• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  */
5 #ifndef __ASM_PGTABLE_H
6 #define __ASM_PGTABLE_H
7 
8 #include <asm/bug.h>
9 #include <asm/proc-fns.h>
10 
11 #include <asm/memory.h>
12 #include <asm/mte.h>
13 #include <asm/pgtable-hwdef.h>
14 #include <asm/pgtable-prot.h>
15 #include <asm/tlbflush.h>
16 
17 /*
18  * VMALLOC range.
19  *
20  * VMALLOC_START: beginning of the kernel vmalloc space
21  * VMALLOC_END: extends to the available space below vmemmap, PCI I/O space
22  *	and fixed mappings
23  */
24 #define VMALLOC_START		(MODULES_END)
25 #define VMALLOC_END		(VMEMMAP_START - SZ_256M)
26 
27 #define vmemmap			((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
28 
29 #ifndef __ASSEMBLY__
30 
31 #include <asm/cmpxchg.h>
32 #include <asm/fixmap.h>
33 #include <linux/mmdebug.h>
34 #include <linux/mm_types.h>
35 #include <linux/sched.h>
36 #include <linux/page_table_check.h>
37 
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
39 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
40 
41 /* Set stride and tlb_level in flush_*_tlb_range */
42 #define flush_pmd_tlb_range(vma, addr, end)	\
43 	__flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
44 #define flush_pud_tlb_range(vma, addr, end)	\
45 	__flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
46 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
47 
48 /*
49  * Outside of a few very special situations (e.g. hibernation), we always
50  * use broadcast TLB invalidation instructions, therefore a spurious page
51  * fault on one CPU which has been handled concurrently by another CPU
52  * does not need to perform additional invalidation.
53  */
54 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
55 
56 /*
57  * ZERO_PAGE is a global shared page that is always zero: used
58  * for zero-mapped memory areas etc..
59  */
60 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
61 #define ZERO_PAGE(vaddr)	phys_to_page(__pa_symbol(empty_zero_page))
62 
63 #define pte_ERROR(e)	\
64 	pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
65 
66 /*
67  * Macros to convert between a physical address and its placement in a
68  * page table entry, taking care of 52-bit addresses.
69  */
70 #ifdef CONFIG_ARM64_PA_BITS_52
__pte_to_phys(pte_t pte)71 static inline phys_addr_t __pte_to_phys(pte_t pte)
72 {
73 	return (pte_val(pte) & PTE_ADDR_LOW) |
74 		((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
75 }
__phys_to_pte_val(phys_addr_t phys)76 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
77 {
78 	return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PTE_ADDR_MASK;
79 }
80 #else
81 #define __pte_to_phys(pte)	(pte_val(pte) & PTE_ADDR_MASK)
82 #define __phys_to_pte_val(phys)	(phys)
83 #endif
84 
85 #define pte_pfn(pte)		(__pte_to_phys(pte) >> PAGE_SHIFT)
86 #define pfn_pte(pfn,prot)	\
87 	__pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
88 
89 #define pte_none(pte)		(!pte_val(pte))
90 #define __pte_clear(mm, addr, ptep) \
91 				__set_pte(ptep, __pte(0))
92 #define pte_page(pte)		(pfn_to_page(pte_pfn(pte)))
93 
94 /*
95  * The following only work if pte_present(). Undefined behaviour otherwise.
96  */
97 #define pte_present(pte)	(!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)))
98 #define pte_young(pte)		(!!(pte_val(pte) & PTE_AF))
99 #define pte_special(pte)	(!!(pte_val(pte) & PTE_SPECIAL))
100 #define pte_write(pte)		(!!(pte_val(pte) & PTE_WRITE))
101 #define pte_rdonly(pte)		(!!(pte_val(pte) & PTE_RDONLY))
102 #define pte_user(pte)		(!!(pte_val(pte) & PTE_USER))
103 #define pte_user_exec(pte)	(!(pte_val(pte) & PTE_UXN))
104 #define pte_cont(pte)		(!!(pte_val(pte) & PTE_CONT))
105 #define pte_devmap(pte)		(!!(pte_val(pte) & PTE_DEVMAP))
106 #define pte_tagged(pte)		((pte_val(pte) & PTE_ATTRINDX_MASK) == \
107 				 PTE_ATTRINDX(MT_NORMAL_TAGGED))
108 
109 #define pte_cont_addr_end(addr, end)						\
110 ({	unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK;	\
111 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
112 })
113 
114 #define pmd_cont_addr_end(addr, end)						\
115 ({	unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK;	\
116 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
117 })
118 
119 #define pte_hw_dirty(pte)	(pte_write(pte) && !pte_rdonly(pte))
120 #define pte_sw_dirty(pte)	(!!(pte_val(pte) & PTE_DIRTY))
121 #define pte_dirty(pte)		(pte_sw_dirty(pte) || pte_hw_dirty(pte))
122 
123 #define pte_valid(pte)		(!!(pte_val(pte) & PTE_VALID))
124 /*
125  * Execute-only user mappings do not have the PTE_USER bit set. All valid
126  * kernel mappings have the PTE_UXN bit set.
127  */
128 #define pte_valid_not_user(pte) \
129 	((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
130 /*
131  * Returns true if the pte is valid and has the contiguous bit set.
132  */
133 #define pte_valid_cont(pte)	(pte_valid(pte) && pte_cont(pte))
134 /*
135  * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
136  * so that we don't erroneously return false for pages that have been
137  * remapped as PROT_NONE but are yet to be flushed from the TLB.
138  * Note that we can't make any assumptions based on the state of the access
139  * flag, since __ptep_clear_flush_young() elides a DSB when invalidating the
140  * TLB.
141  */
142 #define pte_accessible(mm, pte)	\
143 	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
144 
145 /*
146  * p??_access_permitted() is true for valid user mappings (PTE_USER
147  * bit set, subject to the write permission check). For execute-only
148  * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
149  * not set) must return false. PROT_NONE mappings do not have the
150  * PTE_VALID bit set.
151  */
152 #define pte_access_permitted(pte, write) \
153 	(((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
154 #define pmd_access_permitted(pmd, write) \
155 	(pte_access_permitted(pmd_pte(pmd), (write)))
156 #define pud_access_permitted(pud, write) \
157 	(pte_access_permitted(pud_pte(pud), (write)))
158 
clear_pte_bit(pte_t pte,pgprot_t prot)159 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
160 {
161 	pte_val(pte) &= ~pgprot_val(prot);
162 	return pte;
163 }
164 
set_pte_bit(pte_t pte,pgprot_t prot)165 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
166 {
167 	pte_val(pte) |= pgprot_val(prot);
168 	return pte;
169 }
170 
clear_pmd_bit(pmd_t pmd,pgprot_t prot)171 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
172 {
173 	pmd_val(pmd) &= ~pgprot_val(prot);
174 	return pmd;
175 }
176 
set_pmd_bit(pmd_t pmd,pgprot_t prot)177 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
178 {
179 	pmd_val(pmd) |= pgprot_val(prot);
180 	return pmd;
181 }
182 
pte_mkwrite_novma(pte_t pte)183 static inline pte_t pte_mkwrite_novma(pte_t pte)
184 {
185 	pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
186 	pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
187 	return pte;
188 }
189 
pte_mkclean(pte_t pte)190 static inline pte_t pte_mkclean(pte_t pte)
191 {
192 	pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
193 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
194 
195 	return pte;
196 }
197 
pte_mkdirty(pte_t pte)198 static inline pte_t pte_mkdirty(pte_t pte)
199 {
200 	pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
201 
202 	if (pte_write(pte))
203 		pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
204 
205 	return pte;
206 }
207 
pte_wrprotect(pte_t pte)208 static inline pte_t pte_wrprotect(pte_t pte)
209 {
210 	/*
211 	 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
212 	 * clear), set the PTE_DIRTY bit.
213 	 */
214 	if (pte_hw_dirty(pte))
215 		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
216 
217 	pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
218 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
219 	return pte;
220 }
221 
pte_mkold(pte_t pte)222 static inline pte_t pte_mkold(pte_t pte)
223 {
224 	return clear_pte_bit(pte, __pgprot(PTE_AF));
225 }
226 
pte_mkyoung(pte_t pte)227 static inline pte_t pte_mkyoung(pte_t pte)
228 {
229 	return set_pte_bit(pte, __pgprot(PTE_AF));
230 }
231 
pte_mkspecial(pte_t pte)232 static inline pte_t pte_mkspecial(pte_t pte)
233 {
234 	return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
235 }
236 
pte_mkcont(pte_t pte)237 static inline pte_t pte_mkcont(pte_t pte)
238 {
239 	pte = set_pte_bit(pte, __pgprot(PTE_CONT));
240 	return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
241 }
242 
pte_mknoncont(pte_t pte)243 static inline pte_t pte_mknoncont(pte_t pte)
244 {
245 	return clear_pte_bit(pte, __pgprot(PTE_CONT));
246 }
247 
pte_mkpresent(pte_t pte)248 static inline pte_t pte_mkpresent(pte_t pte)
249 {
250 	return set_pte_bit(pte, __pgprot(PTE_VALID));
251 }
252 
pmd_mkcont(pmd_t pmd)253 static inline pmd_t pmd_mkcont(pmd_t pmd)
254 {
255 	return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
256 }
257 
pte_mkdevmap(pte_t pte)258 static inline pte_t pte_mkdevmap(pte_t pte)
259 {
260 	return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
261 }
262 
__set_pte(pte_t * ptep,pte_t pte)263 static inline void __set_pte(pte_t *ptep, pte_t pte)
264 {
265 	WRITE_ONCE(*ptep, pte);
266 
267 	/*
268 	 * Only if the new pte is valid and kernel, otherwise TLB maintenance
269 	 * or update_mmu_cache() have the necessary barriers.
270 	 */
271 	if (pte_valid_not_user(pte)) {
272 		dsb(ishst);
273 		isb();
274 	}
275 }
276 
__ptep_get(pte_t * ptep)277 static inline pte_t __ptep_get(pte_t *ptep)
278 {
279 	return READ_ONCE(*ptep);
280 }
281 
282 extern void __sync_icache_dcache(pte_t pteval);
283 bool pgattr_change_is_safe(u64 old, u64 new);
284 
285 /*
286  * PTE bits configuration in the presence of hardware Dirty Bit Management
287  * (PTE_WRITE == PTE_DBM):
288  *
289  * Dirty  Writable | PTE_RDONLY  PTE_WRITE  PTE_DIRTY (sw)
290  *   0      0      |   1           0          0
291  *   0      1      |   1           1          0
292  *   1      0      |   1           0          1
293  *   1      1      |   0           1          x
294  *
295  * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
296  * the page fault mechanism. Checking the dirty status of a pte becomes:
297  *
298  *   PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
299  */
300 
__check_safe_pte_update(struct mm_struct * mm,pte_t * ptep,pte_t pte)301 static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep,
302 					   pte_t pte)
303 {
304 	pte_t old_pte;
305 
306 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
307 		return;
308 
309 	old_pte = __ptep_get(ptep);
310 
311 	if (!pte_valid(old_pte) || !pte_valid(pte))
312 		return;
313 	if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
314 		return;
315 
316 	/*
317 	 * Check for potential race with hardware updates of the pte
318 	 * (__ptep_set_access_flags safely changes valid ptes without going
319 	 * through an invalid entry).
320 	 */
321 	VM_WARN_ONCE(!pte_young(pte),
322 		     "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
323 		     __func__, pte_val(old_pte), pte_val(pte));
324 	VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
325 		     "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
326 		     __func__, pte_val(old_pte), pte_val(pte));
327 	VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)),
328 		     "%s: unsafe attribute change: 0x%016llx -> 0x%016llx",
329 		     __func__, pte_val(old_pte), pte_val(pte));
330 }
331 
__sync_cache_and_tags(pte_t pte,unsigned int nr_pages)332 static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages)
333 {
334 	if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
335 		__sync_icache_dcache(pte);
336 
337 	/*
338 	 * If the PTE would provide user space access to the tags associated
339 	 * with it then ensure that the MTE tags are synchronised.  Although
340 	 * pte_access_permitted() returns false for exec only mappings, they
341 	 * don't expose tags (instruction fetches don't check tags).
342 	 */
343 	if (system_supports_mte() && pte_access_permitted(pte, false) &&
344 	    !pte_special(pte) && pte_tagged(pte))
345 		mte_sync_tags(pte, nr_pages);
346 }
347 
348 /*
349  * Select all bits except the pfn
350  */
pte_pgprot(pte_t pte)351 static inline pgprot_t pte_pgprot(pte_t pte)
352 {
353 	unsigned long pfn = pte_pfn(pte);
354 
355 	return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
356 }
357 
358 #define pte_advance_pfn pte_advance_pfn
pte_advance_pfn(pte_t pte,unsigned long nr)359 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
360 {
361 	return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte));
362 }
363 
__set_ptes(struct mm_struct * mm,unsigned long __always_unused addr,pte_t * ptep,pte_t pte,unsigned int nr)364 static inline void __set_ptes(struct mm_struct *mm,
365 			      unsigned long __always_unused addr,
366 			      pte_t *ptep, pte_t pte, unsigned int nr)
367 {
368 	page_table_check_ptes_set(mm, ptep, pte, nr);
369 	__sync_cache_and_tags(pte, nr);
370 
371 	for (;;) {
372 		__check_safe_pte_update(mm, ptep, pte);
373 		__set_pte(ptep, pte);
374 		if (--nr == 0)
375 			break;
376 		ptep++;
377 		pte = pte_advance_pfn(pte, 1);
378 	}
379 }
380 
381 /*
382  * Huge pte definitions.
383  */
384 #define pte_mkhuge(pte)		(__pte(pte_val(pte) & ~PTE_TABLE_BIT))
385 
386 /*
387  * Hugetlb definitions.
388  */
389 #define HUGE_MAX_HSTATE		4
390 #define HPAGE_SHIFT		PMD_SHIFT
391 #define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
392 #define HPAGE_MASK		(~(HPAGE_SIZE - 1))
393 #define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
394 
pgd_pte(pgd_t pgd)395 static inline pte_t pgd_pte(pgd_t pgd)
396 {
397 	return __pte(pgd_val(pgd));
398 }
399 
p4d_pte(p4d_t p4d)400 static inline pte_t p4d_pte(p4d_t p4d)
401 {
402 	return __pte(p4d_val(p4d));
403 }
404 
pud_pte(pud_t pud)405 static inline pte_t pud_pte(pud_t pud)
406 {
407 	return __pte(pud_val(pud));
408 }
409 
pte_pud(pte_t pte)410 static inline pud_t pte_pud(pte_t pte)
411 {
412 	return __pud(pte_val(pte));
413 }
414 
pud_pmd(pud_t pud)415 static inline pmd_t pud_pmd(pud_t pud)
416 {
417 	return __pmd(pud_val(pud));
418 }
419 
pmd_pte(pmd_t pmd)420 static inline pte_t pmd_pte(pmd_t pmd)
421 {
422 	return __pte(pmd_val(pmd));
423 }
424 
pte_pmd(pte_t pte)425 static inline pmd_t pte_pmd(pte_t pte)
426 {
427 	return __pmd(pte_val(pte));
428 }
429 
mk_pud_sect_prot(pgprot_t prot)430 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
431 {
432 	return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT);
433 }
434 
mk_pmd_sect_prot(pgprot_t prot)435 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
436 {
437 	return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT);
438 }
439 
pte_swp_mkexclusive(pte_t pte)440 static inline pte_t pte_swp_mkexclusive(pte_t pte)
441 {
442 	return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
443 }
444 
pte_swp_exclusive(pte_t pte)445 static inline int pte_swp_exclusive(pte_t pte)
446 {
447 	return pte_val(pte) & PTE_SWP_EXCLUSIVE;
448 }
449 
pte_swp_clear_exclusive(pte_t pte)450 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
451 {
452 	return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
453 }
454 
455 #ifdef CONFIG_NUMA_BALANCING
456 /*
457  * See the comment in include/linux/pgtable.h
458  */
pte_protnone(pte_t pte)459 static inline int pte_protnone(pte_t pte)
460 {
461 	return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE;
462 }
463 
pmd_protnone(pmd_t pmd)464 static inline int pmd_protnone(pmd_t pmd)
465 {
466 	return pte_protnone(pmd_pte(pmd));
467 }
468 #endif
469 
470 #define pmd_present_invalid(pmd)     (!!(pmd_val(pmd) & PMD_PRESENT_INVALID))
471 
pmd_present(pmd_t pmd)472 static inline int pmd_present(pmd_t pmd)
473 {
474 	return pte_present(pmd_pte(pmd)) || pmd_present_invalid(pmd);
475 }
476 
477 /*
478  * THP definitions.
479  */
480 
481 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)482 static inline int pmd_trans_huge(pmd_t pmd)
483 {
484 	return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT);
485 }
486 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
487 
488 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
489 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
490 #define pmd_valid(pmd)		pte_valid(pmd_pte(pmd))
491 #define pmd_user(pmd)		pte_user(pmd_pte(pmd))
492 #define pmd_user_exec(pmd)	pte_user_exec(pmd_pte(pmd))
493 #define pmd_cont(pmd)		pte_cont(pmd_pte(pmd))
494 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
495 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
496 #define pmd_mkwrite_novma(pmd)	pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
497 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
498 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
499 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
500 
pmd_mkinvalid(pmd_t pmd)501 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
502 {
503 	pmd = set_pmd_bit(pmd, __pgprot(PMD_PRESENT_INVALID));
504 	pmd = clear_pmd_bit(pmd, __pgprot(PMD_SECT_VALID));
505 
506 	return pmd;
507 }
508 
509 #define pmd_thp_or_huge(pmd)	(pmd_huge(pmd) || pmd_trans_huge(pmd))
510 
511 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
512 
513 #define pmd_mkhuge(pmd)		(__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
514 
515 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
516 #define pmd_devmap(pmd)		pte_devmap(pmd_pte(pmd))
517 #endif
pmd_mkdevmap(pmd_t pmd)518 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
519 {
520 	return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
521 }
522 
523 #define __pmd_to_phys(pmd)	__pte_to_phys(pmd_pte(pmd))
524 #define __phys_to_pmd_val(phys)	__phys_to_pte_val(phys)
525 #define pmd_pfn(pmd)		((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
526 #define pfn_pmd(pfn,prot)	__pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
527 #define mk_pmd(page,prot)	pfn_pmd(page_to_pfn(page),prot)
528 
529 #define pud_young(pud)		pte_young(pud_pte(pud))
530 #define pud_mkyoung(pud)	pte_pud(pte_mkyoung(pud_pte(pud)))
531 #define pud_write(pud)		pte_write(pud_pte(pud))
532 
533 #define pud_mkhuge(pud)		(__pud(pud_val(pud) & ~PUD_TABLE_BIT))
534 
535 #define __pud_to_phys(pud)	__pte_to_phys(pud_pte(pud))
536 #define __phys_to_pud_val(phys)	__phys_to_pte_val(phys)
537 #define pud_pfn(pud)		((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
538 #define pfn_pud(pfn,prot)	__pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
539 
__set_pte_at(struct mm_struct * mm,unsigned long __always_unused addr,pte_t * ptep,pte_t pte,unsigned int nr)540 static inline void __set_pte_at(struct mm_struct *mm,
541 				unsigned long __always_unused addr,
542 				pte_t *ptep, pte_t pte, unsigned int nr)
543 {
544 	__sync_cache_and_tags(pte, nr);
545 	__check_safe_pte_update(mm, ptep, pte);
546 	__set_pte(ptep, pte);
547 }
548 
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)549 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
550 			      pmd_t *pmdp, pmd_t pmd)
551 {
552 	page_table_check_pmd_set(mm, pmdp, pmd);
553 	return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd),
554 						PMD_SIZE >> PAGE_SHIFT);
555 }
556 
set_pud_at(struct mm_struct * mm,unsigned long addr,pud_t * pudp,pud_t pud)557 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
558 			      pud_t *pudp, pud_t pud)
559 {
560 	page_table_check_pud_set(mm, pudp, pud);
561 	return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud),
562 						PUD_SIZE >> PAGE_SHIFT);
563 }
564 
565 #define __p4d_to_phys(p4d)	__pte_to_phys(p4d_pte(p4d))
566 #define __phys_to_p4d_val(phys)	__phys_to_pte_val(phys)
567 
568 #define __pgd_to_phys(pgd)	__pte_to_phys(pgd_pte(pgd))
569 #define __phys_to_pgd_val(phys)	__phys_to_pte_val(phys)
570 
571 #define __pgprot_modify(prot,mask,bits) \
572 	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
573 
574 #define pgprot_nx(prot) \
575 	__pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
576 
577 /*
578  * Mark the prot value as uncacheable and unbufferable.
579  */
580 #define pgprot_noncached(prot) \
581 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
582 #define pgprot_writecombine(prot) \
583 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
584 #define pgprot_device(prot) \
585 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
586 #define pgprot_tagged(prot) \
587 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
588 #define pgprot_mhp	pgprot_tagged
589 /*
590  * DMA allocations for non-coherent devices use what the Arm architecture calls
591  * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
592  * and merging of writes.  This is different from "Device-nGnR[nE]" memory which
593  * is intended for MMIO and thus forbids speculation, preserves access size,
594  * requires strict alignment and can also force write responses to come from the
595  * endpoint.
596  */
597 #define pgprot_dmacoherent(prot) \
598 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, \
599 			PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
600 
601 #define __HAVE_PHYS_MEM_ACCESS_PROT
602 struct file;
603 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
604 				     unsigned long size, pgprot_t vma_prot);
605 
606 #define pmd_none(pmd)		(!pmd_val(pmd))
607 
608 #define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
609 				 PMD_TYPE_TABLE)
610 #define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
611 				 PMD_TYPE_SECT)
612 #define pmd_leaf(pmd)		(pmd_present(pmd) && !pmd_table(pmd))
613 #define pmd_bad(pmd)		(!pmd_table(pmd))
614 
615 #define pmd_leaf_size(pmd)	(pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
616 #define pte_leaf_size(pte)	(pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
617 
618 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
pud_sect(pud_t pud)619 static inline bool pud_sect(pud_t pud) { return false; }
pud_table(pud_t pud)620 static inline bool pud_table(pud_t pud) { return true; }
621 #else
622 #define pud_sect(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
623 				 PUD_TYPE_SECT)
624 #define pud_table(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
625 				 PUD_TYPE_TABLE)
626 #endif
627 
628 extern pgd_t init_pg_dir[PTRS_PER_PGD];
629 extern pgd_t init_pg_end[];
630 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
631 extern pgd_t idmap_pg_dir[PTRS_PER_PGD];
632 extern pgd_t tramp_pg_dir[PTRS_PER_PGD];
633 extern pgd_t reserved_pg_dir[PTRS_PER_PGD];
634 
635 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
636 
in_swapper_pgdir(void * addr)637 static inline bool in_swapper_pgdir(void *addr)
638 {
639 	return ((unsigned long)addr & PAGE_MASK) ==
640 	        ((unsigned long)swapper_pg_dir & PAGE_MASK);
641 }
642 
set_pmd(pmd_t * pmdp,pmd_t pmd)643 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
644 {
645 #ifdef __PAGETABLE_PMD_FOLDED
646 	if (in_swapper_pgdir(pmdp)) {
647 		set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
648 		return;
649 	}
650 #endif /* __PAGETABLE_PMD_FOLDED */
651 
652 	WRITE_ONCE(*pmdp, pmd);
653 
654 	if (pmd_valid(pmd)) {
655 		dsb(ishst);
656 		isb();
657 	}
658 }
659 
pmd_clear(pmd_t * pmdp)660 static inline void pmd_clear(pmd_t *pmdp)
661 {
662 	set_pmd(pmdp, __pmd(0));
663 }
664 
pmd_page_paddr(pmd_t pmd)665 static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
666 {
667 	return __pmd_to_phys(pmd);
668 }
669 
pmd_page_vaddr(pmd_t pmd)670 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
671 {
672 	return (unsigned long)__va(pmd_page_paddr(pmd));
673 }
674 
675 /* Find an entry in the third-level page table. */
676 #define pte_offset_phys(dir,addr)	(pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
677 
678 #define pte_set_fixmap(addr)		((pte_t *)set_fixmap_offset(FIX_PTE, addr))
679 #define pte_set_fixmap_offset(pmd, addr)	pte_set_fixmap(pte_offset_phys(pmd, addr))
680 #define pte_clear_fixmap()		clear_fixmap(FIX_PTE)
681 
682 #define pmd_page(pmd)			phys_to_page(__pmd_to_phys(pmd))
683 
684 /* use ONLY for statically allocated translation tables */
685 #define pte_offset_kimg(dir,addr)	((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
686 
687 /*
688  * Conversion functions: convert a page and protection to a page entry,
689  * and a page entry and page directory to the page they refer to.
690  */
691 #define mk_pte(page,prot)	pfn_pte(page_to_pfn(page),prot)
692 
693 #if CONFIG_PGTABLE_LEVELS > 2
694 
695 #define pmd_ERROR(e)	\
696 	pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
697 
698 #define pud_none(pud)		(!pud_val(pud))
699 #define pud_bad(pud)		(!pud_table(pud))
700 #define pud_present(pud)	pte_present(pud_pte(pud))
701 #define pud_leaf(pud)		(pud_present(pud) && !pud_table(pud))
702 #define pud_valid(pud)		pte_valid(pud_pte(pud))
703 #define pud_user(pud)		pte_user(pud_pte(pud))
704 #define pud_user_exec(pud)	pte_user_exec(pud_pte(pud))
705 
set_pud(pud_t * pudp,pud_t pud)706 static inline void set_pud(pud_t *pudp, pud_t pud)
707 {
708 #ifdef __PAGETABLE_PUD_FOLDED
709 	if (in_swapper_pgdir(pudp)) {
710 		set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
711 		return;
712 	}
713 #endif /* __PAGETABLE_PUD_FOLDED */
714 
715 	WRITE_ONCE(*pudp, pud);
716 
717 	if (pud_valid(pud)) {
718 		dsb(ishst);
719 		isb();
720 	}
721 }
722 
pud_clear(pud_t * pudp)723 static inline void pud_clear(pud_t *pudp)
724 {
725 	set_pud(pudp, __pud(0));
726 }
727 
pud_page_paddr(pud_t pud)728 static inline phys_addr_t pud_page_paddr(pud_t pud)
729 {
730 	return __pud_to_phys(pud);
731 }
732 
pud_pgtable(pud_t pud)733 static inline pmd_t *pud_pgtable(pud_t pud)
734 {
735 	return (pmd_t *)__va(pud_page_paddr(pud));
736 }
737 
738 /* Find an entry in the second-level page table. */
739 #define pmd_offset_phys(dir, addr)	(pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
740 
741 #define pmd_set_fixmap(addr)		((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
742 #define pmd_set_fixmap_offset(pud, addr)	pmd_set_fixmap(pmd_offset_phys(pud, addr))
743 #define pmd_clear_fixmap()		clear_fixmap(FIX_PMD)
744 
745 #define pud_page(pud)			phys_to_page(__pud_to_phys(pud))
746 
747 /* use ONLY for statically allocated translation tables */
748 #define pmd_offset_kimg(dir,addr)	((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
749 
750 #else
751 
752 #define pud_page_paddr(pud)	({ BUILD_BUG(); 0; })
753 #define pud_user_exec(pud)	pud_user(pud) /* Always 0 with folding */
754 
755 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
756 #define pmd_set_fixmap(addr)		NULL
757 #define pmd_set_fixmap_offset(pudp, addr)	((pmd_t *)pudp)
758 #define pmd_clear_fixmap()
759 
760 #define pmd_offset_kimg(dir,addr)	((pmd_t *)dir)
761 
762 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
763 
764 #if CONFIG_PGTABLE_LEVELS > 3
765 
766 #define pud_ERROR(e)	\
767 	pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
768 
769 #define p4d_none(p4d)		(!p4d_val(p4d))
770 #define p4d_bad(p4d)		(!(p4d_val(p4d) & 2))
771 #define p4d_present(p4d)	(p4d_val(p4d))
772 
set_p4d(p4d_t * p4dp,p4d_t p4d)773 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
774 {
775 	if (in_swapper_pgdir(p4dp)) {
776 		set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
777 		return;
778 	}
779 
780 	WRITE_ONCE(*p4dp, p4d);
781 	dsb(ishst);
782 	isb();
783 }
784 
p4d_clear(p4d_t * p4dp)785 static inline void p4d_clear(p4d_t *p4dp)
786 {
787 	set_p4d(p4dp, __p4d(0));
788 }
789 
p4d_page_paddr(p4d_t p4d)790 static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
791 {
792 	return __p4d_to_phys(p4d);
793 }
794 
p4d_pgtable(p4d_t p4d)795 static inline pud_t *p4d_pgtable(p4d_t p4d)
796 {
797 	return (pud_t *)__va(p4d_page_paddr(p4d));
798 }
799 
800 /* Find an entry in the first-level page table. */
801 #define pud_offset_phys(dir, addr)	(p4d_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t))
802 
803 #define pud_set_fixmap(addr)		((pud_t *)set_fixmap_offset(FIX_PUD, addr))
804 #define pud_set_fixmap_offset(p4d, addr)	pud_set_fixmap(pud_offset_phys(p4d, addr))
805 #define pud_clear_fixmap()		clear_fixmap(FIX_PUD)
806 
807 #define p4d_page(p4d)		pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
808 
809 /* use ONLY for statically allocated translation tables */
810 #define pud_offset_kimg(dir,addr)	((pud_t *)__phys_to_kimg(pud_offset_phys((dir), (addr))))
811 
812 #else
813 
814 #define p4d_page_paddr(p4d)	({ BUILD_BUG(); 0;})
815 #define pgd_page_paddr(pgd)	({ BUILD_BUG(); 0;})
816 
817 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
818 #define pud_set_fixmap(addr)		NULL
819 #define pud_set_fixmap_offset(pgdp, addr)	((pud_t *)pgdp)
820 #define pud_clear_fixmap()
821 
822 #define pud_offset_kimg(dir,addr)	((pud_t *)dir)
823 
824 #endif  /* CONFIG_PGTABLE_LEVELS > 3 */
825 
826 #define pgd_ERROR(e)	\
827 	pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
828 
829 #define pgd_set_fixmap(addr)	((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
830 #define pgd_clear_fixmap()	clear_fixmap(FIX_PGD)
831 
pte_modify(pte_t pte,pgprot_t newprot)832 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
833 {
834 	/*
835 	 * Normal and Normal-Tagged are two different memory types and indices
836 	 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
837 	 */
838 	const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
839 			      PTE_PROT_NONE | PTE_VALID | PTE_WRITE | PTE_GP |
840 			      PTE_ATTRINDX_MASK;
841 	/* preserve the hardware dirty information */
842 	if (pte_hw_dirty(pte))
843 		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
844 
845 	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
846 	/*
847 	 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
848 	 * dirtiness again.
849 	 */
850 	if (pte_sw_dirty(pte))
851 		pte = pte_mkdirty(pte);
852 	return pte;
853 }
854 
pmd_modify(pmd_t pmd,pgprot_t newprot)855 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
856 {
857 	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
858 }
859 
860 extern int __ptep_set_access_flags(struct vm_area_struct *vma,
861 				 unsigned long address, pte_t *ptep,
862 				 pte_t entry, int dirty);
863 
864 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
865 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)866 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
867 					unsigned long address, pmd_t *pmdp,
868 					pmd_t entry, int dirty)
869 {
870 	return __ptep_set_access_flags(vma, address, (pte_t *)pmdp,
871 							pmd_pte(entry), dirty);
872 }
873 
pud_devmap(pud_t pud)874 static inline int pud_devmap(pud_t pud)
875 {
876 	return 0;
877 }
878 
pgd_devmap(pgd_t pgd)879 static inline int pgd_devmap(pgd_t pgd)
880 {
881 	return 0;
882 }
883 #endif
884 
885 #ifdef CONFIG_PAGE_TABLE_CHECK
pte_user_accessible_page(pte_t pte)886 static inline bool pte_user_accessible_page(pte_t pte)
887 {
888 	return pte_present(pte) && (pte_user(pte) || pte_user_exec(pte));
889 }
890 
pmd_user_accessible_page(pmd_t pmd)891 static inline bool pmd_user_accessible_page(pmd_t pmd)
892 {
893 	return pmd_leaf(pmd) && !pmd_present_invalid(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
894 }
895 
pud_user_accessible_page(pud_t pud)896 static inline bool pud_user_accessible_page(pud_t pud)
897 {
898 	return pud_leaf(pud) && (pud_user(pud) || pud_user_exec(pud));
899 }
900 #endif
901 
902 /*
903  * Atomic pte/pmd modifications.
904  */
__ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)905 static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma,
906 					      unsigned long address,
907 					      pte_t *ptep)
908 {
909 	pte_t old_pte, pte;
910 
911 	pte = __ptep_get(ptep);
912 	do {
913 		old_pte = pte;
914 		pte = pte_mkold(pte);
915 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
916 					       pte_val(old_pte), pte_val(pte));
917 	} while (pte_val(pte) != pte_val(old_pte));
918 
919 	return pte_young(pte);
920 }
921 
__ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)922 static inline int __ptep_clear_flush_young(struct vm_area_struct *vma,
923 					 unsigned long address, pte_t *ptep)
924 {
925 	int young = __ptep_test_and_clear_young(vma, address, ptep);
926 
927 	if (young) {
928 		/*
929 		 * We can elide the trailing DSB here since the worst that can
930 		 * happen is that a CPU continues to use the young entry in its
931 		 * TLB and we mistakenly reclaim the associated page. The
932 		 * window for such an event is bounded by the next
933 		 * context-switch, which provides a DSB to complete the TLB
934 		 * invalidation.
935 		 */
936 		flush_tlb_page_nosync(vma, address);
937 	}
938 
939 	return young;
940 }
941 
942 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
943 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)944 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
945 					    unsigned long address,
946 					    pmd_t *pmdp)
947 {
948 	return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
949 }
950 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
951 
__ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)952 static inline pte_t __ptep_get_and_clear(struct mm_struct *mm,
953 				       unsigned long address, pte_t *ptep)
954 {
955 	pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
956 
957 	page_table_check_pte_clear(mm, pte);
958 
959 	return pte;
960 }
961 
__clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)962 static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr,
963 				pte_t *ptep, unsigned int nr, int full)
964 {
965 	for (;;) {
966 		__ptep_get_and_clear(mm, addr, ptep);
967 		if (--nr == 0)
968 			break;
969 		ptep++;
970 		addr += PAGE_SIZE;
971 	}
972 }
973 
__get_and_clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)974 static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm,
975 				unsigned long addr, pte_t *ptep,
976 				unsigned int nr, int full)
977 {
978 	pte_t pte, tmp_pte;
979 
980 	pte = __ptep_get_and_clear(mm, addr, ptep);
981 	while (--nr) {
982 		ptep++;
983 		addr += PAGE_SIZE;
984 		tmp_pte = __ptep_get_and_clear(mm, addr, ptep);
985 		if (pte_dirty(tmp_pte))
986 			pte = pte_mkdirty(pte);
987 		if (pte_young(tmp_pte))
988 			pte = pte_mkyoung(pte);
989 	}
990 	return pte;
991 }
992 
993 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
994 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)995 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
996 					    unsigned long address, pmd_t *pmdp)
997 {
998 	pmd_t pmd = __pmd(xchg_relaxed(&pmd_val(*pmdp), 0));
999 
1000 	page_table_check_pmd_clear(mm, pmd);
1001 
1002 	return pmd;
1003 }
1004 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1005 
___ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep,pte_t pte)1006 static inline void ___ptep_set_wrprotect(struct mm_struct *mm,
1007 					unsigned long address, pte_t *ptep,
1008 					pte_t pte)
1009 {
1010 	pte_t old_pte;
1011 
1012 	do {
1013 		old_pte = pte;
1014 		pte = pte_wrprotect(pte);
1015 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1016 					       pte_val(old_pte), pte_val(pte));
1017 	} while (pte_val(pte) != pte_val(old_pte));
1018 }
1019 
1020 /*
1021  * __ptep_set_wrprotect - mark read-only while trasferring potential hardware
1022  * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
1023  */
__ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)1024 static inline void __ptep_set_wrprotect(struct mm_struct *mm,
1025 					unsigned long address, pte_t *ptep)
1026 {
1027 	___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep));
1028 }
1029 
__wrprotect_ptes(struct mm_struct * mm,unsigned long address,pte_t * ptep,unsigned int nr)1030 static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address,
1031 				pte_t *ptep, unsigned int nr)
1032 {
1033 	unsigned int i;
1034 
1035 	for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++)
1036 		__ptep_set_wrprotect(mm, address, ptep);
1037 }
1038 
__clear_young_dirty_pte(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte,cydp_t flags)1039 static inline void __clear_young_dirty_pte(struct vm_area_struct *vma,
1040 					   unsigned long addr, pte_t *ptep,
1041 					   pte_t pte, cydp_t flags)
1042 {
1043 	pte_t old_pte;
1044 
1045 	do {
1046 		old_pte = pte;
1047 
1048 		if (flags & CYDP_CLEAR_YOUNG)
1049 			pte = pte_mkold(pte);
1050 		if (flags & CYDP_CLEAR_DIRTY)
1051 			pte = pte_mkclean(pte);
1052 
1053 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1054 					       pte_val(old_pte), pte_val(pte));
1055 	} while (pte_val(pte) != pte_val(old_pte));
1056 }
1057 
__clear_young_dirty_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr,cydp_t flags)1058 static inline void __clear_young_dirty_ptes(struct vm_area_struct *vma,
1059 					    unsigned long addr, pte_t *ptep,
1060 					    unsigned int nr, cydp_t flags)
1061 {
1062 	pte_t pte;
1063 
1064 	for (;;) {
1065 		pte = __ptep_get(ptep);
1066 
1067 		if (flags == (CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY))
1068 			__set_pte(ptep, pte_mkclean(pte_mkold(pte)));
1069 		else
1070 			__clear_young_dirty_pte(vma, addr, ptep, pte, flags);
1071 
1072 		if (--nr == 0)
1073 			break;
1074 		ptep++;
1075 		addr += PAGE_SIZE;
1076 	}
1077 }
1078 
1079 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1080 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)1081 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1082 				      unsigned long address, pmd_t *pmdp)
1083 {
1084 	__ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
1085 }
1086 
1087 #define pmdp_establish pmdp_establish
pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)1088 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1089 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
1090 {
1091 	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1092 	return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
1093 }
1094 #endif
1095 
1096 /*
1097  * Encode and decode a swap entry:
1098  *	bits 0-1:	present (must be zero)
1099  *	bits 2:		remember PG_anon_exclusive
1100  *	bits 3-7:	swap type
1101  *	bits 8-57:	swap offset
1102  *	bit  58:	PTE_PROT_NONE (must be zero)
1103  */
1104 #define __SWP_TYPE_SHIFT	3
1105 #define __SWP_TYPE_BITS		5
1106 #define __SWP_OFFSET_BITS	50
1107 #define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
1108 #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
1109 #define __SWP_OFFSET_MASK	((1UL << __SWP_OFFSET_BITS) - 1)
1110 
1111 #define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1112 #define __swp_offset(x)		(((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
1113 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
1114 
1115 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1116 #define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
1117 
1118 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1119 #define __pmd_to_swp_entry(pmd)		((swp_entry_t) { pmd_val(pmd) })
1120 #define __swp_entry_to_pmd(swp)		__pmd((swp).val)
1121 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1122 
1123 /*
1124  * Ensure that there are not more swap files than can be encoded in the kernel
1125  * PTEs.
1126  */
1127 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1128 
1129 #ifdef CONFIG_ARM64_MTE
1130 
1131 #define __HAVE_ARCH_PREPARE_TO_SWAP
1132 extern int arch_prepare_to_swap(struct folio *folio);
1133 
1134 #define __HAVE_ARCH_SWAP_INVALIDATE
arch_swap_invalidate_page(int type,pgoff_t offset)1135 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1136 {
1137 	if (system_supports_mte())
1138 		mte_invalidate_tags(type, offset);
1139 }
1140 
arch_swap_invalidate_area(int type)1141 static inline void arch_swap_invalidate_area(int type)
1142 {
1143 	if (system_supports_mte())
1144 		mte_invalidate_tags_area(type);
1145 }
1146 
1147 #define __HAVE_ARCH_SWAP_RESTORE
1148 extern void arch_swap_restore(swp_entry_t entry, struct folio *folio);
1149 
1150 #endif /* CONFIG_ARM64_MTE */
1151 
1152 /*
1153  * On AArch64, the cache coherency is handled via the __set_ptes() function.
1154  */
update_mmu_cache_range(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr)1155 static inline void update_mmu_cache_range(struct vm_fault *vmf,
1156 		struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
1157 		unsigned int nr)
1158 {
1159 	/*
1160 	 * We don't do anything here, so there's a very small chance of
1161 	 * us retaking a user fault which we just fixed up. The alternative
1162 	 * is doing a dsb(ishst), but that penalises the fastpath.
1163 	 */
1164 }
1165 
1166 #define update_mmu_cache(vma, addr, ptep) \
1167 	update_mmu_cache_range(NULL, vma, addr, ptep, 1)
1168 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
1169 
1170 #ifdef CONFIG_ARM64_PA_BITS_52
1171 #define phys_to_ttbr(addr)	(((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
1172 #else
1173 #define phys_to_ttbr(addr)	(addr)
1174 #endif
1175 
1176 /*
1177  * On arm64 without hardware Access Flag, copying from user will fail because
1178  * the pte is old and cannot be marked young. So we always end up with zeroed
1179  * page after fork() + CoW for pfn mappings. We don't always have a
1180  * hardware-managed access flag on arm64.
1181  */
1182 #define arch_has_hw_pte_young		cpu_has_hw_af
1183 
1184 /*
1185  * Experimentally, it's cheap to set the access flag in hardware and we
1186  * benefit from prefaulting mappings as 'old' to start with.
1187  */
1188 #define arch_wants_old_prefaulted_pte	cpu_has_hw_af
1189 
pud_sect_supported(void)1190 static inline bool pud_sect_supported(void)
1191 {
1192 	return PAGE_SIZE == SZ_4K;
1193 }
1194 
1195 
1196 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1197 #define ptep_modify_prot_start ptep_modify_prot_start
1198 extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1199 				    unsigned long addr, pte_t *ptep);
1200 
1201 #define ptep_modify_prot_commit ptep_modify_prot_commit
1202 extern void ptep_modify_prot_commit(struct vm_area_struct *vma,
1203 				    unsigned long addr, pte_t *ptep,
1204 				    pte_t old_pte, pte_t new_pte);
1205 
1206 #ifdef CONFIG_ARM64_CONTPTE
1207 
1208 /*
1209  * The contpte APIs are used to transparently manage the contiguous bit in ptes
1210  * where it is possible and makes sense to do so. The PTE_CONT bit is considered
1211  * a private implementation detail of the public ptep API (see below).
1212  */
1213 extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr,
1214 				pte_t *ptep, pte_t pte);
1215 extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr,
1216 				pte_t *ptep, pte_t pte);
1217 extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte);
1218 extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep);
1219 extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr,
1220 				pte_t *ptep, pte_t pte, unsigned int nr);
1221 extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1222 				pte_t *ptep, unsigned int nr, int full);
1223 extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm,
1224 				unsigned long addr, pte_t *ptep,
1225 				unsigned int nr, int full);
1226 extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma,
1227 				unsigned long addr, pte_t *ptep);
1228 extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma,
1229 				unsigned long addr, pte_t *ptep);
1230 extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
1231 				pte_t *ptep, unsigned int nr);
1232 extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma,
1233 				unsigned long addr, pte_t *ptep,
1234 				pte_t entry, int dirty);
1235 extern void contpte_clear_young_dirty_ptes(struct vm_area_struct *vma,
1236 				unsigned long addr, pte_t *ptep,
1237 				unsigned int nr, cydp_t flags);
1238 
contpte_try_fold(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)1239 static __always_inline void contpte_try_fold(struct mm_struct *mm,
1240 				unsigned long addr, pte_t *ptep, pte_t pte)
1241 {
1242 	/*
1243 	 * Only bother trying if both the virtual and physical addresses are
1244 	 * aligned and correspond to the last entry in a contig range. The core
1245 	 * code mostly modifies ranges from low to high, so this is the likely
1246 	 * the last modification in the contig range, so a good time to fold.
1247 	 * We can't fold special mappings, because there is no associated folio.
1248 	 */
1249 
1250 	const unsigned long contmask = CONT_PTES - 1;
1251 	bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask;
1252 
1253 	if (unlikely(valign)) {
1254 		bool palign = (pte_pfn(pte) & contmask) == contmask;
1255 
1256 		if (unlikely(palign &&
1257 		    pte_valid(pte) && !pte_cont(pte) && !pte_special(pte)))
1258 			__contpte_try_fold(mm, addr, ptep, pte);
1259 	}
1260 }
1261 
contpte_try_unfold(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)1262 static __always_inline void contpte_try_unfold(struct mm_struct *mm,
1263 				unsigned long addr, pte_t *ptep, pte_t pte)
1264 {
1265 	if (unlikely(pte_valid_cont(pte)))
1266 		__contpte_try_unfold(mm, addr, ptep, pte);
1267 }
1268 
1269 #define pte_batch_hint pte_batch_hint
pte_batch_hint(pte_t * ptep,pte_t pte)1270 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
1271 {
1272 	if (!pte_valid_cont(pte))
1273 		return 1;
1274 
1275 	return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1));
1276 }
1277 
1278 /*
1279  * The below functions constitute the public API that arm64 presents to the
1280  * core-mm to manipulate PTE entries within their page tables (or at least this
1281  * is the subset of the API that arm64 needs to implement). These public
1282  * versions will automatically and transparently apply the contiguous bit where
1283  * it makes sense to do so. Therefore any users that are contig-aware (e.g.
1284  * hugetlb, kernel mapper) should NOT use these APIs, but instead use the
1285  * private versions, which are prefixed with double underscore. All of these
1286  * APIs except for ptep_get_lockless() are expected to be called with the PTL
1287  * held. Although the contiguous bit is considered private to the
1288  * implementation, it is deliberately allowed to leak through the getters (e.g.
1289  * ptep_get()), back to core code. This is required so that pte_leaf_size() can
1290  * provide an accurate size for perf_get_pgtable_size(). But this leakage means
1291  * its possible a pte will be passed to a setter with the contiguous bit set, so
1292  * we explicitly clear the contiguous bit in those cases to prevent accidentally
1293  * setting it in the pgtable.
1294  */
1295 
1296 #define ptep_get ptep_get
ptep_get(pte_t * ptep)1297 static inline pte_t ptep_get(pte_t *ptep)
1298 {
1299 	pte_t pte = __ptep_get(ptep);
1300 
1301 	if (likely(!pte_valid_cont(pte)))
1302 		return pte;
1303 
1304 	return contpte_ptep_get(ptep, pte);
1305 }
1306 
1307 #define ptep_get_lockless ptep_get_lockless
ptep_get_lockless(pte_t * ptep)1308 static inline pte_t ptep_get_lockless(pte_t *ptep)
1309 {
1310 	pte_t pte = __ptep_get(ptep);
1311 
1312 	if (likely(!pte_valid_cont(pte)))
1313 		return pte;
1314 
1315 	return contpte_ptep_get_lockless(ptep);
1316 }
1317 
set_pte(pte_t * ptep,pte_t pte)1318 static inline void set_pte(pte_t *ptep, pte_t pte)
1319 {
1320 	/*
1321 	 * We don't have the mm or vaddr so cannot unfold contig entries (since
1322 	 * it requires tlb maintenance). set_pte() is not used in core code, so
1323 	 * this should never even be called. Regardless do our best to service
1324 	 * any call and emit a warning if there is any attempt to set a pte on
1325 	 * top of an existing contig range.
1326 	 */
1327 	pte_t orig_pte = __ptep_get(ptep);
1328 
1329 	WARN_ON_ONCE(pte_valid_cont(orig_pte));
1330 	__set_pte(ptep, pte_mknoncont(pte));
1331 }
1332 
1333 #define set_ptes set_ptes
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,unsigned int nr)1334 static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1335 				pte_t *ptep, pte_t pte, unsigned int nr)
1336 {
1337 	pte = pte_mknoncont(pte);
1338 
1339 	if (likely(nr == 1)) {
1340 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1341 		__set_ptes(mm, addr, ptep, pte, 1);
1342 		contpte_try_fold(mm, addr, ptep, pte);
1343 	} else {
1344 		contpte_set_ptes(mm, addr, ptep, pte, nr);
1345 	}
1346 }
1347 
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1348 static inline void pte_clear(struct mm_struct *mm,
1349 				unsigned long addr, pte_t *ptep)
1350 {
1351 	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1352 	__pte_clear(mm, addr, ptep);
1353 }
1354 
1355 #define clear_full_ptes clear_full_ptes
clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1356 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1357 				pte_t *ptep, unsigned int nr, int full)
1358 {
1359 	if (likely(nr == 1)) {
1360 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1361 		__clear_full_ptes(mm, addr, ptep, nr, full);
1362 	} else {
1363 		contpte_clear_full_ptes(mm, addr, ptep, nr, full);
1364 	}
1365 }
1366 
1367 #define get_and_clear_full_ptes get_and_clear_full_ptes
get_and_clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1368 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
1369 				unsigned long addr, pte_t *ptep,
1370 				unsigned int nr, int full)
1371 {
1372 	pte_t pte;
1373 
1374 	if (likely(nr == 1)) {
1375 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1376 		pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1377 	} else {
1378 		pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1379 	}
1380 
1381 	return pte;
1382 }
1383 
1384 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1385 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1386 				unsigned long addr, pte_t *ptep)
1387 {
1388 	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1389 	return __ptep_get_and_clear(mm, addr, ptep);
1390 }
1391 
1392 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1393 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1394 				unsigned long addr, pte_t *ptep)
1395 {
1396 	pte_t orig_pte = __ptep_get(ptep);
1397 
1398 	if (likely(!pte_valid_cont(orig_pte)))
1399 		return __ptep_test_and_clear_young(vma, addr, ptep);
1400 
1401 	return contpte_ptep_test_and_clear_young(vma, addr, ptep);
1402 }
1403 
1404 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1405 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1406 				unsigned long addr, pte_t *ptep)
1407 {
1408 	pte_t orig_pte = __ptep_get(ptep);
1409 
1410 	if (likely(!pte_valid_cont(orig_pte)))
1411 		return __ptep_clear_flush_young(vma, addr, ptep);
1412 
1413 	return contpte_ptep_clear_flush_young(vma, addr, ptep);
1414 }
1415 
1416 #define wrprotect_ptes wrprotect_ptes
wrprotect_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr)1417 static __always_inline void wrprotect_ptes(struct mm_struct *mm,
1418 				unsigned long addr, pte_t *ptep, unsigned int nr)
1419 {
1420 	if (likely(nr == 1)) {
1421 		/*
1422 		 * Optimization: wrprotect_ptes() can only be called for present
1423 		 * ptes so we only need to check contig bit as condition for
1424 		 * unfold, and we can remove the contig bit from the pte we read
1425 		 * to avoid re-reading. This speeds up fork() which is sensitive
1426 		 * for order-0 folios. Equivalent to contpte_try_unfold().
1427 		 */
1428 		pte_t orig_pte = __ptep_get(ptep);
1429 
1430 		if (unlikely(pte_cont(orig_pte))) {
1431 			__contpte_try_unfold(mm, addr, ptep, orig_pte);
1432 			orig_pte = pte_mknoncont(orig_pte);
1433 		}
1434 		___ptep_set_wrprotect(mm, addr, ptep, orig_pte);
1435 	} else {
1436 		contpte_wrprotect_ptes(mm, addr, ptep, nr);
1437 	}
1438 }
1439 
1440 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1441 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1442 				unsigned long addr, pte_t *ptep)
1443 {
1444 	wrprotect_ptes(mm, addr, ptep, 1);
1445 }
1446 
1447 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1448 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1449 				unsigned long addr, pte_t *ptep,
1450 				pte_t entry, int dirty)
1451 {
1452 	pte_t orig_pte = __ptep_get(ptep);
1453 
1454 	entry = pte_mknoncont(entry);
1455 
1456 	if (likely(!pte_valid_cont(orig_pte)))
1457 		return __ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1458 
1459 	return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1460 }
1461 
1462 #define clear_young_dirty_ptes clear_young_dirty_ptes
clear_young_dirty_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr,cydp_t flags)1463 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
1464 					  unsigned long addr, pte_t *ptep,
1465 					  unsigned int nr, cydp_t flags)
1466 {
1467 	if (likely(nr == 1 && !pte_cont(__ptep_get(ptep))))
1468 		__clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1469 	else
1470 		contpte_clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1471 }
1472 
1473 #else /* CONFIG_ARM64_CONTPTE */
1474 
1475 #define ptep_get				__ptep_get
1476 #define set_pte					__set_pte
1477 #define set_ptes				__set_ptes
1478 #define pte_clear				__pte_clear
1479 #define clear_full_ptes				__clear_full_ptes
1480 #define get_and_clear_full_ptes			__get_and_clear_full_ptes
1481 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1482 #define ptep_get_and_clear			__ptep_get_and_clear
1483 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1484 #define ptep_test_and_clear_young		__ptep_test_and_clear_young
1485 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1486 #define ptep_clear_flush_young			__ptep_clear_flush_young
1487 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1488 #define ptep_set_wrprotect			__ptep_set_wrprotect
1489 #define wrprotect_ptes				__wrprotect_ptes
1490 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1491 #define ptep_set_access_flags			__ptep_set_access_flags
1492 #define clear_young_dirty_ptes			__clear_young_dirty_ptes
1493 
1494 #endif /* CONFIG_ARM64_CONTPTE */
1495 
1496 #endif /* !__ASSEMBLY__ */
1497 
1498 #endif /* __ASM_PGTABLE_H */
1499