• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2022 Huawei Device Co., Ltd.
3  * Licensed under the Apache License, Version 2.0 (the "License");
4  * you may not use this file except in compliance with the License.
5  * You may obtain a copy of the License at
6  *
7  *     http://www.apache.org/licenses/LICENSE-2.0
8  *
9  * Unless required by applicable law or agreed to in writing, software
10  * distributed under the License is distributed on an "AS IS" BASIS,
11  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12  * See the License for the specific language governing permissions and
13  * limitations under the License.
14  */
15 
16 #include <cstdint>
17 #include <map>
18 
19 #include "ecmascript/compiler/assembler/aarch64/assembler_aarch64.h"
20 
21 #include "ecmascript/base/bit_helper.h"
22 #include "ecmascript/ecma_macros.h"
23 
24 namespace panda::ecmascript::aarch64 {
25 using namespace panda::ecmascript::base;
26 static const uint64_t HWORD_MASK = 0xFFFF;
27 
Create(uint64_t imm,int width)28 LogicalImmediate LogicalImmediate::Create(uint64_t imm, int width)
29 {
30     if ((imm == 0ULL) || (imm == ~0ULL) ||
31         ((width != RegXSize) && (((imm >> width) != 0) || (imm == (~0ULL >> (RegXSize - width)))))) {
32         return LogicalImmediate(InvalidLogicalImmediate);
33     }
34 
35     // First, determine the element size.
36     unsigned int size = static_cast<uint32_t>(width);
37     do {
38         size /= 2;
39         uint64_t mask = (1ULL << size) - 1;
40 
41         if ((imm & mask) != ((imm >> size) & mask)) {
42             size *= 2;
43             break;
44         }
45     } while (size > 2);
46 
47     // Second, determine the rotation to make the element be: 0^m 1^n.
48     unsigned int cto = 0;
49     unsigned int i = 0;
50     uint64_t mask = ((uint64_t)-1LL) >> (RegXSize - size);
51     imm &= mask;
52 
53     if (IsShiftedMask_64(imm)) {
54         i = CountTrailingZeros64(imm);
55         ASSERT_PRINT(i < RegXSize, "undefined behavior");
56         cto = CountTrailingOnes64(imm >> i);
57     } else {
58         imm |= ~mask;
59         if (!IsShiftedMask_64(~imm)) {
60             return LogicalImmediate(InvalidLogicalImmediate);
61         }
62 
63         uint32_t clo = CountLeadingOnes64(imm);
64         i = static_cast<uint32_t>(RegXSize) - clo;
65         cto = clo + CountTrailingOnes64(imm) - (static_cast<uint32_t>(RegXSize) - size);
66     }
67 
68     // Encode in Immr the number of RORs it would take to get *from* 0^m 1^n
69     // to our target value, where I is the number of RORs to go the opposite
70     // direction.
71     ASSERT_PRINT(size > i, "i should be smaller than element size");
72     unsigned immr = (size - i) & (size - 1);
73 
74     // If size has a 1 in the n'th bit, create a value that has zeroes in
75     // bits [0, n] and ones above that.
76     uint64_t nImms = ~(size - 1) << 1;
77 
78     // Or the CTO value into the low bits, which must be below the Nth bit
79     // bit mentioned above.
80     nImms |= (cto - 1);
81 
82     // Extract the seventh bit and toggle it to create the N field.
83     // 6 means the topmost bit in nImms
84     unsigned int n = ((nImms >> 6) & 1) ^ 1;
85     return LogicalImmediate((n << BITWISE_OP_N_LOWBITS) | (immr << BITWISE_OP_Immr_LOWBITS) |
86                             ((nImms << BITWISE_OP_Imms_LOWBITS) & BITWISE_OP_Imms_MASK));
87 }
88 
Ldp(const Register & rt,const Register & rt2,const MemoryOperand & operand)89 void AssemblerAarch64::Ldp(const Register &rt, const Register &rt2, const MemoryOperand &operand)
90 {
91     uint32_t op = 0;
92     if (operand.IsImmediateOffset()) {
93         switch (operand.GetAddrMode()) {
94             case OFFSET:
95                 op = LoadStorePairOpCode::LDP_Offset;
96                 break;
97             case PREINDEX:
98                 op = LoadStorePairOpCode::LDP_Pre;
99                 break;
100             case POSTINDEX:
101                 op = LoadStorePairOpCode::LDP_Post;
102                 break;
103             default:
104                 LOG_ECMA(FATAL) << "this branch is unreachable";
105                 UNREACHABLE();
106         }
107         bool sf = !rt.IsW();
108         uint64_t imm = static_cast<uint64_t>(operand.GetImmediate().Value());
109         if (sf) {
110             imm >>= 3;  // 3: 64 RegSise, imm/8 to remove trailing zeros
111         } else {
112             imm >>= 2;  // 2: 32 RegSise, imm/4 to remove trailing zeros
113         }
114         uint32_t instructionCode = Sf(sf) | op | LoadAndStorePairImm(imm) | Rt2(rt2.GetId()) |
115                                    Rn(operand.GetRegBase().GetId()) | Rt(rt.GetId());
116         EmitU32(instructionCode);
117         return;
118     }
119     LOG_ECMA(FATAL) << "this branch is unreachable";
120     UNREACHABLE();
121 }
122 
Stp(const Register & rt,const Register & rt2,const MemoryOperand & operand)123 void AssemblerAarch64::Stp(const Register &rt, const Register &rt2, const MemoryOperand &operand)
124 {
125     uint32_t op = 0;
126     if (operand.IsImmediateOffset()) {
127         switch (operand.GetAddrMode()) {
128             case OFFSET:
129                 op = LoadStorePairOpCode::STP_Offset;
130                 break;
131             case PREINDEX:
132                 op = LoadStorePairOpCode::STP_Pre;
133                 break;
134             case POSTINDEX:
135                 op = LoadStorePairOpCode::STP_Post;
136                 break;
137             default:
138                 LOG_ECMA(FATAL) << "this branch is unreachable";
139                 UNREACHABLE();
140         }
141         bool sf = !rt.IsW();
142         uint64_t imm = static_cast<uint64_t>(operand.GetImmediate().Value());
143         if (sf) {
144             imm >>= 3;  // 3: 64 RegSise, imm/8 to remove trailing zeros
145         } else {
146             imm >>= 2;  // 2: 32 RegSise, imm/4 to remove trailing zeros
147         }
148         uint32_t instructionCode = Sf(sf) | op | LoadAndStorePairImm(imm) | Rt2(rt2.GetId()) |
149                                    Rn(operand.GetRegBase().GetId()) | Rt(rt.GetId());
150         EmitU32(instructionCode);
151         return;
152     }
153     LOG_ECMA(FATAL) << "this branch is unreachable";
154     UNREACHABLE();
155 }
156 
Ldp(const VectorRegister & vt,const VectorRegister & vt2,const MemoryOperand & operand)157 void AssemblerAarch64::Ldp(const VectorRegister &vt, const VectorRegister &vt2, const MemoryOperand &operand)
158 {
159     uint32_t op = 0;
160     if (operand.IsImmediateOffset()) {
161         switch (operand.GetAddrMode()) {
162             case OFFSET:
163                 op = LoadStorePairOpCode::LDP_V_Offset;
164                 break;
165             case PREINDEX:
166                 op = LoadStorePairOpCode::LDP_V_Pre;
167                 break;
168             case POSTINDEX:
169                 op = LoadStorePairOpCode::LDP_V_Post;
170                 break;
171             default:
172                 LOG_ECMA(FATAL) << "this branch is unreachable";
173                 UNREACHABLE();
174         }
175         uint64_t imm = static_cast<uint64_t>(operand.GetImmediate().Value());
176         switch (vt.GetScale()) {
177             case S:
178                 // 2 : 2 means remove trailing zeros
179                 imm >>= 2;
180                 break;
181             case D:
182                 // 3 : 3 means remove trailing zeros
183                 imm >>= 3;
184                 break;
185             case Q:
186                 // 4 : 4 means remove trailing zeros
187                 imm >>= 4;
188                 break;
189             default:
190                 LOG_ECMA(FATAL) << "this branch is unreachable";
191                 UNREACHABLE();
192         }
193         uint32_t opc = GetOpcFromScale(vt.GetScale(), true);
194         uint32_t instructionCode = opc | op | LoadAndStorePairImm(imm) | Rt2(vt2.GetId()) |
195                                    Rn(operand.GetRegBase().GetId()) | Rt(vt.GetId());
196         EmitU32(instructionCode);
197         return;
198     }
199     LOG_ECMA(FATAL) << "this branch is unreachable";
200     UNREACHABLE();
201 }
202 
Stp(const VectorRegister & vt,const VectorRegister & vt2,const MemoryOperand & operand)203 void AssemblerAarch64::Stp(const VectorRegister &vt, const VectorRegister &vt2, const MemoryOperand &operand)
204 {
205     uint32_t op = 0;
206     if (operand.IsImmediateOffset()) {
207         switch (operand.GetAddrMode()) {
208             case OFFSET:
209                 op = LoadStorePairOpCode::STP_V_Offset;
210                 break;
211             case PREINDEX:
212                 op = LoadStorePairOpCode::STP_V_Pre;
213                 break;
214             case POSTINDEX:
215                 op = LoadStorePairOpCode::STP_V_Post;
216                 break;
217             default:
218                 LOG_ECMA(FATAL) << "this branch is unreachable";
219                 UNREACHABLE();
220         }
221         uint64_t imm = static_cast<uint64_t>(operand.GetImmediate().Value());
222         switch (vt.GetScale()) {
223             case S:
224                 // 2 : 2 means remove trailing zeros
225                 imm >>= 2;
226                 break;
227             case D:
228                 // 3 : 3 means remove trailing zeros
229                 imm >>= 3;
230                 break;
231             case Q:
232                 // 4 : 4 means remove trailing zeros
233                 imm >>= 4;
234                 break;
235             default:
236                 LOG_ECMA(FATAL) << "this branch is unreachable";
237                 UNREACHABLE();
238         }
239         uint32_t opc = GetOpcFromScale(vt.GetScale(), true);
240         uint32_t instructionCode = opc | op | LoadAndStorePairImm(imm) | Rt2(vt2.GetId()) |
241                                    Rn(operand.GetRegBase().GetId()) | Rt(vt.GetId());
242         EmitU32(instructionCode);
243         return;
244     }
245     LOG_ECMA(FATAL) << "this branch is unreachable";
246     UNREACHABLE();
247 }
248 
GetOpcFromScale(Scale scale,bool ispair)249 uint32_t AssemblerAarch64::GetOpcFromScale(Scale scale, bool ispair)
250 {
251     uint32_t opc = 0;
252     switch (scale) {
253         case Scale::B:
254         case Scale::H:
255             ASSERT(!ispair);
256             opc = 1;
257             break;
258         case Scale::S:
259             opc = ispair ? 0 : 1;
260             break;
261         case Scale::D:
262             opc = 1;
263             break;
264         case Scale::Q:
265             // 3 : means opc bit is 11
266             opc = ispair ? 1 : 3;
267             break;
268         default:
269             LOG_ECMA(FATAL) << "this branch is unreachable";
270             UNREACHABLE();
271     }
272 
273     return (opc << LDP_STP_Opc_LOWBITS) & LDP_STP_Opc_MASK;
274 }
275 
Ldr(const Register & rt,const MemoryOperand & operand,Scale scale)276 void AssemblerAarch64::Ldr(const Register &rt, const MemoryOperand &operand, Scale scale)
277 {
278     bool regX = !rt.IsW();
279     uint32_t op = GetOpcodeOfLdr(operand, scale);
280     if (operand.IsImmediateOffset()) {
281         uint64_t imm = GetImmOfLdr(operand, scale, regX);
282         bool isSigned = operand.GetAddrMode() != AddrMode::OFFSET;
283         // 30: 30bit indicate the size of LDR Reg, and Ldrb and Ldrh do not need it
284         uint32_t instructionCode = ((regX && (scale == Scale::Q)) << 30) | op | LoadAndStoreImm(imm, isSigned) |
285                                     Rn(operand.GetRegBase().GetId()) | Rt(rt.GetId());
286         EmitU32(instructionCode);
287     } else {
288         ASSERT(operand.GetExtendOption() != Extend::NO_EXTEND);
289         uint32_t shift = GetShiftOfLdr(operand, scale, regX);
290         Register rm = operand.GetRegisterOffset();
291         Register rn = operand.GetRegBase();
292         uint32_t extendField =
293             (operand.GetExtendOption() << LDR_STR_Extend_LOWBITS) & LDR_STR_Extend_MASK;
294         uint32_t shiftField = (shift << LDR_STR_S_LOWBITS) & LDR_STR_S_MASK;
295         // 30: 30bit indicate the size of LDR Reg, and Ldrb and Ldrh do not need it
296         uint32_t instructionCode = ((regX && (scale == Scale::Q)) << 30) | op | Rm(rm.GetId()) |
297                                     extendField | shiftField | Rn(rn.GetId()) | Rt(rt.GetId());
298         EmitU32(instructionCode);
299     }
300 }
301 
Ldr(const Register & rt,const MemoryOperand & operand)302 void AssemblerAarch64::Ldr(const Register &rt, const MemoryOperand &operand)
303 {
304     Ldr(rt, operand, Scale::Q);
305 }
306 
Ldrh(const Register & rt,const MemoryOperand & operand)307 void AssemblerAarch64::Ldrh(const Register &rt, const MemoryOperand &operand)
308 {
309     ASSERT(rt.IsW());
310     Ldr(rt, operand, Scale::H);
311 }
312 
Ldrb(const Register & rt,const MemoryOperand & operand)313 void AssemblerAarch64::Ldrb(const Register &rt, const MemoryOperand &operand)
314 {
315     ASSERT(rt.IsW());
316     Ldr(rt, operand, Scale::B);
317 }
318 
Str(const Register & rt,const MemoryOperand & operand)319 void AssemblerAarch64::Str(const Register &rt, const MemoryOperand &operand)
320 {
321     uint32_t op = 0;
322     bool regX = !rt.IsW();
323     bool isSigned = true;
324     uint64_t imm = static_cast<uint64_t>(operand.GetImmediate().Value());
325     if (operand.IsImmediateOffset()) {
326         switch (operand.GetAddrMode()) {
327             case OFFSET:
328                 op = LoadStoreOpCode::STR_Offset;
329                 if (regX) {
330                     imm >>= 3;   // 3:  64 RegSise, imm/8 to remove trailing zeros
331                 } else {
332                     imm >>= 2;  // 2: 32 RegSise, imm/4 to remove trailing zeros
333                 }
334                 isSigned = false;
335                 break;
336             case PREINDEX:
337                 op = LoadStoreOpCode::STR_Pre;
338                 break;
339             case POSTINDEX:
340                 op = LoadStoreOpCode::STR_Post;
341                 break;
342             default:
343                 LOG_ECMA(FATAL) << "this branch is unreachable";
344                 UNREACHABLE();
345         }
346         // 30: 30bit indicate the size of LDR Reg
347         uint32_t instructionCode = (regX << 30) | op | LoadAndStoreImm(imm, isSigned) |
348                                    Rn(operand.GetRegBase().GetId()) | Rt(rt.GetId());
349         EmitU32(instructionCode);
350         return;
351     }
352     LOG_ECMA(FATAL) << "this branch is unreachable";
353     UNREACHABLE();
354 }
355 
Ldur(const Register & rt,const MemoryOperand & operand)356 void AssemblerAarch64::Ldur(const Register &rt, const MemoryOperand &operand)
357 {
358     bool regX = !rt.IsW();
359     uint32_t op = LDUR_Offset;
360     ASSERT(operand.IsImmediateOffset());
361     uint64_t imm = static_cast<uint64_t>(operand.GetImmediate().Value());
362     // 30: 30bit indicate the size of LDUR Reg
363     uint32_t instructionCode = (regX << 30) | op | LoadAndStoreImm(imm, true) |
364                                Rn(operand.GetRegBase().GetId()) | Rt(rt.GetId());
365     EmitU32(instructionCode);
366 }
367 
Stur(const Register & rt,const MemoryOperand & operand)368 void AssemblerAarch64::Stur(const Register &rt, const MemoryOperand &operand)
369 {
370     bool regX = !rt.IsW();
371     uint32_t op = STUR_Offset;
372     ASSERT(operand.IsImmediateOffset());
373     uint64_t imm = static_cast<uint64_t>(operand.GetImmediate().Value());
374     // 30: 30bit indicate the size of LDUR Reg
375     uint32_t instructionCode = (regX << 30) | op | LoadAndStoreImm(imm, true) |
376                                Rn(operand.GetRegBase().GetId()) | Rt(rt.GetId());
377     EmitU32(instructionCode);
378 }
379 
Mov(const Register & rd,const Immediate & imm)380 void AssemblerAarch64::Mov(const Register &rd, const Immediate &imm)
381 {
382     ASSERT_PRINT(!rd.IsSp(), "sp can't load immediate, please use add instruction");
383     const unsigned int HWORDSIZE = 16;
384     uint64_t immValue = static_cast<uint64_t>(imm.Value());
385     unsigned int allOneHalfWords = 0;
386     unsigned int allZeroHalfWords = 0;
387     unsigned int regSize = rd.IsW() ? RegWSize : RegXSize;
388     unsigned int halfWords = regSize / HWORDSIZE;
389 
390     for (unsigned int shift = 0; shift < regSize; shift += HWORDSIZE) {
391         const unsigned int halfWord = (immValue >> shift) & HWORD_MASK;
392         if (halfWord == HWORD_MASK) {
393             allOneHalfWords++;
394         } else if (halfWord == 0) {
395             allZeroHalfWords++;
396         }
397     }
398     // use movz/movn over ORR.
399     if (((halfWords - allOneHalfWords) <= 1) && ((halfWords - allZeroHalfWords) <= 1)) {
400         EmitMovInstruct(rd, immValue, allOneHalfWords, allZeroHalfWords);
401         return;
402     }
403     // Try a single ORR.
404     uint64_t realImm = immValue << (RegXSize - regSize) >> (RegXSize - regSize);
405     LogicalImmediate orrImm = LogicalImmediate::Create(realImm, regSize);
406     if (orrImm.IsValid()) {
407         Orr(rd, Register(Zero), orrImm);
408         return;
409     }
410     // One to up three instruction sequence.
411     if (allOneHalfWords >= (halfWords - 2) || allZeroHalfWords >= (halfWords - 2)) {
412         EmitMovInstruct(rd, immValue, allOneHalfWords, allZeroHalfWords);
413         return;
414     }
415     ASSERT_PRINT(regSize == RegXSize, "all 32-bit Immediate will be transformed with a MOVZ/MOVK pair");
416 
417     for (unsigned int shift = 0; shift < regSize; shift += HWORDSIZE) {
418         uint64_t shiftedMask = (HWORD_MASK << shift);
419         uint64_t zeroChunk = realImm & ~shiftedMask;
420         uint64_t oneChunk = realImm | shiftedMask;
421         uint64_t rotatedImm = (realImm << 32) | (realImm >> 32);
422         uint64_t replicateChunk = zeroChunk | (rotatedImm & shiftedMask);
423         LogicalImmediate zeroImm = LogicalImmediate::Create(zeroChunk, regSize);
424         LogicalImmediate oneImm = LogicalImmediate::Create(oneChunk, regSize);
425         LogicalImmediate replicateImm = LogicalImmediate::Create(replicateChunk, regSize);
426         if (!zeroImm.IsValid() && !oneImm.IsValid() && !replicateImm.IsValid()) {
427             continue;
428         }
429 
430         if (zeroImm.IsValid()) {
431             Orr(rd, Register(Zero), zeroImm);
432         } else if (oneImm.IsValid()) {
433             Orr(rd, Register(Zero), oneImm);
434         } else {
435             Orr(rd, Register(Zero), replicateImm);
436         }
437         const uint64_t movkImm = (realImm & shiftedMask) >> shift;
438         Movk(rd, movkImm, shift);
439         return;
440     }
441 
442     if (allOneHalfWords || allZeroHalfWords) {
443         EmitMovInstruct(rd, immValue, allOneHalfWords, allZeroHalfWords);
444         return;
445     }
446 
447     if (regSize == RegXSize && TryReplicateHWords(rd, realImm)) {
448         return;
449     }
450 
451     if (regSize == RegXSize && TrySequenceOfOnes(rd, realImm)) {
452         return;
453     }
454     EmitMovInstruct(rd, immValue, allOneHalfWords, allZeroHalfWords);
455     return;
456 }
457 
Mov(const Register & rd,const Register & rm)458 void AssemblerAarch64::Mov(const Register &rd, const Register &rm)
459 {
460     if (rd.IsSp() || rm.IsSp()) {
461         Add(rd, rm, Operand(Immediate(0)));
462     } else {
463         Orr(rd, Register(Zero), Operand(rm));
464     }
465 }
466 
467 /// Check whether this chunk matches the pattern '1...0...'. This pattern
468 /// starts a contiguous sequence of ones if we look at the bits from the LSB
469 /// towards the MSB.
IsStartHWord(uint64_t hWord)470 static bool IsStartHWord(uint64_t hWord)
471 {
472     if (hWord == 0 || hWord == std::numeric_limits<uint64_t>::max()) {
473         return false;
474     }
475     return IsMask_64(~hWord);
476 }
477 
478 /// Check whether this chunk matches the pattern '0...1...' This pattern
479 /// ends a contiguous sequence of ones if we look at the bits from the LSB
480 /// towards the MSB.
IsEndHWord(uint64_t hWord)481 static bool IsEndHWord(uint64_t hWord)
482 {
483     if (hWord == 0 || hWord == std::numeric_limits<uint64_t>::max()) {
484         return false;
485     }
486     return IsMask_64(hWord);
487 }
488 
489 /// Clear or set all bits in the chunk at the given index.
UpdateImm(uint64_t imm,unsigned idx,bool clear)490 static uint64_t UpdateImm(uint64_t imm, unsigned idx, bool clear)
491 {
492     if (clear) {
493         // Clear chunk in the immediate.
494         imm &= ~(HWORD_MASK << idx);
495     } else {
496         // Set all bits in the immediate for the particular chunk.
497         imm |= HWORD_MASK << idx;
498     }
499     return imm;
500 }
501 
TrySequenceOfOnes(const Register & rd,uint64_t imm)502 bool AssemblerAarch64::TrySequenceOfOnes(const Register &rd, uint64_t imm)
503 {
504     const int HWORDSIZE = 16;
505     int startIdx = -1;
506     int endIdx = -1;
507     // Try to find the chunks which start/end a contiguous sequence of ones.
508     for (int shift = 0; shift < RegXSize; shift += HWORDSIZE) {
509         int64_t himm = (imm >> shift) & HWORD_MASK;
510         // Sign extend the 16-bit chunk to 64-bit.
511         // 48 : 48 means RegXSize - HWORDSIZE
512         himm = (himm << 48) >> 48;
513 
514         if (IsStartHWord(himm)) {
515             startIdx = shift;
516         } else if (IsEndHWord(static_cast<uint64_t>(himm))) {
517             endIdx = shift;
518         }
519     }
520     // Early exit in case we can't find a start/end chunk.
521     if (startIdx == -1 || endIdx == -1) {
522         return false;
523     }
524     // Outside of the contiguous sequence of ones everything needs to be zero.
525     uint64_t outside = 0;
526     // Chunks between the start and end chunk need to have all their bits set.
527     uint64_t inside = HWORD_MASK;
528 
529     // If our contiguous sequence of ones wraps around from the MSB into the LSB,
530     // just swap indices and pretend we are materializing a contiguous sequence
531     // of zeros surrounded by a contiguous sequence of ones.
532     if (startIdx > endIdx) {
533         std::swap(startIdx, endIdx);
534         std::swap(outside, inside);
535     }
536 
537     uint64_t orrImm = imm;
538     int firstMovkShift = -1;
539     int secondMovkShift = -1;
540     for (int shift = 0; shift < RegXSize; shift += HWORDSIZE) {
541         uint64_t himm = (imm >> shift) & HWORD_MASK;
542         // Check whether we are looking at a chunk which is not part of the
543         // contiguous sequence of ones.
544         if ((shift < startIdx || endIdx < shift) && himm != outside) {
545             orrImm = UpdateImm(orrImm, shift, outside == 0);
546             if (firstMovkShift == -1) {
547                 firstMovkShift = shift;
548             } else {
549                 secondMovkShift = shift;
550             }
551         } else if (shift > startIdx && shift < endIdx && himm != inside) {
552             orrImm = UpdateImm(orrImm, shift, outside == 0);
553             if (firstMovkShift == -1) {
554                 firstMovkShift = shift;
555             } else {
556                 secondMovkShift = shift;
557             }
558         }
559     }
560     ASSERT_PRINT(firstMovkShift != -1, "constant materializable with single orr!");
561     Orr(rd, rd, LogicalImmediate::Create(orrImm, RegXSize));
562     Movk(rd, (imm >> firstMovkShift) & HWORD_MASK, firstMovkShift);
563     if (secondMovkShift != -1) {
564         Movk(rd, (imm >> secondMovkShift) & HWORD_MASK, secondMovkShift);
565     }
566     return true;
567 }
568 
TryReplicateHWords(const Register & rd,uint64_t imm)569 bool AssemblerAarch64::TryReplicateHWords(const Register &rd, uint64_t imm)
570 {
571     const int HWORDSIZE = 16;
572     std::map<uint64_t, int> repeatMaps;
573     for (int idx = 0; idx < RegXSize; idx += HWORDSIZE) {
574         uint64_t halfWord = (imm >> idx) & HWORD_MASK;
575         if (repeatMaps.find(halfWord) != repeatMaps.end()) {
576             repeatMaps[halfWord] += 1;
577         } else {
578             repeatMaps[halfWord] = 1;
579         }
580     }
581     for (auto iter : repeatMaps) {
582         const uint64_t hImm = iter.first;
583         const int count = iter.second;
584         uint64_t repeatImm = hImm | (hImm << 16) | (hImm << 32) | (hImm << 48);
585         LogicalImmediate orrImm = LogicalImmediate::Create(repeatImm, 64);
586         // if orrImm not valid, repeat count can't be 2 or 3, it can't be simplified with orr.
587         if ((count != 2 && count != 3) || orrImm.IsValid()) {
588             continue;
589         }
590         Orr(rd, rd, orrImm);
591         int shift = 0;
592         uint64_t imm16 = 0;
593         // Find the first chunk not materialized with the ORR instruction.
594         for (; shift < RegXSize; shift += HWORDSIZE) {
595             imm16 = (imm >> shift) & HWORD_MASK;
596             if (imm16 != hImm) {
597                 break;
598             }
599         }
600         // Create the first MOVK instruction.
601         Movk(rd, imm16, shift);
602         // 3 : 3 means repeat 3 times, Imm encode has been done.
603         if (count == 3) {
604             return true;
605         }
606         // Find the remaining chunk which needs to be materialized.
607         for (shift += HWORDSIZE; shift < RegXSize; shift += HWORDSIZE) {
608             imm16 = (imm >> shift) & HWORD_MASK;
609             if (imm16 != hImm) {
610                 break;
611             }
612         }
613         Movk(rd, imm16, shift);
614         return true;
615     }
616     return false;
617 }
618 
EmitMovInstruct(const Register & rd,uint64_t imm,unsigned int allOneHWords,unsigned int allZeroHWords)619 void AssemblerAarch64::EmitMovInstruct(const Register &rd, uint64_t imm,
620                                        unsigned int allOneHWords, unsigned int allZeroHWords)
621 {
622     bool isNeg = false;
623     if (allOneHWords > allZeroHWords) {
624         isNeg = true;
625         imm = ~imm;
626     }
627     int firstshift = 0;     // LSL amount for high bits with MOVZ/MOVN
628     int lastshift = 0; // LSL amount for last MOVK
629     if (imm != 0) {
630         int lz = static_cast<int>(CountLeadingZeros64(imm));
631         int tz = static_cast<int>(CountTrailingZeros64(imm));
632         firstshift = (tz / 16) * 16;         // 16 : 16  means the operand of MOVK/N/Z is 16 bits Immediate
633         // 63 : 63  means the topmost bits of RegXSize
634         lastshift = ((63 - lz) / 16) * 16;   // 16 : 16  means the operand of MOVK/N/Z is 16 bits Immediate
635     }
636     uint64_t imm16 = (imm >> firstshift) & HWORD_MASK;
637     if (isNeg) {
638         Movn(rd, imm16, firstshift);
639         imm = ~imm;
640     } else {
641         Movz(rd, imm16, firstshift);
642     }
643     if (firstshift == lastshift) {
644         return;
645     }
646     while (firstshift < lastshift) {
647         firstshift += 16;                   // 16 : 16  means the operand of MOVK is 16 bits Immediate
648         imm16 = (imm >> firstshift) & HWORD_MASK;
649         if (imm16 == (isNeg ? HWORD_MASK : 0)) {
650             // skip movk because initial value is already set correctly.
651             continue;
652         }
653         Movk(rd, imm16, firstshift);
654     }
655 }
656 
Movz(const Register & rd,uint64_t imm,int shift)657 void AssemblerAarch64::Movz(const Register &rd, uint64_t imm, int shift)
658 {
659     MovWide(MoveOpCode::MOVZ, rd, imm, shift);
660 }
661 
Movk(const Register & rd,uint64_t imm,int shift)662 void AssemblerAarch64::Movk(const Register &rd, uint64_t imm, int shift)
663 {
664     MovWide(MoveOpCode::MOVK, rd, imm, shift);
665 }
666 
Movn(const Register & rd,uint64_t imm,int shift)667 void AssemblerAarch64::Movn(const Register &rd, uint64_t imm, int shift)
668 {
669     MovWide(MoveOpCode::MOVN, rd, imm, shift);
670 }
671 
MovWide(uint32_t op,const Register & rd,uint64_t imm,int shift)672 void AssemblerAarch64::MovWide(uint32_t op, const Register &rd, uint64_t imm, int shift)
673 {
674     uint32_t imm_field = (imm << MOV_WIDE_Imm16_LOWBITS) & MOV_WIDE_Imm16_MASK;
675     uint32_t hw_field = ((shift / 16) << MOV_WIDE_Hw_LOWBITS) & MOV_WIDE_Hw_MASK;
676     uint32_t code = Sf(!rd.IsW()) | op | imm_field | hw_field | Rd(rd.GetId());
677     EmitU32(code);
678 }
679 
680 
Orr(const Register & rd,const Register & rn,const LogicalImmediate & imm)681 void AssemblerAarch64::Orr(const Register &rd, const Register &rn, const LogicalImmediate &imm)
682 {
683     BitWiseOpImm(ORR_Imm, rd, rn, imm.Value());
684 }
685 
And(const Register & rd,const Register & rn,const LogicalImmediate & imm)686 void AssemblerAarch64::And(const Register &rd, const Register &rn, const LogicalImmediate &imm)
687 {
688     BitWiseOpImm(AND_Imm, rd, rn, imm.Value());
689 }
690 
Ands(const Register & rd,const Register & rn,const LogicalImmediate & imm)691 void AssemblerAarch64::Ands(const Register &rd, const Register &rn, const LogicalImmediate &imm)
692 {
693     BitWiseOpImm(ANDS_Imm, rd, rn, imm.Value());
694 }
695 
Orr(const Register & rd,const Register & rn,const Operand & operand)696 void AssemblerAarch64::Orr(const Register &rd, const Register &rn, const Operand &operand)
697 {
698     ASSERT(operand.IsShifted());
699     BitWiseOpShift(ORR_Shift, rd, rn, operand);
700 }
701 
And(const Register & rd,const Register & rn,const Operand & operand)702 void AssemblerAarch64::And(const Register &rd, const Register &rn, const Operand &operand)
703 {
704     ASSERT(operand.IsShifted());
705     BitWiseOpShift(AND_Shift, rd, rn, operand);
706 }
707 
Ands(const Register & rd,const Register & rn,const Operand & operand)708 void AssemblerAarch64::Ands(const Register &rd, const Register &rn, const Operand &operand)
709 {
710     ASSERT(operand.IsShifted());
711     BitWiseOpShift(ANDS_Shift, rd, rn, operand);
712 }
713 
BitWiseOpImm(BitwiseOpCode op,const Register & rd,const Register & rn,uint64_t imm)714 void AssemblerAarch64::BitWiseOpImm(BitwiseOpCode op, const Register &rd, const Register &rn, uint64_t imm)
715 {
716     uint32_t code = Sf(!rd.IsW()) | op | imm | Rn(rn.GetId()) | Rd(rd.GetId());
717     EmitU32(code);
718 }
719 
BitWiseOpShift(BitwiseOpCode op,const Register & rd,const Register & rn,const Operand & operand)720 void AssemblerAarch64::BitWiseOpShift(BitwiseOpCode op, const Register &rd, const Register &rn, const Operand &operand)
721 {
722     uint32_t shift_field = (operand.GetShiftOption() << BITWISE_OP_Shift_LOWBITS) & BITWISE_OP_Shift_MASK;
723     uint32_t shift_amount = (operand.GetShiftAmount() << BITWISE_OP_ShiftAmount_LOWBITS) & BITWISE_OP_ShiftAmount_MASK;
724     uint32_t code = Sf(!rd.IsW()) | op | shift_field | Rm(operand.Reg().GetId()) |
725                        shift_amount | Rn(rn.GetId()) | Rd(rd.GetId());
726     EmitU32(code);
727 }
728 
Lsl(const Register & rd,const Register & rn,const Register & rm)729 void AssemblerAarch64::Lsl(const Register &rd, const Register &rn, const Register &rm)
730 {
731     uint32_t code = Sf(!rd.IsW()) | LSL_Reg | Rm(rm.GetId()) | Rn(rn.GetId()) | Rd(rd.GetId());
732     EmitU32(code);
733 }
734 
Lsr(const Register & rd,const Register & rn,const Register & rm)735 void AssemblerAarch64::Lsr(const Register &rd, const Register &rn, const Register &rm)
736 {
737     uint32_t code = Sf(!rd.IsW()) | LSR_Reg | Rm(rm.GetId()) | Rn(rn.GetId()) | Rd(rd.GetId());
738     EmitU32(code);
739 }
740 
Ubfm(const Register & rd,const Register & rn,unsigned immr,unsigned imms)741 void AssemblerAarch64::Ubfm(const Register &rd, const Register &rn, unsigned immr, unsigned imms)
742 {
743     bool sf = !rd.IsW();
744     uint32_t n = (sf << BITWISE_OP_N_LOWBITS) & BITWISE_OP_N_MASK;
745     uint32_t immr_field = (immr << BITWISE_OP_Immr_LOWBITS) & BITWISE_OP_Immr_MASK;
746     uint32_t imms_field = (imms << BITWISE_OP_Imms_LOWBITS) & BITWISE_OP_Imms_MASK;
747     uint32_t code = Sf(sf) | UBFM | n | immr_field | imms_field | Rn(rn.GetId()) | Rd(rd.GetId());
748     EmitU32(code);
749 }
750 
Lsr(const Register & rd,const Register & rn,unsigned shift)751 void AssemblerAarch64::Lsr(const Register &rd, const Register &rn, unsigned shift)
752 {
753     unsigned imms = 0;
754     if (rd.IsW()) {
755         // 31 : 31 32-bit variant Applies when sf == 0 && N == 0 && imms == 011111
756         // LSR <Wd>, <Wn>, #<shift> is equivalent to UBFM <Wd>, <Wn>, #<shift>, #31
757         // and is always the preferred disassembly
758         imms = 31;
759     } else {
760         // 63 : 63 64-bit variant Applies when sf == 1 && N == 1 && imms == 111111
761         // LSR <Xd>, <Xn>, #<shift> is equivalent to UBFM <Xd>, <Xn>, #<shift>, #63
762         // and is always the preferred disassembly
763         imms = 63;
764     }
765     Ubfm(rd, rn, shift, imms);
766 }
767 
Add(const Register & rd,const Register & rn,const Operand & operand)768 void AssemblerAarch64::Add(const Register &rd, const Register &rn, const Operand &operand)
769 {
770     if (operand.IsImmediate()) {
771         int64_t imm = static_cast<int64_t>(operand.ImmediateValue());
772         if (imm < 0) {
773             AddSubImm(SUB_Imm, rd, rn, false, -1 * imm);
774         } else {
775             AddSubImm(ADD_Imm, rd, rn, false, imm);
776         }
777     } else {
778         if (operand.IsShifted()) {
779             AddSubReg(ADD_Shift, rd, rn, false, operand);
780         } else {
781             AddSubReg(ADD_Extend, rd, rn, false, operand);
782         }
783     }
784 }
785 
Adds(const Register & rd,const Register & rn,const Operand & operand)786 void AssemblerAarch64::Adds(const Register &rd, const Register &rn, const Operand &operand)
787 {
788     if (operand.IsImmediate()) {
789         AddSubImm(ADD_Imm, rd, rn, true, operand.ImmediateValue());
790     } else {
791         if (operand.IsShifted()) {
792             AddSubReg(ADD_Shift, rd, rn, true, operand);
793         } else {
794             AddSubReg(ADD_Extend, rd, rn, true, operand);
795         }
796     }
797 }
798 
Sub(const Register & rd,const Register & rn,const Operand & operand)799 void AssemblerAarch64::Sub(const Register &rd, const Register &rn, const Operand &operand)
800 {
801     if (operand.IsImmediate()) {
802         int64_t imm = static_cast<int64_t>(operand.ImmediateValue());
803         if (imm < 0) {
804             AddSubImm(ADD_Imm, rd, rn, false, -1 * imm);
805         } else {
806             AddSubImm(SUB_Imm, rd, rn, false, imm);
807         }
808     } else {
809         if (operand.IsShifted()) {
810             AddSubReg(SUB_Shift, rd, rn, false, operand);
811         } else {
812             AddSubReg(SUB_Extend, rd, rn, false, operand);
813         }
814     }
815 }
816 
Subs(const Register & rd,const Register & rn,const Operand & operand)817 void AssemblerAarch64::Subs(const Register &rd, const Register &rn, const Operand &operand)
818 {
819     if (operand.IsImmediate()) {
820         AddSubImm(SUB_Imm, rd, rn, true, operand.ImmediateValue());
821     } else {
822         if (operand.IsShifted()) {
823             AddSubReg(SUB_Shift, rd, rn, true, operand);
824         } else {
825             AddSubReg(SUB_Extend, rd, rn, true, operand);
826         }
827     }
828 }
829 
IsAddSubImm(uint64_t imm)830 bool AssemblerAarch64::IsAddSubImm(uint64_t imm)
831 {
832     const uint64_t IMM12_MASK = (1 << ADD_SUB_Imm12_WIDTH) - 1;
833     if (imm <= IMM12_MASK) {
834         return true;
835     }
836 
837     if (((imm & IMM12_MASK) == 0) && ((imm & ~IMM12_MASK) <= IMM12_MASK)) {
838         return true;
839     }
840     return false;
841 }
842 
AddSubImm(AddSubOpCode op,const Register & rd,const Register & rn,bool setFlags,uint64_t imm)843 void AssemblerAarch64::AddSubImm(AddSubOpCode op, const Register &rd, const Register &rn, bool setFlags, uint64_t imm)
844 {
845     ASSERT(IsAddSubImm(imm));
846     uint32_t shift = 0;
847     const uint64_t IMM12_MASK = (1 << ADD_SUB_Imm12_WIDTH) - 1;
848     uint64_t imm12 = imm & (~IMM12_MASK);
849     if (imm12 != 0) {
850         shift = 1;
851     } else {
852         imm12 = imm;
853     }
854     uint32_t flags_field = ((setFlags ? 1 : 0) << ADD_SUB_S_LOWBITS) & ADD_SUB_S_MASK;
855     uint32_t imm_field = (imm12 << ADD_SUB_Imm12_LOWBITS) & ADD_SUB_Imm12_MASK;
856     uint32_t shift_field = (shift << ADD_SUB_Sh_LOWBITS) & ADD_SUB_Sh_MASK;
857     uint32_t code = Sf(!rd.IsW()) | op | flags_field | shift_field | imm_field | Rd(rd.GetId()) | Rn(rn.GetId());
858     EmitU32(code);
859 }
860 
AddSubReg(AddSubOpCode op,const Register & rd,const Register & rn,bool setFlags,const Operand & operand)861 void AssemblerAarch64::AddSubReg(AddSubOpCode op, const Register &rd, const Register &rn,
862                                  bool setFlags, const Operand &operand)
863 {
864     uint32_t flags_field = ((setFlags ? 1 : 0) << ADD_SUB_S_LOWBITS) & ADD_SUB_S_MASK;
865     uint32_t code = 0;
866     if (operand.IsShifted()) {
867         uint32_t shift_field = ((operand.GetShiftOption()) << ADD_SUB_Shift_LOWBITS) & ADD_SUB_Shift_MASK;
868         uint32_t shift_amount = ((operand.GetShiftAmount()) << ADD_SUB_ShiftAmount_LOWBITS) & ADD_SUB_ShiftAmount_MASK;
869         ASSERT((op == ADD_Shift) | (op == SUB_Shift));
870         code = Sf(!rd.IsW()) | op | flags_field | shift_field | Rm(operand.Reg().GetId()) |
871                   shift_amount | Rn(rn.GetId()) | Rd(rd.GetId());
872     } else {
873         ASSERT((op == ADD_Extend) | (op == SUB_Extend));
874         uint32_t extend_field =
875             (operand.GetExtendOption() << ADD_SUB_ExtendOption_LOWBITS) & ADD_SUB_ExtendOption_MASK;
876         uint32_t extend_shift = (operand.GetShiftAmount() << ADD_SUB_ExtendShift_LOWBITS) & ADD_SUB_ExtendShift_MASK;
877         code = Sf(!rd.IsW()) | op | flags_field | Rm(operand.Reg().GetId()) | extend_field |
878                   extend_shift | Rn(rn.GetId()) | Rd(rd.GetId());
879     }
880     EmitU32(code);
881 }
882 
Cmp(const Register & rd,const Operand & operand)883 void AssemblerAarch64::Cmp(const Register &rd, const Operand &operand)
884 {
885     Subs(Register(Zero, rd.GetType()), rd, operand);
886 }
887 
CMov(const Register & rd,const Register & rn,const Operand & operand,Condition cond)888 void AssemblerAarch64::CMov(const Register &rd, const Register &rn, const Operand &operand, Condition cond)
889 {
890     ASSERT(!operand.IsImmediate());
891     uint32_t cond_field = (cond << CSEL_Cond_LOWBITS) & CSEL_Cond_MASK;
892     uint32_t code = Sf(!rd.IsW()) | CSEL | Rm(operand.Reg().GetId()) | cond_field | Rn(rn.GetId()) | Rd(rd.GetId());
893     EmitU32(code);
894 }
895 
B(Label * label)896 void AssemblerAarch64::B(Label *label)
897 {
898     int32_t offsetImm = LinkAndGetInstOffsetToLabel(label);
899     // 2 : 2 means 4 bytes aligned.
900     offsetImm >>= 2;
901     B(offsetImm);
902 }
903 
B(int32_t imm)904 void AssemblerAarch64::B(int32_t imm)
905 {
906     uint32_t code = BranchOpCode::Branch | ((imm << BRANCH_Imm26_LOWBITS) & BRANCH_Imm26_MASK);
907     EmitU32(code);
908 }
909 
Br(const Register & rn)910 void AssemblerAarch64::Br(const Register &rn)
911 {
912     uint32_t code = BranchOpCode::BR | Rn(rn.GetId());
913     EmitU32(code);
914 }
915 
Bl(Label * label)916 void AssemblerAarch64::Bl(Label *label)
917 {
918     int32_t offsetImm = LinkAndGetInstOffsetToLabel(label);
919     // 2 : 2 means 4 bytes aligned.
920     offsetImm >>= 2;
921     Bl(offsetImm);
922 }
923 
Bl(int32_t imm)924 void AssemblerAarch64::Bl(int32_t imm)
925 {
926     uint32_t code = CallOpCode::BL | ((imm << BRANCH_Imm26_LOWBITS) & BRANCH_Imm26_MASK);
927     EmitU32(code);
928 }
929 
Blr(const Register & rn)930 void AssemblerAarch64::Blr(const Register &rn)
931 {
932     ASSERT(!rn.IsW());
933     uint32_t code = CallOpCode::BLR | Rn(rn.GetId());
934     EmitU32(code);
935 }
936 
B(Condition cond,Label * label)937 void AssemblerAarch64::B(Condition cond, Label *label)
938 {
939     int32_t offsetImm = LinkAndGetInstOffsetToLabel(label);
940     // 2 : 2 means 4 bytes aligned.
941     offsetImm >>= 2;
942     B(cond, offsetImm);
943 }
944 
B(Condition cond,int32_t imm)945 void AssemblerAarch64::B(Condition cond, int32_t imm)
946 {
947     uint32_t code = BranchOpCode::BranchCond | BranchImm19(imm) | cond;
948     EmitU32(code);
949 }
950 
Cbz(const Register & rt,Label * label)951 void AssemblerAarch64::Cbz(const Register &rt, Label *label)
952 {
953     int32_t offsetImm = LinkAndGetInstOffsetToLabel(label);
954     // 2 : 2 means 4 bytes aligned.
955     offsetImm >>= 2;
956     Cbz(rt, offsetImm);
957 }
958 
Cbnz(const Register & rt,Label * label)959 void AssemblerAarch64::Cbnz(const Register &rt, Label *label)
960 {
961     int32_t offsetImm = LinkAndGetInstOffsetToLabel(label);
962     // 2 : 2 means 4 bytes aligned.
963     offsetImm >>= 2;
964     Cbnz(rt, offsetImm);
965 }
966 
Cbz(const Register & rt,int32_t imm)967 void AssemblerAarch64::Cbz(const Register &rt, int32_t imm)
968 {
969     uint32_t code = Sf(!rt.IsW()) | BranchOpCode::CBZ | BranchImm19(imm) | rt.GetId();
970     EmitU32(code);
971 }
972 
Cbnz(const Register & rt,int32_t imm)973 void AssemblerAarch64::Cbnz(const Register &rt, int32_t imm)
974 {
975     uint32_t code = Sf(!rt.IsW()) | BranchOpCode::CBNZ | BranchImm19(imm) | rt.GetId();
976     EmitU32(code);
977 }
978 
Tbz(const Register & rt,int32_t bitPos,Label * label)979 void AssemblerAarch64::Tbz(const Register &rt, int32_t bitPos, Label *label)
980 {
981     int32_t offsetImm = LinkAndGetInstOffsetToLabel(label);
982     // 2 : 2 means 4 bytes aligned.
983     offsetImm >>= 2;
984     Tbz(rt, bitPos, offsetImm);
985 }
986 
Tbz(const Register & rt,int32_t bitPos,int32_t imm)987 void AssemblerAarch64::Tbz(const Register &rt, int32_t bitPos, int32_t imm)
988 {
989     uint32_t b5 = (bitPos << (BRANCH_B5_LOWBITS - 5)) & BRANCH_B5_MASK;
990     uint32_t b40 = (bitPos << BRANCH_B40_LOWBITS) & BRANCH_B40_MASK;
991     uint32_t imm14 = (imm << BRANCH_Imm14_LOWBITS) & BRANCH_Imm14_MASK;
992     uint32_t code = b5 | BranchOpCode::TBZ | b40 | imm14 | rt.GetId();
993     EmitU32(code);
994 }
995 
Tbnz(const Register & rt,int32_t bitPos,Label * label)996 void AssemblerAarch64::Tbnz(const Register &rt, int32_t bitPos, Label *label)
997 {
998     int32_t offsetImm = LinkAndGetInstOffsetToLabel(label);
999     // 2 : 2 means 4 bytes aligned.
1000     offsetImm >>= 2;
1001     Tbnz(rt, bitPos, offsetImm);
1002 }
1003 
Tbnz(const Register & rt,int32_t bitPos,int32_t imm)1004 void AssemblerAarch64::Tbnz(const Register &rt, int32_t bitPos, int32_t imm)
1005 {
1006     uint32_t b5 = (bitPos << (BRANCH_B5_LOWBITS - 5)) & BRANCH_B5_MASK;
1007     uint32_t b40 = (bitPos << BRANCH_B40_LOWBITS) & BRANCH_B40_MASK;
1008     uint32_t imm14 = (imm <<BRANCH_Imm14_LOWBITS) & BRANCH_Imm14_MASK;
1009     uint32_t code = b5 | BranchOpCode::TBNZ | b40 | imm14 | rt.GetId();
1010     EmitU32(code);
1011 }
1012 
Tst(const Register & rn,const LogicalImmediate & imm)1013 void AssemblerAarch64::Tst(const Register &rn, const LogicalImmediate &imm)
1014 {
1015     Ands(Register(Zero, rn.GetType()), rn, imm);
1016 }
1017 
LinkAndGetInstOffsetToLabel(Label * label)1018 int32_t AssemblerAarch64::LinkAndGetInstOffsetToLabel(Label *label)
1019 {
1020     int32_t offset = 0;
1021     if (label->IsBound()) {
1022         offset = static_cast<int32_t>(label->GetPos() - GetCurrentPosition());
1023     } else {
1024         if (label->IsLinked()) {
1025             offset = static_cast<int32_t>(label->GetLinkedPos() - GetCurrentPosition());
1026         } else {
1027             offset = 0;
1028         }
1029         label->LinkTo(GetCurrentPosition());
1030     }
1031     return offset;
1032 }
1033 
Bind(Label * target)1034 void AssemblerAarch64::Bind(Label *target)
1035 {
1036     size_t pos = GetCurrentPosition();
1037     ASSERT(!target->IsBound());
1038         if (target->IsLinked()) {
1039         uint32_t linkPos = target->GetLinkedPos();
1040         while (linkPos != 0) {
1041             int32_t offset = GetLinkOffsetFromBranchInst(linkPos);
1042             int32_t disp = static_cast<int32_t>(pos - linkPos);
1043             SetRealOffsetToBranchInst(linkPos, disp);
1044             if (offset == 0) {
1045                 break;
1046             }
1047             linkPos = linkPos + offset;
1048         }
1049     }
1050     target->BindTo(pos);
1051 }
1052 
GetLinkOffsetFromBranchInst(int32_t pos)1053 int32_t AssemblerAarch64::GetLinkOffsetFromBranchInst(int32_t pos)
1054 {
1055     uint32_t branchCode = GetU32(pos);
1056     // 2 : 2 means 4 bytes aligned.
1057     int32_t immOffSet = ImmBranch(branchCode) << 2;
1058     return immOffSet;
1059 }
1060 
ImmBranch(uint32_t branchCode)1061 int32_t AssemblerAarch64::ImmBranch(uint32_t branchCode)
1062 {
1063     int32_t immOffset = 0;
1064     if ((branchCode & BranchFMask) == BranchOpCode::Branch) {
1065         immOffset = (branchCode & BRANCH_Imm26_MASK) >> BRANCH_Imm26_LOWBITS;
1066         if (immOffset & (1 << (BRANCH_Imm26_WIDTH - 1))) {
1067             // 31 : 31 means topmost bits of instruction "uint32_t"
1068             immOffset |= ((1 << (31 - BRANCH_Imm26_WIDTH)) - 1) << BRANCH_Imm26_WIDTH;
1069         }
1070     } else if ((branchCode & BranchCondFMask) == BranchOpCode::BranchCond) {
1071         immOffset = (branchCode & BRANCH_Imm19_MASK) >> BRANCH_Imm19_LOWBITS;
1072         if (immOffset & (1 << (BRANCH_Imm19_WIDTH - 1))) {
1073             // 31 : 31 means topmost bits of instruction "uint32_t"
1074             immOffset |= ((1 << (31 - BRANCH_Imm19_WIDTH)) - 1) << BRANCH_Imm19_WIDTH;
1075         }
1076     } else if ((branchCode & BranchCompareFMask) == BranchOpCode::CBZ) {
1077         immOffset = (branchCode & BRANCH_Imm19_MASK) >> BRANCH_Imm19_LOWBITS;
1078         if (immOffset & (1 << (BRANCH_Imm19_WIDTH - 1))) {
1079             // 31 : 31 means topmost bits of instruction "uint32_t"
1080             immOffset |= ((1 << (31 - BRANCH_Imm19_WIDTH)) - 1) << BRANCH_Imm19_WIDTH;
1081         }
1082     } else if ((branchCode & BranchTestFMask) == BranchOpCode::TBZ) {
1083         immOffset = (branchCode & BRANCH_Imm14_MASK) >> BRANCH_Imm14_LOWBITS;
1084         if (immOffset & (1 << (BRANCH_Imm14_WIDTH - 1))) {
1085             // 31 : 31 means topmost bits of instruction "uint32_t"
1086             immOffset |= ((1 << (31 - BRANCH_Imm14_WIDTH)) - 1) << BRANCH_Imm14_WIDTH;
1087         }
1088     } else {
1089         UNREACHABLE();
1090     }
1091     return immOffset;
1092 }
1093 
SetRealOffsetToBranchInst(uint32_t linkPos,int32_t disp)1094 void AssemblerAarch64::SetRealOffsetToBranchInst(uint32_t linkPos, int32_t disp)
1095 {
1096     uint32_t branchCode = GetU32(linkPos);
1097     // 2 : 2 means 4 bytes aligned.
1098     uint32_t immOffset = disp >> 2;
1099 
1100     if ((branchCode & BranchFMask) == BranchOpCode::Branch) {
1101         branchCode &= ~BRANCH_Imm26_MASK;
1102         branchCode |= (immOffset << BRANCH_Imm26_LOWBITS) & BRANCH_Imm26_MASK;
1103     } else if ((branchCode & BranchCondFMask) == BranchOpCode::BranchCond) {
1104         branchCode &= ~BRANCH_Imm19_MASK;
1105         branchCode |= (immOffset << BRANCH_Imm19_LOWBITS) & BRANCH_Imm19_MASK;
1106     } else if ((branchCode & BranchCompareFMask) == BranchOpCode::CBZ) {
1107         branchCode &= ~BRANCH_Imm19_MASK;
1108         branchCode |= (immOffset << BRANCH_Imm19_LOWBITS) & BRANCH_Imm19_MASK;
1109     } else if ((branchCode & BranchTestFMask) == BranchOpCode::TBZ) {
1110         branchCode &= ~BRANCH_Imm14_MASK;
1111         branchCode |= (immOffset << BRANCH_Imm14_LOWBITS) & BRANCH_Imm14_MASK;
1112     }
1113     PutI32(linkPos, branchCode);
1114 }
1115 
Ret()1116 void AssemblerAarch64::Ret()
1117 {
1118     Ret(Register(X30));
1119 }
1120 
Ret(const Register & rn)1121 void AssemblerAarch64::Ret(const Register &rn)
1122 {
1123     uint32_t code = RetOpCode::Ret | Rn(rn.GetId());
1124     EmitU32(code);
1125 }
1126 
Brk(const Immediate & imm)1127 void AssemblerAarch64::Brk(const Immediate &imm)
1128 {
1129     uint32_t brk_number_field =
1130         (static_cast<uint32_t>(imm.Value()) << BRK_Imm16_LOWBITS) & BRK_Imm16_MASK;
1131     uint32_t code = BRKImm | brk_number_field;
1132     EmitU32(code);
1133 }
1134 
GetImmOfLdr(const MemoryOperand & operand,Scale scale,bool isRegX)1135 uint64_t AssemblerAarch64::GetImmOfLdr(const MemoryOperand &operand, Scale scale, bool isRegX)
1136 {
1137     ASSERT(operand.IsImmediateOffset());
1138     uint64_t imm = static_cast<uint64_t>(operand.GetImmediate().Value());
1139     if (operand.GetAddrMode() == OFFSET) {
1140         if (scale == Scale::H) {
1141             imm >>= 1;
1142         } else if (scale == Scale::Q) {
1143             if (isRegX) {
1144                 imm >>= 3;  // 3:  64 RegSise, imm/8 to remove trailing zeros
1145             } else {
1146                 imm >>= 2;  // 2: 32 RegSise, imm/4 to remove trailing zeros
1147             }
1148         }
1149     }
1150     return imm;
1151 }
1152 
GetOpcodeOfLdr(const MemoryOperand & operand,Scale scale)1153 uint64_t AssemblerAarch64::GetOpcodeOfLdr(const MemoryOperand &operand, Scale scale)
1154 {
1155     uint32_t op = 0;
1156     if (operand.IsImmediateOffset()) {
1157         switch (operand.GetAddrMode()) {
1158             case OFFSET: {
1159                 if (scale == Scale::B) {
1160                     op = LoadStoreOpCode::LDRB_Offset;
1161                 } else if (scale == Scale::H) {
1162                     op = LoadStoreOpCode::LDRH_Offset;
1163                 } else if (scale == Scale::Q) {
1164                     op = LoadStoreOpCode::LDR_Offset;
1165                 } else {
1166                     LOG_ECMA(FATAL) << "this branch is unreachable";
1167                     UNREACHABLE();
1168                 }
1169                 break;
1170             }
1171             case PREINDEX: {
1172                 if (scale == Scale::B) {
1173                     op = LoadStoreOpCode::LDRB_Pre;
1174                 } else if (scale == Scale::H) {
1175                     op = LoadStoreOpCode::LDRH_Pre;
1176                 } else if (scale == Scale::Q) {
1177                     op = LoadStoreOpCode::LDR_Pre;
1178                 } else {
1179                     LOG_ECMA(FATAL) << "this branch is unreachable";
1180                     UNREACHABLE();
1181                 }
1182                 break;
1183             }
1184             case POSTINDEX: {
1185                 if (scale == Scale::B) {
1186                     op = LoadStoreOpCode::LDRB_Post;
1187                 } else if (scale == Scale::H) {
1188                     op = LoadStoreOpCode::LDRH_Post;
1189                 } else if (scale == Scale::Q) {
1190                     op = LoadStoreOpCode::LDR_Post;
1191                 } else {
1192                     LOG_ECMA(FATAL) << "this branch is unreachable";
1193                     UNREACHABLE();
1194                 }
1195                 break;
1196             }
1197             default:
1198                 LOG_ECMA(FATAL) << "this branch is unreachable";
1199                 UNREACHABLE();
1200         }
1201     } else {
1202         if (scale == Scale::B) {
1203             op = LoadStoreOpCode::LDRB_Register;
1204         } else if (scale == Scale::H) {
1205             op = LoadStoreOpCode::LDRH_Register;
1206         } else if (scale == Scale::Q) {
1207             op = LoadStoreOpCode::LDR_Register;
1208         } else {
1209             LOG_ECMA(FATAL) << "this branch is unreachable";
1210             UNREACHABLE();
1211         }
1212     }
1213     return op;
1214 }
1215 
GetShiftOfLdr(const MemoryOperand & operand,Scale scale,bool isRegX)1216 uint32_t AssemblerAarch64::GetShiftOfLdr(const MemoryOperand &operand, Scale scale, bool isRegX)
1217 {
1218     uint32_t shift = 0;
1219     if (scale == Scale::B) {
1220         shift = operand.GetShiftOption() != Shift::NO_SHIFT;
1221     } else if (scale == Scale::H) {
1222         shift = operand.GetShiftAmount();
1223         ASSERT(shift == 0 || shift == 1);
1224         shift = (shift == 0) ? 0 : 1;
1225     } else if (scale == Scale::Q) {
1226         shift = operand.GetShiftAmount();
1227         if (isRegX) {
1228             // 3 : 3 means address aligned with 8bytes
1229             ASSERT(shift == 0 || shift == 3);
1230         } else {
1231             // 2 : 2 means address aligned with 4bytes
1232             ASSERT(shift == 0 || shift == 2);
1233         }
1234         shift = (shift == 0) ? 0 : 1;
1235     }
1236     return shift;
1237 }
1238 }   // namespace panda::ecmascript::aarch64
1239