1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2012 ARM Ltd.
4 */
5 #ifndef __ASM_PGTABLE_H
6 #define __ASM_PGTABLE_H
7
8 #include <asm/bug.h>
9 #include <asm/proc-fns.h>
10
11 #include <asm/memory.h>
12 #include <asm/mte.h>
13 #include <asm/pgtable-hwdef.h>
14 #include <asm/pgtable-prot.h>
15 #include <asm/tlbflush.h>
16
17 /*
18 * VMALLOC range.
19 *
20 * VMALLOC_START: beginning of the kernel vmalloc space
21 * VMALLOC_END: extends to the available space below vmemmap, PCI I/O space
22 * and fixed mappings
23 */
24 #define VMALLOC_START (MODULES_END)
25 #define VMALLOC_END (VMEMMAP_START - SZ_256M)
26
27 #define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
28
29 #ifndef __ASSEMBLY__
30
31 #include <asm/cmpxchg.h>
32 #include <asm/fixmap.h>
33 #include <linux/mmdebug.h>
34 #include <linux/mm_types.h>
35 #include <linux/sched.h>
36 #include <linux/page_table_check.h>
37
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
39 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
40
41 /* Set stride and tlb_level in flush_*_tlb_range */
42 #define flush_pmd_tlb_range(vma, addr, end) \
43 __flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
44 #define flush_pud_tlb_range(vma, addr, end) \
45 __flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
46 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
47
48 /*
49 * Outside of a few very special situations (e.g. hibernation), we always
50 * use broadcast TLB invalidation instructions, therefore a spurious page
51 * fault on one CPU which has been handled concurrently by another CPU
52 * does not need to perform additional invalidation.
53 */
54 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
55
56 /*
57 * ZERO_PAGE is a global shared page that is always zero: used
58 * for zero-mapped memory areas etc..
59 */
60 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
61 #define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page))
62
63 #define pte_ERROR(e) \
64 pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
65
66 /*
67 * Macros to convert between a physical address and its placement in a
68 * page table entry, taking care of 52-bit addresses.
69 */
70 #ifdef CONFIG_ARM64_PA_BITS_52
__pte_to_phys(pte_t pte)71 static inline phys_addr_t __pte_to_phys(pte_t pte)
72 {
73 return (pte_val(pte) & PTE_ADDR_LOW) |
74 ((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
75 }
__phys_to_pte_val(phys_addr_t phys)76 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
77 {
78 return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PTE_ADDR_MASK;
79 }
80 #else
81 #define __pte_to_phys(pte) (pte_val(pte) & PTE_ADDR_MASK)
82 #define __phys_to_pte_val(phys) (phys)
83 #endif
84
85 #define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT)
86 #define pfn_pte(pfn,prot) \
87 __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
88
89 #define pte_none(pte) (!pte_val(pte))
90 #define __pte_clear(mm, addr, ptep) \
91 __set_pte(ptep, __pte(0))
92 #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
93
94 /*
95 * The following only work if pte_present(). Undefined behaviour otherwise.
96 */
97 #define pte_present(pte) (!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)))
98 #define pte_young(pte) (!!(pte_val(pte) & PTE_AF))
99 #define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL))
100 #define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE))
101 #define pte_rdonly(pte) (!!(pte_val(pte) & PTE_RDONLY))
102 #define pte_user(pte) (!!(pte_val(pte) & PTE_USER))
103 #define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN))
104 #define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT))
105 #define pte_devmap(pte) (!!(pte_val(pte) & PTE_DEVMAP))
106 #define pte_tagged(pte) ((pte_val(pte) & PTE_ATTRINDX_MASK) == \
107 PTE_ATTRINDX(MT_NORMAL_TAGGED))
108
109 #define pte_cont_addr_end(addr, end) \
110 ({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \
111 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
112 })
113
114 #define pmd_cont_addr_end(addr, end) \
115 ({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \
116 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
117 })
118
119 #define pte_hw_dirty(pte) (pte_write(pte) && !pte_rdonly(pte))
120 #define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY))
121 #define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte))
122
123 #define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID))
124 /*
125 * Execute-only user mappings do not have the PTE_USER bit set. All valid
126 * kernel mappings have the PTE_UXN bit set.
127 */
128 #define pte_valid_not_user(pte) \
129 ((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
130 /*
131 * Returns true if the pte is valid and has the contiguous bit set.
132 */
133 #define pte_valid_cont(pte) (pte_valid(pte) && pte_cont(pte))
134 /*
135 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
136 * so that we don't erroneously return false for pages that have been
137 * remapped as PROT_NONE but are yet to be flushed from the TLB.
138 * Note that we can't make any assumptions based on the state of the access
139 * flag, since __ptep_clear_flush_young() elides a DSB when invalidating the
140 * TLB.
141 */
142 #define pte_accessible(mm, pte) \
143 (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
144
145 /*
146 * p??_access_permitted() is true for valid user mappings (PTE_USER
147 * bit set, subject to the write permission check). For execute-only
148 * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
149 * not set) must return false. PROT_NONE mappings do not have the
150 * PTE_VALID bit set.
151 */
152 #define pte_access_permitted(pte, write) \
153 (((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
154 #define pmd_access_permitted(pmd, write) \
155 (pte_access_permitted(pmd_pte(pmd), (write)))
156 #define pud_access_permitted(pud, write) \
157 (pte_access_permitted(pud_pte(pud), (write)))
158
clear_pte_bit(pte_t pte,pgprot_t prot)159 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
160 {
161 pte_val(pte) &= ~pgprot_val(prot);
162 return pte;
163 }
164
set_pte_bit(pte_t pte,pgprot_t prot)165 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
166 {
167 pte_val(pte) |= pgprot_val(prot);
168 return pte;
169 }
170
clear_pmd_bit(pmd_t pmd,pgprot_t prot)171 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
172 {
173 pmd_val(pmd) &= ~pgprot_val(prot);
174 return pmd;
175 }
176
set_pmd_bit(pmd_t pmd,pgprot_t prot)177 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
178 {
179 pmd_val(pmd) |= pgprot_val(prot);
180 return pmd;
181 }
182
pte_mkwrite_novma(pte_t pte)183 static inline pte_t pte_mkwrite_novma(pte_t pte)
184 {
185 pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
186 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
187 return pte;
188 }
189
pte_mkclean(pte_t pte)190 static inline pte_t pte_mkclean(pte_t pte)
191 {
192 pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
193 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
194
195 return pte;
196 }
197
pte_mkdirty(pte_t pte)198 static inline pte_t pte_mkdirty(pte_t pte)
199 {
200 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
201
202 if (pte_write(pte))
203 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
204
205 return pte;
206 }
207
pte_wrprotect(pte_t pte)208 static inline pte_t pte_wrprotect(pte_t pte)
209 {
210 /*
211 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
212 * clear), set the PTE_DIRTY bit.
213 */
214 if (pte_hw_dirty(pte))
215 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
216
217 pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
218 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
219 return pte;
220 }
221
pte_mkold(pte_t pte)222 static inline pte_t pte_mkold(pte_t pte)
223 {
224 return clear_pte_bit(pte, __pgprot(PTE_AF));
225 }
226
pte_mkyoung(pte_t pte)227 static inline pte_t pte_mkyoung(pte_t pte)
228 {
229 return set_pte_bit(pte, __pgprot(PTE_AF));
230 }
231
pte_mkspecial(pte_t pte)232 static inline pte_t pte_mkspecial(pte_t pte)
233 {
234 return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
235 }
236
pte_mkcont(pte_t pte)237 static inline pte_t pte_mkcont(pte_t pte)
238 {
239 pte = set_pte_bit(pte, __pgprot(PTE_CONT));
240 return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
241 }
242
pte_mknoncont(pte_t pte)243 static inline pte_t pte_mknoncont(pte_t pte)
244 {
245 return clear_pte_bit(pte, __pgprot(PTE_CONT));
246 }
247
pte_mkpresent(pte_t pte)248 static inline pte_t pte_mkpresent(pte_t pte)
249 {
250 return set_pte_bit(pte, __pgprot(PTE_VALID));
251 }
252
pmd_mkcont(pmd_t pmd)253 static inline pmd_t pmd_mkcont(pmd_t pmd)
254 {
255 return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
256 }
257
pte_mkdevmap(pte_t pte)258 static inline pte_t pte_mkdevmap(pte_t pte)
259 {
260 return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
261 }
262
__set_pte(pte_t * ptep,pte_t pte)263 static inline void __set_pte(pte_t *ptep, pte_t pte)
264 {
265 WRITE_ONCE(*ptep, pte);
266
267 /*
268 * Only if the new pte is valid and kernel, otherwise TLB maintenance
269 * or update_mmu_cache() have the necessary barriers.
270 */
271 if (pte_valid_not_user(pte)) {
272 dsb(ishst);
273 isb();
274 }
275 }
276
__ptep_get(pte_t * ptep)277 static inline pte_t __ptep_get(pte_t *ptep)
278 {
279 return READ_ONCE(*ptep);
280 }
281
282 extern void __sync_icache_dcache(pte_t pteval);
283 bool pgattr_change_is_safe(u64 old, u64 new);
284
285 /*
286 * PTE bits configuration in the presence of hardware Dirty Bit Management
287 * (PTE_WRITE == PTE_DBM):
288 *
289 * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw)
290 * 0 0 | 1 0 0
291 * 0 1 | 1 1 0
292 * 1 0 | 1 0 1
293 * 1 1 | 0 1 x
294 *
295 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
296 * the page fault mechanism. Checking the dirty status of a pte becomes:
297 *
298 * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
299 */
300
__check_safe_pte_update(struct mm_struct * mm,pte_t * ptep,pte_t pte)301 static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep,
302 pte_t pte)
303 {
304 pte_t old_pte;
305
306 if (!IS_ENABLED(CONFIG_DEBUG_VM))
307 return;
308
309 old_pte = __ptep_get(ptep);
310
311 if (!pte_valid(old_pte) || !pte_valid(pte))
312 return;
313 if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
314 return;
315
316 /*
317 * Check for potential race with hardware updates of the pte
318 * (__ptep_set_access_flags safely changes valid ptes without going
319 * through an invalid entry).
320 */
321 VM_WARN_ONCE(!pte_young(pte),
322 "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
323 __func__, pte_val(old_pte), pte_val(pte));
324 VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
325 "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
326 __func__, pte_val(old_pte), pte_val(pte));
327 VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)),
328 "%s: unsafe attribute change: 0x%016llx -> 0x%016llx",
329 __func__, pte_val(old_pte), pte_val(pte));
330 }
331
__sync_cache_and_tags(pte_t pte,unsigned int nr_pages)332 static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages)
333 {
334 if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
335 __sync_icache_dcache(pte);
336
337 /*
338 * If the PTE would provide user space access to the tags associated
339 * with it then ensure that the MTE tags are synchronised. Although
340 * pte_access_permitted() returns false for exec only mappings, they
341 * don't expose tags (instruction fetches don't check tags).
342 */
343 if (system_supports_mte() && pte_access_permitted(pte, false) &&
344 !pte_special(pte) && pte_tagged(pte))
345 mte_sync_tags(pte, nr_pages);
346 }
347
348 /*
349 * Select all bits except the pfn
350 */
pte_pgprot(pte_t pte)351 static inline pgprot_t pte_pgprot(pte_t pte)
352 {
353 unsigned long pfn = pte_pfn(pte);
354
355 return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
356 }
357
358 #define pte_advance_pfn pte_advance_pfn
pte_advance_pfn(pte_t pte,unsigned long nr)359 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
360 {
361 return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte));
362 }
363
__set_ptes(struct mm_struct * mm,unsigned long __always_unused addr,pte_t * ptep,pte_t pte,unsigned int nr)364 static inline void __set_ptes(struct mm_struct *mm,
365 unsigned long __always_unused addr,
366 pte_t *ptep, pte_t pte, unsigned int nr)
367 {
368 page_table_check_ptes_set(mm, ptep, pte, nr);
369 __sync_cache_and_tags(pte, nr);
370
371 for (;;) {
372 __check_safe_pte_update(mm, ptep, pte);
373 __set_pte(ptep, pte);
374 if (--nr == 0)
375 break;
376 ptep++;
377 pte = pte_advance_pfn(pte, 1);
378 }
379 }
380
381 /*
382 * Huge pte definitions.
383 */
384 #define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT))
385
386 /*
387 * Hugetlb definitions.
388 */
389 #define HUGE_MAX_HSTATE 4
390 #define HPAGE_SHIFT PMD_SHIFT
391 #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
392 #define HPAGE_MASK (~(HPAGE_SIZE - 1))
393 #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
394
pgd_pte(pgd_t pgd)395 static inline pte_t pgd_pte(pgd_t pgd)
396 {
397 return __pte(pgd_val(pgd));
398 }
399
p4d_pte(p4d_t p4d)400 static inline pte_t p4d_pte(p4d_t p4d)
401 {
402 return __pte(p4d_val(p4d));
403 }
404
pud_pte(pud_t pud)405 static inline pte_t pud_pte(pud_t pud)
406 {
407 return __pte(pud_val(pud));
408 }
409
pte_pud(pte_t pte)410 static inline pud_t pte_pud(pte_t pte)
411 {
412 return __pud(pte_val(pte));
413 }
414
pud_pmd(pud_t pud)415 static inline pmd_t pud_pmd(pud_t pud)
416 {
417 return __pmd(pud_val(pud));
418 }
419
pmd_pte(pmd_t pmd)420 static inline pte_t pmd_pte(pmd_t pmd)
421 {
422 return __pte(pmd_val(pmd));
423 }
424
pte_pmd(pte_t pte)425 static inline pmd_t pte_pmd(pte_t pte)
426 {
427 return __pmd(pte_val(pte));
428 }
429
mk_pud_sect_prot(pgprot_t prot)430 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
431 {
432 return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT);
433 }
434
mk_pmd_sect_prot(pgprot_t prot)435 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
436 {
437 return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT);
438 }
439
pte_swp_mkexclusive(pte_t pte)440 static inline pte_t pte_swp_mkexclusive(pte_t pte)
441 {
442 return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
443 }
444
pte_swp_exclusive(pte_t pte)445 static inline int pte_swp_exclusive(pte_t pte)
446 {
447 return pte_val(pte) & PTE_SWP_EXCLUSIVE;
448 }
449
pte_swp_clear_exclusive(pte_t pte)450 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
451 {
452 return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
453 }
454
455 #ifdef CONFIG_NUMA_BALANCING
456 /*
457 * See the comment in include/linux/pgtable.h
458 */
pte_protnone(pte_t pte)459 static inline int pte_protnone(pte_t pte)
460 {
461 return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE;
462 }
463
pmd_protnone(pmd_t pmd)464 static inline int pmd_protnone(pmd_t pmd)
465 {
466 return pte_protnone(pmd_pte(pmd));
467 }
468 #endif
469
470 #define pmd_present_invalid(pmd) (!!(pmd_val(pmd) & PMD_PRESENT_INVALID))
471
pmd_present(pmd_t pmd)472 static inline int pmd_present(pmd_t pmd)
473 {
474 return pte_present(pmd_pte(pmd)) || pmd_present_invalid(pmd);
475 }
476
477 /*
478 * THP definitions.
479 */
480
481 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)482 static inline int pmd_trans_huge(pmd_t pmd)
483 {
484 return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT);
485 }
486 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
487
488 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
489 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
490 #define pmd_valid(pmd) pte_valid(pmd_pte(pmd))
491 #define pmd_user(pmd) pte_user(pmd_pte(pmd))
492 #define pmd_user_exec(pmd) pte_user_exec(pmd_pte(pmd))
493 #define pmd_cont(pmd) pte_cont(pmd_pte(pmd))
494 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
495 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
496 #define pmd_mkwrite_novma(pmd) pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
497 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
498 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
499 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
500
pmd_mkinvalid(pmd_t pmd)501 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
502 {
503 pmd = set_pmd_bit(pmd, __pgprot(PMD_PRESENT_INVALID));
504 pmd = clear_pmd_bit(pmd, __pgprot(PMD_SECT_VALID));
505
506 return pmd;
507 }
508
509 #define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd))
510
511 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
512
513 #define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
514
515 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
516 #define pmd_devmap(pmd) pte_devmap(pmd_pte(pmd))
517 #endif
pmd_mkdevmap(pmd_t pmd)518 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
519 {
520 return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
521 }
522
523 #define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd))
524 #define __phys_to_pmd_val(phys) __phys_to_pte_val(phys)
525 #define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
526 #define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
527 #define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot)
528
529 #define pud_young(pud) pte_young(pud_pte(pud))
530 #define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud)))
531 #define pud_write(pud) pte_write(pud_pte(pud))
532
533 #define pud_mkhuge(pud) (__pud(pud_val(pud) & ~PUD_TABLE_BIT))
534
535 #define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud))
536 #define __phys_to_pud_val(phys) __phys_to_pte_val(phys)
537 #define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
538 #define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
539
__set_pte_at(struct mm_struct * mm,unsigned long __always_unused addr,pte_t * ptep,pte_t pte,unsigned int nr)540 static inline void __set_pte_at(struct mm_struct *mm,
541 unsigned long __always_unused addr,
542 pte_t *ptep, pte_t pte, unsigned int nr)
543 {
544 __sync_cache_and_tags(pte, nr);
545 __check_safe_pte_update(mm, ptep, pte);
546 __set_pte(ptep, pte);
547 }
548
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)549 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
550 pmd_t *pmdp, pmd_t pmd)
551 {
552 page_table_check_pmd_set(mm, pmdp, pmd);
553 return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd),
554 PMD_SIZE >> PAGE_SHIFT);
555 }
556
set_pud_at(struct mm_struct * mm,unsigned long addr,pud_t * pudp,pud_t pud)557 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
558 pud_t *pudp, pud_t pud)
559 {
560 page_table_check_pud_set(mm, pudp, pud);
561 return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud),
562 PUD_SIZE >> PAGE_SHIFT);
563 }
564
565 #define __p4d_to_phys(p4d) __pte_to_phys(p4d_pte(p4d))
566 #define __phys_to_p4d_val(phys) __phys_to_pte_val(phys)
567
568 #define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd))
569 #define __phys_to_pgd_val(phys) __phys_to_pte_val(phys)
570
571 #define __pgprot_modify(prot,mask,bits) \
572 __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
573
574 #define pgprot_nx(prot) \
575 __pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
576
577 /*
578 * Mark the prot value as uncacheable and unbufferable.
579 */
580 #define pgprot_noncached(prot) \
581 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
582 #define pgprot_writecombine(prot) \
583 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
584 #define pgprot_device(prot) \
585 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
586 #define pgprot_tagged(prot) \
587 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
588 #define pgprot_mhp pgprot_tagged
589 /*
590 * DMA allocations for non-coherent devices use what the Arm architecture calls
591 * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
592 * and merging of writes. This is different from "Device-nGnR[nE]" memory which
593 * is intended for MMIO and thus forbids speculation, preserves access size,
594 * requires strict alignment and can also force write responses to come from the
595 * endpoint.
596 */
597 #define pgprot_dmacoherent(prot) \
598 __pgprot_modify(prot, PTE_ATTRINDX_MASK, \
599 PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
600
601 #define __HAVE_PHYS_MEM_ACCESS_PROT
602 struct file;
603 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
604 unsigned long size, pgprot_t vma_prot);
605
606 #define pmd_none(pmd) (!pmd_val(pmd))
607
608 #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
609 PMD_TYPE_TABLE)
610 #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
611 PMD_TYPE_SECT)
612 #define pmd_leaf(pmd) (pmd_present(pmd) && !pmd_table(pmd))
613 #define pmd_bad(pmd) (!pmd_table(pmd))
614
615 #define pmd_leaf_size(pmd) (pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
616 #define pte_leaf_size(pte) (pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
617
618 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
pud_sect(pud_t pud)619 static inline bool pud_sect(pud_t pud) { return false; }
pud_table(pud_t pud)620 static inline bool pud_table(pud_t pud) { return true; }
621 #else
622 #define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
623 PUD_TYPE_SECT)
624 #define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
625 PUD_TYPE_TABLE)
626 #endif
627
628 extern pgd_t init_pg_dir[PTRS_PER_PGD];
629 extern pgd_t init_pg_end[];
630 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
631 extern pgd_t idmap_pg_dir[PTRS_PER_PGD];
632 extern pgd_t tramp_pg_dir[PTRS_PER_PGD];
633 extern pgd_t reserved_pg_dir[PTRS_PER_PGD];
634
635 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
636
in_swapper_pgdir(void * addr)637 static inline bool in_swapper_pgdir(void *addr)
638 {
639 return ((unsigned long)addr & PAGE_MASK) ==
640 ((unsigned long)swapper_pg_dir & PAGE_MASK);
641 }
642
set_pmd(pmd_t * pmdp,pmd_t pmd)643 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
644 {
645 #ifdef __PAGETABLE_PMD_FOLDED
646 if (in_swapper_pgdir(pmdp)) {
647 set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
648 return;
649 }
650 #endif /* __PAGETABLE_PMD_FOLDED */
651
652 WRITE_ONCE(*pmdp, pmd);
653
654 if (pmd_valid(pmd)) {
655 dsb(ishst);
656 isb();
657 }
658 }
659
pmd_clear(pmd_t * pmdp)660 static inline void pmd_clear(pmd_t *pmdp)
661 {
662 set_pmd(pmdp, __pmd(0));
663 }
664
pmd_page_paddr(pmd_t pmd)665 static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
666 {
667 return __pmd_to_phys(pmd);
668 }
669
pmd_page_vaddr(pmd_t pmd)670 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
671 {
672 return (unsigned long)__va(pmd_page_paddr(pmd));
673 }
674
675 /* Find an entry in the third-level page table. */
676 #define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
677
678 #define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr))
679 #define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr))
680 #define pte_clear_fixmap() clear_fixmap(FIX_PTE)
681
682 #define pmd_page(pmd) phys_to_page(__pmd_to_phys(pmd))
683
684 /* use ONLY for statically allocated translation tables */
685 #define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
686
687 /*
688 * Conversion functions: convert a page and protection to a page entry,
689 * and a page entry and page directory to the page they refer to.
690 */
691 #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
692
693 #if CONFIG_PGTABLE_LEVELS > 2
694
695 #define pmd_ERROR(e) \
696 pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
697
698 #define pud_none(pud) (!pud_val(pud))
699 #define pud_bad(pud) (!pud_table(pud))
700 #define pud_present(pud) pte_present(pud_pte(pud))
701 #define pud_leaf(pud) (pud_present(pud) && !pud_table(pud))
702 #define pud_valid(pud) pte_valid(pud_pte(pud))
703 #define pud_user(pud) pte_user(pud_pte(pud))
704 #define pud_user_exec(pud) pte_user_exec(pud_pte(pud))
705
set_pud(pud_t * pudp,pud_t pud)706 static inline void set_pud(pud_t *pudp, pud_t pud)
707 {
708 #ifdef __PAGETABLE_PUD_FOLDED
709 if (in_swapper_pgdir(pudp)) {
710 set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
711 return;
712 }
713 #endif /* __PAGETABLE_PUD_FOLDED */
714
715 WRITE_ONCE(*pudp, pud);
716
717 if (pud_valid(pud)) {
718 dsb(ishst);
719 isb();
720 }
721 }
722
pud_clear(pud_t * pudp)723 static inline void pud_clear(pud_t *pudp)
724 {
725 set_pud(pudp, __pud(0));
726 }
727
pud_page_paddr(pud_t pud)728 static inline phys_addr_t pud_page_paddr(pud_t pud)
729 {
730 return __pud_to_phys(pud);
731 }
732
pud_pgtable(pud_t pud)733 static inline pmd_t *pud_pgtable(pud_t pud)
734 {
735 return (pmd_t *)__va(pud_page_paddr(pud));
736 }
737
738 /* Find an entry in the second-level page table. */
739 #define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
740
741 #define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
742 #define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr))
743 #define pmd_clear_fixmap() clear_fixmap(FIX_PMD)
744
745 #define pud_page(pud) phys_to_page(__pud_to_phys(pud))
746
747 /* use ONLY for statically allocated translation tables */
748 #define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
749
750 #else
751
752 #define pud_page_paddr(pud) ({ BUILD_BUG(); 0; })
753 #define pud_user_exec(pud) pud_user(pud) /* Always 0 with folding */
754
755 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
756 #define pmd_set_fixmap(addr) NULL
757 #define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp)
758 #define pmd_clear_fixmap()
759
760 #define pmd_offset_kimg(dir,addr) ((pmd_t *)dir)
761
762 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
763
764 #if CONFIG_PGTABLE_LEVELS > 3
765
766 #define pud_ERROR(e) \
767 pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
768
769 #define p4d_none(p4d) (!p4d_val(p4d))
770 #define p4d_bad(p4d) (!(p4d_val(p4d) & 2))
771 #define p4d_present(p4d) (p4d_val(p4d))
772
set_p4d(p4d_t * p4dp,p4d_t p4d)773 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
774 {
775 if (in_swapper_pgdir(p4dp)) {
776 set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
777 return;
778 }
779
780 WRITE_ONCE(*p4dp, p4d);
781 dsb(ishst);
782 isb();
783 }
784
p4d_clear(p4d_t * p4dp)785 static inline void p4d_clear(p4d_t *p4dp)
786 {
787 set_p4d(p4dp, __p4d(0));
788 }
789
p4d_page_paddr(p4d_t p4d)790 static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
791 {
792 return __p4d_to_phys(p4d);
793 }
794
p4d_pgtable(p4d_t p4d)795 static inline pud_t *p4d_pgtable(p4d_t p4d)
796 {
797 return (pud_t *)__va(p4d_page_paddr(p4d));
798 }
799
800 /* Find an entry in the first-level page table. */
801 #define pud_offset_phys(dir, addr) (p4d_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t))
802
803 #define pud_set_fixmap(addr) ((pud_t *)set_fixmap_offset(FIX_PUD, addr))
804 #define pud_set_fixmap_offset(p4d, addr) pud_set_fixmap(pud_offset_phys(p4d, addr))
805 #define pud_clear_fixmap() clear_fixmap(FIX_PUD)
806
807 #define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
808
809 /* use ONLY for statically allocated translation tables */
810 #define pud_offset_kimg(dir,addr) ((pud_t *)__phys_to_kimg(pud_offset_phys((dir), (addr))))
811
812 #else
813
814 #define p4d_page_paddr(p4d) ({ BUILD_BUG(); 0;})
815 #define pgd_page_paddr(pgd) ({ BUILD_BUG(); 0;})
816
817 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
818 #define pud_set_fixmap(addr) NULL
819 #define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp)
820 #define pud_clear_fixmap()
821
822 #define pud_offset_kimg(dir,addr) ((pud_t *)dir)
823
824 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
825
826 #define pgd_ERROR(e) \
827 pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
828
829 #define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
830 #define pgd_clear_fixmap() clear_fixmap(FIX_PGD)
831
pte_modify(pte_t pte,pgprot_t newprot)832 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
833 {
834 /*
835 * Normal and Normal-Tagged are two different memory types and indices
836 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
837 */
838 const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
839 PTE_PROT_NONE | PTE_VALID | PTE_WRITE | PTE_GP |
840 PTE_ATTRINDX_MASK;
841 /* preserve the hardware dirty information */
842 if (pte_hw_dirty(pte))
843 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
844
845 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
846 /*
847 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
848 * dirtiness again.
849 */
850 if (pte_sw_dirty(pte))
851 pte = pte_mkdirty(pte);
852 return pte;
853 }
854
pmd_modify(pmd_t pmd,pgprot_t newprot)855 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
856 {
857 return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
858 }
859
860 extern int __ptep_set_access_flags(struct vm_area_struct *vma,
861 unsigned long address, pte_t *ptep,
862 pte_t entry, int dirty);
863
864 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
865 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)866 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
867 unsigned long address, pmd_t *pmdp,
868 pmd_t entry, int dirty)
869 {
870 return __ptep_set_access_flags(vma, address, (pte_t *)pmdp,
871 pmd_pte(entry), dirty);
872 }
873
pud_devmap(pud_t pud)874 static inline int pud_devmap(pud_t pud)
875 {
876 return 0;
877 }
878
pgd_devmap(pgd_t pgd)879 static inline int pgd_devmap(pgd_t pgd)
880 {
881 return 0;
882 }
883 #endif
884
885 #ifdef CONFIG_PAGE_TABLE_CHECK
pte_user_accessible_page(pte_t pte)886 static inline bool pte_user_accessible_page(pte_t pte)
887 {
888 return pte_present(pte) && (pte_user(pte) || pte_user_exec(pte));
889 }
890
pmd_user_accessible_page(pmd_t pmd)891 static inline bool pmd_user_accessible_page(pmd_t pmd)
892 {
893 return pmd_leaf(pmd) && !pmd_present_invalid(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
894 }
895
pud_user_accessible_page(pud_t pud)896 static inline bool pud_user_accessible_page(pud_t pud)
897 {
898 return pud_leaf(pud) && (pud_user(pud) || pud_user_exec(pud));
899 }
900 #endif
901
902 /*
903 * Atomic pte/pmd modifications.
904 */
__ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)905 static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma,
906 unsigned long address,
907 pte_t *ptep)
908 {
909 pte_t old_pte, pte;
910
911 pte = __ptep_get(ptep);
912 do {
913 old_pte = pte;
914 pte = pte_mkold(pte);
915 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
916 pte_val(old_pte), pte_val(pte));
917 } while (pte_val(pte) != pte_val(old_pte));
918
919 return pte_young(pte);
920 }
921
__ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)922 static inline int __ptep_clear_flush_young(struct vm_area_struct *vma,
923 unsigned long address, pte_t *ptep)
924 {
925 int young = __ptep_test_and_clear_young(vma, address, ptep);
926
927 if (young) {
928 /*
929 * We can elide the trailing DSB here since the worst that can
930 * happen is that a CPU continues to use the young entry in its
931 * TLB and we mistakenly reclaim the associated page. The
932 * window for such an event is bounded by the next
933 * context-switch, which provides a DSB to complete the TLB
934 * invalidation.
935 */
936 flush_tlb_page_nosync(vma, address);
937 }
938
939 return young;
940 }
941
942 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
943 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)944 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
945 unsigned long address,
946 pmd_t *pmdp)
947 {
948 return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
949 }
950 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
951
__ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)952 static inline pte_t __ptep_get_and_clear(struct mm_struct *mm,
953 unsigned long address, pte_t *ptep)
954 {
955 pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
956
957 page_table_check_pte_clear(mm, pte);
958
959 return pte;
960 }
961
__clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)962 static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr,
963 pte_t *ptep, unsigned int nr, int full)
964 {
965 for (;;) {
966 __ptep_get_and_clear(mm, addr, ptep);
967 if (--nr == 0)
968 break;
969 ptep++;
970 addr += PAGE_SIZE;
971 }
972 }
973
__get_and_clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)974 static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm,
975 unsigned long addr, pte_t *ptep,
976 unsigned int nr, int full)
977 {
978 pte_t pte, tmp_pte;
979
980 pte = __ptep_get_and_clear(mm, addr, ptep);
981 while (--nr) {
982 ptep++;
983 addr += PAGE_SIZE;
984 tmp_pte = __ptep_get_and_clear(mm, addr, ptep);
985 if (pte_dirty(tmp_pte))
986 pte = pte_mkdirty(pte);
987 if (pte_young(tmp_pte))
988 pte = pte_mkyoung(pte);
989 }
990 return pte;
991 }
992
993 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
994 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)995 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
996 unsigned long address, pmd_t *pmdp)
997 {
998 pmd_t pmd = __pmd(xchg_relaxed(&pmd_val(*pmdp), 0));
999
1000 page_table_check_pmd_clear(mm, pmd);
1001
1002 return pmd;
1003 }
1004 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1005
___ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep,pte_t pte)1006 static inline void ___ptep_set_wrprotect(struct mm_struct *mm,
1007 unsigned long address, pte_t *ptep,
1008 pte_t pte)
1009 {
1010 pte_t old_pte;
1011
1012 do {
1013 old_pte = pte;
1014 pte = pte_wrprotect(pte);
1015 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1016 pte_val(old_pte), pte_val(pte));
1017 } while (pte_val(pte) != pte_val(old_pte));
1018 }
1019
1020 /*
1021 * __ptep_set_wrprotect - mark read-only while trasferring potential hardware
1022 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
1023 */
__ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)1024 static inline void __ptep_set_wrprotect(struct mm_struct *mm,
1025 unsigned long address, pte_t *ptep)
1026 {
1027 ___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep));
1028 }
1029
__wrprotect_ptes(struct mm_struct * mm,unsigned long address,pte_t * ptep,unsigned int nr)1030 static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address,
1031 pte_t *ptep, unsigned int nr)
1032 {
1033 unsigned int i;
1034
1035 for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++)
1036 __ptep_set_wrprotect(mm, address, ptep);
1037 }
1038
__clear_young_dirty_pte(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte,cydp_t flags)1039 static inline void __clear_young_dirty_pte(struct vm_area_struct *vma,
1040 unsigned long addr, pte_t *ptep,
1041 pte_t pte, cydp_t flags)
1042 {
1043 pte_t old_pte;
1044
1045 do {
1046 old_pte = pte;
1047
1048 if (flags & CYDP_CLEAR_YOUNG)
1049 pte = pte_mkold(pte);
1050 if (flags & CYDP_CLEAR_DIRTY)
1051 pte = pte_mkclean(pte);
1052
1053 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1054 pte_val(old_pte), pte_val(pte));
1055 } while (pte_val(pte) != pte_val(old_pte));
1056 }
1057
__clear_young_dirty_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr,cydp_t flags)1058 static inline void __clear_young_dirty_ptes(struct vm_area_struct *vma,
1059 unsigned long addr, pte_t *ptep,
1060 unsigned int nr, cydp_t flags)
1061 {
1062 pte_t pte;
1063
1064 for (;;) {
1065 pte = __ptep_get(ptep);
1066
1067 if (flags == (CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY))
1068 __set_pte(ptep, pte_mkclean(pte_mkold(pte)));
1069 else
1070 __clear_young_dirty_pte(vma, addr, ptep, pte, flags);
1071
1072 if (--nr == 0)
1073 break;
1074 ptep++;
1075 addr += PAGE_SIZE;
1076 }
1077 }
1078
1079 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1080 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)1081 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1082 unsigned long address, pmd_t *pmdp)
1083 {
1084 __ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
1085 }
1086
1087 #define pmdp_establish pmdp_establish
pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)1088 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1089 unsigned long address, pmd_t *pmdp, pmd_t pmd)
1090 {
1091 page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1092 return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
1093 }
1094 #endif
1095
1096 /*
1097 * Encode and decode a swap entry:
1098 * bits 0-1: present (must be zero)
1099 * bits 2: remember PG_anon_exclusive
1100 * bits 3-7: swap type
1101 * bits 8-57: swap offset
1102 * bit 58: PTE_PROT_NONE (must be zero)
1103 */
1104 #define __SWP_TYPE_SHIFT 3
1105 #define __SWP_TYPE_BITS 5
1106 #define __SWP_OFFSET_BITS 50
1107 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
1108 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
1109 #define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1)
1110
1111 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1112 #define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
1113 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
1114
1115 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1116 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
1117
1118 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1119 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
1120 #define __swp_entry_to_pmd(swp) __pmd((swp).val)
1121 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1122
1123 /*
1124 * Ensure that there are not more swap files than can be encoded in the kernel
1125 * PTEs.
1126 */
1127 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1128
1129 #ifdef CONFIG_ARM64_MTE
1130
1131 #define __HAVE_ARCH_PREPARE_TO_SWAP
1132 extern int arch_prepare_to_swap(struct folio *folio);
1133
1134 #define __HAVE_ARCH_SWAP_INVALIDATE
arch_swap_invalidate_page(int type,pgoff_t offset)1135 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1136 {
1137 if (system_supports_mte())
1138 mte_invalidate_tags(type, offset);
1139 }
1140
arch_swap_invalidate_area(int type)1141 static inline void arch_swap_invalidate_area(int type)
1142 {
1143 if (system_supports_mte())
1144 mte_invalidate_tags_area(type);
1145 }
1146
1147 #define __HAVE_ARCH_SWAP_RESTORE
1148 extern void arch_swap_restore(swp_entry_t entry, struct folio *folio);
1149
1150 #endif /* CONFIG_ARM64_MTE */
1151
1152 /*
1153 * On AArch64, the cache coherency is handled via the __set_ptes() function.
1154 */
update_mmu_cache_range(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr)1155 static inline void update_mmu_cache_range(struct vm_fault *vmf,
1156 struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
1157 unsigned int nr)
1158 {
1159 /*
1160 * We don't do anything here, so there's a very small chance of
1161 * us retaking a user fault which we just fixed up. The alternative
1162 * is doing a dsb(ishst), but that penalises the fastpath.
1163 */
1164 }
1165
1166 #define update_mmu_cache(vma, addr, ptep) \
1167 update_mmu_cache_range(NULL, vma, addr, ptep, 1)
1168 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
1169
1170 #ifdef CONFIG_ARM64_PA_BITS_52
1171 #define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
1172 #else
1173 #define phys_to_ttbr(addr) (addr)
1174 #endif
1175
1176 /*
1177 * On arm64 without hardware Access Flag, copying from user will fail because
1178 * the pte is old and cannot be marked young. So we always end up with zeroed
1179 * page after fork() + CoW for pfn mappings. We don't always have a
1180 * hardware-managed access flag on arm64.
1181 */
1182 #define arch_has_hw_pte_young cpu_has_hw_af
1183
1184 /*
1185 * Experimentally, it's cheap to set the access flag in hardware and we
1186 * benefit from prefaulting mappings as 'old' to start with.
1187 */
1188 #define arch_wants_old_prefaulted_pte cpu_has_hw_af
1189
pud_sect_supported(void)1190 static inline bool pud_sect_supported(void)
1191 {
1192 return PAGE_SIZE == SZ_4K;
1193 }
1194
1195
1196 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1197 #define ptep_modify_prot_start ptep_modify_prot_start
1198 extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1199 unsigned long addr, pte_t *ptep);
1200
1201 #define ptep_modify_prot_commit ptep_modify_prot_commit
1202 extern void ptep_modify_prot_commit(struct vm_area_struct *vma,
1203 unsigned long addr, pte_t *ptep,
1204 pte_t old_pte, pte_t new_pte);
1205
1206 #ifdef CONFIG_ARM64_CONTPTE
1207
1208 /*
1209 * The contpte APIs are used to transparently manage the contiguous bit in ptes
1210 * where it is possible and makes sense to do so. The PTE_CONT bit is considered
1211 * a private implementation detail of the public ptep API (see below).
1212 */
1213 extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr,
1214 pte_t *ptep, pte_t pte);
1215 extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr,
1216 pte_t *ptep, pte_t pte);
1217 extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte);
1218 extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep);
1219 extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr,
1220 pte_t *ptep, pte_t pte, unsigned int nr);
1221 extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1222 pte_t *ptep, unsigned int nr, int full);
1223 extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm,
1224 unsigned long addr, pte_t *ptep,
1225 unsigned int nr, int full);
1226 extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma,
1227 unsigned long addr, pte_t *ptep);
1228 extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma,
1229 unsigned long addr, pte_t *ptep);
1230 extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
1231 pte_t *ptep, unsigned int nr);
1232 extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma,
1233 unsigned long addr, pte_t *ptep,
1234 pte_t entry, int dirty);
1235 extern void contpte_clear_young_dirty_ptes(struct vm_area_struct *vma,
1236 unsigned long addr, pte_t *ptep,
1237 unsigned int nr, cydp_t flags);
1238
contpte_try_fold(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)1239 static __always_inline void contpte_try_fold(struct mm_struct *mm,
1240 unsigned long addr, pte_t *ptep, pte_t pte)
1241 {
1242 /*
1243 * Only bother trying if both the virtual and physical addresses are
1244 * aligned and correspond to the last entry in a contig range. The core
1245 * code mostly modifies ranges from low to high, so this is the likely
1246 * the last modification in the contig range, so a good time to fold.
1247 * We can't fold special mappings, because there is no associated folio.
1248 */
1249
1250 const unsigned long contmask = CONT_PTES - 1;
1251 bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask;
1252
1253 if (unlikely(valign)) {
1254 bool palign = (pte_pfn(pte) & contmask) == contmask;
1255
1256 if (unlikely(palign &&
1257 pte_valid(pte) && !pte_cont(pte) && !pte_special(pte)))
1258 __contpte_try_fold(mm, addr, ptep, pte);
1259 }
1260 }
1261
contpte_try_unfold(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)1262 static __always_inline void contpte_try_unfold(struct mm_struct *mm,
1263 unsigned long addr, pte_t *ptep, pte_t pte)
1264 {
1265 if (unlikely(pte_valid_cont(pte)))
1266 __contpte_try_unfold(mm, addr, ptep, pte);
1267 }
1268
1269 #define pte_batch_hint pte_batch_hint
pte_batch_hint(pte_t * ptep,pte_t pte)1270 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
1271 {
1272 if (!pte_valid_cont(pte))
1273 return 1;
1274
1275 return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1));
1276 }
1277
1278 /*
1279 * The below functions constitute the public API that arm64 presents to the
1280 * core-mm to manipulate PTE entries within their page tables (or at least this
1281 * is the subset of the API that arm64 needs to implement). These public
1282 * versions will automatically and transparently apply the contiguous bit where
1283 * it makes sense to do so. Therefore any users that are contig-aware (e.g.
1284 * hugetlb, kernel mapper) should NOT use these APIs, but instead use the
1285 * private versions, which are prefixed with double underscore. All of these
1286 * APIs except for ptep_get_lockless() are expected to be called with the PTL
1287 * held. Although the contiguous bit is considered private to the
1288 * implementation, it is deliberately allowed to leak through the getters (e.g.
1289 * ptep_get()), back to core code. This is required so that pte_leaf_size() can
1290 * provide an accurate size for perf_get_pgtable_size(). But this leakage means
1291 * its possible a pte will be passed to a setter with the contiguous bit set, so
1292 * we explicitly clear the contiguous bit in those cases to prevent accidentally
1293 * setting it in the pgtable.
1294 */
1295
1296 #define ptep_get ptep_get
ptep_get(pte_t * ptep)1297 static inline pte_t ptep_get(pte_t *ptep)
1298 {
1299 pte_t pte = __ptep_get(ptep);
1300
1301 if (likely(!pte_valid_cont(pte)))
1302 return pte;
1303
1304 return contpte_ptep_get(ptep, pte);
1305 }
1306
1307 #define ptep_get_lockless ptep_get_lockless
ptep_get_lockless(pte_t * ptep)1308 static inline pte_t ptep_get_lockless(pte_t *ptep)
1309 {
1310 pte_t pte = __ptep_get(ptep);
1311
1312 if (likely(!pte_valid_cont(pte)))
1313 return pte;
1314
1315 return contpte_ptep_get_lockless(ptep);
1316 }
1317
set_pte(pte_t * ptep,pte_t pte)1318 static inline void set_pte(pte_t *ptep, pte_t pte)
1319 {
1320 /*
1321 * We don't have the mm or vaddr so cannot unfold contig entries (since
1322 * it requires tlb maintenance). set_pte() is not used in core code, so
1323 * this should never even be called. Regardless do our best to service
1324 * any call and emit a warning if there is any attempt to set a pte on
1325 * top of an existing contig range.
1326 */
1327 pte_t orig_pte = __ptep_get(ptep);
1328
1329 WARN_ON_ONCE(pte_valid_cont(orig_pte));
1330 __set_pte(ptep, pte_mknoncont(pte));
1331 }
1332
1333 #define set_ptes set_ptes
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,unsigned int nr)1334 static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1335 pte_t *ptep, pte_t pte, unsigned int nr)
1336 {
1337 pte = pte_mknoncont(pte);
1338
1339 if (likely(nr == 1)) {
1340 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1341 __set_ptes(mm, addr, ptep, pte, 1);
1342 contpte_try_fold(mm, addr, ptep, pte);
1343 } else {
1344 contpte_set_ptes(mm, addr, ptep, pte, nr);
1345 }
1346 }
1347
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1348 static inline void pte_clear(struct mm_struct *mm,
1349 unsigned long addr, pte_t *ptep)
1350 {
1351 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1352 __pte_clear(mm, addr, ptep);
1353 }
1354
1355 #define clear_full_ptes clear_full_ptes
clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1356 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1357 pte_t *ptep, unsigned int nr, int full)
1358 {
1359 if (likely(nr == 1)) {
1360 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1361 __clear_full_ptes(mm, addr, ptep, nr, full);
1362 } else {
1363 contpte_clear_full_ptes(mm, addr, ptep, nr, full);
1364 }
1365 }
1366
1367 #define get_and_clear_full_ptes get_and_clear_full_ptes
get_and_clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1368 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
1369 unsigned long addr, pte_t *ptep,
1370 unsigned int nr, int full)
1371 {
1372 pte_t pte;
1373
1374 if (likely(nr == 1)) {
1375 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1376 pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1377 } else {
1378 pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1379 }
1380
1381 return pte;
1382 }
1383
1384 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1385 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1386 unsigned long addr, pte_t *ptep)
1387 {
1388 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1389 return __ptep_get_and_clear(mm, addr, ptep);
1390 }
1391
1392 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1393 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1394 unsigned long addr, pte_t *ptep)
1395 {
1396 pte_t orig_pte = __ptep_get(ptep);
1397
1398 if (likely(!pte_valid_cont(orig_pte)))
1399 return __ptep_test_and_clear_young(vma, addr, ptep);
1400
1401 return contpte_ptep_test_and_clear_young(vma, addr, ptep);
1402 }
1403
1404 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1405 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1406 unsigned long addr, pte_t *ptep)
1407 {
1408 pte_t orig_pte = __ptep_get(ptep);
1409
1410 if (likely(!pte_valid_cont(orig_pte)))
1411 return __ptep_clear_flush_young(vma, addr, ptep);
1412
1413 return contpte_ptep_clear_flush_young(vma, addr, ptep);
1414 }
1415
1416 #define wrprotect_ptes wrprotect_ptes
wrprotect_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr)1417 static __always_inline void wrprotect_ptes(struct mm_struct *mm,
1418 unsigned long addr, pte_t *ptep, unsigned int nr)
1419 {
1420 if (likely(nr == 1)) {
1421 /*
1422 * Optimization: wrprotect_ptes() can only be called for present
1423 * ptes so we only need to check contig bit as condition for
1424 * unfold, and we can remove the contig bit from the pte we read
1425 * to avoid re-reading. This speeds up fork() which is sensitive
1426 * for order-0 folios. Equivalent to contpte_try_unfold().
1427 */
1428 pte_t orig_pte = __ptep_get(ptep);
1429
1430 if (unlikely(pte_cont(orig_pte))) {
1431 __contpte_try_unfold(mm, addr, ptep, orig_pte);
1432 orig_pte = pte_mknoncont(orig_pte);
1433 }
1434 ___ptep_set_wrprotect(mm, addr, ptep, orig_pte);
1435 } else {
1436 contpte_wrprotect_ptes(mm, addr, ptep, nr);
1437 }
1438 }
1439
1440 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1441 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1442 unsigned long addr, pte_t *ptep)
1443 {
1444 wrprotect_ptes(mm, addr, ptep, 1);
1445 }
1446
1447 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1448 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1449 unsigned long addr, pte_t *ptep,
1450 pte_t entry, int dirty)
1451 {
1452 pte_t orig_pte = __ptep_get(ptep);
1453
1454 entry = pte_mknoncont(entry);
1455
1456 if (likely(!pte_valid_cont(orig_pte)))
1457 return __ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1458
1459 return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1460 }
1461
1462 #define clear_young_dirty_ptes clear_young_dirty_ptes
clear_young_dirty_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr,cydp_t flags)1463 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
1464 unsigned long addr, pte_t *ptep,
1465 unsigned int nr, cydp_t flags)
1466 {
1467 if (likely(nr == 1 && !pte_cont(__ptep_get(ptep))))
1468 __clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1469 else
1470 contpte_clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1471 }
1472
1473 #else /* CONFIG_ARM64_CONTPTE */
1474
1475 #define ptep_get __ptep_get
1476 #define set_pte __set_pte
1477 #define set_ptes __set_ptes
1478 #define pte_clear __pte_clear
1479 #define clear_full_ptes __clear_full_ptes
1480 #define get_and_clear_full_ptes __get_and_clear_full_ptes
1481 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1482 #define ptep_get_and_clear __ptep_get_and_clear
1483 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1484 #define ptep_test_and_clear_young __ptep_test_and_clear_young
1485 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1486 #define ptep_clear_flush_young __ptep_clear_flush_young
1487 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1488 #define ptep_set_wrprotect __ptep_set_wrprotect
1489 #define wrprotect_ptes __wrprotect_ptes
1490 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1491 #define ptep_set_access_flags __ptep_set_access_flags
1492 #define clear_young_dirty_ptes __clear_young_dirty_ptes
1493
1494 #endif /* CONFIG_ARM64_CONTPTE */
1495
1496 #endif /* !__ASSEMBLY__ */
1497
1498 #endif /* __ASM_PGTABLE_H */
1499