• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 #include <linux/user_events.h>
101 #include <linux/iommu.h>
102 #include <linux/cpufreq_times.h>
103 
104 #include <asm/pgalloc.h>
105 #include <linux/uaccess.h>
106 #include <asm/mmu_context.h>
107 #include <asm/cacheflush.h>
108 #include <asm/tlbflush.h>
109 
110 #include <trace/events/sched.h>
111 
112 #define CREATE_TRACE_POINTS
113 #include <trace/events/task.h>
114 
115 #undef CREATE_TRACE_POINTS
116 #include <trace/hooks/sched.h>
117 /*
118  * Minimum number of threads to boot the kernel
119  */
120 #define MIN_THREADS 20
121 
122 /*
123  * Maximum number of threads
124  */
125 #define MAX_THREADS FUTEX_TID_MASK
126 
127 EXPORT_TRACEPOINT_SYMBOL_GPL(task_newtask);
128 EXPORT_TRACEPOINT_SYMBOL_GPL(task_rename);
129 
130 /*
131  * Protected counters by write_lock_irq(&tasklist_lock)
132  */
133 unsigned long total_forks;	/* Handle normal Linux uptimes. */
134 int nr_threads;			/* The idle threads do not count.. */
135 
136 static int max_threads;		/* tunable limit on nr_threads */
137 
138 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
139 
140 static const char * const resident_page_types[] = {
141 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
142 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
143 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
144 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
145 };
146 
147 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
148 
149 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
150 EXPORT_SYMBOL_GPL(tasklist_lock);
151 
152 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)153 int lockdep_tasklist_lock_is_held(void)
154 {
155 	return lockdep_is_held(&tasklist_lock);
156 }
157 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
158 #endif /* #ifdef CONFIG_PROVE_RCU */
159 
nr_processes(void)160 int nr_processes(void)
161 {
162 	int cpu;
163 	int total = 0;
164 
165 	for_each_possible_cpu(cpu)
166 		total += per_cpu(process_counts, cpu);
167 
168 	return total;
169 }
170 
arch_release_task_struct(struct task_struct * tsk)171 void __weak arch_release_task_struct(struct task_struct *tsk)
172 {
173 }
174 
175 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
176 static struct kmem_cache *task_struct_cachep;
177 
alloc_task_struct_node(int node)178 static inline struct task_struct *alloc_task_struct_node(int node)
179 {
180 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
181 }
182 
free_task_struct(struct task_struct * tsk)183 static inline void free_task_struct(struct task_struct *tsk)
184 {
185 	kmem_cache_free(task_struct_cachep, tsk);
186 }
187 #endif
188 
189 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
190 
191 /*
192  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
193  * kmemcache based allocator.
194  */
195 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
196 
197 #  ifdef CONFIG_VMAP_STACK
198 /*
199  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
200  * flush.  Try to minimize the number of calls by caching stacks.
201  */
202 #define NR_CACHED_STACKS 2
203 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
204 
205 struct vm_stack {
206 	struct rcu_head rcu;
207 	struct vm_struct *stack_vm_area;
208 };
209 
try_release_thread_stack_to_cache(struct vm_struct * vm)210 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
211 {
212 	unsigned int i;
213 
214 	for (i = 0; i < NR_CACHED_STACKS; i++) {
215 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
216 			continue;
217 		return true;
218 	}
219 	return false;
220 }
221 
thread_stack_free_rcu(struct rcu_head * rh)222 static void thread_stack_free_rcu(struct rcu_head *rh)
223 {
224 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
225 
226 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
227 		return;
228 
229 	vfree(vm_stack);
230 }
231 
thread_stack_delayed_free(struct task_struct * tsk)232 static void thread_stack_delayed_free(struct task_struct *tsk)
233 {
234 	struct vm_stack *vm_stack = tsk->stack;
235 
236 	vm_stack->stack_vm_area = tsk->stack_vm_area;
237 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
238 }
239 
free_vm_stack_cache(unsigned int cpu)240 static int free_vm_stack_cache(unsigned int cpu)
241 {
242 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
243 	int i;
244 
245 	for (i = 0; i < NR_CACHED_STACKS; i++) {
246 		struct vm_struct *vm_stack = cached_vm_stacks[i];
247 
248 		if (!vm_stack)
249 			continue;
250 
251 		vfree(vm_stack->addr);
252 		cached_vm_stacks[i] = NULL;
253 	}
254 
255 	return 0;
256 }
257 
memcg_charge_kernel_stack(struct vm_struct * vm)258 static int memcg_charge_kernel_stack(struct vm_struct *vm)
259 {
260 	int i;
261 	int ret;
262 	int nr_charged = 0;
263 
264 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
265 
266 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
267 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
268 		if (ret)
269 			goto err;
270 		nr_charged++;
271 	}
272 	return 0;
273 err:
274 	for (i = 0; i < nr_charged; i++)
275 		memcg_kmem_uncharge_page(vm->pages[i], 0);
276 	return ret;
277 }
278 
alloc_thread_stack_node(struct task_struct * tsk,int node)279 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
280 {
281 	struct vm_struct *vm;
282 	void *stack;
283 	int i;
284 
285 	for (i = 0; i < NR_CACHED_STACKS; i++) {
286 		struct vm_struct *s;
287 
288 		s = this_cpu_xchg(cached_stacks[i], NULL);
289 
290 		if (!s)
291 			continue;
292 
293 		/* Reset stack metadata. */
294 		kasan_unpoison_range(s->addr, THREAD_SIZE);
295 
296 		stack = kasan_reset_tag(s->addr);
297 
298 		/* Clear stale pointers from reused stack. */
299 		memset(stack, 0, THREAD_SIZE);
300 
301 		if (memcg_charge_kernel_stack(s)) {
302 			vfree(s->addr);
303 			return -ENOMEM;
304 		}
305 
306 		tsk->stack_vm_area = s;
307 		tsk->stack = stack;
308 		return 0;
309 	}
310 
311 	/*
312 	 * Allocated stacks are cached and later reused by new threads,
313 	 * so memcg accounting is performed manually on assigning/releasing
314 	 * stacks to tasks. Drop __GFP_ACCOUNT.
315 	 */
316 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
317 				     VMALLOC_START, VMALLOC_END,
318 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
319 				     PAGE_KERNEL,
320 				     0, node, __builtin_return_address(0));
321 	if (!stack)
322 		return -ENOMEM;
323 
324 	vm = find_vm_area(stack);
325 	if (memcg_charge_kernel_stack(vm)) {
326 		vfree(stack);
327 		return -ENOMEM;
328 	}
329 	/*
330 	 * We can't call find_vm_area() in interrupt context, and
331 	 * free_thread_stack() can be called in interrupt context,
332 	 * so cache the vm_struct.
333 	 */
334 	tsk->stack_vm_area = vm;
335 	stack = kasan_reset_tag(stack);
336 	tsk->stack = stack;
337 	return 0;
338 }
339 
free_thread_stack(struct task_struct * tsk)340 static void free_thread_stack(struct task_struct *tsk)
341 {
342 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
343 		thread_stack_delayed_free(tsk);
344 
345 	tsk->stack = NULL;
346 	tsk->stack_vm_area = NULL;
347 }
348 
349 #  else /* !CONFIG_VMAP_STACK */
350 
thread_stack_free_rcu(struct rcu_head * rh)351 static void thread_stack_free_rcu(struct rcu_head *rh)
352 {
353 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
354 }
355 
thread_stack_delayed_free(struct task_struct * tsk)356 static void thread_stack_delayed_free(struct task_struct *tsk)
357 {
358 	struct rcu_head *rh = tsk->stack;
359 
360 	call_rcu(rh, thread_stack_free_rcu);
361 }
362 
alloc_thread_stack_node(struct task_struct * tsk,int node)363 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
364 {
365 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
366 					     THREAD_SIZE_ORDER);
367 
368 	if (likely(page)) {
369 		tsk->stack = kasan_reset_tag(page_address(page));
370 		return 0;
371 	}
372 	return -ENOMEM;
373 }
374 
free_thread_stack(struct task_struct * tsk)375 static void free_thread_stack(struct task_struct *tsk)
376 {
377 	thread_stack_delayed_free(tsk);
378 	tsk->stack = NULL;
379 }
380 
381 #  endif /* CONFIG_VMAP_STACK */
382 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
383 
384 static struct kmem_cache *thread_stack_cache;
385 
thread_stack_free_rcu(struct rcu_head * rh)386 static void thread_stack_free_rcu(struct rcu_head *rh)
387 {
388 	kmem_cache_free(thread_stack_cache, rh);
389 }
390 
thread_stack_delayed_free(struct task_struct * tsk)391 static void thread_stack_delayed_free(struct task_struct *tsk)
392 {
393 	struct rcu_head *rh = tsk->stack;
394 
395 	call_rcu(rh, thread_stack_free_rcu);
396 }
397 
alloc_thread_stack_node(struct task_struct * tsk,int node)398 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
399 {
400 	unsigned long *stack;
401 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
402 	stack = kasan_reset_tag(stack);
403 	tsk->stack = stack;
404 	return stack ? 0 : -ENOMEM;
405 }
406 
free_thread_stack(struct task_struct * tsk)407 static void free_thread_stack(struct task_struct *tsk)
408 {
409 	thread_stack_delayed_free(tsk);
410 	tsk->stack = NULL;
411 }
412 
thread_stack_cache_init(void)413 void thread_stack_cache_init(void)
414 {
415 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
416 					THREAD_SIZE, THREAD_SIZE, 0, 0,
417 					THREAD_SIZE, NULL);
418 	BUG_ON(thread_stack_cache == NULL);
419 }
420 
421 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
422 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
423 
alloc_thread_stack_node(struct task_struct * tsk,int node)424 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
425 {
426 	unsigned long *stack;
427 
428 	stack = arch_alloc_thread_stack_node(tsk, node);
429 	tsk->stack = stack;
430 	return stack ? 0 : -ENOMEM;
431 }
432 
free_thread_stack(struct task_struct * tsk)433 static void free_thread_stack(struct task_struct *tsk)
434 {
435 	arch_free_thread_stack(tsk);
436 	tsk->stack = NULL;
437 }
438 
439 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
440 
441 /* SLAB cache for signal_struct structures (tsk->signal) */
442 static struct kmem_cache *signal_cachep;
443 
444 /* SLAB cache for sighand_struct structures (tsk->sighand) */
445 struct kmem_cache *sighand_cachep;
446 
447 /* SLAB cache for files_struct structures (tsk->files) */
448 struct kmem_cache *files_cachep;
449 
450 /* SLAB cache for fs_struct structures (tsk->fs) */
451 struct kmem_cache *fs_cachep;
452 
453 /* SLAB cache for vm_area_struct structures */
454 static struct kmem_cache *vm_area_cachep;
455 
456 /* SLAB cache for mm_struct structures (tsk->mm) */
457 static struct kmem_cache *mm_cachep;
458 
459 #ifdef CONFIG_PER_VMA_LOCK
460 
461 /* SLAB cache for vm_area_struct.lock */
462 static struct kmem_cache *vma_lock_cachep;
463 
vma_lock_alloc(struct vm_area_struct * vma)464 static bool vma_lock_alloc(struct vm_area_struct *vma)
465 {
466 	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
467 	if (!vma->vm_lock)
468 		return false;
469 
470 	init_rwsem(&vma->vm_lock->lock);
471 	vma->vm_lock_seq = -1;
472 
473 	return true;
474 }
475 
vma_lock_free(struct vm_area_struct * vma)476 static inline void vma_lock_free(struct vm_area_struct *vma)
477 {
478 	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
479 }
480 
481 #else /* CONFIG_PER_VMA_LOCK */
482 
vma_lock_alloc(struct vm_area_struct * vma)483 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
vma_lock_free(struct vm_area_struct * vma)484 static inline void vma_lock_free(struct vm_area_struct *vma) {}
485 
486 #endif /* CONFIG_PER_VMA_LOCK */
487 
vm_area_alloc(struct mm_struct * mm)488 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
489 {
490 	struct vm_area_struct *vma;
491 
492 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
493 	if (!vma)
494 		return NULL;
495 
496 	vma_init(vma, mm);
497 	if (!vma_lock_alloc(vma)) {
498 		kmem_cache_free(vm_area_cachep, vma);
499 		return NULL;
500 	}
501 
502 	return vma;
503 }
504 
vm_area_dup(struct vm_area_struct * orig)505 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
506 {
507 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
508 
509 	if (!new)
510 		return NULL;
511 
512 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
513 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
514 	/*
515 	 * orig->shared.rb may be modified concurrently, but the clone
516 	 * will be reinitialized.
517 	 */
518 	data_race(memcpy(new, orig, sizeof(*new)));
519 	if (!vma_lock_alloc(new)) {
520 		kmem_cache_free(vm_area_cachep, new);
521 		return NULL;
522 	}
523 	INIT_LIST_HEAD(&new->anon_vma_chain);
524 	vma_numab_state_init(new);
525 	dup_anon_vma_name(orig, new);
526 
527 	return new;
528 }
529 
__vm_area_free(struct vm_area_struct * vma)530 void __vm_area_free(struct vm_area_struct *vma)
531 {
532 	vma_numab_state_free(vma);
533 	free_anon_vma_name(vma);
534 	vma_lock_free(vma);
535 	kmem_cache_free(vm_area_cachep, vma);
536 }
537 
538 #ifdef CONFIG_PER_VMA_LOCK
vm_area_free_rcu_cb(struct rcu_head * head)539 static void vm_area_free_rcu_cb(struct rcu_head *head)
540 {
541 	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
542 						  vm_rcu);
543 
544 	/* The vma should not be locked while being destroyed. */
545 	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
546 	__vm_area_free(vma);
547 }
548 #endif
549 
vm_area_free(struct vm_area_struct * vma)550 void vm_area_free(struct vm_area_struct *vma)
551 {
552 #ifdef CONFIG_PER_VMA_LOCK
553 	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
554 #else
555 	__vm_area_free(vma);
556 #endif
557 }
558 
account_kernel_stack(struct task_struct * tsk,int account)559 static void account_kernel_stack(struct task_struct *tsk, int account)
560 {
561 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
562 		struct vm_struct *vm = task_stack_vm_area(tsk);
563 		int i;
564 
565 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
566 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
567 					      account * (PAGE_SIZE / 1024));
568 	} else {
569 		void *stack = task_stack_page(tsk);
570 
571 		/* All stack pages are in the same node. */
572 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
573 				      account * (THREAD_SIZE / 1024));
574 	}
575 }
576 
exit_task_stack_account(struct task_struct * tsk)577 void exit_task_stack_account(struct task_struct *tsk)
578 {
579 	account_kernel_stack(tsk, -1);
580 
581 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
582 		struct vm_struct *vm;
583 		int i;
584 
585 		vm = task_stack_vm_area(tsk);
586 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
587 			memcg_kmem_uncharge_page(vm->pages[i], 0);
588 	}
589 }
590 
release_task_stack(struct task_struct * tsk)591 static void release_task_stack(struct task_struct *tsk)
592 {
593 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
594 		return;  /* Better to leak the stack than to free prematurely */
595 
596 	free_thread_stack(tsk);
597 }
598 
599 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)600 void put_task_stack(struct task_struct *tsk)
601 {
602 	if (refcount_dec_and_test(&tsk->stack_refcount))
603 		release_task_stack(tsk);
604 }
605 #endif
606 
free_task(struct task_struct * tsk)607 void free_task(struct task_struct *tsk)
608 {
609 #ifdef CONFIG_SECCOMP
610 	WARN_ON_ONCE(tsk->seccomp.filter);
611 #endif
612 	cpufreq_task_times_exit(tsk);
613 	release_user_cpus_ptr(tsk);
614 	scs_release(tsk);
615 
616 	trace_android_vh_free_task(tsk);
617 #ifndef CONFIG_THREAD_INFO_IN_TASK
618 	/*
619 	 * The task is finally done with both the stack and thread_info,
620 	 * so free both.
621 	 */
622 	release_task_stack(tsk);
623 #else
624 	/*
625 	 * If the task had a separate stack allocation, it should be gone
626 	 * by now.
627 	 */
628 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
629 #endif
630 	rt_mutex_debug_task_free(tsk);
631 	ftrace_graph_exit_task(tsk);
632 	arch_release_task_struct(tsk);
633 	if (tsk->flags & PF_KTHREAD)
634 		free_kthread_struct(tsk);
635 	bpf_task_storage_free(tsk);
636 	free_task_struct(tsk);
637 }
638 EXPORT_SYMBOL(free_task);
639 
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)640 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
641 {
642 	struct file *exe_file;
643 
644 	exe_file = get_mm_exe_file(oldmm);
645 	RCU_INIT_POINTER(mm->exe_file, exe_file);
646 	/*
647 	 * We depend on the oldmm having properly denied write access to the
648 	 * exe_file already.
649 	 */
650 	if (exe_file && deny_write_access(exe_file))
651 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
652 }
653 
654 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)655 static __latent_entropy int dup_mmap(struct mm_struct *mm,
656 					struct mm_struct *oldmm)
657 {
658 	struct vm_area_struct *mpnt, *tmp;
659 	int retval;
660 	unsigned long charge = 0;
661 	LIST_HEAD(uf);
662 	VMA_ITERATOR(vmi, mm, 0);
663 
664 	uprobe_start_dup_mmap();
665 	if (mmap_write_lock_killable(oldmm)) {
666 		retval = -EINTR;
667 		goto fail_uprobe_end;
668 	}
669 	flush_cache_dup_mm(oldmm);
670 	uprobe_dup_mmap(oldmm, mm);
671 	/*
672 	 * Not linked in yet - no deadlock potential:
673 	 */
674 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
675 
676 	/* No ordering required: file already has been exposed. */
677 	dup_mm_exe_file(mm, oldmm);
678 
679 	mm->total_vm = oldmm->total_vm;
680 	mm->data_vm = oldmm->data_vm;
681 	mm->exec_vm = oldmm->exec_vm;
682 	mm->stack_vm = oldmm->stack_vm;
683 
684 	retval = ksm_fork(mm, oldmm);
685 	if (retval)
686 		goto out;
687 	khugepaged_fork(mm, oldmm);
688 
689 	/* Use __mt_dup() to efficiently build an identical maple tree. */
690 	retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
691 	if (unlikely(retval))
692 		goto out;
693 
694 	mt_clear_in_rcu(vmi.mas.tree);
695 	for_each_vma(vmi, mpnt) {
696 		struct file *file;
697 
698 		vma_start_write(mpnt);
699 		if (mpnt->vm_flags & VM_DONTCOPY) {
700 			retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
701 						    mpnt->vm_end, GFP_KERNEL);
702 			if (retval)
703 				goto loop_out;
704 
705 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
706 			continue;
707 		}
708 		charge = 0;
709 		/*
710 		 * Don't duplicate many vmas if we've been oom-killed (for
711 		 * example)
712 		 */
713 		if (fatal_signal_pending(current)) {
714 			retval = -EINTR;
715 			goto loop_out;
716 		}
717 		if (mpnt->vm_flags & VM_ACCOUNT) {
718 			unsigned long len = vma_pages(mpnt);
719 
720 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
721 				goto fail_nomem;
722 			charge = len;
723 		}
724 		tmp = vm_area_dup(mpnt);
725 		if (!tmp)
726 			goto fail_nomem;
727 		retval = vma_dup_policy(mpnt, tmp);
728 		if (retval)
729 			goto fail_nomem_policy;
730 		tmp->vm_mm = mm;
731 		retval = dup_userfaultfd(tmp, &uf);
732 		if (retval)
733 			goto fail_nomem_anon_vma_fork;
734 		if (tmp->vm_flags & VM_WIPEONFORK) {
735 			/*
736 			 * VM_WIPEONFORK gets a clean slate in the child.
737 			 * Don't prepare anon_vma until fault since we don't
738 			 * copy page for current vma.
739 			 */
740 			tmp->anon_vma = NULL;
741 		} else if (anon_vma_fork(tmp, mpnt))
742 			goto fail_nomem_anon_vma_fork;
743 		vm_flags_clear(tmp, VM_LOCKED_MASK);
744 		file = tmp->vm_file;
745 		if (file) {
746 			struct address_space *mapping = file->f_mapping;
747 
748 			get_file(file);
749 			i_mmap_lock_write(mapping);
750 			if (tmp->vm_flags & VM_SHARED)
751 				mapping_allow_writable(mapping);
752 			flush_dcache_mmap_lock(mapping);
753 			/* insert tmp into the share list, just after mpnt */
754 			vma_interval_tree_insert_after(tmp, mpnt,
755 					&mapping->i_mmap);
756 			flush_dcache_mmap_unlock(mapping);
757 			i_mmap_unlock_write(mapping);
758 		}
759 
760 		/*
761 		 * Copy/update hugetlb private vma information.
762 		 */
763 		if (is_vm_hugetlb_page(tmp))
764 			hugetlb_dup_vma_private(tmp);
765 		/*
766 		 * Link the vma into the MT. After using __mt_dup(), memory
767 		 * allocation is not necessary here, so it cannot fail.
768 		 */
769 		vma_iter_bulk_store(&vmi, tmp);
770 
771 		mm->map_count++;
772 		if (!(tmp->vm_flags & VM_WIPEONFORK))
773 			retval = copy_page_range(tmp, mpnt);
774 
775 		if (tmp->vm_ops && tmp->vm_ops->open)
776 			tmp->vm_ops->open(tmp);
777 
778 		if (retval) {
779 			mpnt = vma_next(&vmi);
780 			goto loop_out;
781 		}
782 	}
783 	/* a new mm has just been created */
784 	retval = arch_dup_mmap(oldmm, mm);
785 loop_out:
786 	vma_iter_free(&vmi);
787 	if (!retval) {
788 		mt_set_in_rcu(vmi.mas.tree);
789 	} else if (mpnt) {
790 		/*
791 		 * The entire maple tree has already been duplicated. If the
792 		 * mmap duplication fails, mark the failure point with
793 		 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
794 		 * stop releasing VMAs that have not been duplicated after this
795 		 * point.
796 		 */
797 		mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
798 		mas_store(&vmi.mas, XA_ZERO_ENTRY);
799 	}
800 out:
801 	mmap_write_unlock(mm);
802 	flush_tlb_mm(oldmm);
803 	mmap_write_unlock(oldmm);
804 	dup_userfaultfd_complete(&uf);
805 fail_uprobe_end:
806 	uprobe_end_dup_mmap();
807 	return retval;
808 
809 fail_nomem_anon_vma_fork:
810 	mpol_put(vma_policy(tmp));
811 fail_nomem_policy:
812 	vm_area_free(tmp);
813 fail_nomem:
814 	retval = -ENOMEM;
815 	vm_unacct_memory(charge);
816 	goto loop_out;
817 }
818 
mm_alloc_pgd(struct mm_struct * mm)819 static inline int mm_alloc_pgd(struct mm_struct *mm)
820 {
821 	mm->pgd = pgd_alloc(mm);
822 	if (unlikely(!mm->pgd))
823 		return -ENOMEM;
824 	return 0;
825 }
826 
mm_free_pgd(struct mm_struct * mm)827 static inline void mm_free_pgd(struct mm_struct *mm)
828 {
829 	pgd_free(mm, mm->pgd);
830 }
831 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)832 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
833 {
834 	mmap_write_lock(oldmm);
835 	dup_mm_exe_file(mm, oldmm);
836 	mmap_write_unlock(oldmm);
837 	return 0;
838 }
839 #define mm_alloc_pgd(mm)	(0)
840 #define mm_free_pgd(mm)
841 #endif /* CONFIG_MMU */
842 
check_mm(struct mm_struct * mm)843 static void check_mm(struct mm_struct *mm)
844 {
845 	int i;
846 
847 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
848 			 "Please make sure 'struct resident_page_types[]' is updated as well");
849 
850 	for (i = 0; i < NR_MM_COUNTERS; i++) {
851 		long x = percpu_counter_sum(&mm->rss_stat[i]);
852 
853 		if (unlikely(x))
854 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
855 				 mm, resident_page_types[i], x);
856 	}
857 
858 	if (mm_pgtables_bytes(mm))
859 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
860 				mm_pgtables_bytes(mm));
861 
862 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
863 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
864 #endif
865 }
866 
867 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
868 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
869 
do_check_lazy_tlb(void * arg)870 static void do_check_lazy_tlb(void *arg)
871 {
872 	struct mm_struct *mm = arg;
873 
874 	WARN_ON_ONCE(current->active_mm == mm);
875 }
876 
do_shoot_lazy_tlb(void * arg)877 static void do_shoot_lazy_tlb(void *arg)
878 {
879 	struct mm_struct *mm = arg;
880 
881 	if (current->active_mm == mm) {
882 		WARN_ON_ONCE(current->mm);
883 		current->active_mm = &init_mm;
884 		switch_mm(mm, &init_mm, current);
885 	}
886 }
887 
cleanup_lazy_tlbs(struct mm_struct * mm)888 static void cleanup_lazy_tlbs(struct mm_struct *mm)
889 {
890 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
891 		/*
892 		 * In this case, lazy tlb mms are refounted and would not reach
893 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
894 		 */
895 		return;
896 	}
897 
898 	/*
899 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
900 	 * requires lazy mm users to switch to another mm when the refcount
901 	 * drops to zero, before the mm is freed. This requires IPIs here to
902 	 * switch kernel threads to init_mm.
903 	 *
904 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
905 	 * switch with the final userspace teardown TLB flush which leaves the
906 	 * mm lazy on this CPU but no others, reducing the need for additional
907 	 * IPIs here. There are cases where a final IPI is still required here,
908 	 * such as the final mmdrop being performed on a different CPU than the
909 	 * one exiting, or kernel threads using the mm when userspace exits.
910 	 *
911 	 * IPI overheads have not found to be expensive, but they could be
912 	 * reduced in a number of possible ways, for example (roughly
913 	 * increasing order of complexity):
914 	 * - The last lazy reference created by exit_mm() could instead switch
915 	 *   to init_mm, however it's probable this will run on the same CPU
916 	 *   immediately afterwards, so this may not reduce IPIs much.
917 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
918 	 * - CPUs store active_mm where it can be remotely checked without a
919 	 *   lock, to filter out false-positives in the cpumask.
920 	 * - After mm_users or mm_count reaches zero, switching away from the
921 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
922 	 *   with some batching or delaying of the final IPIs.
923 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
924 	 *   switching to avoid IPIs completely.
925 	 */
926 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
927 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
928 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
929 }
930 
931 /*
932  * Called when the last reference to the mm
933  * is dropped: either by a lazy thread or by
934  * mmput. Free the page directory and the mm.
935  */
__mmdrop(struct mm_struct * mm)936 void __mmdrop(struct mm_struct *mm)
937 {
938 	BUG_ON(mm == &init_mm);
939 	WARN_ON_ONCE(mm == current->mm);
940 
941 	/* Ensure no CPUs are using this as their lazy tlb mm */
942 	cleanup_lazy_tlbs(mm);
943 
944 	WARN_ON_ONCE(mm == current->active_mm);
945 	mm_free_pgd(mm);
946 	destroy_context(mm);
947 	mmu_notifier_subscriptions_destroy(mm);
948 	check_mm(mm);
949 	put_user_ns(mm->user_ns);
950 	mm_pasid_drop(mm);
951 	mm_destroy_cid(mm);
952 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
953 
954 	free_mm(mm);
955 }
956 EXPORT_SYMBOL_GPL(__mmdrop);
957 
mmdrop_async_fn(struct work_struct * work)958 static void mmdrop_async_fn(struct work_struct *work)
959 {
960 	struct mm_struct *mm;
961 
962 	mm = container_of(work, struct mm_struct, async_put_work);
963 	__mmdrop(mm);
964 }
965 
mmdrop_async(struct mm_struct * mm)966 static void mmdrop_async(struct mm_struct *mm)
967 {
968 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
969 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
970 		schedule_work(&mm->async_put_work);
971 	}
972 }
973 
free_signal_struct(struct signal_struct * sig)974 static inline void free_signal_struct(struct signal_struct *sig)
975 {
976 	taskstats_tgid_free(sig);
977 	sched_autogroup_exit(sig);
978 	/*
979 	 * __mmdrop is not safe to call from softirq context on x86 due to
980 	 * pgd_dtor so postpone it to the async context
981 	 */
982 	if (sig->oom_mm)
983 		mmdrop_async(sig->oom_mm);
984 	kmem_cache_free(signal_cachep, sig);
985 }
986 
put_signal_struct(struct signal_struct * sig)987 static inline void put_signal_struct(struct signal_struct *sig)
988 {
989 	if (refcount_dec_and_test(&sig->sigcnt))
990 		free_signal_struct(sig);
991 }
992 
__put_task_struct(struct task_struct * tsk)993 void __put_task_struct(struct task_struct *tsk)
994 {
995 	WARN_ON(!tsk->exit_state);
996 	WARN_ON(refcount_read(&tsk->usage));
997 	WARN_ON(tsk == current);
998 
999 	io_uring_free(tsk);
1000 	cgroup_free(tsk);
1001 	task_numa_free(tsk, true);
1002 	security_task_free(tsk);
1003 	exit_creds(tsk);
1004 	delayacct_tsk_free(tsk);
1005 	put_signal_struct(tsk->signal);
1006 	sched_core_free(tsk);
1007 	free_task(tsk);
1008 }
1009 EXPORT_SYMBOL_GPL(__put_task_struct);
1010 
__put_task_struct_rcu_cb(struct rcu_head * rhp)1011 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
1012 {
1013 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
1014 
1015 	__put_task_struct(task);
1016 }
1017 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
1018 
arch_task_cache_init(void)1019 void __init __weak arch_task_cache_init(void) { }
1020 
1021 /*
1022  * set_max_threads
1023  */
set_max_threads(unsigned int max_threads_suggested)1024 static void set_max_threads(unsigned int max_threads_suggested)
1025 {
1026 	u64 threads;
1027 	unsigned long nr_pages = totalram_pages();
1028 
1029 	/*
1030 	 * The number of threads shall be limited such that the thread
1031 	 * structures may only consume a small part of the available memory.
1032 	 */
1033 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1034 		threads = MAX_THREADS;
1035 	else
1036 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1037 				    (u64) THREAD_SIZE * 8UL);
1038 
1039 	if (threads > max_threads_suggested)
1040 		threads = max_threads_suggested;
1041 
1042 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1043 }
1044 
1045 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1046 /* Initialized by the architecture: */
1047 int arch_task_struct_size __read_mostly;
1048 #endif
1049 
1050 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
task_struct_whitelist(unsigned long * offset,unsigned long * size)1051 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1052 {
1053 	/* Fetch thread_struct whitelist for the architecture. */
1054 	arch_thread_struct_whitelist(offset, size);
1055 
1056 	/*
1057 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1058 	 * adjust offset to position of thread_struct in task_struct.
1059 	 */
1060 	if (unlikely(*size == 0))
1061 		*offset = 0;
1062 	else
1063 		*offset += offsetof(struct task_struct, thread);
1064 }
1065 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
1066 
fork_init(void)1067 void __init fork_init(void)
1068 {
1069 	int i;
1070 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1071 #ifndef ARCH_MIN_TASKALIGN
1072 #define ARCH_MIN_TASKALIGN	0
1073 #endif
1074 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1075 	unsigned long useroffset, usersize;
1076 
1077 	/* create a slab on which task_structs can be allocated */
1078 	task_struct_whitelist(&useroffset, &usersize);
1079 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1080 			arch_task_struct_size, align,
1081 			SLAB_PANIC|SLAB_ACCOUNT,
1082 			useroffset, usersize, NULL);
1083 #endif
1084 
1085 	/* do the arch specific task caches init */
1086 	arch_task_cache_init();
1087 
1088 	set_max_threads(MAX_THREADS);
1089 
1090 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1091 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1092 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1093 		init_task.signal->rlim[RLIMIT_NPROC];
1094 
1095 	for (i = 0; i < UCOUNT_COUNTS; i++)
1096 		init_user_ns.ucount_max[i] = max_threads/2;
1097 
1098 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1099 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1100 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1101 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1102 
1103 #ifdef CONFIG_VMAP_STACK
1104 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1105 			  NULL, free_vm_stack_cache);
1106 #endif
1107 
1108 	scs_init();
1109 
1110 	lockdep_init_task(&init_task);
1111 	uprobes_init();
1112 }
1113 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1114 int __weak arch_dup_task_struct(struct task_struct *dst,
1115 					       struct task_struct *src)
1116 {
1117 	*dst = *src;
1118 	return 0;
1119 }
1120 
set_task_stack_end_magic(struct task_struct * tsk)1121 void set_task_stack_end_magic(struct task_struct *tsk)
1122 {
1123 	unsigned long *stackend;
1124 
1125 	stackend = end_of_stack(tsk);
1126 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1127 }
1128 
dup_task_struct(struct task_struct * orig,int node)1129 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1130 {
1131 	struct task_struct *tsk;
1132 	int err;
1133 
1134 	if (node == NUMA_NO_NODE)
1135 		node = tsk_fork_get_node(orig);
1136 	tsk = alloc_task_struct_node(node);
1137 	if (!tsk)
1138 		return NULL;
1139 
1140 	err = arch_dup_task_struct(tsk, orig);
1141 	if (err)
1142 		goto free_tsk;
1143 
1144 	err = alloc_thread_stack_node(tsk, node);
1145 	if (err)
1146 		goto free_tsk;
1147 
1148 #ifdef CONFIG_THREAD_INFO_IN_TASK
1149 	refcount_set(&tsk->stack_refcount, 1);
1150 #endif
1151 	account_kernel_stack(tsk, 1);
1152 
1153 	err = scs_prepare(tsk, node);
1154 	if (err)
1155 		goto free_stack;
1156 
1157 #ifdef CONFIG_SECCOMP
1158 	/*
1159 	 * We must handle setting up seccomp filters once we're under
1160 	 * the sighand lock in case orig has changed between now and
1161 	 * then. Until then, filter must be NULL to avoid messing up
1162 	 * the usage counts on the error path calling free_task.
1163 	 */
1164 	tsk->seccomp.filter = NULL;
1165 #endif
1166 
1167 	setup_thread_stack(tsk, orig);
1168 	clear_user_return_notifier(tsk);
1169 	clear_tsk_need_resched(tsk);
1170 	set_task_stack_end_magic(tsk);
1171 	clear_syscall_work_syscall_user_dispatch(tsk);
1172 
1173 #ifdef CONFIG_STACKPROTECTOR
1174 	tsk->stack_canary = get_random_canary();
1175 #endif
1176 	if (orig->cpus_ptr == &orig->cpus_mask)
1177 		tsk->cpus_ptr = &tsk->cpus_mask;
1178 	dup_user_cpus_ptr(tsk, orig, node);
1179 
1180 	/*
1181 	 * One for the user space visible state that goes away when reaped.
1182 	 * One for the scheduler.
1183 	 */
1184 	refcount_set(&tsk->rcu_users, 2);
1185 	/* One for the rcu users */
1186 	refcount_set(&tsk->usage, 1);
1187 #ifdef CONFIG_BLK_DEV_IO_TRACE
1188 	tsk->btrace_seq = 0;
1189 #endif
1190 	tsk->splice_pipe = NULL;
1191 	tsk->task_frag.page = NULL;
1192 	tsk->wake_q.next = NULL;
1193 	tsk->worker_private = NULL;
1194 
1195 	kcov_task_init(tsk);
1196 	kmsan_task_create(tsk);
1197 	kmap_local_fork(tsk);
1198 
1199 #ifdef CONFIG_FAULT_INJECTION
1200 	tsk->fail_nth = 0;
1201 #endif
1202 
1203 #ifdef CONFIG_BLK_CGROUP
1204 	tsk->throttle_disk = NULL;
1205 	tsk->use_memdelay = 0;
1206 #endif
1207 
1208 #ifdef CONFIG_IOMMU_SVA
1209 	tsk->pasid_activated = 0;
1210 #endif
1211 
1212 #ifdef CONFIG_MEMCG
1213 	tsk->active_memcg = NULL;
1214 #endif
1215 
1216 #ifdef CONFIG_CPU_SUP_INTEL
1217 	tsk->reported_split_lock = 0;
1218 #endif
1219 
1220 #ifdef CONFIG_SCHED_MM_CID
1221 	tsk->mm_cid = -1;
1222 	tsk->last_mm_cid = -1;
1223 	tsk->mm_cid_active = 0;
1224 	tsk->migrate_from_cpu = -1;
1225 #endif
1226 	android_init_vendor_data(tsk, 1);
1227 	android_init_oem_data(tsk, 1);
1228 
1229 	trace_android_vh_dup_task_struct(tsk, orig);
1230 	return tsk;
1231 
1232 free_stack:
1233 	exit_task_stack_account(tsk);
1234 	free_thread_stack(tsk);
1235 free_tsk:
1236 	free_task_struct(tsk);
1237 	return NULL;
1238 }
1239 
1240 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1241 
1242 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1243 
coredump_filter_setup(char * s)1244 static int __init coredump_filter_setup(char *s)
1245 {
1246 	default_dump_filter =
1247 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1248 		MMF_DUMP_FILTER_MASK;
1249 	return 1;
1250 }
1251 
1252 __setup("coredump_filter=", coredump_filter_setup);
1253 
1254 #include <linux/init_task.h>
1255 
mm_init_aio(struct mm_struct * mm)1256 static void mm_init_aio(struct mm_struct *mm)
1257 {
1258 #ifdef CONFIG_AIO
1259 	spin_lock_init(&mm->ioctx_lock);
1260 	mm->ioctx_table = NULL;
1261 #endif
1262 }
1263 
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1264 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1265 					   struct task_struct *p)
1266 {
1267 #ifdef CONFIG_MEMCG
1268 	if (mm->owner == p)
1269 		WRITE_ONCE(mm->owner, NULL);
1270 #endif
1271 }
1272 
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1273 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1274 {
1275 #ifdef CONFIG_MEMCG
1276 	mm->owner = p;
1277 #endif
1278 }
1279 
mm_init_uprobes_state(struct mm_struct * mm)1280 static void mm_init_uprobes_state(struct mm_struct *mm)
1281 {
1282 #ifdef CONFIG_UPROBES
1283 	mm->uprobes_state.xol_area = NULL;
1284 #endif
1285 }
1286 
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1287 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1288 	struct user_namespace *user_ns)
1289 {
1290 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1291 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1292 	atomic_set(&mm->mm_users, 1);
1293 	atomic_set(&mm->mm_count, 1);
1294 	seqcount_init(&mm->write_protect_seq);
1295 	mmap_init_lock(mm);
1296 	INIT_LIST_HEAD(&mm->mmlist);
1297 #ifdef CONFIG_PER_VMA_LOCK
1298 	mm->mm_lock_seq = 0;
1299 #endif
1300 	mm_pgtables_bytes_init(mm);
1301 	mm->map_count = 0;
1302 	mm->locked_vm = 0;
1303 	atomic64_set(&mm->pinned_vm, 0);
1304 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1305 	spin_lock_init(&mm->page_table_lock);
1306 	spin_lock_init(&mm->arg_lock);
1307 	mm_init_cpumask(mm);
1308 	mm_init_aio(mm);
1309 	mm_init_owner(mm, p);
1310 	mm_pasid_init(mm);
1311 	RCU_INIT_POINTER(mm->exe_file, NULL);
1312 	mmu_notifier_subscriptions_init(mm);
1313 	init_tlb_flush_pending(mm);
1314 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1315 	mm->pmd_huge_pte = NULL;
1316 #endif
1317 	mm_init_uprobes_state(mm);
1318 	hugetlb_count_init(mm);
1319 
1320 	if (current->mm) {
1321 		mm->flags = mmf_init_flags(current->mm->flags);
1322 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1323 	} else {
1324 		mm->flags = default_dump_filter;
1325 		mm->def_flags = 0;
1326 	}
1327 
1328 	if (mm_alloc_pgd(mm))
1329 		goto fail_nopgd;
1330 
1331 	if (init_new_context(p, mm))
1332 		goto fail_nocontext;
1333 
1334 	if (mm_alloc_cid(mm))
1335 		goto fail_cid;
1336 
1337 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1338 				     NR_MM_COUNTERS))
1339 		goto fail_pcpu;
1340 
1341 	mm->user_ns = get_user_ns(user_ns);
1342 	lru_gen_init_mm(mm);
1343 	return mm;
1344 
1345 fail_pcpu:
1346 	mm_destroy_cid(mm);
1347 fail_cid:
1348 	destroy_context(mm);
1349 fail_nocontext:
1350 	mm_free_pgd(mm);
1351 fail_nopgd:
1352 	free_mm(mm);
1353 	return NULL;
1354 }
1355 
1356 /*
1357  * Allocate and initialize an mm_struct.
1358  */
mm_alloc(void)1359 struct mm_struct *mm_alloc(void)
1360 {
1361 	struct mm_struct *mm;
1362 
1363 	mm = allocate_mm();
1364 	if (!mm)
1365 		return NULL;
1366 
1367 	memset(mm, 0, sizeof(*mm));
1368 	return mm_init(mm, current, current_user_ns());
1369 }
1370 
__mmput(struct mm_struct * mm)1371 static inline void __mmput(struct mm_struct *mm)
1372 {
1373 	VM_BUG_ON(atomic_read(&mm->mm_users));
1374 
1375 	uprobe_clear_state(mm);
1376 	exit_aio(mm);
1377 	ksm_exit(mm);
1378 	khugepaged_exit(mm); /* must run before exit_mmap */
1379 	exit_mmap(mm);
1380 	mm_put_huge_zero_page(mm);
1381 	set_mm_exe_file(mm, NULL);
1382 	if (!list_empty(&mm->mmlist)) {
1383 		spin_lock(&mmlist_lock);
1384 		list_del(&mm->mmlist);
1385 		spin_unlock(&mmlist_lock);
1386 	}
1387 	if (mm->binfmt)
1388 		module_put(mm->binfmt->module);
1389 	lru_gen_del_mm(mm);
1390 	mmdrop(mm);
1391 }
1392 
1393 /*
1394  * Decrement the use count and release all resources for an mm.
1395  */
mmput(struct mm_struct * mm)1396 void mmput(struct mm_struct *mm)
1397 {
1398 	might_sleep();
1399 
1400 	if (atomic_dec_and_test(&mm->mm_users)) {
1401 		trace_android_vh_mmput(NULL);
1402 		__mmput(mm);
1403 	}
1404 }
1405 EXPORT_SYMBOL_GPL(mmput);
1406 
1407 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1408 static void mmput_async_fn(struct work_struct *work)
1409 {
1410 	struct mm_struct *mm = container_of(work, struct mm_struct,
1411 					    async_put_work);
1412 
1413 	__mmput(mm);
1414 }
1415 
mmput_async(struct mm_struct * mm)1416 void mmput_async(struct mm_struct *mm)
1417 {
1418 	if (atomic_dec_and_test(&mm->mm_users)) {
1419 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1420 		schedule_work(&mm->async_put_work);
1421 	}
1422 }
1423 EXPORT_SYMBOL_GPL(mmput_async);
1424 #endif
1425 
1426 /**
1427  * set_mm_exe_file - change a reference to the mm's executable file
1428  *
1429  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1430  *
1431  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1432  * invocations: in mmput() nobody alive left, in execve it happens before
1433  * the new mm is made visible to anyone.
1434  *
1435  * Can only fail if new_exe_file != NULL.
1436  */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1437 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1438 {
1439 	struct file *old_exe_file;
1440 
1441 	/*
1442 	 * It is safe to dereference the exe_file without RCU as
1443 	 * this function is only called if nobody else can access
1444 	 * this mm -- see comment above for justification.
1445 	 */
1446 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1447 
1448 	if (new_exe_file) {
1449 		/*
1450 		 * We expect the caller (i.e., sys_execve) to already denied
1451 		 * write access, so this is unlikely to fail.
1452 		 */
1453 		if (unlikely(deny_write_access(new_exe_file)))
1454 			return -EACCES;
1455 		get_file(new_exe_file);
1456 	}
1457 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1458 	if (old_exe_file) {
1459 		allow_write_access(old_exe_file);
1460 		fput(old_exe_file);
1461 	}
1462 	return 0;
1463 }
1464 
1465 /**
1466  * replace_mm_exe_file - replace a reference to the mm's executable file
1467  *
1468  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1469  *
1470  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1471  */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1472 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1473 {
1474 	struct vm_area_struct *vma;
1475 	struct file *old_exe_file;
1476 	int ret = 0;
1477 
1478 	/* Forbid mm->exe_file change if old file still mapped. */
1479 	old_exe_file = get_mm_exe_file(mm);
1480 	if (old_exe_file) {
1481 		VMA_ITERATOR(vmi, mm, 0);
1482 		mmap_read_lock(mm);
1483 		for_each_vma(vmi, vma) {
1484 			if (!vma->vm_file)
1485 				continue;
1486 			if (path_equal(&vma->vm_file->f_path,
1487 				       &old_exe_file->f_path)) {
1488 				ret = -EBUSY;
1489 				break;
1490 			}
1491 		}
1492 		mmap_read_unlock(mm);
1493 		fput(old_exe_file);
1494 		if (ret)
1495 			return ret;
1496 	}
1497 
1498 	ret = deny_write_access(new_exe_file);
1499 	if (ret)
1500 		return -EACCES;
1501 	get_file(new_exe_file);
1502 
1503 	/* set the new file */
1504 	mmap_write_lock(mm);
1505 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1506 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1507 	mmap_write_unlock(mm);
1508 
1509 	if (old_exe_file) {
1510 		allow_write_access(old_exe_file);
1511 		fput(old_exe_file);
1512 	}
1513 	return 0;
1514 }
1515 
1516 /**
1517  * get_mm_exe_file - acquire a reference to the mm's executable file
1518  *
1519  * Returns %NULL if mm has no associated executable file.
1520  * User must release file via fput().
1521  */
get_mm_exe_file(struct mm_struct * mm)1522 struct file *get_mm_exe_file(struct mm_struct *mm)
1523 {
1524 	struct file *exe_file;
1525 
1526 	rcu_read_lock();
1527 	exe_file = rcu_dereference(mm->exe_file);
1528 	if (exe_file && !get_file_rcu(exe_file))
1529 		exe_file = NULL;
1530 	rcu_read_unlock();
1531 	return exe_file;
1532 }
1533 
1534 /**
1535  * get_task_exe_file - acquire a reference to the task's executable file
1536  *
1537  * Returns %NULL if task's mm (if any) has no associated executable file or
1538  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1539  * User must release file via fput().
1540  */
get_task_exe_file(struct task_struct * task)1541 struct file *get_task_exe_file(struct task_struct *task)
1542 {
1543 	struct file *exe_file = NULL;
1544 	struct mm_struct *mm;
1545 
1546 	task_lock(task);
1547 	mm = task->mm;
1548 	if (mm) {
1549 		if (!(task->flags & PF_KTHREAD))
1550 			exe_file = get_mm_exe_file(mm);
1551 	}
1552 	task_unlock(task);
1553 	return exe_file;
1554 }
1555 
1556 /**
1557  * get_task_mm - acquire a reference to the task's mm
1558  *
1559  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1560  * this kernel workthread has transiently adopted a user mm with use_mm,
1561  * to do its AIO) is not set and if so returns a reference to it, after
1562  * bumping up the use count.  User must release the mm via mmput()
1563  * after use.  Typically used by /proc and ptrace.
1564  */
get_task_mm(struct task_struct * task)1565 struct mm_struct *get_task_mm(struct task_struct *task)
1566 {
1567 	struct mm_struct *mm;
1568 
1569 	task_lock(task);
1570 	mm = task->mm;
1571 	if (mm) {
1572 		if (task->flags & PF_KTHREAD)
1573 			mm = NULL;
1574 		else
1575 			mmget(mm);
1576 	}
1577 	task_unlock(task);
1578 	return mm;
1579 }
1580 EXPORT_SYMBOL_GPL(get_task_mm);
1581 
mm_access(struct task_struct * task,unsigned int mode)1582 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1583 {
1584 	struct mm_struct *mm;
1585 	int err;
1586 
1587 	err =  down_read_killable(&task->signal->exec_update_lock);
1588 	if (err)
1589 		return ERR_PTR(err);
1590 
1591 	mm = get_task_mm(task);
1592 	if (mm && mm != current->mm &&
1593 			!ptrace_may_access(task, mode)) {
1594 		mmput(mm);
1595 		mm = ERR_PTR(-EACCES);
1596 	}
1597 	up_read(&task->signal->exec_update_lock);
1598 
1599 	return mm;
1600 }
1601 EXPORT_SYMBOL_GPL(mm_access);
1602 
complete_vfork_done(struct task_struct * tsk)1603 static void complete_vfork_done(struct task_struct *tsk)
1604 {
1605 	struct completion *vfork;
1606 
1607 	task_lock(tsk);
1608 	vfork = tsk->vfork_done;
1609 	if (likely(vfork)) {
1610 		tsk->vfork_done = NULL;
1611 		complete(vfork);
1612 	}
1613 	task_unlock(tsk);
1614 }
1615 
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1616 static int wait_for_vfork_done(struct task_struct *child,
1617 				struct completion *vfork)
1618 {
1619 	unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1620 	int killed;
1621 
1622 	cgroup_enter_frozen();
1623 	killed = wait_for_completion_state(vfork, state);
1624 	cgroup_leave_frozen(false);
1625 
1626 	if (killed) {
1627 		task_lock(child);
1628 		child->vfork_done = NULL;
1629 		task_unlock(child);
1630 	}
1631 
1632 	put_task_struct(child);
1633 	return killed;
1634 }
1635 
1636 /* Please note the differences between mmput and mm_release.
1637  * mmput is called whenever we stop holding onto a mm_struct,
1638  * error success whatever.
1639  *
1640  * mm_release is called after a mm_struct has been removed
1641  * from the current process.
1642  *
1643  * This difference is important for error handling, when we
1644  * only half set up a mm_struct for a new process and need to restore
1645  * the old one.  Because we mmput the new mm_struct before
1646  * restoring the old one. . .
1647  * Eric Biederman 10 January 1998
1648  */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1649 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1650 {
1651 	uprobe_free_utask(tsk);
1652 
1653 	/* Get rid of any cached register state */
1654 	deactivate_mm(tsk, mm);
1655 
1656 	/*
1657 	 * Signal userspace if we're not exiting with a core dump
1658 	 * because we want to leave the value intact for debugging
1659 	 * purposes.
1660 	 */
1661 	if (tsk->clear_child_tid) {
1662 		if (atomic_read(&mm->mm_users) > 1) {
1663 			/*
1664 			 * We don't check the error code - if userspace has
1665 			 * not set up a proper pointer then tough luck.
1666 			 */
1667 			put_user(0, tsk->clear_child_tid);
1668 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1669 					1, NULL, NULL, 0, 0);
1670 		}
1671 		tsk->clear_child_tid = NULL;
1672 	}
1673 
1674 	/*
1675 	 * All done, finally we can wake up parent and return this mm to him.
1676 	 * Also kthread_stop() uses this completion for synchronization.
1677 	 */
1678 	if (tsk->vfork_done)
1679 		complete_vfork_done(tsk);
1680 }
1681 
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1682 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1683 {
1684 	futex_exit_release(tsk);
1685 	mm_release(tsk, mm);
1686 }
1687 
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1688 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1689 {
1690 	futex_exec_release(tsk);
1691 	mm_release(tsk, mm);
1692 }
1693 
1694 /**
1695  * dup_mm() - duplicates an existing mm structure
1696  * @tsk: the task_struct with which the new mm will be associated.
1697  * @oldmm: the mm to duplicate.
1698  *
1699  * Allocates a new mm structure and duplicates the provided @oldmm structure
1700  * content into it.
1701  *
1702  * Return: the duplicated mm or NULL on failure.
1703  */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1704 static struct mm_struct *dup_mm(struct task_struct *tsk,
1705 				struct mm_struct *oldmm)
1706 {
1707 	struct mm_struct *mm;
1708 	int err;
1709 
1710 	mm = allocate_mm();
1711 	if (!mm)
1712 		goto fail_nomem;
1713 
1714 	memcpy(mm, oldmm, sizeof(*mm));
1715 
1716 	if (!mm_init(mm, tsk, mm->user_ns))
1717 		goto fail_nomem;
1718 
1719 	err = dup_mmap(mm, oldmm);
1720 	if (err)
1721 		goto free_pt;
1722 
1723 	mm->hiwater_rss = get_mm_rss(mm);
1724 	mm->hiwater_vm = mm->total_vm;
1725 
1726 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1727 		goto free_pt;
1728 
1729 	return mm;
1730 
1731 free_pt:
1732 	/* don't put binfmt in mmput, we haven't got module yet */
1733 	mm->binfmt = NULL;
1734 	mm_init_owner(mm, NULL);
1735 	mmput(mm);
1736 
1737 fail_nomem:
1738 	return NULL;
1739 }
1740 
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1741 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1742 {
1743 	struct mm_struct *mm, *oldmm;
1744 
1745 	tsk->min_flt = tsk->maj_flt = 0;
1746 	tsk->nvcsw = tsk->nivcsw = 0;
1747 #ifdef CONFIG_DETECT_HUNG_TASK
1748 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1749 	tsk->last_switch_time = 0;
1750 #endif
1751 
1752 	tsk->mm = NULL;
1753 	tsk->active_mm = NULL;
1754 
1755 	/*
1756 	 * Are we cloning a kernel thread?
1757 	 *
1758 	 * We need to steal a active VM for that..
1759 	 */
1760 	oldmm = current->mm;
1761 	if (!oldmm)
1762 		return 0;
1763 
1764 	if (clone_flags & CLONE_VM) {
1765 		mmget(oldmm);
1766 		mm = oldmm;
1767 	} else {
1768 		mm = dup_mm(tsk, current->mm);
1769 		if (!mm)
1770 			return -ENOMEM;
1771 	}
1772 
1773 	tsk->mm = mm;
1774 	tsk->active_mm = mm;
1775 	sched_mm_cid_fork(tsk);
1776 	return 0;
1777 }
1778 
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1779 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1780 {
1781 	struct fs_struct *fs = current->fs;
1782 	if (clone_flags & CLONE_FS) {
1783 		/* tsk->fs is already what we want */
1784 		spin_lock(&fs->lock);
1785 		if (fs->in_exec) {
1786 			spin_unlock(&fs->lock);
1787 			return -EAGAIN;
1788 		}
1789 		fs->users++;
1790 		spin_unlock(&fs->lock);
1791 		return 0;
1792 	}
1793 	tsk->fs = copy_fs_struct(fs);
1794 	if (!tsk->fs)
1795 		return -ENOMEM;
1796 	return 0;
1797 }
1798 
copy_files(unsigned long clone_flags,struct task_struct * tsk,int no_files)1799 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1800 		      int no_files)
1801 {
1802 	struct files_struct *oldf, *newf;
1803 	int error = 0;
1804 
1805 	/*
1806 	 * A background process may not have any files ...
1807 	 */
1808 	oldf = current->files;
1809 	if (!oldf)
1810 		goto out;
1811 
1812 	if (no_files) {
1813 		tsk->files = NULL;
1814 		goto out;
1815 	}
1816 
1817 	if (clone_flags & CLONE_FILES) {
1818 		atomic_inc(&oldf->count);
1819 		goto out;
1820 	}
1821 
1822 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1823 	if (!newf)
1824 		goto out;
1825 
1826 	tsk->files = newf;
1827 	error = 0;
1828 out:
1829 	return error;
1830 }
1831 
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1832 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1833 {
1834 	struct sighand_struct *sig;
1835 
1836 	if (clone_flags & CLONE_SIGHAND) {
1837 		refcount_inc(&current->sighand->count);
1838 		return 0;
1839 	}
1840 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1841 	RCU_INIT_POINTER(tsk->sighand, sig);
1842 	if (!sig)
1843 		return -ENOMEM;
1844 
1845 	refcount_set(&sig->count, 1);
1846 	spin_lock_irq(&current->sighand->siglock);
1847 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1848 	spin_unlock_irq(&current->sighand->siglock);
1849 
1850 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1851 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1852 		flush_signal_handlers(tsk, 0);
1853 
1854 	return 0;
1855 }
1856 
__cleanup_sighand(struct sighand_struct * sighand)1857 void __cleanup_sighand(struct sighand_struct *sighand)
1858 {
1859 	if (refcount_dec_and_test(&sighand->count)) {
1860 		signalfd_cleanup(sighand);
1861 		/*
1862 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1863 		 * without an RCU grace period, see __lock_task_sighand().
1864 		 */
1865 		kmem_cache_free(sighand_cachep, sighand);
1866 	}
1867 }
1868 
1869 /*
1870  * Initialize POSIX timer handling for a thread group.
1871  */
posix_cpu_timers_init_group(struct signal_struct * sig)1872 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1873 {
1874 	struct posix_cputimers *pct = &sig->posix_cputimers;
1875 	unsigned long cpu_limit;
1876 
1877 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1878 	posix_cputimers_group_init(pct, cpu_limit);
1879 }
1880 
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1881 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1882 {
1883 	struct signal_struct *sig;
1884 
1885 	if (clone_flags & CLONE_THREAD)
1886 		return 0;
1887 
1888 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1889 	tsk->signal = sig;
1890 	if (!sig)
1891 		return -ENOMEM;
1892 
1893 	sig->nr_threads = 1;
1894 	sig->quick_threads = 1;
1895 	atomic_set(&sig->live, 1);
1896 	refcount_set(&sig->sigcnt, 1);
1897 
1898 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1899 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1900 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1901 
1902 	init_waitqueue_head(&sig->wait_chldexit);
1903 	sig->curr_target = tsk;
1904 	init_sigpending(&sig->shared_pending);
1905 	INIT_HLIST_HEAD(&sig->multiprocess);
1906 	seqlock_init(&sig->stats_lock);
1907 	prev_cputime_init(&sig->prev_cputime);
1908 
1909 #ifdef CONFIG_POSIX_TIMERS
1910 	INIT_LIST_HEAD(&sig->posix_timers);
1911 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1912 	sig->real_timer.function = it_real_fn;
1913 #endif
1914 
1915 	task_lock(current->group_leader);
1916 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1917 	task_unlock(current->group_leader);
1918 
1919 	posix_cpu_timers_init_group(sig);
1920 
1921 	tty_audit_fork(sig);
1922 	sched_autogroup_fork(sig);
1923 
1924 	sig->oom_score_adj = current->signal->oom_score_adj;
1925 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1926 
1927 	mutex_init(&sig->cred_guard_mutex);
1928 	init_rwsem(&sig->exec_update_lock);
1929 
1930 	return 0;
1931 }
1932 
copy_seccomp(struct task_struct * p)1933 static void copy_seccomp(struct task_struct *p)
1934 {
1935 #ifdef CONFIG_SECCOMP
1936 	/*
1937 	 * Must be called with sighand->lock held, which is common to
1938 	 * all threads in the group. Holding cred_guard_mutex is not
1939 	 * needed because this new task is not yet running and cannot
1940 	 * be racing exec.
1941 	 */
1942 	assert_spin_locked(&current->sighand->siglock);
1943 
1944 	/* Ref-count the new filter user, and assign it. */
1945 	get_seccomp_filter(current);
1946 	p->seccomp = current->seccomp;
1947 
1948 	/*
1949 	 * Explicitly enable no_new_privs here in case it got set
1950 	 * between the task_struct being duplicated and holding the
1951 	 * sighand lock. The seccomp state and nnp must be in sync.
1952 	 */
1953 	if (task_no_new_privs(current))
1954 		task_set_no_new_privs(p);
1955 
1956 	/*
1957 	 * If the parent gained a seccomp mode after copying thread
1958 	 * flags and between before we held the sighand lock, we have
1959 	 * to manually enable the seccomp thread flag here.
1960 	 */
1961 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1962 		set_task_syscall_work(p, SECCOMP);
1963 #endif
1964 }
1965 
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1966 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1967 {
1968 	current->clear_child_tid = tidptr;
1969 
1970 	return task_pid_vnr(current);
1971 }
1972 
rt_mutex_init_task(struct task_struct * p)1973 static void rt_mutex_init_task(struct task_struct *p)
1974 {
1975 	raw_spin_lock_init(&p->pi_lock);
1976 #ifdef CONFIG_RT_MUTEXES
1977 	p->pi_waiters = RB_ROOT_CACHED;
1978 	p->pi_top_task = NULL;
1979 	p->pi_blocked_on = NULL;
1980 #endif
1981 }
1982 
init_task_pid_links(struct task_struct * task)1983 static inline void init_task_pid_links(struct task_struct *task)
1984 {
1985 	enum pid_type type;
1986 
1987 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1988 		INIT_HLIST_NODE(&task->pid_links[type]);
1989 }
1990 
1991 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1992 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1993 {
1994 	if (type == PIDTYPE_PID)
1995 		task->thread_pid = pid;
1996 	else
1997 		task->signal->pids[type] = pid;
1998 }
1999 
rcu_copy_process(struct task_struct * p)2000 static inline void rcu_copy_process(struct task_struct *p)
2001 {
2002 #ifdef CONFIG_PREEMPT_RCU
2003 	p->rcu_read_lock_nesting = 0;
2004 	p->rcu_read_unlock_special.s = 0;
2005 	p->rcu_blocked_node = NULL;
2006 	INIT_LIST_HEAD(&p->rcu_node_entry);
2007 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2008 #ifdef CONFIG_TASKS_RCU
2009 	p->rcu_tasks_holdout = false;
2010 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2011 	p->rcu_tasks_idle_cpu = -1;
2012 #endif /* #ifdef CONFIG_TASKS_RCU */
2013 #ifdef CONFIG_TASKS_TRACE_RCU
2014 	p->trc_reader_nesting = 0;
2015 	p->trc_reader_special.s = 0;
2016 	INIT_LIST_HEAD(&p->trc_holdout_list);
2017 	INIT_LIST_HEAD(&p->trc_blkd_node);
2018 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
2019 }
2020 
pidfd_pid(const struct file * file)2021 struct pid *pidfd_pid(const struct file *file)
2022 {
2023 	if (file->f_op == &pidfd_fops)
2024 		return file->private_data;
2025 
2026 	return ERR_PTR(-EBADF);
2027 }
2028 
pidfd_release(struct inode * inode,struct file * file)2029 static int pidfd_release(struct inode *inode, struct file *file)
2030 {
2031 	struct pid *pid = file->private_data;
2032 
2033 	file->private_data = NULL;
2034 	put_pid(pid);
2035 	return 0;
2036 }
2037 
2038 #ifdef CONFIG_PROC_FS
2039 /**
2040  * pidfd_show_fdinfo - print information about a pidfd
2041  * @m: proc fdinfo file
2042  * @f: file referencing a pidfd
2043  *
2044  * Pid:
2045  * This function will print the pid that a given pidfd refers to in the
2046  * pid namespace of the procfs instance.
2047  * If the pid namespace of the process is not a descendant of the pid
2048  * namespace of the procfs instance 0 will be shown as its pid. This is
2049  * similar to calling getppid() on a process whose parent is outside of
2050  * its pid namespace.
2051  *
2052  * NSpid:
2053  * If pid namespaces are supported then this function will also print
2054  * the pid of a given pidfd refers to for all descendant pid namespaces
2055  * starting from the current pid namespace of the instance, i.e. the
2056  * Pid field and the first entry in the NSpid field will be identical.
2057  * If the pid namespace of the process is not a descendant of the pid
2058  * namespace of the procfs instance 0 will be shown as its first NSpid
2059  * entry and no others will be shown.
2060  * Note that this differs from the Pid and NSpid fields in
2061  * /proc/<pid>/status where Pid and NSpid are always shown relative to
2062  * the  pid namespace of the procfs instance. The difference becomes
2063  * obvious when sending around a pidfd between pid namespaces from a
2064  * different branch of the tree, i.e. where no ancestral relation is
2065  * present between the pid namespaces:
2066  * - create two new pid namespaces ns1 and ns2 in the initial pid
2067  *   namespace (also take care to create new mount namespaces in the
2068  *   new pid namespace and mount procfs)
2069  * - create a process with a pidfd in ns1
2070  * - send pidfd from ns1 to ns2
2071  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2072  *   have exactly one entry, which is 0
2073  */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)2074 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2075 {
2076 	struct pid *pid = f->private_data;
2077 	struct pid_namespace *ns;
2078 	pid_t nr = -1;
2079 
2080 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
2081 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
2082 		nr = pid_nr_ns(pid, ns);
2083 	}
2084 
2085 	seq_put_decimal_ll(m, "Pid:\t", nr);
2086 
2087 #ifdef CONFIG_PID_NS
2088 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2089 	if (nr > 0) {
2090 		int i;
2091 
2092 		/* If nr is non-zero it means that 'pid' is valid and that
2093 		 * ns, i.e. the pid namespace associated with the procfs
2094 		 * instance, is in the pid namespace hierarchy of pid.
2095 		 * Start at one below the already printed level.
2096 		 */
2097 		for (i = ns->level + 1; i <= pid->level; i++)
2098 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
2099 	}
2100 #endif
2101 	seq_putc(m, '\n');
2102 }
2103 #endif
2104 
2105 /*
2106  * Poll support for process exit notification.
2107  */
pidfd_poll(struct file * file,struct poll_table_struct * pts)2108 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
2109 {
2110 	struct pid *pid = file->private_data;
2111 	__poll_t poll_flags = 0;
2112 
2113 	poll_wait(file, &pid->wait_pidfd, pts);
2114 
2115 	/*
2116 	 * Inform pollers only when the whole thread group exits.
2117 	 * If the thread group leader exits before all other threads in the
2118 	 * group, then poll(2) should block, similar to the wait(2) family.
2119 	 */
2120 	if (thread_group_exited(pid))
2121 		poll_flags = EPOLLIN | EPOLLRDNORM;
2122 
2123 	return poll_flags;
2124 }
2125 
2126 const struct file_operations pidfd_fops = {
2127 	.release = pidfd_release,
2128 	.poll = pidfd_poll,
2129 #ifdef CONFIG_PROC_FS
2130 	.show_fdinfo = pidfd_show_fdinfo,
2131 #endif
2132 };
2133 
2134 /**
2135  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2136  * @pid:   the struct pid for which to create a pidfd
2137  * @flags: flags of the new @pidfd
2138  * @pidfd: the pidfd to return
2139  *
2140  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2141  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2142 
2143  * The helper doesn't perform checks on @pid which makes it useful for pidfds
2144  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2145  * pidfd file are prepared.
2146  *
2147  * If this function returns successfully the caller is responsible to either
2148  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2149  * order to install the pidfd into its file descriptor table or they must use
2150  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2151  * respectively.
2152  *
2153  * This function is useful when a pidfd must already be reserved but there
2154  * might still be points of failure afterwards and the caller wants to ensure
2155  * that no pidfd is leaked into its file descriptor table.
2156  *
2157  * Return: On success, a reserved pidfd is returned from the function and a new
2158  *         pidfd file is returned in the last argument to the function. On
2159  *         error, a negative error code is returned from the function and the
2160  *         last argument remains unchanged.
2161  */
__pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2162 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2163 {
2164 	int pidfd;
2165 	struct file *pidfd_file;
2166 
2167 	if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
2168 		return -EINVAL;
2169 
2170 	pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2171 	if (pidfd < 0)
2172 		return pidfd;
2173 
2174 	pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2175 					flags | O_RDWR | O_CLOEXEC);
2176 	if (IS_ERR(pidfd_file)) {
2177 		put_unused_fd(pidfd);
2178 		return PTR_ERR(pidfd_file);
2179 	}
2180 	get_pid(pid); /* held by pidfd_file now */
2181 	*ret = pidfd_file;
2182 	return pidfd;
2183 }
2184 
2185 /**
2186  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2187  * @pid:   the struct pid for which to create a pidfd
2188  * @flags: flags of the new @pidfd
2189  * @pidfd: the pidfd to return
2190  *
2191  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2192  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2193  *
2194  * The helper verifies that @pid is used as a thread group leader.
2195  *
2196  * If this function returns successfully the caller is responsible to either
2197  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2198  * order to install the pidfd into its file descriptor table or they must use
2199  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2200  * respectively.
2201  *
2202  * This function is useful when a pidfd must already be reserved but there
2203  * might still be points of failure afterwards and the caller wants to ensure
2204  * that no pidfd is leaked into its file descriptor table.
2205  *
2206  * Return: On success, a reserved pidfd is returned from the function and a new
2207  *         pidfd file is returned in the last argument to the function. On
2208  *         error, a negative error code is returned from the function and the
2209  *         last argument remains unchanged.
2210  */
pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2211 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2212 {
2213 	if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2214 		return -EINVAL;
2215 
2216 	return __pidfd_prepare(pid, flags, ret);
2217 }
2218 
__delayed_free_task(struct rcu_head * rhp)2219 static void __delayed_free_task(struct rcu_head *rhp)
2220 {
2221 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2222 
2223 	free_task(tsk);
2224 }
2225 
delayed_free_task(struct task_struct * tsk)2226 static __always_inline void delayed_free_task(struct task_struct *tsk)
2227 {
2228 	if (IS_ENABLED(CONFIG_MEMCG))
2229 		call_rcu(&tsk->rcu, __delayed_free_task);
2230 	else
2231 		free_task(tsk);
2232 }
2233 
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)2234 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2235 {
2236 	/* Skip if kernel thread */
2237 	if (!tsk->mm)
2238 		return;
2239 
2240 	/* Skip if spawning a thread or using vfork */
2241 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2242 		return;
2243 
2244 	/* We need to synchronize with __set_oom_adj */
2245 	mutex_lock(&oom_adj_mutex);
2246 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2247 	/* Update the values in case they were changed after copy_signal */
2248 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2249 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2250 	mutex_unlock(&oom_adj_mutex);
2251 }
2252 
2253 #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)2254 static void rv_task_fork(struct task_struct *p)
2255 {
2256 	int i;
2257 
2258 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2259 		p->rv[i].da_mon.monitoring = false;
2260 }
2261 #else
2262 #define rv_task_fork(p) do {} while (0)
2263 #endif
2264 
2265 /*
2266  * This creates a new process as a copy of the old one,
2267  * but does not actually start it yet.
2268  *
2269  * It copies the registers, and all the appropriate
2270  * parts of the process environment (as per the clone
2271  * flags). The actual kick-off is left to the caller.
2272  */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)2273 __latent_entropy struct task_struct *copy_process(
2274 					struct pid *pid,
2275 					int trace,
2276 					int node,
2277 					struct kernel_clone_args *args)
2278 {
2279 	int pidfd = -1, retval;
2280 	struct task_struct *p;
2281 	struct multiprocess_signals delayed;
2282 	struct file *pidfile = NULL;
2283 	const u64 clone_flags = args->flags;
2284 	struct nsproxy *nsp = current->nsproxy;
2285 
2286 	/*
2287 	 * Don't allow sharing the root directory with processes in a different
2288 	 * namespace
2289 	 */
2290 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2291 		return ERR_PTR(-EINVAL);
2292 
2293 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2294 		return ERR_PTR(-EINVAL);
2295 
2296 	/*
2297 	 * Thread groups must share signals as well, and detached threads
2298 	 * can only be started up within the thread group.
2299 	 */
2300 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2301 		return ERR_PTR(-EINVAL);
2302 
2303 	/*
2304 	 * Shared signal handlers imply shared VM. By way of the above,
2305 	 * thread groups also imply shared VM. Blocking this case allows
2306 	 * for various simplifications in other code.
2307 	 */
2308 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2309 		return ERR_PTR(-EINVAL);
2310 
2311 	/*
2312 	 * Siblings of global init remain as zombies on exit since they are
2313 	 * not reaped by their parent (swapper). To solve this and to avoid
2314 	 * multi-rooted process trees, prevent global and container-inits
2315 	 * from creating siblings.
2316 	 */
2317 	if ((clone_flags & CLONE_PARENT) &&
2318 				current->signal->flags & SIGNAL_UNKILLABLE)
2319 		return ERR_PTR(-EINVAL);
2320 
2321 	/*
2322 	 * If the new process will be in a different pid or user namespace
2323 	 * do not allow it to share a thread group with the forking task.
2324 	 */
2325 	if (clone_flags & CLONE_THREAD) {
2326 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2327 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2328 			return ERR_PTR(-EINVAL);
2329 	}
2330 
2331 	if (clone_flags & CLONE_PIDFD) {
2332 		/*
2333 		 * - CLONE_DETACHED is blocked so that we can potentially
2334 		 *   reuse it later for CLONE_PIDFD.
2335 		 * - CLONE_THREAD is blocked until someone really needs it.
2336 		 */
2337 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2338 			return ERR_PTR(-EINVAL);
2339 	}
2340 
2341 	/*
2342 	 * Force any signals received before this point to be delivered
2343 	 * before the fork happens.  Collect up signals sent to multiple
2344 	 * processes that happen during the fork and delay them so that
2345 	 * they appear to happen after the fork.
2346 	 */
2347 	sigemptyset(&delayed.signal);
2348 	INIT_HLIST_NODE(&delayed.node);
2349 
2350 	spin_lock_irq(&current->sighand->siglock);
2351 	if (!(clone_flags & CLONE_THREAD))
2352 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2353 	recalc_sigpending();
2354 	spin_unlock_irq(&current->sighand->siglock);
2355 	retval = -ERESTARTNOINTR;
2356 	if (task_sigpending(current))
2357 		goto fork_out;
2358 
2359 	retval = -ENOMEM;
2360 	p = dup_task_struct(current, node);
2361 	if (!p)
2362 		goto fork_out;
2363 	p->flags &= ~PF_KTHREAD;
2364 	if (args->kthread)
2365 		p->flags |= PF_KTHREAD;
2366 	if (args->user_worker) {
2367 		/*
2368 		 * Mark us a user worker, and block any signal that isn't
2369 		 * fatal or STOP
2370 		 */
2371 		p->flags |= PF_USER_WORKER;
2372 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2373 	}
2374 	if (args->io_thread)
2375 		p->flags |= PF_IO_WORKER;
2376 
2377 	cpufreq_task_times_init(p);
2378 
2379 	if (args->name)
2380 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2381 
2382 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2383 	/*
2384 	 * Clear TID on mm_release()?
2385 	 */
2386 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2387 
2388 	ftrace_graph_init_task(p);
2389 
2390 	rt_mutex_init_task(p);
2391 
2392 	lockdep_assert_irqs_enabled();
2393 #ifdef CONFIG_PROVE_LOCKING
2394 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2395 #endif
2396 	retval = copy_creds(p, clone_flags);
2397 	if (retval < 0)
2398 		goto bad_fork_free;
2399 
2400 	retval = -EAGAIN;
2401 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2402 		if (p->real_cred->user != INIT_USER &&
2403 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2404 			goto bad_fork_cleanup_count;
2405 	}
2406 	current->flags &= ~PF_NPROC_EXCEEDED;
2407 
2408 	/*
2409 	 * If multiple threads are within copy_process(), then this check
2410 	 * triggers too late. This doesn't hurt, the check is only there
2411 	 * to stop root fork bombs.
2412 	 */
2413 	retval = -EAGAIN;
2414 	if (data_race(nr_threads >= max_threads))
2415 		goto bad_fork_cleanup_count;
2416 
2417 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2418 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2419 	p->flags |= PF_FORKNOEXEC;
2420 	INIT_LIST_HEAD(&p->children);
2421 	INIT_LIST_HEAD(&p->sibling);
2422 	rcu_copy_process(p);
2423 	p->vfork_done = NULL;
2424 	spin_lock_init(&p->alloc_lock);
2425 
2426 	init_sigpending(&p->pending);
2427 
2428 	p->utime = p->stime = p->gtime = 0;
2429 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2430 	p->utimescaled = p->stimescaled = 0;
2431 #endif
2432 	prev_cputime_init(&p->prev_cputime);
2433 
2434 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2435 	seqcount_init(&p->vtime.seqcount);
2436 	p->vtime.starttime = 0;
2437 	p->vtime.state = VTIME_INACTIVE;
2438 #endif
2439 
2440 #ifdef CONFIG_IO_URING
2441 	p->io_uring = NULL;
2442 #endif
2443 
2444 #if defined(SPLIT_RSS_COUNTING)
2445 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2446 #endif
2447 
2448 	p->default_timer_slack_ns = current->timer_slack_ns;
2449 
2450 #ifdef CONFIG_PSI
2451 	p->psi_flags = 0;
2452 #endif
2453 
2454 	task_io_accounting_init(&p->ioac);
2455 	acct_clear_integrals(p);
2456 
2457 	posix_cputimers_init(&p->posix_cputimers);
2458 
2459 	p->io_context = NULL;
2460 	audit_set_context(p, NULL);
2461 	cgroup_fork(p);
2462 	if (args->kthread) {
2463 		if (!set_kthread_struct(p))
2464 			goto bad_fork_cleanup_delayacct;
2465 	}
2466 #ifdef CONFIG_NUMA
2467 	p->mempolicy = mpol_dup(p->mempolicy);
2468 	if (IS_ERR(p->mempolicy)) {
2469 		retval = PTR_ERR(p->mempolicy);
2470 		p->mempolicy = NULL;
2471 		goto bad_fork_cleanup_delayacct;
2472 	}
2473 #endif
2474 #ifdef CONFIG_CPUSETS
2475 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2476 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2477 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2478 #endif
2479 #ifdef CONFIG_TRACE_IRQFLAGS
2480 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2481 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2482 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2483 	p->softirqs_enabled		= 1;
2484 	p->softirq_context		= 0;
2485 #endif
2486 
2487 	p->pagefault_disabled = 0;
2488 
2489 #ifdef CONFIG_LOCKDEP
2490 	lockdep_init_task(p);
2491 #endif
2492 
2493 #ifdef CONFIG_DEBUG_MUTEXES
2494 	p->blocked_on = NULL; /* not blocked yet */
2495 #endif
2496 #ifdef CONFIG_BCACHE
2497 	p->sequential_io	= 0;
2498 	p->sequential_io_avg	= 0;
2499 #endif
2500 #ifdef CONFIG_BPF_SYSCALL
2501 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2502 	p->bpf_ctx = NULL;
2503 #endif
2504 
2505 	/* Perform scheduler related setup. Assign this task to a CPU. */
2506 	retval = sched_fork(clone_flags, p);
2507 	if (retval)
2508 		goto bad_fork_cleanup_policy;
2509 
2510 	retval = perf_event_init_task(p, clone_flags);
2511 	if (retval)
2512 		goto bad_fork_cleanup_policy;
2513 	retval = audit_alloc(p);
2514 	if (retval)
2515 		goto bad_fork_cleanup_perf;
2516 	/* copy all the process information */
2517 	shm_init_task(p);
2518 	retval = security_task_alloc(p, clone_flags);
2519 	if (retval)
2520 		goto bad_fork_cleanup_audit;
2521 	retval = copy_semundo(clone_flags, p);
2522 	if (retval)
2523 		goto bad_fork_cleanup_security;
2524 	retval = copy_files(clone_flags, p, args->no_files);
2525 	if (retval)
2526 		goto bad_fork_cleanup_semundo;
2527 	retval = copy_fs(clone_flags, p);
2528 	if (retval)
2529 		goto bad_fork_cleanup_files;
2530 	retval = copy_sighand(clone_flags, p);
2531 	if (retval)
2532 		goto bad_fork_cleanup_fs;
2533 	retval = copy_signal(clone_flags, p);
2534 	if (retval)
2535 		goto bad_fork_cleanup_sighand;
2536 	retval = copy_mm(clone_flags, p);
2537 	if (retval)
2538 		goto bad_fork_cleanup_signal;
2539 	retval = copy_namespaces(clone_flags, p);
2540 	if (retval)
2541 		goto bad_fork_cleanup_mm;
2542 	retval = copy_io(clone_flags, p);
2543 	if (retval)
2544 		goto bad_fork_cleanup_namespaces;
2545 	retval = copy_thread(p, args);
2546 	if (retval)
2547 		goto bad_fork_cleanup_io;
2548 
2549 	stackleak_task_init(p);
2550 
2551 	if (pid != &init_struct_pid) {
2552 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2553 				args->set_tid_size);
2554 		if (IS_ERR(pid)) {
2555 			retval = PTR_ERR(pid);
2556 			goto bad_fork_cleanup_thread;
2557 		}
2558 	}
2559 
2560 	/*
2561 	 * This has to happen after we've potentially unshared the file
2562 	 * descriptor table (so that the pidfd doesn't leak into the child
2563 	 * if the fd table isn't shared).
2564 	 */
2565 	if (clone_flags & CLONE_PIDFD) {
2566 		/* Note that no task has been attached to @pid yet. */
2567 		retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
2568 		if (retval < 0)
2569 			goto bad_fork_free_pid;
2570 		pidfd = retval;
2571 
2572 		retval = put_user(pidfd, args->pidfd);
2573 		if (retval)
2574 			goto bad_fork_put_pidfd;
2575 	}
2576 
2577 #ifdef CONFIG_BLOCK
2578 	p->plug = NULL;
2579 #endif
2580 	futex_init_task(p);
2581 
2582 	/*
2583 	 * sigaltstack should be cleared when sharing the same VM
2584 	 */
2585 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2586 		sas_ss_reset(p);
2587 
2588 	/*
2589 	 * Syscall tracing and stepping should be turned off in the
2590 	 * child regardless of CLONE_PTRACE.
2591 	 */
2592 	user_disable_single_step(p);
2593 	clear_task_syscall_work(p, SYSCALL_TRACE);
2594 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2595 	clear_task_syscall_work(p, SYSCALL_EMU);
2596 #endif
2597 	clear_tsk_latency_tracing(p);
2598 
2599 	/* ok, now we should be set up.. */
2600 	p->pid = pid_nr(pid);
2601 	if (clone_flags & CLONE_THREAD) {
2602 		p->group_leader = current->group_leader;
2603 		p->tgid = current->tgid;
2604 	} else {
2605 		p->group_leader = p;
2606 		p->tgid = p->pid;
2607 	}
2608 
2609 	p->nr_dirtied = 0;
2610 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2611 	p->dirty_paused_when = 0;
2612 
2613 	p->pdeath_signal = 0;
2614 	INIT_LIST_HEAD(&p->thread_group);
2615 	p->task_works = NULL;
2616 	clear_posix_cputimers_work(p);
2617 
2618 #ifdef CONFIG_KRETPROBES
2619 	p->kretprobe_instances.first = NULL;
2620 #endif
2621 #ifdef CONFIG_RETHOOK
2622 	p->rethooks.first = NULL;
2623 #endif
2624 
2625 	/*
2626 	 * Ensure that the cgroup subsystem policies allow the new process to be
2627 	 * forked. It should be noted that the new process's css_set can be changed
2628 	 * between here and cgroup_post_fork() if an organisation operation is in
2629 	 * progress.
2630 	 */
2631 	retval = cgroup_can_fork(p, args);
2632 	if (retval)
2633 		goto bad_fork_put_pidfd;
2634 
2635 	/*
2636 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2637 	 * the new task on the correct runqueue. All this *before* the task
2638 	 * becomes visible.
2639 	 *
2640 	 * This isn't part of ->can_fork() because while the re-cloning is
2641 	 * cgroup specific, it unconditionally needs to place the task on a
2642 	 * runqueue.
2643 	 */
2644 	sched_cgroup_fork(p, args);
2645 
2646 	/*
2647 	 * From this point on we must avoid any synchronous user-space
2648 	 * communication until we take the tasklist-lock. In particular, we do
2649 	 * not want user-space to be able to predict the process start-time by
2650 	 * stalling fork(2) after we recorded the start_time but before it is
2651 	 * visible to the system.
2652 	 */
2653 
2654 	p->start_time = ktime_get_ns();
2655 	p->start_boottime = ktime_get_boottime_ns();
2656 
2657 	/*
2658 	 * Make it visible to the rest of the system, but dont wake it up yet.
2659 	 * Need tasklist lock for parent etc handling!
2660 	 */
2661 	write_lock_irq(&tasklist_lock);
2662 
2663 	/* CLONE_PARENT re-uses the old parent */
2664 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2665 		p->real_parent = current->real_parent;
2666 		p->parent_exec_id = current->parent_exec_id;
2667 		if (clone_flags & CLONE_THREAD)
2668 			p->exit_signal = -1;
2669 		else
2670 			p->exit_signal = current->group_leader->exit_signal;
2671 	} else {
2672 		p->real_parent = current;
2673 		p->parent_exec_id = current->self_exec_id;
2674 		p->exit_signal = args->exit_signal;
2675 	}
2676 
2677 	klp_copy_process(p);
2678 
2679 	sched_core_fork(p);
2680 
2681 	spin_lock(&current->sighand->siglock);
2682 
2683 	rv_task_fork(p);
2684 
2685 	rseq_fork(p, clone_flags);
2686 
2687 	/* Don't start children in a dying pid namespace */
2688 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2689 		retval = -ENOMEM;
2690 		goto bad_fork_cancel_cgroup;
2691 	}
2692 
2693 	/* Let kill terminate clone/fork in the middle */
2694 	if (fatal_signal_pending(current)) {
2695 		retval = -EINTR;
2696 		goto bad_fork_cancel_cgroup;
2697 	}
2698 
2699 	/* No more failure paths after this point. */
2700 
2701 	/*
2702 	 * Copy seccomp details explicitly here, in case they were changed
2703 	 * before holding sighand lock.
2704 	 */
2705 	copy_seccomp(p);
2706 
2707 	init_task_pid_links(p);
2708 	if (likely(p->pid)) {
2709 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2710 
2711 		init_task_pid(p, PIDTYPE_PID, pid);
2712 		if (thread_group_leader(p)) {
2713 			init_task_pid(p, PIDTYPE_TGID, pid);
2714 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2715 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2716 
2717 			if (is_child_reaper(pid)) {
2718 				ns_of_pid(pid)->child_reaper = p;
2719 				p->signal->flags |= SIGNAL_UNKILLABLE;
2720 			}
2721 			p->signal->shared_pending.signal = delayed.signal;
2722 			p->signal->tty = tty_kref_get(current->signal->tty);
2723 			/*
2724 			 * Inherit has_child_subreaper flag under the same
2725 			 * tasklist_lock with adding child to the process tree
2726 			 * for propagate_has_child_subreaper optimization.
2727 			 */
2728 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2729 							 p->real_parent->signal->is_child_subreaper;
2730 			list_add_tail(&p->sibling, &p->real_parent->children);
2731 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2732 			attach_pid(p, PIDTYPE_TGID);
2733 			attach_pid(p, PIDTYPE_PGID);
2734 			attach_pid(p, PIDTYPE_SID);
2735 			__this_cpu_inc(process_counts);
2736 		} else {
2737 			current->signal->nr_threads++;
2738 			current->signal->quick_threads++;
2739 			atomic_inc(&current->signal->live);
2740 			refcount_inc(&current->signal->sigcnt);
2741 			task_join_group_stop(p);
2742 			list_add_tail_rcu(&p->thread_group,
2743 					  &p->group_leader->thread_group);
2744 			list_add_tail_rcu(&p->thread_node,
2745 					  &p->signal->thread_head);
2746 		}
2747 		attach_pid(p, PIDTYPE_PID);
2748 		nr_threads++;
2749 	}
2750 	trace_android_vh_copy_process(current, nr_threads);
2751 	total_forks++;
2752 	hlist_del_init(&delayed.node);
2753 	spin_unlock(&current->sighand->siglock);
2754 	syscall_tracepoint_update(p);
2755 	write_unlock_irq(&tasklist_lock);
2756 
2757 	if (pidfile)
2758 		fd_install(pidfd, pidfile);
2759 
2760 	proc_fork_connector(p);
2761 	sched_post_fork(p);
2762 	cgroup_post_fork(p, args);
2763 	perf_event_fork(p);
2764 
2765 	trace_task_newtask(p, clone_flags);
2766 	uprobe_copy_process(p, clone_flags);
2767 	user_events_fork(p, clone_flags);
2768 
2769 	copy_oom_score_adj(clone_flags, p);
2770 
2771 	return p;
2772 
2773 bad_fork_cancel_cgroup:
2774 	sched_core_free(p);
2775 	spin_unlock(&current->sighand->siglock);
2776 	write_unlock_irq(&tasklist_lock);
2777 	cgroup_cancel_fork(p, args);
2778 bad_fork_put_pidfd:
2779 	if (clone_flags & CLONE_PIDFD) {
2780 		fput(pidfile);
2781 		put_unused_fd(pidfd);
2782 	}
2783 bad_fork_free_pid:
2784 	if (pid != &init_struct_pid)
2785 		free_pid(pid);
2786 bad_fork_cleanup_thread:
2787 	exit_thread(p);
2788 bad_fork_cleanup_io:
2789 	if (p->io_context)
2790 		exit_io_context(p);
2791 bad_fork_cleanup_namespaces:
2792 	exit_task_namespaces(p);
2793 bad_fork_cleanup_mm:
2794 	if (p->mm) {
2795 		mm_clear_owner(p->mm, p);
2796 		mmput(p->mm);
2797 	}
2798 bad_fork_cleanup_signal:
2799 	if (!(clone_flags & CLONE_THREAD))
2800 		free_signal_struct(p->signal);
2801 bad_fork_cleanup_sighand:
2802 	__cleanup_sighand(p->sighand);
2803 bad_fork_cleanup_fs:
2804 	exit_fs(p); /* blocking */
2805 bad_fork_cleanup_files:
2806 	exit_files(p); /* blocking */
2807 bad_fork_cleanup_semundo:
2808 	exit_sem(p);
2809 bad_fork_cleanup_security:
2810 	security_task_free(p);
2811 bad_fork_cleanup_audit:
2812 	audit_free(p);
2813 bad_fork_cleanup_perf:
2814 	perf_event_free_task(p);
2815 bad_fork_cleanup_policy:
2816 	lockdep_free_task(p);
2817 #ifdef CONFIG_NUMA
2818 	mpol_put(p->mempolicy);
2819 #endif
2820 bad_fork_cleanup_delayacct:
2821 	delayacct_tsk_free(p);
2822 bad_fork_cleanup_count:
2823 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2824 	exit_creds(p);
2825 bad_fork_free:
2826 	WRITE_ONCE(p->__state, TASK_DEAD);
2827 	exit_task_stack_account(p);
2828 	put_task_stack(p);
2829 	delayed_free_task(p);
2830 fork_out:
2831 	spin_lock_irq(&current->sighand->siglock);
2832 	hlist_del_init(&delayed.node);
2833 	spin_unlock_irq(&current->sighand->siglock);
2834 	return ERR_PTR(retval);
2835 }
2836 
init_idle_pids(struct task_struct * idle)2837 static inline void init_idle_pids(struct task_struct *idle)
2838 {
2839 	enum pid_type type;
2840 
2841 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2842 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2843 		init_task_pid(idle, type, &init_struct_pid);
2844 	}
2845 }
2846 
idle_dummy(void * dummy)2847 static int idle_dummy(void *dummy)
2848 {
2849 	/* This function is never called */
2850 	return 0;
2851 }
2852 
fork_idle(int cpu)2853 struct task_struct * __init fork_idle(int cpu)
2854 {
2855 	struct task_struct *task;
2856 	struct kernel_clone_args args = {
2857 		.flags		= CLONE_VM,
2858 		.fn		= &idle_dummy,
2859 		.fn_arg		= NULL,
2860 		.kthread	= 1,
2861 		.idle		= 1,
2862 	};
2863 
2864 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2865 	if (!IS_ERR(task)) {
2866 		init_idle_pids(task);
2867 		init_idle(task, cpu);
2868 	}
2869 
2870 	return task;
2871 }
2872 
2873 /*
2874  * This is like kernel_clone(), but shaved down and tailored to just
2875  * creating io_uring workers. It returns a created task, or an error pointer.
2876  * The returned task is inactive, and the caller must fire it up through
2877  * wake_up_new_task(p). All signals are blocked in the created task.
2878  */
create_io_thread(int (* fn)(void *),void * arg,int node)2879 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2880 {
2881 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2882 				CLONE_IO;
2883 	struct kernel_clone_args args = {
2884 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2885 				    CLONE_UNTRACED) & ~CSIGNAL),
2886 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2887 		.fn		= fn,
2888 		.fn_arg		= arg,
2889 		.io_thread	= 1,
2890 		.user_worker	= 1,
2891 	};
2892 
2893 	return copy_process(NULL, 0, node, &args);
2894 }
2895 
2896 /*
2897  *  Ok, this is the main fork-routine.
2898  *
2899  * It copies the process, and if successful kick-starts
2900  * it and waits for it to finish using the VM if required.
2901  *
2902  * args->exit_signal is expected to be checked for sanity by the caller.
2903  */
kernel_clone(struct kernel_clone_args * args)2904 pid_t kernel_clone(struct kernel_clone_args *args)
2905 {
2906 	u64 clone_flags = args->flags;
2907 	struct completion vfork;
2908 	struct pid *pid;
2909 	struct task_struct *p;
2910 	int trace = 0;
2911 	pid_t nr;
2912 
2913 	/*
2914 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2915 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2916 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2917 	 * field in struct clone_args and it still doesn't make sense to have
2918 	 * them both point at the same memory location. Performing this check
2919 	 * here has the advantage that we don't need to have a separate helper
2920 	 * to check for legacy clone().
2921 	 */
2922 	if ((args->flags & CLONE_PIDFD) &&
2923 	    (args->flags & CLONE_PARENT_SETTID) &&
2924 	    (args->pidfd == args->parent_tid))
2925 		return -EINVAL;
2926 
2927 	/*
2928 	 * Determine whether and which event to report to ptracer.  When
2929 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2930 	 * requested, no event is reported; otherwise, report if the event
2931 	 * for the type of forking is enabled.
2932 	 */
2933 	if (!(clone_flags & CLONE_UNTRACED)) {
2934 		if (clone_flags & CLONE_VFORK)
2935 			trace = PTRACE_EVENT_VFORK;
2936 		else if (args->exit_signal != SIGCHLD)
2937 			trace = PTRACE_EVENT_CLONE;
2938 		else
2939 			trace = PTRACE_EVENT_FORK;
2940 
2941 		if (likely(!ptrace_event_enabled(current, trace)))
2942 			trace = 0;
2943 	}
2944 
2945 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2946 	add_latent_entropy();
2947 
2948 	if (IS_ERR(p))
2949 		return PTR_ERR(p);
2950 
2951 	cpufreq_task_times_alloc(p);
2952 
2953 	/*
2954 	 * Do this prior waking up the new thread - the thread pointer
2955 	 * might get invalid after that point, if the thread exits quickly.
2956 	 */
2957 	trace_sched_process_fork(current, p);
2958 
2959 	pid = get_task_pid(p, PIDTYPE_PID);
2960 	nr = pid_vnr(pid);
2961 
2962 	if (clone_flags & CLONE_PARENT_SETTID)
2963 		put_user(nr, args->parent_tid);
2964 
2965 	if (clone_flags & CLONE_VFORK) {
2966 		p->vfork_done = &vfork;
2967 		init_completion(&vfork);
2968 		get_task_struct(p);
2969 	}
2970 
2971 	if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2972 		/* lock the task to synchronize with memcg migration */
2973 		task_lock(p);
2974 		lru_gen_add_mm(p->mm);
2975 		task_unlock(p);
2976 	}
2977 
2978 	wake_up_new_task(p);
2979 
2980 	/* forking complete and child started to run, tell ptracer */
2981 	if (unlikely(trace))
2982 		ptrace_event_pid(trace, pid);
2983 
2984 	if (clone_flags & CLONE_VFORK) {
2985 		if (!wait_for_vfork_done(p, &vfork))
2986 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2987 	}
2988 
2989 	put_pid(pid);
2990 	return nr;
2991 }
2992 
2993 /*
2994  * Create a kernel thread.
2995  */
kernel_thread(int (* fn)(void *),void * arg,const char * name,unsigned long flags)2996 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2997 		    unsigned long flags)
2998 {
2999 	struct kernel_clone_args args = {
3000 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
3001 				    CLONE_UNTRACED) & ~CSIGNAL),
3002 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
3003 		.fn		= fn,
3004 		.fn_arg		= arg,
3005 		.name		= name,
3006 		.kthread	= 1,
3007 	};
3008 
3009 	return kernel_clone(&args);
3010 }
3011 
3012 /*
3013  * Create a user mode thread.
3014  */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)3015 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
3016 {
3017 	struct kernel_clone_args args = {
3018 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
3019 				    CLONE_UNTRACED) & ~CSIGNAL),
3020 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
3021 		.fn		= fn,
3022 		.fn_arg		= arg,
3023 	};
3024 
3025 	return kernel_clone(&args);
3026 }
3027 
3028 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)3029 SYSCALL_DEFINE0(fork)
3030 {
3031 #ifdef CONFIG_MMU
3032 	struct kernel_clone_args args = {
3033 		.exit_signal = SIGCHLD,
3034 	};
3035 
3036 	return kernel_clone(&args);
3037 #else
3038 	/* can not support in nommu mode */
3039 	return -EINVAL;
3040 #endif
3041 }
3042 #endif
3043 
3044 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)3045 SYSCALL_DEFINE0(vfork)
3046 {
3047 	struct kernel_clone_args args = {
3048 		.flags		= CLONE_VFORK | CLONE_VM,
3049 		.exit_signal	= SIGCHLD,
3050 	};
3051 
3052 	return kernel_clone(&args);
3053 }
3054 #endif
3055 
3056 #ifdef __ARCH_WANT_SYS_CLONE
3057 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)3058 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3059 		 int __user *, parent_tidptr,
3060 		 unsigned long, tls,
3061 		 int __user *, child_tidptr)
3062 #elif defined(CONFIG_CLONE_BACKWARDS2)
3063 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
3064 		 int __user *, parent_tidptr,
3065 		 int __user *, child_tidptr,
3066 		 unsigned long, tls)
3067 #elif defined(CONFIG_CLONE_BACKWARDS3)
3068 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
3069 		int, stack_size,
3070 		int __user *, parent_tidptr,
3071 		int __user *, child_tidptr,
3072 		unsigned long, tls)
3073 #else
3074 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3075 		 int __user *, parent_tidptr,
3076 		 int __user *, child_tidptr,
3077 		 unsigned long, tls)
3078 #endif
3079 {
3080 	struct kernel_clone_args args = {
3081 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
3082 		.pidfd		= parent_tidptr,
3083 		.child_tid	= child_tidptr,
3084 		.parent_tid	= parent_tidptr,
3085 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
3086 		.stack		= newsp,
3087 		.tls		= tls,
3088 	};
3089 
3090 	return kernel_clone(&args);
3091 }
3092 #endif
3093 
3094 #ifdef __ARCH_WANT_SYS_CLONE3
3095 
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)3096 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
3097 					      struct clone_args __user *uargs,
3098 					      size_t usize)
3099 {
3100 	int err;
3101 	struct clone_args args;
3102 	pid_t *kset_tid = kargs->set_tid;
3103 
3104 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3105 		     CLONE_ARGS_SIZE_VER0);
3106 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3107 		     CLONE_ARGS_SIZE_VER1);
3108 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3109 		     CLONE_ARGS_SIZE_VER2);
3110 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3111 
3112 	if (unlikely(usize > PAGE_SIZE))
3113 		return -E2BIG;
3114 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
3115 		return -EINVAL;
3116 
3117 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3118 	if (err)
3119 		return err;
3120 
3121 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3122 		return -EINVAL;
3123 
3124 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
3125 		return -EINVAL;
3126 
3127 	if (unlikely(args.set_tid && args.set_tid_size == 0))
3128 		return -EINVAL;
3129 
3130 	/*
3131 	 * Verify that higher 32bits of exit_signal are unset and that
3132 	 * it is a valid signal
3133 	 */
3134 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3135 		     !valid_signal(args.exit_signal)))
3136 		return -EINVAL;
3137 
3138 	if ((args.flags & CLONE_INTO_CGROUP) &&
3139 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3140 		return -EINVAL;
3141 
3142 	*kargs = (struct kernel_clone_args){
3143 		.flags		= args.flags,
3144 		.pidfd		= u64_to_user_ptr(args.pidfd),
3145 		.child_tid	= u64_to_user_ptr(args.child_tid),
3146 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
3147 		.exit_signal	= args.exit_signal,
3148 		.stack		= args.stack,
3149 		.stack_size	= args.stack_size,
3150 		.tls		= args.tls,
3151 		.set_tid_size	= args.set_tid_size,
3152 		.cgroup		= args.cgroup,
3153 	};
3154 
3155 	if (args.set_tid &&
3156 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3157 			(kargs->set_tid_size * sizeof(pid_t))))
3158 		return -EFAULT;
3159 
3160 	kargs->set_tid = kset_tid;
3161 
3162 	return 0;
3163 }
3164 
3165 /**
3166  * clone3_stack_valid - check and prepare stack
3167  * @kargs: kernel clone args
3168  *
3169  * Verify that the stack arguments userspace gave us are sane.
3170  * In addition, set the stack direction for userspace since it's easy for us to
3171  * determine.
3172  */
clone3_stack_valid(struct kernel_clone_args * kargs)3173 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3174 {
3175 	if (kargs->stack == 0) {
3176 		if (kargs->stack_size > 0)
3177 			return false;
3178 	} else {
3179 		if (kargs->stack_size == 0)
3180 			return false;
3181 
3182 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3183 			return false;
3184 
3185 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
3186 		kargs->stack += kargs->stack_size;
3187 #endif
3188 	}
3189 
3190 	return true;
3191 }
3192 
clone3_args_valid(struct kernel_clone_args * kargs)3193 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3194 {
3195 	/* Verify that no unknown flags are passed along. */
3196 	if (kargs->flags &
3197 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3198 		return false;
3199 
3200 	/*
3201 	 * - make the CLONE_DETACHED bit reusable for clone3
3202 	 * - make the CSIGNAL bits reusable for clone3
3203 	 */
3204 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3205 		return false;
3206 
3207 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3208 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3209 		return false;
3210 
3211 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3212 	    kargs->exit_signal)
3213 		return false;
3214 
3215 	if (!clone3_stack_valid(kargs))
3216 		return false;
3217 
3218 	return true;
3219 }
3220 
3221 /**
3222  * clone3 - create a new process with specific properties
3223  * @uargs: argument structure
3224  * @size:  size of @uargs
3225  *
3226  * clone3() is the extensible successor to clone()/clone2().
3227  * It takes a struct as argument that is versioned by its size.
3228  *
3229  * Return: On success, a positive PID for the child process.
3230  *         On error, a negative errno number.
3231  */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)3232 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3233 {
3234 	int err;
3235 
3236 	struct kernel_clone_args kargs;
3237 	pid_t set_tid[MAX_PID_NS_LEVEL];
3238 
3239 	kargs.set_tid = set_tid;
3240 
3241 	err = copy_clone_args_from_user(&kargs, uargs, size);
3242 	if (err)
3243 		return err;
3244 
3245 	if (!clone3_args_valid(&kargs))
3246 		return -EINVAL;
3247 
3248 	return kernel_clone(&kargs);
3249 }
3250 #endif
3251 
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)3252 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3253 {
3254 	struct task_struct *leader, *parent, *child;
3255 	int res;
3256 
3257 	read_lock(&tasklist_lock);
3258 	leader = top = top->group_leader;
3259 down:
3260 	for_each_thread(leader, parent) {
3261 		list_for_each_entry(child, &parent->children, sibling) {
3262 			res = visitor(child, data);
3263 			if (res) {
3264 				if (res < 0)
3265 					goto out;
3266 				leader = child;
3267 				goto down;
3268 			}
3269 up:
3270 			;
3271 		}
3272 	}
3273 
3274 	if (leader != top) {
3275 		child = leader;
3276 		parent = child->real_parent;
3277 		leader = parent->group_leader;
3278 		goto up;
3279 	}
3280 out:
3281 	read_unlock(&tasklist_lock);
3282 }
3283 
3284 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3285 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3286 #endif
3287 
sighand_ctor(void * data)3288 static void sighand_ctor(void *data)
3289 {
3290 	struct sighand_struct *sighand = data;
3291 
3292 	spin_lock_init(&sighand->siglock);
3293 	init_waitqueue_head(&sighand->signalfd_wqh);
3294 }
3295 
mm_cache_init(void)3296 void __init mm_cache_init(void)
3297 {
3298 	unsigned int mm_size;
3299 
3300 	/*
3301 	 * The mm_cpumask is located at the end of mm_struct, and is
3302 	 * dynamically sized based on the maximum CPU number this system
3303 	 * can have, taking hotplug into account (nr_cpu_ids).
3304 	 */
3305 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3306 
3307 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3308 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3309 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3310 			offsetof(struct mm_struct, saved_auxv),
3311 			sizeof_field(struct mm_struct, saved_auxv),
3312 			NULL);
3313 }
3314 
proc_caches_init(void)3315 void __init proc_caches_init(void)
3316 {
3317 	sighand_cachep = kmem_cache_create("sighand_cache",
3318 			sizeof(struct sighand_struct), 0,
3319 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3320 			SLAB_ACCOUNT, sighand_ctor);
3321 	signal_cachep = kmem_cache_create("signal_cache",
3322 			sizeof(struct signal_struct), 0,
3323 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3324 			NULL);
3325 	files_cachep = kmem_cache_create("files_cache",
3326 			sizeof(struct files_struct), 0,
3327 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3328 			NULL);
3329 	fs_cachep = kmem_cache_create("fs_cache",
3330 			sizeof(struct fs_struct), 0,
3331 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3332 			NULL);
3333 
3334 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3335 #ifdef CONFIG_PER_VMA_LOCK
3336 	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3337 #endif
3338 	mmap_init();
3339 	nsproxy_cache_init();
3340 }
3341 
3342 /*
3343  * Check constraints on flags passed to the unshare system call.
3344  */
check_unshare_flags(unsigned long unshare_flags)3345 static int check_unshare_flags(unsigned long unshare_flags)
3346 {
3347 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3348 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3349 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3350 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3351 				CLONE_NEWTIME))
3352 		return -EINVAL;
3353 	/*
3354 	 * Not implemented, but pretend it works if there is nothing
3355 	 * to unshare.  Note that unsharing the address space or the
3356 	 * signal handlers also need to unshare the signal queues (aka
3357 	 * CLONE_THREAD).
3358 	 */
3359 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3360 		if (!thread_group_empty(current))
3361 			return -EINVAL;
3362 	}
3363 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3364 		if (refcount_read(&current->sighand->count) > 1)
3365 			return -EINVAL;
3366 	}
3367 	if (unshare_flags & CLONE_VM) {
3368 		if (!current_is_single_threaded())
3369 			return -EINVAL;
3370 	}
3371 
3372 	return 0;
3373 }
3374 
3375 /*
3376  * Unshare the filesystem structure if it is being shared
3377  */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3378 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3379 {
3380 	struct fs_struct *fs = current->fs;
3381 
3382 	if (!(unshare_flags & CLONE_FS) || !fs)
3383 		return 0;
3384 
3385 	/* don't need lock here; in the worst case we'll do useless copy */
3386 	if (fs->users == 1)
3387 		return 0;
3388 
3389 	*new_fsp = copy_fs_struct(fs);
3390 	if (!*new_fsp)
3391 		return -ENOMEM;
3392 
3393 	return 0;
3394 }
3395 
3396 /*
3397  * Unshare file descriptor table if it is being shared
3398  */
unshare_fd(unsigned long unshare_flags,unsigned int max_fds,struct files_struct ** new_fdp)3399 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3400 	       struct files_struct **new_fdp)
3401 {
3402 	struct files_struct *fd = current->files;
3403 	int error = 0;
3404 
3405 	if ((unshare_flags & CLONE_FILES) &&
3406 	    (fd && atomic_read(&fd->count) > 1)) {
3407 		*new_fdp = dup_fd(fd, max_fds, &error);
3408 		if (!*new_fdp)
3409 			return error;
3410 	}
3411 
3412 	return 0;
3413 }
3414 
3415 /*
3416  * unshare allows a process to 'unshare' part of the process
3417  * context which was originally shared using clone.  copy_*
3418  * functions used by kernel_clone() cannot be used here directly
3419  * because they modify an inactive task_struct that is being
3420  * constructed. Here we are modifying the current, active,
3421  * task_struct.
3422  */
ksys_unshare(unsigned long unshare_flags)3423 int ksys_unshare(unsigned long unshare_flags)
3424 {
3425 	struct fs_struct *fs, *new_fs = NULL;
3426 	struct files_struct *new_fd = NULL;
3427 	struct cred *new_cred = NULL;
3428 	struct nsproxy *new_nsproxy = NULL;
3429 	int do_sysvsem = 0;
3430 	int err;
3431 
3432 	/*
3433 	 * If unsharing a user namespace must also unshare the thread group
3434 	 * and unshare the filesystem root and working directories.
3435 	 */
3436 	if (unshare_flags & CLONE_NEWUSER)
3437 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3438 	/*
3439 	 * If unsharing vm, must also unshare signal handlers.
3440 	 */
3441 	if (unshare_flags & CLONE_VM)
3442 		unshare_flags |= CLONE_SIGHAND;
3443 	/*
3444 	 * If unsharing a signal handlers, must also unshare the signal queues.
3445 	 */
3446 	if (unshare_flags & CLONE_SIGHAND)
3447 		unshare_flags |= CLONE_THREAD;
3448 	/*
3449 	 * If unsharing namespace, must also unshare filesystem information.
3450 	 */
3451 	if (unshare_flags & CLONE_NEWNS)
3452 		unshare_flags |= CLONE_FS;
3453 
3454 	err = check_unshare_flags(unshare_flags);
3455 	if (err)
3456 		goto bad_unshare_out;
3457 	/*
3458 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3459 	 * to a new ipc namespace, the semaphore arrays from the old
3460 	 * namespace are unreachable.
3461 	 */
3462 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3463 		do_sysvsem = 1;
3464 	err = unshare_fs(unshare_flags, &new_fs);
3465 	if (err)
3466 		goto bad_unshare_out;
3467 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3468 	if (err)
3469 		goto bad_unshare_cleanup_fs;
3470 	err = unshare_userns(unshare_flags, &new_cred);
3471 	if (err)
3472 		goto bad_unshare_cleanup_fd;
3473 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3474 					 new_cred, new_fs);
3475 	if (err)
3476 		goto bad_unshare_cleanup_cred;
3477 
3478 	if (new_cred) {
3479 		err = set_cred_ucounts(new_cred);
3480 		if (err)
3481 			goto bad_unshare_cleanup_cred;
3482 	}
3483 
3484 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3485 		if (do_sysvsem) {
3486 			/*
3487 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3488 			 */
3489 			exit_sem(current);
3490 		}
3491 		if (unshare_flags & CLONE_NEWIPC) {
3492 			/* Orphan segments in old ns (see sem above). */
3493 			exit_shm(current);
3494 			shm_init_task(current);
3495 		}
3496 
3497 		if (new_nsproxy)
3498 			switch_task_namespaces(current, new_nsproxy);
3499 
3500 		task_lock(current);
3501 
3502 		if (new_fs) {
3503 			fs = current->fs;
3504 			spin_lock(&fs->lock);
3505 			current->fs = new_fs;
3506 			if (--fs->users)
3507 				new_fs = NULL;
3508 			else
3509 				new_fs = fs;
3510 			spin_unlock(&fs->lock);
3511 		}
3512 
3513 		if (new_fd)
3514 			swap(current->files, new_fd);
3515 
3516 		task_unlock(current);
3517 
3518 		if (new_cred) {
3519 			/* Install the new user namespace */
3520 			commit_creds(new_cred);
3521 			new_cred = NULL;
3522 		}
3523 	}
3524 
3525 	perf_event_namespaces(current);
3526 
3527 bad_unshare_cleanup_cred:
3528 	if (new_cred)
3529 		put_cred(new_cred);
3530 bad_unshare_cleanup_fd:
3531 	if (new_fd)
3532 		put_files_struct(new_fd);
3533 
3534 bad_unshare_cleanup_fs:
3535 	if (new_fs)
3536 		free_fs_struct(new_fs);
3537 
3538 bad_unshare_out:
3539 	return err;
3540 }
3541 
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3542 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3543 {
3544 	return ksys_unshare(unshare_flags);
3545 }
3546 
3547 /*
3548  *	Helper to unshare the files of the current task.
3549  *	We don't want to expose copy_files internals to
3550  *	the exec layer of the kernel.
3551  */
3552 
unshare_files(void)3553 int unshare_files(void)
3554 {
3555 	struct task_struct *task = current;
3556 	struct files_struct *old, *copy = NULL;
3557 	int error;
3558 
3559 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3560 	if (error || !copy)
3561 		return error;
3562 
3563 	old = task->files;
3564 	task_lock(task);
3565 	task->files = copy;
3566 	task_unlock(task);
3567 	put_files_struct(old);
3568 	return 0;
3569 }
3570 
sysctl_max_threads(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3571 int sysctl_max_threads(struct ctl_table *table, int write,
3572 		       void *buffer, size_t *lenp, loff_t *ppos)
3573 {
3574 	struct ctl_table t;
3575 	int ret;
3576 	int threads = max_threads;
3577 	int min = 1;
3578 	int max = MAX_THREADS;
3579 
3580 	t = *table;
3581 	t.data = &threads;
3582 	t.extra1 = &min;
3583 	t.extra2 = &max;
3584 
3585 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3586 	if (ret || !write)
3587 		return ret;
3588 
3589 	max_threads = threads;
3590 
3591 	return 0;
3592 }
3593