1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5 */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25
26 #include "disasm.h"
27
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 [_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38
39 /* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
50 * Since it's analyzing all pathes through the program, the length of the
51 * analysis is limited to 64k insn, which may be hit even if total number of
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
79 * Most of the time the registers have SCALAR_VALUE type, which
80 * means the register has some value, but it's not a valid pointer.
81 * (like pointer plus pointer becomes SCALAR_VALUE type)
82 *
83 * When verifier sees load or store instructions the type of base register
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
86 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135 * returns ether pointer to map value or NULL.
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
156 *
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
162 */
163
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
169 */
170 struct bpf_verifier_state st;
171 int insn_idx;
172 int prev_insn_idx;
173 struct bpf_verifier_stack_elem *next;
174 /* length of verifier log at the time this state was pushed on stack */
175 u32 log_pos;
176 };
177
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
179 #define BPF_COMPLEXITY_LIMIT_STATES 64
180
181 #define BPF_MAP_KEY_POISON (1ULL << 63)
182 #define BPF_MAP_KEY_SEEN (1ULL << 62)
183
184 #define BPF_MAP_PTR_UNPRIV 1UL
185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
186 POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188
bpf_map_ptr_poisoned(const struct bpf_insn_aux_data * aux)189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193
bpf_map_ptr_unpriv(const struct bpf_insn_aux_data * aux)194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198
bpf_map_ptr_store(struct bpf_insn_aux_data * aux,const struct bpf_map * map,bool unpriv)199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 const struct bpf_map *map, bool unpriv)
201 {
202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 unpriv |= bpf_map_ptr_unpriv(aux);
204 aux->map_ptr_state = (unsigned long)map |
205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207
bpf_map_key_poisoned(const struct bpf_insn_aux_data * aux)208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212
bpf_map_key_unseen(const struct bpf_insn_aux_data * aux)213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217
bpf_map_key_immediate(const struct bpf_insn_aux_data * aux)218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222
bpf_map_key_store(struct bpf_insn_aux_data * aux,u64 state)223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 bool poisoned = bpf_map_key_poisoned(aux);
226
227 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230
231 struct bpf_call_arg_meta {
232 struct bpf_map *map_ptr;
233 bool raw_mode;
234 bool pkt_access;
235 int regno;
236 int access_size;
237 int mem_size;
238 u64 msize_max_value;
239 int ref_obj_id;
240 int func_id;
241 u32 btf_id;
242 u32 ret_btf_id;
243 };
244
245 struct btf *btf_vmlinux;
246
247 static DEFINE_MUTEX(bpf_verifier_lock);
248
249 static const struct bpf_line_info *
find_linfo(const struct bpf_verifier_env * env,u32 insn_off)250 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
251 {
252 const struct bpf_line_info *linfo;
253 const struct bpf_prog *prog;
254 u32 i, nr_linfo;
255
256 prog = env->prog;
257 nr_linfo = prog->aux->nr_linfo;
258
259 if (!nr_linfo || insn_off >= prog->len)
260 return NULL;
261
262 linfo = prog->aux->linfo;
263 for (i = 1; i < nr_linfo; i++)
264 if (insn_off < linfo[i].insn_off)
265 break;
266
267 return &linfo[i - 1];
268 }
269
bpf_verifier_vlog(struct bpf_verifier_log * log,const char * fmt,va_list args)270 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
271 va_list args)
272 {
273 unsigned int n;
274
275 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
276
277 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
278 "verifier log line truncated - local buffer too short\n");
279
280 n = min(log->len_total - log->len_used - 1, n);
281 log->kbuf[n] = '\0';
282
283 if (log->level == BPF_LOG_KERNEL) {
284 pr_err("BPF:%s\n", log->kbuf);
285 return;
286 }
287 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
288 log->len_used += n;
289 else
290 log->ubuf = NULL;
291 }
292
bpf_vlog_reset(struct bpf_verifier_log * log,u32 new_pos)293 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
294 {
295 char zero = 0;
296
297 if (!bpf_verifier_log_needed(log))
298 return;
299
300 log->len_used = new_pos;
301 if (put_user(zero, log->ubuf + new_pos))
302 log->ubuf = NULL;
303 }
304
305 /* log_level controls verbosity level of eBPF verifier.
306 * bpf_verifier_log_write() is used to dump the verification trace to the log,
307 * so the user can figure out what's wrong with the program
308 */
bpf_verifier_log_write(struct bpf_verifier_env * env,const char * fmt,...)309 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
310 const char *fmt, ...)
311 {
312 va_list args;
313
314 if (!bpf_verifier_log_needed(&env->log))
315 return;
316
317 va_start(args, fmt);
318 bpf_verifier_vlog(&env->log, fmt, args);
319 va_end(args);
320 }
321 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
322
verbose(void * private_data,const char * fmt,...)323 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
324 {
325 struct bpf_verifier_env *env = private_data;
326 va_list args;
327
328 if (!bpf_verifier_log_needed(&env->log))
329 return;
330
331 va_start(args, fmt);
332 bpf_verifier_vlog(&env->log, fmt, args);
333 va_end(args);
334 }
335
bpf_log(struct bpf_verifier_log * log,const char * fmt,...)336 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
337 const char *fmt, ...)
338 {
339 va_list args;
340
341 if (!bpf_verifier_log_needed(log))
342 return;
343
344 va_start(args, fmt);
345 bpf_verifier_vlog(log, fmt, args);
346 va_end(args);
347 }
348
ltrim(const char * s)349 static const char *ltrim(const char *s)
350 {
351 while (isspace(*s))
352 s++;
353
354 return s;
355 }
356
verbose_linfo(struct bpf_verifier_env * env,u32 insn_off,const char * prefix_fmt,...)357 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
358 u32 insn_off,
359 const char *prefix_fmt, ...)
360 {
361 const struct bpf_line_info *linfo;
362
363 if (!bpf_verifier_log_needed(&env->log))
364 return;
365
366 linfo = find_linfo(env, insn_off);
367 if (!linfo || linfo == env->prev_linfo)
368 return;
369
370 if (prefix_fmt) {
371 va_list args;
372
373 va_start(args, prefix_fmt);
374 bpf_verifier_vlog(&env->log, prefix_fmt, args);
375 va_end(args);
376 }
377
378 verbose(env, "%s\n",
379 ltrim(btf_name_by_offset(env->prog->aux->btf,
380 linfo->line_off)));
381
382 env->prev_linfo = linfo;
383 }
384
type_is_pkt_pointer(enum bpf_reg_type type)385 static bool type_is_pkt_pointer(enum bpf_reg_type type)
386 {
387 return type == PTR_TO_PACKET ||
388 type == PTR_TO_PACKET_META;
389 }
390
type_is_sk_pointer(enum bpf_reg_type type)391 static bool type_is_sk_pointer(enum bpf_reg_type type)
392 {
393 return type == PTR_TO_SOCKET ||
394 type == PTR_TO_SOCK_COMMON ||
395 type == PTR_TO_TCP_SOCK ||
396 type == PTR_TO_XDP_SOCK;
397 }
398
reg_type_not_null(enum bpf_reg_type type)399 static bool reg_type_not_null(enum bpf_reg_type type)
400 {
401 return type == PTR_TO_SOCKET ||
402 type == PTR_TO_TCP_SOCK ||
403 type == PTR_TO_MAP_VALUE ||
404 type == PTR_TO_SOCK_COMMON;
405 }
406
reg_may_point_to_spin_lock(const struct bpf_reg_state * reg)407 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
408 {
409 return reg->type == PTR_TO_MAP_VALUE &&
410 map_value_has_spin_lock(reg->map_ptr);
411 }
412
reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)413 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
414 {
415 return base_type(type) == PTR_TO_SOCKET ||
416 base_type(type) == PTR_TO_TCP_SOCK ||
417 base_type(type) == PTR_TO_MEM;
418 }
419
type_is_rdonly_mem(u32 type)420 static bool type_is_rdonly_mem(u32 type)
421 {
422 return type & MEM_RDONLY;
423 }
424
arg_type_may_be_refcounted(enum bpf_arg_type type)425 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
426 {
427 return type == ARG_PTR_TO_SOCK_COMMON;
428 }
429
type_may_be_null(u32 type)430 static bool type_may_be_null(u32 type)
431 {
432 return type & PTR_MAYBE_NULL;
433 }
434
435 /* Determine whether the function releases some resources allocated by another
436 * function call. The first reference type argument will be assumed to be
437 * released by release_reference().
438 */
is_release_function(enum bpf_func_id func_id)439 static bool is_release_function(enum bpf_func_id func_id)
440 {
441 return func_id == BPF_FUNC_sk_release ||
442 func_id == BPF_FUNC_ringbuf_submit ||
443 func_id == BPF_FUNC_ringbuf_discard;
444 }
445
may_be_acquire_function(enum bpf_func_id func_id)446 static bool may_be_acquire_function(enum bpf_func_id func_id)
447 {
448 return func_id == BPF_FUNC_sk_lookup_tcp ||
449 func_id == BPF_FUNC_sk_lookup_udp ||
450 func_id == BPF_FUNC_skc_lookup_tcp ||
451 func_id == BPF_FUNC_map_lookup_elem ||
452 func_id == BPF_FUNC_ringbuf_reserve;
453 }
454
is_acquire_function(enum bpf_func_id func_id,const struct bpf_map * map)455 static bool is_acquire_function(enum bpf_func_id func_id,
456 const struct bpf_map *map)
457 {
458 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
459
460 if (func_id == BPF_FUNC_sk_lookup_tcp ||
461 func_id == BPF_FUNC_sk_lookup_udp ||
462 func_id == BPF_FUNC_skc_lookup_tcp ||
463 func_id == BPF_FUNC_ringbuf_reserve)
464 return true;
465
466 if (func_id == BPF_FUNC_map_lookup_elem &&
467 (map_type == BPF_MAP_TYPE_SOCKMAP ||
468 map_type == BPF_MAP_TYPE_SOCKHASH))
469 return true;
470
471 return false;
472 }
473
is_ptr_cast_function(enum bpf_func_id func_id)474 static bool is_ptr_cast_function(enum bpf_func_id func_id)
475 {
476 return func_id == BPF_FUNC_tcp_sock ||
477 func_id == BPF_FUNC_sk_fullsock ||
478 func_id == BPF_FUNC_skc_to_tcp_sock ||
479 func_id == BPF_FUNC_skc_to_tcp6_sock ||
480 func_id == BPF_FUNC_skc_to_udp6_sock ||
481 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
482 func_id == BPF_FUNC_skc_to_tcp_request_sock;
483 }
484
485 /* string representation of 'enum bpf_reg_type'
486 *
487 * Note that reg_type_str() can not appear more than once in a single verbose()
488 * statement.
489 */
reg_type_str(struct bpf_verifier_env * env,enum bpf_reg_type type)490 static const char *reg_type_str(struct bpf_verifier_env *env,
491 enum bpf_reg_type type)
492 {
493 char postfix[16] = {0}, prefix[16] = {0};
494 static const char * const str[] = {
495 [NOT_INIT] = "?",
496 [SCALAR_VALUE] = "inv",
497 [PTR_TO_CTX] = "ctx",
498 [CONST_PTR_TO_MAP] = "map_ptr",
499 [PTR_TO_MAP_VALUE] = "map_value",
500 [PTR_TO_STACK] = "fp",
501 [PTR_TO_PACKET] = "pkt",
502 [PTR_TO_PACKET_META] = "pkt_meta",
503 [PTR_TO_PACKET_END] = "pkt_end",
504 [PTR_TO_FLOW_KEYS] = "flow_keys",
505 [PTR_TO_SOCKET] = "sock",
506 [PTR_TO_SOCK_COMMON] = "sock_common",
507 [PTR_TO_TCP_SOCK] = "tcp_sock",
508 [PTR_TO_TP_BUFFER] = "tp_buffer",
509 [PTR_TO_XDP_SOCK] = "xdp_sock",
510 [PTR_TO_BTF_ID] = "ptr_",
511 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_",
512 [PTR_TO_MEM] = "mem",
513 [PTR_TO_BUF] = "buf",
514 };
515
516 if (type & PTR_MAYBE_NULL) {
517 if (base_type(type) == PTR_TO_BTF_ID ||
518 base_type(type) == PTR_TO_PERCPU_BTF_ID)
519 strncpy(postfix, "or_null_", 16);
520 else
521 strncpy(postfix, "_or_null", 16);
522 }
523
524 if (type & MEM_RDONLY)
525 strncpy(prefix, "rdonly_", 16);
526 if (type & MEM_ALLOC)
527 strncpy(prefix, "alloc_", 16);
528
529 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
530 prefix, str[base_type(type)], postfix);
531 return env->type_str_buf;
532 }
533
534 static char slot_type_char[] = {
535 [STACK_INVALID] = '?',
536 [STACK_SPILL] = 'r',
537 [STACK_MISC] = 'm',
538 [STACK_ZERO] = '0',
539 };
540
print_liveness(struct bpf_verifier_env * env,enum bpf_reg_liveness live)541 static void print_liveness(struct bpf_verifier_env *env,
542 enum bpf_reg_liveness live)
543 {
544 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
545 verbose(env, "_");
546 if (live & REG_LIVE_READ)
547 verbose(env, "r");
548 if (live & REG_LIVE_WRITTEN)
549 verbose(env, "w");
550 if (live & REG_LIVE_DONE)
551 verbose(env, "D");
552 }
553
func(struct bpf_verifier_env * env,const struct bpf_reg_state * reg)554 static struct bpf_func_state *func(struct bpf_verifier_env *env,
555 const struct bpf_reg_state *reg)
556 {
557 struct bpf_verifier_state *cur = env->cur_state;
558
559 return cur->frame[reg->frameno];
560 }
561
kernel_type_name(u32 id)562 const char *kernel_type_name(u32 id)
563 {
564 return btf_name_by_offset(btf_vmlinux,
565 btf_type_by_id(btf_vmlinux, id)->name_off);
566 }
567
568 /* The reg state of a pointer or a bounded scalar was saved when
569 * it was spilled to the stack.
570 */
is_spilled_reg(const struct bpf_stack_state * stack)571 static bool is_spilled_reg(const struct bpf_stack_state *stack)
572 {
573 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
574 }
575
print_verifier_state(struct bpf_verifier_env * env,const struct bpf_func_state * state)576 static void print_verifier_state(struct bpf_verifier_env *env,
577 const struct bpf_func_state *state)
578 {
579 const struct bpf_reg_state *reg;
580 enum bpf_reg_type t;
581 int i;
582
583 if (state->frameno)
584 verbose(env, " frame%d:", state->frameno);
585 for (i = 0; i < MAX_BPF_REG; i++) {
586 reg = &state->regs[i];
587 t = reg->type;
588 if (t == NOT_INIT)
589 continue;
590 verbose(env, " R%d", i);
591 print_liveness(env, reg->live);
592 verbose(env, "=%s", reg_type_str(env, t));
593 if (t == SCALAR_VALUE && reg->precise)
594 verbose(env, "P");
595 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
596 tnum_is_const(reg->var_off)) {
597 /* reg->off should be 0 for SCALAR_VALUE */
598 verbose(env, "%lld", reg->var_off.value + reg->off);
599 } else {
600 if (base_type(t) == PTR_TO_BTF_ID ||
601 base_type(t) == PTR_TO_PERCPU_BTF_ID)
602 verbose(env, "%s", kernel_type_name(reg->btf_id));
603 verbose(env, "(id=%d", reg->id);
604 if (reg_type_may_be_refcounted_or_null(t))
605 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
606 if (t != SCALAR_VALUE)
607 verbose(env, ",off=%d", reg->off);
608 if (type_is_pkt_pointer(t))
609 verbose(env, ",r=%d", reg->range);
610 else if (base_type(t) == CONST_PTR_TO_MAP ||
611 base_type(t) == PTR_TO_MAP_VALUE)
612 verbose(env, ",ks=%d,vs=%d",
613 reg->map_ptr->key_size,
614 reg->map_ptr->value_size);
615 if (tnum_is_const(reg->var_off)) {
616 /* Typically an immediate SCALAR_VALUE, but
617 * could be a pointer whose offset is too big
618 * for reg->off
619 */
620 verbose(env, ",imm=%llx", reg->var_off.value);
621 } else {
622 if (reg->smin_value != reg->umin_value &&
623 reg->smin_value != S64_MIN)
624 verbose(env, ",smin_value=%lld",
625 (long long)reg->smin_value);
626 if (reg->smax_value != reg->umax_value &&
627 reg->smax_value != S64_MAX)
628 verbose(env, ",smax_value=%lld",
629 (long long)reg->smax_value);
630 if (reg->umin_value != 0)
631 verbose(env, ",umin_value=%llu",
632 (unsigned long long)reg->umin_value);
633 if (reg->umax_value != U64_MAX)
634 verbose(env, ",umax_value=%llu",
635 (unsigned long long)reg->umax_value);
636 if (!tnum_is_unknown(reg->var_off)) {
637 char tn_buf[48];
638
639 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
640 verbose(env, ",var_off=%s", tn_buf);
641 }
642 if (reg->s32_min_value != reg->smin_value &&
643 reg->s32_min_value != S32_MIN)
644 verbose(env, ",s32_min_value=%d",
645 (int)(reg->s32_min_value));
646 if (reg->s32_max_value != reg->smax_value &&
647 reg->s32_max_value != S32_MAX)
648 verbose(env, ",s32_max_value=%d",
649 (int)(reg->s32_max_value));
650 if (reg->u32_min_value != reg->umin_value &&
651 reg->u32_min_value != U32_MIN)
652 verbose(env, ",u32_min_value=%d",
653 (int)(reg->u32_min_value));
654 if (reg->u32_max_value != reg->umax_value &&
655 reg->u32_max_value != U32_MAX)
656 verbose(env, ",u32_max_value=%d",
657 (int)(reg->u32_max_value));
658 }
659 verbose(env, ")");
660 }
661 }
662 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
663 char types_buf[BPF_REG_SIZE + 1];
664 bool valid = false;
665 int j;
666
667 for (j = 0; j < BPF_REG_SIZE; j++) {
668 if (state->stack[i].slot_type[j] != STACK_INVALID)
669 valid = true;
670 types_buf[j] = slot_type_char[
671 state->stack[i].slot_type[j]];
672 }
673 types_buf[BPF_REG_SIZE] = 0;
674 if (!valid)
675 continue;
676 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
677 print_liveness(env, state->stack[i].spilled_ptr.live);
678 if (is_spilled_reg(&state->stack[i])) {
679 reg = &state->stack[i].spilled_ptr;
680 t = reg->type;
681 verbose(env, "=%s", reg_type_str(env, t));
682 if (t == SCALAR_VALUE && reg->precise)
683 verbose(env, "P");
684 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
685 verbose(env, "%lld", reg->var_off.value + reg->off);
686 } else {
687 verbose(env, "=%s", types_buf);
688 }
689 }
690 if (state->acquired_refs && state->refs[0].id) {
691 verbose(env, " refs=%d", state->refs[0].id);
692 for (i = 1; i < state->acquired_refs; i++)
693 if (state->refs[i].id)
694 verbose(env, ",%d", state->refs[i].id);
695 }
696 verbose(env, "\n");
697 }
698
699 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
700 static int copy_##NAME##_state(struct bpf_func_state *dst, \
701 const struct bpf_func_state *src) \
702 { \
703 if (!src->FIELD) \
704 return 0; \
705 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
706 /* internal bug, make state invalid to reject the program */ \
707 memset(dst, 0, sizeof(*dst)); \
708 return -EFAULT; \
709 } \
710 memcpy(dst->FIELD, src->FIELD, \
711 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
712 return 0; \
713 }
714 /* copy_reference_state() */
715 COPY_STATE_FN(reference, acquired_refs, refs, 1)
716 /* copy_stack_state() */
COPY_STATE_FN(stack,allocated_stack,stack,BPF_REG_SIZE)717 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
718 #undef COPY_STATE_FN
719
720 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
721 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
722 bool copy_old) \
723 { \
724 u32 old_size = state->COUNT; \
725 struct bpf_##NAME##_state *new_##FIELD; \
726 int slot = size / SIZE; \
727 \
728 if (size <= old_size || !size) { \
729 if (copy_old) \
730 return 0; \
731 state->COUNT = slot * SIZE; \
732 if (!size && old_size) { \
733 kfree(state->FIELD); \
734 state->FIELD = NULL; \
735 } \
736 return 0; \
737 } \
738 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
739 GFP_KERNEL); \
740 if (!new_##FIELD) \
741 return -ENOMEM; \
742 if (copy_old) { \
743 if (state->FIELD) \
744 memcpy(new_##FIELD, state->FIELD, \
745 sizeof(*new_##FIELD) * (old_size / SIZE)); \
746 memset(new_##FIELD + old_size / SIZE, 0, \
747 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
748 } \
749 state->COUNT = slot * SIZE; \
750 kfree(state->FIELD); \
751 state->FIELD = new_##FIELD; \
752 return 0; \
753 }
754 /* realloc_reference_state() */
755 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
756 /* realloc_stack_state() */
757 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
758 #undef REALLOC_STATE_FN
759
760 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
761 * make it consume minimal amount of memory. check_stack_write() access from
762 * the program calls into realloc_func_state() to grow the stack size.
763 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
764 * which realloc_stack_state() copies over. It points to previous
765 * bpf_verifier_state which is never reallocated.
766 */
767 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
768 int refs_size, bool copy_old)
769 {
770 int err = realloc_reference_state(state, refs_size, copy_old);
771 if (err)
772 return err;
773 return realloc_stack_state(state, stack_size, copy_old);
774 }
775
776 /* Acquire a pointer id from the env and update the state->refs to include
777 * this new pointer reference.
778 * On success, returns a valid pointer id to associate with the register
779 * On failure, returns a negative errno.
780 */
acquire_reference_state(struct bpf_verifier_env * env,int insn_idx)781 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
782 {
783 struct bpf_func_state *state = cur_func(env);
784 int new_ofs = state->acquired_refs;
785 int id, err;
786
787 err = realloc_reference_state(state, state->acquired_refs + 1, true);
788 if (err)
789 return err;
790 id = ++env->id_gen;
791 state->refs[new_ofs].id = id;
792 state->refs[new_ofs].insn_idx = insn_idx;
793
794 return id;
795 }
796
797 /* release function corresponding to acquire_reference_state(). Idempotent. */
release_reference_state(struct bpf_func_state * state,int ptr_id)798 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
799 {
800 int i, last_idx;
801
802 last_idx = state->acquired_refs - 1;
803 for (i = 0; i < state->acquired_refs; i++) {
804 if (state->refs[i].id == ptr_id) {
805 if (last_idx && i != last_idx)
806 memcpy(&state->refs[i], &state->refs[last_idx],
807 sizeof(*state->refs));
808 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
809 state->acquired_refs--;
810 return 0;
811 }
812 }
813 return -EINVAL;
814 }
815
transfer_reference_state(struct bpf_func_state * dst,struct bpf_func_state * src)816 static int transfer_reference_state(struct bpf_func_state *dst,
817 struct bpf_func_state *src)
818 {
819 int err = realloc_reference_state(dst, src->acquired_refs, false);
820 if (err)
821 return err;
822 err = copy_reference_state(dst, src);
823 if (err)
824 return err;
825 return 0;
826 }
827
free_func_state(struct bpf_func_state * state)828 static void free_func_state(struct bpf_func_state *state)
829 {
830 if (!state)
831 return;
832 kfree(state->refs);
833 kfree(state->stack);
834 kfree(state);
835 }
836
clear_jmp_history(struct bpf_verifier_state * state)837 static void clear_jmp_history(struct bpf_verifier_state *state)
838 {
839 kfree(state->jmp_history);
840 state->jmp_history = NULL;
841 state->jmp_history_cnt = 0;
842 }
843
free_verifier_state(struct bpf_verifier_state * state,bool free_self)844 static void free_verifier_state(struct bpf_verifier_state *state,
845 bool free_self)
846 {
847 int i;
848
849 for (i = 0; i <= state->curframe; i++) {
850 free_func_state(state->frame[i]);
851 state->frame[i] = NULL;
852 }
853 clear_jmp_history(state);
854 if (free_self)
855 kfree(state);
856 }
857
858 /* copy verifier state from src to dst growing dst stack space
859 * when necessary to accommodate larger src stack
860 */
copy_func_state(struct bpf_func_state * dst,const struct bpf_func_state * src)861 static int copy_func_state(struct bpf_func_state *dst,
862 const struct bpf_func_state *src)
863 {
864 int err;
865
866 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
867 false);
868 if (err)
869 return err;
870 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
871 err = copy_reference_state(dst, src);
872 if (err)
873 return err;
874 return copy_stack_state(dst, src);
875 }
876
copy_verifier_state(struct bpf_verifier_state * dst_state,const struct bpf_verifier_state * src)877 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
878 const struct bpf_verifier_state *src)
879 {
880 struct bpf_func_state *dst;
881 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
882 int i, err;
883
884 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
885 kfree(dst_state->jmp_history);
886 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
887 if (!dst_state->jmp_history)
888 return -ENOMEM;
889 }
890 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
891 dst_state->jmp_history_cnt = src->jmp_history_cnt;
892
893 /* if dst has more stack frames then src frame, free them */
894 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
895 free_func_state(dst_state->frame[i]);
896 dst_state->frame[i] = NULL;
897 }
898 dst_state->speculative = src->speculative;
899 dst_state->curframe = src->curframe;
900 dst_state->active_spin_lock = src->active_spin_lock;
901 dst_state->branches = src->branches;
902 dst_state->parent = src->parent;
903 dst_state->first_insn_idx = src->first_insn_idx;
904 dst_state->last_insn_idx = src->last_insn_idx;
905 for (i = 0; i <= src->curframe; i++) {
906 dst = dst_state->frame[i];
907 if (!dst) {
908 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
909 if (!dst)
910 return -ENOMEM;
911 dst_state->frame[i] = dst;
912 }
913 err = copy_func_state(dst, src->frame[i]);
914 if (err)
915 return err;
916 }
917 return 0;
918 }
919
update_branch_counts(struct bpf_verifier_env * env,struct bpf_verifier_state * st)920 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
921 {
922 while (st) {
923 u32 br = --st->branches;
924
925 /* WARN_ON(br > 1) technically makes sense here,
926 * but see comment in push_stack(), hence:
927 */
928 WARN_ONCE((int)br < 0,
929 "BUG update_branch_counts:branches_to_explore=%d\n",
930 br);
931 if (br)
932 break;
933 st = st->parent;
934 }
935 }
936
pop_stack(struct bpf_verifier_env * env,int * prev_insn_idx,int * insn_idx,bool pop_log)937 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
938 int *insn_idx, bool pop_log)
939 {
940 struct bpf_verifier_state *cur = env->cur_state;
941 struct bpf_verifier_stack_elem *elem, *head = env->head;
942 int err;
943
944 if (env->head == NULL)
945 return -ENOENT;
946
947 if (cur) {
948 err = copy_verifier_state(cur, &head->st);
949 if (err)
950 return err;
951 }
952 if (pop_log)
953 bpf_vlog_reset(&env->log, head->log_pos);
954 if (insn_idx)
955 *insn_idx = head->insn_idx;
956 if (prev_insn_idx)
957 *prev_insn_idx = head->prev_insn_idx;
958 elem = head->next;
959 free_verifier_state(&head->st, false);
960 kfree(head);
961 env->head = elem;
962 env->stack_size--;
963 return 0;
964 }
965
push_stack(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,bool speculative)966 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
967 int insn_idx, int prev_insn_idx,
968 bool speculative)
969 {
970 struct bpf_verifier_state *cur = env->cur_state;
971 struct bpf_verifier_stack_elem *elem;
972 int err;
973
974 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
975 if (!elem)
976 goto err;
977
978 elem->insn_idx = insn_idx;
979 elem->prev_insn_idx = prev_insn_idx;
980 elem->next = env->head;
981 elem->log_pos = env->log.len_used;
982 env->head = elem;
983 env->stack_size++;
984 err = copy_verifier_state(&elem->st, cur);
985 if (err)
986 goto err;
987 elem->st.speculative |= speculative;
988 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
989 verbose(env, "The sequence of %d jumps is too complex.\n",
990 env->stack_size);
991 goto err;
992 }
993 if (elem->st.parent) {
994 ++elem->st.parent->branches;
995 /* WARN_ON(branches > 2) technically makes sense here,
996 * but
997 * 1. speculative states will bump 'branches' for non-branch
998 * instructions
999 * 2. is_state_visited() heuristics may decide not to create
1000 * a new state for a sequence of branches and all such current
1001 * and cloned states will be pointing to a single parent state
1002 * which might have large 'branches' count.
1003 */
1004 }
1005 return &elem->st;
1006 err:
1007 free_verifier_state(env->cur_state, true);
1008 env->cur_state = NULL;
1009 /* pop all elements and return */
1010 while (!pop_stack(env, NULL, NULL, false));
1011 return NULL;
1012 }
1013
1014 #define CALLER_SAVED_REGS 6
1015 static const int caller_saved[CALLER_SAVED_REGS] = {
1016 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1017 };
1018
1019 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1020 struct bpf_reg_state *reg);
1021
1022 /* This helper doesn't clear reg->id */
___mark_reg_known(struct bpf_reg_state * reg,u64 imm)1023 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1024 {
1025 reg->var_off = tnum_const(imm);
1026 reg->smin_value = (s64)imm;
1027 reg->smax_value = (s64)imm;
1028 reg->umin_value = imm;
1029 reg->umax_value = imm;
1030
1031 reg->s32_min_value = (s32)imm;
1032 reg->s32_max_value = (s32)imm;
1033 reg->u32_min_value = (u32)imm;
1034 reg->u32_max_value = (u32)imm;
1035 }
1036
1037 /* Mark the unknown part of a register (variable offset or scalar value) as
1038 * known to have the value @imm.
1039 */
__mark_reg_known(struct bpf_reg_state * reg,u64 imm)1040 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1041 {
1042 /* Clear id, off, and union(map_ptr, range) */
1043 memset(((u8 *)reg) + sizeof(reg->type), 0,
1044 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1045 ___mark_reg_known(reg, imm);
1046 }
1047
__mark_reg32_known(struct bpf_reg_state * reg,u64 imm)1048 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1049 {
1050 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1051 reg->s32_min_value = (s32)imm;
1052 reg->s32_max_value = (s32)imm;
1053 reg->u32_min_value = (u32)imm;
1054 reg->u32_max_value = (u32)imm;
1055 }
1056
1057 /* Mark the 'variable offset' part of a register as zero. This should be
1058 * used only on registers holding a pointer type.
1059 */
__mark_reg_known_zero(struct bpf_reg_state * reg)1060 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1061 {
1062 __mark_reg_known(reg, 0);
1063 }
1064
__mark_reg_const_zero(struct bpf_reg_state * reg)1065 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1066 {
1067 __mark_reg_known(reg, 0);
1068 reg->type = SCALAR_VALUE;
1069 }
1070
mark_reg_known_zero(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1071 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1072 struct bpf_reg_state *regs, u32 regno)
1073 {
1074 if (WARN_ON(regno >= MAX_BPF_REG)) {
1075 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1076 /* Something bad happened, let's kill all regs */
1077 for (regno = 0; regno < MAX_BPF_REG; regno++)
1078 __mark_reg_not_init(env, regs + regno);
1079 return;
1080 }
1081 __mark_reg_known_zero(regs + regno);
1082 }
1083
reg_is_pkt_pointer(const struct bpf_reg_state * reg)1084 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1085 {
1086 return type_is_pkt_pointer(reg->type);
1087 }
1088
reg_is_pkt_pointer_any(const struct bpf_reg_state * reg)1089 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1090 {
1091 return reg_is_pkt_pointer(reg) ||
1092 reg->type == PTR_TO_PACKET_END;
1093 }
1094
1095 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
reg_is_init_pkt_pointer(const struct bpf_reg_state * reg,enum bpf_reg_type which)1096 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1097 enum bpf_reg_type which)
1098 {
1099 /* The register can already have a range from prior markings.
1100 * This is fine as long as it hasn't been advanced from its
1101 * origin.
1102 */
1103 return reg->type == which &&
1104 reg->id == 0 &&
1105 reg->off == 0 &&
1106 tnum_equals_const(reg->var_off, 0);
1107 }
1108
1109 /* Reset the min/max bounds of a register */
__mark_reg_unbounded(struct bpf_reg_state * reg)1110 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1111 {
1112 reg->smin_value = S64_MIN;
1113 reg->smax_value = S64_MAX;
1114 reg->umin_value = 0;
1115 reg->umax_value = U64_MAX;
1116
1117 reg->s32_min_value = S32_MIN;
1118 reg->s32_max_value = S32_MAX;
1119 reg->u32_min_value = 0;
1120 reg->u32_max_value = U32_MAX;
1121 }
1122
__mark_reg64_unbounded(struct bpf_reg_state * reg)1123 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1124 {
1125 reg->smin_value = S64_MIN;
1126 reg->smax_value = S64_MAX;
1127 reg->umin_value = 0;
1128 reg->umax_value = U64_MAX;
1129 }
1130
__mark_reg32_unbounded(struct bpf_reg_state * reg)1131 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1132 {
1133 reg->s32_min_value = S32_MIN;
1134 reg->s32_max_value = S32_MAX;
1135 reg->u32_min_value = 0;
1136 reg->u32_max_value = U32_MAX;
1137 }
1138
__update_reg32_bounds(struct bpf_reg_state * reg)1139 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1140 {
1141 struct tnum var32_off = tnum_subreg(reg->var_off);
1142
1143 /* min signed is max(sign bit) | min(other bits) */
1144 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1145 var32_off.value | (var32_off.mask & S32_MIN));
1146 /* max signed is min(sign bit) | max(other bits) */
1147 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1148 var32_off.value | (var32_off.mask & S32_MAX));
1149 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1150 reg->u32_max_value = min(reg->u32_max_value,
1151 (u32)(var32_off.value | var32_off.mask));
1152 }
1153
__update_reg64_bounds(struct bpf_reg_state * reg)1154 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1155 {
1156 /* min signed is max(sign bit) | min(other bits) */
1157 reg->smin_value = max_t(s64, reg->smin_value,
1158 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1159 /* max signed is min(sign bit) | max(other bits) */
1160 reg->smax_value = min_t(s64, reg->smax_value,
1161 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1162 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1163 reg->umax_value = min(reg->umax_value,
1164 reg->var_off.value | reg->var_off.mask);
1165 }
1166
__update_reg_bounds(struct bpf_reg_state * reg)1167 static void __update_reg_bounds(struct bpf_reg_state *reg)
1168 {
1169 __update_reg32_bounds(reg);
1170 __update_reg64_bounds(reg);
1171 }
1172
1173 /* Uses signed min/max values to inform unsigned, and vice-versa */
__reg32_deduce_bounds(struct bpf_reg_state * reg)1174 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1175 {
1176 /* Learn sign from signed bounds.
1177 * If we cannot cross the sign boundary, then signed and unsigned bounds
1178 * are the same, so combine. This works even in the negative case, e.g.
1179 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1180 */
1181 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1182 reg->s32_min_value = reg->u32_min_value =
1183 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1184 reg->s32_max_value = reg->u32_max_value =
1185 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1186 return;
1187 }
1188 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1189 * boundary, so we must be careful.
1190 */
1191 if ((s32)reg->u32_max_value >= 0) {
1192 /* Positive. We can't learn anything from the smin, but smax
1193 * is positive, hence safe.
1194 */
1195 reg->s32_min_value = reg->u32_min_value;
1196 reg->s32_max_value = reg->u32_max_value =
1197 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1198 } else if ((s32)reg->u32_min_value < 0) {
1199 /* Negative. We can't learn anything from the smax, but smin
1200 * is negative, hence safe.
1201 */
1202 reg->s32_min_value = reg->u32_min_value =
1203 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1204 reg->s32_max_value = reg->u32_max_value;
1205 }
1206 }
1207
__reg64_deduce_bounds(struct bpf_reg_state * reg)1208 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1209 {
1210 /* Learn sign from signed bounds.
1211 * If we cannot cross the sign boundary, then signed and unsigned bounds
1212 * are the same, so combine. This works even in the negative case, e.g.
1213 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1214 */
1215 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1216 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1217 reg->umin_value);
1218 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1219 reg->umax_value);
1220 return;
1221 }
1222 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1223 * boundary, so we must be careful.
1224 */
1225 if ((s64)reg->umax_value >= 0) {
1226 /* Positive. We can't learn anything from the smin, but smax
1227 * is positive, hence safe.
1228 */
1229 reg->smin_value = reg->umin_value;
1230 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1231 reg->umax_value);
1232 } else if ((s64)reg->umin_value < 0) {
1233 /* Negative. We can't learn anything from the smax, but smin
1234 * is negative, hence safe.
1235 */
1236 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1237 reg->umin_value);
1238 reg->smax_value = reg->umax_value;
1239 }
1240 }
1241
__reg_deduce_bounds(struct bpf_reg_state * reg)1242 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1243 {
1244 __reg32_deduce_bounds(reg);
1245 __reg64_deduce_bounds(reg);
1246 }
1247
1248 /* Attempts to improve var_off based on unsigned min/max information */
__reg_bound_offset(struct bpf_reg_state * reg)1249 static void __reg_bound_offset(struct bpf_reg_state *reg)
1250 {
1251 struct tnum var64_off = tnum_intersect(reg->var_off,
1252 tnum_range(reg->umin_value,
1253 reg->umax_value));
1254 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1255 tnum_range(reg->u32_min_value,
1256 reg->u32_max_value));
1257
1258 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1259 }
1260
reg_bounds_sync(struct bpf_reg_state * reg)1261 static void reg_bounds_sync(struct bpf_reg_state *reg)
1262 {
1263 /* We might have learned new bounds from the var_off. */
1264 __update_reg_bounds(reg);
1265 /* We might have learned something about the sign bit. */
1266 __reg_deduce_bounds(reg);
1267 /* We might have learned some bits from the bounds. */
1268 __reg_bound_offset(reg);
1269 /* Intersecting with the old var_off might have improved our bounds
1270 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1271 * then new var_off is (0; 0x7f...fc) which improves our umax.
1272 */
1273 __update_reg_bounds(reg);
1274 }
1275
__reg32_bound_s64(s32 a)1276 static bool __reg32_bound_s64(s32 a)
1277 {
1278 return a >= 0 && a <= S32_MAX;
1279 }
1280
__reg_assign_32_into_64(struct bpf_reg_state * reg)1281 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1282 {
1283 reg->umin_value = reg->u32_min_value;
1284 reg->umax_value = reg->u32_max_value;
1285
1286 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1287 * be positive otherwise set to worse case bounds and refine later
1288 * from tnum.
1289 */
1290 if (__reg32_bound_s64(reg->s32_min_value) &&
1291 __reg32_bound_s64(reg->s32_max_value)) {
1292 reg->smin_value = reg->s32_min_value;
1293 reg->smax_value = reg->s32_max_value;
1294 } else {
1295 reg->smin_value = 0;
1296 reg->smax_value = U32_MAX;
1297 }
1298 }
1299
__reg_combine_32_into_64(struct bpf_reg_state * reg)1300 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1301 {
1302 /* special case when 64-bit register has upper 32-bit register
1303 * zeroed. Typically happens after zext or <<32, >>32 sequence
1304 * allowing us to use 32-bit bounds directly,
1305 */
1306 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1307 __reg_assign_32_into_64(reg);
1308 } else {
1309 /* Otherwise the best we can do is push lower 32bit known and
1310 * unknown bits into register (var_off set from jmp logic)
1311 * then learn as much as possible from the 64-bit tnum
1312 * known and unknown bits. The previous smin/smax bounds are
1313 * invalid here because of jmp32 compare so mark them unknown
1314 * so they do not impact tnum bounds calculation.
1315 */
1316 __mark_reg64_unbounded(reg);
1317 }
1318 reg_bounds_sync(reg);
1319 }
1320
__reg64_bound_s32(s64 a)1321 static bool __reg64_bound_s32(s64 a)
1322 {
1323 return a >= S32_MIN && a <= S32_MAX;
1324 }
1325
__reg64_bound_u32(u64 a)1326 static bool __reg64_bound_u32(u64 a)
1327 {
1328 return a >= U32_MIN && a <= U32_MAX;
1329 }
1330
__reg_combine_64_into_32(struct bpf_reg_state * reg)1331 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1332 {
1333 __mark_reg32_unbounded(reg);
1334 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1335 reg->s32_min_value = (s32)reg->smin_value;
1336 reg->s32_max_value = (s32)reg->smax_value;
1337 }
1338 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1339 reg->u32_min_value = (u32)reg->umin_value;
1340 reg->u32_max_value = (u32)reg->umax_value;
1341 }
1342 reg_bounds_sync(reg);
1343 }
1344
1345 /* Mark a register as having a completely unknown (scalar) value. */
__mark_reg_unknown(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1346 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1347 struct bpf_reg_state *reg)
1348 {
1349 /*
1350 * Clear type, id, off, and union(map_ptr, range) and
1351 * padding between 'type' and union
1352 */
1353 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1354 reg->type = SCALAR_VALUE;
1355 reg->var_off = tnum_unknown;
1356 reg->frameno = 0;
1357 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1358 __mark_reg_unbounded(reg);
1359 }
1360
mark_reg_unknown(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1361 static void mark_reg_unknown(struct bpf_verifier_env *env,
1362 struct bpf_reg_state *regs, u32 regno)
1363 {
1364 if (WARN_ON(regno >= MAX_BPF_REG)) {
1365 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1366 /* Something bad happened, let's kill all regs except FP */
1367 for (regno = 0; regno < BPF_REG_FP; regno++)
1368 __mark_reg_not_init(env, regs + regno);
1369 return;
1370 }
1371 __mark_reg_unknown(env, regs + regno);
1372 }
1373
__mark_reg_not_init(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1374 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1375 struct bpf_reg_state *reg)
1376 {
1377 __mark_reg_unknown(env, reg);
1378 reg->type = NOT_INIT;
1379 }
1380
mark_reg_not_init(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1381 static void mark_reg_not_init(struct bpf_verifier_env *env,
1382 struct bpf_reg_state *regs, u32 regno)
1383 {
1384 if (WARN_ON(regno >= MAX_BPF_REG)) {
1385 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1386 /* Something bad happened, let's kill all regs except FP */
1387 for (regno = 0; regno < BPF_REG_FP; regno++)
1388 __mark_reg_not_init(env, regs + regno);
1389 return;
1390 }
1391 __mark_reg_not_init(env, regs + regno);
1392 }
1393
mark_btf_ld_reg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum bpf_reg_type reg_type,u32 btf_id)1394 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1395 struct bpf_reg_state *regs, u32 regno,
1396 enum bpf_reg_type reg_type, u32 btf_id)
1397 {
1398 if (reg_type == SCALAR_VALUE) {
1399 mark_reg_unknown(env, regs, regno);
1400 return;
1401 }
1402 mark_reg_known_zero(env, regs, regno);
1403 regs[regno].type = PTR_TO_BTF_ID;
1404 regs[regno].btf_id = btf_id;
1405 }
1406
1407 #define DEF_NOT_SUBREG (0)
init_reg_state(struct bpf_verifier_env * env,struct bpf_func_state * state)1408 static void init_reg_state(struct bpf_verifier_env *env,
1409 struct bpf_func_state *state)
1410 {
1411 struct bpf_reg_state *regs = state->regs;
1412 int i;
1413
1414 for (i = 0; i < MAX_BPF_REG; i++) {
1415 mark_reg_not_init(env, regs, i);
1416 regs[i].live = REG_LIVE_NONE;
1417 regs[i].parent = NULL;
1418 regs[i].subreg_def = DEF_NOT_SUBREG;
1419 }
1420
1421 /* frame pointer */
1422 regs[BPF_REG_FP].type = PTR_TO_STACK;
1423 mark_reg_known_zero(env, regs, BPF_REG_FP);
1424 regs[BPF_REG_FP].frameno = state->frameno;
1425 }
1426
1427 #define BPF_MAIN_FUNC (-1)
init_func_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int callsite,int frameno,int subprogno)1428 static void init_func_state(struct bpf_verifier_env *env,
1429 struct bpf_func_state *state,
1430 int callsite, int frameno, int subprogno)
1431 {
1432 state->callsite = callsite;
1433 state->frameno = frameno;
1434 state->subprogno = subprogno;
1435 init_reg_state(env, state);
1436 }
1437
1438 enum reg_arg_type {
1439 SRC_OP, /* register is used as source operand */
1440 DST_OP, /* register is used as destination operand */
1441 DST_OP_NO_MARK /* same as above, check only, don't mark */
1442 };
1443
cmp_subprogs(const void * a,const void * b)1444 static int cmp_subprogs(const void *a, const void *b)
1445 {
1446 return ((struct bpf_subprog_info *)a)->start -
1447 ((struct bpf_subprog_info *)b)->start;
1448 }
1449
find_subprog(struct bpf_verifier_env * env,int off)1450 static int find_subprog(struct bpf_verifier_env *env, int off)
1451 {
1452 struct bpf_subprog_info *p;
1453
1454 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1455 sizeof(env->subprog_info[0]), cmp_subprogs);
1456 if (!p)
1457 return -ENOENT;
1458 return p - env->subprog_info;
1459
1460 }
1461
add_subprog(struct bpf_verifier_env * env,int off)1462 static int add_subprog(struct bpf_verifier_env *env, int off)
1463 {
1464 int insn_cnt = env->prog->len;
1465 int ret;
1466
1467 if (off >= insn_cnt || off < 0) {
1468 verbose(env, "call to invalid destination\n");
1469 return -EINVAL;
1470 }
1471 ret = find_subprog(env, off);
1472 if (ret >= 0)
1473 return 0;
1474 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1475 verbose(env, "too many subprograms\n");
1476 return -E2BIG;
1477 }
1478 env->subprog_info[env->subprog_cnt++].start = off;
1479 sort(env->subprog_info, env->subprog_cnt,
1480 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1481 return 0;
1482 }
1483
check_subprogs(struct bpf_verifier_env * env)1484 static int check_subprogs(struct bpf_verifier_env *env)
1485 {
1486 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1487 struct bpf_subprog_info *subprog = env->subprog_info;
1488 struct bpf_insn *insn = env->prog->insnsi;
1489 int insn_cnt = env->prog->len;
1490
1491 /* Add entry function. */
1492 ret = add_subprog(env, 0);
1493 if (ret < 0)
1494 return ret;
1495
1496 /* determine subprog starts. The end is one before the next starts */
1497 for (i = 0; i < insn_cnt; i++) {
1498 if (insn[i].code != (BPF_JMP | BPF_CALL))
1499 continue;
1500 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1501 continue;
1502 if (!env->bpf_capable) {
1503 verbose(env,
1504 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1505 return -EPERM;
1506 }
1507 ret = add_subprog(env, i + insn[i].imm + 1);
1508 if (ret < 0)
1509 return ret;
1510 }
1511
1512 /* Add a fake 'exit' subprog which could simplify subprog iteration
1513 * logic. 'subprog_cnt' should not be increased.
1514 */
1515 subprog[env->subprog_cnt].start = insn_cnt;
1516
1517 if (env->log.level & BPF_LOG_LEVEL2)
1518 for (i = 0; i < env->subprog_cnt; i++)
1519 verbose(env, "func#%d @%d\n", i, subprog[i].start);
1520
1521 /* now check that all jumps are within the same subprog */
1522 subprog_start = subprog[cur_subprog].start;
1523 subprog_end = subprog[cur_subprog + 1].start;
1524 for (i = 0; i < insn_cnt; i++) {
1525 u8 code = insn[i].code;
1526
1527 if (code == (BPF_JMP | BPF_CALL) &&
1528 insn[i].imm == BPF_FUNC_tail_call &&
1529 insn[i].src_reg != BPF_PSEUDO_CALL)
1530 subprog[cur_subprog].has_tail_call = true;
1531 if (BPF_CLASS(code) == BPF_LD &&
1532 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1533 subprog[cur_subprog].has_ld_abs = true;
1534 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1535 goto next;
1536 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1537 goto next;
1538 off = i + insn[i].off + 1;
1539 if (off < subprog_start || off >= subprog_end) {
1540 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1541 return -EINVAL;
1542 }
1543 next:
1544 if (i == subprog_end - 1) {
1545 /* to avoid fall-through from one subprog into another
1546 * the last insn of the subprog should be either exit
1547 * or unconditional jump back
1548 */
1549 if (code != (BPF_JMP | BPF_EXIT) &&
1550 code != (BPF_JMP | BPF_JA)) {
1551 verbose(env, "last insn is not an exit or jmp\n");
1552 return -EINVAL;
1553 }
1554 subprog_start = subprog_end;
1555 cur_subprog++;
1556 if (cur_subprog < env->subprog_cnt)
1557 subprog_end = subprog[cur_subprog + 1].start;
1558 }
1559 }
1560 return 0;
1561 }
1562
1563 /* Parentage chain of this register (or stack slot) should take care of all
1564 * issues like callee-saved registers, stack slot allocation time, etc.
1565 */
mark_reg_read(struct bpf_verifier_env * env,const struct bpf_reg_state * state,struct bpf_reg_state * parent,u8 flag)1566 static int mark_reg_read(struct bpf_verifier_env *env,
1567 const struct bpf_reg_state *state,
1568 struct bpf_reg_state *parent, u8 flag)
1569 {
1570 bool writes = parent == state->parent; /* Observe write marks */
1571 int cnt = 0;
1572
1573 while (parent) {
1574 /* if read wasn't screened by an earlier write ... */
1575 if (writes && state->live & REG_LIVE_WRITTEN)
1576 break;
1577 if (parent->live & REG_LIVE_DONE) {
1578 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1579 reg_type_str(env, parent->type),
1580 parent->var_off.value, parent->off);
1581 return -EFAULT;
1582 }
1583 /* The first condition is more likely to be true than the
1584 * second, checked it first.
1585 */
1586 if ((parent->live & REG_LIVE_READ) == flag ||
1587 parent->live & REG_LIVE_READ64)
1588 /* The parentage chain never changes and
1589 * this parent was already marked as LIVE_READ.
1590 * There is no need to keep walking the chain again and
1591 * keep re-marking all parents as LIVE_READ.
1592 * This case happens when the same register is read
1593 * multiple times without writes into it in-between.
1594 * Also, if parent has the stronger REG_LIVE_READ64 set,
1595 * then no need to set the weak REG_LIVE_READ32.
1596 */
1597 break;
1598 /* ... then we depend on parent's value */
1599 parent->live |= flag;
1600 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1601 if (flag == REG_LIVE_READ64)
1602 parent->live &= ~REG_LIVE_READ32;
1603 state = parent;
1604 parent = state->parent;
1605 writes = true;
1606 cnt++;
1607 }
1608
1609 if (env->longest_mark_read_walk < cnt)
1610 env->longest_mark_read_walk = cnt;
1611 return 0;
1612 }
1613
1614 /* This function is supposed to be used by the following 32-bit optimization
1615 * code only. It returns TRUE if the source or destination register operates
1616 * on 64-bit, otherwise return FALSE.
1617 */
is_reg64(struct bpf_verifier_env * env,struct bpf_insn * insn,u32 regno,struct bpf_reg_state * reg,enum reg_arg_type t)1618 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1619 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1620 {
1621 u8 code, class, op;
1622
1623 code = insn->code;
1624 class = BPF_CLASS(code);
1625 op = BPF_OP(code);
1626 if (class == BPF_JMP) {
1627 /* BPF_EXIT for "main" will reach here. Return TRUE
1628 * conservatively.
1629 */
1630 if (op == BPF_EXIT)
1631 return true;
1632 if (op == BPF_CALL) {
1633 /* BPF to BPF call will reach here because of marking
1634 * caller saved clobber with DST_OP_NO_MARK for which we
1635 * don't care the register def because they are anyway
1636 * marked as NOT_INIT already.
1637 */
1638 if (insn->src_reg == BPF_PSEUDO_CALL)
1639 return false;
1640 /* Helper call will reach here because of arg type
1641 * check, conservatively return TRUE.
1642 */
1643 if (t == SRC_OP)
1644 return true;
1645
1646 return false;
1647 }
1648 }
1649
1650 if (class == BPF_ALU64 || class == BPF_JMP ||
1651 /* BPF_END always use BPF_ALU class. */
1652 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1653 return true;
1654
1655 if (class == BPF_ALU || class == BPF_JMP32)
1656 return false;
1657
1658 if (class == BPF_LDX) {
1659 if (t != SRC_OP)
1660 return BPF_SIZE(code) == BPF_DW;
1661 /* LDX source must be ptr. */
1662 return true;
1663 }
1664
1665 if (class == BPF_STX) {
1666 if (reg->type != SCALAR_VALUE)
1667 return true;
1668 return BPF_SIZE(code) == BPF_DW;
1669 }
1670
1671 if (class == BPF_LD) {
1672 u8 mode = BPF_MODE(code);
1673
1674 /* LD_IMM64 */
1675 if (mode == BPF_IMM)
1676 return true;
1677
1678 /* Both LD_IND and LD_ABS return 32-bit data. */
1679 if (t != SRC_OP)
1680 return false;
1681
1682 /* Implicit ctx ptr. */
1683 if (regno == BPF_REG_6)
1684 return true;
1685
1686 /* Explicit source could be any width. */
1687 return true;
1688 }
1689
1690 if (class == BPF_ST)
1691 /* The only source register for BPF_ST is a ptr. */
1692 return true;
1693
1694 /* Conservatively return true at default. */
1695 return true;
1696 }
1697
1698 /* Return TRUE if INSN doesn't have explicit value define. */
insn_no_def(struct bpf_insn * insn)1699 static bool insn_no_def(struct bpf_insn *insn)
1700 {
1701 u8 class = BPF_CLASS(insn->code);
1702
1703 return (class == BPF_JMP || class == BPF_JMP32 ||
1704 class == BPF_STX || class == BPF_ST);
1705 }
1706
1707 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
insn_has_def32(struct bpf_verifier_env * env,struct bpf_insn * insn)1708 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1709 {
1710 if (insn_no_def(insn))
1711 return false;
1712
1713 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1714 }
1715
mark_insn_zext(struct bpf_verifier_env * env,struct bpf_reg_state * reg)1716 static void mark_insn_zext(struct bpf_verifier_env *env,
1717 struct bpf_reg_state *reg)
1718 {
1719 s32 def_idx = reg->subreg_def;
1720
1721 if (def_idx == DEF_NOT_SUBREG)
1722 return;
1723
1724 env->insn_aux_data[def_idx - 1].zext_dst = true;
1725 /* The dst will be zero extended, so won't be sub-register anymore. */
1726 reg->subreg_def = DEF_NOT_SUBREG;
1727 }
1728
check_reg_arg(struct bpf_verifier_env * env,u32 regno,enum reg_arg_type t)1729 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1730 enum reg_arg_type t)
1731 {
1732 struct bpf_verifier_state *vstate = env->cur_state;
1733 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1734 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1735 struct bpf_reg_state *reg, *regs = state->regs;
1736 bool rw64;
1737
1738 if (regno >= MAX_BPF_REG) {
1739 verbose(env, "R%d is invalid\n", regno);
1740 return -EINVAL;
1741 }
1742
1743 reg = ®s[regno];
1744 rw64 = is_reg64(env, insn, regno, reg, t);
1745 if (t == SRC_OP) {
1746 /* check whether register used as source operand can be read */
1747 if (reg->type == NOT_INIT) {
1748 verbose(env, "R%d !read_ok\n", regno);
1749 return -EACCES;
1750 }
1751 /* We don't need to worry about FP liveness because it's read-only */
1752 if (regno == BPF_REG_FP)
1753 return 0;
1754
1755 if (rw64)
1756 mark_insn_zext(env, reg);
1757
1758 return mark_reg_read(env, reg, reg->parent,
1759 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1760 } else {
1761 /* check whether register used as dest operand can be written to */
1762 if (regno == BPF_REG_FP) {
1763 verbose(env, "frame pointer is read only\n");
1764 return -EACCES;
1765 }
1766 reg->live |= REG_LIVE_WRITTEN;
1767 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1768 if (t == DST_OP)
1769 mark_reg_unknown(env, regs, regno);
1770 }
1771 return 0;
1772 }
1773
1774 /* for any branch, call, exit record the history of jmps in the given state */
push_jmp_history(struct bpf_verifier_env * env,struct bpf_verifier_state * cur)1775 static int push_jmp_history(struct bpf_verifier_env *env,
1776 struct bpf_verifier_state *cur)
1777 {
1778 u32 cnt = cur->jmp_history_cnt;
1779 struct bpf_idx_pair *p;
1780
1781 cnt++;
1782 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1783 if (!p)
1784 return -ENOMEM;
1785 p[cnt - 1].idx = env->insn_idx;
1786 p[cnt - 1].prev_idx = env->prev_insn_idx;
1787 cur->jmp_history = p;
1788 cur->jmp_history_cnt = cnt;
1789 return 0;
1790 }
1791
1792 /* Backtrack one insn at a time. If idx is not at the top of recorded
1793 * history then previous instruction came from straight line execution.
1794 */
get_prev_insn_idx(struct bpf_verifier_state * st,int i,u32 * history)1795 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1796 u32 *history)
1797 {
1798 u32 cnt = *history;
1799
1800 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1801 i = st->jmp_history[cnt - 1].prev_idx;
1802 (*history)--;
1803 } else {
1804 i--;
1805 }
1806 return i;
1807 }
1808
1809 /* For given verifier state backtrack_insn() is called from the last insn to
1810 * the first insn. Its purpose is to compute a bitmask of registers and
1811 * stack slots that needs precision in the parent verifier state.
1812 */
backtrack_insn(struct bpf_verifier_env * env,int idx,u32 * reg_mask,u64 * stack_mask)1813 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1814 u32 *reg_mask, u64 *stack_mask)
1815 {
1816 const struct bpf_insn_cbs cbs = {
1817 .cb_print = verbose,
1818 .private_data = env,
1819 };
1820 struct bpf_insn *insn = env->prog->insnsi + idx;
1821 u8 class = BPF_CLASS(insn->code);
1822 u8 opcode = BPF_OP(insn->code);
1823 u8 mode = BPF_MODE(insn->code);
1824 u32 dreg = 1u << insn->dst_reg;
1825 u32 sreg = 1u << insn->src_reg;
1826 u32 spi;
1827
1828 if (insn->code == 0)
1829 return 0;
1830 if (env->log.level & BPF_LOG_LEVEL) {
1831 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1832 verbose(env, "%d: ", idx);
1833 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1834 }
1835
1836 if (class == BPF_ALU || class == BPF_ALU64) {
1837 if (!(*reg_mask & dreg))
1838 return 0;
1839 if (opcode == BPF_MOV) {
1840 if (BPF_SRC(insn->code) == BPF_X) {
1841 /* dreg = sreg
1842 * dreg needs precision after this insn
1843 * sreg needs precision before this insn
1844 */
1845 *reg_mask &= ~dreg;
1846 *reg_mask |= sreg;
1847 } else {
1848 /* dreg = K
1849 * dreg needs precision after this insn.
1850 * Corresponding register is already marked
1851 * as precise=true in this verifier state.
1852 * No further markings in parent are necessary
1853 */
1854 *reg_mask &= ~dreg;
1855 }
1856 } else {
1857 if (BPF_SRC(insn->code) == BPF_X) {
1858 /* dreg += sreg
1859 * both dreg and sreg need precision
1860 * before this insn
1861 */
1862 *reg_mask |= sreg;
1863 } /* else dreg += K
1864 * dreg still needs precision before this insn
1865 */
1866 }
1867 } else if (class == BPF_LDX) {
1868 if (!(*reg_mask & dreg))
1869 return 0;
1870 *reg_mask &= ~dreg;
1871
1872 /* scalars can only be spilled into stack w/o losing precision.
1873 * Load from any other memory can be zero extended.
1874 * The desire to keep that precision is already indicated
1875 * by 'precise' mark in corresponding register of this state.
1876 * No further tracking necessary.
1877 */
1878 if (insn->src_reg != BPF_REG_FP)
1879 return 0;
1880 if (BPF_SIZE(insn->code) != BPF_DW)
1881 return 0;
1882
1883 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1884 * that [fp - off] slot contains scalar that needs to be
1885 * tracked with precision
1886 */
1887 spi = (-insn->off - 1) / BPF_REG_SIZE;
1888 if (spi >= 64) {
1889 verbose(env, "BUG spi %d\n", spi);
1890 WARN_ONCE(1, "verifier backtracking bug");
1891 return -EFAULT;
1892 }
1893 *stack_mask |= 1ull << spi;
1894 } else if (class == BPF_STX || class == BPF_ST) {
1895 if (*reg_mask & dreg)
1896 /* stx & st shouldn't be using _scalar_ dst_reg
1897 * to access memory. It means backtracking
1898 * encountered a case of pointer subtraction.
1899 */
1900 return -ENOTSUPP;
1901 /* scalars can only be spilled into stack */
1902 if (insn->dst_reg != BPF_REG_FP)
1903 return 0;
1904 if (BPF_SIZE(insn->code) != BPF_DW)
1905 return 0;
1906 spi = (-insn->off - 1) / BPF_REG_SIZE;
1907 if (spi >= 64) {
1908 verbose(env, "BUG spi %d\n", spi);
1909 WARN_ONCE(1, "verifier backtracking bug");
1910 return -EFAULT;
1911 }
1912 if (!(*stack_mask & (1ull << spi)))
1913 return 0;
1914 *stack_mask &= ~(1ull << spi);
1915 if (class == BPF_STX)
1916 *reg_mask |= sreg;
1917 } else if (class == BPF_JMP || class == BPF_JMP32) {
1918 if (opcode == BPF_CALL) {
1919 if (insn->src_reg == BPF_PSEUDO_CALL)
1920 return -ENOTSUPP;
1921 /* regular helper call sets R0 */
1922 *reg_mask &= ~1;
1923 if (*reg_mask & 0x3f) {
1924 /* if backtracing was looking for registers R1-R5
1925 * they should have been found already.
1926 */
1927 verbose(env, "BUG regs %x\n", *reg_mask);
1928 WARN_ONCE(1, "verifier backtracking bug");
1929 return -EFAULT;
1930 }
1931 } else if (opcode == BPF_EXIT) {
1932 return -ENOTSUPP;
1933 } else if (BPF_SRC(insn->code) == BPF_X) {
1934 if (!(*reg_mask & (dreg | sreg)))
1935 return 0;
1936 /* dreg <cond> sreg
1937 * Both dreg and sreg need precision before
1938 * this insn. If only sreg was marked precise
1939 * before it would be equally necessary to
1940 * propagate it to dreg.
1941 */
1942 *reg_mask |= (sreg | dreg);
1943 /* else dreg <cond> K
1944 * Only dreg still needs precision before
1945 * this insn, so for the K-based conditional
1946 * there is nothing new to be marked.
1947 */
1948 }
1949 } else if (class == BPF_LD) {
1950 if (!(*reg_mask & dreg))
1951 return 0;
1952 *reg_mask &= ~dreg;
1953 /* It's ld_imm64 or ld_abs or ld_ind.
1954 * For ld_imm64 no further tracking of precision
1955 * into parent is necessary
1956 */
1957 if (mode == BPF_IND || mode == BPF_ABS)
1958 /* to be analyzed */
1959 return -ENOTSUPP;
1960 }
1961 return 0;
1962 }
1963
1964 /* the scalar precision tracking algorithm:
1965 * . at the start all registers have precise=false.
1966 * . scalar ranges are tracked as normal through alu and jmp insns.
1967 * . once precise value of the scalar register is used in:
1968 * . ptr + scalar alu
1969 * . if (scalar cond K|scalar)
1970 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1971 * backtrack through the verifier states and mark all registers and
1972 * stack slots with spilled constants that these scalar regisers
1973 * should be precise.
1974 * . during state pruning two registers (or spilled stack slots)
1975 * are equivalent if both are not precise.
1976 *
1977 * Note the verifier cannot simply walk register parentage chain,
1978 * since many different registers and stack slots could have been
1979 * used to compute single precise scalar.
1980 *
1981 * The approach of starting with precise=true for all registers and then
1982 * backtrack to mark a register as not precise when the verifier detects
1983 * that program doesn't care about specific value (e.g., when helper
1984 * takes register as ARG_ANYTHING parameter) is not safe.
1985 *
1986 * It's ok to walk single parentage chain of the verifier states.
1987 * It's possible that this backtracking will go all the way till 1st insn.
1988 * All other branches will be explored for needing precision later.
1989 *
1990 * The backtracking needs to deal with cases like:
1991 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1992 * r9 -= r8
1993 * r5 = r9
1994 * if r5 > 0x79f goto pc+7
1995 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1996 * r5 += 1
1997 * ...
1998 * call bpf_perf_event_output#25
1999 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2000 *
2001 * and this case:
2002 * r6 = 1
2003 * call foo // uses callee's r6 inside to compute r0
2004 * r0 += r6
2005 * if r0 == 0 goto
2006 *
2007 * to track above reg_mask/stack_mask needs to be independent for each frame.
2008 *
2009 * Also if parent's curframe > frame where backtracking started,
2010 * the verifier need to mark registers in both frames, otherwise callees
2011 * may incorrectly prune callers. This is similar to
2012 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2013 *
2014 * For now backtracking falls back into conservative marking.
2015 */
mark_all_scalars_precise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)2016 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2017 struct bpf_verifier_state *st)
2018 {
2019 struct bpf_func_state *func;
2020 struct bpf_reg_state *reg;
2021 int i, j;
2022
2023 /* big hammer: mark all scalars precise in this path.
2024 * pop_stack may still get !precise scalars.
2025 */
2026 for (; st; st = st->parent)
2027 for (i = 0; i <= st->curframe; i++) {
2028 func = st->frame[i];
2029 for (j = 0; j < BPF_REG_FP; j++) {
2030 reg = &func->regs[j];
2031 if (reg->type != SCALAR_VALUE)
2032 continue;
2033 reg->precise = true;
2034 }
2035 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2036 if (!is_spilled_reg(&func->stack[j]))
2037 continue;
2038 reg = &func->stack[j].spilled_ptr;
2039 if (reg->type != SCALAR_VALUE)
2040 continue;
2041 reg->precise = true;
2042 }
2043 }
2044 }
2045
__mark_chain_precision(struct bpf_verifier_env * env,int frame,int regno,int spi)2046 static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno,
2047 int spi)
2048 {
2049 struct bpf_verifier_state *st = env->cur_state;
2050 int first_idx = st->first_insn_idx;
2051 int last_idx = env->insn_idx;
2052 struct bpf_func_state *func;
2053 struct bpf_reg_state *reg;
2054 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2055 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2056 bool skip_first = true;
2057 bool new_marks = false;
2058 int i, err;
2059
2060 if (!env->bpf_capable)
2061 return 0;
2062
2063 func = st->frame[frame];
2064 if (regno >= 0) {
2065 reg = &func->regs[regno];
2066 if (reg->type != SCALAR_VALUE) {
2067 WARN_ONCE(1, "backtracing misuse");
2068 return -EFAULT;
2069 }
2070 if (!reg->precise)
2071 new_marks = true;
2072 else
2073 reg_mask = 0;
2074 reg->precise = true;
2075 }
2076
2077 while (spi >= 0) {
2078 if (!is_spilled_reg(&func->stack[spi])) {
2079 stack_mask = 0;
2080 break;
2081 }
2082 reg = &func->stack[spi].spilled_ptr;
2083 if (reg->type != SCALAR_VALUE) {
2084 stack_mask = 0;
2085 break;
2086 }
2087 if (!reg->precise)
2088 new_marks = true;
2089 else
2090 stack_mask = 0;
2091 reg->precise = true;
2092 break;
2093 }
2094
2095 if (!new_marks)
2096 return 0;
2097 if (!reg_mask && !stack_mask)
2098 return 0;
2099 for (;;) {
2100 DECLARE_BITMAP(mask, 64);
2101 u32 history = st->jmp_history_cnt;
2102
2103 if (env->log.level & BPF_LOG_LEVEL)
2104 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2105 for (i = last_idx;;) {
2106 if (skip_first) {
2107 err = 0;
2108 skip_first = false;
2109 } else {
2110 err = backtrack_insn(env, i, ®_mask, &stack_mask);
2111 }
2112 if (err == -ENOTSUPP) {
2113 mark_all_scalars_precise(env, st);
2114 return 0;
2115 } else if (err) {
2116 return err;
2117 }
2118 if (!reg_mask && !stack_mask)
2119 /* Found assignment(s) into tracked register in this state.
2120 * Since this state is already marked, just return.
2121 * Nothing to be tracked further in the parent state.
2122 */
2123 return 0;
2124 if (i == first_idx)
2125 break;
2126 i = get_prev_insn_idx(st, i, &history);
2127 if (i >= env->prog->len) {
2128 /* This can happen if backtracking reached insn 0
2129 * and there are still reg_mask or stack_mask
2130 * to backtrack.
2131 * It means the backtracking missed the spot where
2132 * particular register was initialized with a constant.
2133 */
2134 verbose(env, "BUG backtracking idx %d\n", i);
2135 WARN_ONCE(1, "verifier backtracking bug");
2136 return -EFAULT;
2137 }
2138 }
2139 st = st->parent;
2140 if (!st)
2141 break;
2142
2143 new_marks = false;
2144 func = st->frame[frame];
2145 bitmap_from_u64(mask, reg_mask);
2146 for_each_set_bit(i, mask, 32) {
2147 reg = &func->regs[i];
2148 if (reg->type != SCALAR_VALUE) {
2149 reg_mask &= ~(1u << i);
2150 continue;
2151 }
2152 if (!reg->precise)
2153 new_marks = true;
2154 reg->precise = true;
2155 }
2156
2157 bitmap_from_u64(mask, stack_mask);
2158 for_each_set_bit(i, mask, 64) {
2159 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2160 /* the sequence of instructions:
2161 * 2: (bf) r3 = r10
2162 * 3: (7b) *(u64 *)(r3 -8) = r0
2163 * 4: (79) r4 = *(u64 *)(r10 -8)
2164 * doesn't contain jmps. It's backtracked
2165 * as a single block.
2166 * During backtracking insn 3 is not recognized as
2167 * stack access, so at the end of backtracking
2168 * stack slot fp-8 is still marked in stack_mask.
2169 * However the parent state may not have accessed
2170 * fp-8 and it's "unallocated" stack space.
2171 * In such case fallback to conservative.
2172 */
2173 mark_all_scalars_precise(env, st);
2174 return 0;
2175 }
2176
2177 if (!is_spilled_reg(&func->stack[i])) {
2178 stack_mask &= ~(1ull << i);
2179 continue;
2180 }
2181 reg = &func->stack[i].spilled_ptr;
2182 if (reg->type != SCALAR_VALUE) {
2183 stack_mask &= ~(1ull << i);
2184 continue;
2185 }
2186 if (!reg->precise)
2187 new_marks = true;
2188 reg->precise = true;
2189 }
2190 if (env->log.level & BPF_LOG_LEVEL) {
2191 print_verifier_state(env, func);
2192 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2193 new_marks ? "didn't have" : "already had",
2194 reg_mask, stack_mask);
2195 }
2196
2197 if (!reg_mask && !stack_mask)
2198 break;
2199 if (!new_marks)
2200 break;
2201
2202 last_idx = st->last_insn_idx;
2203 first_idx = st->first_insn_idx;
2204 }
2205 return 0;
2206 }
2207
mark_chain_precision(struct bpf_verifier_env * env,int regno)2208 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2209 {
2210 return __mark_chain_precision(env, env->cur_state->curframe, regno, -1);
2211 }
2212
mark_chain_precision_frame(struct bpf_verifier_env * env,int frame,int regno)2213 static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno)
2214 {
2215 return __mark_chain_precision(env, frame, regno, -1);
2216 }
2217
mark_chain_precision_stack_frame(struct bpf_verifier_env * env,int frame,int spi)2218 static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi)
2219 {
2220 return __mark_chain_precision(env, frame, -1, spi);
2221 }
2222
is_spillable_regtype(enum bpf_reg_type type)2223 static bool is_spillable_regtype(enum bpf_reg_type type)
2224 {
2225 switch (base_type(type)) {
2226 case PTR_TO_MAP_VALUE:
2227 case PTR_TO_STACK:
2228 case PTR_TO_CTX:
2229 case PTR_TO_PACKET:
2230 case PTR_TO_PACKET_META:
2231 case PTR_TO_PACKET_END:
2232 case PTR_TO_FLOW_KEYS:
2233 case CONST_PTR_TO_MAP:
2234 case PTR_TO_SOCKET:
2235 case PTR_TO_SOCK_COMMON:
2236 case PTR_TO_TCP_SOCK:
2237 case PTR_TO_XDP_SOCK:
2238 case PTR_TO_BTF_ID:
2239 case PTR_TO_BUF:
2240 case PTR_TO_PERCPU_BTF_ID:
2241 case PTR_TO_MEM:
2242 return true;
2243 default:
2244 return false;
2245 }
2246 }
2247
2248 /* Does this register contain a constant zero? */
register_is_null(struct bpf_reg_state * reg)2249 static bool register_is_null(struct bpf_reg_state *reg)
2250 {
2251 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2252 }
2253
register_is_const(struct bpf_reg_state * reg)2254 static bool register_is_const(struct bpf_reg_state *reg)
2255 {
2256 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2257 }
2258
__is_scalar_unbounded(struct bpf_reg_state * reg)2259 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2260 {
2261 return tnum_is_unknown(reg->var_off) &&
2262 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2263 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2264 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2265 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2266 }
2267
register_is_bounded(struct bpf_reg_state * reg)2268 static bool register_is_bounded(struct bpf_reg_state *reg)
2269 {
2270 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2271 }
2272
__is_pointer_value(bool allow_ptr_leaks,const struct bpf_reg_state * reg)2273 static bool __is_pointer_value(bool allow_ptr_leaks,
2274 const struct bpf_reg_state *reg)
2275 {
2276 if (allow_ptr_leaks)
2277 return false;
2278
2279 return reg->type != SCALAR_VALUE;
2280 }
2281
save_register_state(struct bpf_func_state * state,int spi,struct bpf_reg_state * reg)2282 static void save_register_state(struct bpf_func_state *state,
2283 int spi, struct bpf_reg_state *reg)
2284 {
2285 int i;
2286
2287 state->stack[spi].spilled_ptr = *reg;
2288 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2289
2290 for (i = 0; i < BPF_REG_SIZE; i++)
2291 state->stack[spi].slot_type[i] = STACK_SPILL;
2292 }
2293
2294 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2295 * stack boundary and alignment are checked in check_mem_access()
2296 */
check_stack_write_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int off,int size,int value_regno,int insn_idx)2297 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2298 /* stack frame we're writing to */
2299 struct bpf_func_state *state,
2300 int off, int size, int value_regno,
2301 int insn_idx)
2302 {
2303 struct bpf_func_state *cur; /* state of the current function */
2304 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2305 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2306 struct bpf_reg_state *reg = NULL;
2307
2308 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2309 state->acquired_refs, true);
2310 if (err)
2311 return err;
2312 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2313 * so it's aligned access and [off, off + size) are within stack limits
2314 */
2315 if (!env->allow_ptr_leaks &&
2316 state->stack[spi].slot_type[0] == STACK_SPILL &&
2317 size != BPF_REG_SIZE) {
2318 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2319 return -EACCES;
2320 }
2321
2322 cur = env->cur_state->frame[env->cur_state->curframe];
2323 if (value_regno >= 0)
2324 reg = &cur->regs[value_regno];
2325 if (!env->bypass_spec_v4) {
2326 bool sanitize = reg && is_spillable_regtype(reg->type);
2327
2328 for (i = 0; i < size; i++) {
2329 if (state->stack[spi].slot_type[i] == STACK_INVALID) {
2330 sanitize = true;
2331 break;
2332 }
2333 }
2334
2335 if (sanitize)
2336 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
2337 }
2338
2339 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2340 !register_is_null(reg) && env->bpf_capable) {
2341 if (dst_reg != BPF_REG_FP) {
2342 /* The backtracking logic can only recognize explicit
2343 * stack slot address like [fp - 8]. Other spill of
2344 * scalar via different register has to be conervative.
2345 * Backtrack from here and mark all registers as precise
2346 * that contributed into 'reg' being a constant.
2347 */
2348 err = mark_chain_precision(env, value_regno);
2349 if (err)
2350 return err;
2351 }
2352 save_register_state(state, spi, reg);
2353 } else if (reg && is_spillable_regtype(reg->type)) {
2354 /* register containing pointer is being spilled into stack */
2355 if (size != BPF_REG_SIZE) {
2356 verbose_linfo(env, insn_idx, "; ");
2357 verbose(env, "invalid size of register spill\n");
2358 return -EACCES;
2359 }
2360 if (state != cur && reg->type == PTR_TO_STACK) {
2361 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2362 return -EINVAL;
2363 }
2364 save_register_state(state, spi, reg);
2365 } else {
2366 u8 type = STACK_MISC;
2367
2368 /* regular write of data into stack destroys any spilled ptr */
2369 state->stack[spi].spilled_ptr.type = NOT_INIT;
2370 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2371 if (is_spilled_reg(&state->stack[spi]))
2372 for (i = 0; i < BPF_REG_SIZE; i++)
2373 state->stack[spi].slot_type[i] = STACK_MISC;
2374
2375 /* only mark the slot as written if all 8 bytes were written
2376 * otherwise read propagation may incorrectly stop too soon
2377 * when stack slots are partially written.
2378 * This heuristic means that read propagation will be
2379 * conservative, since it will add reg_live_read marks
2380 * to stack slots all the way to first state when programs
2381 * writes+reads less than 8 bytes
2382 */
2383 if (size == BPF_REG_SIZE)
2384 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2385
2386 /* when we zero initialize stack slots mark them as such */
2387 if (reg && register_is_null(reg)) {
2388 /* backtracking doesn't work for STACK_ZERO yet. */
2389 err = mark_chain_precision(env, value_regno);
2390 if (err)
2391 return err;
2392 type = STACK_ZERO;
2393 }
2394
2395 /* Mark slots affected by this stack write. */
2396 for (i = 0; i < size; i++)
2397 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2398 type;
2399 }
2400 return 0;
2401 }
2402
2403 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2404 * known to contain a variable offset.
2405 * This function checks whether the write is permitted and conservatively
2406 * tracks the effects of the write, considering that each stack slot in the
2407 * dynamic range is potentially written to.
2408 *
2409 * 'off' includes 'regno->off'.
2410 * 'value_regno' can be -1, meaning that an unknown value is being written to
2411 * the stack.
2412 *
2413 * Spilled pointers in range are not marked as written because we don't know
2414 * what's going to be actually written. This means that read propagation for
2415 * future reads cannot be terminated by this write.
2416 *
2417 * For privileged programs, uninitialized stack slots are considered
2418 * initialized by this write (even though we don't know exactly what offsets
2419 * are going to be written to). The idea is that we don't want the verifier to
2420 * reject future reads that access slots written to through variable offsets.
2421 */
check_stack_write_var_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int ptr_regno,int off,int size,int value_regno,int insn_idx)2422 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2423 /* func where register points to */
2424 struct bpf_func_state *state,
2425 int ptr_regno, int off, int size,
2426 int value_regno, int insn_idx)
2427 {
2428 struct bpf_func_state *cur; /* state of the current function */
2429 int min_off, max_off;
2430 int i, err;
2431 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2432 bool writing_zero = false;
2433 /* set if the fact that we're writing a zero is used to let any
2434 * stack slots remain STACK_ZERO
2435 */
2436 bool zero_used = false;
2437
2438 cur = env->cur_state->frame[env->cur_state->curframe];
2439 ptr_reg = &cur->regs[ptr_regno];
2440 min_off = ptr_reg->smin_value + off;
2441 max_off = ptr_reg->smax_value + off + size;
2442 if (value_regno >= 0)
2443 value_reg = &cur->regs[value_regno];
2444 if (value_reg && register_is_null(value_reg))
2445 writing_zero = true;
2446
2447 err = realloc_func_state(state, round_up(-min_off, BPF_REG_SIZE),
2448 state->acquired_refs, true);
2449 if (err)
2450 return err;
2451
2452
2453 /* Variable offset writes destroy any spilled pointers in range. */
2454 for (i = min_off; i < max_off; i++) {
2455 u8 new_type, *stype;
2456 int slot, spi;
2457
2458 slot = -i - 1;
2459 spi = slot / BPF_REG_SIZE;
2460 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2461
2462 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
2463 /* Reject the write if range we may write to has not
2464 * been initialized beforehand. If we didn't reject
2465 * here, the ptr status would be erased below (even
2466 * though not all slots are actually overwritten),
2467 * possibly opening the door to leaks.
2468 *
2469 * We do however catch STACK_INVALID case below, and
2470 * only allow reading possibly uninitialized memory
2471 * later for CAP_PERFMON, as the write may not happen to
2472 * that slot.
2473 */
2474 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2475 insn_idx, i);
2476 return -EINVAL;
2477 }
2478
2479 /* Erase all spilled pointers. */
2480 state->stack[spi].spilled_ptr.type = NOT_INIT;
2481
2482 /* Update the slot type. */
2483 new_type = STACK_MISC;
2484 if (writing_zero && *stype == STACK_ZERO) {
2485 new_type = STACK_ZERO;
2486 zero_used = true;
2487 }
2488 /* If the slot is STACK_INVALID, we check whether it's OK to
2489 * pretend that it will be initialized by this write. The slot
2490 * might not actually be written to, and so if we mark it as
2491 * initialized future reads might leak uninitialized memory.
2492 * For privileged programs, we will accept such reads to slots
2493 * that may or may not be written because, if we're reject
2494 * them, the error would be too confusing.
2495 */
2496 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2497 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2498 insn_idx, i);
2499 return -EINVAL;
2500 }
2501 *stype = new_type;
2502 }
2503 if (zero_used) {
2504 /* backtracking doesn't work for STACK_ZERO yet. */
2505 err = mark_chain_precision(env, value_regno);
2506 if (err)
2507 return err;
2508 }
2509 return 0;
2510 }
2511
2512 /* When register 'dst_regno' is assigned some values from stack[min_off,
2513 * max_off), we set the register's type according to the types of the
2514 * respective stack slots. If all the stack values are known to be zeros, then
2515 * so is the destination reg. Otherwise, the register is considered to be
2516 * SCALAR. This function does not deal with register filling; the caller must
2517 * ensure that all spilled registers in the stack range have been marked as
2518 * read.
2519 */
mark_reg_stack_read(struct bpf_verifier_env * env,struct bpf_func_state * ptr_state,int min_off,int max_off,int dst_regno)2520 static void mark_reg_stack_read(struct bpf_verifier_env *env,
2521 /* func where src register points to */
2522 struct bpf_func_state *ptr_state,
2523 int min_off, int max_off, int dst_regno)
2524 {
2525 struct bpf_verifier_state *vstate = env->cur_state;
2526 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2527 int i, slot, spi;
2528 u8 *stype;
2529 int zeros = 0;
2530
2531 for (i = min_off; i < max_off; i++) {
2532 slot = -i - 1;
2533 spi = slot / BPF_REG_SIZE;
2534 stype = ptr_state->stack[spi].slot_type;
2535 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2536 break;
2537 zeros++;
2538 }
2539 if (zeros == max_off - min_off) {
2540 /* any access_size read into register is zero extended,
2541 * so the whole register == const_zero
2542 */
2543 __mark_reg_const_zero(&state->regs[dst_regno]);
2544 /* backtracking doesn't support STACK_ZERO yet,
2545 * so mark it precise here, so that later
2546 * backtracking can stop here.
2547 * Backtracking may not need this if this register
2548 * doesn't participate in pointer adjustment.
2549 * Forward propagation of precise flag is not
2550 * necessary either. This mark is only to stop
2551 * backtracking. Any register that contributed
2552 * to const 0 was marked precise before spill.
2553 */
2554 state->regs[dst_regno].precise = true;
2555 } else {
2556 /* have read misc data from the stack */
2557 mark_reg_unknown(env, state->regs, dst_regno);
2558 }
2559 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2560 }
2561
2562 /* Read the stack at 'off' and put the results into the register indicated by
2563 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2564 * spilled reg.
2565 *
2566 * 'dst_regno' can be -1, meaning that the read value is not going to a
2567 * register.
2568 *
2569 * The access is assumed to be within the current stack bounds.
2570 */
check_stack_read_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * reg_state,int off,int size,int dst_regno)2571 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2572 /* func where src register points to */
2573 struct bpf_func_state *reg_state,
2574 int off, int size, int dst_regno)
2575 {
2576 struct bpf_verifier_state *vstate = env->cur_state;
2577 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2578 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2579 struct bpf_reg_state *reg;
2580 u8 *stype;
2581
2582 stype = reg_state->stack[spi].slot_type;
2583 reg = ®_state->stack[spi].spilled_ptr;
2584
2585 if (is_spilled_reg(®_state->stack[spi])) {
2586 if (size != BPF_REG_SIZE) {
2587 if (reg->type != SCALAR_VALUE) {
2588 verbose_linfo(env, env->insn_idx, "; ");
2589 verbose(env, "invalid size of register fill\n");
2590 return -EACCES;
2591 }
2592 if (dst_regno >= 0) {
2593 mark_reg_unknown(env, state->regs, dst_regno);
2594 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2595 }
2596 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2597 return 0;
2598 }
2599 for (i = 1; i < BPF_REG_SIZE; i++) {
2600 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2601 verbose(env, "corrupted spill memory\n");
2602 return -EACCES;
2603 }
2604 }
2605
2606 if (dst_regno >= 0) {
2607 /* restore register state from stack */
2608 state->regs[dst_regno] = *reg;
2609 /* mark reg as written since spilled pointer state likely
2610 * has its liveness marks cleared by is_state_visited()
2611 * which resets stack/reg liveness for state transitions
2612 */
2613 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2614 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2615 /* If dst_regno==-1, the caller is asking us whether
2616 * it is acceptable to use this value as a SCALAR_VALUE
2617 * (e.g. for XADD).
2618 * We must not allow unprivileged callers to do that
2619 * with spilled pointers.
2620 */
2621 verbose(env, "leaking pointer from stack off %d\n",
2622 off);
2623 return -EACCES;
2624 }
2625 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2626 } else {
2627 u8 type;
2628
2629 for (i = 0; i < size; i++) {
2630 type = stype[(slot - i) % BPF_REG_SIZE];
2631 if (type == STACK_MISC)
2632 continue;
2633 if (type == STACK_ZERO)
2634 continue;
2635 verbose(env, "invalid read from stack off %d+%d size %d\n",
2636 off, i, size);
2637 return -EACCES;
2638 }
2639 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2640 if (dst_regno >= 0)
2641 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
2642 }
2643 return 0;
2644 }
2645
2646 enum stack_access_src {
2647 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
2648 ACCESS_HELPER = 2, /* the access is performed by a helper */
2649 };
2650
2651 static int check_stack_range_initialized(struct bpf_verifier_env *env,
2652 int regno, int off, int access_size,
2653 bool zero_size_allowed,
2654 enum stack_access_src type,
2655 struct bpf_call_arg_meta *meta);
2656
reg_state(struct bpf_verifier_env * env,int regno)2657 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2658 {
2659 return cur_regs(env) + regno;
2660 }
2661
2662 /* Read the stack at 'ptr_regno + off' and put the result into the register
2663 * 'dst_regno'.
2664 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
2665 * but not its variable offset.
2666 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
2667 *
2668 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
2669 * filling registers (i.e. reads of spilled register cannot be detected when
2670 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
2671 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
2672 * offset; for a fixed offset check_stack_read_fixed_off should be used
2673 * instead.
2674 */
check_stack_read_var_off(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)2675 static int check_stack_read_var_off(struct bpf_verifier_env *env,
2676 int ptr_regno, int off, int size, int dst_regno)
2677 {
2678 /* The state of the source register. */
2679 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2680 struct bpf_func_state *ptr_state = func(env, reg);
2681 int err;
2682 int min_off, max_off;
2683
2684 /* Note that we pass a NULL meta, so raw access will not be permitted.
2685 */
2686 err = check_stack_range_initialized(env, ptr_regno, off, size,
2687 false, ACCESS_DIRECT, NULL);
2688 if (err)
2689 return err;
2690
2691 min_off = reg->smin_value + off;
2692 max_off = reg->smax_value + off;
2693 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
2694 return 0;
2695 }
2696
2697 /* check_stack_read dispatches to check_stack_read_fixed_off or
2698 * check_stack_read_var_off.
2699 *
2700 * The caller must ensure that the offset falls within the allocated stack
2701 * bounds.
2702 *
2703 * 'dst_regno' is a register which will receive the value from the stack. It
2704 * can be -1, meaning that the read value is not going to a register.
2705 */
check_stack_read(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)2706 static int check_stack_read(struct bpf_verifier_env *env,
2707 int ptr_regno, int off, int size,
2708 int dst_regno)
2709 {
2710 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2711 struct bpf_func_state *state = func(env, reg);
2712 int err;
2713 /* Some accesses are only permitted with a static offset. */
2714 bool var_off = !tnum_is_const(reg->var_off);
2715
2716 /* The offset is required to be static when reads don't go to a
2717 * register, in order to not leak pointers (see
2718 * check_stack_read_fixed_off).
2719 */
2720 if (dst_regno < 0 && var_off) {
2721 char tn_buf[48];
2722
2723 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2724 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
2725 tn_buf, off, size);
2726 return -EACCES;
2727 }
2728 /* Variable offset is prohibited for unprivileged mode for simplicity
2729 * since it requires corresponding support in Spectre masking for stack
2730 * ALU. See also retrieve_ptr_limit().
2731 */
2732 if (!env->bypass_spec_v1 && var_off) {
2733 char tn_buf[48];
2734
2735 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2736 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
2737 ptr_regno, tn_buf);
2738 return -EACCES;
2739 }
2740
2741 if (!var_off) {
2742 off += reg->var_off.value;
2743 err = check_stack_read_fixed_off(env, state, off, size,
2744 dst_regno);
2745 } else {
2746 /* Variable offset stack reads need more conservative handling
2747 * than fixed offset ones. Note that dst_regno >= 0 on this
2748 * branch.
2749 */
2750 err = check_stack_read_var_off(env, ptr_regno, off, size,
2751 dst_regno);
2752 }
2753 return err;
2754 }
2755
2756
2757 /* check_stack_write dispatches to check_stack_write_fixed_off or
2758 * check_stack_write_var_off.
2759 *
2760 * 'ptr_regno' is the register used as a pointer into the stack.
2761 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
2762 * 'value_regno' is the register whose value we're writing to the stack. It can
2763 * be -1, meaning that we're not writing from a register.
2764 *
2765 * The caller must ensure that the offset falls within the maximum stack size.
2766 */
check_stack_write(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int value_regno,int insn_idx)2767 static int check_stack_write(struct bpf_verifier_env *env,
2768 int ptr_regno, int off, int size,
2769 int value_regno, int insn_idx)
2770 {
2771 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2772 struct bpf_func_state *state = func(env, reg);
2773 int err;
2774
2775 if (tnum_is_const(reg->var_off)) {
2776 off += reg->var_off.value;
2777 err = check_stack_write_fixed_off(env, state, off, size,
2778 value_regno, insn_idx);
2779 } else {
2780 /* Variable offset stack reads need more conservative handling
2781 * than fixed offset ones.
2782 */
2783 err = check_stack_write_var_off(env, state,
2784 ptr_regno, off, size,
2785 value_regno, insn_idx);
2786 }
2787 return err;
2788 }
2789
check_map_access_type(struct bpf_verifier_env * env,u32 regno,int off,int size,enum bpf_access_type type)2790 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2791 int off, int size, enum bpf_access_type type)
2792 {
2793 struct bpf_reg_state *regs = cur_regs(env);
2794 struct bpf_map *map = regs[regno].map_ptr;
2795 u32 cap = bpf_map_flags_to_cap(map);
2796
2797 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2798 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2799 map->value_size, off, size);
2800 return -EACCES;
2801 }
2802
2803 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2804 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2805 map->value_size, off, size);
2806 return -EACCES;
2807 }
2808
2809 return 0;
2810 }
2811
2812 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
__check_mem_access(struct bpf_verifier_env * env,int regno,int off,int size,u32 mem_size,bool zero_size_allowed)2813 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2814 int off, int size, u32 mem_size,
2815 bool zero_size_allowed)
2816 {
2817 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2818 struct bpf_reg_state *reg;
2819
2820 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2821 return 0;
2822
2823 reg = &cur_regs(env)[regno];
2824 switch (reg->type) {
2825 case PTR_TO_MAP_VALUE:
2826 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2827 mem_size, off, size);
2828 break;
2829 case PTR_TO_PACKET:
2830 case PTR_TO_PACKET_META:
2831 case PTR_TO_PACKET_END:
2832 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2833 off, size, regno, reg->id, off, mem_size);
2834 break;
2835 case PTR_TO_MEM:
2836 default:
2837 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2838 mem_size, off, size);
2839 }
2840
2841 return -EACCES;
2842 }
2843
2844 /* check read/write into a memory region with possible variable offset */
check_mem_region_access(struct bpf_verifier_env * env,u32 regno,int off,int size,u32 mem_size,bool zero_size_allowed)2845 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2846 int off, int size, u32 mem_size,
2847 bool zero_size_allowed)
2848 {
2849 struct bpf_verifier_state *vstate = env->cur_state;
2850 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2851 struct bpf_reg_state *reg = &state->regs[regno];
2852 int err;
2853
2854 /* We may have adjusted the register pointing to memory region, so we
2855 * need to try adding each of min_value and max_value to off
2856 * to make sure our theoretical access will be safe.
2857 */
2858 if (env->log.level & BPF_LOG_LEVEL)
2859 print_verifier_state(env, state);
2860
2861 /* The minimum value is only important with signed
2862 * comparisons where we can't assume the floor of a
2863 * value is 0. If we are using signed variables for our
2864 * index'es we need to make sure that whatever we use
2865 * will have a set floor within our range.
2866 */
2867 if (reg->smin_value < 0 &&
2868 (reg->smin_value == S64_MIN ||
2869 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2870 reg->smin_value + off < 0)) {
2871 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2872 regno);
2873 return -EACCES;
2874 }
2875 err = __check_mem_access(env, regno, reg->smin_value + off, size,
2876 mem_size, zero_size_allowed);
2877 if (err) {
2878 verbose(env, "R%d min value is outside of the allowed memory range\n",
2879 regno);
2880 return err;
2881 }
2882
2883 /* If we haven't set a max value then we need to bail since we can't be
2884 * sure we won't do bad things.
2885 * If reg->umax_value + off could overflow, treat that as unbounded too.
2886 */
2887 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2888 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
2889 regno);
2890 return -EACCES;
2891 }
2892 err = __check_mem_access(env, regno, reg->umax_value + off, size,
2893 mem_size, zero_size_allowed);
2894 if (err) {
2895 verbose(env, "R%d max value is outside of the allowed memory range\n",
2896 regno);
2897 return err;
2898 }
2899
2900 return 0;
2901 }
2902
2903 /* check read/write into a map element with possible variable offset */
check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)2904 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2905 int off, int size, bool zero_size_allowed)
2906 {
2907 struct bpf_verifier_state *vstate = env->cur_state;
2908 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2909 struct bpf_reg_state *reg = &state->regs[regno];
2910 struct bpf_map *map = reg->map_ptr;
2911 int err;
2912
2913 err = check_mem_region_access(env, regno, off, size, map->value_size,
2914 zero_size_allowed);
2915 if (err)
2916 return err;
2917
2918 if (map_value_has_spin_lock(map)) {
2919 u32 lock = map->spin_lock_off;
2920
2921 /* if any part of struct bpf_spin_lock can be touched by
2922 * load/store reject this program.
2923 * To check that [x1, x2) overlaps with [y1, y2)
2924 * it is sufficient to check x1 < y2 && y1 < x2.
2925 */
2926 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2927 lock < reg->umax_value + off + size) {
2928 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2929 return -EACCES;
2930 }
2931 }
2932 return err;
2933 }
2934
2935 #define MAX_PACKET_OFF 0xffff
2936
resolve_prog_type(struct bpf_prog * prog)2937 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
2938 {
2939 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
2940 }
2941
may_access_direct_pkt_data(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_access_type t)2942 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2943 const struct bpf_call_arg_meta *meta,
2944 enum bpf_access_type t)
2945 {
2946 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
2947
2948 switch (prog_type) {
2949 /* Program types only with direct read access go here! */
2950 case BPF_PROG_TYPE_LWT_IN:
2951 case BPF_PROG_TYPE_LWT_OUT:
2952 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2953 case BPF_PROG_TYPE_SK_REUSEPORT:
2954 case BPF_PROG_TYPE_FLOW_DISSECTOR:
2955 case BPF_PROG_TYPE_CGROUP_SKB:
2956 if (t == BPF_WRITE)
2957 return false;
2958 fallthrough;
2959
2960 /* Program types with direct read + write access go here! */
2961 case BPF_PROG_TYPE_SCHED_CLS:
2962 case BPF_PROG_TYPE_SCHED_ACT:
2963 case BPF_PROG_TYPE_XDP:
2964 case BPF_PROG_TYPE_LWT_XMIT:
2965 case BPF_PROG_TYPE_SK_SKB:
2966 case BPF_PROG_TYPE_SK_MSG:
2967 if (meta)
2968 return meta->pkt_access;
2969
2970 env->seen_direct_write = true;
2971 return true;
2972
2973 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2974 if (t == BPF_WRITE)
2975 env->seen_direct_write = true;
2976
2977 return true;
2978
2979 default:
2980 return false;
2981 }
2982 }
2983
check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)2984 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2985 int size, bool zero_size_allowed)
2986 {
2987 struct bpf_reg_state *regs = cur_regs(env);
2988 struct bpf_reg_state *reg = ®s[regno];
2989 int err;
2990
2991 /* We may have added a variable offset to the packet pointer; but any
2992 * reg->range we have comes after that. We are only checking the fixed
2993 * offset.
2994 */
2995
2996 /* We don't allow negative numbers, because we aren't tracking enough
2997 * detail to prove they're safe.
2998 */
2999 if (reg->smin_value < 0) {
3000 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3001 regno);
3002 return -EACCES;
3003 }
3004
3005 err = reg->range < 0 ? -EINVAL :
3006 __check_mem_access(env, regno, off, size, reg->range,
3007 zero_size_allowed);
3008 if (err) {
3009 verbose(env, "R%d offset is outside of the packet\n", regno);
3010 return err;
3011 }
3012
3013 /* __check_mem_access has made sure "off + size - 1" is within u16.
3014 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3015 * otherwise find_good_pkt_pointers would have refused to set range info
3016 * that __check_mem_access would have rejected this pkt access.
3017 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3018 */
3019 env->prog->aux->max_pkt_offset =
3020 max_t(u32, env->prog->aux->max_pkt_offset,
3021 off + reg->umax_value + size - 1);
3022
3023 return err;
3024 }
3025
3026 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
check_ctx_access(struct bpf_verifier_env * env,int insn_idx,int off,int size,enum bpf_access_type t,enum bpf_reg_type * reg_type,u32 * btf_id)3027 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3028 enum bpf_access_type t, enum bpf_reg_type *reg_type,
3029 u32 *btf_id)
3030 {
3031 struct bpf_insn_access_aux info = {
3032 .reg_type = *reg_type,
3033 .log = &env->log,
3034 };
3035
3036 if (env->ops->is_valid_access &&
3037 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3038 /* A non zero info.ctx_field_size indicates that this field is a
3039 * candidate for later verifier transformation to load the whole
3040 * field and then apply a mask when accessed with a narrower
3041 * access than actual ctx access size. A zero info.ctx_field_size
3042 * will only allow for whole field access and rejects any other
3043 * type of narrower access.
3044 */
3045 *reg_type = info.reg_type;
3046
3047 if (base_type(*reg_type) == PTR_TO_BTF_ID)
3048 *btf_id = info.btf_id;
3049 else
3050 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3051 /* remember the offset of last byte accessed in ctx */
3052 if (env->prog->aux->max_ctx_offset < off + size)
3053 env->prog->aux->max_ctx_offset = off + size;
3054 return 0;
3055 }
3056
3057 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3058 return -EACCES;
3059 }
3060
check_flow_keys_access(struct bpf_verifier_env * env,int off,int size)3061 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3062 int size)
3063 {
3064 if (size < 0 || off < 0 ||
3065 (u64)off + size > sizeof(struct bpf_flow_keys)) {
3066 verbose(env, "invalid access to flow keys off=%d size=%d\n",
3067 off, size);
3068 return -EACCES;
3069 }
3070 return 0;
3071 }
3072
check_sock_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int size,enum bpf_access_type t)3073 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3074 u32 regno, int off, int size,
3075 enum bpf_access_type t)
3076 {
3077 struct bpf_reg_state *regs = cur_regs(env);
3078 struct bpf_reg_state *reg = ®s[regno];
3079 struct bpf_insn_access_aux info = {};
3080 bool valid;
3081
3082 if (reg->smin_value < 0) {
3083 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3084 regno);
3085 return -EACCES;
3086 }
3087
3088 switch (reg->type) {
3089 case PTR_TO_SOCK_COMMON:
3090 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3091 break;
3092 case PTR_TO_SOCKET:
3093 valid = bpf_sock_is_valid_access(off, size, t, &info);
3094 break;
3095 case PTR_TO_TCP_SOCK:
3096 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3097 break;
3098 case PTR_TO_XDP_SOCK:
3099 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3100 break;
3101 default:
3102 valid = false;
3103 }
3104
3105
3106 if (valid) {
3107 env->insn_aux_data[insn_idx].ctx_field_size =
3108 info.ctx_field_size;
3109 return 0;
3110 }
3111
3112 verbose(env, "R%d invalid %s access off=%d size=%d\n",
3113 regno, reg_type_str(env, reg->type), off, size);
3114
3115 return -EACCES;
3116 }
3117
is_pointer_value(struct bpf_verifier_env * env,int regno)3118 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3119 {
3120 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3121 }
3122
is_ctx_reg(struct bpf_verifier_env * env,int regno)3123 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3124 {
3125 const struct bpf_reg_state *reg = reg_state(env, regno);
3126
3127 return reg->type == PTR_TO_CTX;
3128 }
3129
is_sk_reg(struct bpf_verifier_env * env,int regno)3130 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3131 {
3132 const struct bpf_reg_state *reg = reg_state(env, regno);
3133
3134 return type_is_sk_pointer(reg->type);
3135 }
3136
is_pkt_reg(struct bpf_verifier_env * env,int regno)3137 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3138 {
3139 const struct bpf_reg_state *reg = reg_state(env, regno);
3140
3141 return type_is_pkt_pointer(reg->type);
3142 }
3143
is_flow_key_reg(struct bpf_verifier_env * env,int regno)3144 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3145 {
3146 const struct bpf_reg_state *reg = reg_state(env, regno);
3147
3148 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3149 return reg->type == PTR_TO_FLOW_KEYS;
3150 }
3151
check_pkt_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict)3152 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3153 const struct bpf_reg_state *reg,
3154 int off, int size, bool strict)
3155 {
3156 struct tnum reg_off;
3157 int ip_align;
3158
3159 /* Byte size accesses are always allowed. */
3160 if (!strict || size == 1)
3161 return 0;
3162
3163 /* For platforms that do not have a Kconfig enabling
3164 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3165 * NET_IP_ALIGN is universally set to '2'. And on platforms
3166 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3167 * to this code only in strict mode where we want to emulate
3168 * the NET_IP_ALIGN==2 checking. Therefore use an
3169 * unconditional IP align value of '2'.
3170 */
3171 ip_align = 2;
3172
3173 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3174 if (!tnum_is_aligned(reg_off, size)) {
3175 char tn_buf[48];
3176
3177 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3178 verbose(env,
3179 "misaligned packet access off %d+%s+%d+%d size %d\n",
3180 ip_align, tn_buf, reg->off, off, size);
3181 return -EACCES;
3182 }
3183
3184 return 0;
3185 }
3186
check_generic_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,const char * pointer_desc,int off,int size,bool strict)3187 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3188 const struct bpf_reg_state *reg,
3189 const char *pointer_desc,
3190 int off, int size, bool strict)
3191 {
3192 struct tnum reg_off;
3193
3194 /* Byte size accesses are always allowed. */
3195 if (!strict || size == 1)
3196 return 0;
3197
3198 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3199 if (!tnum_is_aligned(reg_off, size)) {
3200 char tn_buf[48];
3201
3202 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3203 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3204 pointer_desc, tn_buf, reg->off, off, size);
3205 return -EACCES;
3206 }
3207
3208 return 0;
3209 }
3210
check_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict_alignment_once)3211 static int check_ptr_alignment(struct bpf_verifier_env *env,
3212 const struct bpf_reg_state *reg, int off,
3213 int size, bool strict_alignment_once)
3214 {
3215 bool strict = env->strict_alignment || strict_alignment_once;
3216 const char *pointer_desc = "";
3217
3218 switch (reg->type) {
3219 case PTR_TO_PACKET:
3220 case PTR_TO_PACKET_META:
3221 /* Special case, because of NET_IP_ALIGN. Given metadata sits
3222 * right in front, treat it the very same way.
3223 */
3224 return check_pkt_ptr_alignment(env, reg, off, size, strict);
3225 case PTR_TO_FLOW_KEYS:
3226 pointer_desc = "flow keys ";
3227 break;
3228 case PTR_TO_MAP_VALUE:
3229 pointer_desc = "value ";
3230 break;
3231 case PTR_TO_CTX:
3232 pointer_desc = "context ";
3233 break;
3234 case PTR_TO_STACK:
3235 pointer_desc = "stack ";
3236 /* The stack spill tracking logic in check_stack_write_fixed_off()
3237 * and check_stack_read_fixed_off() relies on stack accesses being
3238 * aligned.
3239 */
3240 strict = true;
3241 break;
3242 case PTR_TO_SOCKET:
3243 pointer_desc = "sock ";
3244 break;
3245 case PTR_TO_SOCK_COMMON:
3246 pointer_desc = "sock_common ";
3247 break;
3248 case PTR_TO_TCP_SOCK:
3249 pointer_desc = "tcp_sock ";
3250 break;
3251 case PTR_TO_XDP_SOCK:
3252 pointer_desc = "xdp_sock ";
3253 break;
3254 default:
3255 break;
3256 }
3257 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3258 strict);
3259 }
3260
update_stack_depth(struct bpf_verifier_env * env,const struct bpf_func_state * func,int off)3261 static int update_stack_depth(struct bpf_verifier_env *env,
3262 const struct bpf_func_state *func,
3263 int off)
3264 {
3265 u16 stack = env->subprog_info[func->subprogno].stack_depth;
3266
3267 if (stack >= -off)
3268 return 0;
3269
3270 /* update known max for given subprogram */
3271 env->subprog_info[func->subprogno].stack_depth = -off;
3272 return 0;
3273 }
3274
3275 /* starting from main bpf function walk all instructions of the function
3276 * and recursively walk all callees that given function can call.
3277 * Ignore jump and exit insns.
3278 * Since recursion is prevented by check_cfg() this algorithm
3279 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3280 */
check_max_stack_depth(struct bpf_verifier_env * env)3281 static int check_max_stack_depth(struct bpf_verifier_env *env)
3282 {
3283 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3284 struct bpf_subprog_info *subprog = env->subprog_info;
3285 struct bpf_insn *insn = env->prog->insnsi;
3286 bool tail_call_reachable = false;
3287 int ret_insn[MAX_CALL_FRAMES];
3288 int ret_prog[MAX_CALL_FRAMES];
3289 int j;
3290
3291 process_func:
3292 /* protect against potential stack overflow that might happen when
3293 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3294 * depth for such case down to 256 so that the worst case scenario
3295 * would result in 8k stack size (32 which is tailcall limit * 256 =
3296 * 8k).
3297 *
3298 * To get the idea what might happen, see an example:
3299 * func1 -> sub rsp, 128
3300 * subfunc1 -> sub rsp, 256
3301 * tailcall1 -> add rsp, 256
3302 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3303 * subfunc2 -> sub rsp, 64
3304 * subfunc22 -> sub rsp, 128
3305 * tailcall2 -> add rsp, 128
3306 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3307 *
3308 * tailcall will unwind the current stack frame but it will not get rid
3309 * of caller's stack as shown on the example above.
3310 */
3311 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3312 verbose(env,
3313 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3314 depth);
3315 return -EACCES;
3316 }
3317 /* round up to 32-bytes, since this is granularity
3318 * of interpreter stack size
3319 */
3320 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3321 if (depth > MAX_BPF_STACK) {
3322 verbose(env, "combined stack size of %d calls is %d. Too large\n",
3323 frame + 1, depth);
3324 return -EACCES;
3325 }
3326 continue_func:
3327 subprog_end = subprog[idx + 1].start;
3328 for (; i < subprog_end; i++) {
3329 if (insn[i].code != (BPF_JMP | BPF_CALL))
3330 continue;
3331 if (insn[i].src_reg != BPF_PSEUDO_CALL)
3332 continue;
3333 /* remember insn and function to return to */
3334 ret_insn[frame] = i + 1;
3335 ret_prog[frame] = idx;
3336
3337 /* find the callee */
3338 i = i + insn[i].imm + 1;
3339 idx = find_subprog(env, i);
3340 if (idx < 0) {
3341 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3342 i);
3343 return -EFAULT;
3344 }
3345
3346 if (subprog[idx].has_tail_call)
3347 tail_call_reachable = true;
3348
3349 frame++;
3350 if (frame >= MAX_CALL_FRAMES) {
3351 verbose(env, "the call stack of %d frames is too deep !\n",
3352 frame);
3353 return -E2BIG;
3354 }
3355 goto process_func;
3356 }
3357 /* if tail call got detected across bpf2bpf calls then mark each of the
3358 * currently present subprog frames as tail call reachable subprogs;
3359 * this info will be utilized by JIT so that we will be preserving the
3360 * tail call counter throughout bpf2bpf calls combined with tailcalls
3361 */
3362 if (tail_call_reachable)
3363 for (j = 0; j < frame; j++)
3364 subprog[ret_prog[j]].tail_call_reachable = true;
3365 if (subprog[0].tail_call_reachable)
3366 env->prog->aux->tail_call_reachable = true;
3367
3368 /* end of for() loop means the last insn of the 'subprog'
3369 * was reached. Doesn't matter whether it was JA or EXIT
3370 */
3371 if (frame == 0)
3372 return 0;
3373 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3374 frame--;
3375 i = ret_insn[frame];
3376 idx = ret_prog[frame];
3377 goto continue_func;
3378 }
3379
3380 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
get_callee_stack_depth(struct bpf_verifier_env * env,const struct bpf_insn * insn,int idx)3381 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3382 const struct bpf_insn *insn, int idx)
3383 {
3384 int start = idx + insn->imm + 1, subprog;
3385
3386 subprog = find_subprog(env, start);
3387 if (subprog < 0) {
3388 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3389 start);
3390 return -EFAULT;
3391 }
3392 return env->subprog_info[subprog].stack_depth;
3393 }
3394 #endif
3395
__check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,bool fixed_off_ok)3396 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
3397 const struct bpf_reg_state *reg, int regno,
3398 bool fixed_off_ok)
3399 {
3400 /* Access to this pointer-typed register or passing it to a helper
3401 * is only allowed in its original, unmodified form.
3402 */
3403
3404 if (!fixed_off_ok && reg->off) {
3405 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
3406 reg_type_str(env, reg->type), regno, reg->off);
3407 return -EACCES;
3408 }
3409
3410 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3411 char tn_buf[48];
3412
3413 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3414 verbose(env, "variable %s access var_off=%s disallowed\n",
3415 reg_type_str(env, reg->type), tn_buf);
3416 return -EACCES;
3417 }
3418
3419 return 0;
3420 }
3421
check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno)3422 int check_ptr_off_reg(struct bpf_verifier_env *env,
3423 const struct bpf_reg_state *reg, int regno)
3424 {
3425 return __check_ptr_off_reg(env, reg, regno, false);
3426 }
3427
__check_buffer_access(struct bpf_verifier_env * env,const char * buf_info,const struct bpf_reg_state * reg,int regno,int off,int size)3428 static int __check_buffer_access(struct bpf_verifier_env *env,
3429 const char *buf_info,
3430 const struct bpf_reg_state *reg,
3431 int regno, int off, int size)
3432 {
3433 if (off < 0) {
3434 verbose(env,
3435 "R%d invalid %s buffer access: off=%d, size=%d\n",
3436 regno, buf_info, off, size);
3437 return -EACCES;
3438 }
3439 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3440 char tn_buf[48];
3441
3442 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3443 verbose(env,
3444 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3445 regno, off, tn_buf);
3446 return -EACCES;
3447 }
3448
3449 return 0;
3450 }
3451
check_tp_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size)3452 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3453 const struct bpf_reg_state *reg,
3454 int regno, int off, int size)
3455 {
3456 int err;
3457
3458 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3459 if (err)
3460 return err;
3461
3462 if (off + size > env->prog->aux->max_tp_access)
3463 env->prog->aux->max_tp_access = off + size;
3464
3465 return 0;
3466 }
3467
check_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size,bool zero_size_allowed,const char * buf_info,u32 * max_access)3468 static int check_buffer_access(struct bpf_verifier_env *env,
3469 const struct bpf_reg_state *reg,
3470 int regno, int off, int size,
3471 bool zero_size_allowed,
3472 const char *buf_info,
3473 u32 *max_access)
3474 {
3475 int err;
3476
3477 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3478 if (err)
3479 return err;
3480
3481 if (off + size > *max_access)
3482 *max_access = off + size;
3483
3484 return 0;
3485 }
3486
3487 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
zext_32_to_64(struct bpf_reg_state * reg)3488 static void zext_32_to_64(struct bpf_reg_state *reg)
3489 {
3490 reg->var_off = tnum_subreg(reg->var_off);
3491 __reg_assign_32_into_64(reg);
3492 }
3493
3494 /* truncate register to smaller size (in bytes)
3495 * must be called with size < BPF_REG_SIZE
3496 */
coerce_reg_to_size(struct bpf_reg_state * reg,int size)3497 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3498 {
3499 u64 mask;
3500
3501 /* clear high bits in bit representation */
3502 reg->var_off = tnum_cast(reg->var_off, size);
3503
3504 /* fix arithmetic bounds */
3505 mask = ((u64)1 << (size * 8)) - 1;
3506 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3507 reg->umin_value &= mask;
3508 reg->umax_value &= mask;
3509 } else {
3510 reg->umin_value = 0;
3511 reg->umax_value = mask;
3512 }
3513 reg->smin_value = reg->umin_value;
3514 reg->smax_value = reg->umax_value;
3515
3516 /* If size is smaller than 32bit register the 32bit register
3517 * values are also truncated so we push 64-bit bounds into
3518 * 32-bit bounds. Above were truncated < 32-bits already.
3519 */
3520 if (size >= 4)
3521 return;
3522 __reg_combine_64_into_32(reg);
3523 }
3524
bpf_map_is_rdonly(const struct bpf_map * map)3525 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3526 {
3527 /* A map is considered read-only if the following condition are true:
3528 *
3529 * 1) BPF program side cannot change any of the map content. The
3530 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
3531 * and was set at map creation time.
3532 * 2) The map value(s) have been initialized from user space by a
3533 * loader and then "frozen", such that no new map update/delete
3534 * operations from syscall side are possible for the rest of
3535 * the map's lifetime from that point onwards.
3536 * 3) Any parallel/pending map update/delete operations from syscall
3537 * side have been completed. Only after that point, it's safe to
3538 * assume that map value(s) are immutable.
3539 */
3540 return (map->map_flags & BPF_F_RDONLY_PROG) &&
3541 READ_ONCE(map->frozen) &&
3542 !bpf_map_write_active(map);
3543 }
3544
bpf_map_direct_read(struct bpf_map * map,int off,int size,u64 * val)3545 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3546 {
3547 void *ptr;
3548 u64 addr;
3549 int err;
3550
3551 err = map->ops->map_direct_value_addr(map, &addr, off);
3552 if (err)
3553 return err;
3554 ptr = (void *)(long)addr + off;
3555
3556 switch (size) {
3557 case sizeof(u8):
3558 *val = (u64)*(u8 *)ptr;
3559 break;
3560 case sizeof(u16):
3561 *val = (u64)*(u16 *)ptr;
3562 break;
3563 case sizeof(u32):
3564 *val = (u64)*(u32 *)ptr;
3565 break;
3566 case sizeof(u64):
3567 *val = *(u64 *)ptr;
3568 break;
3569 default:
3570 return -EINVAL;
3571 }
3572 return 0;
3573 }
3574
check_ptr_to_btf_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)3575 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3576 struct bpf_reg_state *regs,
3577 int regno, int off, int size,
3578 enum bpf_access_type atype,
3579 int value_regno)
3580 {
3581 struct bpf_reg_state *reg = regs + regno;
3582 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
3583 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3584 u32 btf_id;
3585 int ret;
3586
3587 if (off < 0) {
3588 verbose(env,
3589 "R%d is ptr_%s invalid negative access: off=%d\n",
3590 regno, tname, off);
3591 return -EACCES;
3592 }
3593 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3594 char tn_buf[48];
3595
3596 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3597 verbose(env,
3598 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3599 regno, tname, off, tn_buf);
3600 return -EACCES;
3601 }
3602
3603 if (env->ops->btf_struct_access) {
3604 ret = env->ops->btf_struct_access(&env->log, t, off, size,
3605 atype, &btf_id);
3606 } else {
3607 if (atype != BPF_READ) {
3608 verbose(env, "only read is supported\n");
3609 return -EACCES;
3610 }
3611
3612 ret = btf_struct_access(&env->log, t, off, size, atype,
3613 &btf_id);
3614 }
3615
3616 if (ret < 0)
3617 return ret;
3618
3619 if (atype == BPF_READ && value_regno >= 0)
3620 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3621
3622 return 0;
3623 }
3624
check_ptr_to_map_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)3625 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3626 struct bpf_reg_state *regs,
3627 int regno, int off, int size,
3628 enum bpf_access_type atype,
3629 int value_regno)
3630 {
3631 struct bpf_reg_state *reg = regs + regno;
3632 struct bpf_map *map = reg->map_ptr;
3633 const struct btf_type *t;
3634 const char *tname;
3635 u32 btf_id;
3636 int ret;
3637
3638 if (!btf_vmlinux) {
3639 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3640 return -ENOTSUPP;
3641 }
3642
3643 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3644 verbose(env, "map_ptr access not supported for map type %d\n",
3645 map->map_type);
3646 return -ENOTSUPP;
3647 }
3648
3649 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3650 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3651
3652 if (!env->allow_ptr_to_map_access) {
3653 verbose(env,
3654 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3655 tname);
3656 return -EPERM;
3657 }
3658
3659 if (off < 0) {
3660 verbose(env, "R%d is %s invalid negative access: off=%d\n",
3661 regno, tname, off);
3662 return -EACCES;
3663 }
3664
3665 if (atype != BPF_READ) {
3666 verbose(env, "only read from %s is supported\n", tname);
3667 return -EACCES;
3668 }
3669
3670 ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id);
3671 if (ret < 0)
3672 return ret;
3673
3674 if (value_regno >= 0)
3675 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3676
3677 return 0;
3678 }
3679
3680 /* Check that the stack access at the given offset is within bounds. The
3681 * maximum valid offset is -1.
3682 *
3683 * The minimum valid offset is -MAX_BPF_STACK for writes, and
3684 * -state->allocated_stack for reads.
3685 */
check_stack_slot_within_bounds(int off,struct bpf_func_state * state,enum bpf_access_type t)3686 static int check_stack_slot_within_bounds(int off,
3687 struct bpf_func_state *state,
3688 enum bpf_access_type t)
3689 {
3690 int min_valid_off;
3691
3692 if (t == BPF_WRITE)
3693 min_valid_off = -MAX_BPF_STACK;
3694 else
3695 min_valid_off = -state->allocated_stack;
3696
3697 if (off < min_valid_off || off > -1)
3698 return -EACCES;
3699 return 0;
3700 }
3701
3702 /* Check that the stack access at 'regno + off' falls within the maximum stack
3703 * bounds.
3704 *
3705 * 'off' includes `regno->offset`, but not its dynamic part (if any).
3706 */
check_stack_access_within_bounds(struct bpf_verifier_env * env,int regno,int off,int access_size,enum stack_access_src src,enum bpf_access_type type)3707 static int check_stack_access_within_bounds(
3708 struct bpf_verifier_env *env,
3709 int regno, int off, int access_size,
3710 enum stack_access_src src, enum bpf_access_type type)
3711 {
3712 struct bpf_reg_state *regs = cur_regs(env);
3713 struct bpf_reg_state *reg = regs + regno;
3714 struct bpf_func_state *state = func(env, reg);
3715 int min_off, max_off;
3716 int err;
3717 char *err_extra;
3718
3719 if (src == ACCESS_HELPER)
3720 /* We don't know if helpers are reading or writing (or both). */
3721 err_extra = " indirect access to";
3722 else if (type == BPF_READ)
3723 err_extra = " read from";
3724 else
3725 err_extra = " write to";
3726
3727 if (tnum_is_const(reg->var_off)) {
3728 min_off = reg->var_off.value + off;
3729 if (access_size > 0)
3730 max_off = min_off + access_size - 1;
3731 else
3732 max_off = min_off;
3733 } else {
3734 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3735 reg->smin_value <= -BPF_MAX_VAR_OFF) {
3736 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
3737 err_extra, regno);
3738 return -EACCES;
3739 }
3740 min_off = reg->smin_value + off;
3741 if (access_size > 0)
3742 max_off = reg->smax_value + off + access_size - 1;
3743 else
3744 max_off = min_off;
3745 }
3746
3747 err = check_stack_slot_within_bounds(min_off, state, type);
3748 if (!err)
3749 err = check_stack_slot_within_bounds(max_off, state, type);
3750
3751 if (err) {
3752 if (tnum_is_const(reg->var_off)) {
3753 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
3754 err_extra, regno, off, access_size);
3755 } else {
3756 char tn_buf[48];
3757
3758 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3759 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
3760 err_extra, regno, tn_buf, access_size);
3761 }
3762 }
3763 return err;
3764 }
3765
3766 /* check whether memory at (regno + off) is accessible for t = (read | write)
3767 * if t==write, value_regno is a register which value is stored into memory
3768 * if t==read, value_regno is a register which will receive the value from memory
3769 * if t==write && value_regno==-1, some unknown value is stored into memory
3770 * if t==read && value_regno==-1, don't care what we read from memory
3771 */
check_mem_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int bpf_size,enum bpf_access_type t,int value_regno,bool strict_alignment_once)3772 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3773 int off, int bpf_size, enum bpf_access_type t,
3774 int value_regno, bool strict_alignment_once)
3775 {
3776 struct bpf_reg_state *regs = cur_regs(env);
3777 struct bpf_reg_state *reg = regs + regno;
3778 struct bpf_func_state *state;
3779 int size, err = 0;
3780
3781 size = bpf_size_to_bytes(bpf_size);
3782 if (size < 0)
3783 return size;
3784
3785 /* alignment checks will add in reg->off themselves */
3786 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3787 if (err)
3788 return err;
3789
3790 /* for access checks, reg->off is just part of off */
3791 off += reg->off;
3792
3793 if (reg->type == PTR_TO_MAP_VALUE) {
3794 if (t == BPF_WRITE && value_regno >= 0 &&
3795 is_pointer_value(env, value_regno)) {
3796 verbose(env, "R%d leaks addr into map\n", value_regno);
3797 return -EACCES;
3798 }
3799 err = check_map_access_type(env, regno, off, size, t);
3800 if (err)
3801 return err;
3802 err = check_map_access(env, regno, off, size, false);
3803 if (!err && t == BPF_READ && value_regno >= 0) {
3804 struct bpf_map *map = reg->map_ptr;
3805
3806 /* if map is read-only, track its contents as scalars */
3807 if (tnum_is_const(reg->var_off) &&
3808 bpf_map_is_rdonly(map) &&
3809 map->ops->map_direct_value_addr) {
3810 int map_off = off + reg->var_off.value;
3811 u64 val = 0;
3812
3813 err = bpf_map_direct_read(map, map_off, size,
3814 &val);
3815 if (err)
3816 return err;
3817
3818 regs[value_regno].type = SCALAR_VALUE;
3819 __mark_reg_known(®s[value_regno], val);
3820 } else {
3821 mark_reg_unknown(env, regs, value_regno);
3822 }
3823 }
3824 } else if (base_type(reg->type) == PTR_TO_MEM) {
3825 bool rdonly_mem = type_is_rdonly_mem(reg->type);
3826
3827 if (type_may_be_null(reg->type)) {
3828 verbose(env, "R%d invalid mem access '%s'\n", regno,
3829 reg_type_str(env, reg->type));
3830 return -EACCES;
3831 }
3832
3833 if (t == BPF_WRITE && rdonly_mem) {
3834 verbose(env, "R%d cannot write into %s\n",
3835 regno, reg_type_str(env, reg->type));
3836 return -EACCES;
3837 }
3838
3839 if (t == BPF_WRITE && value_regno >= 0 &&
3840 is_pointer_value(env, value_regno)) {
3841 verbose(env, "R%d leaks addr into mem\n", value_regno);
3842 return -EACCES;
3843 }
3844
3845 err = check_mem_region_access(env, regno, off, size,
3846 reg->mem_size, false);
3847 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
3848 mark_reg_unknown(env, regs, value_regno);
3849 } else if (reg->type == PTR_TO_CTX) {
3850 enum bpf_reg_type reg_type = SCALAR_VALUE;
3851 u32 btf_id = 0;
3852
3853 if (t == BPF_WRITE && value_regno >= 0 &&
3854 is_pointer_value(env, value_regno)) {
3855 verbose(env, "R%d leaks addr into ctx\n", value_regno);
3856 return -EACCES;
3857 }
3858
3859 err = check_ptr_off_reg(env, reg, regno);
3860 if (err < 0)
3861 return err;
3862
3863 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf_id);
3864 if (err)
3865 verbose_linfo(env, insn_idx, "; ");
3866 if (!err && t == BPF_READ && value_regno >= 0) {
3867 /* ctx access returns either a scalar, or a
3868 * PTR_TO_PACKET[_META,_END]. In the latter
3869 * case, we know the offset is zero.
3870 */
3871 if (reg_type == SCALAR_VALUE) {
3872 mark_reg_unknown(env, regs, value_regno);
3873 } else {
3874 mark_reg_known_zero(env, regs,
3875 value_regno);
3876 if (type_may_be_null(reg_type))
3877 regs[value_regno].id = ++env->id_gen;
3878 /* A load of ctx field could have different
3879 * actual load size with the one encoded in the
3880 * insn. When the dst is PTR, it is for sure not
3881 * a sub-register.
3882 */
3883 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3884 if (base_type(reg_type) == PTR_TO_BTF_ID)
3885 regs[value_regno].btf_id = btf_id;
3886 }
3887 regs[value_regno].type = reg_type;
3888 }
3889
3890 } else if (reg->type == PTR_TO_STACK) {
3891 /* Basic bounds checks. */
3892 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
3893 if (err)
3894 return err;
3895
3896 state = func(env, reg);
3897 err = update_stack_depth(env, state, off);
3898 if (err)
3899 return err;
3900
3901 if (t == BPF_READ)
3902 err = check_stack_read(env, regno, off, size,
3903 value_regno);
3904 else
3905 err = check_stack_write(env, regno, off, size,
3906 value_regno, insn_idx);
3907 } else if (reg_is_pkt_pointer(reg)) {
3908 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3909 verbose(env, "cannot write into packet\n");
3910 return -EACCES;
3911 }
3912 if (t == BPF_WRITE && value_regno >= 0 &&
3913 is_pointer_value(env, value_regno)) {
3914 verbose(env, "R%d leaks addr into packet\n",
3915 value_regno);
3916 return -EACCES;
3917 }
3918 err = check_packet_access(env, regno, off, size, false);
3919 if (!err && t == BPF_READ && value_regno >= 0)
3920 mark_reg_unknown(env, regs, value_regno);
3921 } else if (reg->type == PTR_TO_FLOW_KEYS) {
3922 if (t == BPF_WRITE && value_regno >= 0 &&
3923 is_pointer_value(env, value_regno)) {
3924 verbose(env, "R%d leaks addr into flow keys\n",
3925 value_regno);
3926 return -EACCES;
3927 }
3928
3929 err = check_flow_keys_access(env, off, size);
3930 if (!err && t == BPF_READ && value_regno >= 0)
3931 mark_reg_unknown(env, regs, value_regno);
3932 } else if (type_is_sk_pointer(reg->type)) {
3933 if (t == BPF_WRITE) {
3934 verbose(env, "R%d cannot write into %s\n",
3935 regno, reg_type_str(env, reg->type));
3936 return -EACCES;
3937 }
3938 err = check_sock_access(env, insn_idx, regno, off, size, t);
3939 if (!err && value_regno >= 0)
3940 mark_reg_unknown(env, regs, value_regno);
3941 } else if (reg->type == PTR_TO_TP_BUFFER) {
3942 err = check_tp_buffer_access(env, reg, regno, off, size);
3943 if (!err && t == BPF_READ && value_regno >= 0)
3944 mark_reg_unknown(env, regs, value_regno);
3945 } else if (reg->type == PTR_TO_BTF_ID) {
3946 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3947 value_regno);
3948 } else if (reg->type == CONST_PTR_TO_MAP) {
3949 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3950 value_regno);
3951 } else if (base_type(reg->type) == PTR_TO_BUF) {
3952 bool rdonly_mem = type_is_rdonly_mem(reg->type);
3953 const char *buf_info;
3954 u32 *max_access;
3955
3956 if (rdonly_mem) {
3957 if (t == BPF_WRITE) {
3958 verbose(env, "R%d cannot write into %s\n",
3959 regno, reg_type_str(env, reg->type));
3960 return -EACCES;
3961 }
3962 buf_info = "rdonly";
3963 max_access = &env->prog->aux->max_rdonly_access;
3964 } else {
3965 buf_info = "rdwr";
3966 max_access = &env->prog->aux->max_rdwr_access;
3967 }
3968
3969 err = check_buffer_access(env, reg, regno, off, size, false,
3970 buf_info, max_access);
3971 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
3972 mark_reg_unknown(env, regs, value_regno);
3973 } else {
3974 verbose(env, "R%d invalid mem access '%s'\n", regno,
3975 reg_type_str(env, reg->type));
3976 return -EACCES;
3977 }
3978
3979 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
3980 regs[value_regno].type == SCALAR_VALUE) {
3981 /* b/h/w load zero-extends, mark upper bits as known 0 */
3982 coerce_reg_to_size(®s[value_regno], size);
3983 }
3984 return err;
3985 }
3986
check_xadd(struct bpf_verifier_env * env,int insn_idx,struct bpf_insn * insn)3987 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
3988 {
3989 int err;
3990
3991 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3992 insn->imm != 0) {
3993 verbose(env, "BPF_XADD uses reserved fields\n");
3994 return -EINVAL;
3995 }
3996
3997 /* check src1 operand */
3998 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3999 if (err)
4000 return err;
4001
4002 /* check src2 operand */
4003 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4004 if (err)
4005 return err;
4006
4007 if (is_pointer_value(env, insn->src_reg)) {
4008 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4009 return -EACCES;
4010 }
4011
4012 if (is_ctx_reg(env, insn->dst_reg) ||
4013 is_pkt_reg(env, insn->dst_reg) ||
4014 is_flow_key_reg(env, insn->dst_reg) ||
4015 is_sk_reg(env, insn->dst_reg)) {
4016 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
4017 insn->dst_reg,
4018 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
4019 return -EACCES;
4020 }
4021
4022 /* check whether atomic_add can read the memory */
4023 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4024 BPF_SIZE(insn->code), BPF_READ, -1, true);
4025 if (err)
4026 return err;
4027
4028 /* check whether atomic_add can write into the same memory */
4029 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4030 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4031 }
4032
4033 /* When register 'regno' is used to read the stack (either directly or through
4034 * a helper function) make sure that it's within stack boundary and, depending
4035 * on the access type, that all elements of the stack are initialized.
4036 *
4037 * 'off' includes 'regno->off', but not its dynamic part (if any).
4038 *
4039 * All registers that have been spilled on the stack in the slots within the
4040 * read offsets are marked as read.
4041 */
check_stack_range_initialized(struct bpf_verifier_env * env,int regno,int off,int access_size,bool zero_size_allowed,enum stack_access_src type,struct bpf_call_arg_meta * meta)4042 static int check_stack_range_initialized(
4043 struct bpf_verifier_env *env, int regno, int off,
4044 int access_size, bool zero_size_allowed,
4045 enum stack_access_src type, struct bpf_call_arg_meta *meta)
4046 {
4047 struct bpf_reg_state *reg = reg_state(env, regno);
4048 struct bpf_func_state *state = func(env, reg);
4049 int err, min_off, max_off, i, j, slot, spi;
4050 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4051 enum bpf_access_type bounds_check_type;
4052 /* Some accesses can write anything into the stack, others are
4053 * read-only.
4054 */
4055 bool clobber = false;
4056
4057 if (access_size == 0 && !zero_size_allowed) {
4058 verbose(env, "invalid zero-sized read\n");
4059 return -EACCES;
4060 }
4061
4062 if (type == ACCESS_HELPER) {
4063 /* The bounds checks for writes are more permissive than for
4064 * reads. However, if raw_mode is not set, we'll do extra
4065 * checks below.
4066 */
4067 bounds_check_type = BPF_WRITE;
4068 clobber = true;
4069 } else {
4070 bounds_check_type = BPF_READ;
4071 }
4072 err = check_stack_access_within_bounds(env, regno, off, access_size,
4073 type, bounds_check_type);
4074 if (err)
4075 return err;
4076
4077
4078 if (tnum_is_const(reg->var_off)) {
4079 min_off = max_off = reg->var_off.value + off;
4080 } else {
4081 /* Variable offset is prohibited for unprivileged mode for
4082 * simplicity since it requires corresponding support in
4083 * Spectre masking for stack ALU.
4084 * See also retrieve_ptr_limit().
4085 */
4086 if (!env->bypass_spec_v1) {
4087 char tn_buf[48];
4088
4089 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4090 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4091 regno, err_extra, tn_buf);
4092 return -EACCES;
4093 }
4094 /* Only initialized buffer on stack is allowed to be accessed
4095 * with variable offset. With uninitialized buffer it's hard to
4096 * guarantee that whole memory is marked as initialized on
4097 * helper return since specific bounds are unknown what may
4098 * cause uninitialized stack leaking.
4099 */
4100 if (meta && meta->raw_mode)
4101 meta = NULL;
4102
4103 min_off = reg->smin_value + off;
4104 max_off = reg->smax_value + off;
4105 }
4106
4107 if (meta && meta->raw_mode) {
4108 meta->access_size = access_size;
4109 meta->regno = regno;
4110 return 0;
4111 }
4112
4113 for (i = min_off; i < max_off + access_size; i++) {
4114 u8 *stype;
4115
4116 slot = -i - 1;
4117 spi = slot / BPF_REG_SIZE;
4118 if (state->allocated_stack <= slot)
4119 goto err;
4120 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4121 if (*stype == STACK_MISC)
4122 goto mark;
4123 if (*stype == STACK_ZERO) {
4124 if (clobber) {
4125 /* helper can write anything into the stack */
4126 *stype = STACK_MISC;
4127 }
4128 goto mark;
4129 }
4130
4131 if (is_spilled_reg(&state->stack[spi]) &&
4132 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4133 goto mark;
4134
4135 if (is_spilled_reg(&state->stack[spi]) &&
4136 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4137 env->allow_ptr_leaks)) {
4138 if (clobber) {
4139 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4140 for (j = 0; j < BPF_REG_SIZE; j++)
4141 state->stack[spi].slot_type[j] = STACK_MISC;
4142 }
4143 goto mark;
4144 }
4145
4146 err:
4147 if (tnum_is_const(reg->var_off)) {
4148 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4149 err_extra, regno, min_off, i - min_off, access_size);
4150 } else {
4151 char tn_buf[48];
4152
4153 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4154 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4155 err_extra, regno, tn_buf, i - min_off, access_size);
4156 }
4157 return -EACCES;
4158 mark:
4159 /* reading any byte out of 8-byte 'spill_slot' will cause
4160 * the whole slot to be marked as 'read'
4161 */
4162 mark_reg_read(env, &state->stack[spi].spilled_ptr,
4163 state->stack[spi].spilled_ptr.parent,
4164 REG_LIVE_READ64);
4165 }
4166 return update_stack_depth(env, state, min_off);
4167 }
4168
check_helper_mem_access(struct bpf_verifier_env * env,int regno,int access_size,bool zero_size_allowed,struct bpf_call_arg_meta * meta)4169 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4170 int access_size, bool zero_size_allowed,
4171 struct bpf_call_arg_meta *meta)
4172 {
4173 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4174 const char *buf_info;
4175 u32 *max_access;
4176
4177 switch (base_type(reg->type)) {
4178 case PTR_TO_PACKET:
4179 case PTR_TO_PACKET_META:
4180 return check_packet_access(env, regno, reg->off, access_size,
4181 zero_size_allowed);
4182 case PTR_TO_MAP_VALUE:
4183 if (check_map_access_type(env, regno, reg->off, access_size,
4184 meta && meta->raw_mode ? BPF_WRITE :
4185 BPF_READ))
4186 return -EACCES;
4187 return check_map_access(env, regno, reg->off, access_size,
4188 zero_size_allowed);
4189 case PTR_TO_MEM:
4190 return check_mem_region_access(env, regno, reg->off,
4191 access_size, reg->mem_size,
4192 zero_size_allowed);
4193 case PTR_TO_BUF:
4194 if (type_is_rdonly_mem(reg->type)) {
4195 if (meta && meta->raw_mode)
4196 return -EACCES;
4197
4198 buf_info = "rdonly";
4199 max_access = &env->prog->aux->max_rdonly_access;
4200 } else {
4201 buf_info = "rdwr";
4202 max_access = &env->prog->aux->max_rdwr_access;
4203 }
4204 return check_buffer_access(env, reg, regno, reg->off,
4205 access_size, zero_size_allowed,
4206 buf_info, max_access);
4207 case PTR_TO_STACK:
4208 return check_stack_range_initialized(
4209 env,
4210 regno, reg->off, access_size,
4211 zero_size_allowed, ACCESS_HELPER, meta);
4212 default: /* scalar_value or invalid ptr */
4213 /* Allow zero-byte read from NULL, regardless of pointer type */
4214 if (zero_size_allowed && access_size == 0 &&
4215 register_is_null(reg))
4216 return 0;
4217
4218 verbose(env, "R%d type=%s ", regno,
4219 reg_type_str(env, reg->type));
4220 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
4221 return -EACCES;
4222 }
4223 }
4224
4225 /* Implementation details:
4226 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4227 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4228 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4229 * value_or_null->value transition, since the verifier only cares about
4230 * the range of access to valid map value pointer and doesn't care about actual
4231 * address of the map element.
4232 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4233 * reg->id > 0 after value_or_null->value transition. By doing so
4234 * two bpf_map_lookups will be considered two different pointers that
4235 * point to different bpf_spin_locks.
4236 * The verifier allows taking only one bpf_spin_lock at a time to avoid
4237 * dead-locks.
4238 * Since only one bpf_spin_lock is allowed the checks are simpler than
4239 * reg_is_refcounted() logic. The verifier needs to remember only
4240 * one spin_lock instead of array of acquired_refs.
4241 * cur_state->active_spin_lock remembers which map value element got locked
4242 * and clears it after bpf_spin_unlock.
4243 */
process_spin_lock(struct bpf_verifier_env * env,int regno,bool is_lock)4244 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4245 bool is_lock)
4246 {
4247 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4248 struct bpf_verifier_state *cur = env->cur_state;
4249 bool is_const = tnum_is_const(reg->var_off);
4250 struct bpf_map *map = reg->map_ptr;
4251 u64 val = reg->var_off.value;
4252
4253 if (!is_const) {
4254 verbose(env,
4255 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4256 regno);
4257 return -EINVAL;
4258 }
4259 if (!map->btf) {
4260 verbose(env,
4261 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
4262 map->name);
4263 return -EINVAL;
4264 }
4265 if (!map_value_has_spin_lock(map)) {
4266 if (map->spin_lock_off == -E2BIG)
4267 verbose(env,
4268 "map '%s' has more than one 'struct bpf_spin_lock'\n",
4269 map->name);
4270 else if (map->spin_lock_off == -ENOENT)
4271 verbose(env,
4272 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
4273 map->name);
4274 else
4275 verbose(env,
4276 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4277 map->name);
4278 return -EINVAL;
4279 }
4280 if (map->spin_lock_off != val + reg->off) {
4281 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4282 val + reg->off);
4283 return -EINVAL;
4284 }
4285 if (is_lock) {
4286 if (cur->active_spin_lock) {
4287 verbose(env,
4288 "Locking two bpf_spin_locks are not allowed\n");
4289 return -EINVAL;
4290 }
4291 cur->active_spin_lock = reg->id;
4292 } else {
4293 if (!cur->active_spin_lock) {
4294 verbose(env, "bpf_spin_unlock without taking a lock\n");
4295 return -EINVAL;
4296 }
4297 if (cur->active_spin_lock != reg->id) {
4298 verbose(env, "bpf_spin_unlock of different lock\n");
4299 return -EINVAL;
4300 }
4301 cur->active_spin_lock = 0;
4302 }
4303 return 0;
4304 }
4305
arg_type_is_mem_ptr(enum bpf_arg_type type)4306 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4307 {
4308 return base_type(type) == ARG_PTR_TO_MEM ||
4309 base_type(type) == ARG_PTR_TO_UNINIT_MEM;
4310 }
4311
arg_type_is_mem_size(enum bpf_arg_type type)4312 static bool arg_type_is_mem_size(enum bpf_arg_type type)
4313 {
4314 return type == ARG_CONST_SIZE ||
4315 type == ARG_CONST_SIZE_OR_ZERO;
4316 }
4317
arg_type_is_alloc_size(enum bpf_arg_type type)4318 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4319 {
4320 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4321 }
4322
arg_type_is_int_ptr(enum bpf_arg_type type)4323 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4324 {
4325 return type == ARG_PTR_TO_INT ||
4326 type == ARG_PTR_TO_LONG;
4327 }
4328
int_ptr_type_to_size(enum bpf_arg_type type)4329 static int int_ptr_type_to_size(enum bpf_arg_type type)
4330 {
4331 if (type == ARG_PTR_TO_INT)
4332 return sizeof(u32);
4333 else if (type == ARG_PTR_TO_LONG)
4334 return sizeof(u64);
4335
4336 return -EINVAL;
4337 }
4338
resolve_map_arg_type(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_arg_type * arg_type)4339 static int resolve_map_arg_type(struct bpf_verifier_env *env,
4340 const struct bpf_call_arg_meta *meta,
4341 enum bpf_arg_type *arg_type)
4342 {
4343 if (!meta->map_ptr) {
4344 /* kernel subsystem misconfigured verifier */
4345 verbose(env, "invalid map_ptr to access map->type\n");
4346 return -EACCES;
4347 }
4348
4349 switch (meta->map_ptr->map_type) {
4350 case BPF_MAP_TYPE_SOCKMAP:
4351 case BPF_MAP_TYPE_SOCKHASH:
4352 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4353 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4354 } else {
4355 verbose(env, "invalid arg_type for sockmap/sockhash\n");
4356 return -EINVAL;
4357 }
4358 break;
4359
4360 default:
4361 break;
4362 }
4363 return 0;
4364 }
4365
4366 struct bpf_reg_types {
4367 const enum bpf_reg_type types[10];
4368 u32 *btf_id;
4369 };
4370
4371 static const struct bpf_reg_types map_key_value_types = {
4372 .types = {
4373 PTR_TO_STACK,
4374 PTR_TO_PACKET,
4375 PTR_TO_PACKET_META,
4376 PTR_TO_MAP_VALUE,
4377 },
4378 };
4379
4380 static const struct bpf_reg_types sock_types = {
4381 .types = {
4382 PTR_TO_SOCK_COMMON,
4383 PTR_TO_SOCKET,
4384 PTR_TO_TCP_SOCK,
4385 PTR_TO_XDP_SOCK,
4386 },
4387 };
4388
4389 #ifdef CONFIG_NET
4390 static const struct bpf_reg_types btf_id_sock_common_types = {
4391 .types = {
4392 PTR_TO_SOCK_COMMON,
4393 PTR_TO_SOCKET,
4394 PTR_TO_TCP_SOCK,
4395 PTR_TO_XDP_SOCK,
4396 PTR_TO_BTF_ID,
4397 },
4398 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4399 };
4400 #endif
4401
4402 static const struct bpf_reg_types mem_types = {
4403 .types = {
4404 PTR_TO_STACK,
4405 PTR_TO_PACKET,
4406 PTR_TO_PACKET_META,
4407 PTR_TO_MAP_VALUE,
4408 PTR_TO_MEM,
4409 PTR_TO_MEM | MEM_ALLOC,
4410 PTR_TO_BUF,
4411 },
4412 };
4413
4414 static const struct bpf_reg_types int_ptr_types = {
4415 .types = {
4416 PTR_TO_STACK,
4417 PTR_TO_PACKET,
4418 PTR_TO_PACKET_META,
4419 PTR_TO_MAP_VALUE,
4420 },
4421 };
4422
4423 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4424 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4425 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4426 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } };
4427 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4428 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4429 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4430 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4431
4432 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4433 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
4434 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
4435 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
4436 [ARG_CONST_SIZE] = &scalar_types,
4437 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
4438 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
4439 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
4440 [ARG_PTR_TO_CTX] = &context_types,
4441 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
4442 #ifdef CONFIG_NET
4443 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
4444 #endif
4445 [ARG_PTR_TO_SOCKET] = &fullsock_types,
4446 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
4447 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
4448 [ARG_PTR_TO_MEM] = &mem_types,
4449 [ARG_PTR_TO_UNINIT_MEM] = &mem_types,
4450 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
4451 [ARG_PTR_TO_INT] = &int_ptr_types,
4452 [ARG_PTR_TO_LONG] = &int_ptr_types,
4453 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
4454 };
4455
check_reg_type(struct bpf_verifier_env * env,u32 regno,enum bpf_arg_type arg_type,const u32 * arg_btf_id)4456 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4457 enum bpf_arg_type arg_type,
4458 const u32 *arg_btf_id)
4459 {
4460 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4461 enum bpf_reg_type expected, type = reg->type;
4462 const struct bpf_reg_types *compatible;
4463 int i, j;
4464
4465 compatible = compatible_reg_types[base_type(arg_type)];
4466 if (!compatible) {
4467 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4468 return -EFAULT;
4469 }
4470
4471 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
4472 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
4473 *
4474 * Same for MAYBE_NULL:
4475 *
4476 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
4477 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
4478 *
4479 * Therefore we fold these flags depending on the arg_type before comparison.
4480 */
4481 if (arg_type & MEM_RDONLY)
4482 type &= ~MEM_RDONLY;
4483 if (arg_type & PTR_MAYBE_NULL)
4484 type &= ~PTR_MAYBE_NULL;
4485
4486 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4487 expected = compatible->types[i];
4488 if (expected == NOT_INIT)
4489 break;
4490
4491 if (type == expected)
4492 goto found;
4493 }
4494
4495 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
4496 for (j = 0; j + 1 < i; j++)
4497 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
4498 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
4499 return -EACCES;
4500
4501 found:
4502 if (reg->type == PTR_TO_BTF_ID) {
4503 if (!arg_btf_id) {
4504 if (!compatible->btf_id) {
4505 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4506 return -EFAULT;
4507 }
4508 arg_btf_id = compatible->btf_id;
4509 }
4510
4511 if (!btf_struct_ids_match(&env->log, reg->off, reg->btf_id,
4512 *arg_btf_id)) {
4513 verbose(env, "R%d is of type %s but %s is expected\n",
4514 regno, kernel_type_name(reg->btf_id),
4515 kernel_type_name(*arg_btf_id));
4516 return -EACCES;
4517 }
4518 }
4519
4520 return 0;
4521 }
4522
check_func_arg(struct bpf_verifier_env * env,u32 arg,struct bpf_call_arg_meta * meta,const struct bpf_func_proto * fn)4523 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4524 struct bpf_call_arg_meta *meta,
4525 const struct bpf_func_proto *fn)
4526 {
4527 u32 regno = BPF_REG_1 + arg;
4528 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4529 enum bpf_arg_type arg_type = fn->arg_type[arg];
4530 enum bpf_reg_type type = reg->type;
4531 int err = 0;
4532
4533 if (arg_type == ARG_DONTCARE)
4534 return 0;
4535
4536 err = check_reg_arg(env, regno, SRC_OP);
4537 if (err)
4538 return err;
4539
4540 if (arg_type == ARG_ANYTHING) {
4541 if (is_pointer_value(env, regno)) {
4542 verbose(env, "R%d leaks addr into helper function\n",
4543 regno);
4544 return -EACCES;
4545 }
4546 return 0;
4547 }
4548
4549 if (type_is_pkt_pointer(type) &&
4550 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4551 verbose(env, "helper access to the packet is not allowed\n");
4552 return -EACCES;
4553 }
4554
4555 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE ||
4556 base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4557 err = resolve_map_arg_type(env, meta, &arg_type);
4558 if (err)
4559 return err;
4560 }
4561
4562 if (register_is_null(reg) && type_may_be_null(arg_type))
4563 /* A NULL register has a SCALAR_VALUE type, so skip
4564 * type checking.
4565 */
4566 goto skip_type_check;
4567
4568 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4569 if (err)
4570 return err;
4571
4572 switch ((u32)type) {
4573 case SCALAR_VALUE:
4574 /* Pointer types where reg offset is explicitly allowed: */
4575 case PTR_TO_PACKET:
4576 case PTR_TO_PACKET_META:
4577 case PTR_TO_MAP_VALUE:
4578 case PTR_TO_MEM:
4579 case PTR_TO_MEM | MEM_RDONLY:
4580 case PTR_TO_MEM | MEM_ALLOC:
4581 case PTR_TO_BUF:
4582 case PTR_TO_BUF | MEM_RDONLY:
4583 case PTR_TO_STACK:
4584 /* Some of the argument types nevertheless require a
4585 * zero register offset.
4586 */
4587 if (arg_type == ARG_PTR_TO_ALLOC_MEM)
4588 goto force_off_check;
4589 break;
4590 /* All the rest must be rejected: */
4591 default:
4592 force_off_check:
4593 err = __check_ptr_off_reg(env, reg, regno,
4594 type == PTR_TO_BTF_ID);
4595 if (err < 0)
4596 return err;
4597 break;
4598 }
4599
4600 skip_type_check:
4601 if (reg->ref_obj_id) {
4602 if (meta->ref_obj_id) {
4603 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4604 regno, reg->ref_obj_id,
4605 meta->ref_obj_id);
4606 return -EFAULT;
4607 }
4608 meta->ref_obj_id = reg->ref_obj_id;
4609 }
4610
4611 if (arg_type == ARG_CONST_MAP_PTR) {
4612 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4613 meta->map_ptr = reg->map_ptr;
4614 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4615 /* bpf_map_xxx(..., map_ptr, ..., key) call:
4616 * check that [key, key + map->key_size) are within
4617 * stack limits and initialized
4618 */
4619 if (!meta->map_ptr) {
4620 /* in function declaration map_ptr must come before
4621 * map_key, so that it's verified and known before
4622 * we have to check map_key here. Otherwise it means
4623 * that kernel subsystem misconfigured verifier
4624 */
4625 verbose(env, "invalid map_ptr to access map->key\n");
4626 return -EACCES;
4627 }
4628 err = check_helper_mem_access(env, regno,
4629 meta->map_ptr->key_size, false,
4630 NULL);
4631 } else if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE ||
4632 base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4633 if (type_may_be_null(arg_type) && register_is_null(reg))
4634 return 0;
4635
4636 /* bpf_map_xxx(..., map_ptr, ..., value) call:
4637 * check [value, value + map->value_size) validity
4638 */
4639 if (!meta->map_ptr) {
4640 /* kernel subsystem misconfigured verifier */
4641 verbose(env, "invalid map_ptr to access map->value\n");
4642 return -EACCES;
4643 }
4644 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4645 err = check_helper_mem_access(env, regno,
4646 meta->map_ptr->value_size, false,
4647 meta);
4648 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4649 if (!reg->btf_id) {
4650 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4651 return -EACCES;
4652 }
4653 meta->ret_btf_id = reg->btf_id;
4654 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4655 if (meta->func_id == BPF_FUNC_spin_lock) {
4656 if (process_spin_lock(env, regno, true))
4657 return -EACCES;
4658 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
4659 if (process_spin_lock(env, regno, false))
4660 return -EACCES;
4661 } else {
4662 verbose(env, "verifier internal error\n");
4663 return -EFAULT;
4664 }
4665 } else if (arg_type_is_mem_ptr(arg_type)) {
4666 /* The access to this pointer is only checked when we hit the
4667 * next is_mem_size argument below.
4668 */
4669 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
4670 } else if (arg_type_is_mem_size(arg_type)) {
4671 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4672
4673 /* This is used to refine r0 return value bounds for helpers
4674 * that enforce this value as an upper bound on return values.
4675 * See do_refine_retval_range() for helpers that can refine
4676 * the return value. C type of helper is u32 so we pull register
4677 * bound from umax_value however, if negative verifier errors
4678 * out. Only upper bounds can be learned because retval is an
4679 * int type and negative retvals are allowed.
4680 */
4681 meta->msize_max_value = reg->umax_value;
4682
4683 /* The register is SCALAR_VALUE; the access check
4684 * happens using its boundaries.
4685 */
4686 if (!tnum_is_const(reg->var_off))
4687 /* For unprivileged variable accesses, disable raw
4688 * mode so that the program is required to
4689 * initialize all the memory that the helper could
4690 * just partially fill up.
4691 */
4692 meta = NULL;
4693
4694 if (reg->smin_value < 0) {
4695 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
4696 regno);
4697 return -EACCES;
4698 }
4699
4700 if (reg->umin_value == 0) {
4701 err = check_helper_mem_access(env, regno - 1, 0,
4702 zero_size_allowed,
4703 meta);
4704 if (err)
4705 return err;
4706 }
4707
4708 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
4709 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
4710 regno);
4711 return -EACCES;
4712 }
4713 err = check_helper_mem_access(env, regno - 1,
4714 reg->umax_value,
4715 zero_size_allowed, meta);
4716 if (!err)
4717 err = mark_chain_precision(env, regno);
4718 } else if (arg_type_is_alloc_size(arg_type)) {
4719 if (!tnum_is_const(reg->var_off)) {
4720 verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n",
4721 regno);
4722 return -EACCES;
4723 }
4724 meta->mem_size = reg->var_off.value;
4725 } else if (arg_type_is_int_ptr(arg_type)) {
4726 int size = int_ptr_type_to_size(arg_type);
4727
4728 err = check_helper_mem_access(env, regno, size, false, meta);
4729 if (err)
4730 return err;
4731 err = check_ptr_alignment(env, reg, 0, size, true);
4732 }
4733
4734 return err;
4735 }
4736
may_update_sockmap(struct bpf_verifier_env * env,int func_id)4737 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4738 {
4739 enum bpf_attach_type eatype = env->prog->expected_attach_type;
4740 enum bpf_prog_type type = resolve_prog_type(env->prog);
4741
4742 if (func_id != BPF_FUNC_map_update_elem)
4743 return false;
4744
4745 /* It's not possible to get access to a locked struct sock in these
4746 * contexts, so updating is safe.
4747 */
4748 switch (type) {
4749 case BPF_PROG_TYPE_TRACING:
4750 if (eatype == BPF_TRACE_ITER)
4751 return true;
4752 break;
4753 case BPF_PROG_TYPE_SOCKET_FILTER:
4754 case BPF_PROG_TYPE_SCHED_CLS:
4755 case BPF_PROG_TYPE_SCHED_ACT:
4756 case BPF_PROG_TYPE_XDP:
4757 case BPF_PROG_TYPE_SK_REUSEPORT:
4758 case BPF_PROG_TYPE_FLOW_DISSECTOR:
4759 case BPF_PROG_TYPE_SK_LOOKUP:
4760 return true;
4761 default:
4762 break;
4763 }
4764
4765 verbose(env, "cannot update sockmap in this context\n");
4766 return false;
4767 }
4768
allow_tail_call_in_subprogs(struct bpf_verifier_env * env)4769 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4770 {
4771 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4772 }
4773
check_map_func_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,int func_id)4774 static int check_map_func_compatibility(struct bpf_verifier_env *env,
4775 struct bpf_map *map, int func_id)
4776 {
4777 if (!map)
4778 return 0;
4779
4780 /* We need a two way check, first is from map perspective ... */
4781 switch (map->map_type) {
4782 case BPF_MAP_TYPE_PROG_ARRAY:
4783 if (func_id != BPF_FUNC_tail_call)
4784 goto error;
4785 break;
4786 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4787 if (func_id != BPF_FUNC_perf_event_read &&
4788 func_id != BPF_FUNC_perf_event_output &&
4789 func_id != BPF_FUNC_skb_output &&
4790 func_id != BPF_FUNC_perf_event_read_value &&
4791 func_id != BPF_FUNC_xdp_output)
4792 goto error;
4793 break;
4794 case BPF_MAP_TYPE_RINGBUF:
4795 if (func_id != BPF_FUNC_ringbuf_output &&
4796 func_id != BPF_FUNC_ringbuf_reserve &&
4797 func_id != BPF_FUNC_ringbuf_query)
4798 goto error;
4799 break;
4800 case BPF_MAP_TYPE_STACK_TRACE:
4801 if (func_id != BPF_FUNC_get_stackid)
4802 goto error;
4803 break;
4804 case BPF_MAP_TYPE_CGROUP_ARRAY:
4805 if (func_id != BPF_FUNC_skb_under_cgroup &&
4806 func_id != BPF_FUNC_current_task_under_cgroup)
4807 goto error;
4808 break;
4809 case BPF_MAP_TYPE_CGROUP_STORAGE:
4810 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
4811 if (func_id != BPF_FUNC_get_local_storage)
4812 goto error;
4813 break;
4814 case BPF_MAP_TYPE_DEVMAP:
4815 case BPF_MAP_TYPE_DEVMAP_HASH:
4816 if (func_id != BPF_FUNC_redirect_map &&
4817 func_id != BPF_FUNC_map_lookup_elem)
4818 goto error;
4819 break;
4820 /* Restrict bpf side of cpumap and xskmap, open when use-cases
4821 * appear.
4822 */
4823 case BPF_MAP_TYPE_CPUMAP:
4824 if (func_id != BPF_FUNC_redirect_map)
4825 goto error;
4826 break;
4827 case BPF_MAP_TYPE_XSKMAP:
4828 if (func_id != BPF_FUNC_redirect_map &&
4829 func_id != BPF_FUNC_map_lookup_elem)
4830 goto error;
4831 break;
4832 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4833 case BPF_MAP_TYPE_HASH_OF_MAPS:
4834 if (func_id != BPF_FUNC_map_lookup_elem)
4835 goto error;
4836 break;
4837 case BPF_MAP_TYPE_SOCKMAP:
4838 if (func_id != BPF_FUNC_sk_redirect_map &&
4839 func_id != BPF_FUNC_sock_map_update &&
4840 func_id != BPF_FUNC_map_delete_elem &&
4841 func_id != BPF_FUNC_msg_redirect_map &&
4842 func_id != BPF_FUNC_sk_select_reuseport &&
4843 func_id != BPF_FUNC_map_lookup_elem &&
4844 !may_update_sockmap(env, func_id))
4845 goto error;
4846 break;
4847 case BPF_MAP_TYPE_SOCKHASH:
4848 if (func_id != BPF_FUNC_sk_redirect_hash &&
4849 func_id != BPF_FUNC_sock_hash_update &&
4850 func_id != BPF_FUNC_map_delete_elem &&
4851 func_id != BPF_FUNC_msg_redirect_hash &&
4852 func_id != BPF_FUNC_sk_select_reuseport &&
4853 func_id != BPF_FUNC_map_lookup_elem &&
4854 !may_update_sockmap(env, func_id))
4855 goto error;
4856 break;
4857 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4858 if (func_id != BPF_FUNC_sk_select_reuseport)
4859 goto error;
4860 break;
4861 case BPF_MAP_TYPE_QUEUE:
4862 case BPF_MAP_TYPE_STACK:
4863 if (func_id != BPF_FUNC_map_peek_elem &&
4864 func_id != BPF_FUNC_map_pop_elem &&
4865 func_id != BPF_FUNC_map_push_elem)
4866 goto error;
4867 break;
4868 case BPF_MAP_TYPE_SK_STORAGE:
4869 if (func_id != BPF_FUNC_sk_storage_get &&
4870 func_id != BPF_FUNC_sk_storage_delete)
4871 goto error;
4872 break;
4873 case BPF_MAP_TYPE_INODE_STORAGE:
4874 if (func_id != BPF_FUNC_inode_storage_get &&
4875 func_id != BPF_FUNC_inode_storage_delete)
4876 goto error;
4877 break;
4878 default:
4879 break;
4880 }
4881
4882 /* ... and second from the function itself. */
4883 switch (func_id) {
4884 case BPF_FUNC_tail_call:
4885 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4886 goto error;
4887 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
4888 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
4889 return -EINVAL;
4890 }
4891 break;
4892 case BPF_FUNC_perf_event_read:
4893 case BPF_FUNC_perf_event_output:
4894 case BPF_FUNC_perf_event_read_value:
4895 case BPF_FUNC_skb_output:
4896 case BPF_FUNC_xdp_output:
4897 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4898 goto error;
4899 break;
4900 case BPF_FUNC_ringbuf_output:
4901 case BPF_FUNC_ringbuf_reserve:
4902 case BPF_FUNC_ringbuf_query:
4903 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
4904 goto error;
4905 break;
4906 case BPF_FUNC_get_stackid:
4907 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4908 goto error;
4909 break;
4910 case BPF_FUNC_current_task_under_cgroup:
4911 case BPF_FUNC_skb_under_cgroup:
4912 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4913 goto error;
4914 break;
4915 case BPF_FUNC_redirect_map:
4916 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
4917 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
4918 map->map_type != BPF_MAP_TYPE_CPUMAP &&
4919 map->map_type != BPF_MAP_TYPE_XSKMAP)
4920 goto error;
4921 break;
4922 case BPF_FUNC_sk_redirect_map:
4923 case BPF_FUNC_msg_redirect_map:
4924 case BPF_FUNC_sock_map_update:
4925 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4926 goto error;
4927 break;
4928 case BPF_FUNC_sk_redirect_hash:
4929 case BPF_FUNC_msg_redirect_hash:
4930 case BPF_FUNC_sock_hash_update:
4931 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
4932 goto error;
4933 break;
4934 case BPF_FUNC_get_local_storage:
4935 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4936 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
4937 goto error;
4938 break;
4939 case BPF_FUNC_sk_select_reuseport:
4940 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4941 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4942 map->map_type != BPF_MAP_TYPE_SOCKHASH)
4943 goto error;
4944 break;
4945 case BPF_FUNC_map_peek_elem:
4946 case BPF_FUNC_map_pop_elem:
4947 case BPF_FUNC_map_push_elem:
4948 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4949 map->map_type != BPF_MAP_TYPE_STACK)
4950 goto error;
4951 break;
4952 case BPF_FUNC_sk_storage_get:
4953 case BPF_FUNC_sk_storage_delete:
4954 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4955 goto error;
4956 break;
4957 case BPF_FUNC_inode_storage_get:
4958 case BPF_FUNC_inode_storage_delete:
4959 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
4960 goto error;
4961 break;
4962 default:
4963 break;
4964 }
4965
4966 return 0;
4967 error:
4968 verbose(env, "cannot pass map_type %d into func %s#%d\n",
4969 map->map_type, func_id_name(func_id), func_id);
4970 return -EINVAL;
4971 }
4972
check_raw_mode_ok(const struct bpf_func_proto * fn)4973 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
4974 {
4975 int count = 0;
4976
4977 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
4978 count++;
4979 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
4980 count++;
4981 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
4982 count++;
4983 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
4984 count++;
4985 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
4986 count++;
4987
4988 /* We only support one arg being in raw mode at the moment,
4989 * which is sufficient for the helper functions we have
4990 * right now.
4991 */
4992 return count <= 1;
4993 }
4994
check_args_pair_invalid(enum bpf_arg_type arg_curr,enum bpf_arg_type arg_next)4995 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4996 enum bpf_arg_type arg_next)
4997 {
4998 return (arg_type_is_mem_ptr(arg_curr) &&
4999 !arg_type_is_mem_size(arg_next)) ||
5000 (!arg_type_is_mem_ptr(arg_curr) &&
5001 arg_type_is_mem_size(arg_next));
5002 }
5003
check_arg_pair_ok(const struct bpf_func_proto * fn)5004 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5005 {
5006 /* bpf_xxx(..., buf, len) call will access 'len'
5007 * bytes from memory 'buf'. Both arg types need
5008 * to be paired, so make sure there's no buggy
5009 * helper function specification.
5010 */
5011 if (arg_type_is_mem_size(fn->arg1_type) ||
5012 arg_type_is_mem_ptr(fn->arg5_type) ||
5013 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5014 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5015 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5016 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5017 return false;
5018
5019 return true;
5020 }
5021
check_refcount_ok(const struct bpf_func_proto * fn,int func_id)5022 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5023 {
5024 int count = 0;
5025
5026 if (arg_type_may_be_refcounted(fn->arg1_type))
5027 count++;
5028 if (arg_type_may_be_refcounted(fn->arg2_type))
5029 count++;
5030 if (arg_type_may_be_refcounted(fn->arg3_type))
5031 count++;
5032 if (arg_type_may_be_refcounted(fn->arg4_type))
5033 count++;
5034 if (arg_type_may_be_refcounted(fn->arg5_type))
5035 count++;
5036
5037 /* A reference acquiring function cannot acquire
5038 * another refcounted ptr.
5039 */
5040 if (may_be_acquire_function(func_id) && count)
5041 return false;
5042
5043 /* We only support one arg being unreferenced at the moment,
5044 * which is sufficient for the helper functions we have right now.
5045 */
5046 return count <= 1;
5047 }
5048
check_btf_id_ok(const struct bpf_func_proto * fn)5049 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5050 {
5051 int i;
5052
5053 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5054 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5055 return false;
5056
5057 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5058 return false;
5059 }
5060
5061 return true;
5062 }
5063
check_func_proto(const struct bpf_func_proto * fn,int func_id)5064 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5065 {
5066 return check_raw_mode_ok(fn) &&
5067 check_arg_pair_ok(fn) &&
5068 check_btf_id_ok(fn) &&
5069 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5070 }
5071
5072 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5073 * are now invalid, so turn them into unknown SCALAR_VALUE.
5074 */
clear_all_pkt_pointers(struct bpf_verifier_env * env)5075 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5076 {
5077 struct bpf_func_state *state;
5078 struct bpf_reg_state *reg;
5079
5080 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
5081 if (reg_is_pkt_pointer_any(reg))
5082 __mark_reg_unknown(env, reg);
5083 }));
5084 }
5085
5086 enum {
5087 AT_PKT_END = -1,
5088 BEYOND_PKT_END = -2,
5089 };
5090
mark_pkt_end(struct bpf_verifier_state * vstate,int regn,bool range_open)5091 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5092 {
5093 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5094 struct bpf_reg_state *reg = &state->regs[regn];
5095
5096 if (reg->type != PTR_TO_PACKET)
5097 /* PTR_TO_PACKET_META is not supported yet */
5098 return;
5099
5100 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5101 * How far beyond pkt_end it goes is unknown.
5102 * if (!range_open) it's the case of pkt >= pkt_end
5103 * if (range_open) it's the case of pkt > pkt_end
5104 * hence this pointer is at least 1 byte bigger than pkt_end
5105 */
5106 if (range_open)
5107 reg->range = BEYOND_PKT_END;
5108 else
5109 reg->range = AT_PKT_END;
5110 }
5111
5112 /* The pointer with the specified id has released its reference to kernel
5113 * resources. Identify all copies of the same pointer and clear the reference.
5114 */
release_reference(struct bpf_verifier_env * env,int ref_obj_id)5115 static int release_reference(struct bpf_verifier_env *env,
5116 int ref_obj_id)
5117 {
5118 struct bpf_func_state *state;
5119 struct bpf_reg_state *reg;
5120 int err;
5121
5122 err = release_reference_state(cur_func(env), ref_obj_id);
5123 if (err)
5124 return err;
5125
5126 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
5127 if (reg->ref_obj_id == ref_obj_id) {
5128 if (!env->allow_ptr_leaks)
5129 __mark_reg_not_init(env, reg);
5130 else
5131 __mark_reg_unknown(env, reg);
5132 }
5133 }));
5134
5135 return 0;
5136 }
5137
clear_caller_saved_regs(struct bpf_verifier_env * env,struct bpf_reg_state * regs)5138 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5139 struct bpf_reg_state *regs)
5140 {
5141 int i;
5142
5143 /* after the call registers r0 - r5 were scratched */
5144 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5145 mark_reg_not_init(env, regs, caller_saved[i]);
5146 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5147 }
5148 }
5149
check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)5150 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5151 int *insn_idx)
5152 {
5153 struct bpf_verifier_state *state = env->cur_state;
5154 struct bpf_func_info_aux *func_info_aux;
5155 struct bpf_func_state *caller, *callee;
5156 int i, err, subprog, target_insn;
5157 bool is_global = false;
5158
5159 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5160 verbose(env, "the call stack of %d frames is too deep\n",
5161 state->curframe + 2);
5162 return -E2BIG;
5163 }
5164
5165 target_insn = *insn_idx + insn->imm;
5166 subprog = find_subprog(env, target_insn + 1);
5167 if (subprog < 0) {
5168 verbose(env, "verifier bug. No program starts at insn %d\n",
5169 target_insn + 1);
5170 return -EFAULT;
5171 }
5172
5173 caller = state->frame[state->curframe];
5174 if (state->frame[state->curframe + 1]) {
5175 verbose(env, "verifier bug. Frame %d already allocated\n",
5176 state->curframe + 1);
5177 return -EFAULT;
5178 }
5179
5180 func_info_aux = env->prog->aux->func_info_aux;
5181 if (func_info_aux)
5182 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5183 err = btf_check_func_arg_match(env, subprog, caller->regs);
5184 if (err == -EFAULT)
5185 return err;
5186 if (is_global) {
5187 if (err) {
5188 verbose(env, "Caller passes invalid args into func#%d\n",
5189 subprog);
5190 return err;
5191 } else {
5192 if (env->log.level & BPF_LOG_LEVEL)
5193 verbose(env,
5194 "Func#%d is global and valid. Skipping.\n",
5195 subprog);
5196 clear_caller_saved_regs(env, caller->regs);
5197
5198 /* All global functions return a 64-bit SCALAR_VALUE */
5199 mark_reg_unknown(env, caller->regs, BPF_REG_0);
5200 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5201
5202 /* continue with next insn after call */
5203 return 0;
5204 }
5205 }
5206
5207 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5208 if (!callee)
5209 return -ENOMEM;
5210 state->frame[state->curframe + 1] = callee;
5211
5212 /* callee cannot access r0, r6 - r9 for reading and has to write
5213 * into its own stack before reading from it.
5214 * callee can read/write into caller's stack
5215 */
5216 init_func_state(env, callee,
5217 /* remember the callsite, it will be used by bpf_exit */
5218 *insn_idx /* callsite */,
5219 state->curframe + 1 /* frameno within this callchain */,
5220 subprog /* subprog number within this prog */);
5221
5222 /* Transfer references to the callee */
5223 err = transfer_reference_state(callee, caller);
5224 if (err)
5225 return err;
5226
5227 /* copy r1 - r5 args that callee can access. The copy includes parent
5228 * pointers, which connects us up to the liveness chain
5229 */
5230 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5231 callee->regs[i] = caller->regs[i];
5232
5233 clear_caller_saved_regs(env, caller->regs);
5234
5235 /* only increment it after check_reg_arg() finished */
5236 state->curframe++;
5237
5238 /* and go analyze first insn of the callee */
5239 *insn_idx = target_insn;
5240
5241 if (env->log.level & BPF_LOG_LEVEL) {
5242 verbose(env, "caller:\n");
5243 print_verifier_state(env, caller);
5244 verbose(env, "callee:\n");
5245 print_verifier_state(env, callee);
5246 }
5247 return 0;
5248 }
5249
prepare_func_exit(struct bpf_verifier_env * env,int * insn_idx)5250 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5251 {
5252 struct bpf_verifier_state *state = env->cur_state;
5253 struct bpf_func_state *caller, *callee;
5254 struct bpf_reg_state *r0;
5255 int err;
5256
5257 callee = state->frame[state->curframe];
5258 r0 = &callee->regs[BPF_REG_0];
5259 if (r0->type == PTR_TO_STACK) {
5260 /* technically it's ok to return caller's stack pointer
5261 * (or caller's caller's pointer) back to the caller,
5262 * since these pointers are valid. Only current stack
5263 * pointer will be invalid as soon as function exits,
5264 * but let's be conservative
5265 */
5266 verbose(env, "cannot return stack pointer to the caller\n");
5267 return -EINVAL;
5268 }
5269
5270 state->curframe--;
5271 caller = state->frame[state->curframe];
5272 /* return to the caller whatever r0 had in the callee */
5273 caller->regs[BPF_REG_0] = *r0;
5274
5275 /* Transfer references to the caller */
5276 err = transfer_reference_state(caller, callee);
5277 if (err)
5278 return err;
5279
5280 *insn_idx = callee->callsite + 1;
5281 if (env->log.level & BPF_LOG_LEVEL) {
5282 verbose(env, "returning from callee:\n");
5283 print_verifier_state(env, callee);
5284 verbose(env, "to caller at %d:\n", *insn_idx);
5285 print_verifier_state(env, caller);
5286 }
5287 /* clear everything in the callee */
5288 free_func_state(callee);
5289 state->frame[state->curframe + 1] = NULL;
5290 return 0;
5291 }
5292
do_refine_retval_range(struct bpf_reg_state * regs,int ret_type,int func_id,struct bpf_call_arg_meta * meta)5293 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5294 int func_id,
5295 struct bpf_call_arg_meta *meta)
5296 {
5297 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0];
5298
5299 if (ret_type != RET_INTEGER ||
5300 (func_id != BPF_FUNC_get_stack &&
5301 func_id != BPF_FUNC_probe_read_str &&
5302 func_id != BPF_FUNC_probe_read_kernel_str &&
5303 func_id != BPF_FUNC_probe_read_user_str))
5304 return;
5305
5306 ret_reg->smax_value = meta->msize_max_value;
5307 ret_reg->s32_max_value = meta->msize_max_value;
5308 ret_reg->smin_value = -MAX_ERRNO;
5309 ret_reg->s32_min_value = -MAX_ERRNO;
5310 reg_bounds_sync(ret_reg);
5311 }
5312
5313 static int
record_func_map(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)5314 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5315 int func_id, int insn_idx)
5316 {
5317 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5318 struct bpf_map *map = meta->map_ptr;
5319
5320 if (func_id != BPF_FUNC_tail_call &&
5321 func_id != BPF_FUNC_map_lookup_elem &&
5322 func_id != BPF_FUNC_map_update_elem &&
5323 func_id != BPF_FUNC_map_delete_elem &&
5324 func_id != BPF_FUNC_map_push_elem &&
5325 func_id != BPF_FUNC_map_pop_elem &&
5326 func_id != BPF_FUNC_map_peek_elem)
5327 return 0;
5328
5329 if (map == NULL) {
5330 verbose(env, "kernel subsystem misconfigured verifier\n");
5331 return -EINVAL;
5332 }
5333
5334 /* In case of read-only, some additional restrictions
5335 * need to be applied in order to prevent altering the
5336 * state of the map from program side.
5337 */
5338 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5339 (func_id == BPF_FUNC_map_delete_elem ||
5340 func_id == BPF_FUNC_map_update_elem ||
5341 func_id == BPF_FUNC_map_push_elem ||
5342 func_id == BPF_FUNC_map_pop_elem)) {
5343 verbose(env, "write into map forbidden\n");
5344 return -EACCES;
5345 }
5346
5347 if (!BPF_MAP_PTR(aux->map_ptr_state))
5348 bpf_map_ptr_store(aux, meta->map_ptr,
5349 !meta->map_ptr->bypass_spec_v1);
5350 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
5351 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
5352 !meta->map_ptr->bypass_spec_v1);
5353 return 0;
5354 }
5355
5356 static int
record_func_key(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)5357 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5358 int func_id, int insn_idx)
5359 {
5360 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5361 struct bpf_reg_state *regs = cur_regs(env), *reg;
5362 struct bpf_map *map = meta->map_ptr;
5363 u64 val, max;
5364 int err;
5365
5366 if (func_id != BPF_FUNC_tail_call)
5367 return 0;
5368 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5369 verbose(env, "kernel subsystem misconfigured verifier\n");
5370 return -EINVAL;
5371 }
5372
5373 reg = ®s[BPF_REG_3];
5374 val = reg->var_off.value;
5375 max = map->max_entries;
5376
5377 if (!(register_is_const(reg) && val < max)) {
5378 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5379 return 0;
5380 }
5381
5382 err = mark_chain_precision(env, BPF_REG_3);
5383 if (err)
5384 return err;
5385 if (bpf_map_key_unseen(aux))
5386 bpf_map_key_store(aux, val);
5387 else if (!bpf_map_key_poisoned(aux) &&
5388 bpf_map_key_immediate(aux) != val)
5389 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5390 return 0;
5391 }
5392
check_reference_leak(struct bpf_verifier_env * env)5393 static int check_reference_leak(struct bpf_verifier_env *env)
5394 {
5395 struct bpf_func_state *state = cur_func(env);
5396 int i;
5397
5398 for (i = 0; i < state->acquired_refs; i++) {
5399 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5400 state->refs[i].id, state->refs[i].insn_idx);
5401 }
5402 return state->acquired_refs ? -EINVAL : 0;
5403 }
5404
check_helper_call(struct bpf_verifier_env * env,int func_id,int insn_idx)5405 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
5406 {
5407 const struct bpf_func_proto *fn = NULL;
5408 enum bpf_return_type ret_type;
5409 enum bpf_type_flag ret_flag;
5410 struct bpf_reg_state *regs;
5411 struct bpf_call_arg_meta meta;
5412 bool changes_data;
5413 int i, err;
5414
5415 /* find function prototype */
5416 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5417 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5418 func_id);
5419 return -EINVAL;
5420 }
5421
5422 if (env->ops->get_func_proto)
5423 fn = env->ops->get_func_proto(func_id, env->prog);
5424 if (!fn) {
5425 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5426 func_id);
5427 return -EINVAL;
5428 }
5429
5430 /* eBPF programs must be GPL compatible to use GPL-ed functions */
5431 if (!env->prog->gpl_compatible && fn->gpl_only) {
5432 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5433 return -EINVAL;
5434 }
5435
5436 if (fn->allowed && !fn->allowed(env->prog)) {
5437 verbose(env, "helper call is not allowed in probe\n");
5438 return -EINVAL;
5439 }
5440
5441 /* With LD_ABS/IND some JITs save/restore skb from r1. */
5442 changes_data = bpf_helper_changes_pkt_data(fn->func);
5443 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5444 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5445 func_id_name(func_id), func_id);
5446 return -EINVAL;
5447 }
5448
5449 memset(&meta, 0, sizeof(meta));
5450 meta.pkt_access = fn->pkt_access;
5451
5452 err = check_func_proto(fn, func_id);
5453 if (err) {
5454 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
5455 func_id_name(func_id), func_id);
5456 return err;
5457 }
5458
5459 meta.func_id = func_id;
5460 /* check args */
5461 for (i = 0; i < 5; i++) {
5462 err = check_func_arg(env, i, &meta, fn);
5463 if (err)
5464 return err;
5465 }
5466
5467 err = record_func_map(env, &meta, func_id, insn_idx);
5468 if (err)
5469 return err;
5470
5471 err = record_func_key(env, &meta, func_id, insn_idx);
5472 if (err)
5473 return err;
5474
5475 /* Mark slots with STACK_MISC in case of raw mode, stack offset
5476 * is inferred from register state.
5477 */
5478 for (i = 0; i < meta.access_size; i++) {
5479 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5480 BPF_WRITE, -1, false);
5481 if (err)
5482 return err;
5483 }
5484
5485 if (func_id == BPF_FUNC_tail_call) {
5486 err = check_reference_leak(env);
5487 if (err) {
5488 verbose(env, "tail_call would lead to reference leak\n");
5489 return err;
5490 }
5491 } else if (is_release_function(func_id)) {
5492 err = release_reference(env, meta.ref_obj_id);
5493 if (err) {
5494 verbose(env, "func %s#%d reference has not been acquired before\n",
5495 func_id_name(func_id), func_id);
5496 return err;
5497 }
5498 }
5499
5500 regs = cur_regs(env);
5501
5502 /* check that flags argument in get_local_storage(map, flags) is 0,
5503 * this is required because get_local_storage() can't return an error.
5504 */
5505 if (func_id == BPF_FUNC_get_local_storage &&
5506 !register_is_null(®s[BPF_REG_2])) {
5507 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5508 return -EINVAL;
5509 }
5510
5511 /* reset caller saved regs */
5512 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5513 mark_reg_not_init(env, regs, caller_saved[i]);
5514 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5515 }
5516
5517 /* helper call returns 64-bit value. */
5518 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5519
5520 /* update return register (already marked as written above) */
5521 ret_type = fn->ret_type;
5522 ret_flag = type_flag(fn->ret_type);
5523 if (ret_type == RET_INTEGER) {
5524 /* sets type to SCALAR_VALUE */
5525 mark_reg_unknown(env, regs, BPF_REG_0);
5526 } else if (ret_type == RET_VOID) {
5527 regs[BPF_REG_0].type = NOT_INIT;
5528 } else if (base_type(ret_type) == RET_PTR_TO_MAP_VALUE) {
5529 /* There is no offset yet applied, variable or fixed */
5530 mark_reg_known_zero(env, regs, BPF_REG_0);
5531 /* remember map_ptr, so that check_map_access()
5532 * can check 'value_size' boundary of memory access
5533 * to map element returned from bpf_map_lookup_elem()
5534 */
5535 if (meta.map_ptr == NULL) {
5536 verbose(env,
5537 "kernel subsystem misconfigured verifier\n");
5538 return -EINVAL;
5539 }
5540 regs[BPF_REG_0].map_ptr = meta.map_ptr;
5541 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
5542 if (!type_may_be_null(ret_type) &&
5543 map_value_has_spin_lock(meta.map_ptr)) {
5544 regs[BPF_REG_0].id = ++env->id_gen;
5545 }
5546 } else if (base_type(ret_type) == RET_PTR_TO_SOCKET) {
5547 mark_reg_known_zero(env, regs, BPF_REG_0);
5548 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
5549 } else if (base_type(ret_type) == RET_PTR_TO_SOCK_COMMON) {
5550 mark_reg_known_zero(env, regs, BPF_REG_0);
5551 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
5552 } else if (base_type(ret_type) == RET_PTR_TO_TCP_SOCK) {
5553 mark_reg_known_zero(env, regs, BPF_REG_0);
5554 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
5555 } else if (base_type(ret_type) == RET_PTR_TO_ALLOC_MEM) {
5556 mark_reg_known_zero(env, regs, BPF_REG_0);
5557 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
5558 regs[BPF_REG_0].mem_size = meta.mem_size;
5559 } else if (base_type(ret_type) == RET_PTR_TO_MEM_OR_BTF_ID) {
5560 const struct btf_type *t;
5561
5562 mark_reg_known_zero(env, regs, BPF_REG_0);
5563 t = btf_type_skip_modifiers(btf_vmlinux, meta.ret_btf_id, NULL);
5564 if (!btf_type_is_struct(t)) {
5565 u32 tsize;
5566 const struct btf_type *ret;
5567 const char *tname;
5568
5569 /* resolve the type size of ksym. */
5570 ret = btf_resolve_size(btf_vmlinux, t, &tsize);
5571 if (IS_ERR(ret)) {
5572 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
5573 verbose(env, "unable to resolve the size of type '%s': %ld\n",
5574 tname, PTR_ERR(ret));
5575 return -EINVAL;
5576 }
5577 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
5578 regs[BPF_REG_0].mem_size = tsize;
5579 } else {
5580 /* MEM_RDONLY may be carried from ret_flag, but it
5581 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
5582 * it will confuse the check of PTR_TO_BTF_ID in
5583 * check_mem_access().
5584 */
5585 ret_flag &= ~MEM_RDONLY;
5586
5587 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
5588 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
5589 }
5590 } else if (base_type(ret_type) == RET_PTR_TO_BTF_ID) {
5591 int ret_btf_id;
5592
5593 mark_reg_known_zero(env, regs, BPF_REG_0);
5594 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
5595 ret_btf_id = *fn->ret_btf_id;
5596 if (ret_btf_id == 0) {
5597 verbose(env, "invalid return type %u of func %s#%d\n",
5598 base_type(ret_type), func_id_name(func_id),
5599 func_id);
5600 return -EINVAL;
5601 }
5602 regs[BPF_REG_0].btf_id = ret_btf_id;
5603 } else {
5604 verbose(env, "unknown return type %u of func %s#%d\n",
5605 base_type(ret_type), func_id_name(func_id), func_id);
5606 return -EINVAL;
5607 }
5608
5609 if (type_may_be_null(regs[BPF_REG_0].type))
5610 regs[BPF_REG_0].id = ++env->id_gen;
5611
5612 if (is_ptr_cast_function(func_id)) {
5613 /* For release_reference() */
5614 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
5615 } else if (is_acquire_function(func_id, meta.map_ptr)) {
5616 int id = acquire_reference_state(env, insn_idx);
5617
5618 if (id < 0)
5619 return id;
5620 /* For mark_ptr_or_null_reg() */
5621 regs[BPF_REG_0].id = id;
5622 /* For release_reference() */
5623 regs[BPF_REG_0].ref_obj_id = id;
5624 }
5625
5626 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5627
5628 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
5629 if (err)
5630 return err;
5631
5632 if ((func_id == BPF_FUNC_get_stack ||
5633 func_id == BPF_FUNC_get_task_stack) &&
5634 !env->prog->has_callchain_buf) {
5635 const char *err_str;
5636
5637 #ifdef CONFIG_PERF_EVENTS
5638 err = get_callchain_buffers(sysctl_perf_event_max_stack);
5639 err_str = "cannot get callchain buffer for func %s#%d\n";
5640 #else
5641 err = -ENOTSUPP;
5642 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5643 #endif
5644 if (err) {
5645 verbose(env, err_str, func_id_name(func_id), func_id);
5646 return err;
5647 }
5648
5649 env->prog->has_callchain_buf = true;
5650 }
5651
5652 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5653 env->prog->call_get_stack = true;
5654
5655 if (changes_data)
5656 clear_all_pkt_pointers(env);
5657 return 0;
5658 }
5659
signed_add_overflows(s64 a,s64 b)5660 static bool signed_add_overflows(s64 a, s64 b)
5661 {
5662 /* Do the add in u64, where overflow is well-defined */
5663 s64 res = (s64)((u64)a + (u64)b);
5664
5665 if (b < 0)
5666 return res > a;
5667 return res < a;
5668 }
5669
signed_add32_overflows(s32 a,s32 b)5670 static bool signed_add32_overflows(s32 a, s32 b)
5671 {
5672 /* Do the add in u32, where overflow is well-defined */
5673 s32 res = (s32)((u32)a + (u32)b);
5674
5675 if (b < 0)
5676 return res > a;
5677 return res < a;
5678 }
5679
signed_sub_overflows(s64 a,s64 b)5680 static bool signed_sub_overflows(s64 a, s64 b)
5681 {
5682 /* Do the sub in u64, where overflow is well-defined */
5683 s64 res = (s64)((u64)a - (u64)b);
5684
5685 if (b < 0)
5686 return res < a;
5687 return res > a;
5688 }
5689
signed_sub32_overflows(s32 a,s32 b)5690 static bool signed_sub32_overflows(s32 a, s32 b)
5691 {
5692 /* Do the sub in u32, where overflow is well-defined */
5693 s32 res = (s32)((u32)a - (u32)b);
5694
5695 if (b < 0)
5696 return res < a;
5697 return res > a;
5698 }
5699
check_reg_sane_offset(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,enum bpf_reg_type type)5700 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5701 const struct bpf_reg_state *reg,
5702 enum bpf_reg_type type)
5703 {
5704 bool known = tnum_is_const(reg->var_off);
5705 s64 val = reg->var_off.value;
5706 s64 smin = reg->smin_value;
5707
5708 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5709 verbose(env, "math between %s pointer and %lld is not allowed\n",
5710 reg_type_str(env, type), val);
5711 return false;
5712 }
5713
5714 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5715 verbose(env, "%s pointer offset %d is not allowed\n",
5716 reg_type_str(env, type), reg->off);
5717 return false;
5718 }
5719
5720 if (smin == S64_MIN) {
5721 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5722 reg_type_str(env, type));
5723 return false;
5724 }
5725
5726 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5727 verbose(env, "value %lld makes %s pointer be out of bounds\n",
5728 smin, reg_type_str(env, type));
5729 return false;
5730 }
5731
5732 return true;
5733 }
5734
cur_aux(struct bpf_verifier_env * env)5735 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5736 {
5737 return &env->insn_aux_data[env->insn_idx];
5738 }
5739
5740 enum {
5741 REASON_BOUNDS = -1,
5742 REASON_TYPE = -2,
5743 REASON_PATHS = -3,
5744 REASON_LIMIT = -4,
5745 REASON_STACK = -5,
5746 };
5747
retrieve_ptr_limit(const struct bpf_reg_state * ptr_reg,u32 * alu_limit,bool mask_to_left)5748 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5749 u32 *alu_limit, bool mask_to_left)
5750 {
5751 u32 max = 0, ptr_limit = 0;
5752
5753 switch (ptr_reg->type) {
5754 case PTR_TO_STACK:
5755 /* Offset 0 is out-of-bounds, but acceptable start for the
5756 * left direction, see BPF_REG_FP. Also, unknown scalar
5757 * offset where we would need to deal with min/max bounds is
5758 * currently prohibited for unprivileged.
5759 */
5760 max = MAX_BPF_STACK + mask_to_left;
5761 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
5762 break;
5763 case PTR_TO_MAP_VALUE:
5764 max = ptr_reg->map_ptr->value_size;
5765 ptr_limit = (mask_to_left ?
5766 ptr_reg->smin_value :
5767 ptr_reg->umax_value) + ptr_reg->off;
5768 break;
5769 default:
5770 return REASON_TYPE;
5771 }
5772
5773 if (ptr_limit >= max)
5774 return REASON_LIMIT;
5775 *alu_limit = ptr_limit;
5776 return 0;
5777 }
5778
can_skip_alu_sanitation(const struct bpf_verifier_env * env,const struct bpf_insn * insn)5779 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5780 const struct bpf_insn *insn)
5781 {
5782 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
5783 }
5784
update_alu_sanitation_state(struct bpf_insn_aux_data * aux,u32 alu_state,u32 alu_limit)5785 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5786 u32 alu_state, u32 alu_limit)
5787 {
5788 /* If we arrived here from different branches with different
5789 * state or limits to sanitize, then this won't work.
5790 */
5791 if (aux->alu_state &&
5792 (aux->alu_state != alu_state ||
5793 aux->alu_limit != alu_limit))
5794 return REASON_PATHS;
5795
5796 /* Corresponding fixup done in fixup_bpf_calls(). */
5797 aux->alu_state = alu_state;
5798 aux->alu_limit = alu_limit;
5799 return 0;
5800 }
5801
sanitize_val_alu(struct bpf_verifier_env * env,struct bpf_insn * insn)5802 static int sanitize_val_alu(struct bpf_verifier_env *env,
5803 struct bpf_insn *insn)
5804 {
5805 struct bpf_insn_aux_data *aux = cur_aux(env);
5806
5807 if (can_skip_alu_sanitation(env, insn))
5808 return 0;
5809
5810 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5811 }
5812
sanitize_needed(u8 opcode)5813 static bool sanitize_needed(u8 opcode)
5814 {
5815 return opcode == BPF_ADD || opcode == BPF_SUB;
5816 }
5817
5818 struct bpf_sanitize_info {
5819 struct bpf_insn_aux_data aux;
5820 bool mask_to_left;
5821 };
5822
5823 static struct bpf_verifier_state *
sanitize_speculative_path(struct bpf_verifier_env * env,const struct bpf_insn * insn,u32 next_idx,u32 curr_idx)5824 sanitize_speculative_path(struct bpf_verifier_env *env,
5825 const struct bpf_insn *insn,
5826 u32 next_idx, u32 curr_idx)
5827 {
5828 struct bpf_verifier_state *branch;
5829 struct bpf_reg_state *regs;
5830
5831 branch = push_stack(env, next_idx, curr_idx, true);
5832 if (branch && insn) {
5833 regs = branch->frame[branch->curframe]->regs;
5834 if (BPF_SRC(insn->code) == BPF_K) {
5835 mark_reg_unknown(env, regs, insn->dst_reg);
5836 } else if (BPF_SRC(insn->code) == BPF_X) {
5837 mark_reg_unknown(env, regs, insn->dst_reg);
5838 mark_reg_unknown(env, regs, insn->src_reg);
5839 }
5840 }
5841 return branch;
5842 }
5843
sanitize_ptr_alu(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg,struct bpf_reg_state * dst_reg,struct bpf_sanitize_info * info,const bool commit_window)5844 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5845 struct bpf_insn *insn,
5846 const struct bpf_reg_state *ptr_reg,
5847 const struct bpf_reg_state *off_reg,
5848 struct bpf_reg_state *dst_reg,
5849 struct bpf_sanitize_info *info,
5850 const bool commit_window)
5851 {
5852 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
5853 struct bpf_verifier_state *vstate = env->cur_state;
5854 bool off_is_imm = tnum_is_const(off_reg->var_off);
5855 bool off_is_neg = off_reg->smin_value < 0;
5856 bool ptr_is_dst_reg = ptr_reg == dst_reg;
5857 u8 opcode = BPF_OP(insn->code);
5858 u32 alu_state, alu_limit;
5859 struct bpf_reg_state tmp;
5860 bool ret;
5861 int err;
5862
5863 if (can_skip_alu_sanitation(env, insn))
5864 return 0;
5865
5866 /* We already marked aux for masking from non-speculative
5867 * paths, thus we got here in the first place. We only care
5868 * to explore bad access from here.
5869 */
5870 if (vstate->speculative)
5871 goto do_sim;
5872
5873 if (!commit_window) {
5874 if (!tnum_is_const(off_reg->var_off) &&
5875 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
5876 return REASON_BOUNDS;
5877
5878 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
5879 (opcode == BPF_SUB && !off_is_neg);
5880 }
5881
5882 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
5883 if (err < 0)
5884 return err;
5885
5886 if (commit_window) {
5887 /* In commit phase we narrow the masking window based on
5888 * the observed pointer move after the simulated operation.
5889 */
5890 alu_state = info->aux.alu_state;
5891 alu_limit = abs(info->aux.alu_limit - alu_limit);
5892 } else {
5893 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5894 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
5895 alu_state |= ptr_is_dst_reg ?
5896 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5897
5898 /* Limit pruning on unknown scalars to enable deep search for
5899 * potential masking differences from other program paths.
5900 */
5901 if (!off_is_imm)
5902 env->explore_alu_limits = true;
5903 }
5904
5905 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
5906 if (err < 0)
5907 return err;
5908 do_sim:
5909 /* If we're in commit phase, we're done here given we already
5910 * pushed the truncated dst_reg into the speculative verification
5911 * stack.
5912 *
5913 * Also, when register is a known constant, we rewrite register-based
5914 * operation to immediate-based, and thus do not need masking (and as
5915 * a consequence, do not need to simulate the zero-truncation either).
5916 */
5917 if (commit_window || off_is_imm)
5918 return 0;
5919
5920 /* Simulate and find potential out-of-bounds access under
5921 * speculative execution from truncation as a result of
5922 * masking when off was not within expected range. If off
5923 * sits in dst, then we temporarily need to move ptr there
5924 * to simulate dst (== 0) +/-= ptr. Needed, for example,
5925 * for cases where we use K-based arithmetic in one direction
5926 * and truncated reg-based in the other in order to explore
5927 * bad access.
5928 */
5929 if (!ptr_is_dst_reg) {
5930 tmp = *dst_reg;
5931 *dst_reg = *ptr_reg;
5932 }
5933 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
5934 env->insn_idx);
5935 if (!ptr_is_dst_reg && ret)
5936 *dst_reg = tmp;
5937 return !ret ? REASON_STACK : 0;
5938 }
5939
sanitize_mark_insn_seen(struct bpf_verifier_env * env)5940 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
5941 {
5942 struct bpf_verifier_state *vstate = env->cur_state;
5943
5944 /* If we simulate paths under speculation, we don't update the
5945 * insn as 'seen' such that when we verify unreachable paths in
5946 * the non-speculative domain, sanitize_dead_code() can still
5947 * rewrite/sanitize them.
5948 */
5949 if (!vstate->speculative)
5950 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
5951 }
5952
sanitize_err(struct bpf_verifier_env * env,const struct bpf_insn * insn,int reason,const struct bpf_reg_state * off_reg,const struct bpf_reg_state * dst_reg)5953 static int sanitize_err(struct bpf_verifier_env *env,
5954 const struct bpf_insn *insn, int reason,
5955 const struct bpf_reg_state *off_reg,
5956 const struct bpf_reg_state *dst_reg)
5957 {
5958 static const char *err = "pointer arithmetic with it prohibited for !root";
5959 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
5960 u32 dst = insn->dst_reg, src = insn->src_reg;
5961
5962 switch (reason) {
5963 case REASON_BOUNDS:
5964 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
5965 off_reg == dst_reg ? dst : src, err);
5966 break;
5967 case REASON_TYPE:
5968 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
5969 off_reg == dst_reg ? src : dst, err);
5970 break;
5971 case REASON_PATHS:
5972 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
5973 dst, op, err);
5974 break;
5975 case REASON_LIMIT:
5976 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
5977 dst, op, err);
5978 break;
5979 case REASON_STACK:
5980 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
5981 dst, err);
5982 break;
5983 default:
5984 verbose(env, "verifier internal error: unknown reason (%d)\n",
5985 reason);
5986 break;
5987 }
5988
5989 return -EACCES;
5990 }
5991
5992 /* check that stack access falls within stack limits and that 'reg' doesn't
5993 * have a variable offset.
5994 *
5995 * Variable offset is prohibited for unprivileged mode for simplicity since it
5996 * requires corresponding support in Spectre masking for stack ALU. See also
5997 * retrieve_ptr_limit().
5998 *
5999 *
6000 * 'off' includes 'reg->off'.
6001 */
check_stack_access_for_ptr_arithmetic(struct bpf_verifier_env * env,int regno,const struct bpf_reg_state * reg,int off)6002 static int check_stack_access_for_ptr_arithmetic(
6003 struct bpf_verifier_env *env,
6004 int regno,
6005 const struct bpf_reg_state *reg,
6006 int off)
6007 {
6008 if (!tnum_is_const(reg->var_off)) {
6009 char tn_buf[48];
6010
6011 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6012 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
6013 regno, tn_buf, off);
6014 return -EACCES;
6015 }
6016
6017 if (off >= 0 || off < -MAX_BPF_STACK) {
6018 verbose(env, "R%d stack pointer arithmetic goes out of range, "
6019 "prohibited for !root; off=%d\n", regno, off);
6020 return -EACCES;
6021 }
6022
6023 return 0;
6024 }
6025
sanitize_check_bounds(struct bpf_verifier_env * env,const struct bpf_insn * insn,const struct bpf_reg_state * dst_reg)6026 static int sanitize_check_bounds(struct bpf_verifier_env *env,
6027 const struct bpf_insn *insn,
6028 const struct bpf_reg_state *dst_reg)
6029 {
6030 u32 dst = insn->dst_reg;
6031
6032 /* For unprivileged we require that resulting offset must be in bounds
6033 * in order to be able to sanitize access later on.
6034 */
6035 if (env->bypass_spec_v1)
6036 return 0;
6037
6038 switch (dst_reg->type) {
6039 case PTR_TO_STACK:
6040 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
6041 dst_reg->off + dst_reg->var_off.value))
6042 return -EACCES;
6043 break;
6044 case PTR_TO_MAP_VALUE:
6045 if (check_map_access(env, dst, dst_reg->off, 1, false)) {
6046 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
6047 "prohibited for !root\n", dst);
6048 return -EACCES;
6049 }
6050 break;
6051 default:
6052 break;
6053 }
6054
6055 return 0;
6056 }
6057
6058 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
6059 * Caller should also handle BPF_MOV case separately.
6060 * If we return -EACCES, caller may want to try again treating pointer as a
6061 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
6062 */
adjust_ptr_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg)6063 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
6064 struct bpf_insn *insn,
6065 const struct bpf_reg_state *ptr_reg,
6066 const struct bpf_reg_state *off_reg)
6067 {
6068 struct bpf_verifier_state *vstate = env->cur_state;
6069 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6070 struct bpf_reg_state *regs = state->regs, *dst_reg;
6071 bool known = tnum_is_const(off_reg->var_off);
6072 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
6073 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
6074 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
6075 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
6076 struct bpf_sanitize_info info = {};
6077 u8 opcode = BPF_OP(insn->code);
6078 u32 dst = insn->dst_reg;
6079 int ret;
6080
6081 dst_reg = ®s[dst];
6082
6083 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6084 smin_val > smax_val || umin_val > umax_val) {
6085 /* Taint dst register if offset had invalid bounds derived from
6086 * e.g. dead branches.
6087 */
6088 __mark_reg_unknown(env, dst_reg);
6089 return 0;
6090 }
6091
6092 if (BPF_CLASS(insn->code) != BPF_ALU64) {
6093 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6094 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6095 __mark_reg_unknown(env, dst_reg);
6096 return 0;
6097 }
6098
6099 verbose(env,
6100 "R%d 32-bit pointer arithmetic prohibited\n",
6101 dst);
6102 return -EACCES;
6103 }
6104
6105 if (ptr_reg->type & PTR_MAYBE_NULL) {
6106 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6107 dst, reg_type_str(env, ptr_reg->type));
6108 return -EACCES;
6109 }
6110
6111 switch (base_type(ptr_reg->type)) {
6112 case CONST_PTR_TO_MAP:
6113 /* smin_val represents the known value */
6114 if (known && smin_val == 0 && opcode == BPF_ADD)
6115 break;
6116 fallthrough;
6117 case PTR_TO_PACKET_END:
6118 case PTR_TO_SOCKET:
6119 case PTR_TO_SOCK_COMMON:
6120 case PTR_TO_TCP_SOCK:
6121 case PTR_TO_XDP_SOCK:
6122 reject:
6123 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
6124 dst, reg_type_str(env, ptr_reg->type));
6125 return -EACCES;
6126 default:
6127 if (type_may_be_null(ptr_reg->type))
6128 goto reject;
6129 break;
6130 }
6131
6132 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
6133 * The id may be overwritten later if we create a new variable offset.
6134 */
6135 dst_reg->type = ptr_reg->type;
6136 dst_reg->id = ptr_reg->id;
6137
6138 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
6139 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
6140 return -EINVAL;
6141
6142 /* pointer types do not carry 32-bit bounds at the moment. */
6143 __mark_reg32_unbounded(dst_reg);
6144
6145 if (sanitize_needed(opcode)) {
6146 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
6147 &info, false);
6148 if (ret < 0)
6149 return sanitize_err(env, insn, ret, off_reg, dst_reg);
6150 }
6151
6152 switch (opcode) {
6153 case BPF_ADD:
6154 /* We can take a fixed offset as long as it doesn't overflow
6155 * the s32 'off' field
6156 */
6157 if (known && (ptr_reg->off + smin_val ==
6158 (s64)(s32)(ptr_reg->off + smin_val))) {
6159 /* pointer += K. Accumulate it into fixed offset */
6160 dst_reg->smin_value = smin_ptr;
6161 dst_reg->smax_value = smax_ptr;
6162 dst_reg->umin_value = umin_ptr;
6163 dst_reg->umax_value = umax_ptr;
6164 dst_reg->var_off = ptr_reg->var_off;
6165 dst_reg->off = ptr_reg->off + smin_val;
6166 dst_reg->raw = ptr_reg->raw;
6167 break;
6168 }
6169 /* A new variable offset is created. Note that off_reg->off
6170 * == 0, since it's a scalar.
6171 * dst_reg gets the pointer type and since some positive
6172 * integer value was added to the pointer, give it a new 'id'
6173 * if it's a PTR_TO_PACKET.
6174 * this creates a new 'base' pointer, off_reg (variable) gets
6175 * added into the variable offset, and we copy the fixed offset
6176 * from ptr_reg.
6177 */
6178 if (signed_add_overflows(smin_ptr, smin_val) ||
6179 signed_add_overflows(smax_ptr, smax_val)) {
6180 dst_reg->smin_value = S64_MIN;
6181 dst_reg->smax_value = S64_MAX;
6182 } else {
6183 dst_reg->smin_value = smin_ptr + smin_val;
6184 dst_reg->smax_value = smax_ptr + smax_val;
6185 }
6186 if (umin_ptr + umin_val < umin_ptr ||
6187 umax_ptr + umax_val < umax_ptr) {
6188 dst_reg->umin_value = 0;
6189 dst_reg->umax_value = U64_MAX;
6190 } else {
6191 dst_reg->umin_value = umin_ptr + umin_val;
6192 dst_reg->umax_value = umax_ptr + umax_val;
6193 }
6194 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
6195 dst_reg->off = ptr_reg->off;
6196 dst_reg->raw = ptr_reg->raw;
6197 if (reg_is_pkt_pointer(ptr_reg)) {
6198 dst_reg->id = ++env->id_gen;
6199 /* something was added to pkt_ptr, set range to zero */
6200 dst_reg->raw = 0;
6201 }
6202 break;
6203 case BPF_SUB:
6204 if (dst_reg == off_reg) {
6205 /* scalar -= pointer. Creates an unknown scalar */
6206 verbose(env, "R%d tried to subtract pointer from scalar\n",
6207 dst);
6208 return -EACCES;
6209 }
6210 /* We don't allow subtraction from FP, because (according to
6211 * test_verifier.c test "invalid fp arithmetic", JITs might not
6212 * be able to deal with it.
6213 */
6214 if (ptr_reg->type == PTR_TO_STACK) {
6215 verbose(env, "R%d subtraction from stack pointer prohibited\n",
6216 dst);
6217 return -EACCES;
6218 }
6219 if (known && (ptr_reg->off - smin_val ==
6220 (s64)(s32)(ptr_reg->off - smin_val))) {
6221 /* pointer -= K. Subtract it from fixed offset */
6222 dst_reg->smin_value = smin_ptr;
6223 dst_reg->smax_value = smax_ptr;
6224 dst_reg->umin_value = umin_ptr;
6225 dst_reg->umax_value = umax_ptr;
6226 dst_reg->var_off = ptr_reg->var_off;
6227 dst_reg->id = ptr_reg->id;
6228 dst_reg->off = ptr_reg->off - smin_val;
6229 dst_reg->raw = ptr_reg->raw;
6230 break;
6231 }
6232 /* A new variable offset is created. If the subtrahend is known
6233 * nonnegative, then any reg->range we had before is still good.
6234 */
6235 if (signed_sub_overflows(smin_ptr, smax_val) ||
6236 signed_sub_overflows(smax_ptr, smin_val)) {
6237 /* Overflow possible, we know nothing */
6238 dst_reg->smin_value = S64_MIN;
6239 dst_reg->smax_value = S64_MAX;
6240 } else {
6241 dst_reg->smin_value = smin_ptr - smax_val;
6242 dst_reg->smax_value = smax_ptr - smin_val;
6243 }
6244 if (umin_ptr < umax_val) {
6245 /* Overflow possible, we know nothing */
6246 dst_reg->umin_value = 0;
6247 dst_reg->umax_value = U64_MAX;
6248 } else {
6249 /* Cannot overflow (as long as bounds are consistent) */
6250 dst_reg->umin_value = umin_ptr - umax_val;
6251 dst_reg->umax_value = umax_ptr - umin_val;
6252 }
6253 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
6254 dst_reg->off = ptr_reg->off;
6255 dst_reg->raw = ptr_reg->raw;
6256 if (reg_is_pkt_pointer(ptr_reg)) {
6257 dst_reg->id = ++env->id_gen;
6258 /* something was added to pkt_ptr, set range to zero */
6259 if (smin_val < 0)
6260 dst_reg->raw = 0;
6261 }
6262 break;
6263 case BPF_AND:
6264 case BPF_OR:
6265 case BPF_XOR:
6266 /* bitwise ops on pointers are troublesome, prohibit. */
6267 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
6268 dst, bpf_alu_string[opcode >> 4]);
6269 return -EACCES;
6270 default:
6271 /* other operators (e.g. MUL,LSH) produce non-pointer results */
6272 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
6273 dst, bpf_alu_string[opcode >> 4]);
6274 return -EACCES;
6275 }
6276
6277 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
6278 return -EINVAL;
6279 reg_bounds_sync(dst_reg);
6280 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
6281 return -EACCES;
6282 if (sanitize_needed(opcode)) {
6283 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
6284 &info, true);
6285 if (ret < 0)
6286 return sanitize_err(env, insn, ret, off_reg, dst_reg);
6287 }
6288
6289 return 0;
6290 }
6291
scalar32_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6292 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
6293 struct bpf_reg_state *src_reg)
6294 {
6295 s32 smin_val = src_reg->s32_min_value;
6296 s32 smax_val = src_reg->s32_max_value;
6297 u32 umin_val = src_reg->u32_min_value;
6298 u32 umax_val = src_reg->u32_max_value;
6299
6300 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
6301 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
6302 dst_reg->s32_min_value = S32_MIN;
6303 dst_reg->s32_max_value = S32_MAX;
6304 } else {
6305 dst_reg->s32_min_value += smin_val;
6306 dst_reg->s32_max_value += smax_val;
6307 }
6308 if (dst_reg->u32_min_value + umin_val < umin_val ||
6309 dst_reg->u32_max_value + umax_val < umax_val) {
6310 dst_reg->u32_min_value = 0;
6311 dst_reg->u32_max_value = U32_MAX;
6312 } else {
6313 dst_reg->u32_min_value += umin_val;
6314 dst_reg->u32_max_value += umax_val;
6315 }
6316 }
6317
scalar_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6318 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
6319 struct bpf_reg_state *src_reg)
6320 {
6321 s64 smin_val = src_reg->smin_value;
6322 s64 smax_val = src_reg->smax_value;
6323 u64 umin_val = src_reg->umin_value;
6324 u64 umax_val = src_reg->umax_value;
6325
6326 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
6327 signed_add_overflows(dst_reg->smax_value, smax_val)) {
6328 dst_reg->smin_value = S64_MIN;
6329 dst_reg->smax_value = S64_MAX;
6330 } else {
6331 dst_reg->smin_value += smin_val;
6332 dst_reg->smax_value += smax_val;
6333 }
6334 if (dst_reg->umin_value + umin_val < umin_val ||
6335 dst_reg->umax_value + umax_val < umax_val) {
6336 dst_reg->umin_value = 0;
6337 dst_reg->umax_value = U64_MAX;
6338 } else {
6339 dst_reg->umin_value += umin_val;
6340 dst_reg->umax_value += umax_val;
6341 }
6342 }
6343
scalar32_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6344 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
6345 struct bpf_reg_state *src_reg)
6346 {
6347 s32 smin_val = src_reg->s32_min_value;
6348 s32 smax_val = src_reg->s32_max_value;
6349 u32 umin_val = src_reg->u32_min_value;
6350 u32 umax_val = src_reg->u32_max_value;
6351
6352 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
6353 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
6354 /* Overflow possible, we know nothing */
6355 dst_reg->s32_min_value = S32_MIN;
6356 dst_reg->s32_max_value = S32_MAX;
6357 } else {
6358 dst_reg->s32_min_value -= smax_val;
6359 dst_reg->s32_max_value -= smin_val;
6360 }
6361 if (dst_reg->u32_min_value < umax_val) {
6362 /* Overflow possible, we know nothing */
6363 dst_reg->u32_min_value = 0;
6364 dst_reg->u32_max_value = U32_MAX;
6365 } else {
6366 /* Cannot overflow (as long as bounds are consistent) */
6367 dst_reg->u32_min_value -= umax_val;
6368 dst_reg->u32_max_value -= umin_val;
6369 }
6370 }
6371
scalar_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6372 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
6373 struct bpf_reg_state *src_reg)
6374 {
6375 s64 smin_val = src_reg->smin_value;
6376 s64 smax_val = src_reg->smax_value;
6377 u64 umin_val = src_reg->umin_value;
6378 u64 umax_val = src_reg->umax_value;
6379
6380 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
6381 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
6382 /* Overflow possible, we know nothing */
6383 dst_reg->smin_value = S64_MIN;
6384 dst_reg->smax_value = S64_MAX;
6385 } else {
6386 dst_reg->smin_value -= smax_val;
6387 dst_reg->smax_value -= smin_val;
6388 }
6389 if (dst_reg->umin_value < umax_val) {
6390 /* Overflow possible, we know nothing */
6391 dst_reg->umin_value = 0;
6392 dst_reg->umax_value = U64_MAX;
6393 } else {
6394 /* Cannot overflow (as long as bounds are consistent) */
6395 dst_reg->umin_value -= umax_val;
6396 dst_reg->umax_value -= umin_val;
6397 }
6398 }
6399
scalar32_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6400 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
6401 struct bpf_reg_state *src_reg)
6402 {
6403 s32 smin_val = src_reg->s32_min_value;
6404 u32 umin_val = src_reg->u32_min_value;
6405 u32 umax_val = src_reg->u32_max_value;
6406
6407 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
6408 /* Ain't nobody got time to multiply that sign */
6409 __mark_reg32_unbounded(dst_reg);
6410 return;
6411 }
6412 /* Both values are positive, so we can work with unsigned and
6413 * copy the result to signed (unless it exceeds S32_MAX).
6414 */
6415 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
6416 /* Potential overflow, we know nothing */
6417 __mark_reg32_unbounded(dst_reg);
6418 return;
6419 }
6420 dst_reg->u32_min_value *= umin_val;
6421 dst_reg->u32_max_value *= umax_val;
6422 if (dst_reg->u32_max_value > S32_MAX) {
6423 /* Overflow possible, we know nothing */
6424 dst_reg->s32_min_value = S32_MIN;
6425 dst_reg->s32_max_value = S32_MAX;
6426 } else {
6427 dst_reg->s32_min_value = dst_reg->u32_min_value;
6428 dst_reg->s32_max_value = dst_reg->u32_max_value;
6429 }
6430 }
6431
scalar_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6432 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
6433 struct bpf_reg_state *src_reg)
6434 {
6435 s64 smin_val = src_reg->smin_value;
6436 u64 umin_val = src_reg->umin_value;
6437 u64 umax_val = src_reg->umax_value;
6438
6439 if (smin_val < 0 || dst_reg->smin_value < 0) {
6440 /* Ain't nobody got time to multiply that sign */
6441 __mark_reg64_unbounded(dst_reg);
6442 return;
6443 }
6444 /* Both values are positive, so we can work with unsigned and
6445 * copy the result to signed (unless it exceeds S64_MAX).
6446 */
6447 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
6448 /* Potential overflow, we know nothing */
6449 __mark_reg64_unbounded(dst_reg);
6450 return;
6451 }
6452 dst_reg->umin_value *= umin_val;
6453 dst_reg->umax_value *= umax_val;
6454 if (dst_reg->umax_value > S64_MAX) {
6455 /* Overflow possible, we know nothing */
6456 dst_reg->smin_value = S64_MIN;
6457 dst_reg->smax_value = S64_MAX;
6458 } else {
6459 dst_reg->smin_value = dst_reg->umin_value;
6460 dst_reg->smax_value = dst_reg->umax_value;
6461 }
6462 }
6463
scalar32_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6464 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
6465 struct bpf_reg_state *src_reg)
6466 {
6467 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6468 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6469 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6470 s32 smin_val = src_reg->s32_min_value;
6471 u32 umax_val = src_reg->u32_max_value;
6472
6473 if (src_known && dst_known) {
6474 __mark_reg32_known(dst_reg, var32_off.value);
6475 return;
6476 }
6477
6478 /* We get our minimum from the var_off, since that's inherently
6479 * bitwise. Our maximum is the minimum of the operands' maxima.
6480 */
6481 dst_reg->u32_min_value = var32_off.value;
6482 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
6483 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6484 /* Lose signed bounds when ANDing negative numbers,
6485 * ain't nobody got time for that.
6486 */
6487 dst_reg->s32_min_value = S32_MIN;
6488 dst_reg->s32_max_value = S32_MAX;
6489 } else {
6490 /* ANDing two positives gives a positive, so safe to
6491 * cast result into s64.
6492 */
6493 dst_reg->s32_min_value = dst_reg->u32_min_value;
6494 dst_reg->s32_max_value = dst_reg->u32_max_value;
6495 }
6496 }
6497
scalar_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6498 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
6499 struct bpf_reg_state *src_reg)
6500 {
6501 bool src_known = tnum_is_const(src_reg->var_off);
6502 bool dst_known = tnum_is_const(dst_reg->var_off);
6503 s64 smin_val = src_reg->smin_value;
6504 u64 umax_val = src_reg->umax_value;
6505
6506 if (src_known && dst_known) {
6507 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6508 return;
6509 }
6510
6511 /* We get our minimum from the var_off, since that's inherently
6512 * bitwise. Our maximum is the minimum of the operands' maxima.
6513 */
6514 dst_reg->umin_value = dst_reg->var_off.value;
6515 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
6516 if (dst_reg->smin_value < 0 || smin_val < 0) {
6517 /* Lose signed bounds when ANDing negative numbers,
6518 * ain't nobody got time for that.
6519 */
6520 dst_reg->smin_value = S64_MIN;
6521 dst_reg->smax_value = S64_MAX;
6522 } else {
6523 /* ANDing two positives gives a positive, so safe to
6524 * cast result into s64.
6525 */
6526 dst_reg->smin_value = dst_reg->umin_value;
6527 dst_reg->smax_value = dst_reg->umax_value;
6528 }
6529 /* We may learn something more from the var_off */
6530 __update_reg_bounds(dst_reg);
6531 }
6532
scalar32_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6533 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
6534 struct bpf_reg_state *src_reg)
6535 {
6536 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6537 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6538 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6539 s32 smin_val = src_reg->s32_min_value;
6540 u32 umin_val = src_reg->u32_min_value;
6541
6542 if (src_known && dst_known) {
6543 __mark_reg32_known(dst_reg, var32_off.value);
6544 return;
6545 }
6546
6547 /* We get our maximum from the var_off, and our minimum is the
6548 * maximum of the operands' minima
6549 */
6550 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
6551 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6552 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6553 /* Lose signed bounds when ORing negative numbers,
6554 * ain't nobody got time for that.
6555 */
6556 dst_reg->s32_min_value = S32_MIN;
6557 dst_reg->s32_max_value = S32_MAX;
6558 } else {
6559 /* ORing two positives gives a positive, so safe to
6560 * cast result into s64.
6561 */
6562 dst_reg->s32_min_value = dst_reg->u32_min_value;
6563 dst_reg->s32_max_value = dst_reg->u32_max_value;
6564 }
6565 }
6566
scalar_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6567 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
6568 struct bpf_reg_state *src_reg)
6569 {
6570 bool src_known = tnum_is_const(src_reg->var_off);
6571 bool dst_known = tnum_is_const(dst_reg->var_off);
6572 s64 smin_val = src_reg->smin_value;
6573 u64 umin_val = src_reg->umin_value;
6574
6575 if (src_known && dst_known) {
6576 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6577 return;
6578 }
6579
6580 /* We get our maximum from the var_off, and our minimum is the
6581 * maximum of the operands' minima
6582 */
6583 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
6584 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6585 if (dst_reg->smin_value < 0 || smin_val < 0) {
6586 /* Lose signed bounds when ORing negative numbers,
6587 * ain't nobody got time for that.
6588 */
6589 dst_reg->smin_value = S64_MIN;
6590 dst_reg->smax_value = S64_MAX;
6591 } else {
6592 /* ORing two positives gives a positive, so safe to
6593 * cast result into s64.
6594 */
6595 dst_reg->smin_value = dst_reg->umin_value;
6596 dst_reg->smax_value = dst_reg->umax_value;
6597 }
6598 /* We may learn something more from the var_off */
6599 __update_reg_bounds(dst_reg);
6600 }
6601
scalar32_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6602 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
6603 struct bpf_reg_state *src_reg)
6604 {
6605 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6606 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6607 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6608 s32 smin_val = src_reg->s32_min_value;
6609
6610 if (src_known && dst_known) {
6611 __mark_reg32_known(dst_reg, var32_off.value);
6612 return;
6613 }
6614
6615 /* We get both minimum and maximum from the var32_off. */
6616 dst_reg->u32_min_value = var32_off.value;
6617 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6618
6619 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
6620 /* XORing two positive sign numbers gives a positive,
6621 * so safe to cast u32 result into s32.
6622 */
6623 dst_reg->s32_min_value = dst_reg->u32_min_value;
6624 dst_reg->s32_max_value = dst_reg->u32_max_value;
6625 } else {
6626 dst_reg->s32_min_value = S32_MIN;
6627 dst_reg->s32_max_value = S32_MAX;
6628 }
6629 }
6630
scalar_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6631 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
6632 struct bpf_reg_state *src_reg)
6633 {
6634 bool src_known = tnum_is_const(src_reg->var_off);
6635 bool dst_known = tnum_is_const(dst_reg->var_off);
6636 s64 smin_val = src_reg->smin_value;
6637
6638 if (src_known && dst_known) {
6639 /* dst_reg->var_off.value has been updated earlier */
6640 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6641 return;
6642 }
6643
6644 /* We get both minimum and maximum from the var_off. */
6645 dst_reg->umin_value = dst_reg->var_off.value;
6646 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6647
6648 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
6649 /* XORing two positive sign numbers gives a positive,
6650 * so safe to cast u64 result into s64.
6651 */
6652 dst_reg->smin_value = dst_reg->umin_value;
6653 dst_reg->smax_value = dst_reg->umax_value;
6654 } else {
6655 dst_reg->smin_value = S64_MIN;
6656 dst_reg->smax_value = S64_MAX;
6657 }
6658
6659 __update_reg_bounds(dst_reg);
6660 }
6661
__scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)6662 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6663 u64 umin_val, u64 umax_val)
6664 {
6665 /* We lose all sign bit information (except what we can pick
6666 * up from var_off)
6667 */
6668 dst_reg->s32_min_value = S32_MIN;
6669 dst_reg->s32_max_value = S32_MAX;
6670 /* If we might shift our top bit out, then we know nothing */
6671 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
6672 dst_reg->u32_min_value = 0;
6673 dst_reg->u32_max_value = U32_MAX;
6674 } else {
6675 dst_reg->u32_min_value <<= umin_val;
6676 dst_reg->u32_max_value <<= umax_val;
6677 }
6678 }
6679
scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6680 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6681 struct bpf_reg_state *src_reg)
6682 {
6683 u32 umax_val = src_reg->u32_max_value;
6684 u32 umin_val = src_reg->u32_min_value;
6685 /* u32 alu operation will zext upper bits */
6686 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6687
6688 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6689 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6690 /* Not required but being careful mark reg64 bounds as unknown so
6691 * that we are forced to pick them up from tnum and zext later and
6692 * if some path skips this step we are still safe.
6693 */
6694 __mark_reg64_unbounded(dst_reg);
6695 __update_reg32_bounds(dst_reg);
6696 }
6697
__scalar64_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)6698 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6699 u64 umin_val, u64 umax_val)
6700 {
6701 /* Special case <<32 because it is a common compiler pattern to sign
6702 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6703 * positive we know this shift will also be positive so we can track
6704 * bounds correctly. Otherwise we lose all sign bit information except
6705 * what we can pick up from var_off. Perhaps we can generalize this
6706 * later to shifts of any length.
6707 */
6708 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6709 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6710 else
6711 dst_reg->smax_value = S64_MAX;
6712
6713 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6714 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6715 else
6716 dst_reg->smin_value = S64_MIN;
6717
6718 /* If we might shift our top bit out, then we know nothing */
6719 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6720 dst_reg->umin_value = 0;
6721 dst_reg->umax_value = U64_MAX;
6722 } else {
6723 dst_reg->umin_value <<= umin_val;
6724 dst_reg->umax_value <<= umax_val;
6725 }
6726 }
6727
scalar_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6728 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6729 struct bpf_reg_state *src_reg)
6730 {
6731 u64 umax_val = src_reg->umax_value;
6732 u64 umin_val = src_reg->umin_value;
6733
6734 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
6735 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6736 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6737
6738 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6739 /* We may learn something more from the var_off */
6740 __update_reg_bounds(dst_reg);
6741 }
6742
scalar32_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6743 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6744 struct bpf_reg_state *src_reg)
6745 {
6746 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6747 u32 umax_val = src_reg->u32_max_value;
6748 u32 umin_val = src_reg->u32_min_value;
6749
6750 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6751 * be negative, then either:
6752 * 1) src_reg might be zero, so the sign bit of the result is
6753 * unknown, so we lose our signed bounds
6754 * 2) it's known negative, thus the unsigned bounds capture the
6755 * signed bounds
6756 * 3) the signed bounds cross zero, so they tell us nothing
6757 * about the result
6758 * If the value in dst_reg is known nonnegative, then again the
6759 * unsigned bounts capture the signed bounds.
6760 * Thus, in all cases it suffices to blow away our signed bounds
6761 * and rely on inferring new ones from the unsigned bounds and
6762 * var_off of the result.
6763 */
6764 dst_reg->s32_min_value = S32_MIN;
6765 dst_reg->s32_max_value = S32_MAX;
6766
6767 dst_reg->var_off = tnum_rshift(subreg, umin_val);
6768 dst_reg->u32_min_value >>= umax_val;
6769 dst_reg->u32_max_value >>= umin_val;
6770
6771 __mark_reg64_unbounded(dst_reg);
6772 __update_reg32_bounds(dst_reg);
6773 }
6774
scalar_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6775 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6776 struct bpf_reg_state *src_reg)
6777 {
6778 u64 umax_val = src_reg->umax_value;
6779 u64 umin_val = src_reg->umin_value;
6780
6781 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6782 * be negative, then either:
6783 * 1) src_reg might be zero, so the sign bit of the result is
6784 * unknown, so we lose our signed bounds
6785 * 2) it's known negative, thus the unsigned bounds capture the
6786 * signed bounds
6787 * 3) the signed bounds cross zero, so they tell us nothing
6788 * about the result
6789 * If the value in dst_reg is known nonnegative, then again the
6790 * unsigned bounts capture the signed bounds.
6791 * Thus, in all cases it suffices to blow away our signed bounds
6792 * and rely on inferring new ones from the unsigned bounds and
6793 * var_off of the result.
6794 */
6795 dst_reg->smin_value = S64_MIN;
6796 dst_reg->smax_value = S64_MAX;
6797 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6798 dst_reg->umin_value >>= umax_val;
6799 dst_reg->umax_value >>= umin_val;
6800
6801 /* Its not easy to operate on alu32 bounds here because it depends
6802 * on bits being shifted in. Take easy way out and mark unbounded
6803 * so we can recalculate later from tnum.
6804 */
6805 __mark_reg32_unbounded(dst_reg);
6806 __update_reg_bounds(dst_reg);
6807 }
6808
scalar32_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6809 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6810 struct bpf_reg_state *src_reg)
6811 {
6812 u64 umin_val = src_reg->u32_min_value;
6813
6814 /* Upon reaching here, src_known is true and
6815 * umax_val is equal to umin_val.
6816 */
6817 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6818 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
6819
6820 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6821
6822 /* blow away the dst_reg umin_value/umax_value and rely on
6823 * dst_reg var_off to refine the result.
6824 */
6825 dst_reg->u32_min_value = 0;
6826 dst_reg->u32_max_value = U32_MAX;
6827
6828 __mark_reg64_unbounded(dst_reg);
6829 __update_reg32_bounds(dst_reg);
6830 }
6831
scalar_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6832 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
6833 struct bpf_reg_state *src_reg)
6834 {
6835 u64 umin_val = src_reg->umin_value;
6836
6837 /* Upon reaching here, src_known is true and umax_val is equal
6838 * to umin_val.
6839 */
6840 dst_reg->smin_value >>= umin_val;
6841 dst_reg->smax_value >>= umin_val;
6842
6843 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
6844
6845 /* blow away the dst_reg umin_value/umax_value and rely on
6846 * dst_reg var_off to refine the result.
6847 */
6848 dst_reg->umin_value = 0;
6849 dst_reg->umax_value = U64_MAX;
6850
6851 /* Its not easy to operate on alu32 bounds here because it depends
6852 * on bits being shifted in from upper 32-bits. Take easy way out
6853 * and mark unbounded so we can recalculate later from tnum.
6854 */
6855 __mark_reg32_unbounded(dst_reg);
6856 __update_reg_bounds(dst_reg);
6857 }
6858
6859 /* WARNING: This function does calculations on 64-bit values, but the actual
6860 * execution may occur on 32-bit values. Therefore, things like bitshifts
6861 * need extra checks in the 32-bit case.
6862 */
adjust_scalar_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state src_reg)6863 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
6864 struct bpf_insn *insn,
6865 struct bpf_reg_state *dst_reg,
6866 struct bpf_reg_state src_reg)
6867 {
6868 struct bpf_reg_state *regs = cur_regs(env);
6869 u8 opcode = BPF_OP(insn->code);
6870 bool src_known;
6871 s64 smin_val, smax_val;
6872 u64 umin_val, umax_val;
6873 s32 s32_min_val, s32_max_val;
6874 u32 u32_min_val, u32_max_val;
6875 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
6876 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
6877 int ret;
6878
6879 smin_val = src_reg.smin_value;
6880 smax_val = src_reg.smax_value;
6881 umin_val = src_reg.umin_value;
6882 umax_val = src_reg.umax_value;
6883
6884 s32_min_val = src_reg.s32_min_value;
6885 s32_max_val = src_reg.s32_max_value;
6886 u32_min_val = src_reg.u32_min_value;
6887 u32_max_val = src_reg.u32_max_value;
6888
6889 if (alu32) {
6890 src_known = tnum_subreg_is_const(src_reg.var_off);
6891 if ((src_known &&
6892 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
6893 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
6894 /* Taint dst register if offset had invalid bounds
6895 * derived from e.g. dead branches.
6896 */
6897 __mark_reg_unknown(env, dst_reg);
6898 return 0;
6899 }
6900 } else {
6901 src_known = tnum_is_const(src_reg.var_off);
6902 if ((src_known &&
6903 (smin_val != smax_val || umin_val != umax_val)) ||
6904 smin_val > smax_val || umin_val > umax_val) {
6905 /* Taint dst register if offset had invalid bounds
6906 * derived from e.g. dead branches.
6907 */
6908 __mark_reg_unknown(env, dst_reg);
6909 return 0;
6910 }
6911 }
6912
6913 if (!src_known &&
6914 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
6915 __mark_reg_unknown(env, dst_reg);
6916 return 0;
6917 }
6918
6919 if (sanitize_needed(opcode)) {
6920 ret = sanitize_val_alu(env, insn);
6921 if (ret < 0)
6922 return sanitize_err(env, insn, ret, NULL, NULL);
6923 }
6924
6925 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
6926 * There are two classes of instructions: The first class we track both
6927 * alu32 and alu64 sign/unsigned bounds independently this provides the
6928 * greatest amount of precision when alu operations are mixed with jmp32
6929 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
6930 * and BPF_OR. This is possible because these ops have fairly easy to
6931 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
6932 * See alu32 verifier tests for examples. The second class of
6933 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
6934 * with regards to tracking sign/unsigned bounds because the bits may
6935 * cross subreg boundaries in the alu64 case. When this happens we mark
6936 * the reg unbounded in the subreg bound space and use the resulting
6937 * tnum to calculate an approximation of the sign/unsigned bounds.
6938 */
6939 switch (opcode) {
6940 case BPF_ADD:
6941 scalar32_min_max_add(dst_reg, &src_reg);
6942 scalar_min_max_add(dst_reg, &src_reg);
6943 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
6944 break;
6945 case BPF_SUB:
6946 scalar32_min_max_sub(dst_reg, &src_reg);
6947 scalar_min_max_sub(dst_reg, &src_reg);
6948 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
6949 break;
6950 case BPF_MUL:
6951 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
6952 scalar32_min_max_mul(dst_reg, &src_reg);
6953 scalar_min_max_mul(dst_reg, &src_reg);
6954 break;
6955 case BPF_AND:
6956 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
6957 scalar32_min_max_and(dst_reg, &src_reg);
6958 scalar_min_max_and(dst_reg, &src_reg);
6959 break;
6960 case BPF_OR:
6961 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
6962 scalar32_min_max_or(dst_reg, &src_reg);
6963 scalar_min_max_or(dst_reg, &src_reg);
6964 break;
6965 case BPF_XOR:
6966 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
6967 scalar32_min_max_xor(dst_reg, &src_reg);
6968 scalar_min_max_xor(dst_reg, &src_reg);
6969 break;
6970 case BPF_LSH:
6971 if (umax_val >= insn_bitness) {
6972 /* Shifts greater than 31 or 63 are undefined.
6973 * This includes shifts by a negative number.
6974 */
6975 mark_reg_unknown(env, regs, insn->dst_reg);
6976 break;
6977 }
6978 if (alu32)
6979 scalar32_min_max_lsh(dst_reg, &src_reg);
6980 else
6981 scalar_min_max_lsh(dst_reg, &src_reg);
6982 break;
6983 case BPF_RSH:
6984 if (umax_val >= insn_bitness) {
6985 /* Shifts greater than 31 or 63 are undefined.
6986 * This includes shifts by a negative number.
6987 */
6988 mark_reg_unknown(env, regs, insn->dst_reg);
6989 break;
6990 }
6991 if (alu32)
6992 scalar32_min_max_rsh(dst_reg, &src_reg);
6993 else
6994 scalar_min_max_rsh(dst_reg, &src_reg);
6995 break;
6996 case BPF_ARSH:
6997 if (umax_val >= insn_bitness) {
6998 /* Shifts greater than 31 or 63 are undefined.
6999 * This includes shifts by a negative number.
7000 */
7001 mark_reg_unknown(env, regs, insn->dst_reg);
7002 break;
7003 }
7004 if (alu32)
7005 scalar32_min_max_arsh(dst_reg, &src_reg);
7006 else
7007 scalar_min_max_arsh(dst_reg, &src_reg);
7008 break;
7009 default:
7010 mark_reg_unknown(env, regs, insn->dst_reg);
7011 break;
7012 }
7013
7014 /* ALU32 ops are zero extended into 64bit register */
7015 if (alu32)
7016 zext_32_to_64(dst_reg);
7017 reg_bounds_sync(dst_reg);
7018 return 0;
7019 }
7020
7021 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
7022 * and var_off.
7023 */
adjust_reg_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn)7024 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
7025 struct bpf_insn *insn)
7026 {
7027 struct bpf_verifier_state *vstate = env->cur_state;
7028 struct bpf_func_state *state = vstate->frame[vstate->curframe];
7029 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
7030 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
7031 u8 opcode = BPF_OP(insn->code);
7032 int err;
7033
7034 dst_reg = ®s[insn->dst_reg];
7035 src_reg = NULL;
7036 if (dst_reg->type != SCALAR_VALUE)
7037 ptr_reg = dst_reg;
7038 else
7039 /* Make sure ID is cleared otherwise dst_reg min/max could be
7040 * incorrectly propagated into other registers by find_equal_scalars()
7041 */
7042 dst_reg->id = 0;
7043 if (BPF_SRC(insn->code) == BPF_X) {
7044 src_reg = ®s[insn->src_reg];
7045 if (src_reg->type != SCALAR_VALUE) {
7046 if (dst_reg->type != SCALAR_VALUE) {
7047 /* Combining two pointers by any ALU op yields
7048 * an arbitrary scalar. Disallow all math except
7049 * pointer subtraction
7050 */
7051 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7052 mark_reg_unknown(env, regs, insn->dst_reg);
7053 return 0;
7054 }
7055 verbose(env, "R%d pointer %s pointer prohibited\n",
7056 insn->dst_reg,
7057 bpf_alu_string[opcode >> 4]);
7058 return -EACCES;
7059 } else {
7060 /* scalar += pointer
7061 * This is legal, but we have to reverse our
7062 * src/dest handling in computing the range
7063 */
7064 err = mark_chain_precision(env, insn->dst_reg);
7065 if (err)
7066 return err;
7067 return adjust_ptr_min_max_vals(env, insn,
7068 src_reg, dst_reg);
7069 }
7070 } else if (ptr_reg) {
7071 /* pointer += scalar */
7072 err = mark_chain_precision(env, insn->src_reg);
7073 if (err)
7074 return err;
7075 return adjust_ptr_min_max_vals(env, insn,
7076 dst_reg, src_reg);
7077 } else if (dst_reg->precise) {
7078 /* if dst_reg is precise, src_reg should be precise as well */
7079 err = mark_chain_precision(env, insn->src_reg);
7080 if (err)
7081 return err;
7082 }
7083 } else {
7084 /* Pretend the src is a reg with a known value, since we only
7085 * need to be able to read from this state.
7086 */
7087 off_reg.type = SCALAR_VALUE;
7088 __mark_reg_known(&off_reg, insn->imm);
7089 src_reg = &off_reg;
7090 if (ptr_reg) /* pointer += K */
7091 return adjust_ptr_min_max_vals(env, insn,
7092 ptr_reg, src_reg);
7093 }
7094
7095 /* Got here implies adding two SCALAR_VALUEs */
7096 if (WARN_ON_ONCE(ptr_reg)) {
7097 print_verifier_state(env, state);
7098 verbose(env, "verifier internal error: unexpected ptr_reg\n");
7099 return -EINVAL;
7100 }
7101 if (WARN_ON(!src_reg)) {
7102 print_verifier_state(env, state);
7103 verbose(env, "verifier internal error: no src_reg\n");
7104 return -EINVAL;
7105 }
7106 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
7107 }
7108
7109 /* check validity of 32-bit and 64-bit arithmetic operations */
check_alu_op(struct bpf_verifier_env * env,struct bpf_insn * insn)7110 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
7111 {
7112 struct bpf_reg_state *regs = cur_regs(env);
7113 u8 opcode = BPF_OP(insn->code);
7114 int err;
7115
7116 if (opcode == BPF_END || opcode == BPF_NEG) {
7117 if (opcode == BPF_NEG) {
7118 if (BPF_SRC(insn->code) != 0 ||
7119 insn->src_reg != BPF_REG_0 ||
7120 insn->off != 0 || insn->imm != 0) {
7121 verbose(env, "BPF_NEG uses reserved fields\n");
7122 return -EINVAL;
7123 }
7124 } else {
7125 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
7126 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
7127 BPF_CLASS(insn->code) == BPF_ALU64) {
7128 verbose(env, "BPF_END uses reserved fields\n");
7129 return -EINVAL;
7130 }
7131 }
7132
7133 /* check src operand */
7134 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7135 if (err)
7136 return err;
7137
7138 if (is_pointer_value(env, insn->dst_reg)) {
7139 verbose(env, "R%d pointer arithmetic prohibited\n",
7140 insn->dst_reg);
7141 return -EACCES;
7142 }
7143
7144 /* check dest operand */
7145 err = check_reg_arg(env, insn->dst_reg, DST_OP);
7146 if (err)
7147 return err;
7148
7149 } else if (opcode == BPF_MOV) {
7150
7151 if (BPF_SRC(insn->code) == BPF_X) {
7152 if (insn->imm != 0 || insn->off != 0) {
7153 verbose(env, "BPF_MOV uses reserved fields\n");
7154 return -EINVAL;
7155 }
7156
7157 /* check src operand */
7158 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7159 if (err)
7160 return err;
7161 } else {
7162 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7163 verbose(env, "BPF_MOV uses reserved fields\n");
7164 return -EINVAL;
7165 }
7166 }
7167
7168 /* check dest operand, mark as required later */
7169 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7170 if (err)
7171 return err;
7172
7173 if (BPF_SRC(insn->code) == BPF_X) {
7174 struct bpf_reg_state *src_reg = regs + insn->src_reg;
7175 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
7176
7177 if (BPF_CLASS(insn->code) == BPF_ALU64) {
7178 /* case: R1 = R2
7179 * copy register state to dest reg
7180 */
7181 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
7182 /* Assign src and dst registers the same ID
7183 * that will be used by find_equal_scalars()
7184 * to propagate min/max range.
7185 */
7186 src_reg->id = ++env->id_gen;
7187 *dst_reg = *src_reg;
7188 dst_reg->live |= REG_LIVE_WRITTEN;
7189 dst_reg->subreg_def = DEF_NOT_SUBREG;
7190 } else {
7191 /* R1 = (u32) R2 */
7192 if (is_pointer_value(env, insn->src_reg)) {
7193 verbose(env,
7194 "R%d partial copy of pointer\n",
7195 insn->src_reg);
7196 return -EACCES;
7197 } else if (src_reg->type == SCALAR_VALUE) {
7198 *dst_reg = *src_reg;
7199 /* Make sure ID is cleared otherwise
7200 * dst_reg min/max could be incorrectly
7201 * propagated into src_reg by find_equal_scalars()
7202 */
7203 dst_reg->id = 0;
7204 dst_reg->live |= REG_LIVE_WRITTEN;
7205 dst_reg->subreg_def = env->insn_idx + 1;
7206 } else {
7207 mark_reg_unknown(env, regs,
7208 insn->dst_reg);
7209 }
7210 zext_32_to_64(dst_reg);
7211 reg_bounds_sync(dst_reg);
7212 }
7213 } else {
7214 /* case: R = imm
7215 * remember the value we stored into this reg
7216 */
7217 /* clear any state __mark_reg_known doesn't set */
7218 mark_reg_unknown(env, regs, insn->dst_reg);
7219 regs[insn->dst_reg].type = SCALAR_VALUE;
7220 if (BPF_CLASS(insn->code) == BPF_ALU64) {
7221 __mark_reg_known(regs + insn->dst_reg,
7222 insn->imm);
7223 } else {
7224 __mark_reg_known(regs + insn->dst_reg,
7225 (u32)insn->imm);
7226 }
7227 }
7228
7229 } else if (opcode > BPF_END) {
7230 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
7231 return -EINVAL;
7232
7233 } else { /* all other ALU ops: and, sub, xor, add, ... */
7234
7235 if (BPF_SRC(insn->code) == BPF_X) {
7236 if (insn->imm != 0 || insn->off != 0) {
7237 verbose(env, "BPF_ALU uses reserved fields\n");
7238 return -EINVAL;
7239 }
7240 /* check src1 operand */
7241 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7242 if (err)
7243 return err;
7244 } else {
7245 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7246 verbose(env, "BPF_ALU uses reserved fields\n");
7247 return -EINVAL;
7248 }
7249 }
7250
7251 /* check src2 operand */
7252 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7253 if (err)
7254 return err;
7255
7256 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
7257 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
7258 verbose(env, "div by zero\n");
7259 return -EINVAL;
7260 }
7261
7262 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
7263 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
7264 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
7265
7266 if (insn->imm < 0 || insn->imm >= size) {
7267 verbose(env, "invalid shift %d\n", insn->imm);
7268 return -EINVAL;
7269 }
7270 }
7271
7272 /* check dest operand */
7273 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7274 if (err)
7275 return err;
7276
7277 return adjust_reg_min_max_vals(env, insn);
7278 }
7279
7280 return 0;
7281 }
7282
find_good_pkt_pointers(struct bpf_verifier_state * vstate,struct bpf_reg_state * dst_reg,enum bpf_reg_type type,bool range_right_open)7283 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
7284 struct bpf_reg_state *dst_reg,
7285 enum bpf_reg_type type,
7286 bool range_right_open)
7287 {
7288 struct bpf_func_state *state;
7289 struct bpf_reg_state *reg;
7290 int new_range;
7291
7292 if (dst_reg->off < 0 ||
7293 (dst_reg->off == 0 && range_right_open))
7294 /* This doesn't give us any range */
7295 return;
7296
7297 if (dst_reg->umax_value > MAX_PACKET_OFF ||
7298 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
7299 /* Risk of overflow. For instance, ptr + (1<<63) may be less
7300 * than pkt_end, but that's because it's also less than pkt.
7301 */
7302 return;
7303
7304 new_range = dst_reg->off;
7305 if (range_right_open)
7306 new_range++;
7307
7308 /* Examples for register markings:
7309 *
7310 * pkt_data in dst register:
7311 *
7312 * r2 = r3;
7313 * r2 += 8;
7314 * if (r2 > pkt_end) goto <handle exception>
7315 * <access okay>
7316 *
7317 * r2 = r3;
7318 * r2 += 8;
7319 * if (r2 < pkt_end) goto <access okay>
7320 * <handle exception>
7321 *
7322 * Where:
7323 * r2 == dst_reg, pkt_end == src_reg
7324 * r2=pkt(id=n,off=8,r=0)
7325 * r3=pkt(id=n,off=0,r=0)
7326 *
7327 * pkt_data in src register:
7328 *
7329 * r2 = r3;
7330 * r2 += 8;
7331 * if (pkt_end >= r2) goto <access okay>
7332 * <handle exception>
7333 *
7334 * r2 = r3;
7335 * r2 += 8;
7336 * if (pkt_end <= r2) goto <handle exception>
7337 * <access okay>
7338 *
7339 * Where:
7340 * pkt_end == dst_reg, r2 == src_reg
7341 * r2=pkt(id=n,off=8,r=0)
7342 * r3=pkt(id=n,off=0,r=0)
7343 *
7344 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
7345 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
7346 * and [r3, r3 + 8-1) respectively is safe to access depending on
7347 * the check.
7348 */
7349
7350 /* If our ids match, then we must have the same max_value. And we
7351 * don't care about the other reg's fixed offset, since if it's too big
7352 * the range won't allow anything.
7353 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
7354 */
7355 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
7356 if (reg->type == type && reg->id == dst_reg->id)
7357 /* keep the maximum range already checked */
7358 reg->range = max(reg->range, new_range);
7359 }));
7360 }
7361
is_branch32_taken(struct bpf_reg_state * reg,u32 val,u8 opcode)7362 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
7363 {
7364 struct tnum subreg = tnum_subreg(reg->var_off);
7365 s32 sval = (s32)val;
7366
7367 switch (opcode) {
7368 case BPF_JEQ:
7369 if (tnum_is_const(subreg))
7370 return !!tnum_equals_const(subreg, val);
7371 break;
7372 case BPF_JNE:
7373 if (tnum_is_const(subreg))
7374 return !tnum_equals_const(subreg, val);
7375 break;
7376 case BPF_JSET:
7377 if ((~subreg.mask & subreg.value) & val)
7378 return 1;
7379 if (!((subreg.mask | subreg.value) & val))
7380 return 0;
7381 break;
7382 case BPF_JGT:
7383 if (reg->u32_min_value > val)
7384 return 1;
7385 else if (reg->u32_max_value <= val)
7386 return 0;
7387 break;
7388 case BPF_JSGT:
7389 if (reg->s32_min_value > sval)
7390 return 1;
7391 else if (reg->s32_max_value <= sval)
7392 return 0;
7393 break;
7394 case BPF_JLT:
7395 if (reg->u32_max_value < val)
7396 return 1;
7397 else if (reg->u32_min_value >= val)
7398 return 0;
7399 break;
7400 case BPF_JSLT:
7401 if (reg->s32_max_value < sval)
7402 return 1;
7403 else if (reg->s32_min_value >= sval)
7404 return 0;
7405 break;
7406 case BPF_JGE:
7407 if (reg->u32_min_value >= val)
7408 return 1;
7409 else if (reg->u32_max_value < val)
7410 return 0;
7411 break;
7412 case BPF_JSGE:
7413 if (reg->s32_min_value >= sval)
7414 return 1;
7415 else if (reg->s32_max_value < sval)
7416 return 0;
7417 break;
7418 case BPF_JLE:
7419 if (reg->u32_max_value <= val)
7420 return 1;
7421 else if (reg->u32_min_value > val)
7422 return 0;
7423 break;
7424 case BPF_JSLE:
7425 if (reg->s32_max_value <= sval)
7426 return 1;
7427 else if (reg->s32_min_value > sval)
7428 return 0;
7429 break;
7430 }
7431
7432 return -1;
7433 }
7434
7435
is_branch64_taken(struct bpf_reg_state * reg,u64 val,u8 opcode)7436 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
7437 {
7438 s64 sval = (s64)val;
7439
7440 switch (opcode) {
7441 case BPF_JEQ:
7442 if (tnum_is_const(reg->var_off))
7443 return !!tnum_equals_const(reg->var_off, val);
7444 break;
7445 case BPF_JNE:
7446 if (tnum_is_const(reg->var_off))
7447 return !tnum_equals_const(reg->var_off, val);
7448 break;
7449 case BPF_JSET:
7450 if ((~reg->var_off.mask & reg->var_off.value) & val)
7451 return 1;
7452 if (!((reg->var_off.mask | reg->var_off.value) & val))
7453 return 0;
7454 break;
7455 case BPF_JGT:
7456 if (reg->umin_value > val)
7457 return 1;
7458 else if (reg->umax_value <= val)
7459 return 0;
7460 break;
7461 case BPF_JSGT:
7462 if (reg->smin_value > sval)
7463 return 1;
7464 else if (reg->smax_value <= sval)
7465 return 0;
7466 break;
7467 case BPF_JLT:
7468 if (reg->umax_value < val)
7469 return 1;
7470 else if (reg->umin_value >= val)
7471 return 0;
7472 break;
7473 case BPF_JSLT:
7474 if (reg->smax_value < sval)
7475 return 1;
7476 else if (reg->smin_value >= sval)
7477 return 0;
7478 break;
7479 case BPF_JGE:
7480 if (reg->umin_value >= val)
7481 return 1;
7482 else if (reg->umax_value < val)
7483 return 0;
7484 break;
7485 case BPF_JSGE:
7486 if (reg->smin_value >= sval)
7487 return 1;
7488 else if (reg->smax_value < sval)
7489 return 0;
7490 break;
7491 case BPF_JLE:
7492 if (reg->umax_value <= val)
7493 return 1;
7494 else if (reg->umin_value > val)
7495 return 0;
7496 break;
7497 case BPF_JSLE:
7498 if (reg->smax_value <= sval)
7499 return 1;
7500 else if (reg->smin_value > sval)
7501 return 0;
7502 break;
7503 }
7504
7505 return -1;
7506 }
7507
7508 /* compute branch direction of the expression "if (reg opcode val) goto target;"
7509 * and return:
7510 * 1 - branch will be taken and "goto target" will be executed
7511 * 0 - branch will not be taken and fall-through to next insn
7512 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
7513 * range [0,10]
7514 */
is_branch_taken(struct bpf_reg_state * reg,u64 val,u8 opcode,bool is_jmp32)7515 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
7516 bool is_jmp32)
7517 {
7518 if (__is_pointer_value(false, reg)) {
7519 if (!reg_type_not_null(reg->type))
7520 return -1;
7521
7522 /* If pointer is valid tests against zero will fail so we can
7523 * use this to direct branch taken.
7524 */
7525 if (val != 0)
7526 return -1;
7527
7528 switch (opcode) {
7529 case BPF_JEQ:
7530 return 0;
7531 case BPF_JNE:
7532 return 1;
7533 default:
7534 return -1;
7535 }
7536 }
7537
7538 if (is_jmp32)
7539 return is_branch32_taken(reg, val, opcode);
7540 return is_branch64_taken(reg, val, opcode);
7541 }
7542
flip_opcode(u32 opcode)7543 static int flip_opcode(u32 opcode)
7544 {
7545 /* How can we transform "a <op> b" into "b <op> a"? */
7546 static const u8 opcode_flip[16] = {
7547 /* these stay the same */
7548 [BPF_JEQ >> 4] = BPF_JEQ,
7549 [BPF_JNE >> 4] = BPF_JNE,
7550 [BPF_JSET >> 4] = BPF_JSET,
7551 /* these swap "lesser" and "greater" (L and G in the opcodes) */
7552 [BPF_JGE >> 4] = BPF_JLE,
7553 [BPF_JGT >> 4] = BPF_JLT,
7554 [BPF_JLE >> 4] = BPF_JGE,
7555 [BPF_JLT >> 4] = BPF_JGT,
7556 [BPF_JSGE >> 4] = BPF_JSLE,
7557 [BPF_JSGT >> 4] = BPF_JSLT,
7558 [BPF_JSLE >> 4] = BPF_JSGE,
7559 [BPF_JSLT >> 4] = BPF_JSGT
7560 };
7561 return opcode_flip[opcode >> 4];
7562 }
7563
is_pkt_ptr_branch_taken(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,u8 opcode)7564 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
7565 struct bpf_reg_state *src_reg,
7566 u8 opcode)
7567 {
7568 struct bpf_reg_state *pkt;
7569
7570 if (src_reg->type == PTR_TO_PACKET_END) {
7571 pkt = dst_reg;
7572 } else if (dst_reg->type == PTR_TO_PACKET_END) {
7573 pkt = src_reg;
7574 opcode = flip_opcode(opcode);
7575 } else {
7576 return -1;
7577 }
7578
7579 if (pkt->range >= 0)
7580 return -1;
7581
7582 switch (opcode) {
7583 case BPF_JLE:
7584 /* pkt <= pkt_end */
7585 fallthrough;
7586 case BPF_JGT:
7587 /* pkt > pkt_end */
7588 if (pkt->range == BEYOND_PKT_END)
7589 /* pkt has at last one extra byte beyond pkt_end */
7590 return opcode == BPF_JGT;
7591 break;
7592 case BPF_JLT:
7593 /* pkt < pkt_end */
7594 fallthrough;
7595 case BPF_JGE:
7596 /* pkt >= pkt_end */
7597 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
7598 return opcode == BPF_JGE;
7599 break;
7600 }
7601 return -1;
7602 }
7603
7604 /* Adjusts the register min/max values in the case that the dst_reg is the
7605 * variable register that we are working on, and src_reg is a constant or we're
7606 * simply doing a BPF_K check.
7607 * In JEQ/JNE cases we also adjust the var_off values.
7608 */
reg_set_min_max(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)7609 static void reg_set_min_max(struct bpf_reg_state *true_reg,
7610 struct bpf_reg_state *false_reg,
7611 u64 val, u32 val32,
7612 u8 opcode, bool is_jmp32)
7613 {
7614 struct tnum false_32off = tnum_subreg(false_reg->var_off);
7615 struct tnum false_64off = false_reg->var_off;
7616 struct tnum true_32off = tnum_subreg(true_reg->var_off);
7617 struct tnum true_64off = true_reg->var_off;
7618 s64 sval = (s64)val;
7619 s32 sval32 = (s32)val32;
7620
7621 /* If the dst_reg is a pointer, we can't learn anything about its
7622 * variable offset from the compare (unless src_reg were a pointer into
7623 * the same object, but we don't bother with that.
7624 * Since false_reg and true_reg have the same type by construction, we
7625 * only need to check one of them for pointerness.
7626 */
7627 if (__is_pointer_value(false, false_reg))
7628 return;
7629
7630 switch (opcode) {
7631 /* JEQ/JNE comparison doesn't change the register equivalence.
7632 *
7633 * r1 = r2;
7634 * if (r1 == 42) goto label;
7635 * ...
7636 * label: // here both r1 and r2 are known to be 42.
7637 *
7638 * Hence when marking register as known preserve it's ID.
7639 */
7640 case BPF_JEQ:
7641 if (is_jmp32) {
7642 __mark_reg32_known(true_reg, val32);
7643 true_32off = tnum_subreg(true_reg->var_off);
7644 } else {
7645 ___mark_reg_known(true_reg, val);
7646 true_64off = true_reg->var_off;
7647 }
7648 break;
7649 case BPF_JNE:
7650 if (is_jmp32) {
7651 __mark_reg32_known(false_reg, val32);
7652 false_32off = tnum_subreg(false_reg->var_off);
7653 } else {
7654 ___mark_reg_known(false_reg, val);
7655 false_64off = false_reg->var_off;
7656 }
7657 break;
7658 case BPF_JSET:
7659 if (is_jmp32) {
7660 false_32off = tnum_and(false_32off, tnum_const(~val32));
7661 if (is_power_of_2(val32))
7662 true_32off = tnum_or(true_32off,
7663 tnum_const(val32));
7664 } else {
7665 false_64off = tnum_and(false_64off, tnum_const(~val));
7666 if (is_power_of_2(val))
7667 true_64off = tnum_or(true_64off,
7668 tnum_const(val));
7669 }
7670 break;
7671 case BPF_JGE:
7672 case BPF_JGT:
7673 {
7674 if (is_jmp32) {
7675 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
7676 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
7677
7678 false_reg->u32_max_value = min(false_reg->u32_max_value,
7679 false_umax);
7680 true_reg->u32_min_value = max(true_reg->u32_min_value,
7681 true_umin);
7682 } else {
7683 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
7684 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
7685
7686 false_reg->umax_value = min(false_reg->umax_value, false_umax);
7687 true_reg->umin_value = max(true_reg->umin_value, true_umin);
7688 }
7689 break;
7690 }
7691 case BPF_JSGE:
7692 case BPF_JSGT:
7693 {
7694 if (is_jmp32) {
7695 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
7696 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
7697
7698 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
7699 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
7700 } else {
7701 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
7702 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
7703
7704 false_reg->smax_value = min(false_reg->smax_value, false_smax);
7705 true_reg->smin_value = max(true_reg->smin_value, true_smin);
7706 }
7707 break;
7708 }
7709 case BPF_JLE:
7710 case BPF_JLT:
7711 {
7712 if (is_jmp32) {
7713 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
7714 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
7715
7716 false_reg->u32_min_value = max(false_reg->u32_min_value,
7717 false_umin);
7718 true_reg->u32_max_value = min(true_reg->u32_max_value,
7719 true_umax);
7720 } else {
7721 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
7722 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
7723
7724 false_reg->umin_value = max(false_reg->umin_value, false_umin);
7725 true_reg->umax_value = min(true_reg->umax_value, true_umax);
7726 }
7727 break;
7728 }
7729 case BPF_JSLE:
7730 case BPF_JSLT:
7731 {
7732 if (is_jmp32) {
7733 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
7734 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
7735
7736 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
7737 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
7738 } else {
7739 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
7740 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
7741
7742 false_reg->smin_value = max(false_reg->smin_value, false_smin);
7743 true_reg->smax_value = min(true_reg->smax_value, true_smax);
7744 }
7745 break;
7746 }
7747 default:
7748 return;
7749 }
7750
7751 if (is_jmp32) {
7752 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7753 tnum_subreg(false_32off));
7754 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7755 tnum_subreg(true_32off));
7756 __reg_combine_32_into_64(false_reg);
7757 __reg_combine_32_into_64(true_reg);
7758 } else {
7759 false_reg->var_off = false_64off;
7760 true_reg->var_off = true_64off;
7761 __reg_combine_64_into_32(false_reg);
7762 __reg_combine_64_into_32(true_reg);
7763 }
7764 }
7765
7766 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
7767 * the variable reg.
7768 */
reg_set_min_max_inv(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)7769 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
7770 struct bpf_reg_state *false_reg,
7771 u64 val, u32 val32,
7772 u8 opcode, bool is_jmp32)
7773 {
7774 opcode = flip_opcode(opcode);
7775 /* This uses zero as "not present in table"; luckily the zero opcode,
7776 * BPF_JA, can't get here.
7777 */
7778 if (opcode)
7779 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
7780 }
7781
7782 /* Regs are known to be equal, so intersect their min/max/var_off */
__reg_combine_min_max(struct bpf_reg_state * src_reg,struct bpf_reg_state * dst_reg)7783 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7784 struct bpf_reg_state *dst_reg)
7785 {
7786 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7787 dst_reg->umin_value);
7788 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7789 dst_reg->umax_value);
7790 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7791 dst_reg->smin_value);
7792 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7793 dst_reg->smax_value);
7794 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7795 dst_reg->var_off);
7796 reg_bounds_sync(src_reg);
7797 reg_bounds_sync(dst_reg);
7798 }
7799
reg_combine_min_max(struct bpf_reg_state * true_src,struct bpf_reg_state * true_dst,struct bpf_reg_state * false_src,struct bpf_reg_state * false_dst,u8 opcode)7800 static void reg_combine_min_max(struct bpf_reg_state *true_src,
7801 struct bpf_reg_state *true_dst,
7802 struct bpf_reg_state *false_src,
7803 struct bpf_reg_state *false_dst,
7804 u8 opcode)
7805 {
7806 switch (opcode) {
7807 case BPF_JEQ:
7808 __reg_combine_min_max(true_src, true_dst);
7809 break;
7810 case BPF_JNE:
7811 __reg_combine_min_max(false_src, false_dst);
7812 break;
7813 }
7814 }
7815
mark_ptr_or_null_reg(struct bpf_func_state * state,struct bpf_reg_state * reg,u32 id,bool is_null)7816 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
7817 struct bpf_reg_state *reg, u32 id,
7818 bool is_null)
7819 {
7820 if (type_may_be_null(reg->type) && reg->id == id &&
7821 !WARN_ON_ONCE(!reg->id)) {
7822 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
7823 !tnum_equals_const(reg->var_off, 0) ||
7824 reg->off)) {
7825 /* Old offset (both fixed and variable parts) should
7826 * have been known-zero, because we don't allow pointer
7827 * arithmetic on pointers that might be NULL. If we
7828 * see this happening, don't convert the register.
7829 */
7830 return;
7831 }
7832 if (is_null) {
7833 reg->type = SCALAR_VALUE;
7834 } else if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
7835 const struct bpf_map *map = reg->map_ptr;
7836
7837 if (map->inner_map_meta) {
7838 reg->type = CONST_PTR_TO_MAP;
7839 reg->map_ptr = map->inner_map_meta;
7840 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
7841 reg->type = PTR_TO_XDP_SOCK;
7842 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
7843 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
7844 reg->type = PTR_TO_SOCKET;
7845 } else {
7846 reg->type = PTR_TO_MAP_VALUE;
7847 }
7848 } else {
7849 reg->type &= ~PTR_MAYBE_NULL;
7850 }
7851
7852 if (is_null) {
7853 /* We don't need id and ref_obj_id from this point
7854 * onwards anymore, thus we should better reset it,
7855 * so that state pruning has chances to take effect.
7856 */
7857 reg->id = 0;
7858 reg->ref_obj_id = 0;
7859 } else if (!reg_may_point_to_spin_lock(reg)) {
7860 /* For not-NULL ptr, reg->ref_obj_id will be reset
7861 * in release_reference().
7862 *
7863 * reg->id is still used by spin_lock ptr. Other
7864 * than spin_lock ptr type, reg->id can be reset.
7865 */
7866 reg->id = 0;
7867 }
7868 }
7869 }
7870
7871 /* The logic is similar to find_good_pkt_pointers(), both could eventually
7872 * be folded together at some point.
7873 */
mark_ptr_or_null_regs(struct bpf_verifier_state * vstate,u32 regno,bool is_null)7874 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
7875 bool is_null)
7876 {
7877 struct bpf_func_state *state = vstate->frame[vstate->curframe];
7878 struct bpf_reg_state *regs = state->regs, *reg;
7879 u32 ref_obj_id = regs[regno].ref_obj_id;
7880 u32 id = regs[regno].id;
7881
7882 if (ref_obj_id && ref_obj_id == id && is_null)
7883 /* regs[regno] is in the " == NULL" branch.
7884 * No one could have freed the reference state before
7885 * doing the NULL check.
7886 */
7887 WARN_ON_ONCE(release_reference_state(state, id));
7888
7889 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
7890 mark_ptr_or_null_reg(state, reg, id, is_null);
7891 }));
7892 }
7893
try_match_pkt_pointers(const struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,struct bpf_verifier_state * this_branch,struct bpf_verifier_state * other_branch)7894 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
7895 struct bpf_reg_state *dst_reg,
7896 struct bpf_reg_state *src_reg,
7897 struct bpf_verifier_state *this_branch,
7898 struct bpf_verifier_state *other_branch)
7899 {
7900 if (BPF_SRC(insn->code) != BPF_X)
7901 return false;
7902
7903 /* Pointers are always 64-bit. */
7904 if (BPF_CLASS(insn->code) == BPF_JMP32)
7905 return false;
7906
7907 switch (BPF_OP(insn->code)) {
7908 case BPF_JGT:
7909 if ((dst_reg->type == PTR_TO_PACKET &&
7910 src_reg->type == PTR_TO_PACKET_END) ||
7911 (dst_reg->type == PTR_TO_PACKET_META &&
7912 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7913 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
7914 find_good_pkt_pointers(this_branch, dst_reg,
7915 dst_reg->type, false);
7916 mark_pkt_end(other_branch, insn->dst_reg, true);
7917 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7918 src_reg->type == PTR_TO_PACKET) ||
7919 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7920 src_reg->type == PTR_TO_PACKET_META)) {
7921 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
7922 find_good_pkt_pointers(other_branch, src_reg,
7923 src_reg->type, true);
7924 mark_pkt_end(this_branch, insn->src_reg, false);
7925 } else {
7926 return false;
7927 }
7928 break;
7929 case BPF_JLT:
7930 if ((dst_reg->type == PTR_TO_PACKET &&
7931 src_reg->type == PTR_TO_PACKET_END) ||
7932 (dst_reg->type == PTR_TO_PACKET_META &&
7933 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7934 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
7935 find_good_pkt_pointers(other_branch, dst_reg,
7936 dst_reg->type, true);
7937 mark_pkt_end(this_branch, insn->dst_reg, false);
7938 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7939 src_reg->type == PTR_TO_PACKET) ||
7940 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7941 src_reg->type == PTR_TO_PACKET_META)) {
7942 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
7943 find_good_pkt_pointers(this_branch, src_reg,
7944 src_reg->type, false);
7945 mark_pkt_end(other_branch, insn->src_reg, true);
7946 } else {
7947 return false;
7948 }
7949 break;
7950 case BPF_JGE:
7951 if ((dst_reg->type == PTR_TO_PACKET &&
7952 src_reg->type == PTR_TO_PACKET_END) ||
7953 (dst_reg->type == PTR_TO_PACKET_META &&
7954 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7955 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
7956 find_good_pkt_pointers(this_branch, dst_reg,
7957 dst_reg->type, true);
7958 mark_pkt_end(other_branch, insn->dst_reg, false);
7959 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7960 src_reg->type == PTR_TO_PACKET) ||
7961 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7962 src_reg->type == PTR_TO_PACKET_META)) {
7963 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
7964 find_good_pkt_pointers(other_branch, src_reg,
7965 src_reg->type, false);
7966 mark_pkt_end(this_branch, insn->src_reg, true);
7967 } else {
7968 return false;
7969 }
7970 break;
7971 case BPF_JLE:
7972 if ((dst_reg->type == PTR_TO_PACKET &&
7973 src_reg->type == PTR_TO_PACKET_END) ||
7974 (dst_reg->type == PTR_TO_PACKET_META &&
7975 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7976 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
7977 find_good_pkt_pointers(other_branch, dst_reg,
7978 dst_reg->type, false);
7979 mark_pkt_end(this_branch, insn->dst_reg, true);
7980 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7981 src_reg->type == PTR_TO_PACKET) ||
7982 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7983 src_reg->type == PTR_TO_PACKET_META)) {
7984 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
7985 find_good_pkt_pointers(this_branch, src_reg,
7986 src_reg->type, true);
7987 mark_pkt_end(other_branch, insn->src_reg, false);
7988 } else {
7989 return false;
7990 }
7991 break;
7992 default:
7993 return false;
7994 }
7995
7996 return true;
7997 }
7998
find_equal_scalars(struct bpf_verifier_state * vstate,struct bpf_reg_state * known_reg)7999 static void find_equal_scalars(struct bpf_verifier_state *vstate,
8000 struct bpf_reg_state *known_reg)
8001 {
8002 struct bpf_func_state *state;
8003 struct bpf_reg_state *reg;
8004
8005 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
8006 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8007 *reg = *known_reg;
8008 }));
8009 }
8010
check_cond_jmp_op(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)8011 static int check_cond_jmp_op(struct bpf_verifier_env *env,
8012 struct bpf_insn *insn, int *insn_idx)
8013 {
8014 struct bpf_verifier_state *this_branch = env->cur_state;
8015 struct bpf_verifier_state *other_branch;
8016 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
8017 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
8018 u8 opcode = BPF_OP(insn->code);
8019 bool is_jmp32;
8020 int pred = -1;
8021 int err;
8022
8023 /* Only conditional jumps are expected to reach here. */
8024 if (opcode == BPF_JA || opcode > BPF_JSLE) {
8025 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
8026 return -EINVAL;
8027 }
8028
8029 if (BPF_SRC(insn->code) == BPF_X) {
8030 if (insn->imm != 0) {
8031 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8032 return -EINVAL;
8033 }
8034
8035 /* check src1 operand */
8036 err = check_reg_arg(env, insn->src_reg, SRC_OP);
8037 if (err)
8038 return err;
8039
8040 if (is_pointer_value(env, insn->src_reg)) {
8041 verbose(env, "R%d pointer comparison prohibited\n",
8042 insn->src_reg);
8043 return -EACCES;
8044 }
8045 src_reg = ®s[insn->src_reg];
8046 } else {
8047 if (insn->src_reg != BPF_REG_0) {
8048 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8049 return -EINVAL;
8050 }
8051 }
8052
8053 /* check src2 operand */
8054 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8055 if (err)
8056 return err;
8057
8058 dst_reg = ®s[insn->dst_reg];
8059 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
8060
8061 if (BPF_SRC(insn->code) == BPF_K) {
8062 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8063 } else if (src_reg->type == SCALAR_VALUE &&
8064 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8065 pred = is_branch_taken(dst_reg,
8066 tnum_subreg(src_reg->var_off).value,
8067 opcode,
8068 is_jmp32);
8069 } else if (src_reg->type == SCALAR_VALUE &&
8070 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8071 pred = is_branch_taken(dst_reg,
8072 src_reg->var_off.value,
8073 opcode,
8074 is_jmp32);
8075 } else if (reg_is_pkt_pointer_any(dst_reg) &&
8076 reg_is_pkt_pointer_any(src_reg) &&
8077 !is_jmp32) {
8078 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
8079 }
8080
8081 if (pred >= 0) {
8082 /* If we get here with a dst_reg pointer type it is because
8083 * above is_branch_taken() special cased the 0 comparison.
8084 */
8085 if (!__is_pointer_value(false, dst_reg))
8086 err = mark_chain_precision(env, insn->dst_reg);
8087 if (BPF_SRC(insn->code) == BPF_X && !err &&
8088 !__is_pointer_value(false, src_reg))
8089 err = mark_chain_precision(env, insn->src_reg);
8090 if (err)
8091 return err;
8092 }
8093
8094 if (pred == 1) {
8095 /* Only follow the goto, ignore fall-through. If needed, push
8096 * the fall-through branch for simulation under speculative
8097 * execution.
8098 */
8099 if (!env->bypass_spec_v1 &&
8100 !sanitize_speculative_path(env, insn, *insn_idx + 1,
8101 *insn_idx))
8102 return -EFAULT;
8103 *insn_idx += insn->off;
8104 return 0;
8105 } else if (pred == 0) {
8106 /* Only follow the fall-through branch, since that's where the
8107 * program will go. If needed, push the goto branch for
8108 * simulation under speculative execution.
8109 */
8110 if (!env->bypass_spec_v1 &&
8111 !sanitize_speculative_path(env, insn,
8112 *insn_idx + insn->off + 1,
8113 *insn_idx))
8114 return -EFAULT;
8115 return 0;
8116 }
8117
8118 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
8119 false);
8120 if (!other_branch)
8121 return -EFAULT;
8122 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
8123
8124 /* detect if we are comparing against a constant value so we can adjust
8125 * our min/max values for our dst register.
8126 * this is only legit if both are scalars (or pointers to the same
8127 * object, I suppose, but we don't support that right now), because
8128 * otherwise the different base pointers mean the offsets aren't
8129 * comparable.
8130 */
8131 if (BPF_SRC(insn->code) == BPF_X) {
8132 struct bpf_reg_state *src_reg = ®s[insn->src_reg];
8133
8134 if (dst_reg->type == SCALAR_VALUE &&
8135 src_reg->type == SCALAR_VALUE) {
8136 if (tnum_is_const(src_reg->var_off) ||
8137 (is_jmp32 &&
8138 tnum_is_const(tnum_subreg(src_reg->var_off))))
8139 reg_set_min_max(&other_branch_regs[insn->dst_reg],
8140 dst_reg,
8141 src_reg->var_off.value,
8142 tnum_subreg(src_reg->var_off).value,
8143 opcode, is_jmp32);
8144 else if (tnum_is_const(dst_reg->var_off) ||
8145 (is_jmp32 &&
8146 tnum_is_const(tnum_subreg(dst_reg->var_off))))
8147 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
8148 src_reg,
8149 dst_reg->var_off.value,
8150 tnum_subreg(dst_reg->var_off).value,
8151 opcode, is_jmp32);
8152 else if (!is_jmp32 &&
8153 (opcode == BPF_JEQ || opcode == BPF_JNE))
8154 /* Comparing for equality, we can combine knowledge */
8155 reg_combine_min_max(&other_branch_regs[insn->src_reg],
8156 &other_branch_regs[insn->dst_reg],
8157 src_reg, dst_reg, opcode);
8158 if (src_reg->id &&
8159 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
8160 find_equal_scalars(this_branch, src_reg);
8161 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
8162 }
8163
8164 }
8165 } else if (dst_reg->type == SCALAR_VALUE) {
8166 reg_set_min_max(&other_branch_regs[insn->dst_reg],
8167 dst_reg, insn->imm, (u32)insn->imm,
8168 opcode, is_jmp32);
8169 }
8170
8171 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
8172 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
8173 find_equal_scalars(this_branch, dst_reg);
8174 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
8175 }
8176
8177 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
8178 * NOTE: these optimizations below are related with pointer comparison
8179 * which will never be JMP32.
8180 */
8181 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
8182 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
8183 type_may_be_null(dst_reg->type)) {
8184 /* Mark all identical registers in each branch as either
8185 * safe or unknown depending R == 0 or R != 0 conditional.
8186 */
8187 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
8188 opcode == BPF_JNE);
8189 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
8190 opcode == BPF_JEQ);
8191 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg],
8192 this_branch, other_branch) &&
8193 is_pointer_value(env, insn->dst_reg)) {
8194 verbose(env, "R%d pointer comparison prohibited\n",
8195 insn->dst_reg);
8196 return -EACCES;
8197 }
8198 if (env->log.level & BPF_LOG_LEVEL)
8199 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
8200 return 0;
8201 }
8202
8203 /* verify BPF_LD_IMM64 instruction */
check_ld_imm(struct bpf_verifier_env * env,struct bpf_insn * insn)8204 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
8205 {
8206 struct bpf_insn_aux_data *aux = cur_aux(env);
8207 struct bpf_reg_state *regs = cur_regs(env);
8208 struct bpf_reg_state *dst_reg;
8209 struct bpf_map *map;
8210 int err;
8211
8212 if (BPF_SIZE(insn->code) != BPF_DW) {
8213 verbose(env, "invalid BPF_LD_IMM insn\n");
8214 return -EINVAL;
8215 }
8216 if (insn->off != 0) {
8217 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
8218 return -EINVAL;
8219 }
8220
8221 err = check_reg_arg(env, insn->dst_reg, DST_OP);
8222 if (err)
8223 return err;
8224
8225 dst_reg = ®s[insn->dst_reg];
8226 if (insn->src_reg == 0) {
8227 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
8228
8229 dst_reg->type = SCALAR_VALUE;
8230 __mark_reg_known(®s[insn->dst_reg], imm);
8231 return 0;
8232 }
8233
8234 /* All special src_reg cases are listed below. From this point onwards
8235 * we either succeed and assign a corresponding dst_reg->type after
8236 * zeroing the offset, or fail and reject the program.
8237 */
8238 mark_reg_known_zero(env, regs, insn->dst_reg);
8239
8240 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
8241 dst_reg->type = aux->btf_var.reg_type;
8242 switch (base_type(dst_reg->type)) {
8243 case PTR_TO_MEM:
8244 dst_reg->mem_size = aux->btf_var.mem_size;
8245 break;
8246 case PTR_TO_BTF_ID:
8247 case PTR_TO_PERCPU_BTF_ID:
8248 dst_reg->btf_id = aux->btf_var.btf_id;
8249 break;
8250 default:
8251 verbose(env, "bpf verifier is misconfigured\n");
8252 return -EFAULT;
8253 }
8254 return 0;
8255 }
8256
8257 map = env->used_maps[aux->map_index];
8258 dst_reg->map_ptr = map;
8259
8260 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
8261 dst_reg->type = PTR_TO_MAP_VALUE;
8262 dst_reg->off = aux->map_off;
8263 if (map_value_has_spin_lock(map))
8264 dst_reg->id = ++env->id_gen;
8265 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8266 dst_reg->type = CONST_PTR_TO_MAP;
8267 } else {
8268 verbose(env, "bpf verifier is misconfigured\n");
8269 return -EINVAL;
8270 }
8271
8272 return 0;
8273 }
8274
may_access_skb(enum bpf_prog_type type)8275 static bool may_access_skb(enum bpf_prog_type type)
8276 {
8277 switch (type) {
8278 case BPF_PROG_TYPE_SOCKET_FILTER:
8279 case BPF_PROG_TYPE_SCHED_CLS:
8280 case BPF_PROG_TYPE_SCHED_ACT:
8281 return true;
8282 default:
8283 return false;
8284 }
8285 }
8286
8287 /* verify safety of LD_ABS|LD_IND instructions:
8288 * - they can only appear in the programs where ctx == skb
8289 * - since they are wrappers of function calls, they scratch R1-R5 registers,
8290 * preserve R6-R9, and store return value into R0
8291 *
8292 * Implicit input:
8293 * ctx == skb == R6 == CTX
8294 *
8295 * Explicit input:
8296 * SRC == any register
8297 * IMM == 32-bit immediate
8298 *
8299 * Output:
8300 * R0 - 8/16/32-bit skb data converted to cpu endianness
8301 */
check_ld_abs(struct bpf_verifier_env * env,struct bpf_insn * insn)8302 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
8303 {
8304 struct bpf_reg_state *regs = cur_regs(env);
8305 static const int ctx_reg = BPF_REG_6;
8306 u8 mode = BPF_MODE(insn->code);
8307 int i, err;
8308
8309 if (!may_access_skb(resolve_prog_type(env->prog))) {
8310 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
8311 return -EINVAL;
8312 }
8313
8314 if (!env->ops->gen_ld_abs) {
8315 verbose(env, "bpf verifier is misconfigured\n");
8316 return -EINVAL;
8317 }
8318
8319 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
8320 BPF_SIZE(insn->code) == BPF_DW ||
8321 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
8322 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
8323 return -EINVAL;
8324 }
8325
8326 /* check whether implicit source operand (register R6) is readable */
8327 err = check_reg_arg(env, ctx_reg, SRC_OP);
8328 if (err)
8329 return err;
8330
8331 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
8332 * gen_ld_abs() may terminate the program at runtime, leading to
8333 * reference leak.
8334 */
8335 err = check_reference_leak(env);
8336 if (err) {
8337 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
8338 return err;
8339 }
8340
8341 if (env->cur_state->active_spin_lock) {
8342 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
8343 return -EINVAL;
8344 }
8345
8346 if (regs[ctx_reg].type != PTR_TO_CTX) {
8347 verbose(env,
8348 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
8349 return -EINVAL;
8350 }
8351
8352 if (mode == BPF_IND) {
8353 /* check explicit source operand */
8354 err = check_reg_arg(env, insn->src_reg, SRC_OP);
8355 if (err)
8356 return err;
8357 }
8358
8359 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg);
8360 if (err < 0)
8361 return err;
8362
8363 /* reset caller saved regs to unreadable */
8364 for (i = 0; i < CALLER_SAVED_REGS; i++) {
8365 mark_reg_not_init(env, regs, caller_saved[i]);
8366 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8367 }
8368
8369 /* mark destination R0 register as readable, since it contains
8370 * the value fetched from the packet.
8371 * Already marked as written above.
8372 */
8373 mark_reg_unknown(env, regs, BPF_REG_0);
8374 /* ld_abs load up to 32-bit skb data. */
8375 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
8376 return 0;
8377 }
8378
check_return_code(struct bpf_verifier_env * env)8379 static int check_return_code(struct bpf_verifier_env *env)
8380 {
8381 struct tnum enforce_attach_type_range = tnum_unknown;
8382 const struct bpf_prog *prog = env->prog;
8383 struct bpf_reg_state *reg;
8384 struct tnum range = tnum_range(0, 1);
8385 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
8386 int err;
8387 const bool is_subprog = env->cur_state->frame[0]->subprogno;
8388
8389 /* LSM and struct_ops func-ptr's return type could be "void" */
8390 if (!is_subprog &&
8391 (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
8392 prog_type == BPF_PROG_TYPE_LSM) &&
8393 !prog->aux->attach_func_proto->type)
8394 return 0;
8395
8396 /* eBPF calling convetion is such that R0 is used
8397 * to return the value from eBPF program.
8398 * Make sure that it's readable at this time
8399 * of bpf_exit, which means that program wrote
8400 * something into it earlier
8401 */
8402 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
8403 if (err)
8404 return err;
8405
8406 if (is_pointer_value(env, BPF_REG_0)) {
8407 verbose(env, "R0 leaks addr as return value\n");
8408 return -EACCES;
8409 }
8410
8411 reg = cur_regs(env) + BPF_REG_0;
8412 if (is_subprog) {
8413 if (reg->type != SCALAR_VALUE) {
8414 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
8415 reg_type_str(env, reg->type));
8416 return -EINVAL;
8417 }
8418 return 0;
8419 }
8420
8421 switch (prog_type) {
8422 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8423 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
8424 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
8425 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
8426 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
8427 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
8428 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
8429 range = tnum_range(1, 1);
8430 break;
8431 case BPF_PROG_TYPE_CGROUP_SKB:
8432 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
8433 range = tnum_range(0, 3);
8434 enforce_attach_type_range = tnum_range(2, 3);
8435 }
8436 break;
8437 case BPF_PROG_TYPE_CGROUP_SOCK:
8438 case BPF_PROG_TYPE_SOCK_OPS:
8439 case BPF_PROG_TYPE_CGROUP_DEVICE:
8440 case BPF_PROG_TYPE_CGROUP_SYSCTL:
8441 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
8442 break;
8443 case BPF_PROG_TYPE_RAW_TRACEPOINT:
8444 if (!env->prog->aux->attach_btf_id)
8445 return 0;
8446 range = tnum_const(0);
8447 break;
8448 case BPF_PROG_TYPE_TRACING:
8449 switch (env->prog->expected_attach_type) {
8450 case BPF_TRACE_FENTRY:
8451 case BPF_TRACE_FEXIT:
8452 range = tnum_const(0);
8453 break;
8454 case BPF_TRACE_RAW_TP:
8455 case BPF_MODIFY_RETURN:
8456 return 0;
8457 case BPF_TRACE_ITER:
8458 break;
8459 default:
8460 return -ENOTSUPP;
8461 }
8462 break;
8463 case BPF_PROG_TYPE_SK_LOOKUP:
8464 range = tnum_range(SK_DROP, SK_PASS);
8465 break;
8466 case BPF_PROG_TYPE_EXT:
8467 /* freplace program can return anything as its return value
8468 * depends on the to-be-replaced kernel func or bpf program.
8469 */
8470 default:
8471 return 0;
8472 }
8473
8474 if (reg->type != SCALAR_VALUE) {
8475 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
8476 reg_type_str(env, reg->type));
8477 return -EINVAL;
8478 }
8479
8480 if (!tnum_in(range, reg->var_off)) {
8481 char tn_buf[48];
8482
8483 verbose(env, "At program exit the register R0 ");
8484 if (!tnum_is_unknown(reg->var_off)) {
8485 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8486 verbose(env, "has value %s", tn_buf);
8487 } else {
8488 verbose(env, "has unknown scalar value");
8489 }
8490 tnum_strn(tn_buf, sizeof(tn_buf), range);
8491 verbose(env, " should have been in %s\n", tn_buf);
8492 return -EINVAL;
8493 }
8494
8495 if (!tnum_is_unknown(enforce_attach_type_range) &&
8496 tnum_in(enforce_attach_type_range, reg->var_off))
8497 env->prog->enforce_expected_attach_type = 1;
8498 return 0;
8499 }
8500
8501 /* non-recursive DFS pseudo code
8502 * 1 procedure DFS-iterative(G,v):
8503 * 2 label v as discovered
8504 * 3 let S be a stack
8505 * 4 S.push(v)
8506 * 5 while S is not empty
8507 * 6 t <- S.pop()
8508 * 7 if t is what we're looking for:
8509 * 8 return t
8510 * 9 for all edges e in G.adjacentEdges(t) do
8511 * 10 if edge e is already labelled
8512 * 11 continue with the next edge
8513 * 12 w <- G.adjacentVertex(t,e)
8514 * 13 if vertex w is not discovered and not explored
8515 * 14 label e as tree-edge
8516 * 15 label w as discovered
8517 * 16 S.push(w)
8518 * 17 continue at 5
8519 * 18 else if vertex w is discovered
8520 * 19 label e as back-edge
8521 * 20 else
8522 * 21 // vertex w is explored
8523 * 22 label e as forward- or cross-edge
8524 * 23 label t as explored
8525 * 24 S.pop()
8526 *
8527 * convention:
8528 * 0x10 - discovered
8529 * 0x11 - discovered and fall-through edge labelled
8530 * 0x12 - discovered and fall-through and branch edges labelled
8531 * 0x20 - explored
8532 */
8533
8534 enum {
8535 DISCOVERED = 0x10,
8536 EXPLORED = 0x20,
8537 FALLTHROUGH = 1,
8538 BRANCH = 2,
8539 };
8540
state_htab_size(struct bpf_verifier_env * env)8541 static u32 state_htab_size(struct bpf_verifier_env *env)
8542 {
8543 return env->prog->len;
8544 }
8545
explored_state(struct bpf_verifier_env * env,int idx)8546 static struct bpf_verifier_state_list **explored_state(
8547 struct bpf_verifier_env *env,
8548 int idx)
8549 {
8550 struct bpf_verifier_state *cur = env->cur_state;
8551 struct bpf_func_state *state = cur->frame[cur->curframe];
8552
8553 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
8554 }
8555
init_explored_state(struct bpf_verifier_env * env,int idx)8556 static void init_explored_state(struct bpf_verifier_env *env, int idx)
8557 {
8558 env->insn_aux_data[idx].prune_point = true;
8559 }
8560
8561 /* t, w, e - match pseudo-code above:
8562 * t - index of current instruction
8563 * w - next instruction
8564 * e - edge
8565 */
push_insn(int t,int w,int e,struct bpf_verifier_env * env,bool loop_ok)8566 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
8567 bool loop_ok)
8568 {
8569 int *insn_stack = env->cfg.insn_stack;
8570 int *insn_state = env->cfg.insn_state;
8571
8572 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
8573 return 0;
8574
8575 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
8576 return 0;
8577
8578 if (w < 0 || w >= env->prog->len) {
8579 verbose_linfo(env, t, "%d: ", t);
8580 verbose(env, "jump out of range from insn %d to %d\n", t, w);
8581 return -EINVAL;
8582 }
8583
8584 if (e == BRANCH)
8585 /* mark branch target for state pruning */
8586 init_explored_state(env, w);
8587
8588 if (insn_state[w] == 0) {
8589 /* tree-edge */
8590 insn_state[t] = DISCOVERED | e;
8591 insn_state[w] = DISCOVERED;
8592 if (env->cfg.cur_stack >= env->prog->len)
8593 return -E2BIG;
8594 insn_stack[env->cfg.cur_stack++] = w;
8595 return 1;
8596 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
8597 if (loop_ok && env->bpf_capable)
8598 return 0;
8599 verbose_linfo(env, t, "%d: ", t);
8600 verbose_linfo(env, w, "%d: ", w);
8601 verbose(env, "back-edge from insn %d to %d\n", t, w);
8602 return -EINVAL;
8603 } else if (insn_state[w] == EXPLORED) {
8604 /* forward- or cross-edge */
8605 insn_state[t] = DISCOVERED | e;
8606 } else {
8607 verbose(env, "insn state internal bug\n");
8608 return -EFAULT;
8609 }
8610 return 0;
8611 }
8612
8613 /* non-recursive depth-first-search to detect loops in BPF program
8614 * loop == back-edge in directed graph
8615 */
check_cfg(struct bpf_verifier_env * env)8616 static int check_cfg(struct bpf_verifier_env *env)
8617 {
8618 struct bpf_insn *insns = env->prog->insnsi;
8619 int insn_cnt = env->prog->len;
8620 int *insn_stack, *insn_state;
8621 int ret = 0;
8622 int i, t;
8623
8624 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8625 if (!insn_state)
8626 return -ENOMEM;
8627
8628 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8629 if (!insn_stack) {
8630 kvfree(insn_state);
8631 return -ENOMEM;
8632 }
8633
8634 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
8635 insn_stack[0] = 0; /* 0 is the first instruction */
8636 env->cfg.cur_stack = 1;
8637
8638 peek_stack:
8639 if (env->cfg.cur_stack == 0)
8640 goto check_state;
8641 t = insn_stack[env->cfg.cur_stack - 1];
8642
8643 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
8644 BPF_CLASS(insns[t].code) == BPF_JMP32) {
8645 u8 opcode = BPF_OP(insns[t].code);
8646
8647 if (opcode == BPF_EXIT) {
8648 goto mark_explored;
8649 } else if (opcode == BPF_CALL) {
8650 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8651 if (ret == 1)
8652 goto peek_stack;
8653 else if (ret < 0)
8654 goto err_free;
8655 if (t + 1 < insn_cnt)
8656 init_explored_state(env, t + 1);
8657 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
8658 init_explored_state(env, t);
8659 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
8660 env, false);
8661 if (ret == 1)
8662 goto peek_stack;
8663 else if (ret < 0)
8664 goto err_free;
8665 }
8666 } else if (opcode == BPF_JA) {
8667 if (BPF_SRC(insns[t].code) != BPF_K) {
8668 ret = -EINVAL;
8669 goto err_free;
8670 }
8671 /* unconditional jump with single edge */
8672 ret = push_insn(t, t + insns[t].off + 1,
8673 FALLTHROUGH, env, true);
8674 if (ret == 1)
8675 goto peek_stack;
8676 else if (ret < 0)
8677 goto err_free;
8678 /* unconditional jmp is not a good pruning point,
8679 * but it's marked, since backtracking needs
8680 * to record jmp history in is_state_visited().
8681 */
8682 init_explored_state(env, t + insns[t].off + 1);
8683 /* tell verifier to check for equivalent states
8684 * after every call and jump
8685 */
8686 if (t + 1 < insn_cnt)
8687 init_explored_state(env, t + 1);
8688 } else {
8689 /* conditional jump with two edges */
8690 init_explored_state(env, t);
8691 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
8692 if (ret == 1)
8693 goto peek_stack;
8694 else if (ret < 0)
8695 goto err_free;
8696
8697 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
8698 if (ret == 1)
8699 goto peek_stack;
8700 else if (ret < 0)
8701 goto err_free;
8702 }
8703 } else {
8704 /* all other non-branch instructions with single
8705 * fall-through edge
8706 */
8707 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8708 if (ret == 1)
8709 goto peek_stack;
8710 else if (ret < 0)
8711 goto err_free;
8712 }
8713
8714 mark_explored:
8715 insn_state[t] = EXPLORED;
8716 if (env->cfg.cur_stack-- <= 0) {
8717 verbose(env, "pop stack internal bug\n");
8718 ret = -EFAULT;
8719 goto err_free;
8720 }
8721 goto peek_stack;
8722
8723 check_state:
8724 for (i = 0; i < insn_cnt; i++) {
8725 if (insn_state[i] != EXPLORED) {
8726 verbose(env, "unreachable insn %d\n", i);
8727 ret = -EINVAL;
8728 goto err_free;
8729 }
8730 }
8731 ret = 0; /* cfg looks good */
8732
8733 err_free:
8734 kvfree(insn_state);
8735 kvfree(insn_stack);
8736 env->cfg.insn_state = env->cfg.insn_stack = NULL;
8737 return ret;
8738 }
8739
check_abnormal_return(struct bpf_verifier_env * env)8740 static int check_abnormal_return(struct bpf_verifier_env *env)
8741 {
8742 int i;
8743
8744 for (i = 1; i < env->subprog_cnt; i++) {
8745 if (env->subprog_info[i].has_ld_abs) {
8746 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
8747 return -EINVAL;
8748 }
8749 if (env->subprog_info[i].has_tail_call) {
8750 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
8751 return -EINVAL;
8752 }
8753 }
8754 return 0;
8755 }
8756
8757 /* The minimum supported BTF func info size */
8758 #define MIN_BPF_FUNCINFO_SIZE 8
8759 #define MAX_FUNCINFO_REC_SIZE 252
8760
check_btf_func(struct bpf_verifier_env * env,const union bpf_attr * attr,union bpf_attr __user * uattr)8761 static int check_btf_func(struct bpf_verifier_env *env,
8762 const union bpf_attr *attr,
8763 union bpf_attr __user *uattr)
8764 {
8765 const struct btf_type *type, *func_proto, *ret_type;
8766 u32 i, nfuncs, urec_size, min_size;
8767 u32 krec_size = sizeof(struct bpf_func_info);
8768 struct bpf_func_info *krecord;
8769 struct bpf_func_info_aux *info_aux = NULL;
8770 struct bpf_prog *prog;
8771 const struct btf *btf;
8772 void __user *urecord;
8773 u32 prev_offset = 0;
8774 bool scalar_return;
8775 int ret = -ENOMEM;
8776
8777 nfuncs = attr->func_info_cnt;
8778 if (!nfuncs) {
8779 if (check_abnormal_return(env))
8780 return -EINVAL;
8781 return 0;
8782 }
8783
8784 if (nfuncs != env->subprog_cnt) {
8785 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
8786 return -EINVAL;
8787 }
8788
8789 urec_size = attr->func_info_rec_size;
8790 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
8791 urec_size > MAX_FUNCINFO_REC_SIZE ||
8792 urec_size % sizeof(u32)) {
8793 verbose(env, "invalid func info rec size %u\n", urec_size);
8794 return -EINVAL;
8795 }
8796
8797 prog = env->prog;
8798 btf = prog->aux->btf;
8799
8800 urecord = u64_to_user_ptr(attr->func_info);
8801 min_size = min_t(u32, krec_size, urec_size);
8802
8803 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
8804 if (!krecord)
8805 return -ENOMEM;
8806 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
8807 if (!info_aux)
8808 goto err_free;
8809
8810 for (i = 0; i < nfuncs; i++) {
8811 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
8812 if (ret) {
8813 if (ret == -E2BIG) {
8814 verbose(env, "nonzero tailing record in func info");
8815 /* set the size kernel expects so loader can zero
8816 * out the rest of the record.
8817 */
8818 if (put_user(min_size, &uattr->func_info_rec_size))
8819 ret = -EFAULT;
8820 }
8821 goto err_free;
8822 }
8823
8824 if (copy_from_user(&krecord[i], urecord, min_size)) {
8825 ret = -EFAULT;
8826 goto err_free;
8827 }
8828
8829 /* check insn_off */
8830 ret = -EINVAL;
8831 if (i == 0) {
8832 if (krecord[i].insn_off) {
8833 verbose(env,
8834 "nonzero insn_off %u for the first func info record",
8835 krecord[i].insn_off);
8836 goto err_free;
8837 }
8838 } else if (krecord[i].insn_off <= prev_offset) {
8839 verbose(env,
8840 "same or smaller insn offset (%u) than previous func info record (%u)",
8841 krecord[i].insn_off, prev_offset);
8842 goto err_free;
8843 }
8844
8845 if (env->subprog_info[i].start != krecord[i].insn_off) {
8846 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
8847 goto err_free;
8848 }
8849
8850 /* check type_id */
8851 type = btf_type_by_id(btf, krecord[i].type_id);
8852 if (!type || !btf_type_is_func(type)) {
8853 verbose(env, "invalid type id %d in func info",
8854 krecord[i].type_id);
8855 goto err_free;
8856 }
8857 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
8858
8859 func_proto = btf_type_by_id(btf, type->type);
8860 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
8861 /* btf_func_check() already verified it during BTF load */
8862 goto err_free;
8863 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
8864 scalar_return =
8865 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
8866 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
8867 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
8868 goto err_free;
8869 }
8870 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
8871 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
8872 goto err_free;
8873 }
8874
8875 prev_offset = krecord[i].insn_off;
8876 urecord += urec_size;
8877 }
8878
8879 prog->aux->func_info = krecord;
8880 prog->aux->func_info_cnt = nfuncs;
8881 prog->aux->func_info_aux = info_aux;
8882 return 0;
8883
8884 err_free:
8885 kvfree(krecord);
8886 kfree(info_aux);
8887 return ret;
8888 }
8889
adjust_btf_func(struct bpf_verifier_env * env)8890 static void adjust_btf_func(struct bpf_verifier_env *env)
8891 {
8892 struct bpf_prog_aux *aux = env->prog->aux;
8893 int i;
8894
8895 if (!aux->func_info)
8896 return;
8897
8898 for (i = 0; i < env->subprog_cnt; i++)
8899 aux->func_info[i].insn_off = env->subprog_info[i].start;
8900 }
8901
8902 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
8903 sizeof(((struct bpf_line_info *)(0))->line_col))
8904 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
8905
check_btf_line(struct bpf_verifier_env * env,const union bpf_attr * attr,union bpf_attr __user * uattr)8906 static int check_btf_line(struct bpf_verifier_env *env,
8907 const union bpf_attr *attr,
8908 union bpf_attr __user *uattr)
8909 {
8910 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
8911 struct bpf_subprog_info *sub;
8912 struct bpf_line_info *linfo;
8913 struct bpf_prog *prog;
8914 const struct btf *btf;
8915 void __user *ulinfo;
8916 int err;
8917
8918 nr_linfo = attr->line_info_cnt;
8919 if (!nr_linfo)
8920 return 0;
8921 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
8922 return -EINVAL;
8923
8924 rec_size = attr->line_info_rec_size;
8925 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
8926 rec_size > MAX_LINEINFO_REC_SIZE ||
8927 rec_size & (sizeof(u32) - 1))
8928 return -EINVAL;
8929
8930 /* Need to zero it in case the userspace may
8931 * pass in a smaller bpf_line_info object.
8932 */
8933 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
8934 GFP_KERNEL | __GFP_NOWARN);
8935 if (!linfo)
8936 return -ENOMEM;
8937
8938 prog = env->prog;
8939 btf = prog->aux->btf;
8940
8941 s = 0;
8942 sub = env->subprog_info;
8943 ulinfo = u64_to_user_ptr(attr->line_info);
8944 expected_size = sizeof(struct bpf_line_info);
8945 ncopy = min_t(u32, expected_size, rec_size);
8946 for (i = 0; i < nr_linfo; i++) {
8947 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
8948 if (err) {
8949 if (err == -E2BIG) {
8950 verbose(env, "nonzero tailing record in line_info");
8951 if (put_user(expected_size,
8952 &uattr->line_info_rec_size))
8953 err = -EFAULT;
8954 }
8955 goto err_free;
8956 }
8957
8958 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
8959 err = -EFAULT;
8960 goto err_free;
8961 }
8962
8963 /*
8964 * Check insn_off to ensure
8965 * 1) strictly increasing AND
8966 * 2) bounded by prog->len
8967 *
8968 * The linfo[0].insn_off == 0 check logically falls into
8969 * the later "missing bpf_line_info for func..." case
8970 * because the first linfo[0].insn_off must be the
8971 * first sub also and the first sub must have
8972 * subprog_info[0].start == 0.
8973 */
8974 if ((i && linfo[i].insn_off <= prev_offset) ||
8975 linfo[i].insn_off >= prog->len) {
8976 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
8977 i, linfo[i].insn_off, prev_offset,
8978 prog->len);
8979 err = -EINVAL;
8980 goto err_free;
8981 }
8982
8983 if (!prog->insnsi[linfo[i].insn_off].code) {
8984 verbose(env,
8985 "Invalid insn code at line_info[%u].insn_off\n",
8986 i);
8987 err = -EINVAL;
8988 goto err_free;
8989 }
8990
8991 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
8992 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
8993 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
8994 err = -EINVAL;
8995 goto err_free;
8996 }
8997
8998 if (s != env->subprog_cnt) {
8999 if (linfo[i].insn_off == sub[s].start) {
9000 sub[s].linfo_idx = i;
9001 s++;
9002 } else if (sub[s].start < linfo[i].insn_off) {
9003 verbose(env, "missing bpf_line_info for func#%u\n", s);
9004 err = -EINVAL;
9005 goto err_free;
9006 }
9007 }
9008
9009 prev_offset = linfo[i].insn_off;
9010 ulinfo += rec_size;
9011 }
9012
9013 if (s != env->subprog_cnt) {
9014 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
9015 env->subprog_cnt - s, s);
9016 err = -EINVAL;
9017 goto err_free;
9018 }
9019
9020 prog->aux->linfo = linfo;
9021 prog->aux->nr_linfo = nr_linfo;
9022
9023 return 0;
9024
9025 err_free:
9026 kvfree(linfo);
9027 return err;
9028 }
9029
check_btf_info(struct bpf_verifier_env * env,const union bpf_attr * attr,union bpf_attr __user * uattr)9030 static int check_btf_info(struct bpf_verifier_env *env,
9031 const union bpf_attr *attr,
9032 union bpf_attr __user *uattr)
9033 {
9034 struct btf *btf;
9035 int err;
9036
9037 if (!attr->func_info_cnt && !attr->line_info_cnt) {
9038 if (check_abnormal_return(env))
9039 return -EINVAL;
9040 return 0;
9041 }
9042
9043 btf = btf_get_by_fd(attr->prog_btf_fd);
9044 if (IS_ERR(btf))
9045 return PTR_ERR(btf);
9046 env->prog->aux->btf = btf;
9047
9048 err = check_btf_func(env, attr, uattr);
9049 if (err)
9050 return err;
9051
9052 err = check_btf_line(env, attr, uattr);
9053 if (err)
9054 return err;
9055
9056 return 0;
9057 }
9058
9059 /* check %cur's range satisfies %old's */
range_within(struct bpf_reg_state * old,struct bpf_reg_state * cur)9060 static bool range_within(struct bpf_reg_state *old,
9061 struct bpf_reg_state *cur)
9062 {
9063 return old->umin_value <= cur->umin_value &&
9064 old->umax_value >= cur->umax_value &&
9065 old->smin_value <= cur->smin_value &&
9066 old->smax_value >= cur->smax_value &&
9067 old->u32_min_value <= cur->u32_min_value &&
9068 old->u32_max_value >= cur->u32_max_value &&
9069 old->s32_min_value <= cur->s32_min_value &&
9070 old->s32_max_value >= cur->s32_max_value;
9071 }
9072
9073 /* If in the old state two registers had the same id, then they need to have
9074 * the same id in the new state as well. But that id could be different from
9075 * the old state, so we need to track the mapping from old to new ids.
9076 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
9077 * regs with old id 5 must also have new id 9 for the new state to be safe. But
9078 * regs with a different old id could still have new id 9, we don't care about
9079 * that.
9080 * So we look through our idmap to see if this old id has been seen before. If
9081 * so, we require the new id to match; otherwise, we add the id pair to the map.
9082 */
check_ids(u32 old_id,u32 cur_id,struct bpf_id_pair * idmap)9083 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
9084 {
9085 unsigned int i;
9086
9087 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
9088 if (!idmap[i].old) {
9089 /* Reached an empty slot; haven't seen this id before */
9090 idmap[i].old = old_id;
9091 idmap[i].cur = cur_id;
9092 return true;
9093 }
9094 if (idmap[i].old == old_id)
9095 return idmap[i].cur == cur_id;
9096 }
9097 /* We ran out of idmap slots, which should be impossible */
9098 WARN_ON_ONCE(1);
9099 return false;
9100 }
9101
clean_func_state(struct bpf_verifier_env * env,struct bpf_func_state * st)9102 static void clean_func_state(struct bpf_verifier_env *env,
9103 struct bpf_func_state *st)
9104 {
9105 enum bpf_reg_liveness live;
9106 int i, j;
9107
9108 for (i = 0; i < BPF_REG_FP; i++) {
9109 live = st->regs[i].live;
9110 /* liveness must not touch this register anymore */
9111 st->regs[i].live |= REG_LIVE_DONE;
9112 if (!(live & REG_LIVE_READ))
9113 /* since the register is unused, clear its state
9114 * to make further comparison simpler
9115 */
9116 __mark_reg_not_init(env, &st->regs[i]);
9117 }
9118
9119 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
9120 live = st->stack[i].spilled_ptr.live;
9121 /* liveness must not touch this stack slot anymore */
9122 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
9123 if (!(live & REG_LIVE_READ)) {
9124 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9125 for (j = 0; j < BPF_REG_SIZE; j++)
9126 st->stack[i].slot_type[j] = STACK_INVALID;
9127 }
9128 }
9129 }
9130
clean_verifier_state(struct bpf_verifier_env * env,struct bpf_verifier_state * st)9131 static void clean_verifier_state(struct bpf_verifier_env *env,
9132 struct bpf_verifier_state *st)
9133 {
9134 int i;
9135
9136 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
9137 /* all regs in this state in all frames were already marked */
9138 return;
9139
9140 for (i = 0; i <= st->curframe; i++)
9141 clean_func_state(env, st->frame[i]);
9142 }
9143
9144 /* the parentage chains form a tree.
9145 * the verifier states are added to state lists at given insn and
9146 * pushed into state stack for future exploration.
9147 * when the verifier reaches bpf_exit insn some of the verifer states
9148 * stored in the state lists have their final liveness state already,
9149 * but a lot of states will get revised from liveness point of view when
9150 * the verifier explores other branches.
9151 * Example:
9152 * 1: r0 = 1
9153 * 2: if r1 == 100 goto pc+1
9154 * 3: r0 = 2
9155 * 4: exit
9156 * when the verifier reaches exit insn the register r0 in the state list of
9157 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
9158 * of insn 2 and goes exploring further. At the insn 4 it will walk the
9159 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
9160 *
9161 * Since the verifier pushes the branch states as it sees them while exploring
9162 * the program the condition of walking the branch instruction for the second
9163 * time means that all states below this branch were already explored and
9164 * their final liveness markes are already propagated.
9165 * Hence when the verifier completes the search of state list in is_state_visited()
9166 * we can call this clean_live_states() function to mark all liveness states
9167 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
9168 * will not be used.
9169 * This function also clears the registers and stack for states that !READ
9170 * to simplify state merging.
9171 *
9172 * Important note here that walking the same branch instruction in the callee
9173 * doesn't meant that the states are DONE. The verifier has to compare
9174 * the callsites
9175 */
clean_live_states(struct bpf_verifier_env * env,int insn,struct bpf_verifier_state * cur)9176 static void clean_live_states(struct bpf_verifier_env *env, int insn,
9177 struct bpf_verifier_state *cur)
9178 {
9179 struct bpf_verifier_state_list *sl;
9180 int i;
9181
9182 sl = *explored_state(env, insn);
9183 while (sl) {
9184 if (sl->state.branches)
9185 goto next;
9186 if (sl->state.insn_idx != insn ||
9187 sl->state.curframe != cur->curframe)
9188 goto next;
9189 for (i = 0; i <= cur->curframe; i++)
9190 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
9191 goto next;
9192 clean_verifier_state(env, &sl->state);
9193 next:
9194 sl = sl->next;
9195 }
9196 }
9197
9198 /* Returns true if (rold safe implies rcur safe) */
regsafe(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_id_pair * idmap)9199 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
9200 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
9201 {
9202 bool equal;
9203
9204 if (!(rold->live & REG_LIVE_READ))
9205 /* explored state didn't use this */
9206 return true;
9207
9208 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
9209
9210 if (rold->type == PTR_TO_STACK)
9211 /* two stack pointers are equal only if they're pointing to
9212 * the same stack frame, since fp-8 in foo != fp-8 in bar
9213 */
9214 return equal && rold->frameno == rcur->frameno;
9215
9216 if (equal)
9217 return true;
9218
9219 if (rold->type == NOT_INIT)
9220 /* explored state can't have used this */
9221 return true;
9222 if (rcur->type == NOT_INIT)
9223 return false;
9224 switch (base_type(rold->type)) {
9225 case SCALAR_VALUE:
9226 if (env->explore_alu_limits)
9227 return false;
9228 if (rcur->type == SCALAR_VALUE) {
9229 if (!rold->precise && !rcur->precise)
9230 return true;
9231 /* new val must satisfy old val knowledge */
9232 return range_within(rold, rcur) &&
9233 tnum_in(rold->var_off, rcur->var_off);
9234 } else {
9235 /* We're trying to use a pointer in place of a scalar.
9236 * Even if the scalar was unbounded, this could lead to
9237 * pointer leaks because scalars are allowed to leak
9238 * while pointers are not. We could make this safe in
9239 * special cases if root is calling us, but it's
9240 * probably not worth the hassle.
9241 */
9242 return false;
9243 }
9244 case PTR_TO_MAP_VALUE:
9245 /* a PTR_TO_MAP_VALUE could be safe to use as a
9246 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
9247 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
9248 * checked, doing so could have affected others with the same
9249 * id, and we can't check for that because we lost the id when
9250 * we converted to a PTR_TO_MAP_VALUE.
9251 */
9252 if (type_may_be_null(rold->type)) {
9253 if (!type_may_be_null(rcur->type))
9254 return false;
9255 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
9256 return false;
9257 /* Check our ids match any regs they're supposed to */
9258 return check_ids(rold->id, rcur->id, idmap);
9259 }
9260
9261 /* If the new min/max/var_off satisfy the old ones and
9262 * everything else matches, we are OK.
9263 * 'id' is not compared, since it's only used for maps with
9264 * bpf_spin_lock inside map element and in such cases if
9265 * the rest of the prog is valid for one map element then
9266 * it's valid for all map elements regardless of the key
9267 * used in bpf_map_lookup()
9268 */
9269 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
9270 range_within(rold, rcur) &&
9271 tnum_in(rold->var_off, rcur->var_off);
9272 case PTR_TO_PACKET_META:
9273 case PTR_TO_PACKET:
9274 if (rcur->type != rold->type)
9275 return false;
9276 /* We must have at least as much range as the old ptr
9277 * did, so that any accesses which were safe before are
9278 * still safe. This is true even if old range < old off,
9279 * since someone could have accessed through (ptr - k), or
9280 * even done ptr -= k in a register, to get a safe access.
9281 */
9282 if (rold->range > rcur->range)
9283 return false;
9284 /* If the offsets don't match, we can't trust our alignment;
9285 * nor can we be sure that we won't fall out of range.
9286 */
9287 if (rold->off != rcur->off)
9288 return false;
9289 /* id relations must be preserved */
9290 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
9291 return false;
9292 /* new val must satisfy old val knowledge */
9293 return range_within(rold, rcur) &&
9294 tnum_in(rold->var_off, rcur->var_off);
9295 case PTR_TO_CTX:
9296 case CONST_PTR_TO_MAP:
9297 case PTR_TO_PACKET_END:
9298 case PTR_TO_FLOW_KEYS:
9299 case PTR_TO_SOCKET:
9300 case PTR_TO_SOCK_COMMON:
9301 case PTR_TO_TCP_SOCK:
9302 case PTR_TO_XDP_SOCK:
9303 /* Only valid matches are exact, which memcmp() above
9304 * would have accepted
9305 */
9306 default:
9307 /* Don't know what's going on, just say it's not safe */
9308 return false;
9309 }
9310
9311 /* Shouldn't get here; if we do, say it's not safe */
9312 WARN_ON_ONCE(1);
9313 return false;
9314 }
9315
stacksafe(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_id_pair * idmap)9316 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
9317 struct bpf_func_state *cur, struct bpf_id_pair *idmap)
9318 {
9319 int i, spi;
9320
9321 /* walk slots of the explored stack and ignore any additional
9322 * slots in the current stack, since explored(safe) state
9323 * didn't use them
9324 */
9325 for (i = 0; i < old->allocated_stack; i++) {
9326 spi = i / BPF_REG_SIZE;
9327
9328 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
9329 i += BPF_REG_SIZE - 1;
9330 /* explored state didn't use this */
9331 continue;
9332 }
9333
9334 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
9335 continue;
9336
9337 /* explored stack has more populated slots than current stack
9338 * and these slots were used
9339 */
9340 if (i >= cur->allocated_stack)
9341 return false;
9342
9343 /* if old state was safe with misc data in the stack
9344 * it will be safe with zero-initialized stack.
9345 * The opposite is not true
9346 */
9347 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
9348 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
9349 continue;
9350 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
9351 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
9352 /* Ex: old explored (safe) state has STACK_SPILL in
9353 * this stack slot, but current has STACK_MISC ->
9354 * this verifier states are not equivalent,
9355 * return false to continue verification of this path
9356 */
9357 return false;
9358 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
9359 continue;
9360 if (!is_spilled_reg(&old->stack[spi]))
9361 continue;
9362 if (!regsafe(env, &old->stack[spi].spilled_ptr,
9363 &cur->stack[spi].spilled_ptr, idmap))
9364 /* when explored and current stack slot are both storing
9365 * spilled registers, check that stored pointers types
9366 * are the same as well.
9367 * Ex: explored safe path could have stored
9368 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
9369 * but current path has stored:
9370 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
9371 * such verifier states are not equivalent.
9372 * return false to continue verification of this path
9373 */
9374 return false;
9375 }
9376 return true;
9377 }
9378
refsafe(struct bpf_func_state * old,struct bpf_func_state * cur)9379 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
9380 {
9381 if (old->acquired_refs != cur->acquired_refs)
9382 return false;
9383 return !memcmp(old->refs, cur->refs,
9384 sizeof(*old->refs) * old->acquired_refs);
9385 }
9386
9387 /* compare two verifier states
9388 *
9389 * all states stored in state_list are known to be valid, since
9390 * verifier reached 'bpf_exit' instruction through them
9391 *
9392 * this function is called when verifier exploring different branches of
9393 * execution popped from the state stack. If it sees an old state that has
9394 * more strict register state and more strict stack state then this execution
9395 * branch doesn't need to be explored further, since verifier already
9396 * concluded that more strict state leads to valid finish.
9397 *
9398 * Therefore two states are equivalent if register state is more conservative
9399 * and explored stack state is more conservative than the current one.
9400 * Example:
9401 * explored current
9402 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
9403 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
9404 *
9405 * In other words if current stack state (one being explored) has more
9406 * valid slots than old one that already passed validation, it means
9407 * the verifier can stop exploring and conclude that current state is valid too
9408 *
9409 * Similarly with registers. If explored state has register type as invalid
9410 * whereas register type in current state is meaningful, it means that
9411 * the current state will reach 'bpf_exit' instruction safely
9412 */
func_states_equal(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur)9413 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
9414 struct bpf_func_state *cur)
9415 {
9416 int i;
9417
9418 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
9419 for (i = 0; i < MAX_BPF_REG; i++)
9420 if (!regsafe(env, &old->regs[i], &cur->regs[i],
9421 env->idmap_scratch))
9422 return false;
9423
9424 if (!stacksafe(env, old, cur, env->idmap_scratch))
9425 return false;
9426
9427 if (!refsafe(old, cur))
9428 return false;
9429
9430 return true;
9431 }
9432
states_equal(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur)9433 static bool states_equal(struct bpf_verifier_env *env,
9434 struct bpf_verifier_state *old,
9435 struct bpf_verifier_state *cur)
9436 {
9437 int i;
9438
9439 if (old->curframe != cur->curframe)
9440 return false;
9441
9442 /* Verification state from speculative execution simulation
9443 * must never prune a non-speculative execution one.
9444 */
9445 if (old->speculative && !cur->speculative)
9446 return false;
9447
9448 if (old->active_spin_lock != cur->active_spin_lock)
9449 return false;
9450
9451 /* for states to be equal callsites have to be the same
9452 * and all frame states need to be equivalent
9453 */
9454 for (i = 0; i <= old->curframe; i++) {
9455 if (old->frame[i]->callsite != cur->frame[i]->callsite)
9456 return false;
9457 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
9458 return false;
9459 }
9460 return true;
9461 }
9462
9463 /* Return 0 if no propagation happened. Return negative error code if error
9464 * happened. Otherwise, return the propagated bit.
9465 */
propagate_liveness_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct bpf_reg_state * parent_reg)9466 static int propagate_liveness_reg(struct bpf_verifier_env *env,
9467 struct bpf_reg_state *reg,
9468 struct bpf_reg_state *parent_reg)
9469 {
9470 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
9471 u8 flag = reg->live & REG_LIVE_READ;
9472 int err;
9473
9474 /* When comes here, read flags of PARENT_REG or REG could be any of
9475 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
9476 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
9477 */
9478 if (parent_flag == REG_LIVE_READ64 ||
9479 /* Or if there is no read flag from REG. */
9480 !flag ||
9481 /* Or if the read flag from REG is the same as PARENT_REG. */
9482 parent_flag == flag)
9483 return 0;
9484
9485 err = mark_reg_read(env, reg, parent_reg, flag);
9486 if (err)
9487 return err;
9488
9489 return flag;
9490 }
9491
9492 /* A write screens off any subsequent reads; but write marks come from the
9493 * straight-line code between a state and its parent. When we arrive at an
9494 * equivalent state (jump target or such) we didn't arrive by the straight-line
9495 * code, so read marks in the state must propagate to the parent regardless
9496 * of the state's write marks. That's what 'parent == state->parent' comparison
9497 * in mark_reg_read() is for.
9498 */
propagate_liveness(struct bpf_verifier_env * env,const struct bpf_verifier_state * vstate,struct bpf_verifier_state * vparent)9499 static int propagate_liveness(struct bpf_verifier_env *env,
9500 const struct bpf_verifier_state *vstate,
9501 struct bpf_verifier_state *vparent)
9502 {
9503 struct bpf_reg_state *state_reg, *parent_reg;
9504 struct bpf_func_state *state, *parent;
9505 int i, frame, err = 0;
9506
9507 if (vparent->curframe != vstate->curframe) {
9508 WARN(1, "propagate_live: parent frame %d current frame %d\n",
9509 vparent->curframe, vstate->curframe);
9510 return -EFAULT;
9511 }
9512 /* Propagate read liveness of registers... */
9513 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
9514 for (frame = 0; frame <= vstate->curframe; frame++) {
9515 parent = vparent->frame[frame];
9516 state = vstate->frame[frame];
9517 parent_reg = parent->regs;
9518 state_reg = state->regs;
9519 /* We don't need to worry about FP liveness, it's read-only */
9520 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
9521 err = propagate_liveness_reg(env, &state_reg[i],
9522 &parent_reg[i]);
9523 if (err < 0)
9524 return err;
9525 if (err == REG_LIVE_READ64)
9526 mark_insn_zext(env, &parent_reg[i]);
9527 }
9528
9529 /* Propagate stack slots. */
9530 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
9531 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
9532 parent_reg = &parent->stack[i].spilled_ptr;
9533 state_reg = &state->stack[i].spilled_ptr;
9534 err = propagate_liveness_reg(env, state_reg,
9535 parent_reg);
9536 if (err < 0)
9537 return err;
9538 }
9539 }
9540 return 0;
9541 }
9542
9543 /* find precise scalars in the previous equivalent state and
9544 * propagate them into the current state
9545 */
propagate_precision(struct bpf_verifier_env * env,const struct bpf_verifier_state * old)9546 static int propagate_precision(struct bpf_verifier_env *env,
9547 const struct bpf_verifier_state *old)
9548 {
9549 struct bpf_reg_state *state_reg;
9550 struct bpf_func_state *state;
9551 int i, err = 0, fr;
9552
9553 for (fr = old->curframe; fr >= 0; fr--) {
9554 state = old->frame[fr];
9555 state_reg = state->regs;
9556 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
9557 if (state_reg->type != SCALAR_VALUE ||
9558 !state_reg->precise)
9559 continue;
9560 if (env->log.level & BPF_LOG_LEVEL2)
9561 verbose(env, "frame %d: propagating r%d\n", i, fr);
9562 err = mark_chain_precision_frame(env, fr, i);
9563 if (err < 0)
9564 return err;
9565 }
9566
9567 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
9568 if (!is_spilled_reg(&state->stack[i]))
9569 continue;
9570 state_reg = &state->stack[i].spilled_ptr;
9571 if (state_reg->type != SCALAR_VALUE ||
9572 !state_reg->precise)
9573 continue;
9574 if (env->log.level & BPF_LOG_LEVEL2)
9575 verbose(env, "frame %d: propagating fp%d\n",
9576 (-i - 1) * BPF_REG_SIZE, fr);
9577 err = mark_chain_precision_stack_frame(env, fr, i);
9578 if (err < 0)
9579 return err;
9580 }
9581 }
9582 return 0;
9583 }
9584
states_maybe_looping(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)9585 static bool states_maybe_looping(struct bpf_verifier_state *old,
9586 struct bpf_verifier_state *cur)
9587 {
9588 struct bpf_func_state *fold, *fcur;
9589 int i, fr = cur->curframe;
9590
9591 if (old->curframe != fr)
9592 return false;
9593
9594 fold = old->frame[fr];
9595 fcur = cur->frame[fr];
9596 for (i = 0; i < MAX_BPF_REG; i++)
9597 if (memcmp(&fold->regs[i], &fcur->regs[i],
9598 offsetof(struct bpf_reg_state, parent)))
9599 return false;
9600 return true;
9601 }
9602
9603
is_state_visited(struct bpf_verifier_env * env,int insn_idx)9604 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
9605 {
9606 struct bpf_verifier_state_list *new_sl;
9607 struct bpf_verifier_state_list *sl, **pprev;
9608 struct bpf_verifier_state *cur = env->cur_state, *new;
9609 int i, j, err, states_cnt = 0;
9610 bool add_new_state = env->test_state_freq ? true : false;
9611
9612 cur->last_insn_idx = env->prev_insn_idx;
9613 if (!env->insn_aux_data[insn_idx].prune_point)
9614 /* this 'insn_idx' instruction wasn't marked, so we will not
9615 * be doing state search here
9616 */
9617 return 0;
9618
9619 /* bpf progs typically have pruning point every 4 instructions
9620 * http://vger.kernel.org/bpfconf2019.html#session-1
9621 * Do not add new state for future pruning if the verifier hasn't seen
9622 * at least 2 jumps and at least 8 instructions.
9623 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
9624 * In tests that amounts to up to 50% reduction into total verifier
9625 * memory consumption and 20% verifier time speedup.
9626 */
9627 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
9628 env->insn_processed - env->prev_insn_processed >= 8)
9629 add_new_state = true;
9630
9631 pprev = explored_state(env, insn_idx);
9632 sl = *pprev;
9633
9634 clean_live_states(env, insn_idx, cur);
9635
9636 while (sl) {
9637 states_cnt++;
9638 if (sl->state.insn_idx != insn_idx)
9639 goto next;
9640 if (sl->state.branches) {
9641 if (states_maybe_looping(&sl->state, cur) &&
9642 states_equal(env, &sl->state, cur)) {
9643 verbose_linfo(env, insn_idx, "; ");
9644 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
9645 return -EINVAL;
9646 }
9647 /* if the verifier is processing a loop, avoid adding new state
9648 * too often, since different loop iterations have distinct
9649 * states and may not help future pruning.
9650 * This threshold shouldn't be too low to make sure that
9651 * a loop with large bound will be rejected quickly.
9652 * The most abusive loop will be:
9653 * r1 += 1
9654 * if r1 < 1000000 goto pc-2
9655 * 1M insn_procssed limit / 100 == 10k peak states.
9656 * This threshold shouldn't be too high either, since states
9657 * at the end of the loop are likely to be useful in pruning.
9658 */
9659 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
9660 env->insn_processed - env->prev_insn_processed < 100)
9661 add_new_state = false;
9662 goto miss;
9663 }
9664 if (states_equal(env, &sl->state, cur)) {
9665 sl->hit_cnt++;
9666 /* reached equivalent register/stack state,
9667 * prune the search.
9668 * Registers read by the continuation are read by us.
9669 * If we have any write marks in env->cur_state, they
9670 * will prevent corresponding reads in the continuation
9671 * from reaching our parent (an explored_state). Our
9672 * own state will get the read marks recorded, but
9673 * they'll be immediately forgotten as we're pruning
9674 * this state and will pop a new one.
9675 */
9676 err = propagate_liveness(env, &sl->state, cur);
9677
9678 /* if previous state reached the exit with precision and
9679 * current state is equivalent to it (except precsion marks)
9680 * the precision needs to be propagated back in
9681 * the current state.
9682 */
9683 err = err ? : push_jmp_history(env, cur);
9684 err = err ? : propagate_precision(env, &sl->state);
9685 if (err)
9686 return err;
9687 return 1;
9688 }
9689 miss:
9690 /* when new state is not going to be added do not increase miss count.
9691 * Otherwise several loop iterations will remove the state
9692 * recorded earlier. The goal of these heuristics is to have
9693 * states from some iterations of the loop (some in the beginning
9694 * and some at the end) to help pruning.
9695 */
9696 if (add_new_state)
9697 sl->miss_cnt++;
9698 /* heuristic to determine whether this state is beneficial
9699 * to keep checking from state equivalence point of view.
9700 * Higher numbers increase max_states_per_insn and verification time,
9701 * but do not meaningfully decrease insn_processed.
9702 */
9703 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
9704 /* the state is unlikely to be useful. Remove it to
9705 * speed up verification
9706 */
9707 *pprev = sl->next;
9708 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
9709 u32 br = sl->state.branches;
9710
9711 WARN_ONCE(br,
9712 "BUG live_done but branches_to_explore %d\n",
9713 br);
9714 free_verifier_state(&sl->state, false);
9715 kfree(sl);
9716 env->peak_states--;
9717 } else {
9718 /* cannot free this state, since parentage chain may
9719 * walk it later. Add it for free_list instead to
9720 * be freed at the end of verification
9721 */
9722 sl->next = env->free_list;
9723 env->free_list = sl;
9724 }
9725 sl = *pprev;
9726 continue;
9727 }
9728 next:
9729 pprev = &sl->next;
9730 sl = *pprev;
9731 }
9732
9733 if (env->max_states_per_insn < states_cnt)
9734 env->max_states_per_insn = states_cnt;
9735
9736 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
9737 return push_jmp_history(env, cur);
9738
9739 if (!add_new_state)
9740 return push_jmp_history(env, cur);
9741
9742 /* There were no equivalent states, remember the current one.
9743 * Technically the current state is not proven to be safe yet,
9744 * but it will either reach outer most bpf_exit (which means it's safe)
9745 * or it will be rejected. When there are no loops the verifier won't be
9746 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
9747 * again on the way to bpf_exit.
9748 * When looping the sl->state.branches will be > 0 and this state
9749 * will not be considered for equivalence until branches == 0.
9750 */
9751 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
9752 if (!new_sl)
9753 return -ENOMEM;
9754 env->total_states++;
9755 env->peak_states++;
9756 env->prev_jmps_processed = env->jmps_processed;
9757 env->prev_insn_processed = env->insn_processed;
9758
9759 /* add new state to the head of linked list */
9760 new = &new_sl->state;
9761 err = copy_verifier_state(new, cur);
9762 if (err) {
9763 free_verifier_state(new, false);
9764 kfree(new_sl);
9765 return err;
9766 }
9767 new->insn_idx = insn_idx;
9768 WARN_ONCE(new->branches != 1,
9769 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
9770
9771 cur->parent = new;
9772 cur->first_insn_idx = insn_idx;
9773 clear_jmp_history(cur);
9774 new_sl->next = *explored_state(env, insn_idx);
9775 *explored_state(env, insn_idx) = new_sl;
9776 /* connect new state to parentage chain. Current frame needs all
9777 * registers connected. Only r6 - r9 of the callers are alive (pushed
9778 * to the stack implicitly by JITs) so in callers' frames connect just
9779 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
9780 * the state of the call instruction (with WRITTEN set), and r0 comes
9781 * from callee with its full parentage chain, anyway.
9782 */
9783 /* clear write marks in current state: the writes we did are not writes
9784 * our child did, so they don't screen off its reads from us.
9785 * (There are no read marks in current state, because reads always mark
9786 * their parent and current state never has children yet. Only
9787 * explored_states can get read marks.)
9788 */
9789 for (j = 0; j <= cur->curframe; j++) {
9790 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
9791 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
9792 for (i = 0; i < BPF_REG_FP; i++)
9793 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
9794 }
9795
9796 /* all stack frames are accessible from callee, clear them all */
9797 for (j = 0; j <= cur->curframe; j++) {
9798 struct bpf_func_state *frame = cur->frame[j];
9799 struct bpf_func_state *newframe = new->frame[j];
9800
9801 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
9802 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
9803 frame->stack[i].spilled_ptr.parent =
9804 &newframe->stack[i].spilled_ptr;
9805 }
9806 }
9807 return 0;
9808 }
9809
9810 /* Return true if it's OK to have the same insn return a different type. */
reg_type_mismatch_ok(enum bpf_reg_type type)9811 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
9812 {
9813 switch (base_type(type)) {
9814 case PTR_TO_CTX:
9815 case PTR_TO_SOCKET:
9816 case PTR_TO_SOCK_COMMON:
9817 case PTR_TO_TCP_SOCK:
9818 case PTR_TO_XDP_SOCK:
9819 case PTR_TO_BTF_ID:
9820 return false;
9821 default:
9822 return true;
9823 }
9824 }
9825
9826 /* If an instruction was previously used with particular pointer types, then we
9827 * need to be careful to avoid cases such as the below, where it may be ok
9828 * for one branch accessing the pointer, but not ok for the other branch:
9829 *
9830 * R1 = sock_ptr
9831 * goto X;
9832 * ...
9833 * R1 = some_other_valid_ptr;
9834 * goto X;
9835 * ...
9836 * R2 = *(u32 *)(R1 + 0);
9837 */
reg_type_mismatch(enum bpf_reg_type src,enum bpf_reg_type prev)9838 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
9839 {
9840 return src != prev && (!reg_type_mismatch_ok(src) ||
9841 !reg_type_mismatch_ok(prev));
9842 }
9843
do_check(struct bpf_verifier_env * env)9844 static int do_check(struct bpf_verifier_env *env)
9845 {
9846 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
9847 struct bpf_verifier_state *state = env->cur_state;
9848 struct bpf_insn *insns = env->prog->insnsi;
9849 struct bpf_reg_state *regs;
9850 int insn_cnt = env->prog->len;
9851 bool do_print_state = false;
9852 int prev_insn_idx = -1;
9853
9854 for (;;) {
9855 struct bpf_insn *insn;
9856 u8 class;
9857 int err;
9858
9859 env->prev_insn_idx = prev_insn_idx;
9860 if (env->insn_idx >= insn_cnt) {
9861 verbose(env, "invalid insn idx %d insn_cnt %d\n",
9862 env->insn_idx, insn_cnt);
9863 return -EFAULT;
9864 }
9865
9866 insn = &insns[env->insn_idx];
9867 class = BPF_CLASS(insn->code);
9868
9869 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
9870 verbose(env,
9871 "BPF program is too large. Processed %d insn\n",
9872 env->insn_processed);
9873 return -E2BIG;
9874 }
9875
9876 err = is_state_visited(env, env->insn_idx);
9877 if (err < 0)
9878 return err;
9879 if (err == 1) {
9880 /* found equivalent state, can prune the search */
9881 if (env->log.level & BPF_LOG_LEVEL) {
9882 if (do_print_state)
9883 verbose(env, "\nfrom %d to %d%s: safe\n",
9884 env->prev_insn_idx, env->insn_idx,
9885 env->cur_state->speculative ?
9886 " (speculative execution)" : "");
9887 else
9888 verbose(env, "%d: safe\n", env->insn_idx);
9889 }
9890 goto process_bpf_exit;
9891 }
9892
9893 if (signal_pending(current))
9894 return -EAGAIN;
9895
9896 if (need_resched())
9897 cond_resched();
9898
9899 if (env->log.level & BPF_LOG_LEVEL2 ||
9900 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
9901 if (env->log.level & BPF_LOG_LEVEL2)
9902 verbose(env, "%d:", env->insn_idx);
9903 else
9904 verbose(env, "\nfrom %d to %d%s:",
9905 env->prev_insn_idx, env->insn_idx,
9906 env->cur_state->speculative ?
9907 " (speculative execution)" : "");
9908 print_verifier_state(env, state->frame[state->curframe]);
9909 do_print_state = false;
9910 }
9911
9912 if (env->log.level & BPF_LOG_LEVEL) {
9913 const struct bpf_insn_cbs cbs = {
9914 .cb_print = verbose,
9915 .private_data = env,
9916 };
9917
9918 verbose_linfo(env, env->insn_idx, "; ");
9919 verbose(env, "%d: ", env->insn_idx);
9920 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
9921 }
9922
9923 if (bpf_prog_is_dev_bound(env->prog->aux)) {
9924 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
9925 env->prev_insn_idx);
9926 if (err)
9927 return err;
9928 }
9929
9930 regs = cur_regs(env);
9931 sanitize_mark_insn_seen(env);
9932 prev_insn_idx = env->insn_idx;
9933
9934 if (class == BPF_ALU || class == BPF_ALU64) {
9935 err = check_alu_op(env, insn);
9936 if (err)
9937 return err;
9938
9939 } else if (class == BPF_LDX) {
9940 enum bpf_reg_type *prev_src_type, src_reg_type;
9941
9942 /* check for reserved fields is already done */
9943
9944 /* check src operand */
9945 err = check_reg_arg(env, insn->src_reg, SRC_OP);
9946 if (err)
9947 return err;
9948
9949 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9950 if (err)
9951 return err;
9952
9953 src_reg_type = regs[insn->src_reg].type;
9954
9955 /* check that memory (src_reg + off) is readable,
9956 * the state of dst_reg will be updated by this func
9957 */
9958 err = check_mem_access(env, env->insn_idx, insn->src_reg,
9959 insn->off, BPF_SIZE(insn->code),
9960 BPF_READ, insn->dst_reg, false);
9961 if (err)
9962 return err;
9963
9964 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
9965
9966 if (*prev_src_type == NOT_INIT) {
9967 /* saw a valid insn
9968 * dst_reg = *(u32 *)(src_reg + off)
9969 * save type to validate intersecting paths
9970 */
9971 *prev_src_type = src_reg_type;
9972
9973 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9974 /* ABuser program is trying to use the same insn
9975 * dst_reg = *(u32*) (src_reg + off)
9976 * with different pointer types:
9977 * src_reg == ctx in one branch and
9978 * src_reg == stack|map in some other branch.
9979 * Reject it.
9980 */
9981 verbose(env, "same insn cannot be used with different pointers\n");
9982 return -EINVAL;
9983 }
9984
9985 } else if (class == BPF_STX) {
9986 enum bpf_reg_type *prev_dst_type, dst_reg_type;
9987
9988 if (BPF_MODE(insn->code) == BPF_XADD) {
9989 err = check_xadd(env, env->insn_idx, insn);
9990 if (err)
9991 return err;
9992 env->insn_idx++;
9993 continue;
9994 }
9995
9996 /* check src1 operand */
9997 err = check_reg_arg(env, insn->src_reg, SRC_OP);
9998 if (err)
9999 return err;
10000 /* check src2 operand */
10001 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10002 if (err)
10003 return err;
10004
10005 dst_reg_type = regs[insn->dst_reg].type;
10006
10007 /* check that memory (dst_reg + off) is writeable */
10008 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10009 insn->off, BPF_SIZE(insn->code),
10010 BPF_WRITE, insn->src_reg, false);
10011 if (err)
10012 return err;
10013
10014 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10015
10016 if (*prev_dst_type == NOT_INIT) {
10017 *prev_dst_type = dst_reg_type;
10018 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
10019 verbose(env, "same insn cannot be used with different pointers\n");
10020 return -EINVAL;
10021 }
10022
10023 } else if (class == BPF_ST) {
10024 if (BPF_MODE(insn->code) != BPF_MEM ||
10025 insn->src_reg != BPF_REG_0) {
10026 verbose(env, "BPF_ST uses reserved fields\n");
10027 return -EINVAL;
10028 }
10029 /* check src operand */
10030 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10031 if (err)
10032 return err;
10033
10034 if (is_ctx_reg(env, insn->dst_reg)) {
10035 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
10036 insn->dst_reg,
10037 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
10038 return -EACCES;
10039 }
10040
10041 /* check that memory (dst_reg + off) is writeable */
10042 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10043 insn->off, BPF_SIZE(insn->code),
10044 BPF_WRITE, -1, false);
10045 if (err)
10046 return err;
10047
10048 } else if (class == BPF_JMP || class == BPF_JMP32) {
10049 u8 opcode = BPF_OP(insn->code);
10050
10051 env->jmps_processed++;
10052 if (opcode == BPF_CALL) {
10053 if (BPF_SRC(insn->code) != BPF_K ||
10054 insn->off != 0 ||
10055 (insn->src_reg != BPF_REG_0 &&
10056 insn->src_reg != BPF_PSEUDO_CALL) ||
10057 insn->dst_reg != BPF_REG_0 ||
10058 class == BPF_JMP32) {
10059 verbose(env, "BPF_CALL uses reserved fields\n");
10060 return -EINVAL;
10061 }
10062
10063 if (env->cur_state->active_spin_lock &&
10064 (insn->src_reg == BPF_PSEUDO_CALL ||
10065 insn->imm != BPF_FUNC_spin_unlock)) {
10066 verbose(env, "function calls are not allowed while holding a lock\n");
10067 return -EINVAL;
10068 }
10069 if (insn->src_reg == BPF_PSEUDO_CALL)
10070 err = check_func_call(env, insn, &env->insn_idx);
10071 else
10072 err = check_helper_call(env, insn->imm, env->insn_idx);
10073 if (err)
10074 return err;
10075
10076 } else if (opcode == BPF_JA) {
10077 if (BPF_SRC(insn->code) != BPF_K ||
10078 insn->imm != 0 ||
10079 insn->src_reg != BPF_REG_0 ||
10080 insn->dst_reg != BPF_REG_0 ||
10081 class == BPF_JMP32) {
10082 verbose(env, "BPF_JA uses reserved fields\n");
10083 return -EINVAL;
10084 }
10085
10086 env->insn_idx += insn->off + 1;
10087 continue;
10088
10089 } else if (opcode == BPF_EXIT) {
10090 if (BPF_SRC(insn->code) != BPF_K ||
10091 insn->imm != 0 ||
10092 insn->src_reg != BPF_REG_0 ||
10093 insn->dst_reg != BPF_REG_0 ||
10094 class == BPF_JMP32) {
10095 verbose(env, "BPF_EXIT uses reserved fields\n");
10096 return -EINVAL;
10097 }
10098
10099 if (env->cur_state->active_spin_lock) {
10100 verbose(env, "bpf_spin_unlock is missing\n");
10101 return -EINVAL;
10102 }
10103
10104 if (state->curframe) {
10105 /* exit from nested function */
10106 err = prepare_func_exit(env, &env->insn_idx);
10107 if (err)
10108 return err;
10109 do_print_state = true;
10110 continue;
10111 }
10112
10113 err = check_reference_leak(env);
10114 if (err)
10115 return err;
10116
10117 err = check_return_code(env);
10118 if (err)
10119 return err;
10120 process_bpf_exit:
10121 update_branch_counts(env, env->cur_state);
10122 err = pop_stack(env, &prev_insn_idx,
10123 &env->insn_idx, pop_log);
10124 if (err < 0) {
10125 if (err != -ENOENT)
10126 return err;
10127 break;
10128 } else {
10129 do_print_state = true;
10130 continue;
10131 }
10132 } else {
10133 err = check_cond_jmp_op(env, insn, &env->insn_idx);
10134 if (err)
10135 return err;
10136 }
10137 } else if (class == BPF_LD) {
10138 u8 mode = BPF_MODE(insn->code);
10139
10140 if (mode == BPF_ABS || mode == BPF_IND) {
10141 err = check_ld_abs(env, insn);
10142 if (err)
10143 return err;
10144
10145 } else if (mode == BPF_IMM) {
10146 err = check_ld_imm(env, insn);
10147 if (err)
10148 return err;
10149
10150 env->insn_idx++;
10151 sanitize_mark_insn_seen(env);
10152 } else {
10153 verbose(env, "invalid BPF_LD mode\n");
10154 return -EINVAL;
10155 }
10156 } else {
10157 verbose(env, "unknown insn class %d\n", class);
10158 return -EINVAL;
10159 }
10160
10161 env->insn_idx++;
10162 }
10163
10164 return 0;
10165 }
10166
10167 /* replace pseudo btf_id with kernel symbol address */
check_pseudo_btf_id(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn_aux_data * aux)10168 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
10169 struct bpf_insn *insn,
10170 struct bpf_insn_aux_data *aux)
10171 {
10172 const struct btf_var_secinfo *vsi;
10173 const struct btf_type *datasec;
10174 const struct btf_type *t;
10175 const char *sym_name;
10176 bool percpu = false;
10177 u32 type, id = insn->imm;
10178 s32 datasec_id;
10179 u64 addr;
10180 int i;
10181
10182 if (!btf_vmlinux) {
10183 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
10184 return -EINVAL;
10185 }
10186
10187 if (insn[1].imm != 0) {
10188 verbose(env, "reserved field (insn[1].imm) is used in pseudo_btf_id ldimm64 insn.\n");
10189 return -EINVAL;
10190 }
10191
10192 t = btf_type_by_id(btf_vmlinux, id);
10193 if (!t) {
10194 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
10195 return -ENOENT;
10196 }
10197
10198 if (!btf_type_is_var(t)) {
10199 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n",
10200 id);
10201 return -EINVAL;
10202 }
10203
10204 sym_name = btf_name_by_offset(btf_vmlinux, t->name_off);
10205 addr = kallsyms_lookup_name(sym_name);
10206 if (!addr) {
10207 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
10208 sym_name);
10209 return -ENOENT;
10210 }
10211
10212 datasec_id = btf_find_by_name_kind(btf_vmlinux, ".data..percpu",
10213 BTF_KIND_DATASEC);
10214 if (datasec_id > 0) {
10215 datasec = btf_type_by_id(btf_vmlinux, datasec_id);
10216 for_each_vsi(i, datasec, vsi) {
10217 if (vsi->type == id) {
10218 percpu = true;
10219 break;
10220 }
10221 }
10222 }
10223
10224 insn[0].imm = (u32)addr;
10225 insn[1].imm = addr >> 32;
10226
10227 type = t->type;
10228 t = btf_type_skip_modifiers(btf_vmlinux, type, NULL);
10229 if (percpu) {
10230 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
10231 aux->btf_var.btf_id = type;
10232 } else if (!btf_type_is_struct(t)) {
10233 const struct btf_type *ret;
10234 const char *tname;
10235 u32 tsize;
10236
10237 /* resolve the type size of ksym. */
10238 ret = btf_resolve_size(btf_vmlinux, t, &tsize);
10239 if (IS_ERR(ret)) {
10240 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
10241 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
10242 tname, PTR_ERR(ret));
10243 return -EINVAL;
10244 }
10245 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
10246 aux->btf_var.mem_size = tsize;
10247 } else {
10248 aux->btf_var.reg_type = PTR_TO_BTF_ID;
10249 aux->btf_var.btf_id = type;
10250 }
10251 return 0;
10252 }
10253
check_map_prealloc(struct bpf_map * map)10254 static int check_map_prealloc(struct bpf_map *map)
10255 {
10256 return (map->map_type != BPF_MAP_TYPE_HASH &&
10257 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
10258 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
10259 !(map->map_flags & BPF_F_NO_PREALLOC);
10260 }
10261
is_tracing_prog_type(enum bpf_prog_type type)10262 static bool is_tracing_prog_type(enum bpf_prog_type type)
10263 {
10264 switch (type) {
10265 case BPF_PROG_TYPE_KPROBE:
10266 case BPF_PROG_TYPE_TRACEPOINT:
10267 case BPF_PROG_TYPE_PERF_EVENT:
10268 case BPF_PROG_TYPE_RAW_TRACEPOINT:
10269 return true;
10270 default:
10271 return false;
10272 }
10273 }
10274
is_preallocated_map(struct bpf_map * map)10275 static bool is_preallocated_map(struct bpf_map *map)
10276 {
10277 if (!check_map_prealloc(map))
10278 return false;
10279 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
10280 return false;
10281 return true;
10282 }
10283
check_map_prog_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,struct bpf_prog * prog)10284 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
10285 struct bpf_map *map,
10286 struct bpf_prog *prog)
10287
10288 {
10289 enum bpf_prog_type prog_type = resolve_prog_type(prog);
10290 /*
10291 * Validate that trace type programs use preallocated hash maps.
10292 *
10293 * For programs attached to PERF events this is mandatory as the
10294 * perf NMI can hit any arbitrary code sequence.
10295 *
10296 * All other trace types using preallocated hash maps are unsafe as
10297 * well because tracepoint or kprobes can be inside locked regions
10298 * of the memory allocator or at a place where a recursion into the
10299 * memory allocator would see inconsistent state.
10300 *
10301 * On RT enabled kernels run-time allocation of all trace type
10302 * programs is strictly prohibited due to lock type constraints. On
10303 * !RT kernels it is allowed for backwards compatibility reasons for
10304 * now, but warnings are emitted so developers are made aware of
10305 * the unsafety and can fix their programs before this is enforced.
10306 */
10307 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
10308 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
10309 verbose(env, "perf_event programs can only use preallocated hash map\n");
10310 return -EINVAL;
10311 }
10312 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
10313 verbose(env, "trace type programs can only use preallocated hash map\n");
10314 return -EINVAL;
10315 }
10316 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
10317 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
10318 }
10319
10320 if ((is_tracing_prog_type(prog_type) ||
10321 prog_type == BPF_PROG_TYPE_SOCKET_FILTER) &&
10322 map_value_has_spin_lock(map)) {
10323 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
10324 return -EINVAL;
10325 }
10326
10327 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
10328 !bpf_offload_prog_map_match(prog, map)) {
10329 verbose(env, "offload device mismatch between prog and map\n");
10330 return -EINVAL;
10331 }
10332
10333 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
10334 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
10335 return -EINVAL;
10336 }
10337
10338 if (prog->aux->sleepable)
10339 switch (map->map_type) {
10340 case BPF_MAP_TYPE_HASH:
10341 case BPF_MAP_TYPE_LRU_HASH:
10342 case BPF_MAP_TYPE_ARRAY:
10343 if (!is_preallocated_map(map)) {
10344 verbose(env,
10345 "Sleepable programs can only use preallocated hash maps\n");
10346 return -EINVAL;
10347 }
10348 break;
10349 default:
10350 verbose(env,
10351 "Sleepable programs can only use array and hash maps\n");
10352 return -EINVAL;
10353 }
10354
10355 return 0;
10356 }
10357
bpf_map_is_cgroup_storage(struct bpf_map * map)10358 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
10359 {
10360 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
10361 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
10362 }
10363
10364 /* find and rewrite pseudo imm in ld_imm64 instructions:
10365 *
10366 * 1. if it accesses map FD, replace it with actual map pointer.
10367 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
10368 *
10369 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
10370 */
resolve_pseudo_ldimm64(struct bpf_verifier_env * env)10371 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
10372 {
10373 struct bpf_insn *insn = env->prog->insnsi;
10374 int insn_cnt = env->prog->len;
10375 int i, j, err;
10376
10377 err = bpf_prog_calc_tag(env->prog);
10378 if (err)
10379 return err;
10380
10381 for (i = 0; i < insn_cnt; i++, insn++) {
10382 if (BPF_CLASS(insn->code) == BPF_LDX &&
10383 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
10384 verbose(env, "BPF_LDX uses reserved fields\n");
10385 return -EINVAL;
10386 }
10387
10388 if (BPF_CLASS(insn->code) == BPF_STX &&
10389 ((BPF_MODE(insn->code) != BPF_MEM &&
10390 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
10391 verbose(env, "BPF_STX uses reserved fields\n");
10392 return -EINVAL;
10393 }
10394
10395 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
10396 struct bpf_insn_aux_data *aux;
10397 struct bpf_map *map;
10398 struct fd f;
10399 u64 addr;
10400
10401 if (i == insn_cnt - 1 || insn[1].code != 0 ||
10402 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
10403 insn[1].off != 0) {
10404 verbose(env, "invalid bpf_ld_imm64 insn\n");
10405 return -EINVAL;
10406 }
10407
10408 if (insn[0].src_reg == 0)
10409 /* valid generic load 64-bit imm */
10410 goto next_insn;
10411
10412 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
10413 aux = &env->insn_aux_data[i];
10414 err = check_pseudo_btf_id(env, insn, aux);
10415 if (err)
10416 return err;
10417 goto next_insn;
10418 }
10419
10420 /* In final convert_pseudo_ld_imm64() step, this is
10421 * converted into regular 64-bit imm load insn.
10422 */
10423 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
10424 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
10425 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
10426 insn[1].imm != 0)) {
10427 verbose(env,
10428 "unrecognized bpf_ld_imm64 insn\n");
10429 return -EINVAL;
10430 }
10431
10432 f = fdget(insn[0].imm);
10433 map = __bpf_map_get(f);
10434 if (IS_ERR(map)) {
10435 verbose(env, "fd %d is not pointing to valid bpf_map\n",
10436 insn[0].imm);
10437 return PTR_ERR(map);
10438 }
10439
10440 err = check_map_prog_compatibility(env, map, env->prog);
10441 if (err) {
10442 fdput(f);
10443 return err;
10444 }
10445
10446 aux = &env->insn_aux_data[i];
10447 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
10448 addr = (unsigned long)map;
10449 } else {
10450 u32 off = insn[1].imm;
10451
10452 if (off >= BPF_MAX_VAR_OFF) {
10453 verbose(env, "direct value offset of %u is not allowed\n", off);
10454 fdput(f);
10455 return -EINVAL;
10456 }
10457
10458 if (!map->ops->map_direct_value_addr) {
10459 verbose(env, "no direct value access support for this map type\n");
10460 fdput(f);
10461 return -EINVAL;
10462 }
10463
10464 err = map->ops->map_direct_value_addr(map, &addr, off);
10465 if (err) {
10466 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
10467 map->value_size, off);
10468 fdput(f);
10469 return err;
10470 }
10471
10472 aux->map_off = off;
10473 addr += off;
10474 }
10475
10476 insn[0].imm = (u32)addr;
10477 insn[1].imm = addr >> 32;
10478
10479 /* check whether we recorded this map already */
10480 for (j = 0; j < env->used_map_cnt; j++) {
10481 if (env->used_maps[j] == map) {
10482 aux->map_index = j;
10483 fdput(f);
10484 goto next_insn;
10485 }
10486 }
10487
10488 if (env->used_map_cnt >= MAX_USED_MAPS) {
10489 fdput(f);
10490 return -E2BIG;
10491 }
10492
10493 /* hold the map. If the program is rejected by verifier,
10494 * the map will be released by release_maps() or it
10495 * will be used by the valid program until it's unloaded
10496 * and all maps are released in free_used_maps()
10497 */
10498 bpf_map_inc(map);
10499
10500 aux->map_index = env->used_map_cnt;
10501 env->used_maps[env->used_map_cnt++] = map;
10502
10503 if (bpf_map_is_cgroup_storage(map) &&
10504 bpf_cgroup_storage_assign(env->prog->aux, map)) {
10505 verbose(env, "only one cgroup storage of each type is allowed\n");
10506 fdput(f);
10507 return -EBUSY;
10508 }
10509
10510 fdput(f);
10511 next_insn:
10512 insn++;
10513 i++;
10514 continue;
10515 }
10516
10517 /* Basic sanity check before we invest more work here. */
10518 if (!bpf_opcode_in_insntable(insn->code)) {
10519 verbose(env, "unknown opcode %02x\n", insn->code);
10520 return -EINVAL;
10521 }
10522 }
10523
10524 /* now all pseudo BPF_LD_IMM64 instructions load valid
10525 * 'struct bpf_map *' into a register instead of user map_fd.
10526 * These pointers will be used later by verifier to validate map access.
10527 */
10528 return 0;
10529 }
10530
10531 /* drop refcnt of maps used by the rejected program */
release_maps(struct bpf_verifier_env * env)10532 static void release_maps(struct bpf_verifier_env *env)
10533 {
10534 __bpf_free_used_maps(env->prog->aux, env->used_maps,
10535 env->used_map_cnt);
10536 }
10537
10538 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
convert_pseudo_ld_imm64(struct bpf_verifier_env * env)10539 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
10540 {
10541 struct bpf_insn *insn = env->prog->insnsi;
10542 int insn_cnt = env->prog->len;
10543 int i;
10544
10545 for (i = 0; i < insn_cnt; i++, insn++)
10546 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
10547 insn->src_reg = 0;
10548 }
10549
10550 /* single env->prog->insni[off] instruction was replaced with the range
10551 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
10552 * [0, off) and [off, end) to new locations, so the patched range stays zero
10553 */
adjust_insn_aux_data(struct bpf_verifier_env * env,struct bpf_insn_aux_data * new_data,struct bpf_prog * new_prog,u32 off,u32 cnt)10554 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
10555 struct bpf_insn_aux_data *new_data,
10556 struct bpf_prog *new_prog, u32 off, u32 cnt)
10557 {
10558 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
10559 struct bpf_insn *insn = new_prog->insnsi;
10560 u32 old_seen = old_data[off].seen;
10561 u32 prog_len;
10562 int i;
10563
10564 /* aux info at OFF always needs adjustment, no matter fast path
10565 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
10566 * original insn at old prog.
10567 */
10568 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
10569
10570 if (cnt == 1)
10571 return;
10572 prog_len = new_prog->len;
10573
10574 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
10575 memcpy(new_data + off + cnt - 1, old_data + off,
10576 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
10577 for (i = off; i < off + cnt - 1; i++) {
10578 /* Expand insni[off]'s seen count to the patched range. */
10579 new_data[i].seen = old_seen;
10580 new_data[i].zext_dst = insn_has_def32(env, insn + i);
10581 }
10582 env->insn_aux_data = new_data;
10583 vfree(old_data);
10584 }
10585
adjust_subprog_starts(struct bpf_verifier_env * env,u32 off,u32 len)10586 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
10587 {
10588 int i;
10589
10590 if (len == 1)
10591 return;
10592 /* NOTE: fake 'exit' subprog should be updated as well. */
10593 for (i = 0; i <= env->subprog_cnt; i++) {
10594 if (env->subprog_info[i].start <= off)
10595 continue;
10596 env->subprog_info[i].start += len - 1;
10597 }
10598 }
10599
adjust_poke_descs(struct bpf_prog * prog,u32 off,u32 len)10600 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
10601 {
10602 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
10603 int i, sz = prog->aux->size_poke_tab;
10604 struct bpf_jit_poke_descriptor *desc;
10605
10606 for (i = 0; i < sz; i++) {
10607 desc = &tab[i];
10608 if (desc->insn_idx <= off)
10609 continue;
10610 desc->insn_idx += len - 1;
10611 }
10612 }
10613
bpf_patch_insn_data(struct bpf_verifier_env * env,u32 off,const struct bpf_insn * patch,u32 len)10614 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
10615 const struct bpf_insn *patch, u32 len)
10616 {
10617 struct bpf_prog *new_prog;
10618 struct bpf_insn_aux_data *new_data = NULL;
10619
10620 if (len > 1) {
10621 new_data = vzalloc(array_size(env->prog->len + len - 1,
10622 sizeof(struct bpf_insn_aux_data)));
10623 if (!new_data)
10624 return NULL;
10625 }
10626
10627 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
10628 if (IS_ERR(new_prog)) {
10629 if (PTR_ERR(new_prog) == -ERANGE)
10630 verbose(env,
10631 "insn %d cannot be patched due to 16-bit range\n",
10632 env->insn_aux_data[off].orig_idx);
10633 vfree(new_data);
10634 return NULL;
10635 }
10636 adjust_insn_aux_data(env, new_data, new_prog, off, len);
10637 adjust_subprog_starts(env, off, len);
10638 adjust_poke_descs(new_prog, off, len);
10639 return new_prog;
10640 }
10641
adjust_subprog_starts_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)10642 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
10643 u32 off, u32 cnt)
10644 {
10645 int i, j;
10646
10647 /* find first prog starting at or after off (first to remove) */
10648 for (i = 0; i < env->subprog_cnt; i++)
10649 if (env->subprog_info[i].start >= off)
10650 break;
10651 /* find first prog starting at or after off + cnt (first to stay) */
10652 for (j = i; j < env->subprog_cnt; j++)
10653 if (env->subprog_info[j].start >= off + cnt)
10654 break;
10655 /* if j doesn't start exactly at off + cnt, we are just removing
10656 * the front of previous prog
10657 */
10658 if (env->subprog_info[j].start != off + cnt)
10659 j--;
10660
10661 if (j > i) {
10662 struct bpf_prog_aux *aux = env->prog->aux;
10663 int move;
10664
10665 /* move fake 'exit' subprog as well */
10666 move = env->subprog_cnt + 1 - j;
10667
10668 memmove(env->subprog_info + i,
10669 env->subprog_info + j,
10670 sizeof(*env->subprog_info) * move);
10671 env->subprog_cnt -= j - i;
10672
10673 /* remove func_info */
10674 if (aux->func_info) {
10675 move = aux->func_info_cnt - j;
10676
10677 memmove(aux->func_info + i,
10678 aux->func_info + j,
10679 sizeof(*aux->func_info) * move);
10680 aux->func_info_cnt -= j - i;
10681 /* func_info->insn_off is set after all code rewrites,
10682 * in adjust_btf_func() - no need to adjust
10683 */
10684 }
10685 } else {
10686 /* convert i from "first prog to remove" to "first to adjust" */
10687 if (env->subprog_info[i].start == off)
10688 i++;
10689 }
10690
10691 /* update fake 'exit' subprog as well */
10692 for (; i <= env->subprog_cnt; i++)
10693 env->subprog_info[i].start -= cnt;
10694
10695 return 0;
10696 }
10697
bpf_adj_linfo_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)10698 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
10699 u32 cnt)
10700 {
10701 struct bpf_prog *prog = env->prog;
10702 u32 i, l_off, l_cnt, nr_linfo;
10703 struct bpf_line_info *linfo;
10704
10705 nr_linfo = prog->aux->nr_linfo;
10706 if (!nr_linfo)
10707 return 0;
10708
10709 linfo = prog->aux->linfo;
10710
10711 /* find first line info to remove, count lines to be removed */
10712 for (i = 0; i < nr_linfo; i++)
10713 if (linfo[i].insn_off >= off)
10714 break;
10715
10716 l_off = i;
10717 l_cnt = 0;
10718 for (; i < nr_linfo; i++)
10719 if (linfo[i].insn_off < off + cnt)
10720 l_cnt++;
10721 else
10722 break;
10723
10724 /* First live insn doesn't match first live linfo, it needs to "inherit"
10725 * last removed linfo. prog is already modified, so prog->len == off
10726 * means no live instructions after (tail of the program was removed).
10727 */
10728 if (prog->len != off && l_cnt &&
10729 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
10730 l_cnt--;
10731 linfo[--i].insn_off = off + cnt;
10732 }
10733
10734 /* remove the line info which refer to the removed instructions */
10735 if (l_cnt) {
10736 memmove(linfo + l_off, linfo + i,
10737 sizeof(*linfo) * (nr_linfo - i));
10738
10739 prog->aux->nr_linfo -= l_cnt;
10740 nr_linfo = prog->aux->nr_linfo;
10741 }
10742
10743 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
10744 for (i = l_off; i < nr_linfo; i++)
10745 linfo[i].insn_off -= cnt;
10746
10747 /* fix up all subprogs (incl. 'exit') which start >= off */
10748 for (i = 0; i <= env->subprog_cnt; i++)
10749 if (env->subprog_info[i].linfo_idx > l_off) {
10750 /* program may have started in the removed region but
10751 * may not be fully removed
10752 */
10753 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
10754 env->subprog_info[i].linfo_idx -= l_cnt;
10755 else
10756 env->subprog_info[i].linfo_idx = l_off;
10757 }
10758
10759 return 0;
10760 }
10761
verifier_remove_insns(struct bpf_verifier_env * env,u32 off,u32 cnt)10762 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
10763 {
10764 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10765 unsigned int orig_prog_len = env->prog->len;
10766 int err;
10767
10768 if (bpf_prog_is_dev_bound(env->prog->aux))
10769 bpf_prog_offload_remove_insns(env, off, cnt);
10770
10771 err = bpf_remove_insns(env->prog, off, cnt);
10772 if (err)
10773 return err;
10774
10775 err = adjust_subprog_starts_after_remove(env, off, cnt);
10776 if (err)
10777 return err;
10778
10779 err = bpf_adj_linfo_after_remove(env, off, cnt);
10780 if (err)
10781 return err;
10782
10783 memmove(aux_data + off, aux_data + off + cnt,
10784 sizeof(*aux_data) * (orig_prog_len - off - cnt));
10785
10786 return 0;
10787 }
10788
10789 /* The verifier does more data flow analysis than llvm and will not
10790 * explore branches that are dead at run time. Malicious programs can
10791 * have dead code too. Therefore replace all dead at-run-time code
10792 * with 'ja -1'.
10793 *
10794 * Just nops are not optimal, e.g. if they would sit at the end of the
10795 * program and through another bug we would manage to jump there, then
10796 * we'd execute beyond program memory otherwise. Returning exception
10797 * code also wouldn't work since we can have subprogs where the dead
10798 * code could be located.
10799 */
sanitize_dead_code(struct bpf_verifier_env * env)10800 static void sanitize_dead_code(struct bpf_verifier_env *env)
10801 {
10802 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10803 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
10804 struct bpf_insn *insn = env->prog->insnsi;
10805 const int insn_cnt = env->prog->len;
10806 int i;
10807
10808 for (i = 0; i < insn_cnt; i++) {
10809 if (aux_data[i].seen)
10810 continue;
10811 memcpy(insn + i, &trap, sizeof(trap));
10812 aux_data[i].zext_dst = false;
10813 }
10814 }
10815
insn_is_cond_jump(u8 code)10816 static bool insn_is_cond_jump(u8 code)
10817 {
10818 u8 op;
10819
10820 if (BPF_CLASS(code) == BPF_JMP32)
10821 return true;
10822
10823 if (BPF_CLASS(code) != BPF_JMP)
10824 return false;
10825
10826 op = BPF_OP(code);
10827 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
10828 }
10829
opt_hard_wire_dead_code_branches(struct bpf_verifier_env * env)10830 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
10831 {
10832 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10833 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10834 struct bpf_insn *insn = env->prog->insnsi;
10835 const int insn_cnt = env->prog->len;
10836 int i;
10837
10838 for (i = 0; i < insn_cnt; i++, insn++) {
10839 if (!insn_is_cond_jump(insn->code))
10840 continue;
10841
10842 if (!aux_data[i + 1].seen)
10843 ja.off = insn->off;
10844 else if (!aux_data[i + 1 + insn->off].seen)
10845 ja.off = 0;
10846 else
10847 continue;
10848
10849 if (bpf_prog_is_dev_bound(env->prog->aux))
10850 bpf_prog_offload_replace_insn(env, i, &ja);
10851
10852 memcpy(insn, &ja, sizeof(ja));
10853 }
10854 }
10855
opt_remove_dead_code(struct bpf_verifier_env * env)10856 static int opt_remove_dead_code(struct bpf_verifier_env *env)
10857 {
10858 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10859 int insn_cnt = env->prog->len;
10860 int i, err;
10861
10862 for (i = 0; i < insn_cnt; i++) {
10863 int j;
10864
10865 j = 0;
10866 while (i + j < insn_cnt && !aux_data[i + j].seen)
10867 j++;
10868 if (!j)
10869 continue;
10870
10871 err = verifier_remove_insns(env, i, j);
10872 if (err)
10873 return err;
10874 insn_cnt = env->prog->len;
10875 }
10876
10877 return 0;
10878 }
10879
opt_remove_nops(struct bpf_verifier_env * env)10880 static int opt_remove_nops(struct bpf_verifier_env *env)
10881 {
10882 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10883 struct bpf_insn *insn = env->prog->insnsi;
10884 int insn_cnt = env->prog->len;
10885 int i, err;
10886
10887 for (i = 0; i < insn_cnt; i++) {
10888 if (memcmp(&insn[i], &ja, sizeof(ja)))
10889 continue;
10890
10891 err = verifier_remove_insns(env, i, 1);
10892 if (err)
10893 return err;
10894 insn_cnt--;
10895 i--;
10896 }
10897
10898 return 0;
10899 }
10900
opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env * env,const union bpf_attr * attr)10901 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
10902 const union bpf_attr *attr)
10903 {
10904 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
10905 struct bpf_insn_aux_data *aux = env->insn_aux_data;
10906 int i, patch_len, delta = 0, len = env->prog->len;
10907 struct bpf_insn *insns = env->prog->insnsi;
10908 struct bpf_prog *new_prog;
10909 bool rnd_hi32;
10910
10911 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
10912 zext_patch[1] = BPF_ZEXT_REG(0);
10913 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
10914 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
10915 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
10916 for (i = 0; i < len; i++) {
10917 int adj_idx = i + delta;
10918 struct bpf_insn insn;
10919
10920 insn = insns[adj_idx];
10921 if (!aux[adj_idx].zext_dst) {
10922 u8 code, class;
10923 u32 imm_rnd;
10924
10925 if (!rnd_hi32)
10926 continue;
10927
10928 code = insn.code;
10929 class = BPF_CLASS(code);
10930 if (insn_no_def(&insn))
10931 continue;
10932
10933 /* NOTE: arg "reg" (the fourth one) is only used for
10934 * BPF_STX which has been ruled out in above
10935 * check, it is safe to pass NULL here.
10936 */
10937 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
10938 if (class == BPF_LD &&
10939 BPF_MODE(code) == BPF_IMM)
10940 i++;
10941 continue;
10942 }
10943
10944 /* ctx load could be transformed into wider load. */
10945 if (class == BPF_LDX &&
10946 aux[adj_idx].ptr_type == PTR_TO_CTX)
10947 continue;
10948
10949 imm_rnd = get_random_int();
10950 rnd_hi32_patch[0] = insn;
10951 rnd_hi32_patch[1].imm = imm_rnd;
10952 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
10953 patch = rnd_hi32_patch;
10954 patch_len = 4;
10955 goto apply_patch_buffer;
10956 }
10957
10958 if (!bpf_jit_needs_zext())
10959 continue;
10960
10961 zext_patch[0] = insn;
10962 zext_patch[1].dst_reg = insn.dst_reg;
10963 zext_patch[1].src_reg = insn.dst_reg;
10964 patch = zext_patch;
10965 patch_len = 2;
10966 apply_patch_buffer:
10967 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
10968 if (!new_prog)
10969 return -ENOMEM;
10970 env->prog = new_prog;
10971 insns = new_prog->insnsi;
10972 aux = env->insn_aux_data;
10973 delta += patch_len - 1;
10974 }
10975
10976 return 0;
10977 }
10978
10979 /* convert load instructions that access fields of a context type into a
10980 * sequence of instructions that access fields of the underlying structure:
10981 * struct __sk_buff -> struct sk_buff
10982 * struct bpf_sock_ops -> struct sock
10983 */
convert_ctx_accesses(struct bpf_verifier_env * env)10984 static int convert_ctx_accesses(struct bpf_verifier_env *env)
10985 {
10986 const struct bpf_verifier_ops *ops = env->ops;
10987 int i, cnt, size, ctx_field_size, delta = 0;
10988 const int insn_cnt = env->prog->len;
10989 struct bpf_insn insn_buf[16], *insn;
10990 u32 target_size, size_default, off;
10991 struct bpf_prog *new_prog;
10992 enum bpf_access_type type;
10993 bool is_narrower_load;
10994
10995 if (ops->gen_prologue || env->seen_direct_write) {
10996 if (!ops->gen_prologue) {
10997 verbose(env, "bpf verifier is misconfigured\n");
10998 return -EINVAL;
10999 }
11000 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
11001 env->prog);
11002 if (cnt >= ARRAY_SIZE(insn_buf)) {
11003 verbose(env, "bpf verifier is misconfigured\n");
11004 return -EINVAL;
11005 } else if (cnt) {
11006 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
11007 if (!new_prog)
11008 return -ENOMEM;
11009
11010 env->prog = new_prog;
11011 delta += cnt - 1;
11012 }
11013 }
11014
11015 if (bpf_prog_is_dev_bound(env->prog->aux))
11016 return 0;
11017
11018 insn = env->prog->insnsi + delta;
11019
11020 for (i = 0; i < insn_cnt; i++, insn++) {
11021 bpf_convert_ctx_access_t convert_ctx_access;
11022 bool ctx_access;
11023
11024 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
11025 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
11026 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
11027 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
11028 type = BPF_READ;
11029 ctx_access = true;
11030 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
11031 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
11032 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
11033 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
11034 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
11035 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
11036 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
11037 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
11038 type = BPF_WRITE;
11039 ctx_access = BPF_CLASS(insn->code) == BPF_STX;
11040 } else {
11041 continue;
11042 }
11043
11044 if (type == BPF_WRITE &&
11045 env->insn_aux_data[i + delta].sanitize_stack_spill) {
11046 struct bpf_insn patch[] = {
11047 *insn,
11048 BPF_ST_NOSPEC(),
11049 };
11050
11051 cnt = ARRAY_SIZE(patch);
11052 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
11053 if (!new_prog)
11054 return -ENOMEM;
11055
11056 delta += cnt - 1;
11057 env->prog = new_prog;
11058 insn = new_prog->insnsi + i + delta;
11059 continue;
11060 }
11061
11062 if (!ctx_access)
11063 continue;
11064
11065 switch (env->insn_aux_data[i + delta].ptr_type) {
11066 case PTR_TO_CTX:
11067 if (!ops->convert_ctx_access)
11068 continue;
11069 convert_ctx_access = ops->convert_ctx_access;
11070 break;
11071 case PTR_TO_SOCKET:
11072 case PTR_TO_SOCK_COMMON:
11073 convert_ctx_access = bpf_sock_convert_ctx_access;
11074 break;
11075 case PTR_TO_TCP_SOCK:
11076 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
11077 break;
11078 case PTR_TO_XDP_SOCK:
11079 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
11080 break;
11081 case PTR_TO_BTF_ID:
11082 if (type == BPF_READ) {
11083 insn->code = BPF_LDX | BPF_PROBE_MEM |
11084 BPF_SIZE((insn)->code);
11085 env->prog->aux->num_exentries++;
11086 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
11087 verbose(env, "Writes through BTF pointers are not allowed\n");
11088 return -EINVAL;
11089 }
11090 continue;
11091 default:
11092 continue;
11093 }
11094
11095 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
11096 size = BPF_LDST_BYTES(insn);
11097
11098 /* If the read access is a narrower load of the field,
11099 * convert to a 4/8-byte load, to minimum program type specific
11100 * convert_ctx_access changes. If conversion is successful,
11101 * we will apply proper mask to the result.
11102 */
11103 is_narrower_load = size < ctx_field_size;
11104 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
11105 off = insn->off;
11106 if (is_narrower_load) {
11107 u8 size_code;
11108
11109 if (type == BPF_WRITE) {
11110 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
11111 return -EINVAL;
11112 }
11113
11114 size_code = BPF_H;
11115 if (ctx_field_size == 4)
11116 size_code = BPF_W;
11117 else if (ctx_field_size == 8)
11118 size_code = BPF_DW;
11119
11120 insn->off = off & ~(size_default - 1);
11121 insn->code = BPF_LDX | BPF_MEM | size_code;
11122 }
11123
11124 target_size = 0;
11125 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
11126 &target_size);
11127 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
11128 (ctx_field_size && !target_size)) {
11129 verbose(env, "bpf verifier is misconfigured\n");
11130 return -EINVAL;
11131 }
11132
11133 if (is_narrower_load && size < target_size) {
11134 u8 shift = bpf_ctx_narrow_access_offset(
11135 off, size, size_default) * 8;
11136 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
11137 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
11138 return -EINVAL;
11139 }
11140 if (ctx_field_size <= 4) {
11141 if (shift)
11142 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
11143 insn->dst_reg,
11144 shift);
11145 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
11146 (1 << size * 8) - 1);
11147 } else {
11148 if (shift)
11149 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
11150 insn->dst_reg,
11151 shift);
11152 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
11153 (1ULL << size * 8) - 1);
11154 }
11155 }
11156
11157 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11158 if (!new_prog)
11159 return -ENOMEM;
11160
11161 delta += cnt - 1;
11162
11163 /* keep walking new program and skip insns we just inserted */
11164 env->prog = new_prog;
11165 insn = new_prog->insnsi + i + delta;
11166 }
11167
11168 return 0;
11169 }
11170
jit_subprogs(struct bpf_verifier_env * env)11171 static int jit_subprogs(struct bpf_verifier_env *env)
11172 {
11173 struct bpf_prog *prog = env->prog, **func, *tmp;
11174 int i, j, subprog_start, subprog_end = 0, len, subprog;
11175 struct bpf_map *map_ptr;
11176 struct bpf_insn *insn;
11177 void *old_bpf_func;
11178 int err, num_exentries;
11179
11180 if (env->subprog_cnt <= 1)
11181 return 0;
11182
11183 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11184 if (insn->code != (BPF_JMP | BPF_CALL) ||
11185 insn->src_reg != BPF_PSEUDO_CALL)
11186 continue;
11187 /* Upon error here we cannot fall back to interpreter but
11188 * need a hard reject of the program. Thus -EFAULT is
11189 * propagated in any case.
11190 */
11191 subprog = find_subprog(env, i + insn->imm + 1);
11192 if (subprog < 0) {
11193 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
11194 i + insn->imm + 1);
11195 return -EFAULT;
11196 }
11197 /* temporarily remember subprog id inside insn instead of
11198 * aux_data, since next loop will split up all insns into funcs
11199 */
11200 insn->off = subprog;
11201 /* remember original imm in case JIT fails and fallback
11202 * to interpreter will be needed
11203 */
11204 env->insn_aux_data[i].call_imm = insn->imm;
11205 /* point imm to __bpf_call_base+1 from JITs point of view */
11206 insn->imm = 1;
11207 }
11208
11209 err = bpf_prog_alloc_jited_linfo(prog);
11210 if (err)
11211 goto out_undo_insn;
11212
11213 err = -ENOMEM;
11214 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
11215 if (!func)
11216 goto out_undo_insn;
11217
11218 for (i = 0; i < env->subprog_cnt; i++) {
11219 subprog_start = subprog_end;
11220 subprog_end = env->subprog_info[i + 1].start;
11221
11222 len = subprog_end - subprog_start;
11223 /* BPF_PROG_RUN doesn't call subprogs directly,
11224 * hence main prog stats include the runtime of subprogs.
11225 * subprogs don't have IDs and not reachable via prog_get_next_id
11226 * func[i]->aux->stats will never be accessed and stays NULL
11227 */
11228 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
11229 if (!func[i])
11230 goto out_free;
11231 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
11232 len * sizeof(struct bpf_insn));
11233 func[i]->type = prog->type;
11234 func[i]->len = len;
11235 if (bpf_prog_calc_tag(func[i]))
11236 goto out_free;
11237 func[i]->is_func = 1;
11238 func[i]->aux->func_idx = i;
11239 /* Below members will be freed only at prog->aux */
11240 func[i]->aux->btf = prog->aux->btf;
11241 func[i]->aux->func_info = prog->aux->func_info;
11242 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
11243 func[i]->aux->poke_tab = prog->aux->poke_tab;
11244 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
11245
11246 for (j = 0; j < prog->aux->size_poke_tab; j++) {
11247 struct bpf_jit_poke_descriptor *poke;
11248
11249 poke = &prog->aux->poke_tab[j];
11250 if (poke->insn_idx < subprog_end &&
11251 poke->insn_idx >= subprog_start)
11252 poke->aux = func[i]->aux;
11253 }
11254
11255 func[i]->aux->name[0] = 'F';
11256 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
11257 func[i]->jit_requested = 1;
11258 func[i]->aux->linfo = prog->aux->linfo;
11259 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
11260 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
11261 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
11262 num_exentries = 0;
11263 insn = func[i]->insnsi;
11264 for (j = 0; j < func[i]->len; j++, insn++) {
11265 if (BPF_CLASS(insn->code) == BPF_LDX &&
11266 BPF_MODE(insn->code) == BPF_PROBE_MEM)
11267 num_exentries++;
11268 }
11269 func[i]->aux->num_exentries = num_exentries;
11270 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
11271 func[i] = bpf_int_jit_compile(func[i]);
11272 if (!func[i]->jited) {
11273 err = -ENOTSUPP;
11274 goto out_free;
11275 }
11276 cond_resched();
11277 }
11278
11279 /* at this point all bpf functions were successfully JITed
11280 * now populate all bpf_calls with correct addresses and
11281 * run last pass of JIT
11282 */
11283 for (i = 0; i < env->subprog_cnt; i++) {
11284 insn = func[i]->insnsi;
11285 for (j = 0; j < func[i]->len; j++, insn++) {
11286 if (insn->code != (BPF_JMP | BPF_CALL) ||
11287 insn->src_reg != BPF_PSEUDO_CALL)
11288 continue;
11289 subprog = insn->off;
11290 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
11291 __bpf_call_base;
11292 }
11293
11294 /* we use the aux data to keep a list of the start addresses
11295 * of the JITed images for each function in the program
11296 *
11297 * for some architectures, such as powerpc64, the imm field
11298 * might not be large enough to hold the offset of the start
11299 * address of the callee's JITed image from __bpf_call_base
11300 *
11301 * in such cases, we can lookup the start address of a callee
11302 * by using its subprog id, available from the off field of
11303 * the call instruction, as an index for this list
11304 */
11305 func[i]->aux->func = func;
11306 func[i]->aux->func_cnt = env->subprog_cnt;
11307 }
11308 for (i = 0; i < env->subprog_cnt; i++) {
11309 old_bpf_func = func[i]->bpf_func;
11310 tmp = bpf_int_jit_compile(func[i]);
11311 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
11312 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
11313 err = -ENOTSUPP;
11314 goto out_free;
11315 }
11316 cond_resched();
11317 }
11318
11319 /* finally lock prog and jit images for all functions and
11320 * populate kallsysm
11321 */
11322 for (i = 0; i < env->subprog_cnt; i++) {
11323 bpf_prog_lock_ro(func[i]);
11324 bpf_prog_kallsyms_add(func[i]);
11325 }
11326
11327 /* Last step: make now unused interpreter insns from main
11328 * prog consistent for later dump requests, so they can
11329 * later look the same as if they were interpreted only.
11330 */
11331 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11332 if (insn->code != (BPF_JMP | BPF_CALL) ||
11333 insn->src_reg != BPF_PSEUDO_CALL)
11334 continue;
11335 insn->off = env->insn_aux_data[i].call_imm;
11336 subprog = find_subprog(env, i + insn->off + 1);
11337 insn->imm = subprog;
11338 }
11339
11340 prog->jited = 1;
11341 prog->bpf_func = func[0]->bpf_func;
11342 prog->aux->func = func;
11343 prog->aux->func_cnt = env->subprog_cnt;
11344 bpf_prog_free_unused_jited_linfo(prog);
11345 return 0;
11346 out_free:
11347 /* We failed JIT'ing, so at this point we need to unregister poke
11348 * descriptors from subprogs, so that kernel is not attempting to
11349 * patch it anymore as we're freeing the subprog JIT memory.
11350 */
11351 for (i = 0; i < prog->aux->size_poke_tab; i++) {
11352 map_ptr = prog->aux->poke_tab[i].tail_call.map;
11353 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
11354 }
11355 /* At this point we're guaranteed that poke descriptors are not
11356 * live anymore. We can just unlink its descriptor table as it's
11357 * released with the main prog.
11358 */
11359 for (i = 0; i < env->subprog_cnt; i++) {
11360 if (!func[i])
11361 continue;
11362 func[i]->aux->poke_tab = NULL;
11363 bpf_jit_free(func[i]);
11364 }
11365 kfree(func);
11366 out_undo_insn:
11367 /* cleanup main prog to be interpreted */
11368 prog->jit_requested = 0;
11369 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11370 if (insn->code != (BPF_JMP | BPF_CALL) ||
11371 insn->src_reg != BPF_PSEUDO_CALL)
11372 continue;
11373 insn->off = 0;
11374 insn->imm = env->insn_aux_data[i].call_imm;
11375 }
11376 bpf_prog_free_jited_linfo(prog);
11377 return err;
11378 }
11379
fixup_call_args(struct bpf_verifier_env * env)11380 static int fixup_call_args(struct bpf_verifier_env *env)
11381 {
11382 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11383 struct bpf_prog *prog = env->prog;
11384 struct bpf_insn *insn = prog->insnsi;
11385 int i, depth;
11386 #endif
11387 int err = 0;
11388
11389 if (env->prog->jit_requested &&
11390 !bpf_prog_is_dev_bound(env->prog->aux)) {
11391 err = jit_subprogs(env);
11392 if (err == 0)
11393 return 0;
11394 if (err == -EFAULT)
11395 return err;
11396 }
11397 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11398 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
11399 /* When JIT fails the progs with bpf2bpf calls and tail_calls
11400 * have to be rejected, since interpreter doesn't support them yet.
11401 */
11402 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
11403 return -EINVAL;
11404 }
11405 for (i = 0; i < prog->len; i++, insn++) {
11406 if (insn->code != (BPF_JMP | BPF_CALL) ||
11407 insn->src_reg != BPF_PSEUDO_CALL)
11408 continue;
11409 depth = get_callee_stack_depth(env, insn, i);
11410 if (depth < 0)
11411 return depth;
11412 bpf_patch_call_args(insn, depth);
11413 }
11414 err = 0;
11415 #endif
11416 return err;
11417 }
11418
11419 /* fixup insn->imm field of bpf_call instructions
11420 * and inline eligible helpers as explicit sequence of BPF instructions
11421 *
11422 * this function is called after eBPF program passed verification
11423 */
fixup_bpf_calls(struct bpf_verifier_env * env)11424 static int fixup_bpf_calls(struct bpf_verifier_env *env)
11425 {
11426 struct bpf_prog *prog = env->prog;
11427 bool expect_blinding = bpf_jit_blinding_enabled(prog);
11428 struct bpf_insn *insn = prog->insnsi;
11429 const struct bpf_func_proto *fn;
11430 const int insn_cnt = prog->len;
11431 const struct bpf_map_ops *ops;
11432 struct bpf_insn_aux_data *aux;
11433 struct bpf_insn insn_buf[16];
11434 struct bpf_prog *new_prog;
11435 struct bpf_map *map_ptr;
11436 int i, ret, cnt, delta = 0;
11437
11438 for (i = 0; i < insn_cnt; i++, insn++) {
11439 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
11440 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
11441 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
11442 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
11443 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
11444 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
11445 struct bpf_insn *patchlet;
11446 struct bpf_insn chk_and_div[] = {
11447 /* [R,W]x div 0 -> 0 */
11448 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11449 BPF_JNE | BPF_K, insn->src_reg,
11450 0, 2, 0),
11451 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
11452 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11453 *insn,
11454 };
11455 struct bpf_insn chk_and_mod[] = {
11456 /* [R,W]x mod 0 -> [R,W]x */
11457 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11458 BPF_JEQ | BPF_K, insn->src_reg,
11459 0, 1 + (is64 ? 0 : 1), 0),
11460 *insn,
11461 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11462 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
11463 };
11464
11465 patchlet = isdiv ? chk_and_div : chk_and_mod;
11466 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
11467 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
11468
11469 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
11470 if (!new_prog)
11471 return -ENOMEM;
11472
11473 delta += cnt - 1;
11474 env->prog = prog = new_prog;
11475 insn = new_prog->insnsi + i + delta;
11476 continue;
11477 }
11478
11479 if (BPF_CLASS(insn->code) == BPF_LD &&
11480 (BPF_MODE(insn->code) == BPF_ABS ||
11481 BPF_MODE(insn->code) == BPF_IND)) {
11482 cnt = env->ops->gen_ld_abs(insn, insn_buf);
11483 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11484 verbose(env, "bpf verifier is misconfigured\n");
11485 return -EINVAL;
11486 }
11487
11488 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11489 if (!new_prog)
11490 return -ENOMEM;
11491
11492 delta += cnt - 1;
11493 env->prog = prog = new_prog;
11494 insn = new_prog->insnsi + i + delta;
11495 continue;
11496 }
11497
11498 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
11499 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
11500 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
11501 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
11502 struct bpf_insn insn_buf[16];
11503 struct bpf_insn *patch = &insn_buf[0];
11504 bool issrc, isneg, isimm;
11505 u32 off_reg;
11506
11507 aux = &env->insn_aux_data[i + delta];
11508 if (!aux->alu_state ||
11509 aux->alu_state == BPF_ALU_NON_POINTER)
11510 continue;
11511
11512 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
11513 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
11514 BPF_ALU_SANITIZE_SRC;
11515 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
11516
11517 off_reg = issrc ? insn->src_reg : insn->dst_reg;
11518 if (isimm) {
11519 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
11520 } else {
11521 if (isneg)
11522 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11523 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
11524 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
11525 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
11526 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
11527 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
11528 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
11529 }
11530 if (!issrc)
11531 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
11532 insn->src_reg = BPF_REG_AX;
11533 if (isneg)
11534 insn->code = insn->code == code_add ?
11535 code_sub : code_add;
11536 *patch++ = *insn;
11537 if (issrc && isneg && !isimm)
11538 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11539 cnt = patch - insn_buf;
11540
11541 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11542 if (!new_prog)
11543 return -ENOMEM;
11544
11545 delta += cnt - 1;
11546 env->prog = prog = new_prog;
11547 insn = new_prog->insnsi + i + delta;
11548 continue;
11549 }
11550
11551 if (insn->code != (BPF_JMP | BPF_CALL))
11552 continue;
11553 if (insn->src_reg == BPF_PSEUDO_CALL)
11554 continue;
11555
11556 if (insn->imm == BPF_FUNC_get_route_realm)
11557 prog->dst_needed = 1;
11558 if (insn->imm == BPF_FUNC_get_prandom_u32)
11559 bpf_user_rnd_init_once();
11560 if (insn->imm == BPF_FUNC_override_return)
11561 prog->kprobe_override = 1;
11562 if (insn->imm == BPF_FUNC_tail_call) {
11563 /* If we tail call into other programs, we
11564 * cannot make any assumptions since they can
11565 * be replaced dynamically during runtime in
11566 * the program array.
11567 */
11568 prog->cb_access = 1;
11569 if (!allow_tail_call_in_subprogs(env))
11570 prog->aux->stack_depth = MAX_BPF_STACK;
11571 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
11572
11573 /* mark bpf_tail_call as different opcode to avoid
11574 * conditional branch in the interpeter for every normal
11575 * call and to prevent accidental JITing by JIT compiler
11576 * that doesn't support bpf_tail_call yet
11577 */
11578 insn->imm = 0;
11579 insn->code = BPF_JMP | BPF_TAIL_CALL;
11580
11581 aux = &env->insn_aux_data[i + delta];
11582 if (env->bpf_capable && !expect_blinding &&
11583 prog->jit_requested &&
11584 !bpf_map_key_poisoned(aux) &&
11585 !bpf_map_ptr_poisoned(aux) &&
11586 !bpf_map_ptr_unpriv(aux)) {
11587 struct bpf_jit_poke_descriptor desc = {
11588 .reason = BPF_POKE_REASON_TAIL_CALL,
11589 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
11590 .tail_call.key = bpf_map_key_immediate(aux),
11591 .insn_idx = i + delta,
11592 };
11593
11594 ret = bpf_jit_add_poke_descriptor(prog, &desc);
11595 if (ret < 0) {
11596 verbose(env, "adding tail call poke descriptor failed\n");
11597 return ret;
11598 }
11599
11600 insn->imm = ret + 1;
11601 continue;
11602 }
11603
11604 if (!bpf_map_ptr_unpriv(aux))
11605 continue;
11606
11607 /* instead of changing every JIT dealing with tail_call
11608 * emit two extra insns:
11609 * if (index >= max_entries) goto out;
11610 * index &= array->index_mask;
11611 * to avoid out-of-bounds cpu speculation
11612 */
11613 if (bpf_map_ptr_poisoned(aux)) {
11614 verbose(env, "tail_call abusing map_ptr\n");
11615 return -EINVAL;
11616 }
11617
11618 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11619 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
11620 map_ptr->max_entries, 2);
11621 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
11622 container_of(map_ptr,
11623 struct bpf_array,
11624 map)->index_mask);
11625 insn_buf[2] = *insn;
11626 cnt = 3;
11627 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11628 if (!new_prog)
11629 return -ENOMEM;
11630
11631 delta += cnt - 1;
11632 env->prog = prog = new_prog;
11633 insn = new_prog->insnsi + i + delta;
11634 continue;
11635 }
11636
11637 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
11638 * and other inlining handlers are currently limited to 64 bit
11639 * only.
11640 */
11641 if (prog->jit_requested && BITS_PER_LONG == 64 &&
11642 (insn->imm == BPF_FUNC_map_lookup_elem ||
11643 insn->imm == BPF_FUNC_map_update_elem ||
11644 insn->imm == BPF_FUNC_map_delete_elem ||
11645 insn->imm == BPF_FUNC_map_push_elem ||
11646 insn->imm == BPF_FUNC_map_pop_elem ||
11647 insn->imm == BPF_FUNC_map_peek_elem)) {
11648 aux = &env->insn_aux_data[i + delta];
11649 if (bpf_map_ptr_poisoned(aux))
11650 goto patch_call_imm;
11651
11652 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11653 ops = map_ptr->ops;
11654 if (insn->imm == BPF_FUNC_map_lookup_elem &&
11655 ops->map_gen_lookup) {
11656 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
11657 if (cnt == -EOPNOTSUPP)
11658 goto patch_map_ops_generic;
11659 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11660 verbose(env, "bpf verifier is misconfigured\n");
11661 return -EINVAL;
11662 }
11663
11664 new_prog = bpf_patch_insn_data(env, i + delta,
11665 insn_buf, cnt);
11666 if (!new_prog)
11667 return -ENOMEM;
11668
11669 delta += cnt - 1;
11670 env->prog = prog = new_prog;
11671 insn = new_prog->insnsi + i + delta;
11672 continue;
11673 }
11674
11675 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
11676 (void *(*)(struct bpf_map *map, void *key))NULL));
11677 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
11678 (int (*)(struct bpf_map *map, void *key))NULL));
11679 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
11680 (int (*)(struct bpf_map *map, void *key, void *value,
11681 u64 flags))NULL));
11682 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
11683 (int (*)(struct bpf_map *map, void *value,
11684 u64 flags))NULL));
11685 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
11686 (int (*)(struct bpf_map *map, void *value))NULL));
11687 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
11688 (int (*)(struct bpf_map *map, void *value))NULL));
11689 patch_map_ops_generic:
11690 switch (insn->imm) {
11691 case BPF_FUNC_map_lookup_elem:
11692 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
11693 __bpf_call_base;
11694 continue;
11695 case BPF_FUNC_map_update_elem:
11696 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
11697 __bpf_call_base;
11698 continue;
11699 case BPF_FUNC_map_delete_elem:
11700 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
11701 __bpf_call_base;
11702 continue;
11703 case BPF_FUNC_map_push_elem:
11704 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
11705 __bpf_call_base;
11706 continue;
11707 case BPF_FUNC_map_pop_elem:
11708 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
11709 __bpf_call_base;
11710 continue;
11711 case BPF_FUNC_map_peek_elem:
11712 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
11713 __bpf_call_base;
11714 continue;
11715 }
11716
11717 goto patch_call_imm;
11718 }
11719
11720 if (prog->jit_requested && BITS_PER_LONG == 64 &&
11721 insn->imm == BPF_FUNC_jiffies64) {
11722 struct bpf_insn ld_jiffies_addr[2] = {
11723 BPF_LD_IMM64(BPF_REG_0,
11724 (unsigned long)&jiffies),
11725 };
11726
11727 insn_buf[0] = ld_jiffies_addr[0];
11728 insn_buf[1] = ld_jiffies_addr[1];
11729 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
11730 BPF_REG_0, 0);
11731 cnt = 3;
11732
11733 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
11734 cnt);
11735 if (!new_prog)
11736 return -ENOMEM;
11737
11738 delta += cnt - 1;
11739 env->prog = prog = new_prog;
11740 insn = new_prog->insnsi + i + delta;
11741 continue;
11742 }
11743
11744 patch_call_imm:
11745 fn = env->ops->get_func_proto(insn->imm, env->prog);
11746 /* all functions that have prototype and verifier allowed
11747 * programs to call them, must be real in-kernel functions
11748 */
11749 if (!fn->func) {
11750 verbose(env,
11751 "kernel subsystem misconfigured func %s#%d\n",
11752 func_id_name(insn->imm), insn->imm);
11753 return -EFAULT;
11754 }
11755 insn->imm = fn->func - __bpf_call_base;
11756 }
11757
11758 /* Since poke tab is now finalized, publish aux to tracker. */
11759 for (i = 0; i < prog->aux->size_poke_tab; i++) {
11760 map_ptr = prog->aux->poke_tab[i].tail_call.map;
11761 if (!map_ptr->ops->map_poke_track ||
11762 !map_ptr->ops->map_poke_untrack ||
11763 !map_ptr->ops->map_poke_run) {
11764 verbose(env, "bpf verifier is misconfigured\n");
11765 return -EINVAL;
11766 }
11767
11768 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
11769 if (ret < 0) {
11770 verbose(env, "tracking tail call prog failed\n");
11771 return ret;
11772 }
11773 }
11774
11775 return 0;
11776 }
11777
free_states(struct bpf_verifier_env * env)11778 static void free_states(struct bpf_verifier_env *env)
11779 {
11780 struct bpf_verifier_state_list *sl, *sln;
11781 int i;
11782
11783 sl = env->free_list;
11784 while (sl) {
11785 sln = sl->next;
11786 free_verifier_state(&sl->state, false);
11787 kfree(sl);
11788 sl = sln;
11789 }
11790 env->free_list = NULL;
11791
11792 if (!env->explored_states)
11793 return;
11794
11795 for (i = 0; i < state_htab_size(env); i++) {
11796 sl = env->explored_states[i];
11797
11798 while (sl) {
11799 sln = sl->next;
11800 free_verifier_state(&sl->state, false);
11801 kfree(sl);
11802 sl = sln;
11803 }
11804 env->explored_states[i] = NULL;
11805 }
11806 }
11807
do_check_common(struct bpf_verifier_env * env,int subprog)11808 static int do_check_common(struct bpf_verifier_env *env, int subprog)
11809 {
11810 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
11811 struct bpf_verifier_state *state;
11812 struct bpf_reg_state *regs;
11813 int ret, i;
11814
11815 env->prev_linfo = NULL;
11816 env->pass_cnt++;
11817
11818 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
11819 if (!state)
11820 return -ENOMEM;
11821 state->curframe = 0;
11822 state->speculative = false;
11823 state->branches = 1;
11824 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
11825 if (!state->frame[0]) {
11826 kfree(state);
11827 return -ENOMEM;
11828 }
11829 env->cur_state = state;
11830 init_func_state(env, state->frame[0],
11831 BPF_MAIN_FUNC /* callsite */,
11832 0 /* frameno */,
11833 subprog);
11834
11835 regs = state->frame[state->curframe]->regs;
11836 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
11837 ret = btf_prepare_func_args(env, subprog, regs);
11838 if (ret)
11839 goto out;
11840 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
11841 if (regs[i].type == PTR_TO_CTX)
11842 mark_reg_known_zero(env, regs, i);
11843 else if (regs[i].type == SCALAR_VALUE)
11844 mark_reg_unknown(env, regs, i);
11845 }
11846 } else {
11847 /* 1st arg to a function */
11848 regs[BPF_REG_1].type = PTR_TO_CTX;
11849 mark_reg_known_zero(env, regs, BPF_REG_1);
11850 ret = btf_check_func_arg_match(env, subprog, regs);
11851 if (ret == -EFAULT)
11852 /* unlikely verifier bug. abort.
11853 * ret == 0 and ret < 0 are sadly acceptable for
11854 * main() function due to backward compatibility.
11855 * Like socket filter program may be written as:
11856 * int bpf_prog(struct pt_regs *ctx)
11857 * and never dereference that ctx in the program.
11858 * 'struct pt_regs' is a type mismatch for socket
11859 * filter that should be using 'struct __sk_buff'.
11860 */
11861 goto out;
11862 }
11863
11864 ret = do_check(env);
11865 out:
11866 /* check for NULL is necessary, since cur_state can be freed inside
11867 * do_check() under memory pressure.
11868 */
11869 if (env->cur_state) {
11870 free_verifier_state(env->cur_state, true);
11871 env->cur_state = NULL;
11872 }
11873 while (!pop_stack(env, NULL, NULL, false));
11874 if (!ret && pop_log)
11875 bpf_vlog_reset(&env->log, 0);
11876 free_states(env);
11877 return ret;
11878 }
11879
11880 /* Verify all global functions in a BPF program one by one based on their BTF.
11881 * All global functions must pass verification. Otherwise the whole program is rejected.
11882 * Consider:
11883 * int bar(int);
11884 * int foo(int f)
11885 * {
11886 * return bar(f);
11887 * }
11888 * int bar(int b)
11889 * {
11890 * ...
11891 * }
11892 * foo() will be verified first for R1=any_scalar_value. During verification it
11893 * will be assumed that bar() already verified successfully and call to bar()
11894 * from foo() will be checked for type match only. Later bar() will be verified
11895 * independently to check that it's safe for R1=any_scalar_value.
11896 */
do_check_subprogs(struct bpf_verifier_env * env)11897 static int do_check_subprogs(struct bpf_verifier_env *env)
11898 {
11899 struct bpf_prog_aux *aux = env->prog->aux;
11900 int i, ret;
11901
11902 if (!aux->func_info)
11903 return 0;
11904
11905 for (i = 1; i < env->subprog_cnt; i++) {
11906 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
11907 continue;
11908 env->insn_idx = env->subprog_info[i].start;
11909 WARN_ON_ONCE(env->insn_idx == 0);
11910 ret = do_check_common(env, i);
11911 if (ret) {
11912 return ret;
11913 } else if (env->log.level & BPF_LOG_LEVEL) {
11914 verbose(env,
11915 "Func#%d is safe for any args that match its prototype\n",
11916 i);
11917 }
11918 }
11919 return 0;
11920 }
11921
do_check_main(struct bpf_verifier_env * env)11922 static int do_check_main(struct bpf_verifier_env *env)
11923 {
11924 int ret;
11925
11926 env->insn_idx = 0;
11927 ret = do_check_common(env, 0);
11928 if (!ret)
11929 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
11930 return ret;
11931 }
11932
11933
print_verification_stats(struct bpf_verifier_env * env)11934 static void print_verification_stats(struct bpf_verifier_env *env)
11935 {
11936 int i;
11937
11938 if (env->log.level & BPF_LOG_STATS) {
11939 verbose(env, "verification time %lld usec\n",
11940 div_u64(env->verification_time, 1000));
11941 verbose(env, "stack depth ");
11942 for (i = 0; i < env->subprog_cnt; i++) {
11943 u32 depth = env->subprog_info[i].stack_depth;
11944
11945 verbose(env, "%d", depth);
11946 if (i + 1 < env->subprog_cnt)
11947 verbose(env, "+");
11948 }
11949 verbose(env, "\n");
11950 }
11951 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
11952 "total_states %d peak_states %d mark_read %d\n",
11953 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
11954 env->max_states_per_insn, env->total_states,
11955 env->peak_states, env->longest_mark_read_walk);
11956 }
11957
check_struct_ops_btf_id(struct bpf_verifier_env * env)11958 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
11959 {
11960 const struct btf_type *t, *func_proto;
11961 const struct bpf_struct_ops *st_ops;
11962 const struct btf_member *member;
11963 struct bpf_prog *prog = env->prog;
11964 u32 btf_id, member_idx;
11965 const char *mname;
11966
11967 if (!prog->gpl_compatible) {
11968 verbose(env, "struct ops programs must have a GPL compatible license\n");
11969 return -EINVAL;
11970 }
11971
11972 btf_id = prog->aux->attach_btf_id;
11973 st_ops = bpf_struct_ops_find(btf_id);
11974 if (!st_ops) {
11975 verbose(env, "attach_btf_id %u is not a supported struct\n",
11976 btf_id);
11977 return -ENOTSUPP;
11978 }
11979
11980 t = st_ops->type;
11981 member_idx = prog->expected_attach_type;
11982 if (member_idx >= btf_type_vlen(t)) {
11983 verbose(env, "attach to invalid member idx %u of struct %s\n",
11984 member_idx, st_ops->name);
11985 return -EINVAL;
11986 }
11987
11988 member = &btf_type_member(t)[member_idx];
11989 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
11990 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
11991 NULL);
11992 if (!func_proto) {
11993 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
11994 mname, member_idx, st_ops->name);
11995 return -EINVAL;
11996 }
11997
11998 if (st_ops->check_member) {
11999 int err = st_ops->check_member(t, member);
12000
12001 if (err) {
12002 verbose(env, "attach to unsupported member %s of struct %s\n",
12003 mname, st_ops->name);
12004 return err;
12005 }
12006 }
12007
12008 prog->aux->attach_func_proto = func_proto;
12009 prog->aux->attach_func_name = mname;
12010 env->ops = st_ops->verifier_ops;
12011
12012 return 0;
12013 }
12014 #define SECURITY_PREFIX "security_"
12015
check_attach_modify_return(unsigned long addr,const char * func_name)12016 static int check_attach_modify_return(unsigned long addr, const char *func_name)
12017 {
12018 if (within_error_injection_list(addr) ||
12019 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
12020 return 0;
12021
12022 return -EINVAL;
12023 }
12024
12025 /* non exhaustive list of sleepable bpf_lsm_*() functions */
12026 BTF_SET_START(btf_sleepable_lsm_hooks)
12027 #ifdef CONFIG_BPF_LSM
BTF_ID(func,bpf_lsm_bprm_committed_creds)12028 BTF_ID(func, bpf_lsm_bprm_committed_creds)
12029 #else
12030 BTF_ID_UNUSED
12031 #endif
12032 BTF_SET_END(btf_sleepable_lsm_hooks)
12033
12034 static int check_sleepable_lsm_hook(u32 btf_id)
12035 {
12036 return btf_id_set_contains(&btf_sleepable_lsm_hooks, btf_id);
12037 }
12038
12039 /* list of non-sleepable functions that are otherwise on
12040 * ALLOW_ERROR_INJECTION list
12041 */
12042 BTF_SET_START(btf_non_sleepable_error_inject)
12043 /* Three functions below can be called from sleepable and non-sleepable context.
12044 * Assume non-sleepable from bpf safety point of view.
12045 */
BTF_ID(func,__add_to_page_cache_locked)12046 BTF_ID(func, __add_to_page_cache_locked)
12047 BTF_ID(func, should_fail_alloc_page)
12048 BTF_ID(func, should_failslab)
12049 BTF_SET_END(btf_non_sleepable_error_inject)
12050
12051 static int check_non_sleepable_error_inject(u32 btf_id)
12052 {
12053 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
12054 }
12055
bpf_check_attach_target(struct bpf_verifier_log * log,const struct bpf_prog * prog,const struct bpf_prog * tgt_prog,u32 btf_id,struct bpf_attach_target_info * tgt_info)12056 int bpf_check_attach_target(struct bpf_verifier_log *log,
12057 const struct bpf_prog *prog,
12058 const struct bpf_prog *tgt_prog,
12059 u32 btf_id,
12060 struct bpf_attach_target_info *tgt_info)
12061 {
12062 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
12063 const char prefix[] = "btf_trace_";
12064 int ret = 0, subprog = -1, i;
12065 const struct btf_type *t;
12066 bool conservative = true;
12067 const char *tname;
12068 struct btf *btf;
12069 long addr = 0;
12070
12071 if (!btf_id) {
12072 bpf_log(log, "Tracing programs must provide btf_id\n");
12073 return -EINVAL;
12074 }
12075 btf = tgt_prog ? tgt_prog->aux->btf : btf_vmlinux;
12076 if (!btf) {
12077 bpf_log(log,
12078 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
12079 return -EINVAL;
12080 }
12081 t = btf_type_by_id(btf, btf_id);
12082 if (!t) {
12083 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
12084 return -EINVAL;
12085 }
12086 tname = btf_name_by_offset(btf, t->name_off);
12087 if (!tname) {
12088 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
12089 return -EINVAL;
12090 }
12091 if (tgt_prog) {
12092 struct bpf_prog_aux *aux = tgt_prog->aux;
12093
12094 for (i = 0; i < aux->func_info_cnt; i++)
12095 if (aux->func_info[i].type_id == btf_id) {
12096 subprog = i;
12097 break;
12098 }
12099 if (subprog == -1) {
12100 bpf_log(log, "Subprog %s doesn't exist\n", tname);
12101 return -EINVAL;
12102 }
12103 conservative = aux->func_info_aux[subprog].unreliable;
12104 if (prog_extension) {
12105 if (conservative) {
12106 bpf_log(log,
12107 "Cannot replace static functions\n");
12108 return -EINVAL;
12109 }
12110 if (!prog->jit_requested) {
12111 bpf_log(log,
12112 "Extension programs should be JITed\n");
12113 return -EINVAL;
12114 }
12115 }
12116 if (!tgt_prog->jited) {
12117 bpf_log(log, "Can attach to only JITed progs\n");
12118 return -EINVAL;
12119 }
12120 if (tgt_prog->type == prog->type) {
12121 /* Cannot fentry/fexit another fentry/fexit program.
12122 * Cannot attach program extension to another extension.
12123 * It's ok to attach fentry/fexit to extension program.
12124 */
12125 bpf_log(log, "Cannot recursively attach\n");
12126 return -EINVAL;
12127 }
12128 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
12129 prog_extension &&
12130 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
12131 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
12132 /* Program extensions can extend all program types
12133 * except fentry/fexit. The reason is the following.
12134 * The fentry/fexit programs are used for performance
12135 * analysis, stats and can be attached to any program
12136 * type except themselves. When extension program is
12137 * replacing XDP function it is necessary to allow
12138 * performance analysis of all functions. Both original
12139 * XDP program and its program extension. Hence
12140 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
12141 * allowed. If extending of fentry/fexit was allowed it
12142 * would be possible to create long call chain
12143 * fentry->extension->fentry->extension beyond
12144 * reasonable stack size. Hence extending fentry is not
12145 * allowed.
12146 */
12147 bpf_log(log, "Cannot extend fentry/fexit\n");
12148 return -EINVAL;
12149 }
12150 } else {
12151 if (prog_extension) {
12152 bpf_log(log, "Cannot replace kernel functions\n");
12153 return -EINVAL;
12154 }
12155 }
12156
12157 switch (prog->expected_attach_type) {
12158 case BPF_TRACE_RAW_TP:
12159 if (tgt_prog) {
12160 bpf_log(log,
12161 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
12162 return -EINVAL;
12163 }
12164 if (!btf_type_is_typedef(t)) {
12165 bpf_log(log, "attach_btf_id %u is not a typedef\n",
12166 btf_id);
12167 return -EINVAL;
12168 }
12169 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
12170 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
12171 btf_id, tname);
12172 return -EINVAL;
12173 }
12174 tname += sizeof(prefix) - 1;
12175 t = btf_type_by_id(btf, t->type);
12176 if (!btf_type_is_ptr(t))
12177 /* should never happen in valid vmlinux build */
12178 return -EINVAL;
12179 t = btf_type_by_id(btf, t->type);
12180 if (!btf_type_is_func_proto(t))
12181 /* should never happen in valid vmlinux build */
12182 return -EINVAL;
12183
12184 break;
12185 case BPF_TRACE_ITER:
12186 if (!btf_type_is_func(t)) {
12187 bpf_log(log, "attach_btf_id %u is not a function\n",
12188 btf_id);
12189 return -EINVAL;
12190 }
12191 t = btf_type_by_id(btf, t->type);
12192 if (!btf_type_is_func_proto(t))
12193 return -EINVAL;
12194 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12195 if (ret)
12196 return ret;
12197 break;
12198 default:
12199 if (!prog_extension)
12200 return -EINVAL;
12201 fallthrough;
12202 case BPF_MODIFY_RETURN:
12203 case BPF_LSM_MAC:
12204 case BPF_TRACE_FENTRY:
12205 case BPF_TRACE_FEXIT:
12206 if (!btf_type_is_func(t)) {
12207 bpf_log(log, "attach_btf_id %u is not a function\n",
12208 btf_id);
12209 return -EINVAL;
12210 }
12211 if (prog_extension &&
12212 btf_check_type_match(log, prog, btf, t))
12213 return -EINVAL;
12214 t = btf_type_by_id(btf, t->type);
12215 if (!btf_type_is_func_proto(t))
12216 return -EINVAL;
12217
12218 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
12219 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
12220 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
12221 return -EINVAL;
12222
12223 if (tgt_prog && conservative)
12224 t = NULL;
12225
12226 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12227 if (ret < 0)
12228 return ret;
12229
12230 if (tgt_prog) {
12231 if (subprog == 0)
12232 addr = (long) tgt_prog->bpf_func;
12233 else
12234 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
12235 } else {
12236 addr = kallsyms_lookup_name(tname);
12237 if (!addr) {
12238 bpf_log(log,
12239 "The address of function %s cannot be found\n",
12240 tname);
12241 return -ENOENT;
12242 }
12243 }
12244
12245 if (prog->aux->sleepable) {
12246 ret = -EINVAL;
12247 switch (prog->type) {
12248 case BPF_PROG_TYPE_TRACING:
12249 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
12250 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
12251 */
12252 if (!check_non_sleepable_error_inject(btf_id) &&
12253 within_error_injection_list(addr))
12254 ret = 0;
12255 break;
12256 case BPF_PROG_TYPE_LSM:
12257 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
12258 * Only some of them are sleepable.
12259 */
12260 if (check_sleepable_lsm_hook(btf_id))
12261 ret = 0;
12262 break;
12263 default:
12264 break;
12265 }
12266 if (ret) {
12267 bpf_log(log, "%s is not sleepable\n", tname);
12268 return ret;
12269 }
12270 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
12271 if (tgt_prog) {
12272 bpf_log(log, "can't modify return codes of BPF programs\n");
12273 return -EINVAL;
12274 }
12275 ret = check_attach_modify_return(addr, tname);
12276 if (ret) {
12277 bpf_log(log, "%s() is not modifiable\n", tname);
12278 return ret;
12279 }
12280 }
12281
12282 break;
12283 }
12284 tgt_info->tgt_addr = addr;
12285 tgt_info->tgt_name = tname;
12286 tgt_info->tgt_type = t;
12287 return 0;
12288 }
12289
check_attach_btf_id(struct bpf_verifier_env * env)12290 static int check_attach_btf_id(struct bpf_verifier_env *env)
12291 {
12292 struct bpf_prog *prog = env->prog;
12293 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
12294 struct bpf_attach_target_info tgt_info = {};
12295 u32 btf_id = prog->aux->attach_btf_id;
12296 struct bpf_trampoline *tr;
12297 int ret;
12298 u64 key;
12299
12300 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
12301 prog->type != BPF_PROG_TYPE_LSM) {
12302 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
12303 return -EINVAL;
12304 }
12305
12306 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
12307 return check_struct_ops_btf_id(env);
12308
12309 if (prog->type != BPF_PROG_TYPE_TRACING &&
12310 prog->type != BPF_PROG_TYPE_LSM &&
12311 prog->type != BPF_PROG_TYPE_EXT)
12312 return 0;
12313
12314 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
12315 if (ret)
12316 return ret;
12317
12318 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
12319 /* to make freplace equivalent to their targets, they need to
12320 * inherit env->ops and expected_attach_type for the rest of the
12321 * verification
12322 */
12323 env->ops = bpf_verifier_ops[tgt_prog->type];
12324 prog->expected_attach_type = tgt_prog->expected_attach_type;
12325 }
12326
12327 /* store info about the attachment target that will be used later */
12328 prog->aux->attach_func_proto = tgt_info.tgt_type;
12329 prog->aux->attach_func_name = tgt_info.tgt_name;
12330
12331 if (tgt_prog) {
12332 prog->aux->saved_dst_prog_type = tgt_prog->type;
12333 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
12334 }
12335
12336 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
12337 prog->aux->attach_btf_trace = true;
12338 return 0;
12339 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
12340 if (!bpf_iter_prog_supported(prog))
12341 return -EINVAL;
12342 return 0;
12343 }
12344
12345 if (prog->type == BPF_PROG_TYPE_LSM) {
12346 ret = bpf_lsm_verify_prog(&env->log, prog);
12347 if (ret < 0)
12348 return ret;
12349 }
12350
12351 key = bpf_trampoline_compute_key(tgt_prog, btf_id);
12352 tr = bpf_trampoline_get(key, &tgt_info);
12353 if (!tr)
12354 return -ENOMEM;
12355
12356 prog->aux->dst_trampoline = tr;
12357 return 0;
12358 }
12359
bpf_get_btf_vmlinux(void)12360 struct btf *bpf_get_btf_vmlinux(void)
12361 {
12362 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
12363 mutex_lock(&bpf_verifier_lock);
12364 if (!btf_vmlinux)
12365 btf_vmlinux = btf_parse_vmlinux();
12366 mutex_unlock(&bpf_verifier_lock);
12367 }
12368 return btf_vmlinux;
12369 }
12370
bpf_check(struct bpf_prog ** prog,union bpf_attr * attr,union bpf_attr __user * uattr)12371 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
12372 union bpf_attr __user *uattr)
12373 {
12374 u64 start_time = ktime_get_ns();
12375 struct bpf_verifier_env *env;
12376 struct bpf_verifier_log *log;
12377 int i, len, ret = -EINVAL;
12378 bool is_priv;
12379
12380 /* no program is valid */
12381 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
12382 return -EINVAL;
12383
12384 /* 'struct bpf_verifier_env' can be global, but since it's not small,
12385 * allocate/free it every time bpf_check() is called
12386 */
12387 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
12388 if (!env)
12389 return -ENOMEM;
12390 log = &env->log;
12391
12392 len = (*prog)->len;
12393 env->insn_aux_data =
12394 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
12395 ret = -ENOMEM;
12396 if (!env->insn_aux_data)
12397 goto err_free_env;
12398 for (i = 0; i < len; i++)
12399 env->insn_aux_data[i].orig_idx = i;
12400 env->prog = *prog;
12401 env->ops = bpf_verifier_ops[env->prog->type];
12402 is_priv = bpf_capable();
12403
12404 bpf_get_btf_vmlinux();
12405
12406 /* grab the mutex to protect few globals used by verifier */
12407 if (!is_priv)
12408 mutex_lock(&bpf_verifier_lock);
12409
12410 if (attr->log_level || attr->log_buf || attr->log_size) {
12411 /* user requested verbose verifier output
12412 * and supplied buffer to store the verification trace
12413 */
12414 log->level = attr->log_level;
12415 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
12416 log->len_total = attr->log_size;
12417
12418 /* log attributes have to be sane */
12419 if (!bpf_verifier_log_attr_valid(log)) {
12420 ret = -EINVAL;
12421 goto err_unlock;
12422 }
12423 }
12424
12425 if (IS_ERR(btf_vmlinux)) {
12426 /* Either gcc or pahole or kernel are broken. */
12427 verbose(env, "in-kernel BTF is malformed\n");
12428 ret = PTR_ERR(btf_vmlinux);
12429 goto skip_full_check;
12430 }
12431
12432 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
12433 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
12434 env->strict_alignment = true;
12435 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
12436 env->strict_alignment = false;
12437
12438 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
12439 env->allow_uninit_stack = bpf_allow_uninit_stack();
12440 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
12441 env->bypass_spec_v1 = bpf_bypass_spec_v1();
12442 env->bypass_spec_v4 = bpf_bypass_spec_v4();
12443 env->bpf_capable = bpf_capable();
12444
12445 if (is_priv)
12446 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
12447
12448 env->explored_states = kvcalloc(state_htab_size(env),
12449 sizeof(struct bpf_verifier_state_list *),
12450 GFP_USER);
12451 ret = -ENOMEM;
12452 if (!env->explored_states)
12453 goto skip_full_check;
12454
12455 ret = check_subprogs(env);
12456 if (ret < 0)
12457 goto skip_full_check;
12458
12459 ret = check_btf_info(env, attr, uattr);
12460 if (ret < 0)
12461 goto skip_full_check;
12462
12463 ret = check_attach_btf_id(env);
12464 if (ret)
12465 goto skip_full_check;
12466
12467 ret = resolve_pseudo_ldimm64(env);
12468 if (ret < 0)
12469 goto skip_full_check;
12470
12471 if (bpf_prog_is_dev_bound(env->prog->aux)) {
12472 ret = bpf_prog_offload_verifier_prep(env->prog);
12473 if (ret)
12474 goto skip_full_check;
12475 }
12476
12477 ret = check_cfg(env);
12478 if (ret < 0)
12479 goto skip_full_check;
12480
12481 ret = do_check_subprogs(env);
12482 ret = ret ?: do_check_main(env);
12483
12484 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
12485 ret = bpf_prog_offload_finalize(env);
12486
12487 skip_full_check:
12488 kvfree(env->explored_states);
12489
12490 if (ret == 0)
12491 ret = check_max_stack_depth(env);
12492
12493 /* instruction rewrites happen after this point */
12494 if (is_priv) {
12495 if (ret == 0)
12496 opt_hard_wire_dead_code_branches(env);
12497 if (ret == 0)
12498 ret = opt_remove_dead_code(env);
12499 if (ret == 0)
12500 ret = opt_remove_nops(env);
12501 } else {
12502 if (ret == 0)
12503 sanitize_dead_code(env);
12504 }
12505
12506 if (ret == 0)
12507 /* program is valid, convert *(u32*)(ctx + off) accesses */
12508 ret = convert_ctx_accesses(env);
12509
12510 if (ret == 0)
12511 ret = fixup_bpf_calls(env);
12512
12513 /* do 32-bit optimization after insn patching has done so those patched
12514 * insns could be handled correctly.
12515 */
12516 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
12517 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
12518 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
12519 : false;
12520 }
12521
12522 if (ret == 0)
12523 ret = fixup_call_args(env);
12524
12525 env->verification_time = ktime_get_ns() - start_time;
12526 print_verification_stats(env);
12527
12528 if (log->level && bpf_verifier_log_full(log))
12529 ret = -ENOSPC;
12530 if (log->level && !log->ubuf) {
12531 ret = -EFAULT;
12532 goto err_release_maps;
12533 }
12534
12535 if (ret == 0 && env->used_map_cnt) {
12536 /* if program passed verifier, update used_maps in bpf_prog_info */
12537 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
12538 sizeof(env->used_maps[0]),
12539 GFP_KERNEL);
12540
12541 if (!env->prog->aux->used_maps) {
12542 ret = -ENOMEM;
12543 goto err_release_maps;
12544 }
12545
12546 memcpy(env->prog->aux->used_maps, env->used_maps,
12547 sizeof(env->used_maps[0]) * env->used_map_cnt);
12548 env->prog->aux->used_map_cnt = env->used_map_cnt;
12549
12550 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
12551 * bpf_ld_imm64 instructions
12552 */
12553 convert_pseudo_ld_imm64(env);
12554 }
12555
12556 if (ret == 0)
12557 adjust_btf_func(env);
12558
12559 err_release_maps:
12560 if (!env->prog->aux->used_maps)
12561 /* if we didn't copy map pointers into bpf_prog_info, release
12562 * them now. Otherwise free_used_maps() will release them.
12563 */
12564 release_maps(env);
12565
12566 /* extension progs temporarily inherit the attach_type of their targets
12567 for verification purposes, so set it back to zero before returning
12568 */
12569 if (env->prog->type == BPF_PROG_TYPE_EXT)
12570 env->prog->expected_attach_type = 0;
12571
12572 *prog = env->prog;
12573 err_unlock:
12574 if (!is_priv)
12575 mutex_unlock(&bpf_verifier_lock);
12576 vfree(env->insn_aux_data);
12577 err_free_env:
12578 kfree(env);
12579 return ret;
12580 }
12581