• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * The industrial I/O core
4  *
5  * Copyright (c) 2008 Jonathan Cameron
6  *
7  * Based on elements of hwmon and input subsystems.
8  */
9 
10 #define pr_fmt(fmt) "iio-core: " fmt
11 
12 #include <linux/anon_inodes.h>
13 #include <linux/cdev.h>
14 #include <linux/debugfs.h>
15 #include <linux/device.h>
16 #include <linux/err.h>
17 #include <linux/fs.h>
18 #include <linux/idr.h>
19 #include <linux/kdev_t.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/poll.h>
24 #include <linux/property.h>
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/wait.h>
28 
29 #include <linux/iio/buffer.h>
30 #include <linux/iio/buffer_impl.h>
31 #include <linux/iio/events.h>
32 #include <linux/iio/iio-opaque.h>
33 #include <linux/iio/iio.h>
34 #include <linux/iio/sysfs.h>
35 
36 #include "iio_core.h"
37 #include "iio_core_trigger.h"
38 
39 /* IDA to assign each registered device a unique id */
40 static DEFINE_IDA(iio_ida);
41 
42 static dev_t iio_devt;
43 
44 #define IIO_DEV_MAX 256
45 struct bus_type iio_bus_type = {
46 	.name = "iio",
47 };
48 EXPORT_SYMBOL(iio_bus_type);
49 
50 static struct dentry *iio_debugfs_dentry;
51 
52 static const char * const iio_direction[] = {
53 	[0] = "in",
54 	[1] = "out",
55 };
56 
57 static const char * const iio_chan_type_name_spec[] = {
58 	[IIO_VOLTAGE] = "voltage",
59 	[IIO_CURRENT] = "current",
60 	[IIO_POWER] = "power",
61 	[IIO_ACCEL] = "accel",
62 	[IIO_ANGL_VEL] = "anglvel",
63 	[IIO_MAGN] = "magn",
64 	[IIO_LIGHT] = "illuminance",
65 	[IIO_INTENSITY] = "intensity",
66 	[IIO_PROXIMITY] = "proximity",
67 	[IIO_TEMP] = "temp",
68 	[IIO_INCLI] = "incli",
69 	[IIO_ROT] = "rot",
70 	[IIO_ANGL] = "angl",
71 	[IIO_TIMESTAMP] = "timestamp",
72 	[IIO_CAPACITANCE] = "capacitance",
73 	[IIO_ALTVOLTAGE] = "altvoltage",
74 	[IIO_CCT] = "cct",
75 	[IIO_PRESSURE] = "pressure",
76 	[IIO_HUMIDITYRELATIVE] = "humidityrelative",
77 	[IIO_ACTIVITY] = "activity",
78 	[IIO_STEPS] = "steps",
79 	[IIO_ENERGY] = "energy",
80 	[IIO_DISTANCE] = "distance",
81 	[IIO_VELOCITY] = "velocity",
82 	[IIO_CONCENTRATION] = "concentration",
83 	[IIO_RESISTANCE] = "resistance",
84 	[IIO_PH] = "ph",
85 	[IIO_UVINDEX] = "uvindex",
86 	[IIO_ELECTRICALCONDUCTIVITY] = "electricalconductivity",
87 	[IIO_COUNT] = "count",
88 	[IIO_INDEX] = "index",
89 	[IIO_GRAVITY]  = "gravity",
90 	[IIO_POSITIONRELATIVE]  = "positionrelative",
91 	[IIO_PHASE] = "phase",
92 	[IIO_MASSCONCENTRATION] = "massconcentration",
93 };
94 
95 static const char * const iio_modifier_names[] = {
96 	[IIO_MOD_X] = "x",
97 	[IIO_MOD_Y] = "y",
98 	[IIO_MOD_Z] = "z",
99 	[IIO_MOD_X_AND_Y] = "x&y",
100 	[IIO_MOD_X_AND_Z] = "x&z",
101 	[IIO_MOD_Y_AND_Z] = "y&z",
102 	[IIO_MOD_X_AND_Y_AND_Z] = "x&y&z",
103 	[IIO_MOD_X_OR_Y] = "x|y",
104 	[IIO_MOD_X_OR_Z] = "x|z",
105 	[IIO_MOD_Y_OR_Z] = "y|z",
106 	[IIO_MOD_X_OR_Y_OR_Z] = "x|y|z",
107 	[IIO_MOD_ROOT_SUM_SQUARED_X_Y] = "sqrt(x^2+y^2)",
108 	[IIO_MOD_SUM_SQUARED_X_Y_Z] = "x^2+y^2+z^2",
109 	[IIO_MOD_LIGHT_BOTH] = "both",
110 	[IIO_MOD_LIGHT_IR] = "ir",
111 	[IIO_MOD_LIGHT_CLEAR] = "clear",
112 	[IIO_MOD_LIGHT_RED] = "red",
113 	[IIO_MOD_LIGHT_GREEN] = "green",
114 	[IIO_MOD_LIGHT_BLUE] = "blue",
115 	[IIO_MOD_LIGHT_UV] = "uv",
116 	[IIO_MOD_LIGHT_DUV] = "duv",
117 	[IIO_MOD_QUATERNION] = "quaternion",
118 	[IIO_MOD_TEMP_AMBIENT] = "ambient",
119 	[IIO_MOD_TEMP_OBJECT] = "object",
120 	[IIO_MOD_NORTH_MAGN] = "from_north_magnetic",
121 	[IIO_MOD_NORTH_TRUE] = "from_north_true",
122 	[IIO_MOD_NORTH_MAGN_TILT_COMP] = "from_north_magnetic_tilt_comp",
123 	[IIO_MOD_NORTH_TRUE_TILT_COMP] = "from_north_true_tilt_comp",
124 	[IIO_MOD_RUNNING] = "running",
125 	[IIO_MOD_JOGGING] = "jogging",
126 	[IIO_MOD_WALKING] = "walking",
127 	[IIO_MOD_STILL] = "still",
128 	[IIO_MOD_ROOT_SUM_SQUARED_X_Y_Z] = "sqrt(x^2+y^2+z^2)",
129 	[IIO_MOD_I] = "i",
130 	[IIO_MOD_Q] = "q",
131 	[IIO_MOD_CO2] = "co2",
132 	[IIO_MOD_VOC] = "voc",
133 	[IIO_MOD_PM1] = "pm1",
134 	[IIO_MOD_PM2P5] = "pm2p5",
135 	[IIO_MOD_PM4] = "pm4",
136 	[IIO_MOD_PM10] = "pm10",
137 	[IIO_MOD_ETHANOL] = "ethanol",
138 	[IIO_MOD_H2] = "h2",
139 	[IIO_MOD_O2] = "o2",
140 	[IIO_MOD_LINEAR_X] = "linear_x",
141 	[IIO_MOD_LINEAR_Y] = "linear_y",
142 	[IIO_MOD_LINEAR_Z] = "linear_z",
143 	[IIO_MOD_PITCH] = "pitch",
144 	[IIO_MOD_YAW] = "yaw",
145 	[IIO_MOD_ROLL] = "roll",
146 };
147 
148 /* relies on pairs of these shared then separate */
149 static const char * const iio_chan_info_postfix[] = {
150 	[IIO_CHAN_INFO_RAW] = "raw",
151 	[IIO_CHAN_INFO_PROCESSED] = "input",
152 	[IIO_CHAN_INFO_SCALE] = "scale",
153 	[IIO_CHAN_INFO_OFFSET] = "offset",
154 	[IIO_CHAN_INFO_CALIBSCALE] = "calibscale",
155 	[IIO_CHAN_INFO_CALIBBIAS] = "calibbias",
156 	[IIO_CHAN_INFO_PEAK] = "peak_raw",
157 	[IIO_CHAN_INFO_PEAK_SCALE] = "peak_scale",
158 	[IIO_CHAN_INFO_QUADRATURE_CORRECTION_RAW] = "quadrature_correction_raw",
159 	[IIO_CHAN_INFO_AVERAGE_RAW] = "mean_raw",
160 	[IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY]
161 	= "filter_low_pass_3db_frequency",
162 	[IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY]
163 	= "filter_high_pass_3db_frequency",
164 	[IIO_CHAN_INFO_SAMP_FREQ] = "sampling_frequency",
165 	[IIO_CHAN_INFO_FREQUENCY] = "frequency",
166 	[IIO_CHAN_INFO_PHASE] = "phase",
167 	[IIO_CHAN_INFO_HARDWAREGAIN] = "hardwaregain",
168 	[IIO_CHAN_INFO_HYSTERESIS] = "hysteresis",
169 	[IIO_CHAN_INFO_HYSTERESIS_RELATIVE] = "hysteresis_relative",
170 	[IIO_CHAN_INFO_INT_TIME] = "integration_time",
171 	[IIO_CHAN_INFO_ENABLE] = "en",
172 	[IIO_CHAN_INFO_CALIBHEIGHT] = "calibheight",
173 	[IIO_CHAN_INFO_CALIBWEIGHT] = "calibweight",
174 	[IIO_CHAN_INFO_DEBOUNCE_COUNT] = "debounce_count",
175 	[IIO_CHAN_INFO_DEBOUNCE_TIME] = "debounce_time",
176 	[IIO_CHAN_INFO_CALIBEMISSIVITY] = "calibemissivity",
177 	[IIO_CHAN_INFO_OVERSAMPLING_RATIO] = "oversampling_ratio",
178 	[IIO_CHAN_INFO_THERMOCOUPLE_TYPE] = "thermocouple_type",
179 	[IIO_CHAN_INFO_CALIBAMBIENT] = "calibambient",
180 	[IIO_CHAN_INFO_ZEROPOINT] = "zeropoint",
181 };
182 /**
183  * iio_device_id() - query the unique ID for the device
184  * @indio_dev:		Device structure whose ID is being queried
185  *
186  * The IIO device ID is a unique index used for example for the naming
187  * of the character device /dev/iio\:device[ID].
188  *
189  * Returns: Unique ID for the device.
190  */
iio_device_id(struct iio_dev * indio_dev)191 int iio_device_id(struct iio_dev *indio_dev)
192 {
193 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
194 
195 	return iio_dev_opaque->id;
196 }
197 EXPORT_SYMBOL_GPL(iio_device_id);
198 
199 /**
200  * iio_buffer_enabled() - helper function to test if the buffer is enabled
201  * @indio_dev:		IIO device structure for device
202  *
203  * Returns: True, if the buffer is enabled.
204  */
iio_buffer_enabled(struct iio_dev * indio_dev)205 bool iio_buffer_enabled(struct iio_dev *indio_dev)
206 {
207 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
208 
209 	return iio_dev_opaque->currentmode &
210 	       (INDIO_BUFFER_HARDWARE | INDIO_BUFFER_SOFTWARE |
211 		INDIO_BUFFER_TRIGGERED);
212 }
213 EXPORT_SYMBOL_GPL(iio_buffer_enabled);
214 
215 #if defined(CONFIG_DEBUG_FS)
216 /*
217  * There's also a CONFIG_DEBUG_FS guard in include/linux/iio/iio.h for
218  * iio_get_debugfs_dentry() to make it inline if CONFIG_DEBUG_FS is undefined
219  */
iio_get_debugfs_dentry(struct iio_dev * indio_dev)220 struct dentry *iio_get_debugfs_dentry(struct iio_dev *indio_dev)
221 {
222 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
223 
224 	return iio_dev_opaque->debugfs_dentry;
225 }
226 EXPORT_SYMBOL_GPL(iio_get_debugfs_dentry);
227 #endif
228 
229 /**
230  * iio_find_channel_from_si() - get channel from its scan index
231  * @indio_dev:		device
232  * @si:			scan index to match
233  *
234  * Returns:
235  * Constant pointer to iio_chan_spec, if scan index matches, NULL on failure.
236  */
237 const struct iio_chan_spec
iio_find_channel_from_si(struct iio_dev * indio_dev,int si)238 *iio_find_channel_from_si(struct iio_dev *indio_dev, int si)
239 {
240 	int i;
241 
242 	for (i = 0; i < indio_dev->num_channels; i++)
243 		if (indio_dev->channels[i].scan_index == si)
244 			return &indio_dev->channels[i];
245 	return NULL;
246 }
247 
248 /* This turns up an awful lot */
iio_read_const_attr(struct device * dev,struct device_attribute * attr,char * buf)249 ssize_t iio_read_const_attr(struct device *dev,
250 			    struct device_attribute *attr,
251 			    char *buf)
252 {
253 	return sysfs_emit(buf, "%s\n", to_iio_const_attr(attr)->string);
254 }
255 EXPORT_SYMBOL(iio_read_const_attr);
256 
257 /**
258  * iio_device_set_clock() - Set current timestamping clock for the device
259  * @indio_dev: IIO device structure containing the device
260  * @clock_id: timestamping clock POSIX identifier to set.
261  *
262  * Returns: 0 on success, or a negative error code.
263  */
iio_device_set_clock(struct iio_dev * indio_dev,clockid_t clock_id)264 int iio_device_set_clock(struct iio_dev *indio_dev, clockid_t clock_id)
265 {
266 	int ret;
267 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
268 	const struct iio_event_interface *ev_int = iio_dev_opaque->event_interface;
269 
270 	ret = mutex_lock_interruptible(&iio_dev_opaque->mlock);
271 	if (ret)
272 		return ret;
273 	if ((ev_int && iio_event_enabled(ev_int)) ||
274 	    iio_buffer_enabled(indio_dev)) {
275 		mutex_unlock(&iio_dev_opaque->mlock);
276 		return -EBUSY;
277 	}
278 	iio_dev_opaque->clock_id = clock_id;
279 	mutex_unlock(&iio_dev_opaque->mlock);
280 
281 	return 0;
282 }
283 EXPORT_SYMBOL(iio_device_set_clock);
284 
285 /**
286  * iio_device_get_clock() - Retrieve current timestamping clock for the device
287  * @indio_dev: IIO device structure containing the device
288  *
289  * Returns: Clock ID of the current timestamping clock for the device.
290  */
iio_device_get_clock(const struct iio_dev * indio_dev)291 clockid_t iio_device_get_clock(const struct iio_dev *indio_dev)
292 {
293 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
294 
295 	return iio_dev_opaque->clock_id;
296 }
297 EXPORT_SYMBOL(iio_device_get_clock);
298 
299 /**
300  * iio_get_time_ns() - utility function to get a time stamp for events etc
301  * @indio_dev: device
302  *
303  * Returns: Timestamp of the event in nanoseconds.
304  */
iio_get_time_ns(const struct iio_dev * indio_dev)305 s64 iio_get_time_ns(const struct iio_dev *indio_dev)
306 {
307 	struct timespec64 tp;
308 
309 	switch (iio_device_get_clock(indio_dev)) {
310 	case CLOCK_REALTIME:
311 		return ktime_get_real_ns();
312 	case CLOCK_MONOTONIC:
313 		return ktime_get_ns();
314 	case CLOCK_MONOTONIC_RAW:
315 		return ktime_get_raw_ns();
316 	case CLOCK_REALTIME_COARSE:
317 		return ktime_to_ns(ktime_get_coarse_real());
318 	case CLOCK_MONOTONIC_COARSE:
319 		ktime_get_coarse_ts64(&tp);
320 		return timespec64_to_ns(&tp);
321 	case CLOCK_BOOTTIME:
322 		return ktime_get_boottime_ns();
323 	case CLOCK_TAI:
324 		return ktime_get_clocktai_ns();
325 	default:
326 		BUG();
327 	}
328 }
329 EXPORT_SYMBOL(iio_get_time_ns);
330 
iio_init(void)331 static int __init iio_init(void)
332 {
333 	int ret;
334 
335 	/* Register sysfs bus */
336 	ret  = bus_register(&iio_bus_type);
337 	if (ret < 0) {
338 		pr_err("could not register bus type\n");
339 		goto error_nothing;
340 	}
341 
342 	ret = alloc_chrdev_region(&iio_devt, 0, IIO_DEV_MAX, "iio");
343 	if (ret < 0) {
344 		pr_err("failed to allocate char dev region\n");
345 		goto error_unregister_bus_type;
346 	}
347 
348 	iio_debugfs_dentry = debugfs_create_dir("iio", NULL);
349 
350 	return 0;
351 
352 error_unregister_bus_type:
353 	bus_unregister(&iio_bus_type);
354 error_nothing:
355 	return ret;
356 }
357 
iio_exit(void)358 static void __exit iio_exit(void)
359 {
360 	if (iio_devt)
361 		unregister_chrdev_region(iio_devt, IIO_DEV_MAX);
362 	bus_unregister(&iio_bus_type);
363 	debugfs_remove(iio_debugfs_dentry);
364 }
365 
366 #if defined(CONFIG_DEBUG_FS)
iio_debugfs_read_reg(struct file * file,char __user * userbuf,size_t count,loff_t * ppos)367 static ssize_t iio_debugfs_read_reg(struct file *file, char __user *userbuf,
368 			      size_t count, loff_t *ppos)
369 {
370 	struct iio_dev *indio_dev = file->private_data;
371 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
372 	unsigned int val = 0;
373 	int ret;
374 
375 	if (*ppos > 0)
376 		return simple_read_from_buffer(userbuf, count, ppos,
377 					       iio_dev_opaque->read_buf,
378 					       iio_dev_opaque->read_buf_len);
379 
380 	ret = indio_dev->info->debugfs_reg_access(indio_dev,
381 						  iio_dev_opaque->cached_reg_addr,
382 						  0, &val);
383 	if (ret) {
384 		dev_err(indio_dev->dev.parent, "%s: read failed\n", __func__);
385 		return ret;
386 	}
387 
388 	iio_dev_opaque->read_buf_len = snprintf(iio_dev_opaque->read_buf,
389 						sizeof(iio_dev_opaque->read_buf),
390 						"0x%X\n", val);
391 
392 	return simple_read_from_buffer(userbuf, count, ppos,
393 				       iio_dev_opaque->read_buf,
394 				       iio_dev_opaque->read_buf_len);
395 }
396 
iio_debugfs_write_reg(struct file * file,const char __user * userbuf,size_t count,loff_t * ppos)397 static ssize_t iio_debugfs_write_reg(struct file *file,
398 		     const char __user *userbuf, size_t count, loff_t *ppos)
399 {
400 	struct iio_dev *indio_dev = file->private_data;
401 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
402 	unsigned int reg, val;
403 	char buf[80];
404 	int ret;
405 
406 	count = min(count, sizeof(buf) - 1);
407 	if (copy_from_user(buf, userbuf, count))
408 		return -EFAULT;
409 
410 	buf[count] = 0;
411 
412 	ret = sscanf(buf, "%i %i", &reg, &val);
413 
414 	switch (ret) {
415 	case 1:
416 		iio_dev_opaque->cached_reg_addr = reg;
417 		break;
418 	case 2:
419 		iio_dev_opaque->cached_reg_addr = reg;
420 		ret = indio_dev->info->debugfs_reg_access(indio_dev, reg,
421 							  val, NULL);
422 		if (ret) {
423 			dev_err(indio_dev->dev.parent, "%s: write failed\n",
424 				__func__);
425 			return ret;
426 		}
427 		break;
428 	default:
429 		return -EINVAL;
430 	}
431 
432 	return count;
433 }
434 
435 static const struct file_operations iio_debugfs_reg_fops = {
436 	.open = simple_open,
437 	.read = iio_debugfs_read_reg,
438 	.write = iio_debugfs_write_reg,
439 };
440 
iio_device_unregister_debugfs(struct iio_dev * indio_dev)441 static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
442 {
443 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
444 
445 	debugfs_remove_recursive(iio_dev_opaque->debugfs_dentry);
446 }
447 
iio_device_register_debugfs(struct iio_dev * indio_dev)448 static void iio_device_register_debugfs(struct iio_dev *indio_dev)
449 {
450 	struct iio_dev_opaque *iio_dev_opaque;
451 
452 	if (indio_dev->info->debugfs_reg_access == NULL)
453 		return;
454 
455 	if (!iio_debugfs_dentry)
456 		return;
457 
458 	iio_dev_opaque = to_iio_dev_opaque(indio_dev);
459 
460 	iio_dev_opaque->debugfs_dentry =
461 		debugfs_create_dir(dev_name(&indio_dev->dev),
462 				   iio_debugfs_dentry);
463 
464 	debugfs_create_file("direct_reg_access", 0644,
465 			    iio_dev_opaque->debugfs_dentry, indio_dev,
466 			    &iio_debugfs_reg_fops);
467 }
468 #else
iio_device_register_debugfs(struct iio_dev * indio_dev)469 static void iio_device_register_debugfs(struct iio_dev *indio_dev)
470 {
471 }
472 
iio_device_unregister_debugfs(struct iio_dev * indio_dev)473 static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
474 {
475 }
476 #endif /* CONFIG_DEBUG_FS */
477 
iio_read_channel_ext_info(struct device * dev,struct device_attribute * attr,char * buf)478 static ssize_t iio_read_channel_ext_info(struct device *dev,
479 				     struct device_attribute *attr,
480 				     char *buf)
481 {
482 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
483 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
484 	const struct iio_chan_spec_ext_info *ext_info;
485 
486 	ext_info = &this_attr->c->ext_info[this_attr->address];
487 
488 	return ext_info->read(indio_dev, ext_info->private, this_attr->c, buf);
489 }
490 
iio_write_channel_ext_info(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)491 static ssize_t iio_write_channel_ext_info(struct device *dev,
492 				     struct device_attribute *attr,
493 				     const char *buf, size_t len)
494 {
495 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
496 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
497 	const struct iio_chan_spec_ext_info *ext_info;
498 
499 	ext_info = &this_attr->c->ext_info[this_attr->address];
500 
501 	return ext_info->write(indio_dev, ext_info->private,
502 			       this_attr->c, buf, len);
503 }
504 
iio_enum_available_read(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,char * buf)505 ssize_t iio_enum_available_read(struct iio_dev *indio_dev,
506 	uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
507 {
508 	const struct iio_enum *e = (const struct iio_enum *)priv;
509 	unsigned int i;
510 	size_t len = 0;
511 
512 	if (!e->num_items)
513 		return 0;
514 
515 	for (i = 0; i < e->num_items; ++i) {
516 		if (!e->items[i])
517 			continue;
518 		len += sysfs_emit_at(buf, len, "%s ", e->items[i]);
519 	}
520 
521 	/* replace last space with a newline */
522 	buf[len - 1] = '\n';
523 
524 	return len;
525 }
526 EXPORT_SYMBOL_GPL(iio_enum_available_read);
527 
iio_enum_read(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,char * buf)528 ssize_t iio_enum_read(struct iio_dev *indio_dev,
529 	uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
530 {
531 	const struct iio_enum *e = (const struct iio_enum *)priv;
532 	int i;
533 
534 	if (!e->get)
535 		return -EINVAL;
536 
537 	i = e->get(indio_dev, chan);
538 	if (i < 0)
539 		return i;
540 	if (i >= e->num_items || !e->items[i])
541 		return -EINVAL;
542 
543 	return sysfs_emit(buf, "%s\n", e->items[i]);
544 }
545 EXPORT_SYMBOL_GPL(iio_enum_read);
546 
iio_enum_write(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,const char * buf,size_t len)547 ssize_t iio_enum_write(struct iio_dev *indio_dev,
548 	uintptr_t priv, const struct iio_chan_spec *chan, const char *buf,
549 	size_t len)
550 {
551 	const struct iio_enum *e = (const struct iio_enum *)priv;
552 	int ret;
553 
554 	if (!e->set)
555 		return -EINVAL;
556 
557 	ret = __sysfs_match_string(e->items, e->num_items, buf);
558 	if (ret < 0)
559 		return ret;
560 
561 	ret = e->set(indio_dev, chan, ret);
562 	return ret ? ret : len;
563 }
564 EXPORT_SYMBOL_GPL(iio_enum_write);
565 
566 static const struct iio_mount_matrix iio_mount_idmatrix = {
567 	.rotation = {
568 		"1", "0", "0",
569 		"0", "1", "0",
570 		"0", "0", "1"
571 	}
572 };
573 
iio_setup_mount_idmatrix(const struct device * dev,struct iio_mount_matrix * matrix)574 static int iio_setup_mount_idmatrix(const struct device *dev,
575 				    struct iio_mount_matrix *matrix)
576 {
577 	*matrix = iio_mount_idmatrix;
578 	dev_info(dev, "mounting matrix not found: using identity...\n");
579 	return 0;
580 }
581 
iio_show_mount_matrix(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,char * buf)582 ssize_t iio_show_mount_matrix(struct iio_dev *indio_dev, uintptr_t priv,
583 			      const struct iio_chan_spec *chan, char *buf)
584 {
585 	const struct iio_mount_matrix *mtx;
586 
587 	mtx = ((iio_get_mount_matrix_t *)priv)(indio_dev, chan);
588 	if (IS_ERR(mtx))
589 		return PTR_ERR(mtx);
590 
591 	if (!mtx)
592 		mtx = &iio_mount_idmatrix;
593 
594 	return sysfs_emit(buf, "%s, %s, %s; %s, %s, %s; %s, %s, %s\n",
595 			  mtx->rotation[0], mtx->rotation[1], mtx->rotation[2],
596 			  mtx->rotation[3], mtx->rotation[4], mtx->rotation[5],
597 			  mtx->rotation[6], mtx->rotation[7], mtx->rotation[8]);
598 }
599 EXPORT_SYMBOL_GPL(iio_show_mount_matrix);
600 
601 /**
602  * iio_read_mount_matrix() - retrieve iio device mounting matrix from
603  *                           device "mount-matrix" property
604  * @dev:	device the mounting matrix property is assigned to
605  * @matrix:	where to store retrieved matrix
606  *
607  * If device is assigned no mounting matrix property, a default 3x3 identity
608  * matrix will be filled in.
609  *
610  * Returns: 0 if success, or a negative error code on failure.
611  */
iio_read_mount_matrix(struct device * dev,struct iio_mount_matrix * matrix)612 int iio_read_mount_matrix(struct device *dev, struct iio_mount_matrix *matrix)
613 {
614 	size_t len = ARRAY_SIZE(iio_mount_idmatrix.rotation);
615 	int err;
616 
617 	err = device_property_read_string_array(dev, "mount-matrix", matrix->rotation, len);
618 	if (err == len)
619 		return 0;
620 
621 	if (err >= 0)
622 		/* Invalid number of matrix entries. */
623 		return -EINVAL;
624 
625 	if (err != -EINVAL)
626 		/* Invalid matrix declaration format. */
627 		return err;
628 
629 	/* Matrix was not declared at all: fallback to identity. */
630 	return iio_setup_mount_idmatrix(dev, matrix);
631 }
632 EXPORT_SYMBOL(iio_read_mount_matrix);
633 
__iio_format_value(char * buf,size_t offset,unsigned int type,int size,const int * vals)634 static ssize_t __iio_format_value(char *buf, size_t offset, unsigned int type,
635 				  int size, const int *vals)
636 {
637 	int tmp0, tmp1;
638 	s64 tmp2;
639 	bool scale_db = false;
640 
641 	switch (type) {
642 	case IIO_VAL_INT:
643 		return sysfs_emit_at(buf, offset, "%d", vals[0]);
644 	case IIO_VAL_INT_PLUS_MICRO_DB:
645 		scale_db = true;
646 		fallthrough;
647 	case IIO_VAL_INT_PLUS_MICRO:
648 		if (vals[1] < 0)
649 			return sysfs_emit_at(buf, offset, "-%d.%06u%s",
650 					     abs(vals[0]), -vals[1],
651 					     scale_db ? " dB" : "");
652 		else
653 			return sysfs_emit_at(buf, offset, "%d.%06u%s", vals[0],
654 					     vals[1], scale_db ? " dB" : "");
655 	case IIO_VAL_INT_PLUS_NANO:
656 		if (vals[1] < 0)
657 			return sysfs_emit_at(buf, offset, "-%d.%09u",
658 					     abs(vals[0]), -vals[1]);
659 		else
660 			return sysfs_emit_at(buf, offset, "%d.%09u", vals[0],
661 					     vals[1]);
662 	case IIO_VAL_FRACTIONAL:
663 		tmp2 = div_s64((s64)vals[0] * 1000000000LL, vals[1]);
664 		tmp1 = vals[1];
665 		tmp0 = (int)div_s64_rem(tmp2, 1000000000, &tmp1);
666 		if ((tmp2 < 0) && (tmp0 == 0))
667 			return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1));
668 		else
669 			return sysfs_emit_at(buf, offset, "%d.%09u", tmp0,
670 					     abs(tmp1));
671 	case IIO_VAL_FRACTIONAL_LOG2:
672 		tmp2 = shift_right((s64)vals[0] * 1000000000LL, vals[1]);
673 		tmp0 = (int)div_s64_rem(tmp2, 1000000000LL, &tmp1);
674 		if (tmp0 == 0 && tmp2 < 0)
675 			return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1));
676 		else
677 			return sysfs_emit_at(buf, offset, "%d.%09u", tmp0,
678 					     abs(tmp1));
679 	case IIO_VAL_INT_MULTIPLE:
680 	{
681 		int i;
682 		int l = 0;
683 
684 		for (i = 0; i < size; ++i)
685 			l += sysfs_emit_at(buf, offset + l, "%d ", vals[i]);
686 		return l;
687 	}
688 	case IIO_VAL_CHAR:
689 		return sysfs_emit_at(buf, offset, "%c", (char)vals[0]);
690 	case IIO_VAL_INT_64:
691 		tmp2 = (s64)((((u64)vals[1]) << 32) | (u32)vals[0]);
692 		return sysfs_emit_at(buf, offset, "%lld", tmp2);
693 	default:
694 		return 0;
695 	}
696 }
697 
698 /**
699  * iio_format_value() - Formats a IIO value into its string representation
700  * @buf:	The buffer to which the formatted value gets written
701  *		which is assumed to be big enough (i.e. PAGE_SIZE).
702  * @type:	One of the IIO_VAL_* constants. This decides how the val
703  *		and val2 parameters are formatted.
704  * @size:	Number of IIO value entries contained in vals
705  * @vals:	Pointer to the values, exact meaning depends on the
706  *		type parameter.
707  *
708  * Returns:
709  * 0 by default, a negative number on failure or the total number of characters
710  * written for a type that belongs to the IIO_VAL_* constant.
711  */
iio_format_value(char * buf,unsigned int type,int size,int * vals)712 ssize_t iio_format_value(char *buf, unsigned int type, int size, int *vals)
713 {
714 	ssize_t len;
715 
716 	len = __iio_format_value(buf, 0, type, size, vals);
717 	if (len >= PAGE_SIZE - 1)
718 		return -EFBIG;
719 
720 	return len + sysfs_emit_at(buf, len, "\n");
721 }
722 EXPORT_SYMBOL_GPL(iio_format_value);
723 
iio_read_channel_label(struct device * dev,struct device_attribute * attr,char * buf)724 static ssize_t iio_read_channel_label(struct device *dev,
725 				      struct device_attribute *attr,
726 				      char *buf)
727 {
728 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
729 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
730 
731 	if (indio_dev->info->read_label)
732 		return indio_dev->info->read_label(indio_dev, this_attr->c, buf);
733 
734 	if (this_attr->c->extend_name)
735 		return sysfs_emit(buf, "%s\n", this_attr->c->extend_name);
736 
737 	return -EINVAL;
738 }
739 
iio_read_channel_info(struct device * dev,struct device_attribute * attr,char * buf)740 static ssize_t iio_read_channel_info(struct device *dev,
741 				     struct device_attribute *attr,
742 				     char *buf)
743 {
744 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
745 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
746 	int vals[INDIO_MAX_RAW_ELEMENTS];
747 	int ret;
748 	int val_len = 2;
749 
750 	if (indio_dev->info->read_raw_multi)
751 		ret = indio_dev->info->read_raw_multi(indio_dev, this_attr->c,
752 							INDIO_MAX_RAW_ELEMENTS,
753 							vals, &val_len,
754 							this_attr->address);
755 	else
756 		ret = indio_dev->info->read_raw(indio_dev, this_attr->c,
757 				    &vals[0], &vals[1], this_attr->address);
758 
759 	if (ret < 0)
760 		return ret;
761 
762 	return iio_format_value(buf, ret, val_len, vals);
763 }
764 
iio_format_list(char * buf,const int * vals,int type,int length,const char * prefix,const char * suffix)765 static ssize_t iio_format_list(char *buf, const int *vals, int type, int length,
766 			       const char *prefix, const char *suffix)
767 {
768 	ssize_t len;
769 	int stride;
770 	int i;
771 
772 	switch (type) {
773 	case IIO_VAL_INT:
774 		stride = 1;
775 		break;
776 	default:
777 		stride = 2;
778 		break;
779 	}
780 
781 	len = sysfs_emit(buf, prefix);
782 
783 	for (i = 0; i <= length - stride; i += stride) {
784 		if (i != 0) {
785 			len += sysfs_emit_at(buf, len, " ");
786 			if (len >= PAGE_SIZE)
787 				return -EFBIG;
788 		}
789 
790 		len += __iio_format_value(buf, len, type, stride, &vals[i]);
791 		if (len >= PAGE_SIZE)
792 			return -EFBIG;
793 	}
794 
795 	len += sysfs_emit_at(buf, len, "%s\n", suffix);
796 
797 	return len;
798 }
799 
iio_format_avail_list(char * buf,const int * vals,int type,int length)800 static ssize_t iio_format_avail_list(char *buf, const int *vals,
801 				     int type, int length)
802 {
803 
804 	return iio_format_list(buf, vals, type, length, "", "");
805 }
806 
iio_format_avail_range(char * buf,const int * vals,int type)807 static ssize_t iio_format_avail_range(char *buf, const int *vals, int type)
808 {
809 	int length;
810 
811 	/*
812 	 * length refers to the array size , not the number of elements.
813 	 * The purpose is to print the range [min , step ,max] so length should
814 	 * be 3 in case of int, and 6 for other types.
815 	 */
816 	switch (type) {
817 	case IIO_VAL_INT:
818 		length = 3;
819 		break;
820 	default:
821 		length = 6;
822 		break;
823 	}
824 
825 	return iio_format_list(buf, vals, type, length, "[", "]");
826 }
827 
iio_read_channel_info_avail(struct device * dev,struct device_attribute * attr,char * buf)828 static ssize_t iio_read_channel_info_avail(struct device *dev,
829 					   struct device_attribute *attr,
830 					   char *buf)
831 {
832 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
833 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
834 	const int *vals;
835 	int ret;
836 	int length;
837 	int type;
838 
839 	ret = indio_dev->info->read_avail(indio_dev, this_attr->c,
840 					  &vals, &type, &length,
841 					  this_attr->address);
842 
843 	if (ret < 0)
844 		return ret;
845 	switch (ret) {
846 	case IIO_AVAIL_LIST:
847 		return iio_format_avail_list(buf, vals, type, length);
848 	case IIO_AVAIL_RANGE:
849 		return iio_format_avail_range(buf, vals, type);
850 	default:
851 		return -EINVAL;
852 	}
853 }
854 
855 /**
856  * __iio_str_to_fixpoint() - Parse a fixed-point number from a string
857  * @str: The string to parse
858  * @fract_mult: Multiplier for the first decimal place, should be a power of 10
859  * @integer: The integer part of the number
860  * @fract: The fractional part of the number
861  * @scale_db: True if this should parse as dB
862  *
863  * Returns:
864  * 0 on success, or a negative error code if the string could not be parsed.
865  */
__iio_str_to_fixpoint(const char * str,int fract_mult,int * integer,int * fract,bool scale_db)866 static int __iio_str_to_fixpoint(const char *str, int fract_mult,
867 				 int *integer, int *fract, bool scale_db)
868 {
869 	int i = 0, f = 0;
870 	bool integer_part = true, negative = false;
871 
872 	if (fract_mult == 0) {
873 		*fract = 0;
874 
875 		return kstrtoint(str, 0, integer);
876 	}
877 
878 	if (str[0] == '-') {
879 		negative = true;
880 		str++;
881 	} else if (str[0] == '+') {
882 		str++;
883 	}
884 
885 	while (*str) {
886 		if ('0' <= *str && *str <= '9') {
887 			if (integer_part) {
888 				i = i * 10 + *str - '0';
889 			} else {
890 				f += fract_mult * (*str - '0');
891 				fract_mult /= 10;
892 			}
893 		} else if (*str == '\n') {
894 			if (*(str + 1) == '\0')
895 				break;
896 			return -EINVAL;
897 		} else if (!strncmp(str, " dB", sizeof(" dB") - 1) && scale_db) {
898 			/* Ignore the dB suffix */
899 			str += sizeof(" dB") - 1;
900 			continue;
901 		} else if (!strncmp(str, "dB", sizeof("dB") - 1) && scale_db) {
902 			/* Ignore the dB suffix */
903 			str += sizeof("dB") - 1;
904 			continue;
905 		} else if (*str == '.' && integer_part) {
906 			integer_part = false;
907 		} else {
908 			return -EINVAL;
909 		}
910 		str++;
911 	}
912 
913 	if (negative) {
914 		if (i)
915 			i = -i;
916 		else
917 			f = -f;
918 	}
919 
920 	*integer = i;
921 	*fract = f;
922 
923 	return 0;
924 }
925 
926 /**
927  * iio_str_to_fixpoint() - Parse a fixed-point number from a string
928  * @str: The string to parse
929  * @fract_mult: Multiplier for the first decimal place, should be a power of 10
930  * @integer: The integer part of the number
931  * @fract: The fractional part of the number
932  *
933  * Returns:
934  * 0 on success, or a negative error code if the string could not be parsed.
935  */
iio_str_to_fixpoint(const char * str,int fract_mult,int * integer,int * fract)936 int iio_str_to_fixpoint(const char *str, int fract_mult,
937 			int *integer, int *fract)
938 {
939 	return __iio_str_to_fixpoint(str, fract_mult, integer, fract, false);
940 }
941 EXPORT_SYMBOL_GPL(iio_str_to_fixpoint);
942 
iio_write_channel_info(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)943 static ssize_t iio_write_channel_info(struct device *dev,
944 				      struct device_attribute *attr,
945 				      const char *buf,
946 				      size_t len)
947 {
948 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
949 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
950 	int ret, fract_mult = 100000;
951 	int integer, fract = 0;
952 	bool is_char = false;
953 	bool scale_db = false;
954 
955 	/* Assumes decimal - precision based on number of digits */
956 	if (!indio_dev->info->write_raw)
957 		return -EINVAL;
958 
959 	if (indio_dev->info->write_raw_get_fmt)
960 		switch (indio_dev->info->write_raw_get_fmt(indio_dev,
961 			this_attr->c, this_attr->address)) {
962 		case IIO_VAL_INT:
963 			fract_mult = 0;
964 			break;
965 		case IIO_VAL_INT_PLUS_MICRO_DB:
966 			scale_db = true;
967 			fallthrough;
968 		case IIO_VAL_INT_PLUS_MICRO:
969 			fract_mult = 100000;
970 			break;
971 		case IIO_VAL_INT_PLUS_NANO:
972 			fract_mult = 100000000;
973 			break;
974 		case IIO_VAL_CHAR:
975 			is_char = true;
976 			break;
977 		default:
978 			return -EINVAL;
979 		}
980 
981 	if (is_char) {
982 		char ch;
983 
984 		if (sscanf(buf, "%c", &ch) != 1)
985 			return -EINVAL;
986 		integer = ch;
987 	} else {
988 		ret = __iio_str_to_fixpoint(buf, fract_mult, &integer, &fract,
989 					    scale_db);
990 		if (ret)
991 			return ret;
992 	}
993 
994 	ret = indio_dev->info->write_raw(indio_dev, this_attr->c,
995 					 integer, fract, this_attr->address);
996 	if (ret)
997 		return ret;
998 
999 	return len;
1000 }
1001 
1002 static
__iio_device_attr_init(struct device_attribute * dev_attr,const char * postfix,struct iio_chan_spec const * chan,ssize_t (* readfunc)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* writefunc)(struct device * dev,struct device_attribute * attr,const char * buf,size_t len),enum iio_shared_by shared_by)1003 int __iio_device_attr_init(struct device_attribute *dev_attr,
1004 			   const char *postfix,
1005 			   struct iio_chan_spec const *chan,
1006 			   ssize_t (*readfunc)(struct device *dev,
1007 					       struct device_attribute *attr,
1008 					       char *buf),
1009 			   ssize_t (*writefunc)(struct device *dev,
1010 						struct device_attribute *attr,
1011 						const char *buf,
1012 						size_t len),
1013 			   enum iio_shared_by shared_by)
1014 {
1015 	int ret = 0;
1016 	char *name = NULL;
1017 	char *full_postfix;
1018 
1019 	sysfs_attr_init(&dev_attr->attr);
1020 
1021 	/* Build up postfix of <extend_name>_<modifier>_postfix */
1022 	if (chan->modified && (shared_by == IIO_SEPARATE)) {
1023 		if (chan->extend_name)
1024 			full_postfix = kasprintf(GFP_KERNEL, "%s_%s_%s",
1025 						 iio_modifier_names[chan->channel2],
1026 						 chan->extend_name,
1027 						 postfix);
1028 		else
1029 			full_postfix = kasprintf(GFP_KERNEL, "%s_%s",
1030 						 iio_modifier_names[chan->channel2],
1031 						 postfix);
1032 	} else {
1033 		if (chan->extend_name == NULL || shared_by != IIO_SEPARATE)
1034 			full_postfix = kstrdup(postfix, GFP_KERNEL);
1035 		else
1036 			full_postfix = kasprintf(GFP_KERNEL,
1037 						 "%s_%s",
1038 						 chan->extend_name,
1039 						 postfix);
1040 	}
1041 	if (full_postfix == NULL)
1042 		return -ENOMEM;
1043 
1044 	if (chan->differential) { /* Differential can not have modifier */
1045 		switch (shared_by) {
1046 		case IIO_SHARED_BY_ALL:
1047 			name = kasprintf(GFP_KERNEL, "%s", full_postfix);
1048 			break;
1049 		case IIO_SHARED_BY_DIR:
1050 			name = kasprintf(GFP_KERNEL, "%s_%s",
1051 						iio_direction[chan->output],
1052 						full_postfix);
1053 			break;
1054 		case IIO_SHARED_BY_TYPE:
1055 			name = kasprintf(GFP_KERNEL, "%s_%s-%s_%s",
1056 					    iio_direction[chan->output],
1057 					    iio_chan_type_name_spec[chan->type],
1058 					    iio_chan_type_name_spec[chan->type],
1059 					    full_postfix);
1060 			break;
1061 		case IIO_SEPARATE:
1062 			if (!chan->indexed) {
1063 				WARN(1, "Differential channels must be indexed\n");
1064 				ret = -EINVAL;
1065 				goto error_free_full_postfix;
1066 			}
1067 			name = kasprintf(GFP_KERNEL,
1068 					    "%s_%s%d-%s%d_%s",
1069 					    iio_direction[chan->output],
1070 					    iio_chan_type_name_spec[chan->type],
1071 					    chan->channel,
1072 					    iio_chan_type_name_spec[chan->type],
1073 					    chan->channel2,
1074 					    full_postfix);
1075 			break;
1076 		}
1077 	} else { /* Single ended */
1078 		switch (shared_by) {
1079 		case IIO_SHARED_BY_ALL:
1080 			name = kasprintf(GFP_KERNEL, "%s", full_postfix);
1081 			break;
1082 		case IIO_SHARED_BY_DIR:
1083 			name = kasprintf(GFP_KERNEL, "%s_%s",
1084 						iio_direction[chan->output],
1085 						full_postfix);
1086 			break;
1087 		case IIO_SHARED_BY_TYPE:
1088 			name = kasprintf(GFP_KERNEL, "%s_%s_%s",
1089 					    iio_direction[chan->output],
1090 					    iio_chan_type_name_spec[chan->type],
1091 					    full_postfix);
1092 			break;
1093 
1094 		case IIO_SEPARATE:
1095 			if (chan->indexed)
1096 				name = kasprintf(GFP_KERNEL, "%s_%s%d_%s",
1097 						    iio_direction[chan->output],
1098 						    iio_chan_type_name_spec[chan->type],
1099 						    chan->channel,
1100 						    full_postfix);
1101 			else
1102 				name = kasprintf(GFP_KERNEL, "%s_%s_%s",
1103 						    iio_direction[chan->output],
1104 						    iio_chan_type_name_spec[chan->type],
1105 						    full_postfix);
1106 			break;
1107 		}
1108 	}
1109 	if (name == NULL) {
1110 		ret = -ENOMEM;
1111 		goto error_free_full_postfix;
1112 	}
1113 	dev_attr->attr.name = name;
1114 
1115 	if (readfunc) {
1116 		dev_attr->attr.mode |= 0444;
1117 		dev_attr->show = readfunc;
1118 	}
1119 
1120 	if (writefunc) {
1121 		dev_attr->attr.mode |= 0200;
1122 		dev_attr->store = writefunc;
1123 	}
1124 
1125 error_free_full_postfix:
1126 	kfree(full_postfix);
1127 
1128 	return ret;
1129 }
1130 
__iio_device_attr_deinit(struct device_attribute * dev_attr)1131 static void __iio_device_attr_deinit(struct device_attribute *dev_attr)
1132 {
1133 	kfree(dev_attr->attr.name);
1134 }
1135 
__iio_add_chan_devattr(const char * postfix,struct iio_chan_spec const * chan,ssize_t (* readfunc)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* writefunc)(struct device * dev,struct device_attribute * attr,const char * buf,size_t len),u64 mask,enum iio_shared_by shared_by,struct device * dev,struct iio_buffer * buffer,struct list_head * attr_list)1136 int __iio_add_chan_devattr(const char *postfix,
1137 			   struct iio_chan_spec const *chan,
1138 			   ssize_t (*readfunc)(struct device *dev,
1139 					       struct device_attribute *attr,
1140 					       char *buf),
1141 			   ssize_t (*writefunc)(struct device *dev,
1142 						struct device_attribute *attr,
1143 						const char *buf,
1144 						size_t len),
1145 			   u64 mask,
1146 			   enum iio_shared_by shared_by,
1147 			   struct device *dev,
1148 			   struct iio_buffer *buffer,
1149 			   struct list_head *attr_list)
1150 {
1151 	int ret;
1152 	struct iio_dev_attr *iio_attr, *t;
1153 
1154 	iio_attr = kzalloc(sizeof(*iio_attr), GFP_KERNEL);
1155 	if (iio_attr == NULL)
1156 		return -ENOMEM;
1157 	ret = __iio_device_attr_init(&iio_attr->dev_attr,
1158 				     postfix, chan,
1159 				     readfunc, writefunc, shared_by);
1160 	if (ret)
1161 		goto error_iio_dev_attr_free;
1162 	iio_attr->c = chan;
1163 	iio_attr->address = mask;
1164 	iio_attr->buffer = buffer;
1165 	list_for_each_entry(t, attr_list, l)
1166 		if (strcmp(t->dev_attr.attr.name,
1167 			   iio_attr->dev_attr.attr.name) == 0) {
1168 			if (shared_by == IIO_SEPARATE)
1169 				dev_err(dev, "tried to double register : %s\n",
1170 					t->dev_attr.attr.name);
1171 			ret = -EBUSY;
1172 			goto error_device_attr_deinit;
1173 		}
1174 	list_add(&iio_attr->l, attr_list);
1175 
1176 	return 0;
1177 
1178 error_device_attr_deinit:
1179 	__iio_device_attr_deinit(&iio_attr->dev_attr);
1180 error_iio_dev_attr_free:
1181 	kfree(iio_attr);
1182 	return ret;
1183 }
1184 
iio_device_add_channel_label(struct iio_dev * indio_dev,struct iio_chan_spec const * chan)1185 static int iio_device_add_channel_label(struct iio_dev *indio_dev,
1186 					 struct iio_chan_spec const *chan)
1187 {
1188 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1189 	int ret;
1190 
1191 	if (!indio_dev->info->read_label && !chan->extend_name)
1192 		return 0;
1193 
1194 	ret = __iio_add_chan_devattr("label",
1195 				     chan,
1196 				     &iio_read_channel_label,
1197 				     NULL,
1198 				     0,
1199 				     IIO_SEPARATE,
1200 				     &indio_dev->dev,
1201 				     NULL,
1202 				     &iio_dev_opaque->channel_attr_list);
1203 	if (ret < 0)
1204 		return ret;
1205 
1206 	return 1;
1207 }
1208 
iio_device_add_info_mask_type(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,enum iio_shared_by shared_by,const long * infomask)1209 static int iio_device_add_info_mask_type(struct iio_dev *indio_dev,
1210 					 struct iio_chan_spec const *chan,
1211 					 enum iio_shared_by shared_by,
1212 					 const long *infomask)
1213 {
1214 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1215 	int i, ret, attrcount = 0;
1216 
1217 	for_each_set_bit(i, infomask, sizeof(*infomask)*8) {
1218 		if (i >= ARRAY_SIZE(iio_chan_info_postfix))
1219 			return -EINVAL;
1220 		ret = __iio_add_chan_devattr(iio_chan_info_postfix[i],
1221 					     chan,
1222 					     &iio_read_channel_info,
1223 					     &iio_write_channel_info,
1224 					     i,
1225 					     shared_by,
1226 					     &indio_dev->dev,
1227 					     NULL,
1228 					     &iio_dev_opaque->channel_attr_list);
1229 		if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE))
1230 			continue;
1231 		if (ret < 0)
1232 			return ret;
1233 		attrcount++;
1234 	}
1235 
1236 	return attrcount;
1237 }
1238 
iio_device_add_info_mask_type_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,enum iio_shared_by shared_by,const long * infomask)1239 static int iio_device_add_info_mask_type_avail(struct iio_dev *indio_dev,
1240 					       struct iio_chan_spec const *chan,
1241 					       enum iio_shared_by shared_by,
1242 					       const long *infomask)
1243 {
1244 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1245 	int i, ret, attrcount = 0;
1246 	char *avail_postfix;
1247 
1248 	for_each_set_bit(i, infomask, sizeof(*infomask) * 8) {
1249 		if (i >= ARRAY_SIZE(iio_chan_info_postfix))
1250 			return -EINVAL;
1251 		avail_postfix = kasprintf(GFP_KERNEL,
1252 					  "%s_available",
1253 					  iio_chan_info_postfix[i]);
1254 		if (!avail_postfix)
1255 			return -ENOMEM;
1256 
1257 		ret = __iio_add_chan_devattr(avail_postfix,
1258 					     chan,
1259 					     &iio_read_channel_info_avail,
1260 					     NULL,
1261 					     i,
1262 					     shared_by,
1263 					     &indio_dev->dev,
1264 					     NULL,
1265 					     &iio_dev_opaque->channel_attr_list);
1266 		kfree(avail_postfix);
1267 		if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE))
1268 			continue;
1269 		if (ret < 0)
1270 			return ret;
1271 		attrcount++;
1272 	}
1273 
1274 	return attrcount;
1275 }
1276 
iio_device_add_channel_sysfs(struct iio_dev * indio_dev,struct iio_chan_spec const * chan)1277 static int iio_device_add_channel_sysfs(struct iio_dev *indio_dev,
1278 					struct iio_chan_spec const *chan)
1279 {
1280 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1281 	int ret, attrcount = 0;
1282 	const struct iio_chan_spec_ext_info *ext_info;
1283 
1284 	if (chan->channel < 0)
1285 		return 0;
1286 	ret = iio_device_add_info_mask_type(indio_dev, chan,
1287 					    IIO_SEPARATE,
1288 					    &chan->info_mask_separate);
1289 	if (ret < 0)
1290 		return ret;
1291 	attrcount += ret;
1292 
1293 	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1294 						  IIO_SEPARATE,
1295 						  &chan->info_mask_separate_available);
1296 	if (ret < 0)
1297 		return ret;
1298 	attrcount += ret;
1299 
1300 	ret = iio_device_add_info_mask_type(indio_dev, chan,
1301 					    IIO_SHARED_BY_TYPE,
1302 					    &chan->info_mask_shared_by_type);
1303 	if (ret < 0)
1304 		return ret;
1305 	attrcount += ret;
1306 
1307 	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1308 						  IIO_SHARED_BY_TYPE,
1309 						  &chan->info_mask_shared_by_type_available);
1310 	if (ret < 0)
1311 		return ret;
1312 	attrcount += ret;
1313 
1314 	ret = iio_device_add_info_mask_type(indio_dev, chan,
1315 					    IIO_SHARED_BY_DIR,
1316 					    &chan->info_mask_shared_by_dir);
1317 	if (ret < 0)
1318 		return ret;
1319 	attrcount += ret;
1320 
1321 	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1322 						  IIO_SHARED_BY_DIR,
1323 						  &chan->info_mask_shared_by_dir_available);
1324 	if (ret < 0)
1325 		return ret;
1326 	attrcount += ret;
1327 
1328 	ret = iio_device_add_info_mask_type(indio_dev, chan,
1329 					    IIO_SHARED_BY_ALL,
1330 					    &chan->info_mask_shared_by_all);
1331 	if (ret < 0)
1332 		return ret;
1333 	attrcount += ret;
1334 
1335 	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1336 						  IIO_SHARED_BY_ALL,
1337 						  &chan->info_mask_shared_by_all_available);
1338 	if (ret < 0)
1339 		return ret;
1340 	attrcount += ret;
1341 
1342 	ret = iio_device_add_channel_label(indio_dev, chan);
1343 	if (ret < 0)
1344 		return ret;
1345 	attrcount += ret;
1346 
1347 	if (chan->ext_info) {
1348 		unsigned int i = 0;
1349 
1350 		for (ext_info = chan->ext_info; ext_info->name; ext_info++) {
1351 			ret = __iio_add_chan_devattr(ext_info->name,
1352 					chan,
1353 					ext_info->read ?
1354 					    &iio_read_channel_ext_info : NULL,
1355 					ext_info->write ?
1356 					    &iio_write_channel_ext_info : NULL,
1357 					i,
1358 					ext_info->shared,
1359 					&indio_dev->dev,
1360 					NULL,
1361 					&iio_dev_opaque->channel_attr_list);
1362 			i++;
1363 			if (ret == -EBUSY && ext_info->shared)
1364 				continue;
1365 
1366 			if (ret)
1367 				return ret;
1368 
1369 			attrcount++;
1370 		}
1371 	}
1372 
1373 	return attrcount;
1374 }
1375 
1376 /**
1377  * iio_free_chan_devattr_list() - Free a list of IIO device attributes
1378  * @attr_list: List of IIO device attributes
1379  *
1380  * This function frees the memory allocated for each of the IIO device
1381  * attributes in the list.
1382  */
iio_free_chan_devattr_list(struct list_head * attr_list)1383 void iio_free_chan_devattr_list(struct list_head *attr_list)
1384 {
1385 	struct iio_dev_attr *p, *n;
1386 
1387 	list_for_each_entry_safe(p, n, attr_list, l) {
1388 		kfree_const(p->dev_attr.attr.name);
1389 		list_del(&p->l);
1390 		kfree(p);
1391 	}
1392 }
1393 
name_show(struct device * dev,struct device_attribute * attr,char * buf)1394 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
1395 			 char *buf)
1396 {
1397 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1398 
1399 	return sysfs_emit(buf, "%s\n", indio_dev->name);
1400 }
1401 
1402 static DEVICE_ATTR_RO(name);
1403 
label_show(struct device * dev,struct device_attribute * attr,char * buf)1404 static ssize_t label_show(struct device *dev, struct device_attribute *attr,
1405 			  char *buf)
1406 {
1407 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1408 
1409 	return sysfs_emit(buf, "%s\n", indio_dev->label);
1410 }
1411 
1412 static DEVICE_ATTR_RO(label);
1413 
1414 static const char * const clock_names[] = {
1415 	[CLOCK_REALTIME]	 	= "realtime",
1416 	[CLOCK_MONOTONIC]	 	= "monotonic",
1417 	[CLOCK_PROCESS_CPUTIME_ID]	= "process_cputime_id",
1418 	[CLOCK_THREAD_CPUTIME_ID]	= "thread_cputime_id",
1419 	[CLOCK_MONOTONIC_RAW]	 	= "monotonic_raw",
1420 	[CLOCK_REALTIME_COARSE]	 	= "realtime_coarse",
1421 	[CLOCK_MONOTONIC_COARSE] 	= "monotonic_coarse",
1422 	[CLOCK_BOOTTIME]	 	= "boottime",
1423 	[CLOCK_REALTIME_ALARM]		= "realtime_alarm",
1424 	[CLOCK_BOOTTIME_ALARM]		= "boottime_alarm",
1425 	[CLOCK_SGI_CYCLE]		= "sgi_cycle",
1426 	[CLOCK_TAI]		 	= "tai",
1427 };
1428 
current_timestamp_clock_show(struct device * dev,struct device_attribute * attr,char * buf)1429 static ssize_t current_timestamp_clock_show(struct device *dev,
1430 					    struct device_attribute *attr,
1431 					    char *buf)
1432 {
1433 	const struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1434 	const clockid_t clk = iio_device_get_clock(indio_dev);
1435 
1436 	switch (clk) {
1437 	case CLOCK_REALTIME:
1438 	case CLOCK_MONOTONIC:
1439 	case CLOCK_MONOTONIC_RAW:
1440 	case CLOCK_REALTIME_COARSE:
1441 	case CLOCK_MONOTONIC_COARSE:
1442 	case CLOCK_BOOTTIME:
1443 	case CLOCK_TAI:
1444 		break;
1445 	default:
1446 		BUG();
1447 	}
1448 
1449 	return sysfs_emit(buf, "%s\n", clock_names[clk]);
1450 }
1451 
current_timestamp_clock_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1452 static ssize_t current_timestamp_clock_store(struct device *dev,
1453 					     struct device_attribute *attr,
1454 					     const char *buf, size_t len)
1455 {
1456 	clockid_t clk;
1457 	int ret;
1458 
1459 	ret = sysfs_match_string(clock_names, buf);
1460 	if (ret < 0)
1461 		return ret;
1462 	clk = ret;
1463 
1464 	switch (clk) {
1465 	case CLOCK_REALTIME:
1466 	case CLOCK_MONOTONIC:
1467 	case CLOCK_MONOTONIC_RAW:
1468 	case CLOCK_REALTIME_COARSE:
1469 	case CLOCK_MONOTONIC_COARSE:
1470 	case CLOCK_BOOTTIME:
1471 	case CLOCK_TAI:
1472 		break;
1473 	default:
1474 		return -EINVAL;
1475 	}
1476 
1477 	ret = iio_device_set_clock(dev_to_iio_dev(dev), clk);
1478 	if (ret)
1479 		return ret;
1480 
1481 	return len;
1482 }
1483 
iio_device_register_sysfs_group(struct iio_dev * indio_dev,const struct attribute_group * group)1484 int iio_device_register_sysfs_group(struct iio_dev *indio_dev,
1485 				    const struct attribute_group *group)
1486 {
1487 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1488 	const struct attribute_group **new, **old = iio_dev_opaque->groups;
1489 	unsigned int cnt = iio_dev_opaque->groupcounter;
1490 
1491 	new = krealloc_array(old, cnt + 2, sizeof(*new), GFP_KERNEL);
1492 	if (!new)
1493 		return -ENOMEM;
1494 
1495 	new[iio_dev_opaque->groupcounter++] = group;
1496 	new[iio_dev_opaque->groupcounter] = NULL;
1497 
1498 	iio_dev_opaque->groups = new;
1499 
1500 	return 0;
1501 }
1502 
1503 static DEVICE_ATTR_RW(current_timestamp_clock);
1504 
iio_device_register_sysfs(struct iio_dev * indio_dev)1505 static int iio_device_register_sysfs(struct iio_dev *indio_dev)
1506 {
1507 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1508 	int i, ret = 0, attrcount, attrn, attrcount_orig = 0;
1509 	struct iio_dev_attr *p;
1510 	struct attribute **attr, *clk = NULL;
1511 
1512 	/* First count elements in any existing group */
1513 	if (indio_dev->info->attrs) {
1514 		attr = indio_dev->info->attrs->attrs;
1515 		while (*attr++ != NULL)
1516 			attrcount_orig++;
1517 	}
1518 	attrcount = attrcount_orig;
1519 	/*
1520 	 * New channel registration method - relies on the fact a group does
1521 	 * not need to be initialized if its name is NULL.
1522 	 */
1523 	if (indio_dev->channels)
1524 		for (i = 0; i < indio_dev->num_channels; i++) {
1525 			const struct iio_chan_spec *chan =
1526 				&indio_dev->channels[i];
1527 
1528 			if (chan->type == IIO_TIMESTAMP)
1529 				clk = &dev_attr_current_timestamp_clock.attr;
1530 
1531 			ret = iio_device_add_channel_sysfs(indio_dev, chan);
1532 			if (ret < 0)
1533 				goto error_clear_attrs;
1534 			attrcount += ret;
1535 		}
1536 
1537 	if (iio_dev_opaque->event_interface)
1538 		clk = &dev_attr_current_timestamp_clock.attr;
1539 
1540 	if (indio_dev->name)
1541 		attrcount++;
1542 	if (indio_dev->label)
1543 		attrcount++;
1544 	if (clk)
1545 		attrcount++;
1546 
1547 	iio_dev_opaque->chan_attr_group.attrs =
1548 		kcalloc(attrcount + 1,
1549 			sizeof(iio_dev_opaque->chan_attr_group.attrs[0]),
1550 			GFP_KERNEL);
1551 	if (iio_dev_opaque->chan_attr_group.attrs == NULL) {
1552 		ret = -ENOMEM;
1553 		goto error_clear_attrs;
1554 	}
1555 	/* Copy across original attributes, and point to original binary attributes */
1556 	if (indio_dev->info->attrs) {
1557 		memcpy(iio_dev_opaque->chan_attr_group.attrs,
1558 		       indio_dev->info->attrs->attrs,
1559 		       sizeof(iio_dev_opaque->chan_attr_group.attrs[0])
1560 		       *attrcount_orig);
1561 		iio_dev_opaque->chan_attr_group.is_visible =
1562 			indio_dev->info->attrs->is_visible;
1563 		iio_dev_opaque->chan_attr_group.bin_attrs =
1564 			indio_dev->info->attrs->bin_attrs;
1565 	}
1566 	attrn = attrcount_orig;
1567 	/* Add all elements from the list. */
1568 	list_for_each_entry(p, &iio_dev_opaque->channel_attr_list, l)
1569 		iio_dev_opaque->chan_attr_group.attrs[attrn++] = &p->dev_attr.attr;
1570 	if (indio_dev->name)
1571 		iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_name.attr;
1572 	if (indio_dev->label)
1573 		iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_label.attr;
1574 	if (clk)
1575 		iio_dev_opaque->chan_attr_group.attrs[attrn++] = clk;
1576 
1577 	ret = iio_device_register_sysfs_group(indio_dev,
1578 					      &iio_dev_opaque->chan_attr_group);
1579 	if (ret)
1580 		goto error_free_chan_attrs;
1581 
1582 	return 0;
1583 
1584 error_free_chan_attrs:
1585 	kfree(iio_dev_opaque->chan_attr_group.attrs);
1586 	iio_dev_opaque->chan_attr_group.attrs = NULL;
1587 error_clear_attrs:
1588 	iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list);
1589 
1590 	return ret;
1591 }
1592 
iio_device_unregister_sysfs(struct iio_dev * indio_dev)1593 static void iio_device_unregister_sysfs(struct iio_dev *indio_dev)
1594 {
1595 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1596 
1597 	iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list);
1598 	kfree(iio_dev_opaque->chan_attr_group.attrs);
1599 	iio_dev_opaque->chan_attr_group.attrs = NULL;
1600 	kfree(iio_dev_opaque->groups);
1601 	iio_dev_opaque->groups = NULL;
1602 }
1603 
iio_dev_release(struct device * device)1604 static void iio_dev_release(struct device *device)
1605 {
1606 	struct iio_dev *indio_dev = dev_to_iio_dev(device);
1607 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1608 
1609 	if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES)
1610 		iio_device_unregister_trigger_consumer(indio_dev);
1611 	iio_device_unregister_eventset(indio_dev);
1612 	iio_device_unregister_sysfs(indio_dev);
1613 
1614 	iio_device_detach_buffers(indio_dev);
1615 
1616 	lockdep_unregister_key(&iio_dev_opaque->mlock_key);
1617 
1618 	ida_free(&iio_ida, iio_dev_opaque->id);
1619 	kfree(iio_dev_opaque);
1620 }
1621 
1622 const struct device_type iio_device_type = {
1623 	.name = "iio_device",
1624 	.release = iio_dev_release,
1625 };
1626 
1627 /**
1628  * iio_device_alloc() - allocate an iio_dev from a driver
1629  * @parent:		Parent device.
1630  * @sizeof_priv:	Space to allocate for private structure.
1631  *
1632  * Returns:
1633  * Pointer to allocated iio_dev on success, NULL on failure.
1634  */
iio_device_alloc(struct device * parent,int sizeof_priv)1635 struct iio_dev *iio_device_alloc(struct device *parent, int sizeof_priv)
1636 {
1637 	struct iio_dev_opaque *iio_dev_opaque;
1638 	struct iio_dev *indio_dev;
1639 	size_t alloc_size;
1640 
1641 	alloc_size = sizeof(struct iio_dev_opaque);
1642 	if (sizeof_priv) {
1643 		alloc_size = ALIGN(alloc_size, IIO_DMA_MINALIGN);
1644 		alloc_size += sizeof_priv;
1645 	}
1646 
1647 	iio_dev_opaque = kzalloc(alloc_size, GFP_KERNEL);
1648 	if (!iio_dev_opaque)
1649 		return NULL;
1650 
1651 	indio_dev = &iio_dev_opaque->indio_dev;
1652 
1653 	if (sizeof_priv)
1654 		indio_dev->priv = (char *)iio_dev_opaque +
1655 			ALIGN(sizeof(*iio_dev_opaque), IIO_DMA_MINALIGN);
1656 
1657 	indio_dev->dev.parent = parent;
1658 	indio_dev->dev.type = &iio_device_type;
1659 	indio_dev->dev.bus = &iio_bus_type;
1660 	device_initialize(&indio_dev->dev);
1661 	mutex_init(&iio_dev_opaque->mlock);
1662 	mutex_init(&iio_dev_opaque->info_exist_lock);
1663 	INIT_LIST_HEAD(&iio_dev_opaque->channel_attr_list);
1664 
1665 	iio_dev_opaque->id = ida_alloc(&iio_ida, GFP_KERNEL);
1666 	if (iio_dev_opaque->id < 0) {
1667 		/* cannot use a dev_err as the name isn't available */
1668 		pr_err("failed to get device id\n");
1669 		kfree(iio_dev_opaque);
1670 		return NULL;
1671 	}
1672 
1673 	if (dev_set_name(&indio_dev->dev, "iio:device%d", iio_dev_opaque->id)) {
1674 		ida_free(&iio_ida, iio_dev_opaque->id);
1675 		kfree(iio_dev_opaque);
1676 		return NULL;
1677 	}
1678 
1679 	INIT_LIST_HEAD(&iio_dev_opaque->buffer_list);
1680 	INIT_LIST_HEAD(&iio_dev_opaque->ioctl_handlers);
1681 
1682 	lockdep_register_key(&iio_dev_opaque->mlock_key);
1683 	lockdep_set_class(&iio_dev_opaque->mlock, &iio_dev_opaque->mlock_key);
1684 
1685 	return indio_dev;
1686 }
1687 EXPORT_SYMBOL(iio_device_alloc);
1688 
1689 /**
1690  * iio_device_free() - free an iio_dev from a driver
1691  * @dev:		the iio_dev associated with the device
1692  */
iio_device_free(struct iio_dev * dev)1693 void iio_device_free(struct iio_dev *dev)
1694 {
1695 	if (dev)
1696 		put_device(&dev->dev);
1697 }
1698 EXPORT_SYMBOL(iio_device_free);
1699 
devm_iio_device_release(void * iio_dev)1700 static void devm_iio_device_release(void *iio_dev)
1701 {
1702 	iio_device_free(iio_dev);
1703 }
1704 
1705 /**
1706  * devm_iio_device_alloc - Resource-managed iio_device_alloc()
1707  * @parent:		Device to allocate iio_dev for, and parent for this IIO device
1708  * @sizeof_priv:	Space to allocate for private structure.
1709  *
1710  * Managed iio_device_alloc. iio_dev allocated with this function is
1711  * automatically freed on driver detach.
1712  *
1713  * Returns:
1714  * Pointer to allocated iio_dev on success, NULL on failure.
1715  */
devm_iio_device_alloc(struct device * parent,int sizeof_priv)1716 struct iio_dev *devm_iio_device_alloc(struct device *parent, int sizeof_priv)
1717 {
1718 	struct iio_dev *iio_dev;
1719 	int ret;
1720 
1721 	iio_dev = iio_device_alloc(parent, sizeof_priv);
1722 	if (!iio_dev)
1723 		return NULL;
1724 
1725 	ret = devm_add_action_or_reset(parent, devm_iio_device_release,
1726 				       iio_dev);
1727 	if (ret)
1728 		return NULL;
1729 
1730 	return iio_dev;
1731 }
1732 EXPORT_SYMBOL_GPL(devm_iio_device_alloc);
1733 
1734 /**
1735  * iio_chrdev_open() - chrdev file open for buffer access and ioctls
1736  * @inode:	Inode structure for identifying the device in the file system
1737  * @filp:	File structure for iio device used to keep and later access
1738  *		private data
1739  *
1740  * Returns: 0 on success or -EBUSY if the device is already opened
1741  */
iio_chrdev_open(struct inode * inode,struct file * filp)1742 static int iio_chrdev_open(struct inode *inode, struct file *filp)
1743 {
1744 	struct iio_dev_opaque *iio_dev_opaque =
1745 		container_of(inode->i_cdev, struct iio_dev_opaque, chrdev);
1746 	struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev;
1747 	struct iio_dev_buffer_pair *ib;
1748 
1749 	if (test_and_set_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags))
1750 		return -EBUSY;
1751 
1752 	iio_device_get(indio_dev);
1753 
1754 	ib = kmalloc(sizeof(*ib), GFP_KERNEL);
1755 	if (!ib) {
1756 		iio_device_put(indio_dev);
1757 		clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags);
1758 		return -ENOMEM;
1759 	}
1760 
1761 	ib->indio_dev = indio_dev;
1762 	ib->buffer = indio_dev->buffer;
1763 
1764 	filp->private_data = ib;
1765 
1766 	return 0;
1767 }
1768 
1769 /**
1770  * iio_chrdev_release() - chrdev file close buffer access and ioctls
1771  * @inode:	Inode structure pointer for the char device
1772  * @filp:	File structure pointer for the char device
1773  *
1774  * Returns: 0 for successful release.
1775  */
iio_chrdev_release(struct inode * inode,struct file * filp)1776 static int iio_chrdev_release(struct inode *inode, struct file *filp)
1777 {
1778 	struct iio_dev_buffer_pair *ib = filp->private_data;
1779 	struct iio_dev_opaque *iio_dev_opaque =
1780 		container_of(inode->i_cdev, struct iio_dev_opaque, chrdev);
1781 	struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev;
1782 
1783 	kfree(ib);
1784 	clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags);
1785 	iio_device_put(indio_dev);
1786 
1787 	return 0;
1788 }
1789 
iio_device_ioctl_handler_register(struct iio_dev * indio_dev,struct iio_ioctl_handler * h)1790 void iio_device_ioctl_handler_register(struct iio_dev *indio_dev,
1791 				       struct iio_ioctl_handler *h)
1792 {
1793 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1794 
1795 	list_add_tail(&h->entry, &iio_dev_opaque->ioctl_handlers);
1796 }
1797 
iio_device_ioctl_handler_unregister(struct iio_ioctl_handler * h)1798 void iio_device_ioctl_handler_unregister(struct iio_ioctl_handler *h)
1799 {
1800 	list_del(&h->entry);
1801 }
1802 
iio_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1803 static long iio_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1804 {
1805 	struct iio_dev_buffer_pair *ib = filp->private_data;
1806 	struct iio_dev *indio_dev = ib->indio_dev;
1807 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1808 	struct iio_ioctl_handler *h;
1809 	int ret = -ENODEV;
1810 
1811 	mutex_lock(&iio_dev_opaque->info_exist_lock);
1812 
1813 	/*
1814 	 * The NULL check here is required to prevent crashing when a device
1815 	 * is being removed while userspace would still have open file handles
1816 	 * to try to access this device.
1817 	 */
1818 	if (!indio_dev->info)
1819 		goto out_unlock;
1820 
1821 	list_for_each_entry(h, &iio_dev_opaque->ioctl_handlers, entry) {
1822 		ret = h->ioctl(indio_dev, filp, cmd, arg);
1823 		if (ret != IIO_IOCTL_UNHANDLED)
1824 			break;
1825 	}
1826 
1827 	if (ret == IIO_IOCTL_UNHANDLED)
1828 		ret = -ENODEV;
1829 
1830 out_unlock:
1831 	mutex_unlock(&iio_dev_opaque->info_exist_lock);
1832 
1833 	return ret;
1834 }
1835 
1836 static const struct file_operations iio_buffer_fileops = {
1837 	.owner = THIS_MODULE,
1838 	.llseek = noop_llseek,
1839 	.read = iio_buffer_read_outer_addr,
1840 	.write = iio_buffer_write_outer_addr,
1841 	.poll = iio_buffer_poll_addr,
1842 	.unlocked_ioctl = iio_ioctl,
1843 	.compat_ioctl = compat_ptr_ioctl,
1844 	.open = iio_chrdev_open,
1845 	.release = iio_chrdev_release,
1846 };
1847 
1848 static const struct file_operations iio_event_fileops = {
1849 	.owner = THIS_MODULE,
1850 	.llseek = noop_llseek,
1851 	.unlocked_ioctl = iio_ioctl,
1852 	.compat_ioctl = compat_ptr_ioctl,
1853 	.open = iio_chrdev_open,
1854 	.release = iio_chrdev_release,
1855 };
1856 
iio_check_unique_scan_index(struct iio_dev * indio_dev)1857 static int iio_check_unique_scan_index(struct iio_dev *indio_dev)
1858 {
1859 	int i, j;
1860 	const struct iio_chan_spec *channels = indio_dev->channels;
1861 
1862 	if (!(indio_dev->modes & INDIO_ALL_BUFFER_MODES))
1863 		return 0;
1864 
1865 	for (i = 0; i < indio_dev->num_channels - 1; i++) {
1866 		if (channels[i].scan_index < 0)
1867 			continue;
1868 		for (j = i + 1; j < indio_dev->num_channels; j++)
1869 			if (channels[i].scan_index == channels[j].scan_index) {
1870 				dev_err(&indio_dev->dev,
1871 					"Duplicate scan index %d\n",
1872 					channels[i].scan_index);
1873 				return -EINVAL;
1874 			}
1875 	}
1876 
1877 	return 0;
1878 }
1879 
iio_check_extended_name(const struct iio_dev * indio_dev)1880 static int iio_check_extended_name(const struct iio_dev *indio_dev)
1881 {
1882 	unsigned int i;
1883 
1884 	if (!indio_dev->info->read_label)
1885 		return 0;
1886 
1887 	for (i = 0; i < indio_dev->num_channels; i++) {
1888 		if (indio_dev->channels[i].extend_name) {
1889 			dev_err(&indio_dev->dev,
1890 				"Cannot use labels and extend_name at the same time\n");
1891 			return -EINVAL;
1892 		}
1893 	}
1894 
1895 	return 0;
1896 }
1897 
1898 static const struct iio_buffer_setup_ops noop_ring_setup_ops;
1899 
__iio_device_register(struct iio_dev * indio_dev,struct module * this_mod)1900 int __iio_device_register(struct iio_dev *indio_dev, struct module *this_mod)
1901 {
1902 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1903 	struct fwnode_handle *fwnode = NULL;
1904 	int ret;
1905 
1906 	if (!indio_dev->info)
1907 		return -EINVAL;
1908 
1909 	iio_dev_opaque->driver_module = this_mod;
1910 
1911 	/* If the calling driver did not initialize firmware node, do it here */
1912 	if (dev_fwnode(&indio_dev->dev))
1913 		fwnode = dev_fwnode(&indio_dev->dev);
1914 	/* The default dummy IIO device has no parent */
1915 	else if (indio_dev->dev.parent)
1916 		fwnode = dev_fwnode(indio_dev->dev.parent);
1917 	device_set_node(&indio_dev->dev, fwnode);
1918 
1919 	fwnode_property_read_string(fwnode, "label", &indio_dev->label);
1920 
1921 	ret = iio_check_unique_scan_index(indio_dev);
1922 	if (ret < 0)
1923 		return ret;
1924 
1925 	ret = iio_check_extended_name(indio_dev);
1926 	if (ret < 0)
1927 		return ret;
1928 
1929 	iio_device_register_debugfs(indio_dev);
1930 
1931 	ret = iio_buffers_alloc_sysfs_and_mask(indio_dev);
1932 	if (ret) {
1933 		dev_err(indio_dev->dev.parent,
1934 			"Failed to create buffer sysfs interfaces\n");
1935 		goto error_unreg_debugfs;
1936 	}
1937 
1938 	ret = iio_device_register_sysfs(indio_dev);
1939 	if (ret) {
1940 		dev_err(indio_dev->dev.parent,
1941 			"Failed to register sysfs interfaces\n");
1942 		goto error_buffer_free_sysfs;
1943 	}
1944 	ret = iio_device_register_eventset(indio_dev);
1945 	if (ret) {
1946 		dev_err(indio_dev->dev.parent,
1947 			"Failed to register event set\n");
1948 		goto error_free_sysfs;
1949 	}
1950 	if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES)
1951 		iio_device_register_trigger_consumer(indio_dev);
1952 
1953 	if ((indio_dev->modes & INDIO_ALL_BUFFER_MODES) &&
1954 		indio_dev->setup_ops == NULL)
1955 		indio_dev->setup_ops = &noop_ring_setup_ops;
1956 
1957 	if (iio_dev_opaque->attached_buffers_cnt)
1958 		cdev_init(&iio_dev_opaque->chrdev, &iio_buffer_fileops);
1959 	else if (iio_dev_opaque->event_interface)
1960 		cdev_init(&iio_dev_opaque->chrdev, &iio_event_fileops);
1961 
1962 	if (iio_dev_opaque->attached_buffers_cnt || iio_dev_opaque->event_interface) {
1963 		indio_dev->dev.devt = MKDEV(MAJOR(iio_devt), iio_dev_opaque->id);
1964 		iio_dev_opaque->chrdev.owner = this_mod;
1965 	}
1966 
1967 	/* assign device groups now; they should be all registered now */
1968 	indio_dev->dev.groups = iio_dev_opaque->groups;
1969 
1970 	ret = cdev_device_add(&iio_dev_opaque->chrdev, &indio_dev->dev);
1971 	if (ret < 0)
1972 		goto error_unreg_eventset;
1973 
1974 	return 0;
1975 
1976 error_unreg_eventset:
1977 	iio_device_unregister_eventset(indio_dev);
1978 error_free_sysfs:
1979 	iio_device_unregister_sysfs(indio_dev);
1980 error_buffer_free_sysfs:
1981 	iio_buffers_free_sysfs_and_mask(indio_dev);
1982 error_unreg_debugfs:
1983 	iio_device_unregister_debugfs(indio_dev);
1984 	return ret;
1985 }
1986 EXPORT_SYMBOL(__iio_device_register);
1987 
1988 /**
1989  * iio_device_unregister() - unregister a device from the IIO subsystem
1990  * @indio_dev:		Device structure representing the device.
1991  */
iio_device_unregister(struct iio_dev * indio_dev)1992 void iio_device_unregister(struct iio_dev *indio_dev)
1993 {
1994 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1995 
1996 	cdev_device_del(&iio_dev_opaque->chrdev, &indio_dev->dev);
1997 
1998 	mutex_lock(&iio_dev_opaque->info_exist_lock);
1999 
2000 	iio_device_unregister_debugfs(indio_dev);
2001 
2002 	iio_disable_all_buffers(indio_dev);
2003 
2004 	indio_dev->info = NULL;
2005 
2006 	iio_device_wakeup_eventset(indio_dev);
2007 	iio_buffer_wakeup_poll(indio_dev);
2008 
2009 	mutex_unlock(&iio_dev_opaque->info_exist_lock);
2010 
2011 	iio_buffers_free_sysfs_and_mask(indio_dev);
2012 }
2013 EXPORT_SYMBOL(iio_device_unregister);
2014 
devm_iio_device_unreg(void * indio_dev)2015 static void devm_iio_device_unreg(void *indio_dev)
2016 {
2017 	iio_device_unregister(indio_dev);
2018 }
2019 
__devm_iio_device_register(struct device * dev,struct iio_dev * indio_dev,struct module * this_mod)2020 int __devm_iio_device_register(struct device *dev, struct iio_dev *indio_dev,
2021 			       struct module *this_mod)
2022 {
2023 	int ret;
2024 
2025 	ret = __iio_device_register(indio_dev, this_mod);
2026 	if (ret)
2027 		return ret;
2028 
2029 	return devm_add_action_or_reset(dev, devm_iio_device_unreg, indio_dev);
2030 }
2031 EXPORT_SYMBOL_GPL(__devm_iio_device_register);
2032 
2033 /**
2034  * iio_device_claim_direct_mode - Keep device in direct mode
2035  * @indio_dev:	the iio_dev associated with the device
2036  *
2037  * If the device is in direct mode it is guaranteed to stay
2038  * that way until iio_device_release_direct_mode() is called.
2039  *
2040  * Use with iio_device_release_direct_mode()
2041  *
2042  * Returns: 0 on success, -EBUSY on failure.
2043  */
iio_device_claim_direct_mode(struct iio_dev * indio_dev)2044 int iio_device_claim_direct_mode(struct iio_dev *indio_dev)
2045 {
2046 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2047 
2048 	mutex_lock(&iio_dev_opaque->mlock);
2049 
2050 	if (iio_buffer_enabled(indio_dev)) {
2051 		mutex_unlock(&iio_dev_opaque->mlock);
2052 		return -EBUSY;
2053 	}
2054 	return 0;
2055 }
2056 EXPORT_SYMBOL_GPL(iio_device_claim_direct_mode);
2057 
2058 /**
2059  * iio_device_release_direct_mode - releases claim on direct mode
2060  * @indio_dev:	the iio_dev associated with the device
2061  *
2062  * Release the claim. Device is no longer guaranteed to stay
2063  * in direct mode.
2064  *
2065  * Use with iio_device_claim_direct_mode()
2066  */
iio_device_release_direct_mode(struct iio_dev * indio_dev)2067 void iio_device_release_direct_mode(struct iio_dev *indio_dev)
2068 {
2069 	mutex_unlock(&to_iio_dev_opaque(indio_dev)->mlock);
2070 }
2071 EXPORT_SYMBOL_GPL(iio_device_release_direct_mode);
2072 
2073 /**
2074  * iio_device_claim_buffer_mode - Keep device in buffer mode
2075  * @indio_dev:	the iio_dev associated with the device
2076  *
2077  * If the device is in buffer mode it is guaranteed to stay
2078  * that way until iio_device_release_buffer_mode() is called.
2079  *
2080  * Use with iio_device_release_buffer_mode().
2081  *
2082  * Returns: 0 on success, -EBUSY on failure.
2083  */
iio_device_claim_buffer_mode(struct iio_dev * indio_dev)2084 int iio_device_claim_buffer_mode(struct iio_dev *indio_dev)
2085 {
2086 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2087 
2088 	mutex_lock(&iio_dev_opaque->mlock);
2089 
2090 	if (iio_buffer_enabled(indio_dev))
2091 		return 0;
2092 
2093 	mutex_unlock(&iio_dev_opaque->mlock);
2094 	return -EBUSY;
2095 }
2096 EXPORT_SYMBOL_GPL(iio_device_claim_buffer_mode);
2097 
2098 /**
2099  * iio_device_release_buffer_mode - releases claim on buffer mode
2100  * @indio_dev:	the iio_dev associated with the device
2101  *
2102  * Release the claim. Device is no longer guaranteed to stay
2103  * in buffer mode.
2104  *
2105  * Use with iio_device_claim_buffer_mode().
2106  */
iio_device_release_buffer_mode(struct iio_dev * indio_dev)2107 void iio_device_release_buffer_mode(struct iio_dev *indio_dev)
2108 {
2109 	mutex_unlock(&to_iio_dev_opaque(indio_dev)->mlock);
2110 }
2111 EXPORT_SYMBOL_GPL(iio_device_release_buffer_mode);
2112 
2113 /**
2114  * iio_device_get_current_mode() - helper function providing read-only access to
2115  *				   the opaque @currentmode variable
2116  * @indio_dev:			   IIO device structure for device
2117  */
iio_device_get_current_mode(struct iio_dev * indio_dev)2118 int iio_device_get_current_mode(struct iio_dev *indio_dev)
2119 {
2120 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2121 
2122 	return iio_dev_opaque->currentmode;
2123 }
2124 EXPORT_SYMBOL_GPL(iio_device_get_current_mode);
2125 
2126 subsys_initcall(iio_init);
2127 module_exit(iio_exit);
2128 
2129 MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
2130 MODULE_DESCRIPTION("Industrial I/O core");
2131 MODULE_LICENSE("GPL");
2132