_event(event);
6404 
6405 		/*
6406 		 * Restart the iteration; either we're on the wrong list or
6407 		 * destroyed its integrity by doing a deletion.
6408 		 */
6409 		goto again;
6410 	}
6411 	rcu_read_unlock();
6412 
6413 	/*
6414 	 * It could be there's still a few 0-ref events on the list; they'll
6415 	 * get cleaned up by free_event() -- they'll also still have their
6416 	 * ref on the rb and will free it whenever they are done with it.
6417 	 *
6418 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6419 	 * undo the VM accounting.
6420 	 */
6421 
6422 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6423 			&mmap_user->locked_vm);
6424 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6425 	free_uid(mmap_user);
6426 
6427 out_put:
6428 	ring_buffer_put(rb); /* could be last */
6429 }
6430 
6431 static const struct vm_operations_struct perf_mmap_vmops = {
6432 	.open		= perf_mmap_open,
6433 	.close		= perf_mmap_close, /* non mergeable */
6434 	.fault		= perf_mmap_fault,
6435 	.page_mkwrite	= perf_mmap_fault,
6436 };
6437 
perf_mmap(struct file * file,struct vm_area_struct * vma)6438 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6439 {
6440 	struct perf_event *event = file->private_data;
6441 	unsigned long user_locked, user_lock_limit;
6442 	struct user_struct *user = current_user();
6443 	struct perf_buffer *rb = NULL;
6444 	unsigned long locked, lock_limit;
6445 	unsigned long vma_size;
6446 	unsigned long nr_pages;
6447 	long user_extra = 0, extra = 0;
6448 	int ret = 0, flags = 0;
6449 
6450 	/*
6451 	 * Don't allow mmap() of inherited per-task counters. This would
6452 	 * create a performance issue due to all children writing to the
6453 	 * same rb.
6454 	 */
6455 	if (event->cpu == -1 && event->attr.inherit)
6456 		return -EINVAL;
6457 
6458 	if (!(vma->vm_flags & VM_SHARED))
6459 		return -EINVAL;
6460 
6461 	ret = security_perf_event_read(event);
6462 	if (ret)
6463 		return ret;
6464 
6465 	vma_size = vma->vm_end - vma->vm_start;
6466 
6467 	if (vma->vm_pgoff == 0) {
6468 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6469 	} else {
6470 		/*
6471 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6472 		 * mapped, all subsequent mappings should have the same size
6473 		 * and offset. Must be above the normal perf buffer.
6474 		 */
6475 		u64 aux_offset, aux_size;
6476 
6477 		if (!event->rb)
6478 			return -EINVAL;
6479 
6480 		nr_pages = vma_size / PAGE_SIZE;
6481 		if (nr_pages > INT_MAX)
6482 			return -ENOMEM;
6483 
6484 		mutex_lock(&event->mmap_mutex);
6485 		ret = -EINVAL;
6486 
6487 		rb = event->rb;
6488 		if (!rb)
6489 			goto aux_unlock;
6490 
6491 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6492 		aux_size = READ_ONCE(rb->user_page->aux_size);
6493 
6494 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6495 			goto aux_unlock;
6496 
6497 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6498 			goto aux_unlock;
6499 
6500 		/* already mapped with a different offset */
6501 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6502 			goto aux_unlock;
6503 
6504 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6505 			goto aux_unlock;
6506 
6507 		/* already mapped with a different size */
6508 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6509 			goto aux_unlock;
6510 
6511 		if (!is_power_of_2(nr_pages))
6512 			goto aux_unlock;
6513 
6514 		if (!atomic_inc_not_zero(&rb->mmap_count))
6515 			goto aux_unlock;
6516 
6517 		if (rb_has_aux(rb)) {
6518 			atomic_inc(&rb->aux_mmap_count);
6519 			ret = 0;
6520 			goto unlock;
6521 		}
6522 
6523 		atomic_set(&rb->aux_mmap_count, 1);
6524 		user_extra = nr_pages;
6525 
6526 		goto accounting;
6527 	}
6528 
6529 	/*
6530 	 * If we have rb pages ensure they're a power-of-two number, so we
6531 	 * can do bitmasks instead of modulo.
6532 	 */
6533 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6534 		return -EINVAL;
6535 
6536 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6537 		return -EINVAL;
6538 
6539 	WARN_ON_ONCE(event->ctx->parent_ctx);
6540 again:
6541 	mutex_lock(&event->mmap_mutex);
6542 	if (event->rb) {
6543 		if (data_page_nr(event->rb) != nr_pages) {
6544 			ret = -EINVAL;
6545 			goto unlock;
6546 		}
6547 
6548 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6549 			/*
6550 			 * Raced against perf_mmap_close(); remove the
6551 			 * event and try again.
6552 			 */
6553 			ring_buffer_attach(event, NULL);
6554 			mutex_unlock(&event->mmap_mutex);
6555 			goto again;
6556 		}
6557 
6558 		goto unlock;
6559 	}
6560 
6561 	user_extra = nr_pages + 1;
6562 
6563 accounting:
6564 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6565 
6566 	/*
6567 	 * Increase the limit linearly with more CPUs:
6568 	 */
6569 	user_lock_limit *= num_online_cpus();
6570 
6571 	user_locked = atomic_long_read(&user->locked_vm);
6572 
6573 	/*
6574 	 * sysctl_perf_event_mlock may have changed, so that
6575 	 *     user->locked_vm > user_lock_limit
6576 	 */
6577 	if (user_locked > user_lock_limit)
6578 		user_locked = user_lock_limit;
6579 	user_locked += user_extra;
6580 
6581 	if (user_locked > user_lock_limit) {
6582 		/*
6583 		 * charge locked_vm until it hits user_lock_limit;
6584 		 * charge the rest from pinned_vm
6585 		 */
6586 		extra = user_locked - user_lock_limit;
6587 		user_extra -= extra;
6588 	}
6589 
6590 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6591 	lock_limit >>= PAGE_SHIFT;
6592 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6593 
6594 	if ((locked > lock_limit) && perf_is_paranoid() &&
6595 		!capable(CAP_IPC_LOCK)) {
6596 		ret = -EPERM;
6597 		goto unlock;
6598 	}
6599 
6600 	WARN_ON(!rb && event->rb);
6601 
6602 	if (vma->vm_flags & VM_WRITE)
6603 		flags |= RING_BUFFER_WRITABLE;
6604 
6605 	if (!rb) {
6606 		rb = rb_alloc(nr_pages,
6607 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6608 			      event->cpu, flags);
6609 
6610 		if (!rb) {
6611 			ret = -ENOMEM;
6612 			goto unlock;
6613 		}
6614 
6615 		atomic_set(&rb->mmap_count, 1);
6616 		rb->mmap_user = get_current_user();
6617 		rb->mmap_locked = extra;
6618 
6619 		ring_buffer_attach(event, rb);
6620 
6621 		perf_event_update_time(event);
6622 		perf_event_init_userpage(event);
6623 		perf_event_update_userpage(event);
6624 	} else {
6625 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6626 				   event->attr.aux_watermark, flags);
6627 		if (!ret)
6628 			rb->aux_mmap_locked = extra;
6629 	}
6630 
6631 unlock:
6632 	if (!ret) {
6633 		atomic_long_add(user_extra, &user->locked_vm);
6634 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6635 
6636 		atomic_inc(&event->mmap_count);
6637 	} else if (rb) {
6638 		atomic_dec(&rb->mmap_count);
6639 	}
6640 aux_unlock:
6641 	mutex_unlock(&event->mmap_mutex);
6642 
6643 	/*
6644 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6645 	 * vma.
6646 	 */
6647 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6648 	vma->vm_ops = &perf_mmap_vmops;
6649 
6650 	if (event->pmu->event_mapped)
6651 		event->pmu->event_mapped(event, vma->vm_mm);
6652 
6653 	return ret;
6654 }
6655 
perf_fasync(int fd,struct file * filp,int on)6656 static int perf_fasync(int fd, struct file *filp, int on)
6657 {
6658 	struct inode *inode = file_inode(filp);
6659 	struct perf_event *event = filp->private_data;
6660 	int retval;
6661 
6662 	inode_lock(inode);
6663 	retval = fasync_helper(fd, filp, on, &event->fasync);
6664 	inode_unlock(inode);
6665 
6666 	if (retval < 0)
6667 		return retval;
6668 
6669 	return 0;
6670 }
6671 
6672 static const struct file_operations perf_fops = {
6673 	.llseek			= no_llseek,
6674 	.release		= perf_release,
6675 	.read			= perf_read,
6676 	.poll			= perf_poll,
6677 	.unlocked_ioctl		= perf_ioctl,
6678 	.compat_ioctl		= perf_compat_ioctl,
6679 	.mmap			= perf_mmap,
6680 	.fasync			= perf_fasync,
6681 };
6682 
6683 /*
6684  * Perf event wakeup
6685  *
6686  * If there's data, ensure we set the poll() state and publish everything
6687  * to user-space before waking everybody up.
6688  */
6689 
perf_event_fasync(struct perf_event * event)6690 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6691 {
6692 	/* only the parent has fasync state */
6693 	if (event->parent)
6694 		event = event->parent;
6695 	return &event->fasync;
6696 }
6697 
perf_event_wakeup(struct perf_event * event)6698 void perf_event_wakeup(struct perf_event *event)
6699 {
6700 	ring_buffer_wakeup(event);
6701 
6702 	if (event->pending_kill) {
6703 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6704 		event->pending_kill = 0;
6705 	}
6706 }
6707 
perf_sigtrap(struct perf_event * event)6708 static void perf_sigtrap(struct perf_event *event)
6709 {
6710 	/*
6711 	 * We'd expect this to only occur if the irq_work is delayed and either
6712 	 * ctx->task or current has changed in the meantime. This can be the
6713 	 * case on architectures that do not implement arch_irq_work_raise().
6714 	 */
6715 	if (WARN_ON_ONCE(event->ctx->task != current))
6716 		return;
6717 
6718 	/*
6719 	 * Both perf_pending_task() and perf_pending_irq() can race with the
6720 	 * task exiting.
6721 	 */
6722 	if (current->flags & PF_EXITING)
6723 		return;
6724 
6725 	send_sig_perf((void __user *)event->pending_addr,
6726 		      event->orig_type, event->attr.sig_data);
6727 }
6728 
6729 /*
6730  * Deliver the pending work in-event-context or follow the context.
6731  */
__perf_pending_irq(struct perf_event * event)6732 static void __perf_pending_irq(struct perf_event *event)
6733 {
6734 	int cpu = READ_ONCE(event->oncpu);
6735 
6736 	/*
6737 	 * If the event isn't running; we done. event_sched_out() will have
6738 	 * taken care of things.
6739 	 */
6740 	if (cpu < 0)
6741 		return;
6742 
6743 	/*
6744 	 * Yay, we hit home and are in the context of the event.
6745 	 */
6746 	if (cpu == smp_processor_id()) {
6747 		if (event->pending_sigtrap) {
6748 			event->pending_sigtrap = 0;
6749 			perf_sigtrap(event);
6750 			local_dec(&event->ctx->nr_pending);
6751 		}
6752 		if (event->pending_disable) {
6753 			event->pending_disable = 0;
6754 			perf_event_disable_local(event);
6755 		}
6756 		return;
6757 	}
6758 
6759 	/*
6760 	 *  CPU-A			CPU-B
6761 	 *
6762 	 *  perf_event_disable_inatomic()
6763 	 *    @pending_disable = CPU-A;
6764 	 *    irq_work_queue();
6765 	 *
6766 	 *  sched-out
6767 	 *    @pending_disable = -1;
6768 	 *
6769 	 *				sched-in
6770 	 *				perf_event_disable_inatomic()
6771 	 *				  @pending_disable = CPU-B;
6772 	 *				  irq_work_queue(); // FAILS
6773 	 *
6774 	 *  irq_work_run()
6775 	 *    perf_pending_irq()
6776 	 *
6777 	 * But the event runs on CPU-B and wants disabling there.
6778 	 */
6779 	irq_work_queue_on(&event->pending_irq, cpu);
6780 }
6781 
perf_pending_irq(struct irq_work * entry)6782 static void perf_pending_irq(struct irq_work *entry)
6783 {
6784 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6785 	int rctx;
6786 
6787 	/*
6788 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6789 	 * and we won't recurse 'further'.
6790 	 */
6791 	rctx = perf_swevent_get_recursion_context();
6792 
6793 	/*
6794 	 * The wakeup isn't bound to the context of the event -- it can happen
6795 	 * irrespective of where the event is.
6796 	 */
6797 	if (event->pending_wakeup) {
6798 		event->pending_wakeup = 0;
6799 		perf_event_wakeup(event);
6800 	}
6801 
6802 	__perf_pending_irq(event);
6803 
6804 	if (rctx >= 0)
6805 		perf_swevent_put_recursion_context(rctx);
6806 }
6807 
perf_pending_task(struct callback_head * head)6808 static void perf_pending_task(struct callback_head *head)
6809 {
6810 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
6811 	int rctx;
6812 
6813 	/*
6814 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6815 	 * and we won't recurse 'further'.
6816 	 */
6817 	preempt_disable_notrace();
6818 	rctx = perf_swevent_get_recursion_context();
6819 
6820 	if (event->pending_work) {
6821 		event->pending_work = 0;
6822 		perf_sigtrap(event);
6823 		local_dec(&event->ctx->nr_pending);
6824 	}
6825 
6826 	if (rctx >= 0)
6827 		perf_swevent_put_recursion_context(rctx);
6828 	preempt_enable_notrace();
6829 
6830 	put_event(event);
6831 }
6832 
6833 #ifdef CONFIG_GUEST_PERF_EVENTS
6834 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6835 
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6836 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6837 {
6838 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6839 		return;
6840 
6841 	rcu_assign_pointer(perf_guest_cbs, cbs);
6842 }
6843 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6844 
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6845 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6846 {
6847 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6848 		return;
6849 
6850 	rcu_assign_pointer(perf_guest_cbs, NULL);
6851 	synchronize_rcu();
6852 }
6853 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6854 #endif
6855 
6856 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)6857 perf_output_sample_regs(struct perf_output_handle *handle,
6858 			struct pt_regs *regs, u64 mask)
6859 {
6860 	int bit;
6861 	DECLARE_BITMAP(_mask, 64);
6862 
6863 	bitmap_from_u64(_mask, mask);
6864 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6865 		u64 val;
6866 
6867 		val = perf_reg_value(regs, bit);
6868 		perf_output_put(handle, val);
6869 	}
6870 }
6871 
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs)6872 static void perf_sample_regs_user(struct perf_regs *regs_user,
6873 				  struct pt_regs *regs)
6874 {
6875 	if (user_mode(regs)) {
6876 		regs_user->abi = perf_reg_abi(current);
6877 		regs_user->regs = regs;
6878 	} else if (!(current->flags & PF_KTHREAD)) {
6879 		perf_get_regs_user(regs_user, regs);
6880 	} else {
6881 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6882 		regs_user->regs = NULL;
6883 	}
6884 }
6885 
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)6886 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6887 				  struct pt_regs *regs)
6888 {
6889 	regs_intr->regs = regs;
6890 	regs_intr->abi  = perf_reg_abi(current);
6891 }
6892 
6893 
6894 /*
6895  * Get remaining task size from user stack pointer.
6896  *
6897  * It'd be better to take stack vma map and limit this more
6898  * precisely, but there's no way to get it safely under interrupt,
6899  * so using TASK_SIZE as limit.
6900  */
perf_ustack_task_size(struct pt_regs * regs)6901 static u64 perf_ustack_task_size(struct pt_regs *regs)
6902 {
6903 	unsigned long addr = perf_user_stack_pointer(regs);
6904 
6905 	if (!addr || addr >= TASK_SIZE)
6906 		return 0;
6907 
6908 	return TASK_SIZE - addr;
6909 }
6910 
6911 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)6912 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6913 			struct pt_regs *regs)
6914 {
6915 	u64 task_size;
6916 
6917 	/* No regs, no stack pointer, no dump. */
6918 	if (!regs)
6919 		return 0;
6920 
6921 	/*
6922 	 * Check if we fit in with the requested stack size into the:
6923 	 * - TASK_SIZE
6924 	 *   If we don't, we limit the size to the TASK_SIZE.
6925 	 *
6926 	 * - remaining sample size
6927 	 *   If we don't, we customize the stack size to
6928 	 *   fit in to the remaining sample size.
6929 	 */
6930 
6931 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6932 	stack_size = min(stack_size, (u16) task_size);
6933 
6934 	/* Current header size plus static size and dynamic size. */
6935 	header_size += 2 * sizeof(u64);
6936 
6937 	/* Do we fit in with the current stack dump size? */
6938 	if ((u16) (header_size + stack_size) < header_size) {
6939 		/*
6940 		 * If we overflow the maximum size for the sample,
6941 		 * we customize the stack dump size to fit in.
6942 		 */
6943 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6944 		stack_size = round_up(stack_size, sizeof(u64));
6945 	}
6946 
6947 	return stack_size;
6948 }
6949 
6950 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)6951 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6952 			  struct pt_regs *regs)
6953 {
6954 	/* Case of a kernel thread, nothing to dump */
6955 	if (!regs) {
6956 		u64 size = 0;
6957 		perf_output_put(handle, size);
6958 	} else {
6959 		unsigned long sp;
6960 		unsigned int rem;
6961 		u64 dyn_size;
6962 
6963 		/*
6964 		 * We dump:
6965 		 * static size
6966 		 *   - the size requested by user or the best one we can fit
6967 		 *     in to the sample max size
6968 		 * data
6969 		 *   - user stack dump data
6970 		 * dynamic size
6971 		 *   - the actual dumped size
6972 		 */
6973 
6974 		/* Static size. */
6975 		perf_output_put(handle, dump_size);
6976 
6977 		/* Data. */
6978 		sp = perf_user_stack_pointer(regs);
6979 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6980 		dyn_size = dump_size - rem;
6981 
6982 		perf_output_skip(handle, rem);
6983 
6984 		/* Dynamic size. */
6985 		perf_output_put(handle, dyn_size);
6986 	}
6987 }
6988 
perf_prepare_sample_aux(struct perf_event * event,struct perf_sample_data * data,size_t size)6989 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6990 					  struct perf_sample_data *data,
6991 					  size_t size)
6992 {
6993 	struct perf_event *sampler = event->aux_event;
6994 	struct perf_buffer *rb;
6995 
6996 	data->aux_size = 0;
6997 
6998 	if (!sampler)
6999 		goto out;
7000 
7001 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7002 		goto out;
7003 
7004 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7005 		goto out;
7006 
7007 	rb = ring_buffer_get(sampler);
7008 	if (!rb)
7009 		goto out;
7010 
7011 	/*
7012 	 * If this is an NMI hit inside sampling code, don't take
7013 	 * the sample. See also perf_aux_sample_output().
7014 	 */
7015 	if (READ_ONCE(rb->aux_in_sampling)) {
7016 		data->aux_size = 0;
7017 	} else {
7018 		size = min_t(size_t, size, perf_aux_size(rb));
7019 		data->aux_size = ALIGN(size, sizeof(u64));
7020 	}
7021 	ring_buffer_put(rb);
7022 
7023 out:
7024 	return data->aux_size;
7025 }
7026 
perf_pmu_snapshot_aux(struct perf_buffer * rb,struct perf_event * event,struct perf_output_handle * handle,unsigned long size)7027 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7028                                  struct perf_event *event,
7029                                  struct perf_output_handle *handle,
7030                                  unsigned long size)
7031 {
7032 	unsigned long flags;
7033 	long ret;
7034 
7035 	/*
7036 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7037 	 * paths. If we start calling them in NMI context, they may race with
7038 	 * the IRQ ones, that is, for example, re-starting an event that's just
7039 	 * been stopped, which is why we're using a separate callback that
7040 	 * doesn't change the event state.
7041 	 *
7042 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7043 	 */
7044 	local_irq_save(flags);
7045 	/*
7046 	 * Guard against NMI hits inside the critical section;
7047 	 * see also perf_prepare_sample_aux().
7048 	 */
7049 	WRITE_ONCE(rb->aux_in_sampling, 1);
7050 	barrier();
7051 
7052 	ret = event->pmu->snapshot_aux(event, handle, size);
7053 
7054 	barrier();
7055 	WRITE_ONCE(rb->aux_in_sampling, 0);
7056 	local_irq_restore(flags);
7057 
7058 	return ret;
7059 }
7060 
perf_aux_sample_output(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * data)7061 static void perf_aux_sample_output(struct perf_event *event,
7062 				   struct perf_output_handle *handle,
7063 				   struct perf_sample_data *data)
7064 {
7065 	struct perf_event *sampler = event->aux_event;
7066 	struct perf_buffer *rb;
7067 	unsigned long pad;
7068 	long size;
7069 
7070 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7071 		return;
7072 
7073 	rb = ring_buffer_get(sampler);
7074 	if (!rb)
7075 		return;
7076 
7077 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7078 
7079 	/*
7080 	 * An error here means that perf_output_copy() failed (returned a
7081 	 * non-zero surplus that it didn't copy), which in its current
7082 	 * enlightened implementation is not possible. If that changes, we'd
7083 	 * like to know.
7084 	 */
7085 	if (WARN_ON_ONCE(size < 0))
7086 		goto out_put;
7087 
7088 	/*
7089 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7090 	 * perf_prepare_sample_aux(), so should not be more than that.
7091 	 */
7092 	pad = data->aux_size - size;
7093 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7094 		pad = 8;
7095 
7096 	if (pad) {
7097 		u64 zero = 0;
7098 		perf_output_copy(handle, &zero, pad);
7099 	}
7100 
7101 out_put:
7102 	ring_buffer_put(rb);
7103 }
7104 
7105 /*
7106  * A set of common sample data types saved even for non-sample records
7107  * when event->attr.sample_id_all is set.
7108  */
7109 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7110 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7111 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7112 
__perf_event_header__init_id(struct perf_sample_data * data,struct perf_event * event,u64 sample_type)7113 static void __perf_event_header__init_id(struct perf_sample_data *data,
7114 					 struct perf_event *event,
7115 					 u64 sample_type)
7116 {
7117 	data->type = event->attr.sample_type;
7118 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7119 
7120 	if (sample_type & PERF_SAMPLE_TID) {
7121 		/* namespace issues */
7122 		data->tid_entry.pid = perf_event_pid(event, current);
7123 		data->tid_entry.tid = perf_event_tid(event, current);
7124 	}
7125 
7126 	if (sample_type & PERF_SAMPLE_TIME)
7127 		data->time = perf_event_clock(event);
7128 
7129 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7130 		data->id = primary_event_id(event);
7131 
7132 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7133 		data->stream_id = event->id;
7134 
7135 	if (sample_type & PERF_SAMPLE_CPU) {
7136 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7137 		data->cpu_entry.reserved = 0;
7138 	}
7139 }
7140 
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7141 void perf_event_header__init_id(struct perf_event_header *header,
7142 				struct perf_sample_data *data,
7143 				struct perf_event *event)
7144 {
7145 	if (event->attr.sample_id_all) {
7146 		header->size += event->id_header_size;
7147 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7148 	}
7149 }
7150 
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)7151 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7152 					   struct perf_sample_data *data)
7153 {
7154 	u64 sample_type = data->type;
7155 
7156 	if (sample_type & PERF_SAMPLE_TID)
7157 		perf_output_put(handle, data->tid_entry);
7158 
7159 	if (sample_type & PERF_SAMPLE_TIME)
7160 		perf_output_put(handle, data->time);
7161 
7162 	if (sample_type & PERF_SAMPLE_ID)
7163 		perf_output_put(handle, data->id);
7164 
7165 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7166 		perf_output_put(handle, data->stream_id);
7167 
7168 	if (sample_type & PERF_SAMPLE_CPU)
7169 		perf_output_put(handle, data->cpu_entry);
7170 
7171 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7172 		perf_output_put(handle, data->id);
7173 }
7174 
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)7175 void perf_event__output_id_sample(struct perf_event *event,
7176 				  struct perf_output_handle *handle,
7177 				  struct perf_sample_data *sample)
7178 {
7179 	if (event->attr.sample_id_all)
7180 		__perf_event__output_id_sample(handle, sample);
7181 }
7182 
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7183 static void perf_output_read_one(struct perf_output_handle *handle,
7184 				 struct perf_event *event,
7185 				 u64 enabled, u64 running)
7186 {
7187 	u64 read_format = event->attr.read_format;
7188 	u64 values[5];
7189 	int n = 0;
7190 
7191 	values[n++] = perf_event_count(event);
7192 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7193 		values[n++] = enabled +
7194 			atomic64_read(&event->child_total_time_enabled);
7195 	}
7196 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7197 		values[n++] = running +
7198 			atomic64_read(&event->child_total_time_running);
7199 	}
7200 	if (read_format & PERF_FORMAT_ID)
7201 		values[n++] = primary_event_id(event);
7202 	if (read_format & PERF_FORMAT_LOST)
7203 		values[n++] = atomic64_read(&event->lost_samples);
7204 
7205 	__output_copy(handle, values, n * sizeof(u64));
7206 }
7207 
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7208 static void perf_output_read_group(struct perf_output_handle *handle,
7209 			    struct perf_event *event,
7210 			    u64 enabled, u64 running)
7211 {
7212 	struct perf_event *leader = event->group_leader, *sub;
7213 	u64 read_format = event->attr.read_format;
7214 	unsigned long flags;
7215 	u64 values[6];
7216 	int n = 0;
7217 
7218 	/*
7219 	 * Disabling interrupts avoids all counter scheduling
7220 	 * (context switches, timer based rotation and IPIs).
7221 	 */
7222 	local_irq_save(flags);
7223 
7224 	values[n++] = 1 + leader->nr_siblings;
7225 
7226 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7227 		values[n++] = enabled;
7228 
7229 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7230 		values[n++] = running;
7231 
7232 	if ((leader != event) &&
7233 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
7234 		leader->pmu->read(leader);
7235 
7236 	values[n++] = perf_event_count(leader);
7237 	if (read_format & PERF_FORMAT_ID)
7238 		values[n++] = primary_event_id(leader);
7239 	if (read_format & PERF_FORMAT_LOST)
7240 		values[n++] = atomic64_read(&leader->lost_samples);
7241 
7242 	__output_copy(handle, values, n * sizeof(u64));
7243 
7244 	for_each_sibling_event(sub, leader) {
7245 		n = 0;
7246 
7247 		if ((sub != event) &&
7248 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7249 			sub->pmu->read(sub);
7250 
7251 		values[n++] = perf_event_count(sub);
7252 		if (read_format & PERF_FORMAT_ID)
7253 			values[n++] = primary_event_id(sub);
7254 		if (read_format & PERF_FORMAT_LOST)
7255 			values[n++] = atomic64_read(&sub->lost_samples);
7256 
7257 		__output_copy(handle, values, n * sizeof(u64));
7258 	}
7259 
7260 	local_irq_restore(flags);
7261 }
7262 
7263 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7264 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7265 
7266 /*
7267  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7268  *
7269  * The problem is that its both hard and excessively expensive to iterate the
7270  * child list, not to mention that its impossible to IPI the children running
7271  * on another CPU, from interrupt/NMI context.
7272  */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)7273 static void perf_output_read(struct perf_output_handle *handle,
7274 			     struct perf_event *event)
7275 {
7276 	u64 enabled = 0, running = 0, now;
7277 	u64 read_format = event->attr.read_format;
7278 
7279 	/*
7280 	 * compute total_time_enabled, total_time_running
7281 	 * based on snapshot values taken when the event
7282 	 * was last scheduled in.
7283 	 *
7284 	 * we cannot simply called update_context_time()
7285 	 * because of locking issue as we are called in
7286 	 * NMI context
7287 	 */
7288 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7289 		calc_timer_values(event, &now, &enabled, &running);
7290 
7291 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7292 		perf_output_read_group(handle, event, enabled, running);
7293 	else
7294 		perf_output_read_one(handle, event, enabled, running);
7295 }
7296 
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7297 void perf_output_sample(struct perf_output_handle *handle,
7298 			struct perf_event_header *header,
7299 			struct perf_sample_data *data,
7300 			struct perf_event *event)
7301 {
7302 	u64 sample_type = data->type;
7303 
7304 	perf_output_put(handle, *header);
7305 
7306 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7307 		perf_output_put(handle, data->id);
7308 
7309 	if (sample_type & PERF_SAMPLE_IP)
7310 		perf_output_put(handle, data->ip);
7311 
7312 	if (sample_type & PERF_SAMPLE_TID)
7313 		perf_output_put(handle, data->tid_entry);
7314 
7315 	if (sample_type & PERF_SAMPLE_TIME)
7316 		perf_output_put(handle, data->time);
7317 
7318 	if (sample_type & PERF_SAMPLE_ADDR)
7319 		perf_output_put(handle, data->addr);
7320 
7321 	if (sample_type & PERF_SAMPLE_ID)
7322 		perf_output_put(handle, data->id);
7323 
7324 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7325 		perf_output_put(handle, data->stream_id);
7326 
7327 	if (sample_type & PERF_SAMPLE_CPU)
7328 		perf_output_put(handle, data->cpu_entry);
7329 
7330 	if (sample_type & PERF_SAMPLE_PERIOD)
7331 		perf_output_put(handle, data->period);
7332 
7333 	if (sample_type & PERF_SAMPLE_READ)
7334 		perf_output_read(handle, event);
7335 
7336 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7337 		int size = 1;
7338 
7339 		size += data->callchain->nr;
7340 		size *= sizeof(u64);
7341 		__output_copy(handle, data->callchain, size);
7342 	}
7343 
7344 	if (sample_type & PERF_SAMPLE_RAW) {
7345 		struct perf_raw_record *raw = data->raw;
7346 
7347 		if (raw) {
7348 			struct perf_raw_frag *frag = &raw->frag;
7349 
7350 			perf_output_put(handle, raw->size);
7351 			do {
7352 				if (frag->copy) {
7353 					__output_custom(handle, frag->copy,
7354 							frag->data, frag->size);
7355 				} else {
7356 					__output_copy(handle, frag->data,
7357 						      frag->size);
7358 				}
7359 				if (perf_raw_frag_last(frag))
7360 					break;
7361 				frag = frag->next;
7362 			} while (1);
7363 			if (frag->pad)
7364 				__output_skip(handle, NULL, frag->pad);
7365 		} else {
7366 			struct {
7367 				u32	size;
7368 				u32	data;
7369 			} raw = {
7370 				.size = sizeof(u32),
7371 				.data = 0,
7372 			};
7373 			perf_output_put(handle, raw);
7374 		}
7375 	}
7376 
7377 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7378 		if (data->br_stack) {
7379 			size_t size;
7380 
7381 			size = data->br_stack->nr
7382 			     * sizeof(struct perf_branch_entry);
7383 
7384 			perf_output_put(handle, data->br_stack->nr);
7385 			if (branch_sample_hw_index(event))
7386 				perf_output_put(handle, data->br_stack->hw_idx);
7387 			perf_output_copy(handle, data->br_stack->entries, size);
7388 		} else {
7389 			/*
7390 			 * we always store at least the value of nr
7391 			 */
7392 			u64 nr = 0;
7393 			perf_output_put(handle, nr);
7394 		}
7395 	}
7396 
7397 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7398 		u64 abi = data->regs_user.abi;
7399 
7400 		/*
7401 		 * If there are no regs to dump, notice it through
7402 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7403 		 */
7404 		perf_output_put(handle, abi);
7405 
7406 		if (abi) {
7407 			u64 mask = event->attr.sample_regs_user;
7408 			perf_output_sample_regs(handle,
7409 						data->regs_user.regs,
7410 						mask);
7411 		}
7412 	}
7413 
7414 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7415 		perf_output_sample_ustack(handle,
7416 					  data->stack_user_size,
7417 					  data->regs_user.regs);
7418 	}
7419 
7420 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7421 		perf_output_put(handle, data->weight.full);
7422 
7423 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7424 		perf_output_put(handle, data->data_src.val);
7425 
7426 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7427 		perf_output_put(handle, data->txn);
7428 
7429 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7430 		u64 abi = data->regs_intr.abi;
7431 		/*
7432 		 * If there are no regs to dump, notice it through
7433 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7434 		 */
7435 		perf_output_put(handle, abi);
7436 
7437 		if (abi) {
7438 			u64 mask = event->attr.sample_regs_intr;
7439 
7440 			perf_output_sample_regs(handle,
7441 						data->regs_intr.regs,
7442 						mask);
7443 		}
7444 	}
7445 
7446 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7447 		perf_output_put(handle, data->phys_addr);
7448 
7449 	if (sample_type & PERF_SAMPLE_CGROUP)
7450 		perf_output_put(handle, data->cgroup);
7451 
7452 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7453 		perf_output_put(handle, data->data_page_size);
7454 
7455 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7456 		perf_output_put(handle, data->code_page_size);
7457 
7458 	if (sample_type & PERF_SAMPLE_AUX) {
7459 		perf_output_put(handle, data->aux_size);
7460 
7461 		if (data->aux_size)
7462 			perf_aux_sample_output(event, handle, data);
7463 	}
7464 
7465 	if (!event->attr.watermark) {
7466 		int wakeup_events = event->attr.wakeup_events;
7467 
7468 		if (wakeup_events) {
7469 			struct perf_buffer *rb = handle->rb;
7470 			int events = local_inc_return(&rb->events);
7471 
7472 			if (events >= wakeup_events) {
7473 				local_sub(wakeup_events, &rb->events);
7474 				local_inc(&rb->wakeup);
7475 			}
7476 		}
7477 	}
7478 }
7479 
perf_virt_to_phys(u64 virt)7480 static u64 perf_virt_to_phys(u64 virt)
7481 {
7482 	u64 phys_addr = 0;
7483 
7484 	if (!virt)
7485 		return 0;
7486 
7487 	if (virt >= TASK_SIZE) {
7488 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7489 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7490 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7491 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7492 	} else {
7493 		/*
7494 		 * Walking the pages tables for user address.
7495 		 * Interrupts are disabled, so it prevents any tear down
7496 		 * of the page tables.
7497 		 * Try IRQ-safe get_user_page_fast_only first.
7498 		 * If failed, leave phys_addr as 0.
7499 		 */
7500 		if (current->mm != NULL) {
7501 			struct page *p;
7502 
7503 			pagefault_disable();
7504 			if (get_user_page_fast_only(virt, 0, &p)) {
7505 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7506 				put_page(p);
7507 			}
7508 			pagefault_enable();
7509 		}
7510 	}
7511 
7512 	return phys_addr;
7513 }
7514 
7515 /*
7516  * Return the pagetable size of a given virtual address.
7517  */
perf_get_pgtable_size(struct mm_struct * mm,unsigned long addr)7518 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7519 {
7520 	u64 size = 0;
7521 
7522 #ifdef CONFIG_HAVE_FAST_GUP
7523 	pgd_t *pgdp, pgd;
7524 	p4d_t *p4dp, p4d;
7525 	pud_t *pudp, pud;
7526 	pmd_t *pmdp, pmd;
7527 	pte_t *ptep, pte;
7528 
7529 	pgdp = pgd_offset(mm, addr);
7530 	pgd = READ_ONCE(*pgdp);
7531 	if (pgd_none(pgd))
7532 		return 0;
7533 
7534 	if (pgd_leaf(pgd))
7535 		return pgd_leaf_size(pgd);
7536 
7537 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7538 	p4d = READ_ONCE(*p4dp);
7539 	if (!p4d_present(p4d))
7540 		return 0;
7541 
7542 	if (p4d_leaf(p4d))
7543 		return p4d_leaf_size(p4d);
7544 
7545 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7546 	pud = READ_ONCE(*pudp);
7547 	if (!pud_present(pud))
7548 		return 0;
7549 
7550 	if (pud_leaf(pud))
7551 		return pud_leaf_size(pud);
7552 
7553 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7554 again:
7555 	pmd = pmdp_get_lockless(pmdp);
7556 	if (!pmd_present(pmd))
7557 		return 0;
7558 
7559 	if (pmd_leaf(pmd))
7560 		return pmd_leaf_size(pmd);
7561 
7562 	ptep = pte_offset_map(&pmd, addr);
7563 	if (!ptep)
7564 		goto again;
7565 
7566 	pte = ptep_get_lockless(ptep);
7567 	if (pte_present(pte))
7568 		size = pte_leaf_size(pte);
7569 	pte_unmap(ptep);
7570 #endif /* CONFIG_HAVE_FAST_GUP */
7571 
7572 	return size;
7573 }
7574 
perf_get_page_size(unsigned long addr)7575 static u64 perf_get_page_size(unsigned long addr)
7576 {
7577 	struct mm_struct *mm;
7578 	unsigned long flags;
7579 	u64 size;
7580 
7581 	if (!addr)
7582 		return 0;
7583 
7584 	/*
7585 	 * Software page-table walkers must disable IRQs,
7586 	 * which prevents any tear down of the page tables.
7587 	 */
7588 	local_irq_save(flags);
7589 
7590 	mm = current->mm;
7591 	if (!mm) {
7592 		/*
7593 		 * For kernel threads and the like, use init_mm so that
7594 		 * we can find kernel memory.
7595 		 */
7596 		mm = &init_mm;
7597 	}
7598 
7599 	size = perf_get_pgtable_size(mm, addr);
7600 
7601 	local_irq_restore(flags);
7602 
7603 	return size;
7604 }
7605 
7606 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7607 
7608 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)7609 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7610 {
7611 	bool kernel = !event->attr.exclude_callchain_kernel;
7612 	bool user   = !event->attr.exclude_callchain_user;
7613 	/* Disallow cross-task user callchains. */
7614 	bool crosstask = event->ctx->task && event->ctx->task != current;
7615 	const u32 max_stack = event->attr.sample_max_stack;
7616 	struct perf_callchain_entry *callchain;
7617 
7618 	if (!kernel && !user)
7619 		return &__empty_callchain;
7620 
7621 	callchain = get_perf_callchain(regs, 0, kernel, user,
7622 				       max_stack, crosstask, true);
7623 	return callchain ?: &__empty_callchain;
7624 }
7625 
__cond_set(u64 flags,u64 s,u64 d)7626 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7627 {
7628 	return d * !!(flags & s);
7629 }
7630 
perf_prepare_sample(struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7631 void perf_prepare_sample(struct perf_sample_data *data,
7632 			 struct perf_event *event,
7633 			 struct pt_regs *regs)
7634 {
7635 	u64 sample_type = event->attr.sample_type;
7636 	u64 filtered_sample_type;
7637 
7638 	/*
7639 	 * Add the sample flags that are dependent to others.  And clear the
7640 	 * sample flags that have already been done by the PMU driver.
7641 	 */
7642 	filtered_sample_type = sample_type;
7643 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7644 					   PERF_SAMPLE_IP);
7645 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7646 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7647 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7648 					   PERF_SAMPLE_REGS_USER);
7649 	filtered_sample_type &= ~data->sample_flags;
7650 
7651 	if (filtered_sample_type == 0) {
7652 		/* Make sure it has the correct data->type for output */
7653 		data->type = event->attr.sample_type;
7654 		return;
7655 	}
7656 
7657 	__perf_event_header__init_id(data, event, filtered_sample_type);
7658 
7659 	if (filtered_sample_type & PERF_SAMPLE_IP) {
7660 		data->ip = perf_instruction_pointer(regs);
7661 		data->sample_flags |= PERF_SAMPLE_IP;
7662 	}
7663 
7664 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7665 		perf_sample_save_callchain(data, event, regs);
7666 
7667 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
7668 		data->raw = NULL;
7669 		data->dyn_size += sizeof(u64);
7670 		data->sample_flags |= PERF_SAMPLE_RAW;
7671 	}
7672 
7673 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7674 		data->br_stack = NULL;
7675 		data->dyn_size += sizeof(u64);
7676 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7677 	}
7678 
7679 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7680 		perf_sample_regs_user(&data->regs_user, regs);
7681 
7682 	/*
7683 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
7684 	 * by STACK_USER (using __cond_set() above) and we don't want to update
7685 	 * the dyn_size if it's not requested by users.
7686 	 */
7687 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7688 		/* regs dump ABI info */
7689 		int size = sizeof(u64);
7690 
7691 		if (data->regs_user.regs) {
7692 			u64 mask = event->attr.sample_regs_user;
7693 			size += hweight64(mask) * sizeof(u64);
7694 		}
7695 
7696 		data->dyn_size += size;
7697 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
7698 	}
7699 
7700 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7701 		/*
7702 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7703 		 * processed as the last one or have additional check added
7704 		 * in case new sample type is added, because we could eat
7705 		 * up the rest of the sample size.
7706 		 */
7707 		u16 stack_size = event->attr.sample_stack_user;
7708 		u16 header_size = perf_sample_data_size(data, event);
7709 		u16 size = sizeof(u64);
7710 
7711 		stack_size = perf_sample_ustack_size(stack_size, header_size,
7712 						     data->regs_user.regs);
7713 
7714 		/*
7715 		 * If there is something to dump, add space for the dump
7716 		 * itself and for the field that tells the dynamic size,
7717 		 * which is how many have been actually dumped.
7718 		 */
7719 		if (stack_size)
7720 			size += sizeof(u64) + stack_size;
7721 
7722 		data->stack_user_size = stack_size;
7723 		data->dyn_size += size;
7724 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
7725 	}
7726 
7727 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7728 		data->weight.full = 0;
7729 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7730 	}
7731 
7732 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7733 		data->data_src.val = PERF_MEM_NA;
7734 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7735 	}
7736 
7737 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7738 		data->txn = 0;
7739 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7740 	}
7741 
7742 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7743 		data->addr = 0;
7744 		data->sample_flags |= PERF_SAMPLE_ADDR;
7745 	}
7746 
7747 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7748 		/* regs dump ABI info */
7749 		int size = sizeof(u64);
7750 
7751 		perf_sample_regs_intr(&data->regs_intr, regs);
7752 
7753 		if (data->regs_intr.regs) {
7754 			u64 mask = event->attr.sample_regs_intr;
7755 
7756 			size += hweight64(mask) * sizeof(u64);
7757 		}
7758 
7759 		data->dyn_size += size;
7760 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7761 	}
7762 
7763 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7764 		data->phys_addr = perf_virt_to_phys(data->addr);
7765 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7766 	}
7767 
7768 #ifdef CONFIG_CGROUP_PERF
7769 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7770 		struct cgroup *cgrp;
7771 
7772 		/* protected by RCU */
7773 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7774 		data->cgroup = cgroup_id(cgrp);
7775 		data->sample_flags |= PERF_SAMPLE_CGROUP;
7776 	}
7777 #endif
7778 
7779 	/*
7780 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7781 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7782 	 * but the value will not dump to the userspace.
7783 	 */
7784 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7785 		data->data_page_size = perf_get_page_size(data->addr);
7786 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7787 	}
7788 
7789 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7790 		data->code_page_size = perf_get_page_size(data->ip);
7791 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7792 	}
7793 
7794 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
7795 		u64 size;
7796 		u16 header_size = perf_sample_data_size(data, event);
7797 
7798 		header_size += sizeof(u64); /* size */
7799 
7800 		/*
7801 		 * Given the 16bit nature of header::size, an AUX sample can
7802 		 * easily overflow it, what with all the preceding sample bits.
7803 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7804 		 * per sample in total (rounded down to 8 byte boundary).
7805 		 */
7806 		size = min_t(size_t, U16_MAX - header_size,
7807 			     event->attr.aux_sample_size);
7808 		size = rounddown(size, 8);
7809 		size = perf_prepare_sample_aux(event, data, size);
7810 
7811 		WARN_ON_ONCE(size + header_size > U16_MAX);
7812 		data->dyn_size += size + sizeof(u64); /* size above */
7813 		data->sample_flags |= PERF_SAMPLE_AUX;
7814 	}
7815 }
7816 
perf_prepare_header(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7817 void perf_prepare_header(struct perf_event_header *header,
7818 			 struct perf_sample_data *data,
7819 			 struct perf_event *event,
7820 			 struct pt_regs *regs)
7821 {
7822 	header->type = PERF_RECORD_SAMPLE;
7823 	header->size = perf_sample_data_size(data, event);
7824 	header->misc = perf_misc_flags(regs);
7825 
7826 	/*
7827 	 * If you're adding more sample types here, you likely need to do
7828 	 * something about the overflowing header::size, like repurpose the
7829 	 * lowest 3 bits of size, which should be always zero at the moment.
7830 	 * This raises a more important question, do we really need 512k sized
7831 	 * samples and why, so good argumentation is in order for whatever you
7832 	 * do here next.
7833 	 */
7834 	WARN_ON_ONCE(header->size & 7);
7835 }
7836 
7837 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_sample_data *,struct perf_event *,unsigned int))7838 __perf_event_output(struct perf_event *event,
7839 		    struct perf_sample_data *data,
7840 		    struct pt_regs *regs,
7841 		    int (*output_begin)(struct perf_output_handle *,
7842 					struct perf_sample_data *,
7843 					struct perf_event *,
7844 					unsigned int))
7845 {
7846 	struct perf_output_handle handle;
7847 	struct perf_event_header header;
7848 	int err;
7849 
7850 	/* protect the callchain buffers */
7851 	rcu_read_lock();
7852 
7853 	perf_prepare_sample(data, event, regs);
7854 	perf_prepare_header(&header, data, event, regs);
7855 
7856 	err = output_begin(&handle, data, event, header.size);
7857 	if (err)
7858 		goto exit;
7859 
7860 	perf_output_sample(&handle, &header, data, event);
7861 
7862 	perf_output_end(&handle);
7863 
7864 exit:
7865 	rcu_read_unlock();
7866 	return err;
7867 }
7868 
7869 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7870 perf_event_output_forward(struct perf_event *event,
7871 			 struct perf_sample_data *data,
7872 			 struct pt_regs *regs)
7873 {
7874 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7875 }
7876 
7877 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7878 perf_event_output_backward(struct perf_event *event,
7879 			   struct perf_sample_data *data,
7880 			   struct pt_regs *regs)
7881 {
7882 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7883 }
7884 
7885 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7886 perf_event_output(struct perf_event *event,
7887 		  struct perf_sample_data *data,
7888 		  struct pt_regs *regs)
7889 {
7890 	return __perf_event_output(event, data, regs, perf_output_begin);
7891 }
7892 
7893 /*
7894  * read event_id
7895  */
7896 
7897 struct perf_read_event {
7898 	struct perf_event_header	header;
7899 
7900 	u32				pid;
7901 	u32				tid;
7902 };
7903 
7904 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)7905 perf_event_read_event(struct perf_event *event,
7906 			struct task_struct *task)
7907 {
7908 	struct perf_output_handle handle;
7909 	struct perf_sample_data sample;
7910 	struct perf_read_event read_event = {
7911 		.header = {
7912 			.type = PERF_RECORD_READ,
7913 			.misc = 0,
7914 			.size = sizeof(read_event) + event->read_size,
7915 		},
7916 		.pid = perf_event_pid(event, task),
7917 		.tid = perf_event_tid(event, task),
7918 	};
7919 	int ret;
7920 
7921 	perf_event_header__init_id(&read_event.header, &sample, event);
7922 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7923 	if (ret)
7924 		return;
7925 
7926 	perf_output_put(&handle, read_event);
7927 	perf_output_read(&handle, event);
7928 	perf_event__output_id_sample(event, &handle, &sample);
7929 
7930 	perf_output_end(&handle);
7931 }
7932 
7933 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7934 
7935 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)7936 perf_iterate_ctx(struct perf_event_context *ctx,
7937 		   perf_iterate_f output,
7938 		   void *data, bool all)
7939 {
7940 	struct perf_event *event;
7941 
7942 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7943 		if (!all) {
7944 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7945 				continue;
7946 			if (!event_filter_match(event))
7947 				continue;
7948 		}
7949 
7950 		output(event, data);
7951 	}
7952 }
7953 
perf_iterate_sb_cpu(perf_iterate_f output,void * data)7954 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7955 {
7956 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7957 	struct perf_event *event;
7958 
7959 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7960 		/*
7961 		 * Skip events that are not fully formed yet; ensure that
7962 		 * if we observe event->ctx, both event and ctx will be
7963 		 * complete enough. See perf_install_in_context().
7964 		 */
7965 		if (!smp_load_acquire(&event->ctx))
7966 			continue;
7967 
7968 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7969 			continue;
7970 		if (!event_filter_match(event))
7971 			continue;
7972 		output(event, data);
7973 	}
7974 }
7975 
7976 /*
7977  * Iterate all events that need to receive side-band events.
7978  *
7979  * For new callers; ensure that account_pmu_sb_event() includes
7980  * your event, otherwise it might not get delivered.
7981  */
7982 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)7983 perf_iterate_sb(perf_iterate_f output, void *data,
7984 	       struct perf_event_context *task_ctx)
7985 {
7986 	struct perf_event_context *ctx;
7987 
7988 	rcu_read_lock();
7989 	preempt_disable();
7990 
7991 	/*
7992 	 * If we have task_ctx != NULL we only notify the task context itself.
7993 	 * The task_ctx is set only for EXIT events before releasing task
7994 	 * context.
7995 	 */
7996 	if (task_ctx) {
7997 		perf_iterate_ctx(task_ctx, output, data, false);
7998 		goto done;
7999 	}
8000 
8001 	perf_iterate_sb_cpu(output, data);
8002 
8003 	ctx = rcu_dereference(current->perf_event_ctxp);
8004 	if (ctx)
8005 		perf_iterate_ctx(ctx, output, data, false);
8006 done:
8007 	preempt_enable();
8008 	rcu_read_unlock();
8009 }
8010 
8011 /*
8012  * Clear all file-based filters at exec, they'll have to be
8013  * re-instated when/if these objects are mmapped again.
8014  */
perf_event_addr_filters_exec(struct perf_event * event,void * data)8015 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8016 {
8017 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8018 	struct perf_addr_filter *filter;
8019 	unsigned int restart = 0, count = 0;
8020 	unsigned long flags;
8021 
8022 	if (!has_addr_filter(event))
8023 		return;
8024 
8025 	raw_spin_lock_irqsave(&ifh->lock, flags);
8026 	list_for_each_entry(filter, &ifh->list, entry) {
8027 		if (filter->path.dentry) {
8028 			event->addr_filter_ranges[count].start = 0;
8029 			event->addr_filter_ranges[count].size = 0;
8030 			restart++;
8031 		}
8032 
8033 		count++;
8034 	}
8035 
8036 	if (restart)
8037 		event->addr_filters_gen++;
8038 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8039 
8040 	if (restart)
8041 		perf_event_stop(event, 1);
8042 }
8043 
perf_event_exec(void)8044 void perf_event_exec(void)
8045 {
8046 	struct perf_event_context *ctx;
8047 
8048 	ctx = perf_pin_task_context(current);
8049 	if (!ctx)
8050 		return;
8051 
8052 	perf_event_enable_on_exec(ctx);
8053 	perf_event_remove_on_exec(ctx);
8054 	perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8055 
8056 	perf_unpin_context(ctx);
8057 	put_ctx(ctx);
8058 }
8059 
8060 struct remote_output {
8061 	struct perf_buffer	*rb;
8062 	int			err;
8063 };
8064 
__perf_event_output_stop(struct perf_event * event,void * data)8065 static void __perf_event_output_stop(struct perf_event *event, void *data)
8066 {
8067 	struct perf_event *parent = event->parent;
8068 	struct remote_output *ro = data;
8069 	struct perf_buffer *rb = ro->rb;
8070 	struct stop_event_data sd = {
8071 		.event	= event,
8072 	};
8073 
8074 	if (!has_aux(event))
8075 		return;
8076 
8077 	if (!parent)
8078 		parent = event;
8079 
8080 	/*
8081 	 * In case of inheritance, it will be the parent that links to the
8082 	 * ring-buffer, but it will be the child that's actually using it.
8083 	 *
8084 	 * We are using event::rb to determine if the event should be stopped,
8085 	 * however this may race with ring_buffer_attach() (through set_output),
8086 	 * which will make us skip the event that actually needs to be stopped.
8087 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8088 	 * its rb pointer.
8089 	 */
8090 	if (rcu_dereference(parent->rb) == rb)
8091 		ro->err = __perf_event_stop(&sd);
8092 }
8093 
__perf_pmu_output_stop(void * info)8094 static int __perf_pmu_output_stop(void *info)
8095 {
8096 	struct perf_event *event = info;
8097 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8098 	struct remote_output ro = {
8099 		.rb	= event->rb,
8100 	};
8101 
8102 	rcu_read_lock();
8103 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8104 	if (cpuctx->task_ctx)
8105 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8106 				   &ro, false);
8107 	rcu_read_unlock();
8108 
8109 	return ro.err;
8110 }
8111 
perf_pmu_output_stop(struct perf_event * event)8112 static void perf_pmu_output_stop(struct perf_event *event)
8113 {
8114 	struct perf_event *iter;
8115 	int err, cpu;
8116 
8117 restart:
8118 	rcu_read_lock();
8119 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8120 		/*
8121 		 * For per-CPU events, we need to make sure that neither they
8122 		 * nor their children are running; for cpu==-1 events it's
8123 		 * sufficient to stop the event itself if it's active, since
8124 		 * it can't have children.
8125 		 */
8126 		cpu = iter->cpu;
8127 		if (cpu == -1)
8128 			cpu = READ_ONCE(iter->oncpu);
8129 
8130 		if (cpu == -1)
8131 			continue;
8132 
8133 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8134 		if (err == -EAGAIN) {
8135 			rcu_read_unlock();
8136 			goto restart;
8137 		}
8138 	}
8139 	rcu_read_unlock();
8140 }
8141 
8142 /*
8143  * task tracking -- fork/exit
8144  *
8145  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8146  */
8147 
8148 struct perf_task_event {
8149 	struct task_struct		*task;
8150 	struct perf_event_context	*task_ctx;
8151 
8152 	struct {
8153 		struct perf_event_header	header;
8154 
8155 		u32				pid;
8156 		u32				ppid;
8157 		u32				tid;
8158 		u32				ptid;
8159 		u64				time;
8160 	} event_id;
8161 };
8162 
perf_event_task_match(struct perf_event * event)8163 static int perf_event_task_match(struct perf_event *event)
8164 {
8165 	return event->attr.comm  || event->attr.mmap ||
8166 	       event->attr.mmap2 || event->attr.mmap_data ||
8167 	       event->attr.task;
8168 }
8169 
perf_event_task_output(struct perf_event * event,void * data)8170 static void perf_event_task_output(struct perf_event *event,
8171 				   void *data)
8172 {
8173 	struct perf_task_event *task_event = data;
8174 	struct perf_output_handle handle;
8175 	struct perf_sample_data	sample;
8176 	struct task_struct *task = task_event->task;
8177 	int ret, size = task_event->event_id.header.size;
8178 
8179 	if (!perf_event_task_match(event))
8180 		return;
8181 
8182 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8183 
8184 	ret = perf_output_begin(&handle, &sample, event,
8185 				task_event->event_id.header.size);
8186 	if (ret)
8187 		goto out;
8188 
8189 	task_event->event_id.pid = perf_event_pid(event, task);
8190 	task_event->event_id.tid = perf_event_tid(event, task);
8191 
8192 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8193 		task_event->event_id.ppid = perf_event_pid(event,
8194 							task->real_parent);
8195 		task_event->event_id.ptid = perf_event_pid(event,
8196 							task->real_parent);
8197 	} else {  /* PERF_RECORD_FORK */
8198 		task_event->event_id.ppid = perf_event_pid(event, current);
8199 		task_event->event_id.ptid = perf_event_tid(event, current);
8200 	}
8201 
8202 	task_event->event_id.time = perf_event_clock(event);
8203 
8204 	perf_output_put(&handle, task_event->event_id);
8205 
8206 	perf_event__output_id_sample(event, &handle, &sample);
8207 
8208 	perf_output_end(&handle);
8209 out:
8210 	task_event->event_id.header.size = size;
8211 }
8212 
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)8213 static void perf_event_task(struct task_struct *task,
8214 			      struct perf_event_context *task_ctx,
8215 			      int new)
8216 {
8217 	struct perf_task_event task_event;
8218 
8219 	if (!atomic_read(&nr_comm_events) &&
8220 	    !atomic_read(&nr_mmap_events) &&
8221 	    !atomic_read(&nr_task_events))
8222 		return;
8223 
8224 	task_event = (struct perf_task_event){
8225 		.task	  = task,
8226 		.task_ctx = task_ctx,
8227 		.event_id    = {
8228 			.header = {
8229 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8230 				.misc = 0,
8231 				.size = sizeof(task_event.event_id),
8232 			},
8233 			/* .pid  */
8234 			/* .ppid */
8235 			/* .tid  */
8236 			/* .ptid */
8237 			/* .time */
8238 		},
8239 	};
8240 
8241 	perf_iterate_sb(perf_event_task_output,
8242 		       &task_event,
8243 		       task_ctx);
8244 }
8245 
perf_event_fork(struct task_struct * task)8246 void perf_event_fork(struct task_struct *task)
8247 {
8248 	perf_event_task(task, NULL, 1);
8249 	perf_event_namespaces(task);
8250 }
8251 
8252 /*
8253  * comm tracking
8254  */
8255 
8256 struct perf_comm_event {
8257 	struct task_struct	*task;
8258 	char			*comm;
8259 	int			comm_size;
8260 
8261 	struct {
8262 		struct perf_event_header	header;
8263 
8264 		u32				pid;
8265 		u32				tid;
8266 	} event_id;
8267 };
8268 
perf_event_comm_match(struct perf_event * event)8269 static int perf_event_comm_match(struct perf_event *event)
8270 {
8271 	return event->attr.comm;
8272 }
8273 
perf_event_comm_output(struct perf_event * event,void * data)8274 static void perf_event_comm_output(struct perf_event *event,
8275 				   void *data)
8276 {
8277 	struct perf_comm_event *comm_event = data;
8278 	struct perf_output_handle handle;
8279 	struct perf_sample_data sample;
8280 	int size = comm_event->event_id.header.size;
8281 	int ret;
8282 
8283 	if (!perf_event_comm_match(event))
8284 		return;
8285 
8286 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8287 	ret = perf_output_begin(&handle, &sample, event,
8288 				comm_event->event_id.header.size);
8289 
8290 	if (ret)
8291 		goto out;
8292 
8293 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8294 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8295 
8296 	perf_output_put(&handle, comm_event->event_id);
8297 	__output_copy(&handle, comm_event->comm,
8298 				   comm_event->comm_size);
8299 
8300 	perf_event__output_id_sample(event, &handle, &sample);
8301 
8302 	perf_output_end(&handle);
8303 out:
8304 	comm_event->event_id.header.size = size;
8305 }
8306 
perf_event_comm_event(struct perf_comm_event * comm_event)8307 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8308 {
8309 	char comm[TASK_COMM_LEN];
8310 	unsigned int size;
8311 
8312 	memset(comm, 0, sizeof(comm));
8313 	strscpy(comm, comm_event->task->comm, sizeof(comm));
8314 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8315 
8316 	comm_event->comm = comm;
8317 	comm_event->comm_size = size;
8318 
8319 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8320 
8321 	perf_iterate_sb(perf_event_comm_output,
8322 		       comm_event,
8323 		       NULL);
8324 }
8325 
perf_event_comm(struct task_struct * task,bool exec)8326 void perf_event_comm(struct task_struct *task, bool exec)
8327 {
8328 	struct perf_comm_event comm_event;
8329 
8330 	if (!atomic_read(&nr_comm_events))
8331 		return;
8332 
8333 	comm_event = (struct perf_comm_event){
8334 		.task	= task,
8335 		/* .comm      */
8336 		/* .comm_size */
8337 		.event_id  = {
8338 			.header = {
8339 				.type = PERF_RECORD_COMM,
8340 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8341 				/* .size */
8342 			},
8343 			/* .pid */
8344 			/* .tid */
8345 		},
8346 	};
8347 
8348 	perf_event_comm_event(&comm_event);
8349 }
8350 
8351 /*
8352  * namespaces tracking
8353  */
8354 
8355 struct perf_namespaces_event {
8356 	struct task_struct		*task;
8357 
8358 	struct {
8359 		struct perf_event_header	header;
8360 
8361 		u32				pid;
8362 		u32				tid;
8363 		u64				nr_namespaces;
8364 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8365 	} event_id;
8366 };
8367 
perf_event_namespaces_match(struct perf_event * event)8368 static int perf_event_namespaces_match(struct perf_event *event)
8369 {
8370 	return event->attr.namespaces;
8371 }
8372 
perf_event_namespaces_output(struct perf_event * event,void * data)8373 static void perf_event_namespaces_output(struct perf_event *event,
8374 					 void *data)
8375 {
8376 	struct perf_namespaces_event *namespaces_event = data;
8377 	struct perf_output_handle handle;
8378 	struct perf_sample_data sample;
8379 	u16 header_size = namespaces_event->event_id.header.size;
8380 	int ret;
8381 
8382 	if (!perf_event_namespaces_match(event))
8383 		return;
8384 
8385 	perf_event_header__init_id(&namespaces_event->event_id.header,
8386 				   &sample, event);
8387 	ret = perf_output_begin(&handle, &sample, event,
8388 				namespaces_event->event_id.header.size);
8389 	if (ret)
8390 		goto out;
8391 
8392 	namespaces_event->event_id.pid = perf_event_pid(event,
8393 							namespaces_event->task);
8394 	namespaces_event->event_id.tid = perf_event_tid(event,
8395 							namespaces_event->task);
8396 
8397 	perf_output_put(&handle, namespaces_event->event_id);
8398 
8399 	perf_event__output_id_sample(event, &handle, &sample);
8400 
8401 	perf_output_end(&handle);
8402 out:
8403 	namespaces_event->event_id.header.size = header_size;
8404 }
8405 
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)8406 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8407 				   struct task_struct *task,
8408 				   const struct proc_ns_operations *ns_ops)
8409 {
8410 	struct path ns_path;
8411 	struct inode *ns_inode;
8412 	int error;
8413 
8414 	error = ns_get_path(&ns_path, task, ns_ops);
8415 	if (!error) {
8416 		ns_inode = ns_path.dentry->d_inode;
8417 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8418 		ns_link_info->ino = ns_inode->i_ino;
8419 		path_put(&ns_path);
8420 	}
8421 }
8422 
perf_event_namespaces(struct task_struct * task)8423 void perf_event_namespaces(struct task_struct *task)
8424 {
8425 	struct perf_namespaces_event namespaces_event;
8426 	struct perf_ns_link_info *ns_link_info;
8427 
8428 	if (!atomic_read(&nr_namespaces_events))
8429 		return;
8430 
8431 	namespaces_event = (struct perf_namespaces_event){
8432 		.task	= task,
8433 		.event_id  = {
8434 			.header = {
8435 				.type = PERF_RECORD_NAMESPACES,
8436 				.misc = 0,
8437 				.size = sizeof(namespaces_event.event_id),
8438 			},
8439 			/* .pid */
8440 			/* .tid */
8441 			.nr_namespaces = NR_NAMESPACES,
8442 			/* .link_info[NR_NAMESPACES] */
8443 		},
8444 	};
8445 
8446 	ns_link_info = namespaces_event.event_id.link_info;
8447 
8448 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8449 			       task, &mntns_operations);
8450 
8451 #ifdef CONFIG_USER_NS
8452 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8453 			       task, &userns_operations);
8454 #endif
8455 #ifdef CONFIG_NET_NS
8456 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8457 			       task, &netns_operations);
8458 #endif
8459 #ifdef CONFIG_UTS_NS
8460 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8461 			       task, &utsns_operations);
8462 #endif
8463 #ifdef CONFIG_IPC_NS
8464 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8465 			       task, &ipcns_operations);
8466 #endif
8467 #ifdef CONFIG_PID_NS
8468 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8469 			       task, &pidns_operations);
8470 #endif
8471 #ifdef CONFIG_CGROUPS
8472 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8473 			       task, &cgroupns_operations);
8474 #endif
8475 
8476 	perf_iterate_sb(perf_event_namespaces_output,
8477 			&namespaces_event,
8478 			NULL);
8479 }
8480 
8481 /*
8482  * cgroup tracking
8483  */
8484 #ifdef CONFIG_CGROUP_PERF
8485 
8486 struct perf_cgroup_event {
8487 	char				*path;
8488 	int				path_size;
8489 	struct {
8490 		struct perf_event_header	header;
8491 		u64				id;
8492 		char				path[];
8493 	} event_id;
8494 };
8495 
perf_event_cgroup_match(struct perf_event * event)8496 static int perf_event_cgroup_match(struct perf_event *event)
8497 {
8498 	return event->attr.cgroup;
8499 }
8500 
perf_event_cgroup_output(struct perf_event * event,void * data)8501 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8502 {
8503 	struct perf_cgroup_event *cgroup_event = data;
8504 	struct perf_output_handle handle;
8505 	struct perf_sample_data sample;
8506 	u16 header_size = cgroup_event->event_id.header.size;
8507 	int ret;
8508 
8509 	if (!perf_event_cgroup_match(event))
8510 		return;
8511 
8512 	perf_event_header__init_id(&cgroup_event->event_id.header,
8513 				   &sample, event);
8514 	ret = perf_output_begin(&handle, &sample, event,
8515 				cgroup_event->event_id.header.size);
8516 	if (ret)
8517 		goto out;
8518 
8519 	perf_output_put(&handle, cgroup_event->event_id);
8520 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8521 
8522 	perf_event__output_id_sample(event, &handle, &sample);
8523 
8524 	perf_output_end(&handle);
8525 out:
8526 	cgroup_event->event_id.header.size = header_size;
8527 }
8528 
perf_event_cgroup(struct cgroup * cgrp)8529 static void perf_event_cgroup(struct cgroup *cgrp)
8530 {
8531 	struct perf_cgroup_event cgroup_event;
8532 	char path_enomem[16] = "//enomem";
8533 	char *pathname;
8534 	size_t size;
8535 
8536 	if (!atomic_read(&nr_cgroup_events))
8537 		return;
8538 
8539 	cgroup_event = (struct perf_cgroup_event){
8540 		.event_id  = {
8541 			.header = {
8542 				.type = PERF_RECORD_CGROUP,
8543 				.misc = 0,
8544 				.size = sizeof(cgroup_event.event_id),
8545 			},
8546 			.id = cgroup_id(cgrp),
8547 		},
8548 	};
8549 
8550 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8551 	if (pathname == NULL) {
8552 		cgroup_event.path = path_enomem;
8553 	} else {
8554 		/* just to be sure to have enough space for alignment */
8555 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8556 		cgroup_event.path = pathname;
8557 	}
8558 
8559 	/*
8560 	 * Since our buffer works in 8 byte units we need to align our string
8561 	 * size to a multiple of 8. However, we must guarantee the tail end is
8562 	 * zero'd out to avoid leaking random bits to userspace.
8563 	 */
8564 	size = strlen(cgroup_event.path) + 1;
8565 	while (!IS_ALIGNED(size, sizeof(u64)))
8566 		cgroup_event.path[size++] = '\0';
8567 
8568 	cgroup_event.event_id.header.size += size;
8569 	cgroup_event.path_size = size;
8570 
8571 	perf_iterate_sb(perf_event_cgroup_output,
8572 			&cgroup_event,
8573 			NULL);
8574 
8575 	kfree(pathname);
8576 }
8577 
8578 #endif
8579 
8580 /*
8581  * mmap tracking
8582  */
8583 
8584 struct perf_mmap_event {
8585 	struct vm_area_struct	*vma;
8586 
8587 	const char		*file_name;
8588 	int			file_size;
8589 	int			maj, min;
8590 	u64			ino;
8591 	u64			ino_generation;
8592 	u32			prot, flags;
8593 	u8			build_id[BUILD_ID_SIZE_MAX];
8594 	u32			build_id_size;
8595 
8596 	struct {
8597 		struct perf_event_header	header;
8598 
8599 		u32				pid;
8600 		u32				tid;
8601 		u64				start;
8602 		u64				len;
8603 		u64				pgoff;
8604 	} event_id;
8605 };
8606 
perf_event_mmap_match(struct perf_event * event,void * data)8607 static int perf_event_mmap_match(struct perf_event *event,
8608 				 void *data)
8609 {
8610 	struct perf_mmap_event *mmap_event = data;
8611 	struct vm_area_struct *vma = mmap_event->vma;
8612 	int executable = vma->vm_flags & VM_EXEC;
8613 
8614 	return (!executable && event->attr.mmap_data) ||
8615 	       (executable && (event->attr.mmap || event->attr.mmap2));
8616 }
8617 
perf_event_mmap_output(struct perf_event * event,void * data)8618 static void perf_event_mmap_output(struct perf_event *event,
8619 				   void *data)
8620 {
8621 	struct perf_mmap_event *mmap_event = data;
8622 	struct perf_output_handle handle;
8623 	struct perf_sample_data sample;
8624 	int size = mmap_event->event_id.header.size;
8625 	u32 type = mmap_event->event_id.header.type;
8626 	bool use_build_id;
8627 	int ret;
8628 
8629 	if (!perf_event_mmap_match(event, data))
8630 		return;
8631 
8632 	if (event->attr.mmap2) {
8633 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8634 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8635 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8636 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8637 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8638 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8639 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8640 	}
8641 
8642 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8643 	ret = perf_output_begin(&handle, &sample, event,
8644 				mmap_event->event_id.header.size);
8645 	if (ret)
8646 		goto out;
8647 
8648 	mmap_event->event_id.pid = perf_event_pid(event, current);
8649 	mmap_event->event_id.tid = perf_event_tid(event, current);
8650 
8651 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8652 
8653 	if (event->attr.mmap2 && use_build_id)
8654 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8655 
8656 	perf_output_put(&handle, mmap_event->event_id);
8657 
8658 	if (event->attr.mmap2) {
8659 		if (use_build_id) {
8660 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8661 
8662 			__output_copy(&handle, size, 4);
8663 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8664 		} else {
8665 			perf_output_put(&handle, mmap_event->maj);
8666 			perf_output_put(&handle, mmap_event->min);
8667 			perf_output_put(&handle, mmap_event->ino);
8668 			perf_output_put(&handle, mmap_event->ino_generation);
8669 		}
8670 		perf_output_put(&handle, mmap_event->prot);
8671 		perf_output_put(&handle, mmap_event->flags);
8672 	}
8673 
8674 	__output_copy(&handle, mmap_event->file_name,
8675 				   mmap_event->file_size);
8676 
8677 	perf_event__output_id_sample(event, &handle, &sample);
8678 
8679 	perf_output_end(&handle);
8680 out:
8681 	mmap_event->event_id.header.size = size;
8682 	mmap_event->event_id.header.type = type;
8683 }
8684 
perf_event_mmap_event(struct perf_mmap_event * mmap_event)8685 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8686 {
8687 	struct vm_area_struct *vma = mmap_event->vma;
8688 	struct file *file = vma->vm_file;
8689 	int maj = 0, min = 0;
8690 	u64 ino = 0, gen = 0;
8691 	u32 prot = 0, flags = 0;
8692 	unsigned int size;
8693 	char tmp[16];
8694 	char *buf = NULL;
8695 	char *name = NULL;
8696 
8697 	if (vma->vm_flags & VM_READ)
8698 		prot |= PROT_READ;
8699 	if (vma->vm_flags & VM_WRITE)
8700 		prot |= PROT_WRITE;
8701 	if (vma->vm_flags & VM_EXEC)
8702 		prot |= PROT_EXEC;
8703 
8704 	if (vma->vm_flags & VM_MAYSHARE)
8705 		flags = MAP_SHARED;
8706 	else
8707 		flags = MAP_PRIVATE;
8708 
8709 	if (vma->vm_flags & VM_LOCKED)
8710 		flags |= MAP_LOCKED;
8711 	if (is_vm_hugetlb_page(vma))
8712 		flags |= MAP_HUGETLB;
8713 
8714 	if (file) {
8715 		struct inode *inode;
8716 		dev_t dev;
8717 
8718 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8719 		if (!buf) {
8720 			name = "//enomem";
8721 			goto cpy_name;
8722 		}
8723 		/*
8724 		 * d_path() works from the end of the rb backwards, so we
8725 		 * need to add enough zero bytes after the string to handle
8726 		 * the 64bit alignment we do later.
8727 		 */
8728 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8729 		if (IS_ERR(name)) {
8730 			name = "//toolong";
8731 			goto cpy_name;
8732 		}
8733 		inode = file_inode(vma->vm_file);
8734 		dev = inode->i_sb->s_dev;
8735 		ino = inode->i_ino;
8736 		gen = inode->i_generation;
8737 		maj = MAJOR(dev);
8738 		min = MINOR(dev);
8739 
8740 		goto got_name;
8741 	} else {
8742 		if (vma->vm_ops && vma->vm_ops->name)
8743 			name = (char *) vma->vm_ops->name(vma);
8744 		if (!name)
8745 			name = (char *)arch_vma_name(vma);
8746 		if (!name) {
8747 			if (vma_is_initial_heap(vma))
8748 				name = "[heap]";
8749 			else if (vma_is_initial_stack(vma))
8750 				name = "[stack]";
8751 			else
8752 				name = "//anon";
8753 		}
8754 	}
8755 
8756 cpy_name:
8757 	strscpy(tmp, name, sizeof(tmp));
8758 	name = tmp;
8759 got_name:
8760 	/*
8761 	 * Since our buffer works in 8 byte units we need to align our string
8762 	 * size to a multiple of 8. However, we must guarantee the tail end is
8763 	 * zero'd out to avoid leaking random bits to userspace.
8764 	 */
8765 	size = strlen(name)+1;
8766 	while (!IS_ALIGNED(size, sizeof(u64)))
8767 		name[size++] = '\0';
8768 
8769 	mmap_event->file_name = name;
8770 	mmap_event->file_size = size;
8771 	mmap_event->maj = maj;
8772 	mmap_event->min = min;
8773 	mmap_event->ino = ino;
8774 	mmap_event->ino_generation = gen;
8775 	mmap_event->prot = prot;
8776 	mmap_event->flags = flags;
8777 
8778 	if (!(vma->vm_flags & VM_EXEC))
8779 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8780 
8781 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8782 
8783 	if (atomic_read(&nr_build_id_events))
8784 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8785 
8786 	perf_iterate_sb(perf_event_mmap_output,
8787 		       mmap_event,
8788 		       NULL);
8789 
8790 	kfree(buf);
8791 }
8792 
8793 /*
8794  * Check whether inode and address range match filter criteria.
8795  */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)8796 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8797 				     struct file *file, unsigned long offset,
8798 				     unsigned long size)
8799 {
8800 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8801 	if (!filter->path.dentry)
8802 		return false;
8803 
8804 	if (d_inode(filter->path.dentry) != file_inode(file))
8805 		return false;
8806 
8807 	if (filter->offset > offset + size)
8808 		return false;
8809 
8810 	if (filter->offset + filter->size < offset)
8811 		return false;
8812 
8813 	return true;
8814 }
8815 
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)8816 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8817 					struct vm_area_struct *vma,
8818 					struct perf_addr_filter_range *fr)
8819 {
8820 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8821 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8822 	struct file *file = vma->vm_file;
8823 
8824 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8825 		return false;
8826 
8827 	if (filter->offset < off) {
8828 		fr->start = vma->vm_start;
8829 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8830 	} else {
8831 		fr->start = vma->vm_start + filter->offset - off;
8832 		fr->size = min(vma->vm_end - fr->start, filter->size);
8833 	}
8834 
8835 	return true;
8836 }
8837 
__perf_addr_filters_adjust(struct perf_event * event,void * data)8838 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8839 {
8840 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8841 	struct vm_area_struct *vma = data;
8842 	struct perf_addr_filter *filter;
8843 	unsigned int restart = 0, count = 0;
8844 	unsigned long flags;
8845 
8846 	if (!has_addr_filter(event))
8847 		return;
8848 
8849 	if (!vma->vm_file)
8850 		return;
8851 
8852 	raw_spin_lock_irqsave(&ifh->lock, flags);
8853 	list_for_each_entry(filter, &ifh->list, entry) {
8854 		if (perf_addr_filter_vma_adjust(filter, vma,
8855 						&event->addr_filter_ranges[count]))
8856 			restart++;
8857 
8858 		count++;
8859 	}
8860 
8861 	if (restart)
8862 		event->addr_filters_gen++;
8863 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8864 
8865 	if (restart)
8866 		perf_event_stop(event, 1);
8867 }
8868 
8869 /*
8870  * Adjust all task's events' filters to the new vma
8871  */
perf_addr_filters_adjust(struct vm_area_struct * vma)8872 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8873 {
8874 	struct perf_event_context *ctx;
8875 
8876 	/*
8877 	 * Data tracing isn't supported yet and as such there is no need
8878 	 * to keep track of anything that isn't related to executable code:
8879 	 */
8880 	if (!(vma->vm_flags & VM_EXEC))
8881 		return;
8882 
8883 	rcu_read_lock();
8884 	ctx = rcu_dereference(current->perf_event_ctxp);
8885 	if (ctx)
8886 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8887 	rcu_read_unlock();
8888 }
8889 
perf_event_mmap(struct vm_area_struct * vma)8890 void perf_event_mmap(struct vm_area_struct *vma)
8891 {
8892 	struct perf_mmap_event mmap_event;
8893 
8894 	if (!atomic_read(&nr_mmap_events))
8895 		return;
8896 
8897 	mmap_event = (struct perf_mmap_event){
8898 		.vma	= vma,
8899 		/* .file_name */
8900 		/* .file_size */
8901 		.event_id  = {
8902 			.header = {
8903 				.type = PERF_RECORD_MMAP,
8904 				.misc = PERF_RECORD_MISC_USER,
8905 				/* .size */
8906 			},
8907 			/* .pid */
8908 			/* .tid */
8909 			.start  = vma->vm_start,
8910 			.len    = vma->vm_end - vma->vm_start,
8911 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8912 		},
8913 		/* .maj (attr_mmap2 only) */
8914 		/* .min (attr_mmap2 only) */
8915 		/* .ino (attr_mmap2 only) */
8916 		/* .ino_generation (attr_mmap2 only) */
8917 		/* .prot (attr_mmap2 only) */
8918 		/* .flags (attr_mmap2 only) */
8919 	};
8920 
8921 	perf_addr_filters_adjust(vma);
8922 	perf_event_mmap_event(&mmap_event);
8923 }
8924 
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)8925 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8926 			  unsigned long size, u64 flags)
8927 {
8928 	struct perf_output_handle handle;
8929 	struct perf_sample_data sample;
8930 	struct perf_aux_event {
8931 		struct perf_event_header	header;
8932 		u64				offset;
8933 		u64				size;
8934 		u64				flags;
8935 	} rec = {
8936 		.header = {
8937 			.type = PERF_RECORD_AUX,
8938 			.misc = 0,
8939 			.size = sizeof(rec),
8940 		},
8941 		.offset		= head,
8942 		.size		= size,
8943 		.flags		= flags,
8944 	};
8945 	int ret;
8946 
8947 	perf_event_header__init_id(&rec.header, &sample, event);
8948 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8949 
8950 	if (ret)
8951 		return;
8952 
8953 	perf_output_put(&handle, rec);
8954 	perf_event__output_id_sample(event, &handle, &sample);
8955 
8956 	perf_output_end(&handle);
8957 }
8958 
8959 /*
8960  * Lost/dropped samples logging
8961  */
perf_log_lost_samples(struct perf_event * event,u64 lost)8962 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8963 {
8964 	struct perf_output_handle handle;
8965 	struct perf_sample_data sample;
8966 	int ret;
8967 
8968 	struct {
8969 		struct perf_event_header	header;
8970 		u64				lost;
8971 	} lost_samples_event = {
8972 		.header = {
8973 			.type = PERF_RECORD_LOST_SAMPLES,
8974 			.misc = 0,
8975 			.size = sizeof(lost_samples_event),
8976 		},
8977 		.lost		= lost,
8978 	};
8979 
8980 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8981 
8982 	ret = perf_output_begin(&handle, &sample, event,
8983 				lost_samples_event.header.size);
8984 	if (ret)
8985 		return;
8986 
8987 	perf_output_put(&handle, lost_samples_event);
8988 	perf_event__output_id_sample(event, &handle, &sample);
8989 	perf_output_end(&handle);
8990 }
8991 
8992 /*
8993  * context_switch tracking
8994  */
8995 
8996 struct perf_switch_event {
8997 	struct task_struct	*task;
8998 	struct task_struct	*next_prev;
8999 
9000 	struct {
9001 		struct perf_event_header	header;
9002 		u32				next_prev_pid;
9003 		u32				next_prev_tid;
9004 	} event_id;
9005 };
9006 
perf_event_switch_match(struct perf_event * event)9007 static int perf_event_switch_match(struct perf_event *event)
9008 {
9009 	return event->attr.context_switch;
9010 }
9011 
perf_event_switch_output(struct perf_event * event,void * data)9012 static void perf_event_switch_output(struct perf_event *event, void *data)
9013 {
9014 	struct perf_switch_event *se = data;
9015 	struct perf_output_handle handle;
9016 	struct perf_sample_data sample;
9017 	int ret;
9018 
9019 	if (!perf_event_switch_match(event))
9020 		return;
9021 
9022 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9023 	if (event->ctx->task) {
9024 		se->event_id.header.type = PERF_RECORD_SWITCH;
9025 		se->event_id.header.size = sizeof(se->event_id.header);
9026 	} else {
9027 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9028 		se->event_id.header.size = sizeof(se->event_id);
9029 		se->event_id.next_prev_pid =
9030 					perf_event_pid(event, se->next_prev);
9031 		se->event_id.next_prev_tid =
9032 					perf_event_tid(event, se->next_prev);
9033 	}
9034 
9035 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9036 
9037 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9038 	if (ret)
9039 		return;
9040 
9041 	if (event->ctx->task)
9042 		perf_output_put(&handle, se->event_id.header);
9043 	else
9044 		perf_output_put(&handle, se->event_id);
9045 
9046 	perf_event__output_id_sample(event, &handle, &sample);
9047 
9048 	perf_output_end(&handle);
9049 }
9050 
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)9051 static void perf_event_switch(struct task_struct *task,
9052 			      struct task_struct *next_prev, bool sched_in)
9053 {
9054 	struct perf_switch_event switch_event;
9055 
9056 	/* N.B. caller checks nr_switch_events != 0 */
9057 
9058 	switch_event = (struct perf_switch_event){
9059 		.task		= task,
9060 		.next_prev	= next_prev,
9061 		.event_id	= {
9062 			.header = {
9063 				/* .type */
9064 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9065 				/* .size */
9066 			},
9067 			/* .next_prev_pid */
9068 			/* .next_prev_tid */
9069 		},
9070 	};
9071 
9072 	if (!sched_in && task->on_rq) {
9073 		switch_event.event_id.header.misc |=
9074 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9075 	}
9076 
9077 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9078 }
9079 
9080 /*
9081  * IRQ throttle logging
9082  */
9083 
perf_log_throttle(struct perf_event * event,int enable)9084 static void perf_log_throttle(struct perf_event *event, int enable)
9085 {
9086 	struct perf_output_handle handle;
9087 	struct perf_sample_data sample;
9088 	int ret;
9089 
9090 	struct {
9091 		struct perf_event_header	header;
9092 		u64				time;
9093 		u64				id;
9094 		u64				stream_id;
9095 	} throttle_event = {
9096 		.header = {
9097 			.type = PERF_RECORD_THROTTLE,
9098 			.misc = 0,
9099 			.size = sizeof(throttle_event),
9100 		},
9101 		.time		= perf_event_clock(event),
9102 		.id		= primary_event_id(event),
9103 		.stream_id	= event->id,
9104 	};
9105 
9106 	if (enable)
9107 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9108 
9109 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9110 
9111 	ret = perf_output_begin(&handle, &sample, event,
9112 				throttle_event.header.size);
9113 	if (ret)
9114 		return;
9115 
9116 	perf_output_put(&handle, throttle_event);
9117 	perf_event__output_id_sample(event, &handle, &sample);
9118 	perf_output_end(&handle);
9119 }
9120 
9121 /*
9122  * ksymbol register/unregister tracking
9123  */
9124 
9125 struct perf_ksymbol_event {
9126 	const char	*name;
9127 	int		name_len;
9128 	struct {
9129 		struct perf_event_header        header;
9130 		u64				addr;
9131 		u32				len;
9132 		u16				ksym_type;
9133 		u16				flags;
9134 	} event_id;
9135 };
9136 
perf_event_ksymbol_match(struct perf_event * event)9137 static int perf_event_ksymbol_match(struct perf_event *event)
9138 {
9139 	return event->attr.ksymbol;
9140 }
9141 
perf_event_ksymbol_output(struct perf_event * event,void * data)9142 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9143 {
9144 	struct perf_ksymbol_event *ksymbol_event = data;
9145 	struct perf_output_handle handle;
9146 	struct perf_sample_data sample;
9147 	int ret;
9148 
9149 	if (!perf_event_ksymbol_match(event))
9150 		return;
9151 
9152 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9153 				   &sample, event);
9154 	ret = perf_output_begin(&handle, &sample, event,
9155 				ksymbol_event->event_id.header.size);
9156 	if (ret)
9157 		return;
9158 
9159 	perf_output_put(&handle, ksymbol_event->event_id);
9160 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9161 	perf_event__output_id_sample(event, &handle, &sample);
9162 
9163 	perf_output_end(&handle);
9164 }
9165 
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)9166 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9167 			const char *sym)
9168 {
9169 	struct perf_ksymbol_event ksymbol_event;
9170 	char name[KSYM_NAME_LEN];
9171 	u16 flags = 0;
9172 	int name_len;
9173 
9174 	if (!atomic_read(&nr_ksymbol_events))
9175 		return;
9176 
9177 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9178 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9179 		goto err;
9180 
9181 	strscpy(name, sym, KSYM_NAME_LEN);
9182 	name_len = strlen(name) + 1;
9183 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9184 		name[name_len++] = '\0';
9185 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9186 
9187 	if (unregister)
9188 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9189 
9190 	ksymbol_event = (struct perf_ksymbol_event){
9191 		.name = name,
9192 		.name_len = name_len,
9193 		.event_id = {
9194 			.header = {
9195 				.type = PERF_RECORD_KSYMBOL,
9196 				.size = sizeof(ksymbol_event.event_id) +
9197 					name_len,
9198 			},
9199 			.addr = addr,
9200 			.len = len,
9201 			.ksym_type = ksym_type,
9202 			.flags = flags,
9203 		},
9204 	};
9205 
9206 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9207 	return;
9208 err:
9209 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9210 }
9211 
9212 /*
9213  * bpf program load/unload tracking
9214  */
9215 
9216 struct perf_bpf_event {
9217 	struct bpf_prog	*prog;
9218 	struct {
9219 		struct perf_event_header        header;
9220 		u16				type;
9221 		u16				flags;
9222 		u32				id;
9223 		u8				tag[BPF_TAG_SIZE];
9224 	} event_id;
9225 };
9226 
perf_event_bpf_match(struct perf_event * event)9227 static int perf_event_bpf_match(struct perf_event *event)
9228 {
9229 	return event->attr.bpf_event;
9230 }
9231 
perf_event_bpf_output(struct perf_event * event,void * data)9232 static void perf_event_bpf_output(struct perf_event *event, void *data)
9233 {
9234 	struct perf_bpf_event *bpf_event = data;
9235 	struct perf_output_handle handle;
9236 	struct perf_sample_data sample;
9237 	int ret;
9238 
9239 	if (!perf_event_bpf_match(event))
9240 		return;
9241 
9242 	perf_event_header__init_id(&bpf_event->event_id.header,
9243 				   &sample, event);
9244 	ret = perf_output_begin(&handle, &sample, event,
9245 				bpf_event->event_id.header.size);
9246 	if (ret)
9247 		return;
9248 
9249 	perf_output_put(&handle, bpf_event->event_id);
9250 	perf_event__output_id_sample(event, &handle, &sample);
9251 
9252 	perf_output_end(&handle);
9253 }
9254 
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)9255 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9256 					 enum perf_bpf_event_type type)
9257 {
9258 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9259 	int i;
9260 
9261 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9262 			   (u64)(unsigned long)prog->bpf_func,
9263 			   prog->jited_len, unregister,
9264 			   prog->aux->ksym.name);
9265 
9266 	for (i = 1; i < prog->aux->func_cnt; i++) {
9267 		struct bpf_prog *subprog = prog->aux->func[i];
9268 
9269 		perf_event_ksymbol(
9270 			PERF_RECORD_KSYMBOL_TYPE_BPF,
9271 			(u64)(unsigned long)subprog->bpf_func,
9272 			subprog->jited_len, unregister,
9273 			subprog->aux->ksym.name);
9274 	}
9275 }
9276 
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)9277 void perf_event_bpf_event(struct bpf_prog *prog,
9278 			  enum perf_bpf_event_type type,
9279 			  u16 flags)
9280 {
9281 	struct perf_bpf_event bpf_event;
9282 
9283 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
9284 	    type >= PERF_BPF_EVENT_MAX)
9285 		return;
9286 
9287 	switch (type) {
9288 	case PERF_BPF_EVENT_PROG_LOAD:
9289 	case PERF_BPF_EVENT_PROG_UNLOAD:
9290 		if (atomic_read(&nr_ksymbol_events))
9291 			perf_event_bpf_emit_ksymbols(prog, type);
9292 		break;
9293 	default:
9294 		break;
9295 	}
9296 
9297 	if (!atomic_read(&nr_bpf_events))
9298 		return;
9299 
9300 	bpf_event = (struct perf_bpf_event){
9301 		.prog = prog,
9302 		.event_id = {
9303 			.header = {
9304 				.type = PERF_RECORD_BPF_EVENT,
9305 				.size = sizeof(bpf_event.event_id),
9306 			},
9307 			.type = type,
9308 			.flags = flags,
9309 			.id = prog->aux->id,
9310 		},
9311 	};
9312 
9313 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9314 
9315 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9316 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9317 }
9318 
9319 struct perf_text_poke_event {
9320 	const void		*old_bytes;
9321 	const void		*new_bytes;
9322 	size_t			pad;
9323 	u16			old_len;
9324 	u16			new_len;
9325 
9326 	struct {
9327 		struct perf_event_header	header;
9328 
9329 		u64				addr;
9330 	} event_id;
9331 };
9332 
perf_event_text_poke_match(struct perf_event * event)9333 static int perf_event_text_poke_match(struct perf_event *event)
9334 {
9335 	return event->attr.text_poke;
9336 }
9337 
perf_event_text_poke_output(struct perf_event * event,void * data)9338 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9339 {
9340 	struct perf_text_poke_event *text_poke_event = data;
9341 	struct perf_output_handle handle;
9342 	struct perf_sample_data sample;
9343 	u64 padding = 0;
9344 	int ret;
9345 
9346 	if (!perf_event_text_poke_match(event))
9347 		return;
9348 
9349 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9350 
9351 	ret = perf_output_begin(&handle, &sample, event,
9352 				text_poke_event->event_id.header.size);
9353 	if (ret)
9354 		return;
9355 
9356 	perf_output_put(&handle, text_poke_event->event_id);
9357 	perf_output_put(&handle, text_poke_event->old_len);
9358 	perf_output_put(&handle, text_poke_event->new_len);
9359 
9360 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9361 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9362 
9363 	if (text_poke_event->pad)
9364 		__output_copy(&handle, &padding, text_poke_event->pad);
9365 
9366 	perf_event__output_id_sample(event, &handle, &sample);
9367 
9368 	perf_output_end(&handle);
9369 }
9370 
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)9371 void perf_event_text_poke(const void *addr, const void *old_bytes,
9372 			  size_t old_len, const void *new_bytes, size_t new_len)
9373 {
9374 	struct perf_text_poke_event text_poke_event;
9375 	size_t tot, pad;
9376 
9377 	if (!atomic_read(&nr_text_poke_events))
9378 		return;
9379 
9380 	tot  = sizeof(text_poke_event.old_len) + old_len;
9381 	tot += sizeof(text_poke_event.new_len) + new_len;
9382 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9383 
9384 	text_poke_event = (struct perf_text_poke_event){
9385 		.old_bytes    = old_bytes,
9386 		.new_bytes    = new_bytes,
9387 		.pad          = pad,
9388 		.old_len      = old_len,
9389 		.new_len      = new_len,
9390 		.event_id  = {
9391 			.header = {
9392 				.type = PERF_RECORD_TEXT_POKE,
9393 				.misc = PERF_RECORD_MISC_KERNEL,
9394 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9395 			},
9396 			.addr = (unsigned long)addr,
9397 		},
9398 	};
9399 
9400 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9401 }
9402 
perf_event_itrace_started(struct perf_event * event)9403 void perf_event_itrace_started(struct perf_event *event)
9404 {
9405 	event->attach_state |= PERF_ATTACH_ITRACE;
9406 }
9407 
perf_log_itrace_start(struct perf_event * event)9408 static void perf_log_itrace_start(struct perf_event *event)
9409 {
9410 	struct perf_output_handle handle;
9411 	struct perf_sample_data sample;
9412 	struct perf_aux_event {
9413 		struct perf_event_header        header;
9414 		u32				pid;
9415 		u32				tid;
9416 	} rec;
9417 	int ret;
9418 
9419 	if (event->parent)
9420 		event = event->parent;
9421 
9422 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9423 	    event->attach_state & PERF_ATTACH_ITRACE)
9424 		return;
9425 
9426 	rec.header.type	= PERF_RECORD_ITRACE_START;
9427 	rec.header.misc	= 0;
9428 	rec.header.size	= sizeof(rec);
9429 	rec.pid	= perf_event_pid(event, current);
9430 	rec.tid	= perf_event_tid(event, current);
9431 
9432 	perf_event_header__init_id(&rec.header, &sample, event);
9433 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9434 
9435 	if (ret)
9436 		return;
9437 
9438 	perf_output_put(&handle, rec);
9439 	perf_event__output_id_sample(event, &handle, &sample);
9440 
9441 	perf_output_end(&handle);
9442 }
9443 
perf_report_aux_output_id(struct perf_event * event,u64 hw_id)9444 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9445 {
9446 	struct perf_output_handle handle;
9447 	struct perf_sample_data sample;
9448 	struct perf_aux_event {
9449 		struct perf_event_header        header;
9450 		u64				hw_id;
9451 	} rec;
9452 	int ret;
9453 
9454 	if (event->parent)
9455 		event = event->parent;
9456 
9457 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9458 	rec.header.misc	= 0;
9459 	rec.header.size	= sizeof(rec);
9460 	rec.hw_id	= hw_id;
9461 
9462 	perf_event_header__init_id(&rec.header, &sample, event);
9463 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9464 
9465 	if (ret)
9466 		return;
9467 
9468 	perf_output_put(&handle, rec);
9469 	perf_event__output_id_sample(event, &handle, &sample);
9470 
9471 	perf_output_end(&handle);
9472 }
9473 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9474 
9475 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)9476 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9477 {
9478 	struct hw_perf_event *hwc = &event->hw;
9479 	int ret = 0;
9480 	u64 seq;
9481 
9482 	seq = __this_cpu_read(perf_throttled_seq);
9483 	if (seq != hwc->interrupts_seq) {
9484 		hwc->interrupts_seq = seq;
9485 		hwc->interrupts = 1;
9486 	} else {
9487 		hwc->interrupts++;
9488 		if (unlikely(throttle &&
9489 			     hwc->interrupts > max_samples_per_tick)) {
9490 			__this_cpu_inc(perf_throttled_count);
9491 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9492 			hwc->interrupts = MAX_INTERRUPTS;
9493 			perf_log_throttle(event, 0);
9494 			ret = 1;
9495 		}
9496 	}
9497 
9498 	if (event->attr.freq) {
9499 		u64 now = perf_clock();
9500 		s64 delta = now - hwc->freq_time_stamp;
9501 
9502 		hwc->freq_time_stamp = now;
9503 
9504 		if (delta > 0 && delta < 2*TICK_NSEC)
9505 			perf_adjust_period(event, delta, hwc->last_period, true);
9506 	}
9507 
9508 	return ret;
9509 }
9510 
perf_event_account_interrupt(struct perf_event * event)9511 int perf_event_account_interrupt(struct perf_event *event)
9512 {
9513 	return __perf_event_account_interrupt(event, 1);
9514 }
9515 
sample_is_allowed(struct perf_event * event,struct pt_regs * regs)9516 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9517 {
9518 	/*
9519 	 * Due to interrupt latency (AKA "skid"), we may enter the
9520 	 * kernel before taking an overflow, even if the PMU is only
9521 	 * counting user events.
9522 	 */
9523 	if (event->attr.exclude_kernel && !user_mode(regs))
9524 		return false;
9525 
9526 	return true;
9527 }
9528 
9529 /*
9530  * Generic event overflow handling, sampling.
9531  */
9532 
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)9533 static int __perf_event_overflow(struct perf_event *event,
9534 				 int throttle, struct perf_sample_data *data,
9535 				 struct pt_regs *regs)
9536 {
9537 	int events = atomic_read(&event->event_limit);
9538 	int ret = 0;
9539 
9540 	/*
9541 	 * Non-sampling counters might still use the PMI to fold short
9542 	 * hardware counters, ignore those.
9543 	 */
9544 	if (unlikely(!is_sampling_event(event)))
9545 		return 0;
9546 
9547 	ret = __perf_event_account_interrupt(event, throttle);
9548 
9549 	/*
9550 	 * XXX event_limit might not quite work as expected on inherited
9551 	 * events
9552 	 */
9553 
9554 	event->pending_kill = POLL_IN;
9555 	if (events && atomic_dec_and_test(&event->event_limit)) {
9556 		ret = 1;
9557 		event->pending_kill = POLL_HUP;
9558 		perf_event_disable_inatomic(event);
9559 	}
9560 
9561 	if (event->attr.sigtrap) {
9562 		/*
9563 		 * The desired behaviour of sigtrap vs invalid samples is a bit
9564 		 * tricky; on the one hand, one should not loose the SIGTRAP if
9565 		 * it is the first event, on the other hand, we should also not
9566 		 * trigger the WARN or override the data address.
9567 		 */
9568 		bool valid_sample = sample_is_allowed(event, regs);
9569 		unsigned int pending_id = 1;
9570 
9571 		if (regs)
9572 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9573 		if (!event->pending_sigtrap) {
9574 			event->pending_sigtrap = pending_id;
9575 			local_inc(&event->ctx->nr_pending);
9576 		} else if (event->attr.exclude_kernel && valid_sample) {
9577 			/*
9578 			 * Should not be able to return to user space without
9579 			 * consuming pending_sigtrap; with exceptions:
9580 			 *
9581 			 *  1. Where !exclude_kernel, events can overflow again
9582 			 *     in the kernel without returning to user space.
9583 			 *
9584 			 *  2. Events that can overflow again before the IRQ-
9585 			 *     work without user space progress (e.g. hrtimer).
9586 			 *     To approximate progress (with false negatives),
9587 			 *     check 32-bit hash of the current IP.
9588 			 */
9589 			WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9590 		}
9591 
9592 		event->pending_addr = 0;
9593 		if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9594 			event->pending_addr = data->addr;
9595 		irq_work_queue(&event->pending_irq);
9596 	}
9597 
9598 	READ_ONCE(event->overflow_handler)(event, data, regs);
9599 
9600 	if (*perf_event_fasync(event) && event->pending_kill) {
9601 		event->pending_wakeup = 1;
9602 		irq_work_queue(&event->pending_irq);
9603 	}
9604 
9605 	return ret;
9606 }
9607 
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9608 int perf_event_overflow(struct perf_event *event,
9609 			struct perf_sample_data *data,
9610 			struct pt_regs *regs)
9611 {
9612 	return __perf_event_overflow(event, 1, data, regs);
9613 }
9614 
9615 /*
9616  * Generic software event infrastructure
9617  */
9618 
9619 struct swevent_htable {
9620 	struct swevent_hlist		*swevent_hlist;
9621 	struct mutex			hlist_mutex;
9622 	int				hlist_refcount;
9623 
9624 	/* Recursion avoidance in each contexts */
9625 	int				recursion[PERF_NR_CONTEXTS];
9626 };
9627 
9628 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9629 
9630 /*
9631  * We directly increment event->count and keep a second value in
9632  * event->hw.period_left to count intervals. This period event
9633  * is kept in the range [-sample_period, 0] so that we can use the
9634  * sign as trigger.
9635  */
9636 
perf_swevent_set_period(struct perf_event * event)9637 u64 perf_swevent_set_period(struct perf_event *event)
9638 {
9639 	struct hw_perf_event *hwc = &event->hw;
9640 	u64 period = hwc->last_period;
9641 	u64 nr, offset;
9642 	s64 old, val;
9643 
9644 	hwc->last_period = hwc->sample_period;
9645 
9646 	old = local64_read(&hwc->period_left);
9647 	do {
9648 		val = old;
9649 		if (val < 0)
9650 			return 0;
9651 
9652 		nr = div64_u64(period + val, period);
9653 		offset = nr * period;
9654 		val -= offset;
9655 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9656 
9657 	return nr;
9658 }
9659 
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)9660 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9661 				    struct perf_sample_data *data,
9662 				    struct pt_regs *regs)
9663 {
9664 	struct hw_perf_event *hwc = &event->hw;
9665 	int throttle = 0;
9666 
9667 	if (!overflow)
9668 		overflow = perf_swevent_set_period(event);
9669 
9670 	if (hwc->interrupts == MAX_INTERRUPTS)
9671 		return;
9672 
9673 	for (; overflow; overflow--) {
9674 		if (__perf_event_overflow(event, throttle,
9675 					    data, regs)) {
9676 			/*
9677 			 * We inhibit the overflow from happening when
9678 			 * hwc->interrupts == MAX_INTERRUPTS.
9679 			 */
9680 			break;
9681 		}
9682 		throttle = 1;
9683 	}
9684 }
9685 
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9686 static void perf_swevent_event(struct perf_event *event, u64 nr,
9687 			       struct perf_sample_data *data,
9688 			       struct pt_regs *regs)
9689 {
9690 	struct hw_perf_event *hwc = &event->hw;
9691 
9692 	local64_add(nr, &event->count);
9693 
9694 	if (!regs)
9695 		return;
9696 
9697 	if (!is_sampling_event(event))
9698 		return;
9699 
9700 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9701 		data->period = nr;
9702 		return perf_swevent_overflow(event, 1, data, regs);
9703 	} else
9704 		data->period = event->hw.last_period;
9705 
9706 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9707 		return perf_swevent_overflow(event, 1, data, regs);
9708 
9709 	if (local64_add_negative(nr, &hwc->period_left))
9710 		return;
9711 
9712 	perf_swevent_overflow(event, 0, data, regs);
9713 }
9714 
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)9715 static int perf_exclude_event(struct perf_event *event,
9716 			      struct pt_regs *regs)
9717 {
9718 	if (event->hw.state & PERF_HES_STOPPED)
9719 		return 1;
9720 
9721 	if (regs) {
9722 		if (event->attr.exclude_user && user_mode(regs))
9723 			return 1;
9724 
9725 		if (event->attr.exclude_kernel && !user_mode(regs))
9726 			return 1;
9727 	}
9728 
9729 	return 0;
9730 }
9731 
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)9732 static int perf_swevent_match(struct perf_event *event,
9733 				enum perf_type_id type,
9734 				u32 event_id,
9735 				struct perf_sample_data *data,
9736 				struct pt_regs *regs)
9737 {
9738 	if (event->attr.type != type)
9739 		return 0;
9740 
9741 	if (event->attr.config != event_id)
9742 		return 0;
9743 
9744 	if (perf_exclude_event(event, regs))
9745 		return 0;
9746 
9747 	return 1;
9748 }
9749 
swevent_hash(u64 type,u32 event_id)9750 static inline u64 swevent_hash(u64 type, u32 event_id)
9751 {
9752 	u64 val = event_id | (type << 32);
9753 
9754 	return hash_64(val, SWEVENT_HLIST_BITS);
9755 }
9756 
9757 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)9758 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9759 {
9760 	u64 hash = swevent_hash(type, event_id);
9761 
9762 	return &hlist->heads[hash];
9763 }
9764 
9765 /* For the read side: events when they trigger */
9766 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)9767 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9768 {
9769 	struct swevent_hlist *hlist;
9770 
9771 	hlist = rcu_dereference(swhash->swevent_hlist);
9772 	if (!hlist)
9773 		return NULL;
9774 
9775 	return __find_swevent_head(hlist, type, event_id);
9776 }
9777 
9778 /* For the event head insertion and removal in the hlist */
9779 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)9780 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9781 {
9782 	struct swevent_hlist *hlist;
9783 	u32 event_id = event->attr.config;
9784 	u64 type = event->attr.type;
9785 
9786 	/*
9787 	 * Event scheduling is always serialized against hlist allocation
9788 	 * and release. Which makes the protected version suitable here.
9789 	 * The context lock guarantees that.
9790 	 */
9791 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9792 					  lockdep_is_held(&event->ctx->lock));
9793 	if (!hlist)
9794 		return NULL;
9795 
9796 	return __find_swevent_head(hlist, type, event_id);
9797 }
9798 
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9799 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9800 				    u64 nr,
9801 				    struct perf_sample_data *data,
9802 				    struct pt_regs *regs)
9803 {
9804 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9805 	struct perf_event *event;
9806 	struct hlist_head *head;
9807 
9808 	rcu_read_lock();
9809 	head = find_swevent_head_rcu(swhash, type, event_id);
9810 	if (!head)
9811 		goto end;
9812 
9813 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9814 		if (perf_swevent_match(event, type, event_id, data, regs))
9815 			perf_swevent_event(event, nr, data, regs);
9816 	}
9817 end:
9818 	rcu_read_unlock();
9819 }
9820 
9821 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9822 
perf_swevent_get_recursion_context(void)9823 int perf_swevent_get_recursion_context(void)
9824 {
9825 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9826 
9827 	return get_recursion_context(swhash->recursion);
9828 }
9829 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9830 
perf_swevent_put_recursion_context(int rctx)9831 void perf_swevent_put_recursion_context(int rctx)
9832 {
9833 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9834 
9835 	put_recursion_context(swhash->recursion, rctx);
9836 }
9837 
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9838 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9839 {
9840 	struct perf_sample_data data;
9841 
9842 	if (WARN_ON_ONCE(!regs))
9843 		return;
9844 
9845 	perf_sample_data_init(&data, addr, 0);
9846 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9847 }
9848 
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9849 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9850 {
9851 	int rctx;
9852 
9853 	preempt_disable_notrace();
9854 	rctx = perf_swevent_get_recursion_context();
9855 	if (unlikely(rctx < 0))
9856 		goto fail;
9857 
9858 	___perf_sw_event(event_id, nr, regs, addr);
9859 
9860 	perf_swevent_put_recursion_context(rctx);
9861 fail:
9862 	preempt_enable_notrace();
9863 }
9864 
perf_swevent_read(struct perf_event * event)9865 static void perf_swevent_read(struct perf_event *event)
9866 {
9867 }
9868 
perf_swevent_add(struct perf_event * event,int flags)9869 static int perf_swevent_add(struct perf_event *event, int flags)
9870 {
9871 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9872 	struct hw_perf_event *hwc = &event->hw;
9873 	struct hlist_head *head;
9874 
9875 	if (is_sampling_event(event)) {
9876 		hwc->last_period = hwc->sample_period;
9877 		perf_swevent_set_period(event);
9878 	}
9879 
9880 	hwc->state = !(flags & PERF_EF_START);
9881 
9882 	head = find_swevent_head(swhash, event);
9883 	if (WARN_ON_ONCE(!head))
9884 		return -EINVAL;
9885 
9886 	hlist_add_head_rcu(&event->hlist_entry, head);
9887 	perf_event_update_userpage(event);
9888 
9889 	return 0;
9890 }
9891 
perf_swevent_del(struct perf_event * event,int flags)9892 static void perf_swevent_del(struct perf_event *event, int flags)
9893 {
9894 	hlist_del_rcu(&event->hlist_entry);
9895 }
9896 
perf_swevent_start(struct perf_event * event,int flags)9897 static void perf_swevent_start(struct perf_event *event, int flags)
9898 {
9899 	event->hw.state = 0;
9900 }
9901 
perf_swevent_stop(struct perf_event * event,int flags)9902 static void perf_swevent_stop(struct perf_event *event, int flags)
9903 {
9904 	event->hw.state = PERF_HES_STOPPED;
9905 }
9906 
9907 /* Deref the hlist from the update side */
9908 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)9909 swevent_hlist_deref(struct swevent_htable *swhash)
9910 {
9911 	return rcu_dereference_protected(swhash->swevent_hlist,
9912 					 lockdep_is_held(&swhash->hlist_mutex));
9913 }
9914 
swevent_hlist_release(struct swevent_htable * swhash)9915 static void swevent_hlist_release(struct swevent_htable *swhash)
9916 {
9917 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9918 
9919 	if (!hlist)
9920 		return;
9921 
9922 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9923 	kfree_rcu(hlist, rcu_head);
9924 }
9925 
swevent_hlist_put_cpu(int cpu)9926 static void swevent_hlist_put_cpu(int cpu)
9927 {
9928 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9929 
9930 	mutex_lock(&swhash->hlist_mutex);
9931 
9932 	if (!--swhash->hlist_refcount)
9933 		swevent_hlist_release(swhash);
9934 
9935 	mutex_unlock(&swhash->hlist_mutex);
9936 }
9937 
swevent_hlist_put(void)9938 static void swevent_hlist_put(void)
9939 {
9940 	int cpu;
9941 
9942 	for_each_possible_cpu(cpu)
9943 		swevent_hlist_put_cpu(cpu);
9944 }
9945 
swevent_hlist_get_cpu(int cpu)9946 static int swevent_hlist_get_cpu(int cpu)
9947 {
9948 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9949 	int err = 0;
9950 
9951 	mutex_lock(&swhash->hlist_mutex);
9952 	if (!swevent_hlist_deref(swhash) &&
9953 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9954 		struct swevent_hlist *hlist;
9955 
9956 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9957 		if (!hlist) {
9958 			err = -ENOMEM;
9959 			goto exit;
9960 		}
9961 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9962 	}
9963 	swhash->hlist_refcount++;
9964 exit:
9965 	mutex_unlock(&swhash->hlist_mutex);
9966 
9967 	return err;
9968 }
9969 
swevent_hlist_get(void)9970 static int swevent_hlist_get(void)
9971 {
9972 	int err, cpu, failed_cpu;
9973 
9974 	mutex_lock(&pmus_lock);
9975 	for_each_possible_cpu(cpu) {
9976 		err = swevent_hlist_get_cpu(cpu);
9977 		if (err) {
9978 			failed_cpu = cpu;
9979 			goto fail;
9980 		}
9981 	}
9982 	mutex_unlock(&pmus_lock);
9983 	return 0;
9984 fail:
9985 	for_each_possible_cpu(cpu) {
9986 		if (cpu == failed_cpu)
9987 			break;
9988 		swevent_hlist_put_cpu(cpu);
9989 	}
9990 	mutex_unlock(&pmus_lock);
9991 	return err;
9992 }
9993 
9994 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9995 
sw_perf_event_destroy(struct perf_event * event)9996 static void sw_perf_event_destroy(struct perf_event *event)
9997 {
9998 	u64 event_id = event->attr.config;
9999 
10000 	WARN_ON(event->parent);
10001 
10002 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
10003 	swevent_hlist_put();
10004 }
10005 
10006 static struct pmu perf_cpu_clock; /* fwd declaration */
10007 static struct pmu perf_task_clock;
10008 
perf_swevent_init(struct perf_event * event)10009 static int perf_swevent_init(struct perf_event *event)
10010 {
10011 	u64 event_id = event->attr.config;
10012 
10013 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10014 		return -ENOENT;
10015 
10016 	/*
10017 	 * no branch sampling for software events
10018 	 */
10019 	if (has_branch_stack(event))
10020 		return -EOPNOTSUPP;
10021 
10022 	switch (event_id) {
10023 	case PERF_COUNT_SW_CPU_CLOCK:
10024 		event->attr.type = perf_cpu_clock.type;
10025 		return -ENOENT;
10026 	case PERF_COUNT_SW_TASK_CLOCK:
10027 		event->attr.type = perf_task_clock.type;
10028 		return -ENOENT;
10029 
10030 	default:
10031 		break;
10032 	}
10033 
10034 	if (event_id >= PERF_COUNT_SW_MAX)
10035 		return -ENOENT;
10036 
10037 	if (!event->parent) {
10038 		int err;
10039 
10040 		err = swevent_hlist_get();
10041 		if (err)
10042 			return err;
10043 
10044 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10045 		event->destroy = sw_perf_event_destroy;
10046 	}
10047 
10048 	return 0;
10049 }
10050 
10051 static struct pmu perf_swevent = {
10052 	.task_ctx_nr	= perf_sw_context,
10053 
10054 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10055 
10056 	.event_init	= perf_swevent_init,
10057 	.add		= perf_swevent_add,
10058 	.del		= perf_swevent_del,
10059 	.start		= perf_swevent_start,
10060 	.stop		= perf_swevent_stop,
10061 	.read		= perf_swevent_read,
10062 };
10063 
10064 #ifdef CONFIG_EVENT_TRACING
10065 
tp_perf_event_destroy(struct perf_event * event)10066 static void tp_perf_event_destroy(struct perf_event *event)
10067 {
10068 	perf_trace_destroy(event);
10069 }
10070 
perf_tp_event_init(struct perf_event * event)10071 static int perf_tp_event_init(struct perf_event *event)
10072 {
10073 	int err;
10074 
10075 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10076 		return -ENOENT;
10077 
10078 	/*
10079 	 * no branch sampling for tracepoint events
10080 	 */
10081 	if (has_branch_stack(event))
10082 		return -EOPNOTSUPP;
10083 
10084 	err = perf_trace_init(event);
10085 	if (err)
10086 		return err;
10087 
10088 	event->destroy = tp_perf_event_destroy;
10089 
10090 	return 0;
10091 }
10092 
10093 static struct pmu perf_tracepoint = {
10094 	.task_ctx_nr	= perf_sw_context,
10095 
10096 	.event_init	= perf_tp_event_init,
10097 	.add		= perf_trace_add,
10098 	.del		= perf_trace_del,
10099 	.start		= perf_swevent_start,
10100 	.stop		= perf_swevent_stop,
10101 	.read		= perf_swevent_read,
10102 };
10103 
perf_tp_filter_match(struct perf_event * event,struct perf_raw_record * raw)10104 static int perf_tp_filter_match(struct perf_event *event,
10105 				struct perf_raw_record *raw)
10106 {
10107 	void *record = raw->frag.data;
10108 
10109 	/* only top level events have filters set */
10110 	if (event->parent)
10111 		event = event->parent;
10112 
10113 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10114 		return 1;
10115 	return 0;
10116 }
10117 
perf_tp_event_match(struct perf_event * event,struct perf_raw_record * raw,struct pt_regs * regs)10118 static int perf_tp_event_match(struct perf_event *event,
10119 				struct perf_raw_record *raw,
10120 				struct pt_regs *regs)
10121 {
10122 	if (event->hw.state & PERF_HES_STOPPED)
10123 		return 0;
10124 	/*
10125 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10126 	 */
10127 	if (event->attr.exclude_kernel && !user_mode(regs))
10128 		return 0;
10129 
10130 	if (!perf_tp_filter_match(event, raw))
10131 		return 0;
10132 
10133 	return 1;
10134 }
10135 
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)10136 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10137 			       struct trace_event_call *call, u64 count,
10138 			       struct pt_regs *regs, struct hlist_head *head,
10139 			       struct task_struct *task)
10140 {
10141 	if (bpf_prog_array_valid(call)) {
10142 		*(struct pt_regs **)raw_data = regs;
10143 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10144 			perf_swevent_put_recursion_context(rctx);
10145 			return;
10146 		}
10147 	}
10148 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10149 		      rctx, task);
10150 }
10151 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10152 
__perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event * event)10153 static void __perf_tp_event_target_task(u64 count, void *record,
10154 					struct pt_regs *regs,
10155 					struct perf_sample_data *data,
10156 					struct perf_raw_record *raw,
10157 					struct perf_event *event)
10158 {
10159 	struct trace_entry *entry = record;
10160 
10161 	if (event->attr.config != entry->type)
10162 		return;
10163 	/* Cannot deliver synchronous signal to other task. */
10164 	if (event->attr.sigtrap)
10165 		return;
10166 	if (perf_tp_event_match(event, raw, regs)) {
10167 		perf_sample_data_init(data, 0, 0);
10168 		perf_sample_save_raw_data(data, event, raw);
10169 		perf_swevent_event(event, count, data, regs);
10170 	}
10171 }
10172 
perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event_context * ctx)10173 static void perf_tp_event_target_task(u64 count, void *record,
10174 				      struct pt_regs *regs,
10175 				      struct perf_sample_data *data,
10176 				      struct perf_raw_record *raw,
10177 				      struct perf_event_context *ctx)
10178 {
10179 	unsigned int cpu = smp_processor_id();
10180 	struct pmu *pmu = &perf_tracepoint;
10181 	struct perf_event *event, *sibling;
10182 
10183 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10184 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
10185 		for_each_sibling_event(sibling, event)
10186 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10187 	}
10188 
10189 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10190 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
10191 		for_each_sibling_event(sibling, event)
10192 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10193 	}
10194 }
10195 
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)10196 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10197 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10198 		   struct task_struct *task)
10199 {
10200 	struct perf_sample_data data;
10201 	struct perf_event *event;
10202 
10203 	struct perf_raw_record raw = {
10204 		.frag = {
10205 			.size = entry_size,
10206 			.data = record,
10207 		},
10208 	};
10209 
10210 	perf_trace_buf_update(record, event_type);
10211 
10212 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10213 		if (perf_tp_event_match(event, &raw, regs)) {
10214 			/*
10215 			 * Here use the same on-stack perf_sample_data,
10216 			 * some members in data are event-specific and
10217 			 * need to be re-computed for different sweveents.
10218 			 * Re-initialize data->sample_flags safely to avoid
10219 			 * the problem that next event skips preparing data
10220 			 * because data->sample_flags is set.
10221 			 */
10222 			perf_sample_data_init(&data, 0, 0);
10223 			perf_sample_save_raw_data(&data, event, &raw);
10224 			perf_swevent_event(event, count, &data, regs);
10225 		}
10226 	}
10227 
10228 	/*
10229 	 * If we got specified a target task, also iterate its context and
10230 	 * deliver this event there too.
10231 	 */
10232 	if (task && task != current) {
10233 		struct perf_event_context *ctx;
10234 
10235 		rcu_read_lock();
10236 		ctx = rcu_dereference(task->perf_event_ctxp);
10237 		if (!ctx)
10238 			goto unlock;
10239 
10240 		raw_spin_lock(&ctx->lock);
10241 		perf_tp_event_target_task(count, record, regs, &data, &raw, ctx);
10242 		raw_spin_unlock(&ctx->lock);
10243 unlock:
10244 		rcu_read_unlock();
10245 	}
10246 
10247 	perf_swevent_put_recursion_context(rctx);
10248 }
10249 EXPORT_SYMBOL_GPL(perf_tp_event);
10250 
10251 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10252 /*
10253  * Flags in config, used by dynamic PMU kprobe and uprobe
10254  * The flags should match following PMU_FORMAT_ATTR().
10255  *
10256  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10257  *                               if not set, create kprobe/uprobe
10258  *
10259  * The following values specify a reference counter (or semaphore in the
10260  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10261  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10262  *
10263  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10264  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10265  */
10266 enum perf_probe_config {
10267 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10268 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10269 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10270 };
10271 
10272 PMU_FORMAT_ATTR(retprobe, "config:0");
10273 #endif
10274 
10275 #ifdef CONFIG_KPROBE_EVENTS
10276 static struct attribute *kprobe_attrs[] = {
10277 	&format_attr_retprobe.attr,
10278 	NULL,
10279 };
10280 
10281 static struct attribute_group kprobe_format_group = {
10282 	.name = "format",
10283 	.attrs = kprobe_attrs,
10284 };
10285 
10286 static const struct attribute_group *kprobe_attr_groups[] = {
10287 	&kprobe_format_group,
10288 	NULL,
10289 };
10290 
10291 static int perf_kprobe_event_init(struct perf_event *event);
10292 static struct pmu perf_kprobe = {
10293 	.task_ctx_nr	= perf_sw_context,
10294 	.event_init	= perf_kprobe_event_init,
10295 	.add		= perf_trace_add,
10296 	.del		= perf_trace_del,
10297 	.start		= perf_swevent_start,
10298 	.stop		= perf_swevent_stop,
10299 	.read		= perf_swevent_read,
10300 	.attr_groups	= kprobe_attr_groups,
10301 };
10302 
perf_kprobe_event_init(struct perf_event * event)10303 static int perf_kprobe_event_init(struct perf_event *event)
10304 {
10305 	int err;
10306 	bool is_retprobe;
10307 
10308 	if (event->attr.type != perf_kprobe.type)
10309 		return -ENOENT;
10310 
10311 	if (!perfmon_capable())
10312 		return -EACCES;
10313 
10314 	/*
10315 	 * no branch sampling for probe events
10316 	 */
10317 	if (has_branch_stack(event))
10318 		return -EOPNOTSUPP;
10319 
10320 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10321 	err = perf_kprobe_init(event, is_retprobe);
10322 	if (err)
10323 		return err;
10324 
10325 	event->destroy = perf_kprobe_destroy;
10326 
10327 	return 0;
10328 }
10329 #endif /* CONFIG_KPROBE_EVENTS */
10330 
10331 #ifdef CONFIG_UPROBE_EVENTS
10332 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10333 
10334 static struct attribute *uprobe_attrs[] = {
10335 	&format_attr_retprobe.attr,
10336 	&format_attr_ref_ctr_offset.attr,
10337 	NULL,
10338 };
10339 
10340 static struct attribute_group uprobe_format_group = {
10341 	.name = "format",
10342 	.attrs = uprobe_attrs,
10343 };
10344 
10345 static const struct attribute_group *uprobe_attr_groups[] = {
10346 	&uprobe_format_group,
10347 	NULL,
10348 };
10349 
10350 static int perf_uprobe_event_init(struct perf_event *event);
10351 static struct pmu perf_uprobe = {
10352 	.task_ctx_nr	= perf_sw_context,
10353 	.event_init	= perf_uprobe_event_init,
10354 	.add		= perf_trace_add,
10355 	.del		= perf_trace_del,
10356 	.start		= perf_swevent_start,
10357 	.stop		= perf_swevent_stop,
10358 	.read		= perf_swevent_read,
10359 	.attr_groups	= uprobe_attr_groups,
10360 };
10361 
perf_uprobe_event_init(struct perf_event * event)10362 static int perf_uprobe_event_init(struct perf_event *event)
10363 {
10364 	int err;
10365 	unsigned long ref_ctr_offset;
10366 	bool is_retprobe;
10367 
10368 	if (event->attr.type != perf_uprobe.type)
10369 		return -ENOENT;
10370 
10371 	if (!perfmon_capable())
10372 		return -EACCES;
10373 
10374 	/*
10375 	 * no branch sampling for probe events
10376 	 */
10377 	if (has_branch_stack(event))
10378 		return -EOPNOTSUPP;
10379 
10380 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10381 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10382 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10383 	if (err)
10384 		return err;
10385 
10386 	event->destroy = perf_uprobe_destroy;
10387 
10388 	return 0;
10389 }
10390 #endif /* CONFIG_UPROBE_EVENTS */
10391 
perf_tp_register(void)10392 static inline void perf_tp_register(void)
10393 {
10394 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10395 #ifdef CONFIG_KPROBE_EVENTS
10396 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10397 #endif
10398 #ifdef CONFIG_UPROBE_EVENTS
10399 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10400 #endif
10401 }
10402 
perf_event_free_filter(struct perf_event * event)10403 static void perf_event_free_filter(struct perf_event *event)
10404 {
10405 	ftrace_profile_free_filter(event);
10406 }
10407 
10408 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10409 static void bpf_overflow_handler(struct perf_event *event,
10410 				 struct perf_sample_data *data,
10411 				 struct pt_regs *regs)
10412 {
10413 	struct bpf_perf_event_data_kern ctx = {
10414 		.data = data,
10415 		.event = event,
10416 	};
10417 	struct bpf_prog *prog;
10418 	int ret = 0;
10419 
10420 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10421 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10422 		goto out;
10423 	rcu_read_lock();
10424 	prog = READ_ONCE(event->prog);
10425 	if (prog) {
10426 		perf_prepare_sample(data, event, regs);
10427 		ret = bpf_prog_run(prog, &ctx);
10428 	}
10429 	rcu_read_unlock();
10430 out:
10431 	__this_cpu_dec(bpf_prog_active);
10432 	if (!ret)
10433 		return;
10434 
10435 	event->orig_overflow_handler(event, data, regs);
10436 }
10437 
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10438 static int perf_event_set_bpf_handler(struct perf_event *event,
10439 				      struct bpf_prog *prog,
10440 				      u64 bpf_cookie)
10441 {
10442 	if (event->overflow_handler_context)
10443 		/* hw breakpoint or kernel counter */
10444 		return -EINVAL;
10445 
10446 	if (event->prog)
10447 		return -EEXIST;
10448 
10449 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10450 		return -EINVAL;
10451 
10452 	if (event->attr.precise_ip &&
10453 	    prog->call_get_stack &&
10454 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10455 	     event->attr.exclude_callchain_kernel ||
10456 	     event->attr.exclude_callchain_user)) {
10457 		/*
10458 		 * On perf_event with precise_ip, calling bpf_get_stack()
10459 		 * may trigger unwinder warnings and occasional crashes.
10460 		 * bpf_get_[stack|stackid] works around this issue by using
10461 		 * callchain attached to perf_sample_data. If the
10462 		 * perf_event does not full (kernel and user) callchain
10463 		 * attached to perf_sample_data, do not allow attaching BPF
10464 		 * program that calls bpf_get_[stack|stackid].
10465 		 */
10466 		return -EPROTO;
10467 	}
10468 
10469 	event->prog = prog;
10470 	event->bpf_cookie = bpf_cookie;
10471 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10472 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10473 	return 0;
10474 }
10475 
perf_event_free_bpf_handler(struct perf_event * event)10476 static void perf_event_free_bpf_handler(struct perf_event *event)
10477 {
10478 	struct bpf_prog *prog = event->prog;
10479 
10480 	if (!prog)
10481 		return;
10482 
10483 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10484 	event->prog = NULL;
10485 	bpf_prog_put(prog);
10486 }
10487 #else
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10488 static int perf_event_set_bpf_handler(struct perf_event *event,
10489 				      struct bpf_prog *prog,
10490 				      u64 bpf_cookie)
10491 {
10492 	return -EOPNOTSUPP;
10493 }
perf_event_free_bpf_handler(struct perf_event * event)10494 static void perf_event_free_bpf_handler(struct perf_event *event)
10495 {
10496 }
10497 #endif
10498 
10499 /*
10500  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10501  * with perf_event_open()
10502  */
perf_event_is_tracing(struct perf_event * event)10503 static inline bool perf_event_is_tracing(struct perf_event *event)
10504 {
10505 	if (event->pmu == &perf_tracepoint)
10506 		return true;
10507 #ifdef CONFIG_KPROBE_EVENTS
10508 	if (event->pmu == &perf_kprobe)
10509 		return true;
10510 #endif
10511 #ifdef CONFIG_UPROBE_EVENTS
10512 	if (event->pmu == &perf_uprobe)
10513 		return true;
10514 #endif
10515 	return false;
10516 }
10517 
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10518 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10519 			    u64 bpf_cookie)
10520 {
10521 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10522 
10523 	if (!perf_event_is_tracing(event))
10524 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10525 
10526 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10527 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10528 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10529 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10530 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10531 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10532 		return -EINVAL;
10533 
10534 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10535 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10536 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10537 		return -EINVAL;
10538 
10539 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10540 		/* only uprobe programs are allowed to be sleepable */
10541 		return -EINVAL;
10542 
10543 	/* Kprobe override only works for kprobes, not uprobes. */
10544 	if (prog->kprobe_override && !is_kprobe)
10545 		return -EINVAL;
10546 
10547 	if (is_tracepoint || is_syscall_tp) {
10548 		int off = trace_event_get_offsets(event->tp_event);
10549 
10550 		if (prog->aux->max_ctx_offset > off)
10551 			return -EACCES;
10552 	}
10553 
10554 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10555 }
10556 
perf_event_free_bpf_prog(struct perf_event * event)10557 void perf_event_free_bpf_prog(struct perf_event *event)
10558 {
10559 	if (!perf_event_is_tracing(event)) {
10560 		perf_event_free_bpf_handler(event);
10561 		return;
10562 	}
10563 	perf_event_detach_bpf_prog(event);
10564 }
10565 
10566 #else
10567 
perf_tp_register(void)10568 static inline void perf_tp_register(void)
10569 {
10570 }
10571 
perf_event_free_filter(struct perf_event * event)10572 static void perf_event_free_filter(struct perf_event *event)
10573 {
10574 }
10575 
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10576 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10577 			    u64 bpf_cookie)
10578 {
10579 	return -ENOENT;
10580 }
10581 
perf_event_free_bpf_prog(struct perf_event * event)10582 void perf_event_free_bpf_prog(struct perf_event *event)
10583 {
10584 }
10585 #endif /* CONFIG_EVENT_TRACING */
10586 
10587 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)10588 void perf_bp_event(struct perf_event *bp, void *data)
10589 {
10590 	struct perf_sample_data sample;
10591 	struct pt_regs *regs = data;
10592 
10593 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10594 
10595 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10596 		perf_swevent_event(bp, 1, &sample, regs);
10597 }
10598 #endif
10599 
10600 /*
10601  * Allocate a new address filter
10602  */
10603 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)10604 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10605 {
10606 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10607 	struct perf_addr_filter *filter;
10608 
10609 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10610 	if (!filter)
10611 		return NULL;
10612 
10613 	INIT_LIST_HEAD(&filter->entry);
10614 	list_add_tail(&filter->entry, filters);
10615 
10616 	return filter;
10617 }
10618 
free_filters_list(struct list_head * filters)10619 static void free_filters_list(struct list_head *filters)
10620 {
10621 	struct perf_addr_filter *filter, *iter;
10622 
10623 	list_for_each_entry_safe(filter, iter, filters, entry) {
10624 		path_put(&filter->path);
10625 		list_del(&filter->entry);
10626 		kfree(filter);
10627 	}
10628 }
10629 
10630 /*
10631  * Free existing address filters and optionally install new ones
10632  */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)10633 static void perf_addr_filters_splice(struct perf_event *event,
10634 				     struct list_head *head)
10635 {
10636 	unsigned long flags;
10637 	LIST_HEAD(list);
10638 
10639 	if (!has_addr_filter(event))
10640 		return;
10641 
10642 	/* don't bother with children, they don't have their own filters */
10643 	if (event->parent)
10644 		return;
10645 
10646 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10647 
10648 	list_splice_init(&event->addr_filters.list, &list);
10649 	if (head)
10650 		list_splice(head, &event->addr_filters.list);
10651 
10652 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10653 
10654 	free_filters_list(&list);
10655 }
10656 
10657 /*
10658  * Scan through mm's vmas and see if one of them matches the
10659  * @filter; if so, adjust filter's address range.
10660  * Called with mm::mmap_lock down for reading.
10661  */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)10662 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10663 				   struct mm_struct *mm,
10664 				   struct perf_addr_filter_range *fr)
10665 {
10666 	struct vm_area_struct *vma;
10667 	VMA_ITERATOR(vmi, mm, 0);
10668 
10669 	for_each_vma(vmi, vma) {
10670 		if (!vma->vm_file)
10671 			continue;
10672 
10673 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10674 			return;
10675 	}
10676 }
10677 
10678 /*
10679  * Update event's address range filters based on the
10680  * task's existing mappings, if any.
10681  */
perf_event_addr_filters_apply(struct perf_event * event)10682 static void perf_event_addr_filters_apply(struct perf_event *event)
10683 {
10684 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10685 	struct task_struct *task = READ_ONCE(event->ctx->task);
10686 	struct perf_addr_filter *filter;
10687 	struct mm_struct *mm = NULL;
10688 	unsigned int count = 0;
10689 	unsigned long flags;
10690 
10691 	/*
10692 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10693 	 * will stop on the parent's child_mutex that our caller is also holding
10694 	 */
10695 	if (task == TASK_TOMBSTONE)
10696 		return;
10697 
10698 	if (ifh->nr_file_filters) {
10699 		mm = get_task_mm(task);
10700 		if (!mm)
10701 			goto restart;
10702 
10703 		mmap_read_lock(mm);
10704 	}
10705 
10706 	raw_spin_lock_irqsave(&ifh->lock, flags);
10707 	list_for_each_entry(filter, &ifh->list, entry) {
10708 		if (filter->path.dentry) {
10709 			/*
10710 			 * Adjust base offset if the filter is associated to a
10711 			 * binary that needs to be mapped:
10712 			 */
10713 			event->addr_filter_ranges[count].start = 0;
10714 			event->addr_filter_ranges[count].size = 0;
10715 
10716 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10717 		} else {
10718 			event->addr_filter_ranges[count].start = filter->offset;
10719 			event->addr_filter_ranges[count].size  = filter->size;
10720 		}
10721 
10722 		count++;
10723 	}
10724 
10725 	event->addr_filters_gen++;
10726 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10727 
10728 	if (ifh->nr_file_filters) {
10729 		mmap_read_unlock(mm);
10730 
10731 		mmput(mm);
10732 	}
10733 
10734 restart:
10735 	perf_event_stop(event, 1);
10736 }
10737 
10738 /*
10739  * Address range filtering: limiting the data to certain
10740  * instruction address ranges. Filters are ioctl()ed to us from
10741  * userspace as ascii strings.
10742  *
10743  * Filter string format:
10744  *
10745  * ACTION RANGE_SPEC
10746  * where ACTION is one of the
10747  *  * "filter": limit the trace to this region
10748  *  * "start": start tracing from this address
10749  *  * "stop": stop tracing at this address/region;
10750  * RANGE_SPEC is
10751  *  * for kernel addresses: <start address>[/<size>]
10752  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10753  *
10754  * if <size> is not specified or is zero, the range is treated as a single
10755  * address; not valid for ACTION=="filter".
10756  */
10757 enum {
10758 	IF_ACT_NONE = -1,
10759 	IF_ACT_FILTER,
10760 	IF_ACT_START,
10761 	IF_ACT_STOP,
10762 	IF_SRC_FILE,
10763 	IF_SRC_KERNEL,
10764 	IF_SRC_FILEADDR,
10765 	IF_SRC_KERNELADDR,
10766 };
10767 
10768 enum {
10769 	IF_STATE_ACTION = 0,
10770 	IF_STATE_SOURCE,
10771 	IF_STATE_END,
10772 };
10773 
10774 static const match_table_t if_tokens = {
10775 	{ IF_ACT_FILTER,	"filter" },
10776 	{ IF_ACT_START,		"start" },
10777 	{ IF_ACT_STOP,		"stop" },
10778 	{ IF_SRC_FILE,		"%u/%u@%s" },
10779 	{ IF_SRC_KERNEL,	"%u/%u" },
10780 	{ IF_SRC_FILEADDR,	"%u@%s" },
10781 	{ IF_SRC_KERNELADDR,	"%u" },
10782 	{ IF_ACT_NONE,		NULL },
10783 };
10784 
10785 /*
10786  * Address filter string parser
10787  */
10788 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)10789 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10790 			     struct list_head *filters)
10791 {
10792 	struct perf_addr_filter *filter = NULL;
10793 	char *start, *orig, *filename = NULL;
10794 	substring_t args[MAX_OPT_ARGS];
10795 	int state = IF_STATE_ACTION, token;
10796 	unsigned int kernel = 0;
10797 	int ret = -EINVAL;
10798 
10799 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10800 	if (!fstr)
10801 		return -ENOMEM;
10802 
10803 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10804 		static const enum perf_addr_filter_action_t actions[] = {
10805 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10806 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10807 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10808 		};
10809 		ret = -EINVAL;
10810 
10811 		if (!*start)
10812 			continue;
10813 
10814 		/* filter definition begins */
10815 		if (state == IF_STATE_ACTION) {
10816 			filter = perf_addr_filter_new(event, filters);
10817 			if (!filter)
10818 				goto fail;
10819 		}
10820 
10821 		token = match_token(start, if_tokens, args);
10822 		switch (token) {
10823 		case IF_ACT_FILTER:
10824 		case IF_ACT_START:
10825 		case IF_ACT_STOP:
10826 			if (state != IF_STATE_ACTION)
10827 				goto fail;
10828 
10829 			filter->action = actions[token];
10830 			state = IF_STATE_SOURCE;
10831 			break;
10832 
10833 		case IF_SRC_KERNELADDR:
10834 		case IF_SRC_KERNEL:
10835 			kernel = 1;
10836 			fallthrough;
10837 
10838 		case IF_SRC_FILEADDR:
10839 		case IF_SRC_FILE:
10840 			if (state != IF_STATE_SOURCE)
10841 				goto fail;
10842 
10843 			*args[0].to = 0;
10844 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10845 			if (ret)
10846 				goto fail;
10847 
10848 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10849 				*args[1].to = 0;
10850 				ret = kstrtoul(args[1].from, 0, &filter->size);
10851 				if (ret)
10852 					goto fail;
10853 			}
10854 
10855 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10856 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10857 
10858 				kfree(filename);
10859 				filename = match_strdup(&args[fpos]);
10860 				if (!filename) {
10861 					ret = -ENOMEM;
10862 					goto fail;
10863 				}
10864 			}
10865 
10866 			state = IF_STATE_END;
10867 			break;
10868 
10869 		default:
10870 			goto fail;
10871 		}
10872 
10873 		/*
10874 		 * Filter definition is fully parsed, validate and install it.
10875 		 * Make sure that it doesn't contradict itself or the event's
10876 		 * attribute.
10877 		 */
10878 		if (state == IF_STATE_END) {
10879 			ret = -EINVAL;
10880 
10881 			/*
10882 			 * ACTION "filter" must have a non-zero length region
10883 			 * specified.
10884 			 */
10885 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10886 			    !filter->size)
10887 				goto fail;
10888 
10889 			if (!kernel) {
10890 				if (!filename)
10891 					goto fail;
10892 
10893 				/*
10894 				 * For now, we only support file-based filters
10895 				 * in per-task events; doing so for CPU-wide
10896 				 * events requires additional context switching
10897 				 * trickery, since same object code will be
10898 				 * mapped at different virtual addresses in
10899 				 * different processes.
10900 				 */
10901 				ret = -EOPNOTSUPP;
10902 				if (!event->ctx->task)
10903 					goto fail;
10904 
10905 				/* look up the path and grab its inode */
10906 				ret = kern_path(filename, LOOKUP_FOLLOW,
10907 						&filter->path);
10908 				if (ret)
10909 					goto fail;
10910 
10911 				ret = -EINVAL;
10912 				if (!filter->path.dentry ||
10913 				    !S_ISREG(d_inode(filter->path.dentry)
10914 					     ->i_mode))
10915 					goto fail;
10916 
10917 				event->addr_filters.nr_file_filters++;
10918 			}
10919 
10920 			/* ready to consume more filters */
10921 			kfree(filename);
10922 			filename = NULL;
10923 			state = IF_STATE_ACTION;
10924 			filter = NULL;
10925 			kernel = 0;
10926 		}
10927 	}
10928 
10929 	if (state != IF_STATE_ACTION)
10930 		goto fail;
10931 
10932 	kfree(filename);
10933 	kfree(orig);
10934 
10935 	return 0;
10936 
10937 fail:
10938 	kfree(filename);
10939 	free_filters_list(filters);
10940 	kfree(orig);
10941 
10942 	return ret;
10943 }
10944 
10945 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)10946 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10947 {
10948 	LIST_HEAD(filters);
10949 	int ret;
10950 
10951 	/*
10952 	 * Since this is called in perf_ioctl() path, we're already holding
10953 	 * ctx::mutex.
10954 	 */
10955 	lockdep_assert_held(&event->ctx->mutex);
10956 
10957 	if (WARN_ON_ONCE(event->parent))
10958 		return -EINVAL;
10959 
10960 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10961 	if (ret)
10962 		goto fail_clear_files;
10963 
10964 	ret = event->pmu->addr_filters_validate(&filters);
10965 	if (ret)
10966 		goto fail_free_filters;
10967 
10968 	/* remove existing filters, if any */
10969 	perf_addr_filters_splice(event, &filters);
10970 
10971 	/* install new filters */
10972 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10973 
10974 	return ret;
10975 
10976 fail_free_filters:
10977 	free_filters_list(&filters);
10978 
10979 fail_clear_files:
10980 	event->addr_filters.nr_file_filters = 0;
10981 
10982 	return ret;
10983 }
10984 
perf_event_set_filter(struct perf_event * event,void __user * arg)10985 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10986 {
10987 	int ret = -EINVAL;
10988 	char *filter_str;
10989 
10990 	filter_str = strndup_user(arg, PAGE_SIZE);
10991 	if (IS_ERR(filter_str))
10992 		return PTR_ERR(filter_str);
10993 
10994 #ifdef CONFIG_EVENT_TRACING
10995 	if (perf_event_is_tracing(event)) {
10996 		struct perf_event_context *ctx = event->ctx;
10997 
10998 		/*
10999 		 * Beware, here be dragons!!
11000 		 *
11001 		 * the tracepoint muck will deadlock against ctx->mutex, but
11002 		 * the tracepoint stuff does not actually need it. So
11003 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11004 		 * already have a reference on ctx.
11005 		 *
11006 		 * This can result in event getting moved to a different ctx,
11007 		 * but that does not affect the tracepoint state.
11008 		 */
11009 		mutex_unlock(&ctx->mutex);
11010 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11011 		mutex_lock(&ctx->mutex);
11012 	} else
11013 #endif
11014 	if (has_addr_filter(event))
11015 		ret = perf_event_set_addr_filter(event, filter_str);
11016 
11017 	kfree(filter_str);
11018 	return ret;
11019 }
11020 
11021 /*
11022  * hrtimer based swevent callback
11023  */
11024 
perf_swevent_hrtimer(struct hrtimer * hrtimer)11025 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11026 {
11027 	enum hrtimer_restart ret = HRTIMER_RESTART;
11028 	struct perf_sample_data data;
11029 	struct pt_regs *regs;
11030 	struct perf_event *event;
11031 	u64 period;
11032 
11033 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11034 
11035 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11036 		return HRTIMER_NORESTART;
11037 
11038 	event->pmu->read(event);
11039 
11040 	perf_sample_data_init(&data, 0, event->hw.last_period);
11041 	regs = get_irq_regs();
11042 
11043 	if (regs && !perf_exclude_event(event, regs)) {
11044 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11045 			if (__perf_event_overflow(event, 1, &data, regs))
11046 				ret = HRTIMER_NORESTART;
11047 	}
11048 
11049 	period = max_t(u64, 10000, event->hw.sample_period);
11050 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11051 
11052 	return ret;
11053 }
11054 
perf_swevent_start_hrtimer(struct perf_event * event)11055 static void perf_swevent_start_hrtimer(struct perf_event *event)
11056 {
11057 	struct hw_perf_event *hwc = &event->hw;
11058 	s64 period;
11059 
11060 	if (!is_sampling_event(event))
11061 		return;
11062 
11063 	period = local64_read(&hwc->period_left);
11064 	if (period) {
11065 		if (period < 0)
11066 			period = 10000;
11067 
11068 		local64_set(&hwc->period_left, 0);
11069 	} else {
11070 		period = max_t(u64, 10000, hwc->sample_period);
11071 	}
11072 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11073 		      HRTIMER_MODE_REL_PINNED_HARD);
11074 }
11075 
perf_swevent_cancel_hrtimer(struct perf_event * event)11076 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11077 {
11078 	struct hw_perf_event *hwc = &event->hw;
11079 
11080 	if (is_sampling_event(event)) {
11081 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11082 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11083 
11084 		hrtimer_cancel(&hwc->hrtimer);
11085 	}
11086 }
11087 
perf_swevent_init_hrtimer(struct perf_event * event)11088 static void perf_swevent_init_hrtimer(struct perf_event *event)
11089 {
11090 	struct hw_perf_event *hwc = &event->hw;
11091 
11092 	if (!is_sampling_event(event))
11093 		return;
11094 
11095 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11096 	hwc->hrtimer.function = perf_swevent_hrtimer;
11097 
11098 	/*
11099 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11100 	 * mapping and avoid the whole period adjust feedback stuff.
11101 	 */
11102 	if (event->attr.freq) {
11103 		long freq = event->attr.sample_freq;
11104 
11105 		event->attr.sample_period = NSEC_PER_SEC / freq;
11106 		hwc->sample_period = event->attr.sample_period;
11107 		local64_set(&hwc->period_left, hwc->sample_period);
11108 		hwc->last_period = hwc->sample_period;
11109 		event->attr.freq = 0;
11110 	}
11111 }
11112 
11113 /*
11114  * Software event: cpu wall time clock
11115  */
11116 
cpu_clock_event_update(struct perf_event * event)11117 static void cpu_clock_event_update(struct perf_event *event)
11118 {
11119 	s64 prev;
11120 	u64 now;
11121 
11122 	now = local_clock();
11123 	prev = local64_xchg(&event->hw.prev_count, now);
11124 	local64_add(now - prev, &event->count);
11125 }
11126 
cpu_clock_event_start(struct perf_event * event,int flags)11127 static void cpu_clock_event_start(struct perf_event *event, int flags)
11128 {
11129 	local64_set(&event->hw.prev_count, local_clock());
11130 	perf_swevent_start_hrtimer(event);
11131 }
11132 
cpu_clock_event_stop(struct perf_event * event,int flags)11133 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11134 {
11135 	perf_swevent_cancel_hrtimer(event);
11136 	cpu_clock_event_update(event);
11137 }
11138 
cpu_clock_event_add(struct perf_event * event,int flags)11139 static int cpu_clock_event_add(struct perf_event *event, int flags)
11140 {
11141 	if (flags & PERF_EF_START)
11142 		cpu_clock_event_start(event, flags);
11143 	perf_event_update_userpage(event);
11144 
11145 	return 0;
11146 }
11147 
cpu_clock_event_del(struct perf_event * event,int flags)11148 static void cpu_clock_event_del(struct perf_event *event, int flags)
11149 {
11150 	cpu_clock_event_stop(event, flags);
11151 }
11152 
cpu_clock_event_read(struct perf_event * event)11153 static void cpu_clock_event_read(struct perf_event *event)
11154 {
11155 	cpu_clock_event_update(event);
11156 }
11157 
cpu_clock_event_init(struct perf_event * event)11158 static int cpu_clock_event_init(struct perf_event *event)
11159 {
11160 	if (event->attr.type != perf_cpu_clock.type)
11161 		return -ENOENT;
11162 
11163 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11164 		return -ENOENT;
11165 
11166 	/*
11167 	 * no branch sampling for software events
11168 	 */
11169 	if (has_branch_stack(event))
11170 		return -EOPNOTSUPP;
11171 
11172 	perf_swevent_init_hrtimer(event);
11173 
11174 	return 0;
11175 }
11176 
11177 static struct pmu perf_cpu_clock = {
11178 	.task_ctx_nr	= perf_sw_context,
11179 
11180 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11181 	.dev		= PMU_NULL_DEV,
11182 
11183 	.event_init	= cpu_clock_event_init,
11184 	.add		= cpu_clock_event_add,
11185 	.del		= cpu_clock_event_del,
11186 	.start		= cpu_clock_event_start,
11187 	.stop		= cpu_clock_event_stop,
11188 	.read		= cpu_clock_event_read,
11189 };
11190 
11191 /*
11192  * Software event: task time clock
11193  */
11194 
task_clock_event_update(struct perf_event * event,u64 now)11195 static void task_clock_event_update(struct perf_event *event, u64 now)
11196 {
11197 	u64 prev;
11198 	s64 delta;
11199 
11200 	prev = local64_xchg(&event->hw.prev_count, now);
11201 	delta = now - prev;
11202 	local64_add(delta, &event->count);
11203 }
11204 
task_clock_event_start(struct perf_event * event,int flags)11205 static void task_clock_event_start(struct perf_event *event, int flags)
11206 {
11207 	local64_set(&event->hw.prev_count, event->ctx->time);
11208 	perf_swevent_start_hrtimer(event);
11209 }
11210 
task_clock_event_stop(struct perf_event * event,int flags)11211 static void task_clock_event_stop(struct perf_event *event, int flags)
11212 {
11213 	perf_swevent_cancel_hrtimer(event);
11214 	task_clock_event_update(event, event->ctx->time);
11215 }
11216 
task_clock_event_add(struct perf_event * event,int flags)11217 static int task_clock_event_add(struct perf_event *event, int flags)
11218 {
11219 	if (flags & PERF_EF_START)
11220 		task_clock_event_start(event, flags);
11221 	perf_event_update_userpage(event);
11222 
11223 	return 0;
11224 }
11225 
task_clock_event_del(struct perf_event * event,int flags)11226 static void task_clock_event_del(struct perf_event *event, int flags)
11227 {
11228 	task_clock_event_stop(event, PERF_EF_UPDATE);
11229 }
11230 
task_clock_event_read(struct perf_event * event)11231 static void task_clock_event_read(struct perf_event *event)
11232 {
11233 	u64 now = perf_clock();
11234 	u64 delta = now - event->ctx->timestamp;
11235 	u64 time = event->ctx->time + delta;
11236 
11237 	task_clock_event_update(event, time);
11238 }
11239 
task_clock_event_init(struct perf_event * event)11240 static int task_clock_event_init(struct perf_event *event)
11241 {
11242 	if (event->attr.type != perf_task_clock.type)
11243 		return -ENOENT;
11244 
11245 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11246 		return -ENOENT;
11247 
11248 	/*
11249 	 * no branch sampling for software events
11250 	 */
11251 	if (has_branch_stack(event))
11252 		return -EOPNOTSUPP;
11253 
11254 	perf_swevent_init_hrtimer(event);
11255 
11256 	return 0;
11257 }
11258 
11259 static struct pmu perf_task_clock = {
11260 	.task_ctx_nr	= perf_sw_context,
11261 
11262 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11263 	.dev		= PMU_NULL_DEV,
11264 
11265 	.event_init	= task_clock_event_init,
11266 	.add		= task_clock_event_add,
11267 	.del		= task_clock_event_del,
11268 	.start		= task_clock_event_start,
11269 	.stop		= task_clock_event_stop,
11270 	.read		= task_clock_event_read,
11271 };
11272 
perf_pmu_nop_void(struct pmu * pmu)11273 static void perf_pmu_nop_void(struct pmu *pmu)
11274 {
11275 }
11276 
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)11277 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11278 {
11279 }
11280 
perf_pmu_nop_int(struct pmu * pmu)11281 static int perf_pmu_nop_int(struct pmu *pmu)
11282 {
11283 	return 0;
11284 }
11285 
perf_event_nop_int(struct perf_event * event,u64 value)11286 static int perf_event_nop_int(struct perf_event *event, u64 value)
11287 {
11288 	return 0;
11289 }
11290 
11291 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11292 
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)11293 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11294 {
11295 	__this_cpu_write(nop_txn_flags, flags);
11296 
11297 	if (flags & ~PERF_PMU_TXN_ADD)
11298 		return;
11299 
11300 	perf_pmu_disable(pmu);
11301 }
11302 
perf_pmu_commit_txn(struct pmu * pmu)11303 static int perf_pmu_commit_txn(struct pmu *pmu)
11304 {
11305 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11306 
11307 	__this_cpu_write(nop_txn_flags, 0);
11308 
11309 	if (flags & ~PERF_PMU_TXN_ADD)
11310 		return 0;
11311 
11312 	perf_pmu_enable(pmu);
11313 	return 0;
11314 }
11315 
perf_pmu_cancel_txn(struct pmu * pmu)11316 static void perf_pmu_cancel_txn(struct pmu *pmu)
11317 {
11318 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11319 
11320 	__this_cpu_write(nop_txn_flags, 0);
11321 
11322 	if (flags & ~PERF_PMU_TXN_ADD)
11323 		return;
11324 
11325 	perf_pmu_enable(pmu);
11326 }
11327 
perf_event_idx_default(struct perf_event * event)11328 static int perf_event_idx_default(struct perf_event *event)
11329 {
11330 	return 0;
11331 }
11332 
free_pmu_context(struct pmu * pmu)11333 static void free_pmu_context(struct pmu *pmu)
11334 {
11335 	free_percpu(pmu->cpu_pmu_context);
11336 }
11337 
11338 /*
11339  * Let userspace know that this PMU supports address range filtering:
11340  */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)11341 static ssize_t nr_addr_filters_show(struct device *dev,
11342 				    struct device_attribute *attr,
11343 				    char *page)
11344 {
11345 	struct pmu *pmu = dev_get_drvdata(dev);
11346 
11347 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11348 }
11349 DEVICE_ATTR_RO(nr_addr_filters);
11350 
11351 static struct idr pmu_idr;
11352 
11353 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)11354 type_show(struct device *dev, struct device_attribute *attr, char *page)
11355 {
11356 	struct pmu *pmu = dev_get_drvdata(dev);
11357 
11358 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11359 }
11360 static DEVICE_ATTR_RO(type);
11361 
11362 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)11363 perf_event_mux_interval_ms_show(struct device *dev,
11364 				struct device_attribute *attr,
11365 				char *page)
11366 {
11367 	struct pmu *pmu = dev_get_drvdata(dev);
11368 
11369 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11370 }
11371 
11372 static DEFINE_MUTEX(mux_interval_mutex);
11373 
11374 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)11375 perf_event_mux_interval_ms_store(struct device *dev,
11376 				 struct device_attribute *attr,
11377 				 const char *buf, size_t count)
11378 {
11379 	struct pmu *pmu = dev_get_drvdata(dev);
11380 	int timer, cpu, ret;
11381 
11382 	ret = kstrtoint(buf, 0, &timer);
11383 	if (ret)
11384 		return ret;
11385 
11386 	if (timer < 1)
11387 		return -EINVAL;
11388 
11389 	/* same value, noting to do */
11390 	if (timer == pmu->hrtimer_interval_ms)
11391 		return count;
11392 
11393 	mutex_lock(&mux_interval_mutex);
11394 	pmu->hrtimer_interval_ms = timer;
11395 
11396 	/* update all cpuctx for this PMU */
11397 	cpus_read_lock();
11398 	for_each_online_cpu(cpu) {
11399 		struct perf_cpu_pmu_context *cpc;
11400 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11401 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11402 
11403 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11404 	}
11405 	cpus_read_unlock();
11406 	mutex_unlock(&mux_interval_mutex);
11407 
11408 	return count;
11409 }
11410 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11411 
11412 static struct attribute *pmu_dev_attrs[] = {
11413 	&dev_attr_type.attr,
11414 	&dev_attr_perf_event_mux_interval_ms.attr,
11415 	&dev_attr_nr_addr_filters.attr,
11416 	NULL,
11417 };
11418 
pmu_dev_is_visible(struct kobject * kobj,struct attribute * a,int n)11419 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11420 {
11421 	struct device *dev = kobj_to_dev(kobj);
11422 	struct pmu *pmu = dev_get_drvdata(dev);
11423 
11424 	if (n == 2 && !pmu->nr_addr_filters)
11425 		return 0;
11426 
11427 	return a->mode;
11428 }
11429 
11430 static struct attribute_group pmu_dev_attr_group = {
11431 	.is_visible = pmu_dev_is_visible,
11432 	.attrs = pmu_dev_attrs,
11433 };
11434 
11435 static const struct attribute_group *pmu_dev_groups[] = {
11436 	&pmu_dev_attr_group,
11437 	NULL,
11438 };
11439 
11440 static int pmu_bus_running;
11441 static struct bus_type pmu_bus = {
11442 	.name		= "event_source",
11443 	.dev_groups	= pmu_dev_groups,
11444 };
11445 
pmu_dev_release(struct device * dev)11446 static void pmu_dev_release(struct device *dev)
11447 {
11448 	kfree(dev);
11449 }
11450 
pmu_dev_alloc(struct pmu * pmu)11451 static int pmu_dev_alloc(struct pmu *pmu)
11452 {
11453 	int ret = -ENOMEM;
11454 
11455 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11456 	if (!pmu->dev)
11457 		goto out;
11458 
11459 	pmu->dev->groups = pmu->attr_groups;
11460 	device_initialize(pmu->dev);
11461 
11462 	dev_set_drvdata(pmu->dev, pmu);
11463 	pmu->dev->bus = &pmu_bus;
11464 	pmu->dev->parent = pmu->parent;
11465 	pmu->dev->release = pmu_dev_release;
11466 
11467 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11468 	if (ret)
11469 		goto free_dev;
11470 
11471 	ret = device_add(pmu->dev);
11472 	if (ret)
11473 		goto free_dev;
11474 
11475 	if (pmu->attr_update) {
11476 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11477 		if (ret)
11478 			goto del_dev;
11479 	}
11480 
11481 out:
11482 	return ret;
11483 
11484 del_dev:
11485 	device_del(pmu->dev);
11486 
11487 free_dev:
11488 	put_device(pmu->dev);
11489 	goto out;
11490 }
11491 
11492 static struct lock_class_key cpuctx_mutex;
11493 static struct lock_class_key cpuctx_lock;
11494 
perf_pmu_register(struct pmu * pmu,const char * name,int type)11495 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11496 {
11497 	int cpu, ret, max = PERF_TYPE_MAX;
11498 
11499 	mutex_lock(&pmus_lock);
11500 	ret = -ENOMEM;
11501 	pmu->pmu_disable_count = alloc_percpu(int);
11502 	if (!pmu->pmu_disable_count)
11503 		goto unlock;
11504 
11505 	pmu->type = -1;
11506 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11507 		ret = -EINVAL;
11508 		goto free_pdc;
11509 	}
11510 
11511 	pmu->name = name;
11512 
11513 	if (type >= 0)
11514 		max = type;
11515 
11516 	ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11517 	if (ret < 0)
11518 		goto free_pdc;
11519 
11520 	WARN_ON(type >= 0 && ret != type);
11521 
11522 	type = ret;
11523 	pmu->type = type;
11524 
11525 	if (pmu_bus_running && !pmu->dev) {
11526 		ret = pmu_dev_alloc(pmu);
11527 		if (ret)
11528 			goto free_idr;
11529 	}
11530 
11531 	ret = -ENOMEM;
11532 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11533 	if (!pmu->cpu_pmu_context)
11534 		goto free_dev;
11535 
11536 	for_each_possible_cpu(cpu) {
11537 		struct perf_cpu_pmu_context *cpc;
11538 
11539 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11540 		__perf_init_event_pmu_context(&cpc->epc, pmu);
11541 		__perf_mux_hrtimer_init(cpc, cpu);
11542 	}
11543 
11544 	if (!pmu->start_txn) {
11545 		if (pmu->pmu_enable) {
11546 			/*
11547 			 * If we have pmu_enable/pmu_disable calls, install
11548 			 * transaction stubs that use that to try and batch
11549 			 * hardware accesses.
11550 			 */
11551 			pmu->start_txn  = perf_pmu_start_txn;
11552 			pmu->commit_txn = perf_pmu_commit_txn;
11553 			pmu->cancel_txn = perf_pmu_cancel_txn;
11554 		} else {
11555 			pmu->start_txn  = perf_pmu_nop_txn;
11556 			pmu->commit_txn = perf_pmu_nop_int;
11557 			pmu->cancel_txn = perf_pmu_nop_void;
11558 		}
11559 	}
11560 
11561 	if (!pmu->pmu_enable) {
11562 		pmu->pmu_enable  = perf_pmu_nop_void;
11563 		pmu->pmu_disable = perf_pmu_nop_void;
11564 	}
11565 
11566 	if (!pmu->check_period)
11567 		pmu->check_period = perf_event_nop_int;
11568 
11569 	if (!pmu->event_idx)
11570 		pmu->event_idx = perf_event_idx_default;
11571 
11572 	list_add_rcu(&pmu->entry, &pmus);
11573 	atomic_set(&pmu->exclusive_cnt, 0);
11574 	ret = 0;
11575 unlock:
11576 	mutex_unlock(&pmus_lock);
11577 
11578 	return ret;
11579 
11580 free_dev:
11581 	if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11582 		device_del(pmu->dev);
11583 		put_device(pmu->dev);
11584 	}
11585 
11586 free_idr:
11587 	idr_remove(&pmu_idr, pmu->type);
11588 
11589 free_pdc:
11590 	free_percpu(pmu->pmu_disable_count);
11591 	goto unlock;
11592 }
11593 EXPORT_SYMBOL_GPL(perf_pmu_register);
11594 
perf_pmu_unregister(struct pmu * pmu)11595 void perf_pmu_unregister(struct pmu *pmu)
11596 {
11597 	mutex_lock(&pmus_lock);
11598 	list_del_rcu(&pmu->entry);
11599 
11600 	/*
11601 	 * We dereference the pmu list under both SRCU and regular RCU, so
11602 	 * synchronize against both of those.
11603 	 */
11604 	synchronize_srcu(&pmus_srcu);
11605 	synchronize_rcu();
11606 
11607 	free_percpu(pmu->pmu_disable_count);
11608 	idr_remove(&pmu_idr, pmu->type);
11609 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11610 		if (pmu->nr_addr_filters)
11611 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11612 		device_del(pmu->dev);
11613 		put_device(pmu->dev);
11614 	}
11615 	free_pmu_context(pmu);
11616 	mutex_unlock(&pmus_lock);
11617 }
11618 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11619 
has_extended_regs(struct perf_event * event)11620 static inline bool has_extended_regs(struct perf_event *event)
11621 {
11622 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11623 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11624 }
11625 
perf_try_init_event(struct pmu * pmu,struct perf_event * event)11626 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11627 {
11628 	struct perf_event_context *ctx = NULL;
11629 	int ret;
11630 
11631 	if (!try_module_get(pmu->module))
11632 		return -ENODEV;
11633 
11634 	/*
11635 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11636 	 * for example, validate if the group fits on the PMU. Therefore,
11637 	 * if this is a sibling event, acquire the ctx->mutex to protect
11638 	 * the sibling_list.
11639 	 */
11640 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11641 		/*
11642 		 * This ctx->mutex can nest when we're called through
11643 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11644 		 */
11645 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11646 						 SINGLE_DEPTH_NESTING);
11647 		BUG_ON(!ctx);
11648 	}
11649 
11650 	event->pmu = pmu;
11651 	ret = pmu->event_init(event);
11652 
11653 	if (ctx)
11654 		perf_event_ctx_unlock(event->group_leader, ctx);
11655 
11656 	if (!ret) {
11657 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11658 		    has_extended_regs(event))
11659 			ret = -EOPNOTSUPP;
11660 
11661 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11662 		    event_has_any_exclude_flag(event))
11663 			ret = -EINVAL;
11664 
11665 		if (ret && event->destroy)
11666 			event->destroy(event);
11667 	}
11668 
11669 	if (ret)
11670 		module_put(pmu->module);
11671 
11672 	return ret;
11673 }
11674 
perf_init_event(struct perf_event * event)11675 static struct pmu *perf_init_event(struct perf_event *event)
11676 {
11677 	bool extended_type = false;
11678 	int idx, type, ret;
11679 	struct pmu *pmu;
11680 
11681 	idx = srcu_read_lock(&pmus_srcu);
11682 
11683 	/*
11684 	 * Save original type before calling pmu->event_init() since certain
11685 	 * pmus overwrites event->attr.type to forward event to another pmu.
11686 	 */
11687 	event->orig_type = event->attr.type;
11688 
11689 	/* Try parent's PMU first: */
11690 	if (event->parent && event->parent->pmu) {
11691 		pmu = event->parent->pmu;
11692 		ret = perf_try_init_event(pmu, event);
11693 		if (!ret)
11694 			goto unlock;
11695 	}
11696 
11697 	/*
11698 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11699 	 * are often aliases for PERF_TYPE_RAW.
11700 	 */
11701 	type = event->attr.type;
11702 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11703 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11704 		if (!type) {
11705 			type = PERF_TYPE_RAW;
11706 		} else {
11707 			extended_type = true;
11708 			event->attr.config &= PERF_HW_EVENT_MASK;
11709 		}
11710 	}
11711 
11712 again:
11713 	rcu_read_lock();
11714 	pmu = idr_find(&pmu_idr, type);
11715 	rcu_read_unlock();
11716 	if (pmu) {
11717 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11718 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11719 			goto fail;
11720 
11721 		ret = perf_try_init_event(pmu, event);
11722 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11723 			type = event->attr.type;
11724 			goto again;
11725 		}
11726 
11727 		if (ret)
11728 			pmu = ERR_PTR(ret);
11729 
11730 		goto unlock;
11731 	}
11732 
11733 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11734 		ret = perf_try_init_event(pmu, event);
11735 		if (!ret)
11736 			goto unlock;
11737 
11738 		if (ret != -ENOENT) {
11739 			pmu = ERR_PTR(ret);
11740 			goto unlock;
11741 		}
11742 	}
11743 fail:
11744 	pmu = ERR_PTR(-ENOENT);
11745 unlock:
11746 	srcu_read_unlock(&pmus_srcu, idx);
11747 
11748 	return pmu;
11749 }
11750 
attach_sb_event(struct perf_event * event)11751 static void attach_sb_event(struct perf_event *event)
11752 {
11753 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11754 
11755 	raw_spin_lock(&pel->lock);
11756 	list_add_rcu(&event->sb_list, &pel->list);
11757 	raw_spin_unlock(&pel->lock);
11758 }
11759 
11760 /*
11761  * We keep a list of all !task (and therefore per-cpu) events
11762  * that need to receive side-band records.
11763  *
11764  * This avoids having to scan all the various PMU per-cpu contexts
11765  * looking for them.
11766  */
account_pmu_sb_event(struct perf_event * event)11767 static void account_pmu_sb_event(struct perf_event *event)
11768 {
11769 	if (is_sb_event(event))
11770 		attach_sb_event(event);
11771 }
11772 
11773 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)11774 static void account_freq_event_nohz(void)
11775 {
11776 #ifdef CONFIG_NO_HZ_FULL
11777 	/* Lock so we don't race with concurrent unaccount */
11778 	spin_lock(&nr_freq_lock);
11779 	if (atomic_inc_return(&nr_freq_events) == 1)
11780 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11781 	spin_unlock(&nr_freq_lock);
11782 #endif
11783 }
11784 
account_freq_event(void)11785 static void account_freq_event(void)
11786 {
11787 	if (tick_nohz_full_enabled())
11788 		account_freq_event_nohz();
11789 	else
11790 		atomic_inc(&nr_freq_events);
11791 }
11792 
11793 
account_event(struct perf_event * event)11794 static void account_event(struct perf_event *event)
11795 {
11796 	bool inc = false;
11797 
11798 	if (event->parent)
11799 		return;
11800 
11801 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11802 		inc = true;
11803 	if (event->attr.mmap || event->attr.mmap_data)
11804 		atomic_inc(&nr_mmap_events);
11805 	if (event->attr.build_id)
11806 		atomic_inc(&nr_build_id_events);
11807 	if (event->attr.comm)
11808 		atomic_inc(&nr_comm_events);
11809 	if (event->attr.namespaces)
11810 		atomic_inc(&nr_namespaces_events);
11811 	if (event->attr.cgroup)
11812 		atomic_inc(&nr_cgroup_events);
11813 	if (event->attr.task)
11814 		atomic_inc(&nr_task_events);
11815 	if (event->attr.freq)
11816 		account_freq_event();
11817 	if (event->attr.context_switch) {
11818 		atomic_inc(&nr_switch_events);
11819 		inc = true;
11820 	}
11821 	if (has_branch_stack(event))
11822 		inc = true;
11823 	if (is_cgroup_event(event))
11824 		inc = true;
11825 	if (event->attr.ksymbol)
11826 		atomic_inc(&nr_ksymbol_events);
11827 	if (event->attr.bpf_event)
11828 		atomic_inc(&nr_bpf_events);
11829 	if (event->attr.text_poke)
11830 		atomic_inc(&nr_text_poke_events);
11831 
11832 	if (inc) {
11833 		/*
11834 		 * We need the mutex here because static_branch_enable()
11835 		 * must complete *before* the perf_sched_count increment
11836 		 * becomes visible.
11837 		 */
11838 		if (atomic_inc_not_zero(&perf_sched_count))
11839 			goto enabled;
11840 
11841 		mutex_lock(&perf_sched_mutex);
11842 		if (!atomic_read(&perf_sched_count)) {
11843 			static_branch_enable(&perf_sched_events);
11844 			/*
11845 			 * Guarantee that all CPUs observe they key change and
11846 			 * call the perf scheduling hooks before proceeding to
11847 			 * install events that need them.
11848 			 */
11849 			synchronize_rcu();
11850 		}
11851 		/*
11852 		 * Now that we have waited for the sync_sched(), allow further
11853 		 * increments to by-pass the mutex.
11854 		 */
11855 		atomic_inc(&perf_sched_count);
11856 		mutex_unlock(&perf_sched_mutex);
11857 	}
11858 enabled:
11859 
11860 	account_pmu_sb_event(event);
11861 }
11862 
11863 /*
11864  * Allocate and initialize an event structure
11865  */
11866 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)11867 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11868 		 struct task_struct *task,
11869 		 struct perf_event *group_leader,
11870 		 struct perf_event *parent_event,
11871 		 perf_overflow_handler_t overflow_handler,
11872 		 void *context, int cgroup_fd)
11873 {
11874 	struct pmu *pmu;
11875 	struct perf_event *event;
11876 	struct hw_perf_event *hwc;
11877 	long err = -EINVAL;
11878 	int node;
11879 
11880 	if ((unsigned)cpu >= nr_cpu_ids) {
11881 		if (!task || cpu != -1)
11882 			return ERR_PTR(-EINVAL);
11883 	}
11884 	if (attr->sigtrap && !task) {
11885 		/* Requires a task: avoid signalling random tasks. */
11886 		return ERR_PTR(-EINVAL);
11887 	}
11888 
11889 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11890 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11891 				      node);
11892 	if (!event)
11893 		return ERR_PTR(-ENOMEM);
11894 
11895 	/*
11896 	 * Single events are their own group leaders, with an
11897 	 * empty sibling list:
11898 	 */
11899 	if (!group_leader)
11900 		group_leader = event;
11901 
11902 	mutex_init(&event->child_mutex);
11903 	INIT_LIST_HEAD(&event->child_list);
11904 
11905 	INIT_LIST_HEAD(&event->event_entry);
11906 	INIT_LIST_HEAD(&event->sibling_list);
11907 	INIT_LIST_HEAD(&event->active_list);
11908 	init_event_group(event);
11909 	INIT_LIST_HEAD(&event->rb_entry);
11910 	INIT_LIST_HEAD(&event->active_entry);
11911 	INIT_LIST_HEAD(&event->addr_filters.list);
11912 	INIT_HLIST_NODE(&event->hlist_entry);
11913 
11914 
11915 	init_waitqueue_head(&event->waitq);
11916 	init_irq_work(&event->pending_irq, perf_pending_irq);
11917 	init_task_work(&event->pending_task, perf_pending_task);
11918 
11919 	mutex_init(&event->mmap_mutex);
11920 	raw_spin_lock_init(&event->addr_filters.lock);
11921 
11922 	atomic_long_set(&event->refcount, 1);
11923 	event->cpu		= cpu;
11924 	event->attr		= *attr;
11925 	event->group_leader	= group_leader;
11926 	event->pmu		= NULL;
11927 	event->oncpu		= -1;
11928 
11929 	event->parent		= parent_event;
11930 
11931 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11932 	event->id		= atomic64_inc_return(&perf_event_id);
11933 
11934 	event->state		= PERF_EVENT_STATE_INACTIVE;
11935 
11936 	if (parent_event)
11937 		event->event_caps = parent_event->event_caps;
11938 
11939 	if (task) {
11940 		event->attach_state = PERF_ATTACH_TASK;
11941 		/*
11942 		 * XXX pmu::event_init needs to know what task to account to
11943 		 * and we cannot use the ctx information because we need the
11944 		 * pmu before we get a ctx.
11945 		 */
11946 		event->hw.target = get_task_struct(task);
11947 	}
11948 
11949 	event->clock = &local_clock;
11950 	if (parent_event)
11951 		event->clock = parent_event->clock;
11952 
11953 	if (!overflow_handler && parent_event) {
11954 		overflow_handler = parent_event->overflow_handler;
11955 		context = parent_event->overflow_handler_context;
11956 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11957 		if (overflow_handler == bpf_overflow_handler) {
11958 			struct bpf_prog *prog = parent_event->prog;
11959 
11960 			bpf_prog_inc(prog);
11961 			event->prog = prog;
11962 			event->orig_overflow_handler =
11963 				parent_event->orig_overflow_handler;
11964 		}
11965 #endif
11966 	}
11967 
11968 	if (overflow_handler) {
11969 		event->overflow_handler	= overflow_handler;
11970 		event->overflow_handler_context = context;
11971 	} else if (is_write_backward(event)){
11972 		event->overflow_handler = perf_event_output_backward;
11973 		event->overflow_handler_context = NULL;
11974 	} else {
11975 		event->overflow_handler = perf_event_output_forward;
11976 		event->overflow_handler_context = NULL;
11977 	}
11978 
11979 	perf_event__state_init(event);
11980 
11981 	pmu = NULL;
11982 
11983 	hwc = &event->hw;
11984 	hwc->sample_period = attr->sample_period;
11985 	if (attr->freq && attr->sample_freq)
11986 		hwc->sample_period = 1;
11987 	hwc->last_period = hwc->sample_period;
11988 
11989 	local64_set(&hwc->period_left, hwc->sample_period);
11990 
11991 	/*
11992 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11993 	 * See perf_output_read().
11994 	 */
11995 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11996 		goto err_ns;
11997 
11998 	if (!has_branch_stack(event))
11999 		event->attr.branch_sample_type = 0;
12000 
12001 	pmu = perf_init_event(event);
12002 	if (IS_ERR(pmu)) {
12003 		err = PTR_ERR(pmu);
12004 		goto err_ns;
12005 	}
12006 
12007 	/*
12008 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12009 	 * events (they don't make sense as the cgroup will be different
12010 	 * on other CPUs in the uncore mask).
12011 	 */
12012 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12013 		err = -EINVAL;
12014 		goto err_pmu;
12015 	}
12016 
12017 	if (event->attr.aux_output &&
12018 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12019 		err = -EOPNOTSUPP;
12020 		goto err_pmu;
12021 	}
12022 
12023 	if (cgroup_fd != -1) {
12024 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12025 		if (err)
12026 			goto err_pmu;
12027 	}
12028 
12029 	err = exclusive_event_init(event);
12030 	if (err)
12031 		goto err_pmu;
12032 
12033 	if (has_addr_filter(event)) {
12034 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12035 						    sizeof(struct perf_addr_filter_range),
12036 						    GFP_KERNEL);
12037 		if (!event->addr_filter_ranges) {
12038 			err = -ENOMEM;
12039 			goto err_per_task;
12040 		}
12041 
12042 		/*
12043 		 * Clone the parent's vma offsets: they are valid until exec()
12044 		 * even if the mm is not shared with the parent.
12045 		 */
12046 		if (event->parent) {
12047 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12048 
12049 			raw_spin_lock_irq(&ifh->lock);
12050 			memcpy(event->addr_filter_ranges,
12051 			       event->parent->addr_filter_ranges,
12052 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12053 			raw_spin_unlock_irq(&ifh->lock);
12054 		}
12055 
12056 		/* force hw sync on the address filters */
12057 		event->addr_filters_gen = 1;
12058 	}
12059 
12060 	if (!event->parent) {
12061 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12062 			err = get_callchain_buffers(attr->sample_max_stack);
12063 			if (err)
12064 				goto err_addr_filters;
12065 		}
12066 	}
12067 
12068 	err = security_perf_event_alloc(event);
12069 	if (err)
12070 		goto err_callchain_buffer;
12071 
12072 	/* symmetric to unaccount_event() in _free_event() */
12073 	account_event(event);
12074 
12075 	return event;
12076 
12077 err_callchain_buffer:
12078 	if (!event->parent) {
12079 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12080 			put_callchain_buffers();
12081 	}
12082 err_addr_filters:
12083 	kfree(event->addr_filter_ranges);
12084 
12085 err_per_task:
12086 	exclusive_event_destroy(event);
12087 
12088 err_pmu:
12089 	if (is_cgroup_event(event))
12090 		perf_detach_cgroup(event);
12091 	if (event->destroy)
12092 		event->destroy(event);
12093 	module_put(pmu->module);
12094 err_ns:
12095 	if (event->hw.target)
12096 		put_task_struct(event->hw.target);
12097 	call_rcu(&event->rcu_head, free_event_rcu);
12098 
12099 	return ERR_PTR(err);
12100 }
12101 
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)12102 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12103 			  struct perf_event_attr *attr)
12104 {
12105 	u32 size;
12106 	int ret;
12107 
12108 	/* Zero the full structure, so that a short copy will be nice. */
12109 	memset(attr, 0, sizeof(*attr));
12110 
12111 	ret = get_user(size, &uattr->size);
12112 	if (ret)
12113 		return ret;
12114 
12115 	/* ABI compatibility quirk: */
12116 	if (!size)
12117 		size = PERF_ATTR_SIZE_VER0;
12118 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12119 		goto err_size;
12120 
12121 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12122 	if (ret) {
12123 		if (ret == -E2BIG)
12124 			goto err_size;
12125 		return ret;
12126 	}
12127 
12128 	attr->size = size;
12129 
12130 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12131 		return -EINVAL;
12132 
12133 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12134 		return -EINVAL;
12135 
12136 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12137 		return -EINVAL;
12138 
12139 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12140 		u64 mask = attr->branch_sample_type;
12141 
12142 		/* only using defined bits */
12143 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12144 			return -EINVAL;
12145 
12146 		/* at least one branch bit must be set */
12147 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12148 			return -EINVAL;
12149 
12150 		/* propagate priv level, when not set for branch */
12151 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12152 
12153 			/* exclude_kernel checked on syscall entry */
12154 			if (!attr->exclude_kernel)
12155 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
12156 
12157 			if (!attr->exclude_user)
12158 				mask |= PERF_SAMPLE_BRANCH_USER;
12159 
12160 			if (!attr->exclude_hv)
12161 				mask |= PERF_SAMPLE_BRANCH_HV;
12162 			/*
12163 			 * adjust user setting (for HW filter setup)
12164 			 */
12165 			attr->branch_sample_type = mask;
12166 		}
12167 		/* privileged levels capture (kernel, hv): check permissions */
12168 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12169 			ret = perf_allow_kernel(attr);
12170 			if (ret)
12171 				return ret;
12172 		}
12173 	}
12174 
12175 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12176 		ret = perf_reg_validate(attr->sample_regs_user);
12177 		if (ret)
12178 			return ret;
12179 	}
12180 
12181 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12182 		if (!arch_perf_have_user_stack_dump())
12183 			return -ENOSYS;
12184 
12185 		/*
12186 		 * We have __u32 type for the size, but so far
12187 		 * we can only use __u16 as maximum due to the
12188 		 * __u16 sample size limit.
12189 		 */
12190 		if (attr->sample_stack_user >= USHRT_MAX)
12191 			return -EINVAL;
12192 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12193 			return -EINVAL;
12194 	}
12195 
12196 	if (!attr->sample_max_stack)
12197 		attr->sample_max_stack = sysctl_perf_event_max_stack;
12198 
12199 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12200 		ret = perf_reg_validate(attr->sample_regs_intr);
12201 
12202 #ifndef CONFIG_CGROUP_PERF
12203 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12204 		return -EINVAL;
12205 #endif
12206 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12207 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12208 		return -EINVAL;
12209 
12210 	if (!attr->inherit && attr->inherit_thread)
12211 		return -EINVAL;
12212 
12213 	if (attr->remove_on_exec && attr->enable_on_exec)
12214 		return -EINVAL;
12215 
12216 	if (attr->sigtrap && !attr->remove_on_exec)
12217 		return -EINVAL;
12218 
12219 out:
12220 	return ret;
12221 
12222 err_size:
12223 	put_user(sizeof(*attr), &uattr->size);
12224 	ret = -E2BIG;
12225 	goto out;
12226 }
12227 
mutex_lock_double(struct mutex * a,struct mutex * b)12228 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12229 {
12230 	if (b < a)
12231 		swap(a, b);
12232 
12233 	mutex_lock(a);
12234 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12235 }
12236 
12237 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)12238 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12239 {
12240 	struct perf_buffer *rb = NULL;
12241 	int ret = -EINVAL;
12242 
12243 	if (!output_event) {
12244 		mutex_lock(&event->mmap_mutex);
12245 		goto set;
12246 	}
12247 
12248 	/* don't allow circular references */
12249 	if (event == output_event)
12250 		goto out;
12251 
12252 	/*
12253 	 * Don't allow cross-cpu buffers
12254 	 */
12255 	if (output_event->cpu != event->cpu)
12256 		goto out;
12257 
12258 	/*
12259 	 * If its not a per-cpu rb, it must be the same task.
12260 	 */
12261 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12262 		goto out;
12263 
12264 	/*
12265 	 * Mixing clocks in the same buffer is trouble you don't need.
12266 	 */
12267 	if (output_event->clock != event->clock)
12268 		goto out;
12269 
12270 	/*
12271 	 * Either writing ring buffer from beginning or from end.
12272 	 * Mixing is not allowed.
12273 	 */
12274 	if (is_write_backward(output_event) != is_write_backward(event))
12275 		goto out;
12276 
12277 	/*
12278 	 * If both events generate aux data, they must be on the same PMU
12279 	 */
12280 	if (has_aux(event) && has_aux(output_event) &&
12281 	    event->pmu != output_event->pmu)
12282 		goto out;
12283 
12284 	/*
12285 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12286 	 * output_event is already on rb->event_list, and the list iteration
12287 	 * restarts after every removal, it is guaranteed this new event is
12288 	 * observed *OR* if output_event is already removed, it's guaranteed we
12289 	 * observe !rb->mmap_count.
12290 	 */
12291 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12292 set:
12293 	/* Can't redirect output if we've got an active mmap() */
12294 	if (atomic_read(&event->mmap_count))
12295 		goto unlock;
12296 
12297 	if (output_event) {
12298 		/* get the rb we want to redirect to */
12299 		rb = ring_buffer_get(output_event);
12300 		if (!rb)
12301 			goto unlock;
12302 
12303 		/* did we race against perf_mmap_close() */
12304 		if (!atomic_read(&rb->mmap_count)) {
12305 			ring_buffer_put(rb);
12306 			goto unlock;
12307 		}
12308 	}
12309 
12310 	ring_buffer_attach(event, rb);
12311 
12312 	ret = 0;
12313 unlock:
12314 	mutex_unlock(&event->mmap_mutex);
12315 	if (output_event)
12316 		mutex_unlock(&output_event->mmap_mutex);
12317 
12318 out:
12319 	return ret;
12320 }
12321 
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)12322 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12323 {
12324 	bool nmi_safe = false;
12325 
12326 	switch (clk_id) {
12327 	case CLOCK_MONOTONIC:
12328 		event->clock = &ktime_get_mono_fast_ns;
12329 		nmi_safe = true;
12330 		break;
12331 
12332 	case CLOCK_MONOTONIC_RAW:
12333 		event->clock = &ktime_get_raw_fast_ns;
12334 		nmi_safe = true;
12335 		break;
12336 
12337 	case CLOCK_REALTIME:
12338 		event->clock = &ktime_get_real_ns;
12339 		break;
12340 
12341 	case CLOCK_BOOTTIME:
12342 		event->clock = &ktime_get_boottime_ns;
12343 		break;
12344 
12345 	case CLOCK_TAI:
12346 		event->clock = &ktime_get_clocktai_ns;
12347 		break;
12348 
12349 	default:
12350 		return -EINVAL;
12351 	}
12352 
12353 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12354 		return -EINVAL;
12355 
12356 	return 0;
12357 }
12358 
12359 static bool
perf_check_permission(struct perf_event_attr * attr,struct task_struct * task)12360 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12361 {
12362 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12363 	bool is_capable = perfmon_capable();
12364 
12365 	if (attr->sigtrap) {
12366 		/*
12367 		 * perf_event_attr::sigtrap sends signals to the other task.
12368 		 * Require the current task to also have CAP_KILL.
12369 		 */
12370 		rcu_read_lock();
12371 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12372 		rcu_read_unlock();
12373 
12374 		/*
12375 		 * If the required capabilities aren't available, checks for
12376 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12377 		 * can effectively change the target task.
12378 		 */
12379 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12380 	}
12381 
12382 	/*
12383 	 * Preserve ptrace permission check for backwards compatibility. The
12384 	 * ptrace check also includes checks that the current task and other
12385 	 * task have matching uids, and is therefore not done here explicitly.
12386 	 */
12387 	return is_capable || ptrace_may_access(task, ptrace_mode);
12388 }
12389 
12390 /**
12391  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12392  *
12393  * @attr_uptr:	event_id type attributes for monitoring/sampling
12394  * @pid:		target pid
12395  * @cpu:		target cpu
12396  * @group_fd:		group leader event fd
12397  * @flags:		perf event open flags
12398  */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)12399 SYSCALL_DEFINE5(perf_event_open,
12400 		struct perf_event_attr __user *, attr_uptr,
12401 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12402 {
12403 	struct perf_event *group_leader = NULL, *output_event = NULL;
12404 	struct perf_event_pmu_context *pmu_ctx;
12405 	struct perf_event *event, *sibling;
12406 	struct perf_event_attr attr;
12407 	struct perf_event_context *ctx;
12408 	struct file *event_file = NULL;
12409 	struct fd group = {NULL, 0};
12410 	struct task_struct *task = NULL;
12411 	struct pmu *pmu;
12412 	int event_fd;
12413 	int move_group = 0;
12414 	int err;
12415 	int f_flags = O_RDWR;
12416 	int cgroup_fd = -1;
12417 
12418 	/* for future expandability... */
12419 	if (flags & ~PERF_FLAG_ALL)
12420 		return -EINVAL;
12421 
12422 	err = perf_copy_attr(attr_uptr, &attr);
12423 	if (err)
12424 		return err;
12425 
12426 	/* Do we allow access to perf_event_open(2) ? */
12427 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12428 	if (err)
12429 		return err;
12430 
12431 	if (!attr.exclude_kernel) {
12432 		err = perf_allow_kernel(&attr);
12433 		if (err)
12434 			return err;
12435 	}
12436 
12437 	if (attr.namespaces) {
12438 		if (!perfmon_capable())
12439 			return -EACCES;
12440 	}
12441 
12442 	if (attr.freq) {
12443 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12444 			return -EINVAL;
12445 	} else {
12446 		if (attr.sample_period & (1ULL << 63))
12447 			return -EINVAL;
12448 	}
12449 
12450 	/* Only privileged users can get physical addresses */
12451 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12452 		err = perf_allow_kernel(&attr);
12453 		if (err)
12454 			return err;
12455 	}
12456 
12457 	/* REGS_INTR can leak data, lockdown must prevent this */
12458 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12459 		err = security_locked_down(LOCKDOWN_PERF);
12460 		if (err)
12461 			return err;
12462 	}
12463 
12464 	/*
12465 	 * In cgroup mode, the pid argument is used to pass the fd
12466 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12467 	 * designates the cpu on which to monitor threads from that
12468 	 * cgroup.
12469 	 */
12470 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12471 		return -EINVAL;
12472 
12473 	if (flags & PERF_FLAG_FD_CLOEXEC)
12474 		f_flags |= O_CLOEXEC;
12475 
12476 	event_fd = get_unused_fd_flags(f_flags);
12477 	if (event_fd < 0)
12478 		return event_fd;
12479 
12480 	if (group_fd != -1) {
12481 		err = perf_fget_light(group_fd, &group);
12482 		if (err)
12483 			goto err_fd;
12484 		group_leader = group.file->private_data;
12485 		if (flags & PERF_FLAG_FD_OUTPUT)
12486 			output_event = group_leader;
12487 		if (flags & PERF_FLAG_FD_NO_GROUP)
12488 			group_leader = NULL;
12489 	}
12490 
12491 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12492 		task = find_lively_task_by_vpid(pid);
12493 		if (IS_ERR(task)) {
12494 			err = PTR_ERR(task);
12495 			goto err_group_fd;
12496 		}
12497 	}
12498 
12499 	if (task && group_leader &&
12500 	    group_leader->attr.inherit != attr.inherit) {
12501 		err = -EINVAL;
12502 		goto err_task;
12503 	}
12504 
12505 	if (flags & PERF_FLAG_PID_CGROUP)
12506 		cgroup_fd = pid;
12507 
12508 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12509 				 NULL, NULL, cgroup_fd);
12510 	if (IS_ERR(event)) {
12511 		err = PTR_ERR(event);
12512 		goto err_task;
12513 	}
12514 
12515 	if (is_sampling_event(event)) {
12516 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12517 			err = -EOPNOTSUPP;
12518 			goto err_alloc;
12519 		}
12520 	}
12521 
12522 	/*
12523 	 * Special case software events and allow them to be part of
12524 	 * any hardware group.
12525 	 */
12526 	pmu = event->pmu;
12527 
12528 	if (attr.use_clockid) {
12529 		err = perf_event_set_clock(event, attr.clockid);
12530 		if (err)
12531 			goto err_alloc;
12532 	}
12533 
12534 	if (pmu->task_ctx_nr == perf_sw_context)
12535 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12536 
12537 	if (task) {
12538 		err = down_read_interruptible(&task->signal->exec_update_lock);
12539 		if (err)
12540 			goto err_alloc;
12541 
12542 		/*
12543 		 * We must hold exec_update_lock across this and any potential
12544 		 * perf_install_in_context() call for this new event to
12545 		 * serialize against exec() altering our credentials (and the
12546 		 * perf_event_exit_task() that could imply).
12547 		 */
12548 		err = -EACCES;
12549 		if (!perf_check_permission(&attr, task))
12550 			goto err_cred;
12551 	}
12552 
12553 	/*
12554 	 * Get the target context (task or percpu):
12555 	 */
12556 	ctx = find_get_context(task, event);
12557 	if (IS_ERR(ctx)) {
12558 		err = PTR_ERR(ctx);
12559 		goto err_cred;
12560 	}
12561 
12562 	mutex_lock(&ctx->mutex);
12563 
12564 	if (ctx->task == TASK_TOMBSTONE) {
12565 		err = -ESRCH;
12566 		goto err_locked;
12567 	}
12568 
12569 	if (!task) {
12570 		/*
12571 		 * Check if the @cpu we're creating an event for is online.
12572 		 *
12573 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12574 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12575 		 */
12576 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12577 
12578 		if (!cpuctx->online) {
12579 			err = -ENODEV;
12580 			goto err_locked;
12581 		}
12582 	}
12583 
12584 	if (group_leader) {
12585 		err = -EINVAL;
12586 
12587 		/*
12588 		 * Do not allow a recursive hierarchy (this new sibling
12589 		 * becoming part of another group-sibling):
12590 		 */
12591 		if (group_leader->group_leader != group_leader)
12592 			goto err_locked;
12593 
12594 		/* All events in a group should have the same clock */
12595 		if (group_leader->clock != event->clock)
12596 			goto err_locked;
12597 
12598 		/*
12599 		 * Make sure we're both events for the same CPU;
12600 		 * grouping events for different CPUs is broken; since
12601 		 * you can never concurrently schedule them anyhow.
12602 		 */
12603 		if (group_leader->cpu != event->cpu)
12604 			goto err_locked;
12605 
12606 		/*
12607 		 * Make sure we're both on the same context; either task or cpu.
12608 		 */
12609 		if (group_leader->ctx != ctx)
12610 			goto err_locked;
12611 
12612 		/*
12613 		 * Only a group leader can be exclusive or pinned
12614 		 */
12615 		if (attr.exclusive || attr.pinned)
12616 			goto err_locked;
12617 
12618 		if (is_software_event(event) &&
12619 		    !in_software_context(group_leader)) {
12620 			/*
12621 			 * If the event is a sw event, but the group_leader
12622 			 * is on hw context.
12623 			 *
12624 			 * Allow the addition of software events to hw
12625 			 * groups, this is safe because software events
12626 			 * never fail to schedule.
12627 			 *
12628 			 * Note the comment that goes with struct
12629 			 * perf_event_pmu_context.
12630 			 */
12631 			pmu = group_leader->pmu_ctx->pmu;
12632 		} else if (!is_software_event(event)) {
12633 			if (is_software_event(group_leader) &&
12634 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12635 				/*
12636 				 * In case the group is a pure software group, and we
12637 				 * try to add a hardware event, move the whole group to
12638 				 * the hardware context.
12639 				 */
12640 				move_group = 1;
12641 			}
12642 
12643 			/* Don't allow group of multiple hw events from different pmus */
12644 			if (!in_software_context(group_leader) &&
12645 			    group_leader->pmu_ctx->pmu != pmu)
12646 				goto err_locked;
12647 		}
12648 	}
12649 
12650 	/*
12651 	 * Now that we're certain of the pmu; find the pmu_ctx.
12652 	 */
12653 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12654 	if (IS_ERR(pmu_ctx)) {
12655 		err = PTR_ERR(pmu_ctx);
12656 		goto err_locked;
12657 	}
12658 	event->pmu_ctx = pmu_ctx;
12659 
12660 	if (output_event) {
12661 		err = perf_event_set_output(event, output_event);
12662 		if (err)
12663 			goto err_context;
12664 	}
12665 
12666 	if (!perf_event_validate_size(event)) {
12667 		err = -E2BIG;
12668 		goto err_context;
12669 	}
12670 
12671 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12672 		err = -EINVAL;
12673 		goto err_context;
12674 	}
12675 
12676 	/*
12677 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12678 	 * because we need to serialize with concurrent event creation.
12679 	 */
12680 	if (!exclusive_event_installable(event, ctx)) {
12681 		err = -EBUSY;
12682 		goto err_context;
12683 	}
12684 
12685 	WARN_ON_ONCE(ctx->parent_ctx);
12686 
12687 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12688 	if (IS_ERR(event_file)) {
12689 		err = PTR_ERR(event_file);
12690 		event_file = NULL;
12691 		goto err_context;
12692 	}
12693 
12694 	/*
12695 	 * This is the point on no return; we cannot fail hereafter. This is
12696 	 * where we start modifying current state.
12697 	 */
12698 
12699 	if (move_group) {
12700 		perf_remove_from_context(group_leader, 0);
12701 		put_pmu_ctx(group_leader->pmu_ctx);
12702 
12703 		for_each_sibling_event(sibling, group_leader) {
12704 			perf_remove_from_context(sibling, 0);
12705 			put_pmu_ctx(sibling->pmu_ctx);
12706 		}
12707 
12708 		/*
12709 		 * Install the group siblings before the group leader.
12710 		 *
12711 		 * Because a group leader will try and install the entire group
12712 		 * (through the sibling list, which is still in-tact), we can
12713 		 * end up with siblings installed in the wrong context.
12714 		 *
12715 		 * By installing siblings first we NO-OP because they're not
12716 		 * reachable through the group lists.
12717 		 */
12718 		for_each_sibling_event(sibling, group_leader) {
12719 			sibling->pmu_ctx = pmu_ctx;
12720 			get_pmu_ctx(pmu_ctx);
12721 			perf_event__state_init(sibling);
12722 			perf_install_in_context(ctx, sibling, sibling->cpu);
12723 		}
12724 
12725 		/*
12726 		 * Removing from the context ends up with disabled
12727 		 * event. What we want here is event in the initial
12728 		 * startup state, ready to be add into new context.
12729 		 */
12730 		group_leader->pmu_ctx = pmu_ctx;
12731 		get_pmu_ctx(pmu_ctx);
12732 		perf_event__state_init(group_leader);
12733 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12734 	}
12735 
12736 	/*
12737 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12738 	 * that we're serialized against further additions and before
12739 	 * perf_install_in_context() which is the point the event is active and
12740 	 * can use these values.
12741 	 */
12742 	perf_event__header_size(event);
12743 	perf_event__id_header_size(event);
12744 
12745 	event->owner = current;
12746 
12747 	perf_install_in_context(ctx, event, event->cpu);
12748 	perf_unpin_context(ctx);
12749 
12750 	mutex_unlock(&ctx->mutex);
12751 
12752 	if (task) {
12753 		up_read(&task->signal->exec_update_lock);
12754 		put_task_struct(task);
12755 	}
12756 
12757 	mutex_lock(&current->perf_event_mutex);
12758 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12759 	mutex_unlock(&current->perf_event_mutex);
12760 
12761 	/*
12762 	 * Drop the reference on the group_event after placing the
12763 	 * new event on the sibling_list. This ensures destruction
12764 	 * of the group leader will find the pointer to itself in
12765 	 * perf_group_detach().
12766 	 */
12767 	fdput(group);
12768 	fd_install(event_fd, event_file);
12769 	return event_fd;
12770 
12771 err_context:
12772 	put_pmu_ctx(event->pmu_ctx);
12773 	event->pmu_ctx = NULL; /* _free_event() */
12774 err_locked:
12775 	mutex_unlock(&ctx->mutex);
12776 	perf_unpin_context(ctx);
12777 	put_ctx(ctx);
12778 err_cred:
12779 	if (task)
12780 		up_read(&task->signal->exec_update_lock);
12781 err_alloc:
12782 	free_event(event);
12783 err_task:
12784 	if (task)
12785 		put_task_struct(task);
12786 err_group_fd:
12787 	fdput(group);
12788 err_fd:
12789 	put_unused_fd(event_fd);
12790 	return err;
12791 }
12792 
12793 /**
12794  * perf_event_create_kernel_counter
12795  *
12796  * @attr: attributes of the counter to create
12797  * @cpu: cpu in which the counter is bound
12798  * @task: task to profile (NULL for percpu)
12799  * @overflow_handler: callback to trigger when we hit the event
12800  * @context: context data could be used in overflow_handler callback
12801  */
12802 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)12803 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12804 				 struct task_struct *task,
12805 				 perf_overflow_handler_t overflow_handler,
12806 				 void *context)
12807 {
12808 	struct perf_event_pmu_context *pmu_ctx;
12809 	struct perf_event_context *ctx;
12810 	struct perf_event *event;
12811 	struct pmu *pmu;
12812 	int err;
12813 
12814 	/*
12815 	 * Grouping is not supported for kernel events, neither is 'AUX',
12816 	 * make sure the caller's intentions are adjusted.
12817 	 */
12818 	if (attr->aux_output)
12819 		return ERR_PTR(-EINVAL);
12820 
12821 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12822 				 overflow_handler, context, -1);
12823 	if (IS_ERR(event)) {
12824 		err = PTR_ERR(event);
12825 		goto err;
12826 	}
12827 
12828 	/* Mark owner so we could distinguish it from user events. */
12829 	event->owner = TASK_TOMBSTONE;
12830 	pmu = event->pmu;
12831 
12832 	if (pmu->task_ctx_nr == perf_sw_context)
12833 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12834 
12835 	/*
12836 	 * Get the target context (task or percpu):
12837 	 */
12838 	ctx = find_get_context(task, event);
12839 	if (IS_ERR(ctx)) {
12840 		err = PTR_ERR(ctx);
12841 		goto err_alloc;
12842 	}
12843 
12844 	WARN_ON_ONCE(ctx->parent_ctx);
12845 	mutex_lock(&ctx->mutex);
12846 	if (ctx->task == TASK_TOMBSTONE) {
12847 		err = -ESRCH;
12848 		goto err_unlock;
12849 	}
12850 
12851 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12852 	if (IS_ERR(pmu_ctx)) {
12853 		err = PTR_ERR(pmu_ctx);
12854 		goto err_unlock;
12855 	}
12856 	event->pmu_ctx = pmu_ctx;
12857 
12858 	if (!task) {
12859 		/*
12860 		 * Check if the @cpu we're creating an event for is online.
12861 		 *
12862 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12863 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12864 		 */
12865 		struct perf_cpu_context *cpuctx =
12866 			container_of(ctx, struct perf_cpu_context, ctx);
12867 		if (!cpuctx->online) {
12868 			err = -ENODEV;
12869 			goto err_pmu_ctx;
12870 		}
12871 	}
12872 
12873 	if (!exclusive_event_installable(event, ctx)) {
12874 		err = -EBUSY;
12875 		goto err_pmu_ctx;
12876 	}
12877 
12878 	perf_install_in_context(ctx, event, event->cpu);
12879 	perf_unpin_context(ctx);
12880 	mutex_unlock(&ctx->mutex);
12881 
12882 	return event;
12883 
12884 err_pmu_ctx:
12885 	put_pmu_ctx(pmu_ctx);
12886 	event->pmu_ctx = NULL; /* _free_event() */
12887 err_unlock:
12888 	mutex_unlock(&ctx->mutex);
12889 	perf_unpin_context(ctx);
12890 	put_ctx(ctx);
12891 err_alloc:
12892 	free_event(event);
12893 err:
12894 	return ERR_PTR(err);
12895 }
12896 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12897 
__perf_pmu_remove(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct perf_event_groups * groups,struct list_head * events)12898 static void __perf_pmu_remove(struct perf_event_context *ctx,
12899 			      int cpu, struct pmu *pmu,
12900 			      struct perf_event_groups *groups,
12901 			      struct list_head *events)
12902 {
12903 	struct perf_event *event, *sibling;
12904 
12905 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12906 		perf_remove_from_context(event, 0);
12907 		put_pmu_ctx(event->pmu_ctx);
12908 		list_add(&event->migrate_entry, events);
12909 
12910 		for_each_sibling_event(sibling, event) {
12911 			perf_remove_from_context(sibling, 0);
12912 			put_pmu_ctx(sibling->pmu_ctx);
12913 			list_add(&sibling->migrate_entry, events);
12914 		}
12915 	}
12916 }
12917 
__perf_pmu_install_event(struct pmu * pmu,struct perf_event_context * ctx,int cpu,struct perf_event * event)12918 static void __perf_pmu_install_event(struct pmu *pmu,
12919 				     struct perf_event_context *ctx,
12920 				     int cpu, struct perf_event *event)
12921 {
12922 	struct perf_event_pmu_context *epc;
12923 	struct perf_event_context *old_ctx = event->ctx;
12924 
12925 	get_ctx(ctx); /* normally find_get_context() */
12926 
12927 	event->cpu = cpu;
12928 	epc = find_get_pmu_context(pmu, ctx, event);
12929 	event->pmu_ctx = epc;
12930 
12931 	if (event->state >= PERF_EVENT_STATE_OFF)
12932 		event->state = PERF_EVENT_STATE_INACTIVE;
12933 	perf_install_in_context(ctx, event, cpu);
12934 
12935 	/*
12936 	 * Now that event->ctx is updated and visible, put the old ctx.
12937 	 */
12938 	put_ctx(old_ctx);
12939 }
12940 
__perf_pmu_install(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct list_head * events)12941 static void __perf_pmu_install(struct perf_event_context *ctx,
12942 			       int cpu, struct pmu *pmu, struct list_head *events)
12943 {
12944 	struct perf_event *event, *tmp;
12945 
12946 	/*
12947 	 * Re-instate events in 2 passes.
12948 	 *
12949 	 * Skip over group leaders and only install siblings on this first
12950 	 * pass, siblings will not get enabled without a leader, however a
12951 	 * leader will enable its siblings, even if those are still on the old
12952 	 * context.
12953 	 */
12954 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12955 		if (event->group_leader == event)
12956 			continue;
12957 
12958 		list_del(&event->migrate_entry);
12959 		__perf_pmu_install_event(pmu, ctx, cpu, event);
12960 	}
12961 
12962 	/*
12963 	 * Once all the siblings are setup properly, install the group leaders
12964 	 * to make it go.
12965 	 */
12966 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12967 		list_del(&event->migrate_entry);
12968 		__perf_pmu_install_event(pmu, ctx, cpu, event);
12969 	}
12970 }
12971 
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)12972 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12973 {
12974 	struct perf_event_context *src_ctx, *dst_ctx;
12975 	LIST_HEAD(events);
12976 
12977 	/*
12978 	 * Since per-cpu context is persistent, no need to grab an extra
12979 	 * reference.
12980 	 */
12981 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
12982 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
12983 
12984 	/*
12985 	 * See perf_event_ctx_lock() for comments on the details
12986 	 * of swizzling perf_event::ctx.
12987 	 */
12988 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12989 
12990 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
12991 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
12992 
12993 	if (!list_empty(&events)) {
12994 		/*
12995 		 * Wait for the events to quiesce before re-instating them.
12996 		 */
12997 		synchronize_rcu();
12998 
12999 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13000 	}
13001 
13002 	mutex_unlock(&dst_ctx->mutex);
13003 	mutex_unlock(&src_ctx->mutex);
13004 }
13005 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13006 
sync_child_event(struct perf_event * child_event)13007 static void sync_child_event(struct perf_event *child_event)
13008 {
13009 	struct perf_event *parent_event = child_event->parent;
13010 	u64 child_val;
13011 
13012 	if (child_event->attr.inherit_stat) {
13013 		struct task_struct *task = child_event->ctx->task;
13014 
13015 		if (task && task != TASK_TOMBSTONE)
13016 			perf_event_read_event(child_event, task);
13017 	}
13018 
13019 	child_val = perf_event_count(child_event);
13020 
13021 	/*
13022 	 * Add back the child's count to the parent's count:
13023 	 */
13024 	atomic64_add(child_val, &parent_event->child_count);
13025 	atomic64_add(child_event->total_time_enabled,
13026 		     &parent_event->child_total_time_enabled);
13027 	atomic64_add(child_event->total_time_running,
13028 		     &parent_event->child_total_time_running);
13029 }
13030 
13031 static void
perf_event_exit_event(struct perf_event * event,struct perf_event_context * ctx)13032 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13033 {
13034 	struct perf_event *parent_event = event->parent;
13035 	unsigned long detach_flags = 0;
13036 
13037 	if (parent_event) {
13038 		/*
13039 		 * Do not destroy the 'original' grouping; because of the
13040 		 * context switch optimization the original events could've
13041 		 * ended up in a random child task.
13042 		 *
13043 		 * If we were to destroy the original group, all group related
13044 		 * operations would cease to function properly after this
13045 		 * random child dies.
13046 		 *
13047 		 * Do destroy all inherited groups, we don't care about those
13048 		 * and being thorough is better.
13049 		 */
13050 		detach_flags = DETACH_GROUP | DETACH_CHILD;
13051 		mutex_lock(&parent_event->child_mutex);
13052 	}
13053 
13054 	perf_remove_from_context(event, detach_flags);
13055 
13056 	raw_spin_lock_irq(&ctx->lock);
13057 	if (event->state > PERF_EVENT_STATE_EXIT)
13058 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13059 	raw_spin_unlock_irq(&ctx->lock);
13060 
13061 	/*
13062 	 * Child events can be freed.
13063 	 */
13064 	if (parent_event) {
13065 		mutex_unlock(&parent_event->child_mutex);
13066 		/*
13067 		 * Kick perf_poll() for is_event_hup();
13068 		 */
13069 		perf_event_wakeup(parent_event);
13070 		free_event(event);
13071 		put_event(parent_event);
13072 		return;
13073 	}
13074 
13075 	/*
13076 	 * Parent events are governed by their filedesc, retain them.
13077 	 */
13078 	perf_event_wakeup(event);
13079 }
13080 
perf_event_exit_task_context(struct task_struct * child)13081 static void perf_event_exit_task_context(struct task_struct *child)
13082 {
13083 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
13084 	struct perf_event *child_event, *next;
13085 
13086 	WARN_ON_ONCE(child != current);
13087 
13088 	child_ctx = perf_pin_task_context(child);
13089 	if (!child_ctx)
13090 		return;
13091 
13092 	/*
13093 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
13094 	 * ctx::mutex over the entire thing. This serializes against almost
13095 	 * everything that wants to access the ctx.
13096 	 *
13097 	 * The exception is sys_perf_event_open() /
13098 	 * perf_event_create_kernel_count() which does find_get_context()
13099 	 * without ctx::mutex (it cannot because of the move_group double mutex
13100 	 * lock thing). See the comments in perf_install_in_context().
13101 	 */
13102 	mutex_lock(&child_ctx->mutex);
13103 
13104 	/*
13105 	 * In a single ctx::lock section, de-schedule the events and detach the
13106 	 * context from the task such that we cannot ever get it scheduled back
13107 	 * in.
13108 	 */
13109 	raw_spin_lock_irq(&child_ctx->lock);
13110 	task_ctx_sched_out(child_ctx, EVENT_ALL);
13111 
13112 	/*
13113 	 * Now that the context is inactive, destroy the task <-> ctx relation
13114 	 * and mark the context dead.
13115 	 */
13116 	RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13117 	put_ctx(child_ctx); /* cannot be last */
13118 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13119 	put_task_struct(current); /* cannot be last */
13120 
13121 	clone_ctx = unclone_ctx(child_ctx);
13122 	raw_spin_unlock_irq(&child_ctx->lock);
13123 
13124 	if (clone_ctx)
13125 		put_ctx(clone_ctx);
13126 
13127 	/*
13128 	 * Report the task dead after unscheduling the events so that we
13129 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
13130 	 * get a few PERF_RECORD_READ events.
13131 	 */
13132 	perf_event_task(child, child_ctx, 0);
13133 
13134 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13135 		perf_event_exit_event(child_event, child_ctx);
13136 
13137 	mutex_unlock(&child_ctx->mutex);
13138 
13139 	put_ctx(child_ctx);
13140 }
13141 
13142 /*
13143  * When a child task exits, feed back event values to parent events.
13144  *
13145  * Can be called with exec_update_lock held when called from
13146  * setup_new_exec().
13147  */
perf_event_exit_task(struct task_struct * child)13148 void perf_event_exit_task(struct task_struct *child)
13149 {
13150 	struct perf_event *event, *tmp;
13151 
13152 	mutex_lock(&child->perf_event_mutex);
13153 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13154 				 owner_entry) {
13155 		list_del_init(&event->owner_entry);
13156 
13157 		/*
13158 		 * Ensure the list deletion is visible before we clear
13159 		 * the owner, closes a race against perf_release() where
13160 		 * we need to serialize on the owner->perf_event_mutex.
13161 		 */
13162 		smp_store_release(&event->owner, NULL);
13163 	}
13164 	mutex_unlock(&child->perf_event_mutex);
13165 
13166 	perf_event_exit_task_context(child);
13167 
13168 	/*
13169 	 * The perf_event_exit_task_context calls perf_event_task
13170 	 * with child's task_ctx, which generates EXIT events for
13171 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13172 	 * At this point we need to send EXIT events to cpu contexts.
13173 	 */
13174 	perf_event_task(child, NULL, 0);
13175 }
13176 
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)13177 static void perf_free_event(struct perf_event *event,
13178 			    struct perf_event_context *ctx)
13179 {
13180 	struct perf_event *parent = event->parent;
13181 
13182 	if (WARN_ON_ONCE(!parent))
13183 		return;
13184 
13185 	mutex_lock(&parent->child_mutex);
13186 	list_del_init(&event->child_list);
13187 	mutex_unlock(&parent->child_mutex);
13188 
13189 	put_event(parent);
13190 
13191 	raw_spin_lock_irq(&ctx->lock);
13192 	perf_group_detach(event);
13193 	list_del_event(event, ctx);
13194 	raw_spin_unlock_irq(&ctx->lock);
13195 	free_event(event);
13196 }
13197 
13198 /*
13199  * Free a context as created by inheritance by perf_event_init_task() below,
13200  * used by fork() in case of fail.
13201  *
13202  * Even though the task has never lived, the context and events have been
13203  * exposed through the child_list, so we must take care tearing it all down.
13204  */
perf_event_free_task(struct task_struct * task)13205 void perf_event_free_task(struct task_struct *task)
13206 {
13207 	struct perf_event_context *ctx;
13208 	struct perf_event *event, *tmp;
13209 
13210 	ctx = rcu_access_pointer(task->perf_event_ctxp);
13211 	if (!ctx)
13212 		return;
13213 
13214 	mutex_lock(&ctx->mutex);
13215 	raw_spin_lock_irq(&ctx->lock);
13216 	/*
13217 	 * Destroy the task <-> ctx relation and mark the context dead.
13218 	 *
13219 	 * This is important because even though the task hasn't been
13220 	 * exposed yet the context has been (through child_list).
13221 	 */
13222 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13223 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13224 	put_task_struct(task); /* cannot be last */
13225 	raw_spin_unlock_irq(&ctx->lock);
13226 
13227 
13228 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13229 		perf_free_event(event, ctx);
13230 
13231 	mutex_unlock(&ctx->mutex);
13232 
13233 	/*
13234 	 * perf_event_release_kernel() could've stolen some of our
13235 	 * child events and still have them on its free_list. In that
13236 	 * case we must wait for these events to have been freed (in
13237 	 * particular all their references to this task must've been
13238 	 * dropped).
13239 	 *
13240 	 * Without this copy_process() will unconditionally free this
13241 	 * task (irrespective of its reference count) and
13242 	 * _free_event()'s put_task_struct(event->hw.target) will be a
13243 	 * use-after-free.
13244 	 *
13245 	 * Wait for all events to drop their context reference.
13246 	 */
13247 	wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13248 	put_ctx(ctx); /* must be last */
13249 }
13250 
perf_event_delayed_put(struct task_struct * task)13251 void perf_event_delayed_put(struct task_struct *task)
13252 {
13253 	WARN_ON_ONCE(task->perf_event_ctxp);
13254 }
13255 
perf_event_get(unsigned int fd)13256 struct file *perf_event_get(unsigned int fd)
13257 {
13258 	struct file *file = fget(fd);
13259 	if (!file)
13260 		return ERR_PTR(-EBADF);
13261 
13262 	if (file->f_op != &perf_fops) {
13263 		fput(file);
13264 		return ERR_PTR(-EBADF);
13265 	}
13266 
13267 	return file;
13268 }
13269 
perf_get_event(struct file * file)13270 const struct perf_event *perf_get_event(struct file *file)
13271 {
13272 	if (file->f_op != &perf_fops)
13273 		return ERR_PTR(-EINVAL);
13274 
13275 	return file->private_data;
13276 }
13277 
perf_event_attrs(struct perf_event * event)13278 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13279 {
13280 	if (!event)
13281 		return ERR_PTR(-EINVAL);
13282 
13283 	return &event->attr;
13284 }
13285 
13286 /*
13287  * Inherit an event from parent task to child task.
13288  *
13289  * Returns:
13290  *  - valid pointer on success
13291  *  - NULL for orphaned events
13292  *  - IS_ERR() on error
13293  */
13294 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)13295 inherit_event(struct perf_event *parent_event,
13296 	      struct task_struct *parent,
13297 	      struct perf_event_context *parent_ctx,
13298 	      struct task_struct *child,
13299 	      struct perf_event *group_leader,
13300 	      struct perf_event_context *child_ctx)
13301 {
13302 	enum perf_event_state parent_state = parent_event->state;
13303 	struct perf_event_pmu_context *pmu_ctx;
13304 	struct perf_event *child_event;
13305 	unsigned long flags;
13306 
13307 	/*
13308 	 * Instead of creating recursive hierarchies of events,
13309 	 * we link inherited events back to the original parent,
13310 	 * which has a filp for sure, which we use as the reference
13311 	 * count:
13312 	 */
13313 	if (parent_event->parent)
13314 		parent_event = parent_event->parent;
13315 
13316 	child_event = perf_event_alloc(&parent_event->attr,
13317 					   parent_event->cpu,
13318 					   child,
13319 					   group_leader, parent_event,
13320 					   NULL, NULL, -1);
13321 	if (IS_ERR(child_event))
13322 		return child_event;
13323 
13324 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13325 	if (IS_ERR(pmu_ctx)) {
13326 		free_event(child_event);
13327 		return ERR_CAST(pmu_ctx);
13328 	}
13329 	child_event->pmu_ctx = pmu_ctx;
13330 
13331 	/*
13332 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13333 	 * must be under the same lock in order to serialize against
13334 	 * perf_event_release_kernel(), such that either we must observe
13335 	 * is_orphaned_event() or they will observe us on the child_list.
13336 	 */
13337 	mutex_lock(&parent_event->child_mutex);
13338 	if (is_orphaned_event(parent_event) ||
13339 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13340 		mutex_unlock(&parent_event->child_mutex);
13341 		/* task_ctx_data is freed with child_ctx */
13342 		free_event(child_event);
13343 		return NULL;
13344 	}
13345 
13346 	get_ctx(child_ctx);
13347 
13348 	/*
13349 	 * Make the child state follow the state of the parent event,
13350 	 * not its attr.disabled bit.  We hold the parent's mutex,
13351 	 * so we won't race with perf_event_{en, dis}able_family.
13352 	 */
13353 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13354 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13355 	else
13356 		child_event->state = PERF_EVENT_STATE_OFF;
13357 
13358 	if (parent_event->attr.freq) {
13359 		u64 sample_period = parent_event->hw.sample_period;
13360 		struct hw_perf_event *hwc = &child_event->hw;
13361 
13362 		hwc->sample_period = sample_period;
13363 		hwc->last_period   = sample_period;
13364 
13365 		local64_set(&hwc->period_left, sample_period);
13366 	}
13367 
13368 	child_event->ctx = child_ctx;
13369 	child_event->overflow_handler = parent_event->overflow_handler;
13370 	child_event->overflow_handler_context
13371 		= parent_event->overflow_handler_context;
13372 
13373 	/*
13374 	 * Precalculate sample_data sizes
13375 	 */
13376 	perf_event__header_size(child_event);
13377 	perf_event__id_header_size(child_event);
13378 
13379 	/*
13380 	 * Link it up in the child's context:
13381 	 */
13382 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13383 	add_event_to_ctx(child_event, child_ctx);
13384 	child_event->attach_state |= PERF_ATTACH_CHILD;
13385 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13386 
13387 	/*
13388 	 * Link this into the parent event's child list
13389 	 */
13390 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13391 	mutex_unlock(&parent_event->child_mutex);
13392 
13393 	return child_event;
13394 }
13395 
13396 /*
13397  * Inherits an event group.
13398  *
13399  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13400  * This matches with perf_event_release_kernel() removing all child events.
13401  *
13402  * Returns:
13403  *  - 0 on success
13404  *  - <0 on error
13405  */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)13406 static int inherit_group(struct perf_event *parent_event,
13407 	      struct task_struct *parent,
13408 	      struct perf_event_context *parent_ctx,
13409 	      struct task_struct *child,
13410 	      struct perf_event_context *child_ctx)
13411 {
13412 	struct perf_event *leader;
13413 	struct perf_event *sub;
13414 	struct perf_event *child_ctr;
13415 
13416 	leader = inherit_event(parent_event, parent, parent_ctx,
13417 				 child, NULL, child_ctx);
13418 	if (IS_ERR(leader))
13419 		return PTR_ERR(leader);
13420 	/*
13421 	 * @leader can be NULL here because of is_orphaned_event(). In this
13422 	 * case inherit_event() will create individual events, similar to what
13423 	 * perf_group_detach() would do anyway.
13424 	 */
13425 	for_each_sibling_event(sub, parent_event) {
13426 		child_ctr = inherit_event(sub, parent, parent_ctx,
13427 					    child, leader, child_ctx);
13428 		if (IS_ERR(child_ctr))
13429 			return PTR_ERR(child_ctr);
13430 
13431 		if (sub->aux_event == parent_event && child_ctr &&
13432 		    !perf_get_aux_event(child_ctr, leader))
13433 			return -EINVAL;
13434 	}
13435 	if (leader)
13436 		leader->group_generation = parent_event->group_generation;
13437 	return 0;
13438 }
13439 
13440 /*
13441  * Creates the child task context and tries to inherit the event-group.
13442  *
13443  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13444  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13445  * consistent with perf_event_release_kernel() removing all child events.
13446  *
13447  * Returns:
13448  *  - 0 on success
13449  *  - <0 on error
13450  */
13451 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,u64 clone_flags,int * inherited_all)13452 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13453 		   struct perf_event_context *parent_ctx,
13454 		   struct task_struct *child,
13455 		   u64 clone_flags, int *inherited_all)
13456 {
13457 	struct perf_event_context *child_ctx;
13458 	int ret;
13459 
13460 	if (!event->attr.inherit ||
13461 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13462 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13463 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13464 		*inherited_all = 0;
13465 		return 0;
13466 	}
13467 
13468 	child_ctx = child->perf_event_ctxp;
13469 	if (!child_ctx) {
13470 		/*
13471 		 * This is executed from the parent task context, so
13472 		 * inherit events that have been marked for cloning.
13473 		 * First allocate and initialize a context for the
13474 		 * child.
13475 		 */
13476 		child_ctx = alloc_perf_context(child);
13477 		if (!child_ctx)
13478 			return -ENOMEM;
13479 
13480 		child->perf_event_ctxp = child_ctx;
13481 	}
13482 
13483 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13484 	if (ret)
13485 		*inherited_all = 0;
13486 
13487 	return ret;
13488 }
13489 
13490 /*
13491  * Initialize the perf_event context in task_struct
13492  */
perf_event_init_context(struct task_struct * child,u64 clone_flags)13493 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13494 {
13495 	struct perf_event_context *child_ctx, *parent_ctx;
13496 	struct perf_event_context *cloned_ctx;
13497 	struct perf_event *event;
13498 	struct task_struct *parent = current;
13499 	int inherited_all = 1;
13500 	unsigned long flags;
13501 	int ret = 0;
13502 
13503 	if (likely(!parent->perf_event_ctxp))
13504 		return 0;
13505 
13506 	/*
13507 	 * If the parent's context is a clone, pin it so it won't get
13508 	 * swapped under us.
13509 	 */
13510 	parent_ctx = perf_pin_task_context(parent);
13511 	if (!parent_ctx)
13512 		return 0;
13513 
13514 	/*
13515 	 * No need to check if parent_ctx != NULL here; since we saw
13516 	 * it non-NULL earlier, the only reason for it to become NULL
13517 	 * is if we exit, and since we're currently in the middle of
13518 	 * a fork we can't be exiting at the same time.
13519 	 */
13520 
13521 	/*
13522 	 * Lock the parent list. No need to lock the child - not PID
13523 	 * hashed yet and not running, so nobody can access it.
13524 	 */
13525 	mutex_lock(&parent_ctx->mutex);
13526 
13527 	/*
13528 	 * We dont have to disable NMIs - we are only looking at
13529 	 * the list, not manipulating it:
13530 	 */
13531 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13532 		ret = inherit_task_group(event, parent, parent_ctx,
13533 					 child, clone_flags, &inherited_all);
13534 		if (ret)
13535 			goto out_unlock;
13536 	}
13537 
13538 	/*
13539 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13540 	 * to allocations, but we need to prevent rotation because
13541 	 * rotate_ctx() will change the list from interrupt context.
13542 	 */
13543 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13544 	parent_ctx->rotate_disable = 1;
13545 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13546 
13547 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13548 		ret = inherit_task_group(event, parent, parent_ctx,
13549 					 child, clone_flags, &inherited_all);
13550 		if (ret)
13551 			goto out_unlock;
13552 	}
13553 
13554 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13555 	parent_ctx->rotate_disable = 0;
13556 
13557 	child_ctx = child->perf_event_ctxp;
13558 
13559 	if (child_ctx && inherited_all) {
13560 		/*
13561 		 * Mark the child context as a clone of the parent
13562 		 * context, or of whatever the parent is a clone of.
13563 		 *
13564 		 * Note that if the parent is a clone, the holding of
13565 		 * parent_ctx->lock avoids it from being uncloned.
13566 		 */
13567 		cloned_ctx = parent_ctx->parent_ctx;
13568 		if (cloned_ctx) {
13569 			child_ctx->parent_ctx = cloned_ctx;
13570 			child_ctx->parent_gen = parent_ctx->parent_gen;
13571 		} else {
13572 			child_ctx->parent_ctx = parent_ctx;
13573 			child_ctx->parent_gen = parent_ctx->generation;
13574 		}
13575 		get_ctx(child_ctx->parent_ctx);
13576 	}
13577 
13578 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13579 out_unlock:
13580 	mutex_unlock(&parent_ctx->mutex);
13581 
13582 	perf_unpin_context(parent_ctx);
13583 	put_ctx(parent_ctx);
13584 
13585 	return ret;
13586 }
13587 
13588 /*
13589  * Initialize the perf_event context in task_struct
13590  */
perf_event_init_task(struct task_struct * child,u64 clone_flags)13591 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13592 {
13593 	int ret;
13594 
13595 	child->perf_event_ctxp = NULL;
13596 	mutex_init(&child->perf_event_mutex);
13597 	INIT_LIST_HEAD(&child->perf_event_list);
13598 
13599 	ret = perf_event_init_context(child, clone_flags);
13600 	if (ret) {
13601 		perf_event_free_task(child);
13602 		return ret;
13603 	}
13604 
13605 	return 0;
13606 }
13607 
perf_event_init_all_cpus(void)13608 static void __init perf_event_init_all_cpus(void)
13609 {
13610 	struct swevent_htable *swhash;
13611 	struct perf_cpu_context *cpuctx;
13612 	int cpu;
13613 
13614 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13615 
13616 	for_each_possible_cpu(cpu) {
13617 		swhash = &per_cpu(swevent_htable, cpu);
13618 		mutex_init(&swhash->hlist_mutex);
13619 
13620 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13621 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13622 
13623 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13624 
13625 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13626 		__perf_event_init_context(&cpuctx->ctx);
13627 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13628 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13629 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13630 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13631 		cpuctx->heap = cpuctx->heap_default;
13632 	}
13633 }
13634 
perf_swevent_init_cpu(unsigned int cpu)13635 static void perf_swevent_init_cpu(unsigned int cpu)
13636 {
13637 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13638 
13639 	mutex_lock(&swhash->hlist_mutex);
13640 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13641 		struct swevent_hlist *hlist;
13642 
13643 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13644 		WARN_ON(!hlist);
13645 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13646 	}
13647 	mutex_unlock(&swhash->hlist_mutex);
13648 }
13649 
13650 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)13651 static void __perf_event_exit_context(void *__info)
13652 {
13653 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13654 	struct perf_event_context *ctx = __info;
13655 	struct perf_event *event;
13656 
13657 	raw_spin_lock(&ctx->lock);
13658 	ctx_sched_out(ctx, EVENT_TIME);
13659 	list_for_each_entry(event, &ctx->event_list, event_entry)
13660 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13661 	raw_spin_unlock(&ctx->lock);
13662 }
13663 
perf_event_exit_cpu_context(int cpu)13664 static void perf_event_exit_cpu_context(int cpu)
13665 {
13666 	struct perf_cpu_context *cpuctx;
13667 	struct perf_event_context *ctx;
13668 
13669 	// XXX simplify cpuctx->online
13670 	mutex_lock(&pmus_lock);
13671 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13672 	ctx = &cpuctx->ctx;
13673 
13674 	mutex_lock(&ctx->mutex);
13675 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13676 	cpuctx->online = 0;
13677 	mutex_unlock(&ctx->mutex);
13678 	cpumask_clear_cpu(cpu, perf_online_mask);
13679 	mutex_unlock(&pmus_lock);
13680 }
13681 #else
13682 
perf_event_exit_cpu_context(int cpu)13683 static void perf_event_exit_cpu_context(int cpu) { }
13684 
13685 #endif
13686 
perf_event_init_cpu(unsigned int cpu)13687 int perf_event_init_cpu(unsigned int cpu)
13688 {
13689 	struct perf_cpu_context *cpuctx;
13690 	struct perf_event_context *ctx;
13691 
13692 	perf_swevent_init_cpu(cpu);
13693 
13694 	mutex_lock(&pmus_lock);
13695 	cpumask_set_cpu(cpu, perf_online_mask);
13696 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13697 	ctx = &cpuctx->ctx;
13698 
13699 	mutex_lock(&ctx->mutex);
13700 	cpuctx->online = 1;
13701 	mutex_unlock(&ctx->mutex);
13702 	mutex_unlock(&pmus_lock);
13703 
13704 	return 0;
13705 }
13706 
perf_event_exit_cpu(unsigned int cpu)13707 int perf_event_exit_cpu(unsigned int cpu)
13708 {
13709 	perf_event_exit_cpu_context(cpu);
13710 	return 0;
13711 }
13712 
13713 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)13714 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13715 {
13716 	int cpu;
13717 
13718 	for_each_online_cpu(cpu)
13719 		perf_event_exit_cpu(cpu);
13720 
13721 	return NOTIFY_OK;
13722 }
13723 
13724 /*
13725  * Run the perf reboot notifier at the very last possible moment so that
13726  * the generic watchdog code runs as long as possible.
13727  */
13728 static struct notifier_block perf_reboot_notifier = {
13729 	.notifier_call = perf_reboot,
13730 	.priority = INT_MIN,
13731 };
13732 
perf_event_init(void)13733 void __init perf_event_init(void)
13734 {
13735 	int ret;
13736 
13737 	idr_init(&pmu_idr);
13738 
13739 	perf_event_init_all_cpus();
13740 	init_srcu_struct(&pmus_srcu);
13741 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13742 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13743 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
13744 	perf_tp_register();
13745 	perf_event_init_cpu(smp_processor_id());
13746 	register_reboot_notifier(&perf_reboot_notifier);
13747 
13748 	ret = init_hw_breakpoint();
13749 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13750 
13751 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13752 
13753 	/*
13754 	 * Build time assertion that we keep the data_head at the intended
13755 	 * location.  IOW, validation we got the __reserved[] size right.
13756 	 */
13757 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13758 		     != 1024);
13759 }
13760 
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)13761 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13762 			      char *page)
13763 {
13764 	struct perf_pmu_events_attr *pmu_attr =
13765 		container_of(attr, struct perf_pmu_events_attr, attr);
13766 
13767 	if (pmu_attr->event_str)
13768 		return sprintf(page, "%s\n", pmu_attr->event_str);
13769 
13770 	return 0;
13771 }
13772 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13773 
perf_event_sysfs_init(void)13774 static int __init perf_event_sysfs_init(void)
13775 {
13776 	struct pmu *pmu;
13777 	int ret;
13778 
13779 	mutex_lock(&pmus_lock);
13780 
13781 	ret = bus_register(&pmu_bus);
13782 	if (ret)
13783 		goto unlock;
13784 
13785 	list_for_each_entry(pmu, &pmus, entry) {
13786 		if (pmu->dev)
13787 			continue;
13788 
13789 		ret = pmu_dev_alloc(pmu);
13790 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13791 	}
13792 	pmu_bus_running = 1;
13793 	ret = 0;
13794 
13795 unlock:
13796 	mutex_unlock(&pmus_lock);
13797 
13798 	return ret;
13799 }
13800 device_initcall(perf_event_sysfs_init);
13801 
13802 #ifdef CONFIG_CGROUP_PERF
13803 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)13804 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13805 {
13806 	struct perf_cgroup *jc;
13807 
13808 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13809 	if (!jc)
13810 		return ERR_PTR(-ENOMEM);
13811 
13812 	jc->info = alloc_percpu(struct perf_cgroup_info);
13813 	if (!jc->info) {
13814 		kfree(jc);
13815 		return ERR_PTR(-ENOMEM);
13816 	}
13817 
13818 	return &jc->css;
13819 }
13820 
perf_cgroup_css_free(struct cgroup_subsys_state * css)13821 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13822 {
13823 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13824 
13825 	free_percpu(jc->info);
13826 	kfree(jc);
13827 }
13828 
perf_cgroup_css_online(struct cgroup_subsys_state * css)13829 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13830 {
13831 	perf_event_cgroup(css->cgroup);
13832 	return 0;
13833 }
13834 
__perf_cgroup_move(void * info)13835 static int __perf_cgroup_move(void *info)
13836 {
13837 	struct task_struct *task = info;
13838 
13839 	preempt_disable();
13840 	perf_cgroup_switch(task);
13841 	preempt_enable();
13842 
13843 	return 0;
13844 }
13845 
perf_cgroup_attach(struct cgroup_taskset * tset)13846 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13847 {
13848 	struct task_struct *task;
13849 	struct cgroup_subsys_state *css;
13850 
13851 	cgroup_taskset_for_each(task, css, tset)
13852 		task_function_call(task, __perf_cgroup_move, task);
13853 }
13854 
13855 struct cgroup_subsys perf_event_cgrp_subsys = {
13856 	.css_alloc	= perf_cgroup_css_alloc,
13857 	.css_free	= perf_cgroup_css_free,
13858 	.css_online	= perf_cgroup_css_online,
13859 	.attach		= perf_cgroup_attach,
13860 	/*
13861 	 * Implicitly enable on dfl hierarchy so that perf events can
13862 	 * always be filtered by cgroup2 path as long as perf_event
13863 	 * controller is not mounted on a legacy hierarchy.
13864 	 */
13865 	.implicit_on_dfl = true,
13866 	.threaded	= true,
13867 };
13868 #endif /* CONFIG_CGROUP_PERF */
13869 
13870 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13871