1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 md.c : Multiple Devices driver for Linux
4 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5
6 completely rewritten, based on the MD driver code from Marc Zyngier
7
8 Changes:
9
10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
14 - kmod support by: Cyrus Durgin
15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17
18 - lots of fixes and improvements to the RAID1/RAID5 and generic
19 RAID code (such as request based resynchronization):
20
21 Neil Brown <neilb@cse.unsw.edu.au>.
22
23 - persistent bitmap code
24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25
26
27 Errors, Warnings, etc.
28 Please use:
29 pr_crit() for error conditions that risk data loss
30 pr_err() for error conditions that are unexpected, like an IO error
31 or internal inconsistency
32 pr_warn() for error conditions that could have been predicated, like
33 adding a device to an array when it has incompatible metadata
34 pr_info() for every interesting, very rare events, like an array starting
35 or stopping, or resync starting or stopping
36 pr_debug() for everything else.
37
38 */
39
40 #include <linux/sched/mm.h>
41 #include <linux/sched/signal.h>
42 #include <linux/kthread.h>
43 #include <linux/blkdev.h>
44 #include <linux/badblocks.h>
45 #include <linux/sysctl.h>
46 #include <linux/seq_file.h>
47 #include <linux/fs.h>
48 #include <linux/poll.h>
49 #include <linux/ctype.h>
50 #include <linux/string.h>
51 #include <linux/hdreg.h>
52 #include <linux/proc_fs.h>
53 #include <linux/random.h>
54 #include <linux/module.h>
55 #include <linux/reboot.h>
56 #include <linux/file.h>
57 #include <linux/compat.h>
58 #include <linux/delay.h>
59 #include <linux/raid/md_p.h>
60 #include <linux/raid/md_u.h>
61 #include <linux/raid/detect.h>
62 #include <linux/slab.h>
63 #include <linux/percpu-refcount.h>
64 #include <linux/part_stat.h>
65
66 #include <trace/events/block.h>
67 #include "md.h"
68 #include "md-bitmap.h"
69 #include "md-cluster.h"
70
71 /* pers_list is a list of registered personalities protected
72 * by pers_lock.
73 * pers_lock does extra service to protect accesses to
74 * mddev->thread when the mutex cannot be held.
75 */
76 static LIST_HEAD(pers_list);
77 static DEFINE_SPINLOCK(pers_lock);
78
79 static struct kobj_type md_ktype;
80
81 struct md_cluster_operations *md_cluster_ops;
82 EXPORT_SYMBOL(md_cluster_ops);
83 static struct module *md_cluster_mod;
84
85 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
86 static struct workqueue_struct *md_wq;
87 static struct workqueue_struct *md_misc_wq;
88 static struct workqueue_struct *md_rdev_misc_wq;
89
90 static int remove_and_add_spares(struct mddev *mddev,
91 struct md_rdev *this);
92 static void mddev_detach(struct mddev *mddev);
93
94 /*
95 * Default number of read corrections we'll attempt on an rdev
96 * before ejecting it from the array. We divide the read error
97 * count by 2 for every hour elapsed between read errors.
98 */
99 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
100 /* Default safemode delay: 200 msec */
101 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1)
102 /*
103 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
104 * is 1000 KB/sec, so the extra system load does not show up that much.
105 * Increase it if you want to have more _guaranteed_ speed. Note that
106 * the RAID driver will use the maximum available bandwidth if the IO
107 * subsystem is idle. There is also an 'absolute maximum' reconstruction
108 * speed limit - in case reconstruction slows down your system despite
109 * idle IO detection.
110 *
111 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
112 * or /sys/block/mdX/md/sync_speed_{min,max}
113 */
114
115 static int sysctl_speed_limit_min = 1000;
116 static int sysctl_speed_limit_max = 200000;
speed_min(struct mddev * mddev)117 static inline int speed_min(struct mddev *mddev)
118 {
119 return mddev->sync_speed_min ?
120 mddev->sync_speed_min : sysctl_speed_limit_min;
121 }
122
speed_max(struct mddev * mddev)123 static inline int speed_max(struct mddev *mddev)
124 {
125 return mddev->sync_speed_max ?
126 mddev->sync_speed_max : sysctl_speed_limit_max;
127 }
128
rdev_uninit_serial(struct md_rdev * rdev)129 static void rdev_uninit_serial(struct md_rdev *rdev)
130 {
131 if (!test_and_clear_bit(CollisionCheck, &rdev->flags))
132 return;
133
134 kvfree(rdev->serial);
135 rdev->serial = NULL;
136 }
137
rdevs_uninit_serial(struct mddev * mddev)138 static void rdevs_uninit_serial(struct mddev *mddev)
139 {
140 struct md_rdev *rdev;
141
142 rdev_for_each(rdev, mddev)
143 rdev_uninit_serial(rdev);
144 }
145
rdev_init_serial(struct md_rdev * rdev)146 static int rdev_init_serial(struct md_rdev *rdev)
147 {
148 /* serial_nums equals with BARRIER_BUCKETS_NR */
149 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t))));
150 struct serial_in_rdev *serial = NULL;
151
152 if (test_bit(CollisionCheck, &rdev->flags))
153 return 0;
154
155 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums,
156 GFP_KERNEL);
157 if (!serial)
158 return -ENOMEM;
159
160 for (i = 0; i < serial_nums; i++) {
161 struct serial_in_rdev *serial_tmp = &serial[i];
162
163 spin_lock_init(&serial_tmp->serial_lock);
164 serial_tmp->serial_rb = RB_ROOT_CACHED;
165 init_waitqueue_head(&serial_tmp->serial_io_wait);
166 }
167
168 rdev->serial = serial;
169 set_bit(CollisionCheck, &rdev->flags);
170
171 return 0;
172 }
173
rdevs_init_serial(struct mddev * mddev)174 static int rdevs_init_serial(struct mddev *mddev)
175 {
176 struct md_rdev *rdev;
177 int ret = 0;
178
179 rdev_for_each(rdev, mddev) {
180 ret = rdev_init_serial(rdev);
181 if (ret)
182 break;
183 }
184
185 /* Free all resources if pool is not existed */
186 if (ret && !mddev->serial_info_pool)
187 rdevs_uninit_serial(mddev);
188
189 return ret;
190 }
191
192 /*
193 * rdev needs to enable serial stuffs if it meets the conditions:
194 * 1. it is multi-queue device flaged with writemostly.
195 * 2. the write-behind mode is enabled.
196 */
rdev_need_serial(struct md_rdev * rdev)197 static int rdev_need_serial(struct md_rdev *rdev)
198 {
199 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 &&
200 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 &&
201 test_bit(WriteMostly, &rdev->flags));
202 }
203
204 /*
205 * Init resource for rdev(s), then create serial_info_pool if:
206 * 1. rdev is the first device which return true from rdev_enable_serial.
207 * 2. rdev is NULL, means we want to enable serialization for all rdevs.
208 */
mddev_create_serial_pool(struct mddev * mddev,struct md_rdev * rdev,bool is_suspend)209 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
210 bool is_suspend)
211 {
212 int ret = 0;
213
214 if (rdev && !rdev_need_serial(rdev) &&
215 !test_bit(CollisionCheck, &rdev->flags))
216 return;
217
218 if (!is_suspend)
219 mddev_suspend(mddev);
220
221 if (!rdev)
222 ret = rdevs_init_serial(mddev);
223 else
224 ret = rdev_init_serial(rdev);
225 if (ret)
226 goto abort;
227
228 if (mddev->serial_info_pool == NULL) {
229 /*
230 * already in memalloc noio context by
231 * mddev_suspend()
232 */
233 mddev->serial_info_pool =
234 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
235 sizeof(struct serial_info));
236 if (!mddev->serial_info_pool) {
237 rdevs_uninit_serial(mddev);
238 pr_err("can't alloc memory pool for serialization\n");
239 }
240 }
241
242 abort:
243 if (!is_suspend)
244 mddev_resume(mddev);
245 }
246
247 /*
248 * Free resource from rdev(s), and destroy serial_info_pool under conditions:
249 * 1. rdev is the last device flaged with CollisionCheck.
250 * 2. when bitmap is destroyed while policy is not enabled.
251 * 3. for disable policy, the pool is destroyed only when no rdev needs it.
252 */
mddev_destroy_serial_pool(struct mddev * mddev,struct md_rdev * rdev,bool is_suspend)253 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
254 bool is_suspend)
255 {
256 if (rdev && !test_bit(CollisionCheck, &rdev->flags))
257 return;
258
259 if (mddev->serial_info_pool) {
260 struct md_rdev *temp;
261 int num = 0; /* used to track if other rdevs need the pool */
262
263 if (!is_suspend)
264 mddev_suspend(mddev);
265 rdev_for_each(temp, mddev) {
266 if (!rdev) {
267 if (!mddev->serialize_policy ||
268 !rdev_need_serial(temp))
269 rdev_uninit_serial(temp);
270 else
271 num++;
272 } else if (temp != rdev &&
273 test_bit(CollisionCheck, &temp->flags))
274 num++;
275 }
276
277 if (rdev)
278 rdev_uninit_serial(rdev);
279
280 if (num)
281 pr_info("The mempool could be used by other devices\n");
282 else {
283 mempool_destroy(mddev->serial_info_pool);
284 mddev->serial_info_pool = NULL;
285 }
286 if (!is_suspend)
287 mddev_resume(mddev);
288 }
289 }
290
291 static struct ctl_table_header *raid_table_header;
292
293 static struct ctl_table raid_table[] = {
294 {
295 .procname = "speed_limit_min",
296 .data = &sysctl_speed_limit_min,
297 .maxlen = sizeof(int),
298 .mode = S_IRUGO|S_IWUSR,
299 .proc_handler = proc_dointvec,
300 },
301 {
302 .procname = "speed_limit_max",
303 .data = &sysctl_speed_limit_max,
304 .maxlen = sizeof(int),
305 .mode = S_IRUGO|S_IWUSR,
306 .proc_handler = proc_dointvec,
307 },
308 { }
309 };
310
311 static struct ctl_table raid_dir_table[] = {
312 {
313 .procname = "raid",
314 .maxlen = 0,
315 .mode = S_IRUGO|S_IXUGO,
316 .child = raid_table,
317 },
318 { }
319 };
320
321 static struct ctl_table raid_root_table[] = {
322 {
323 .procname = "dev",
324 .maxlen = 0,
325 .mode = 0555,
326 .child = raid_dir_table,
327 },
328 { }
329 };
330
331 static int start_readonly;
332
333 /*
334 * The original mechanism for creating an md device is to create
335 * a device node in /dev and to open it. This causes races with device-close.
336 * The preferred method is to write to the "new_array" module parameter.
337 * This can avoid races.
338 * Setting create_on_open to false disables the original mechanism
339 * so all the races disappear.
340 */
341 static bool create_on_open = true;
342
bio_alloc_mddev(gfp_t gfp_mask,int nr_iovecs,struct mddev * mddev)343 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
344 struct mddev *mddev)
345 {
346 if (!mddev || !bioset_initialized(&mddev->bio_set))
347 return bio_alloc(gfp_mask, nr_iovecs);
348
349 return bio_alloc_bioset(gfp_mask, nr_iovecs, &mddev->bio_set);
350 }
351 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
352
md_bio_alloc_sync(struct mddev * mddev)353 static struct bio *md_bio_alloc_sync(struct mddev *mddev)
354 {
355 if (!mddev || !bioset_initialized(&mddev->sync_set))
356 return bio_alloc(GFP_NOIO, 1);
357
358 return bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set);
359 }
360
361 /*
362 * We have a system wide 'event count' that is incremented
363 * on any 'interesting' event, and readers of /proc/mdstat
364 * can use 'poll' or 'select' to find out when the event
365 * count increases.
366 *
367 * Events are:
368 * start array, stop array, error, add device, remove device,
369 * start build, activate spare
370 */
371 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
372 static atomic_t md_event_count;
md_new_event(struct mddev * mddev)373 void md_new_event(struct mddev *mddev)
374 {
375 atomic_inc(&md_event_count);
376 wake_up(&md_event_waiters);
377 }
378 EXPORT_SYMBOL_GPL(md_new_event);
379
380 /*
381 * Enables to iterate over all existing md arrays
382 * all_mddevs_lock protects this list.
383 */
384 static LIST_HEAD(all_mddevs);
385 static DEFINE_SPINLOCK(all_mddevs_lock);
386
387 /*
388 * iterates through all used mddevs in the system.
389 * We take care to grab the all_mddevs_lock whenever navigating
390 * the list, and to always hold a refcount when unlocked.
391 * Any code which breaks out of this loop while own
392 * a reference to the current mddev and must mddev_put it.
393 */
394 #define for_each_mddev(_mddev,_tmp) \
395 \
396 for (({ spin_lock(&all_mddevs_lock); \
397 _tmp = all_mddevs.next; \
398 _mddev = NULL;}); \
399 ({ if (_tmp != &all_mddevs) \
400 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
401 spin_unlock(&all_mddevs_lock); \
402 if (_mddev) mddev_put(_mddev); \
403 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
404 _tmp != &all_mddevs;}); \
405 ({ spin_lock(&all_mddevs_lock); \
406 _tmp = _tmp->next;}) \
407 )
408
409 /* Rather than calling directly into the personality make_request function,
410 * IO requests come here first so that we can check if the device is
411 * being suspended pending a reconfiguration.
412 * We hold a refcount over the call to ->make_request. By the time that
413 * call has finished, the bio has been linked into some internal structure
414 * and so is visible to ->quiesce(), so we don't need the refcount any more.
415 */
is_suspended(struct mddev * mddev,struct bio * bio)416 static bool is_suspended(struct mddev *mddev, struct bio *bio)
417 {
418 if (mddev->suspended)
419 return true;
420 if (bio_data_dir(bio) != WRITE)
421 return false;
422 if (mddev->suspend_lo >= mddev->suspend_hi)
423 return false;
424 if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
425 return false;
426 if (bio_end_sector(bio) < mddev->suspend_lo)
427 return false;
428 return true;
429 }
430
md_handle_request(struct mddev * mddev,struct bio * bio)431 void md_handle_request(struct mddev *mddev, struct bio *bio)
432 {
433 check_suspended:
434 rcu_read_lock();
435 if (is_suspended(mddev, bio)) {
436 DEFINE_WAIT(__wait);
437 for (;;) {
438 prepare_to_wait(&mddev->sb_wait, &__wait,
439 TASK_UNINTERRUPTIBLE);
440 if (!is_suspended(mddev, bio))
441 break;
442 rcu_read_unlock();
443 schedule();
444 rcu_read_lock();
445 }
446 finish_wait(&mddev->sb_wait, &__wait);
447 }
448 atomic_inc(&mddev->active_io);
449 rcu_read_unlock();
450
451 if (!mddev->pers->make_request(mddev, bio)) {
452 atomic_dec(&mddev->active_io);
453 wake_up(&mddev->sb_wait);
454 goto check_suspended;
455 }
456
457 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
458 wake_up(&mddev->sb_wait);
459 }
460 EXPORT_SYMBOL(md_handle_request);
461
md_submit_bio(struct bio * bio)462 static blk_qc_t md_submit_bio(struct bio *bio)
463 {
464 const int rw = bio_data_dir(bio);
465 struct mddev *mddev = bio->bi_disk->private_data;
466
467 if (mddev == NULL || mddev->pers == NULL) {
468 bio_io_error(bio);
469 return BLK_QC_T_NONE;
470 }
471
472 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) {
473 bio_io_error(bio);
474 return BLK_QC_T_NONE;
475 }
476
477 blk_queue_split(&bio);
478
479 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
480 if (bio_sectors(bio) != 0)
481 bio->bi_status = BLK_STS_IOERR;
482 bio_endio(bio);
483 return BLK_QC_T_NONE;
484 }
485
486 /* bio could be mergeable after passing to underlayer */
487 bio->bi_opf &= ~REQ_NOMERGE;
488
489 md_handle_request(mddev, bio);
490
491 return BLK_QC_T_NONE;
492 }
493
494 /* mddev_suspend makes sure no new requests are submitted
495 * to the device, and that any requests that have been submitted
496 * are completely handled.
497 * Once mddev_detach() is called and completes, the module will be
498 * completely unused.
499 */
mddev_suspend(struct mddev * mddev)500 void mddev_suspend(struct mddev *mddev)
501 {
502 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
503 lockdep_assert_held(&mddev->reconfig_mutex);
504 if (mddev->suspended++)
505 return;
506 synchronize_rcu();
507 wake_up(&mddev->sb_wait);
508 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
509 smp_mb__after_atomic();
510 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
511 mddev->pers->quiesce(mddev, 1);
512 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
513 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
514
515 del_timer_sync(&mddev->safemode_timer);
516 /* restrict memory reclaim I/O during raid array is suspend */
517 mddev->noio_flag = memalloc_noio_save();
518 }
519 EXPORT_SYMBOL_GPL(mddev_suspend);
520
mddev_resume(struct mddev * mddev)521 void mddev_resume(struct mddev *mddev)
522 {
523 /* entred the memalloc scope from mddev_suspend() */
524 memalloc_noio_restore(mddev->noio_flag);
525 lockdep_assert_held(&mddev->reconfig_mutex);
526 if (--mddev->suspended)
527 return;
528 wake_up(&mddev->sb_wait);
529 mddev->pers->quiesce(mddev, 0);
530
531 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
532 md_wakeup_thread(mddev->thread);
533 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
534 }
535 EXPORT_SYMBOL_GPL(mddev_resume);
536
537 /*
538 * Generic flush handling for md
539 */
540
md_end_flush(struct bio * bio)541 static void md_end_flush(struct bio *bio)
542 {
543 struct md_rdev *rdev = bio->bi_private;
544 struct mddev *mddev = rdev->mddev;
545
546 bio_put(bio);
547
548 rdev_dec_pending(rdev, mddev);
549
550 if (atomic_dec_and_test(&mddev->flush_pending)) {
551 /* The pre-request flush has finished */
552 queue_work(md_wq, &mddev->flush_work);
553 }
554 }
555
556 static void md_submit_flush_data(struct work_struct *ws);
557
submit_flushes(struct work_struct * ws)558 static void submit_flushes(struct work_struct *ws)
559 {
560 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
561 struct md_rdev *rdev;
562
563 mddev->start_flush = ktime_get_boottime();
564 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
565 atomic_set(&mddev->flush_pending, 1);
566 rcu_read_lock();
567 rdev_for_each_rcu(rdev, mddev)
568 if (rdev->raid_disk >= 0 &&
569 !test_bit(Faulty, &rdev->flags)) {
570 /* Take two references, one is dropped
571 * when request finishes, one after
572 * we reclaim rcu_read_lock
573 */
574 struct bio *bi;
575 atomic_inc(&rdev->nr_pending);
576 atomic_inc(&rdev->nr_pending);
577 rcu_read_unlock();
578 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
579 bi->bi_end_io = md_end_flush;
580 bi->bi_private = rdev;
581 bio_set_dev(bi, rdev->bdev);
582 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
583 atomic_inc(&mddev->flush_pending);
584 submit_bio(bi);
585 rcu_read_lock();
586 rdev_dec_pending(rdev, mddev);
587 }
588 rcu_read_unlock();
589 if (atomic_dec_and_test(&mddev->flush_pending))
590 queue_work(md_wq, &mddev->flush_work);
591 }
592
md_submit_flush_data(struct work_struct * ws)593 static void md_submit_flush_data(struct work_struct *ws)
594 {
595 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
596 struct bio *bio = mddev->flush_bio;
597
598 /*
599 * must reset flush_bio before calling into md_handle_request to avoid a
600 * deadlock, because other bios passed md_handle_request suspend check
601 * could wait for this and below md_handle_request could wait for those
602 * bios because of suspend check
603 */
604 spin_lock_irq(&mddev->lock);
605 mddev->last_flush = mddev->start_flush;
606 mddev->flush_bio = NULL;
607 spin_unlock_irq(&mddev->lock);
608 wake_up(&mddev->sb_wait);
609
610 if (bio->bi_iter.bi_size == 0) {
611 /* an empty barrier - all done */
612 bio_endio(bio);
613 } else {
614 bio->bi_opf &= ~REQ_PREFLUSH;
615 md_handle_request(mddev, bio);
616 }
617 }
618
619 /*
620 * Manages consolidation of flushes and submitting any flushes needed for
621 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is
622 * being finished in another context. Returns false if the flushing is
623 * complete but still needs the I/O portion of the bio to be processed.
624 */
md_flush_request(struct mddev * mddev,struct bio * bio)625 bool md_flush_request(struct mddev *mddev, struct bio *bio)
626 {
627 ktime_t start = ktime_get_boottime();
628 spin_lock_irq(&mddev->lock);
629 wait_event_lock_irq(mddev->sb_wait,
630 !mddev->flush_bio ||
631 ktime_after(mddev->last_flush, start),
632 mddev->lock);
633 if (!ktime_after(mddev->last_flush, start)) {
634 WARN_ON(mddev->flush_bio);
635 mddev->flush_bio = bio;
636 bio = NULL;
637 }
638 spin_unlock_irq(&mddev->lock);
639
640 if (!bio) {
641 INIT_WORK(&mddev->flush_work, submit_flushes);
642 queue_work(md_wq, &mddev->flush_work);
643 } else {
644 /* flush was performed for some other bio while we waited. */
645 if (bio->bi_iter.bi_size == 0)
646 /* an empty barrier - all done */
647 bio_endio(bio);
648 else {
649 bio->bi_opf &= ~REQ_PREFLUSH;
650 return false;
651 }
652 }
653 return true;
654 }
655 EXPORT_SYMBOL(md_flush_request);
656
mddev_get(struct mddev * mddev)657 static inline struct mddev *mddev_get(struct mddev *mddev)
658 {
659 atomic_inc(&mddev->active);
660 return mddev;
661 }
662
663 static void mddev_delayed_delete(struct work_struct *ws);
664
mddev_put(struct mddev * mddev)665 static void mddev_put(struct mddev *mddev)
666 {
667 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
668 return;
669 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
670 mddev->ctime == 0 && !mddev->hold_active) {
671 /* Array is not configured at all, and not held active,
672 * so destroy it */
673 list_del_init(&mddev->all_mddevs);
674
675 /*
676 * Call queue_work inside the spinlock so that
677 * flush_workqueue() after mddev_find will succeed in waiting
678 * for the work to be done.
679 */
680 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
681 queue_work(md_misc_wq, &mddev->del_work);
682 }
683 spin_unlock(&all_mddevs_lock);
684 }
685
686 static void md_safemode_timeout(struct timer_list *t);
687
mddev_init(struct mddev * mddev)688 void mddev_init(struct mddev *mddev)
689 {
690 kobject_init(&mddev->kobj, &md_ktype);
691 mutex_init(&mddev->open_mutex);
692 mutex_init(&mddev->reconfig_mutex);
693 mutex_init(&mddev->bitmap_info.mutex);
694 INIT_LIST_HEAD(&mddev->disks);
695 INIT_LIST_HEAD(&mddev->all_mddevs);
696 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
697 atomic_set(&mddev->active, 1);
698 atomic_set(&mddev->openers, 0);
699 atomic_set(&mddev->active_io, 0);
700 spin_lock_init(&mddev->lock);
701 atomic_set(&mddev->flush_pending, 0);
702 init_waitqueue_head(&mddev->sb_wait);
703 init_waitqueue_head(&mddev->recovery_wait);
704 mddev->reshape_position = MaxSector;
705 mddev->reshape_backwards = 0;
706 mddev->last_sync_action = "none";
707 mddev->resync_min = 0;
708 mddev->resync_max = MaxSector;
709 mddev->level = LEVEL_NONE;
710 }
711 EXPORT_SYMBOL_GPL(mddev_init);
712
mddev_find_locked(dev_t unit)713 static struct mddev *mddev_find_locked(dev_t unit)
714 {
715 struct mddev *mddev;
716
717 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
718 if (mddev->unit == unit)
719 return mddev;
720
721 return NULL;
722 }
723
mddev_find(dev_t unit)724 static struct mddev *mddev_find(dev_t unit)
725 {
726 struct mddev *mddev;
727
728 if (MAJOR(unit) != MD_MAJOR)
729 unit &= ~((1 << MdpMinorShift) - 1);
730
731 spin_lock(&all_mddevs_lock);
732 mddev = mddev_find_locked(unit);
733 if (mddev)
734 mddev_get(mddev);
735 spin_unlock(&all_mddevs_lock);
736
737 return mddev;
738 }
739
mddev_find_or_alloc(dev_t unit)740 static struct mddev *mddev_find_or_alloc(dev_t unit)
741 {
742 struct mddev *mddev, *new = NULL;
743
744 if (unit && MAJOR(unit) != MD_MAJOR)
745 unit &= ~((1<<MdpMinorShift)-1);
746
747 retry:
748 spin_lock(&all_mddevs_lock);
749
750 if (unit) {
751 mddev = mddev_find_locked(unit);
752 if (mddev) {
753 mddev_get(mddev);
754 spin_unlock(&all_mddevs_lock);
755 kfree(new);
756 return mddev;
757 }
758
759 if (new) {
760 list_add(&new->all_mddevs, &all_mddevs);
761 spin_unlock(&all_mddevs_lock);
762 new->hold_active = UNTIL_IOCTL;
763 return new;
764 }
765 } else if (new) {
766 /* find an unused unit number */
767 static int next_minor = 512;
768 int start = next_minor;
769 int is_free = 0;
770 int dev = 0;
771 while (!is_free) {
772 dev = MKDEV(MD_MAJOR, next_minor);
773 next_minor++;
774 if (next_minor > MINORMASK)
775 next_minor = 0;
776 if (next_minor == start) {
777 /* Oh dear, all in use. */
778 spin_unlock(&all_mddevs_lock);
779 kfree(new);
780 return NULL;
781 }
782
783 is_free = !mddev_find_locked(dev);
784 }
785 new->unit = dev;
786 new->md_minor = MINOR(dev);
787 new->hold_active = UNTIL_STOP;
788 list_add(&new->all_mddevs, &all_mddevs);
789 spin_unlock(&all_mddevs_lock);
790 return new;
791 }
792 spin_unlock(&all_mddevs_lock);
793
794 new = kzalloc(sizeof(*new), GFP_KERNEL);
795 if (!new)
796 return NULL;
797
798 new->unit = unit;
799 if (MAJOR(unit) == MD_MAJOR)
800 new->md_minor = MINOR(unit);
801 else
802 new->md_minor = MINOR(unit) >> MdpMinorShift;
803
804 mddev_init(new);
805
806 goto retry;
807 }
808
809 static struct attribute_group md_redundancy_group;
810
mddev_unlock(struct mddev * mddev)811 void mddev_unlock(struct mddev *mddev)
812 {
813 if (mddev->to_remove) {
814 /* These cannot be removed under reconfig_mutex as
815 * an access to the files will try to take reconfig_mutex
816 * while holding the file unremovable, which leads to
817 * a deadlock.
818 * So hold set sysfs_active while the remove in happeing,
819 * and anything else which might set ->to_remove or my
820 * otherwise change the sysfs namespace will fail with
821 * -EBUSY if sysfs_active is still set.
822 * We set sysfs_active under reconfig_mutex and elsewhere
823 * test it under the same mutex to ensure its correct value
824 * is seen.
825 */
826 struct attribute_group *to_remove = mddev->to_remove;
827 mddev->to_remove = NULL;
828 mddev->sysfs_active = 1;
829 mutex_unlock(&mddev->reconfig_mutex);
830
831 if (mddev->kobj.sd) {
832 if (to_remove != &md_redundancy_group)
833 sysfs_remove_group(&mddev->kobj, to_remove);
834 if (mddev->pers == NULL ||
835 mddev->pers->sync_request == NULL) {
836 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
837 if (mddev->sysfs_action)
838 sysfs_put(mddev->sysfs_action);
839 if (mddev->sysfs_completed)
840 sysfs_put(mddev->sysfs_completed);
841 if (mddev->sysfs_degraded)
842 sysfs_put(mddev->sysfs_degraded);
843 mddev->sysfs_action = NULL;
844 mddev->sysfs_completed = NULL;
845 mddev->sysfs_degraded = NULL;
846 }
847 }
848 mddev->sysfs_active = 0;
849 } else
850 mutex_unlock(&mddev->reconfig_mutex);
851
852 /* As we've dropped the mutex we need a spinlock to
853 * make sure the thread doesn't disappear
854 */
855 spin_lock(&pers_lock);
856 md_wakeup_thread(mddev->thread);
857 wake_up(&mddev->sb_wait);
858 spin_unlock(&pers_lock);
859 }
860 EXPORT_SYMBOL_GPL(mddev_unlock);
861
md_find_rdev_nr_rcu(struct mddev * mddev,int nr)862 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
863 {
864 struct md_rdev *rdev;
865
866 rdev_for_each_rcu(rdev, mddev)
867 if (rdev->desc_nr == nr)
868 return rdev;
869
870 return NULL;
871 }
872 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
873
find_rdev(struct mddev * mddev,dev_t dev)874 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
875 {
876 struct md_rdev *rdev;
877
878 rdev_for_each(rdev, mddev)
879 if (rdev->bdev->bd_dev == dev)
880 return rdev;
881
882 return NULL;
883 }
884
md_find_rdev_rcu(struct mddev * mddev,dev_t dev)885 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
886 {
887 struct md_rdev *rdev;
888
889 rdev_for_each_rcu(rdev, mddev)
890 if (rdev->bdev->bd_dev == dev)
891 return rdev;
892
893 return NULL;
894 }
895 EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
896
find_pers(int level,char * clevel)897 static struct md_personality *find_pers(int level, char *clevel)
898 {
899 struct md_personality *pers;
900 list_for_each_entry(pers, &pers_list, list) {
901 if (level != LEVEL_NONE && pers->level == level)
902 return pers;
903 if (strcmp(pers->name, clevel)==0)
904 return pers;
905 }
906 return NULL;
907 }
908
909 /* return the offset of the super block in 512byte sectors */
calc_dev_sboffset(struct md_rdev * rdev)910 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
911 {
912 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
913 return MD_NEW_SIZE_SECTORS(num_sectors);
914 }
915
alloc_disk_sb(struct md_rdev * rdev)916 static int alloc_disk_sb(struct md_rdev *rdev)
917 {
918 rdev->sb_page = alloc_page(GFP_KERNEL);
919 if (!rdev->sb_page)
920 return -ENOMEM;
921 return 0;
922 }
923
md_rdev_clear(struct md_rdev * rdev)924 void md_rdev_clear(struct md_rdev *rdev)
925 {
926 if (rdev->sb_page) {
927 put_page(rdev->sb_page);
928 rdev->sb_loaded = 0;
929 rdev->sb_page = NULL;
930 rdev->sb_start = 0;
931 rdev->sectors = 0;
932 }
933 if (rdev->bb_page) {
934 put_page(rdev->bb_page);
935 rdev->bb_page = NULL;
936 }
937 badblocks_exit(&rdev->badblocks);
938 }
939 EXPORT_SYMBOL_GPL(md_rdev_clear);
940
super_written(struct bio * bio)941 static void super_written(struct bio *bio)
942 {
943 struct md_rdev *rdev = bio->bi_private;
944 struct mddev *mddev = rdev->mddev;
945
946 if (bio->bi_status) {
947 pr_err("md: %s gets error=%d\n", __func__,
948 blk_status_to_errno(bio->bi_status));
949 md_error(mddev, rdev);
950 if (!test_bit(Faulty, &rdev->flags)
951 && (bio->bi_opf & MD_FAILFAST)) {
952 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
953 set_bit(LastDev, &rdev->flags);
954 }
955 } else
956 clear_bit(LastDev, &rdev->flags);
957
958 bio_put(bio);
959
960 rdev_dec_pending(rdev, mddev);
961
962 if (atomic_dec_and_test(&mddev->pending_writes))
963 wake_up(&mddev->sb_wait);
964 }
965
md_super_write(struct mddev * mddev,struct md_rdev * rdev,sector_t sector,int size,struct page * page)966 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
967 sector_t sector, int size, struct page *page)
968 {
969 /* write first size bytes of page to sector of rdev
970 * Increment mddev->pending_writes before returning
971 * and decrement it on completion, waking up sb_wait
972 * if zero is reached.
973 * If an error occurred, call md_error
974 */
975 struct bio *bio;
976 int ff = 0;
977
978 if (!page)
979 return;
980
981 if (test_bit(Faulty, &rdev->flags))
982 return;
983
984 bio = md_bio_alloc_sync(mddev);
985
986 atomic_inc(&rdev->nr_pending);
987
988 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev);
989 bio->bi_iter.bi_sector = sector;
990 bio_add_page(bio, page, size, 0);
991 bio->bi_private = rdev;
992 bio->bi_end_io = super_written;
993
994 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
995 test_bit(FailFast, &rdev->flags) &&
996 !test_bit(LastDev, &rdev->flags))
997 ff = MD_FAILFAST;
998 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff;
999
1000 atomic_inc(&mddev->pending_writes);
1001 submit_bio(bio);
1002 }
1003
md_super_wait(struct mddev * mddev)1004 int md_super_wait(struct mddev *mddev)
1005 {
1006 /* wait for all superblock writes that were scheduled to complete */
1007 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1008 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
1009 return -EAGAIN;
1010 return 0;
1011 }
1012
sync_page_io(struct md_rdev * rdev,sector_t sector,int size,struct page * page,int op,int op_flags,bool metadata_op)1013 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
1014 struct page *page, int op, int op_flags, bool metadata_op)
1015 {
1016 struct bio *bio = md_bio_alloc_sync(rdev->mddev);
1017 int ret;
1018
1019 if (metadata_op && rdev->meta_bdev)
1020 bio_set_dev(bio, rdev->meta_bdev);
1021 else
1022 bio_set_dev(bio, rdev->bdev);
1023 bio_set_op_attrs(bio, op, op_flags);
1024 if (metadata_op)
1025 bio->bi_iter.bi_sector = sector + rdev->sb_start;
1026 else if (rdev->mddev->reshape_position != MaxSector &&
1027 (rdev->mddev->reshape_backwards ==
1028 (sector >= rdev->mddev->reshape_position)))
1029 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
1030 else
1031 bio->bi_iter.bi_sector = sector + rdev->data_offset;
1032 bio_add_page(bio, page, size, 0);
1033
1034 submit_bio_wait(bio);
1035
1036 ret = !bio->bi_status;
1037 bio_put(bio);
1038 return ret;
1039 }
1040 EXPORT_SYMBOL_GPL(sync_page_io);
1041
read_disk_sb(struct md_rdev * rdev,int size)1042 static int read_disk_sb(struct md_rdev *rdev, int size)
1043 {
1044 char b[BDEVNAME_SIZE];
1045
1046 if (rdev->sb_loaded)
1047 return 0;
1048
1049 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
1050 goto fail;
1051 rdev->sb_loaded = 1;
1052 return 0;
1053
1054 fail:
1055 pr_err("md: disabled device %s, could not read superblock.\n",
1056 bdevname(rdev->bdev,b));
1057 return -EINVAL;
1058 }
1059
md_uuid_equal(mdp_super_t * sb1,mdp_super_t * sb2)1060 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1061 {
1062 return sb1->set_uuid0 == sb2->set_uuid0 &&
1063 sb1->set_uuid1 == sb2->set_uuid1 &&
1064 sb1->set_uuid2 == sb2->set_uuid2 &&
1065 sb1->set_uuid3 == sb2->set_uuid3;
1066 }
1067
md_sb_equal(mdp_super_t * sb1,mdp_super_t * sb2)1068 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1069 {
1070 int ret;
1071 mdp_super_t *tmp1, *tmp2;
1072
1073 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
1074 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
1075
1076 if (!tmp1 || !tmp2) {
1077 ret = 0;
1078 goto abort;
1079 }
1080
1081 *tmp1 = *sb1;
1082 *tmp2 = *sb2;
1083
1084 /*
1085 * nr_disks is not constant
1086 */
1087 tmp1->nr_disks = 0;
1088 tmp2->nr_disks = 0;
1089
1090 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
1091 abort:
1092 kfree(tmp1);
1093 kfree(tmp2);
1094 return ret;
1095 }
1096
md_csum_fold(u32 csum)1097 static u32 md_csum_fold(u32 csum)
1098 {
1099 csum = (csum & 0xffff) + (csum >> 16);
1100 return (csum & 0xffff) + (csum >> 16);
1101 }
1102
calc_sb_csum(mdp_super_t * sb)1103 static unsigned int calc_sb_csum(mdp_super_t *sb)
1104 {
1105 u64 newcsum = 0;
1106 u32 *sb32 = (u32*)sb;
1107 int i;
1108 unsigned int disk_csum, csum;
1109
1110 disk_csum = sb->sb_csum;
1111 sb->sb_csum = 0;
1112
1113 for (i = 0; i < MD_SB_BYTES/4 ; i++)
1114 newcsum += sb32[i];
1115 csum = (newcsum & 0xffffffff) + (newcsum>>32);
1116
1117 #ifdef CONFIG_ALPHA
1118 /* This used to use csum_partial, which was wrong for several
1119 * reasons including that different results are returned on
1120 * different architectures. It isn't critical that we get exactly
1121 * the same return value as before (we always csum_fold before
1122 * testing, and that removes any differences). However as we
1123 * know that csum_partial always returned a 16bit value on
1124 * alphas, do a fold to maximise conformity to previous behaviour.
1125 */
1126 sb->sb_csum = md_csum_fold(disk_csum);
1127 #else
1128 sb->sb_csum = disk_csum;
1129 #endif
1130 return csum;
1131 }
1132
1133 /*
1134 * Handle superblock details.
1135 * We want to be able to handle multiple superblock formats
1136 * so we have a common interface to them all, and an array of
1137 * different handlers.
1138 * We rely on user-space to write the initial superblock, and support
1139 * reading and updating of superblocks.
1140 * Interface methods are:
1141 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1142 * loads and validates a superblock on dev.
1143 * if refdev != NULL, compare superblocks on both devices
1144 * Return:
1145 * 0 - dev has a superblock that is compatible with refdev
1146 * 1 - dev has a superblock that is compatible and newer than refdev
1147 * so dev should be used as the refdev in future
1148 * -EINVAL superblock incompatible or invalid
1149 * -othererror e.g. -EIO
1150 *
1151 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1152 * Verify that dev is acceptable into mddev.
1153 * The first time, mddev->raid_disks will be 0, and data from
1154 * dev should be merged in. Subsequent calls check that dev
1155 * is new enough. Return 0 or -EINVAL
1156 *
1157 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1158 * Update the superblock for rdev with data in mddev
1159 * This does not write to disc.
1160 *
1161 */
1162
1163 struct super_type {
1164 char *name;
1165 struct module *owner;
1166 int (*load_super)(struct md_rdev *rdev,
1167 struct md_rdev *refdev,
1168 int minor_version);
1169 int (*validate_super)(struct mddev *mddev,
1170 struct md_rdev *rdev);
1171 void (*sync_super)(struct mddev *mddev,
1172 struct md_rdev *rdev);
1173 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1174 sector_t num_sectors);
1175 int (*allow_new_offset)(struct md_rdev *rdev,
1176 unsigned long long new_offset);
1177 };
1178
1179 /*
1180 * Check that the given mddev has no bitmap.
1181 *
1182 * This function is called from the run method of all personalities that do not
1183 * support bitmaps. It prints an error message and returns non-zero if mddev
1184 * has a bitmap. Otherwise, it returns 0.
1185 *
1186 */
md_check_no_bitmap(struct mddev * mddev)1187 int md_check_no_bitmap(struct mddev *mddev)
1188 {
1189 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1190 return 0;
1191 pr_warn("%s: bitmaps are not supported for %s\n",
1192 mdname(mddev), mddev->pers->name);
1193 return 1;
1194 }
1195 EXPORT_SYMBOL(md_check_no_bitmap);
1196
1197 /*
1198 * load_super for 0.90.0
1199 */
super_90_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1200 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1201 {
1202 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1203 mdp_super_t *sb;
1204 int ret;
1205 bool spare_disk = true;
1206
1207 /*
1208 * Calculate the position of the superblock (512byte sectors),
1209 * it's at the end of the disk.
1210 *
1211 * It also happens to be a multiple of 4Kb.
1212 */
1213 rdev->sb_start = calc_dev_sboffset(rdev);
1214
1215 ret = read_disk_sb(rdev, MD_SB_BYTES);
1216 if (ret)
1217 return ret;
1218
1219 ret = -EINVAL;
1220
1221 bdevname(rdev->bdev, b);
1222 sb = page_address(rdev->sb_page);
1223
1224 if (sb->md_magic != MD_SB_MAGIC) {
1225 pr_warn("md: invalid raid superblock magic on %s\n", b);
1226 goto abort;
1227 }
1228
1229 if (sb->major_version != 0 ||
1230 sb->minor_version < 90 ||
1231 sb->minor_version > 91) {
1232 pr_warn("Bad version number %d.%d on %s\n",
1233 sb->major_version, sb->minor_version, b);
1234 goto abort;
1235 }
1236
1237 if (sb->raid_disks <= 0)
1238 goto abort;
1239
1240 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1241 pr_warn("md: invalid superblock checksum on %s\n", b);
1242 goto abort;
1243 }
1244
1245 rdev->preferred_minor = sb->md_minor;
1246 rdev->data_offset = 0;
1247 rdev->new_data_offset = 0;
1248 rdev->sb_size = MD_SB_BYTES;
1249 rdev->badblocks.shift = -1;
1250
1251 if (sb->level == LEVEL_MULTIPATH)
1252 rdev->desc_nr = -1;
1253 else
1254 rdev->desc_nr = sb->this_disk.number;
1255
1256 /* not spare disk, or LEVEL_MULTIPATH */
1257 if (sb->level == LEVEL_MULTIPATH ||
1258 (rdev->desc_nr >= 0 &&
1259 rdev->desc_nr < MD_SB_DISKS &&
1260 sb->disks[rdev->desc_nr].state &
1261 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))))
1262 spare_disk = false;
1263
1264 if (!refdev) {
1265 if (!spare_disk)
1266 ret = 1;
1267 else
1268 ret = 0;
1269 } else {
1270 __u64 ev1, ev2;
1271 mdp_super_t *refsb = page_address(refdev->sb_page);
1272 if (!md_uuid_equal(refsb, sb)) {
1273 pr_warn("md: %s has different UUID to %s\n",
1274 b, bdevname(refdev->bdev,b2));
1275 goto abort;
1276 }
1277 if (!md_sb_equal(refsb, sb)) {
1278 pr_warn("md: %s has same UUID but different superblock to %s\n",
1279 b, bdevname(refdev->bdev, b2));
1280 goto abort;
1281 }
1282 ev1 = md_event(sb);
1283 ev2 = md_event(refsb);
1284
1285 if (!spare_disk && ev1 > ev2)
1286 ret = 1;
1287 else
1288 ret = 0;
1289 }
1290 rdev->sectors = rdev->sb_start;
1291 /* Limit to 4TB as metadata cannot record more than that.
1292 * (not needed for Linear and RAID0 as metadata doesn't
1293 * record this size)
1294 */
1295 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1296 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1297
1298 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1299 /* "this cannot possibly happen" ... */
1300 ret = -EINVAL;
1301
1302 abort:
1303 return ret;
1304 }
1305
1306 /*
1307 * validate_super for 0.90.0
1308 */
super_90_validate(struct mddev * mddev,struct md_rdev * rdev)1309 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1310 {
1311 mdp_disk_t *desc;
1312 mdp_super_t *sb = page_address(rdev->sb_page);
1313 __u64 ev1 = md_event(sb);
1314
1315 rdev->raid_disk = -1;
1316 clear_bit(Faulty, &rdev->flags);
1317 clear_bit(In_sync, &rdev->flags);
1318 clear_bit(Bitmap_sync, &rdev->flags);
1319 clear_bit(WriteMostly, &rdev->flags);
1320
1321 if (mddev->raid_disks == 0) {
1322 mddev->major_version = 0;
1323 mddev->minor_version = sb->minor_version;
1324 mddev->patch_version = sb->patch_version;
1325 mddev->external = 0;
1326 mddev->chunk_sectors = sb->chunk_size >> 9;
1327 mddev->ctime = sb->ctime;
1328 mddev->utime = sb->utime;
1329 mddev->level = sb->level;
1330 mddev->clevel[0] = 0;
1331 mddev->layout = sb->layout;
1332 mddev->raid_disks = sb->raid_disks;
1333 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1334 mddev->events = ev1;
1335 mddev->bitmap_info.offset = 0;
1336 mddev->bitmap_info.space = 0;
1337 /* bitmap can use 60 K after the 4K superblocks */
1338 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1339 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1340 mddev->reshape_backwards = 0;
1341
1342 if (mddev->minor_version >= 91) {
1343 mddev->reshape_position = sb->reshape_position;
1344 mddev->delta_disks = sb->delta_disks;
1345 mddev->new_level = sb->new_level;
1346 mddev->new_layout = sb->new_layout;
1347 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1348 if (mddev->delta_disks < 0)
1349 mddev->reshape_backwards = 1;
1350 } else {
1351 mddev->reshape_position = MaxSector;
1352 mddev->delta_disks = 0;
1353 mddev->new_level = mddev->level;
1354 mddev->new_layout = mddev->layout;
1355 mddev->new_chunk_sectors = mddev->chunk_sectors;
1356 }
1357 if (mddev->level == 0)
1358 mddev->layout = -1;
1359
1360 if (sb->state & (1<<MD_SB_CLEAN))
1361 mddev->recovery_cp = MaxSector;
1362 else {
1363 if (sb->events_hi == sb->cp_events_hi &&
1364 sb->events_lo == sb->cp_events_lo) {
1365 mddev->recovery_cp = sb->recovery_cp;
1366 } else
1367 mddev->recovery_cp = 0;
1368 }
1369
1370 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1371 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1372 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1373 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1374
1375 mddev->max_disks = MD_SB_DISKS;
1376
1377 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1378 mddev->bitmap_info.file == NULL) {
1379 mddev->bitmap_info.offset =
1380 mddev->bitmap_info.default_offset;
1381 mddev->bitmap_info.space =
1382 mddev->bitmap_info.default_space;
1383 }
1384
1385 } else if (mddev->pers == NULL) {
1386 /* Insist on good event counter while assembling, except
1387 * for spares (which don't need an event count) */
1388 ++ev1;
1389 if (sb->disks[rdev->desc_nr].state & (
1390 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1391 if (ev1 < mddev->events)
1392 return -EINVAL;
1393 } else if (mddev->bitmap) {
1394 /* if adding to array with a bitmap, then we can accept an
1395 * older device ... but not too old.
1396 */
1397 if (ev1 < mddev->bitmap->events_cleared)
1398 return 0;
1399 if (ev1 < mddev->events)
1400 set_bit(Bitmap_sync, &rdev->flags);
1401 } else {
1402 if (ev1 < mddev->events)
1403 /* just a hot-add of a new device, leave raid_disk at -1 */
1404 return 0;
1405 }
1406
1407 if (mddev->level != LEVEL_MULTIPATH) {
1408 desc = sb->disks + rdev->desc_nr;
1409
1410 if (desc->state & (1<<MD_DISK_FAULTY))
1411 set_bit(Faulty, &rdev->flags);
1412 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1413 desc->raid_disk < mddev->raid_disks */) {
1414 set_bit(In_sync, &rdev->flags);
1415 rdev->raid_disk = desc->raid_disk;
1416 rdev->saved_raid_disk = desc->raid_disk;
1417 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1418 /* active but not in sync implies recovery up to
1419 * reshape position. We don't know exactly where
1420 * that is, so set to zero for now */
1421 if (mddev->minor_version >= 91) {
1422 rdev->recovery_offset = 0;
1423 rdev->raid_disk = desc->raid_disk;
1424 }
1425 }
1426 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1427 set_bit(WriteMostly, &rdev->flags);
1428 if (desc->state & (1<<MD_DISK_FAILFAST))
1429 set_bit(FailFast, &rdev->flags);
1430 } else /* MULTIPATH are always insync */
1431 set_bit(In_sync, &rdev->flags);
1432 return 0;
1433 }
1434
1435 /*
1436 * sync_super for 0.90.0
1437 */
super_90_sync(struct mddev * mddev,struct md_rdev * rdev)1438 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1439 {
1440 mdp_super_t *sb;
1441 struct md_rdev *rdev2;
1442 int next_spare = mddev->raid_disks;
1443
1444 /* make rdev->sb match mddev data..
1445 *
1446 * 1/ zero out disks
1447 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1448 * 3/ any empty disks < next_spare become removed
1449 *
1450 * disks[0] gets initialised to REMOVED because
1451 * we cannot be sure from other fields if it has
1452 * been initialised or not.
1453 */
1454 int i;
1455 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1456
1457 rdev->sb_size = MD_SB_BYTES;
1458
1459 sb = page_address(rdev->sb_page);
1460
1461 memset(sb, 0, sizeof(*sb));
1462
1463 sb->md_magic = MD_SB_MAGIC;
1464 sb->major_version = mddev->major_version;
1465 sb->patch_version = mddev->patch_version;
1466 sb->gvalid_words = 0; /* ignored */
1467 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1468 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1469 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1470 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1471
1472 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1473 sb->level = mddev->level;
1474 sb->size = mddev->dev_sectors / 2;
1475 sb->raid_disks = mddev->raid_disks;
1476 sb->md_minor = mddev->md_minor;
1477 sb->not_persistent = 0;
1478 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1479 sb->state = 0;
1480 sb->events_hi = (mddev->events>>32);
1481 sb->events_lo = (u32)mddev->events;
1482
1483 if (mddev->reshape_position == MaxSector)
1484 sb->minor_version = 90;
1485 else {
1486 sb->minor_version = 91;
1487 sb->reshape_position = mddev->reshape_position;
1488 sb->new_level = mddev->new_level;
1489 sb->delta_disks = mddev->delta_disks;
1490 sb->new_layout = mddev->new_layout;
1491 sb->new_chunk = mddev->new_chunk_sectors << 9;
1492 }
1493 mddev->minor_version = sb->minor_version;
1494 if (mddev->in_sync)
1495 {
1496 sb->recovery_cp = mddev->recovery_cp;
1497 sb->cp_events_hi = (mddev->events>>32);
1498 sb->cp_events_lo = (u32)mddev->events;
1499 if (mddev->recovery_cp == MaxSector)
1500 sb->state = (1<< MD_SB_CLEAN);
1501 } else
1502 sb->recovery_cp = 0;
1503
1504 sb->layout = mddev->layout;
1505 sb->chunk_size = mddev->chunk_sectors << 9;
1506
1507 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1508 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1509
1510 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1511 rdev_for_each(rdev2, mddev) {
1512 mdp_disk_t *d;
1513 int desc_nr;
1514 int is_active = test_bit(In_sync, &rdev2->flags);
1515
1516 if (rdev2->raid_disk >= 0 &&
1517 sb->minor_version >= 91)
1518 /* we have nowhere to store the recovery_offset,
1519 * but if it is not below the reshape_position,
1520 * we can piggy-back on that.
1521 */
1522 is_active = 1;
1523 if (rdev2->raid_disk < 0 ||
1524 test_bit(Faulty, &rdev2->flags))
1525 is_active = 0;
1526 if (is_active)
1527 desc_nr = rdev2->raid_disk;
1528 else
1529 desc_nr = next_spare++;
1530 rdev2->desc_nr = desc_nr;
1531 d = &sb->disks[rdev2->desc_nr];
1532 nr_disks++;
1533 d->number = rdev2->desc_nr;
1534 d->major = MAJOR(rdev2->bdev->bd_dev);
1535 d->minor = MINOR(rdev2->bdev->bd_dev);
1536 if (is_active)
1537 d->raid_disk = rdev2->raid_disk;
1538 else
1539 d->raid_disk = rdev2->desc_nr; /* compatibility */
1540 if (test_bit(Faulty, &rdev2->flags))
1541 d->state = (1<<MD_DISK_FAULTY);
1542 else if (is_active) {
1543 d->state = (1<<MD_DISK_ACTIVE);
1544 if (test_bit(In_sync, &rdev2->flags))
1545 d->state |= (1<<MD_DISK_SYNC);
1546 active++;
1547 working++;
1548 } else {
1549 d->state = 0;
1550 spare++;
1551 working++;
1552 }
1553 if (test_bit(WriteMostly, &rdev2->flags))
1554 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1555 if (test_bit(FailFast, &rdev2->flags))
1556 d->state |= (1<<MD_DISK_FAILFAST);
1557 }
1558 /* now set the "removed" and "faulty" bits on any missing devices */
1559 for (i=0 ; i < mddev->raid_disks ; i++) {
1560 mdp_disk_t *d = &sb->disks[i];
1561 if (d->state == 0 && d->number == 0) {
1562 d->number = i;
1563 d->raid_disk = i;
1564 d->state = (1<<MD_DISK_REMOVED);
1565 d->state |= (1<<MD_DISK_FAULTY);
1566 failed++;
1567 }
1568 }
1569 sb->nr_disks = nr_disks;
1570 sb->active_disks = active;
1571 sb->working_disks = working;
1572 sb->failed_disks = failed;
1573 sb->spare_disks = spare;
1574
1575 sb->this_disk = sb->disks[rdev->desc_nr];
1576 sb->sb_csum = calc_sb_csum(sb);
1577 }
1578
1579 /*
1580 * rdev_size_change for 0.90.0
1581 */
1582 static unsigned long long
super_90_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1583 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1584 {
1585 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1586 return 0; /* component must fit device */
1587 if (rdev->mddev->bitmap_info.offset)
1588 return 0; /* can't move bitmap */
1589 rdev->sb_start = calc_dev_sboffset(rdev);
1590 if (!num_sectors || num_sectors > rdev->sb_start)
1591 num_sectors = rdev->sb_start;
1592 /* Limit to 4TB as metadata cannot record more than that.
1593 * 4TB == 2^32 KB, or 2*2^32 sectors.
1594 */
1595 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1596 num_sectors = (sector_t)(2ULL << 32) - 2;
1597 do {
1598 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1599 rdev->sb_page);
1600 } while (md_super_wait(rdev->mddev) < 0);
1601 return num_sectors;
1602 }
1603
1604 static int
super_90_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1605 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1606 {
1607 /* non-zero offset changes not possible with v0.90 */
1608 return new_offset == 0;
1609 }
1610
1611 /*
1612 * version 1 superblock
1613 */
1614
calc_sb_1_csum(struct mdp_superblock_1 * sb)1615 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1616 {
1617 __le32 disk_csum;
1618 u32 csum;
1619 unsigned long long newcsum;
1620 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1621 __le32 *isuper = (__le32*)sb;
1622
1623 disk_csum = sb->sb_csum;
1624 sb->sb_csum = 0;
1625 newcsum = 0;
1626 for (; size >= 4; size -= 4)
1627 newcsum += le32_to_cpu(*isuper++);
1628
1629 if (size == 2)
1630 newcsum += le16_to_cpu(*(__le16*) isuper);
1631
1632 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1633 sb->sb_csum = disk_csum;
1634 return cpu_to_le32(csum);
1635 }
1636
super_1_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1637 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1638 {
1639 struct mdp_superblock_1 *sb;
1640 int ret;
1641 sector_t sb_start;
1642 sector_t sectors;
1643 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1644 int bmask;
1645 bool spare_disk = true;
1646
1647 /*
1648 * Calculate the position of the superblock in 512byte sectors.
1649 * It is always aligned to a 4K boundary and
1650 * depeding on minor_version, it can be:
1651 * 0: At least 8K, but less than 12K, from end of device
1652 * 1: At start of device
1653 * 2: 4K from start of device.
1654 */
1655 switch(minor_version) {
1656 case 0:
1657 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1658 sb_start -= 8*2;
1659 sb_start &= ~(sector_t)(4*2-1);
1660 break;
1661 case 1:
1662 sb_start = 0;
1663 break;
1664 case 2:
1665 sb_start = 8;
1666 break;
1667 default:
1668 return -EINVAL;
1669 }
1670 rdev->sb_start = sb_start;
1671
1672 /* superblock is rarely larger than 1K, but it can be larger,
1673 * and it is safe to read 4k, so we do that
1674 */
1675 ret = read_disk_sb(rdev, 4096);
1676 if (ret) return ret;
1677
1678 sb = page_address(rdev->sb_page);
1679
1680 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1681 sb->major_version != cpu_to_le32(1) ||
1682 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1683 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1684 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1685 return -EINVAL;
1686
1687 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1688 pr_warn("md: invalid superblock checksum on %s\n",
1689 bdevname(rdev->bdev,b));
1690 return -EINVAL;
1691 }
1692 if (le64_to_cpu(sb->data_size) < 10) {
1693 pr_warn("md: data_size too small on %s\n",
1694 bdevname(rdev->bdev,b));
1695 return -EINVAL;
1696 }
1697 if (sb->pad0 ||
1698 sb->pad3[0] ||
1699 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1700 /* Some padding is non-zero, might be a new feature */
1701 return -EINVAL;
1702
1703 rdev->preferred_minor = 0xffff;
1704 rdev->data_offset = le64_to_cpu(sb->data_offset);
1705 rdev->new_data_offset = rdev->data_offset;
1706 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1707 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1708 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1709 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1710
1711 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1712 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1713 if (rdev->sb_size & bmask)
1714 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1715
1716 if (minor_version
1717 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1718 return -EINVAL;
1719 if (minor_version
1720 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1721 return -EINVAL;
1722
1723 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1724 rdev->desc_nr = -1;
1725 else
1726 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1727
1728 if (!rdev->bb_page) {
1729 rdev->bb_page = alloc_page(GFP_KERNEL);
1730 if (!rdev->bb_page)
1731 return -ENOMEM;
1732 }
1733 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1734 rdev->badblocks.count == 0) {
1735 /* need to load the bad block list.
1736 * Currently we limit it to one page.
1737 */
1738 s32 offset;
1739 sector_t bb_sector;
1740 __le64 *bbp;
1741 int i;
1742 int sectors = le16_to_cpu(sb->bblog_size);
1743 if (sectors > (PAGE_SIZE / 512))
1744 return -EINVAL;
1745 offset = le32_to_cpu(sb->bblog_offset);
1746 if (offset == 0)
1747 return -EINVAL;
1748 bb_sector = (long long)offset;
1749 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1750 rdev->bb_page, REQ_OP_READ, 0, true))
1751 return -EIO;
1752 bbp = (__le64 *)page_address(rdev->bb_page);
1753 rdev->badblocks.shift = sb->bblog_shift;
1754 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1755 u64 bb = le64_to_cpu(*bbp);
1756 int count = bb & (0x3ff);
1757 u64 sector = bb >> 10;
1758 sector <<= sb->bblog_shift;
1759 count <<= sb->bblog_shift;
1760 if (bb + 1 == 0)
1761 break;
1762 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1763 return -EINVAL;
1764 }
1765 } else if (sb->bblog_offset != 0)
1766 rdev->badblocks.shift = 0;
1767
1768 if ((le32_to_cpu(sb->feature_map) &
1769 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1770 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1771 rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1772 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1773 }
1774
1775 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) &&
1776 sb->level != 0)
1777 return -EINVAL;
1778
1779 /* not spare disk, or LEVEL_MULTIPATH */
1780 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) ||
1781 (rdev->desc_nr >= 0 &&
1782 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1783 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1784 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)))
1785 spare_disk = false;
1786
1787 if (!refdev) {
1788 if (!spare_disk)
1789 ret = 1;
1790 else
1791 ret = 0;
1792 } else {
1793 __u64 ev1, ev2;
1794 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1795
1796 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1797 sb->level != refsb->level ||
1798 sb->layout != refsb->layout ||
1799 sb->chunksize != refsb->chunksize) {
1800 pr_warn("md: %s has strangely different superblock to %s\n",
1801 bdevname(rdev->bdev,b),
1802 bdevname(refdev->bdev,b2));
1803 return -EINVAL;
1804 }
1805 ev1 = le64_to_cpu(sb->events);
1806 ev2 = le64_to_cpu(refsb->events);
1807
1808 if (!spare_disk && ev1 > ev2)
1809 ret = 1;
1810 else
1811 ret = 0;
1812 }
1813 if (minor_version) {
1814 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1815 sectors -= rdev->data_offset;
1816 } else
1817 sectors = rdev->sb_start;
1818 if (sectors < le64_to_cpu(sb->data_size))
1819 return -EINVAL;
1820 rdev->sectors = le64_to_cpu(sb->data_size);
1821 return ret;
1822 }
1823
super_1_validate(struct mddev * mddev,struct md_rdev * rdev)1824 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1825 {
1826 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1827 __u64 ev1 = le64_to_cpu(sb->events);
1828
1829 rdev->raid_disk = -1;
1830 clear_bit(Faulty, &rdev->flags);
1831 clear_bit(In_sync, &rdev->flags);
1832 clear_bit(Bitmap_sync, &rdev->flags);
1833 clear_bit(WriteMostly, &rdev->flags);
1834
1835 if (mddev->raid_disks == 0) {
1836 mddev->major_version = 1;
1837 mddev->patch_version = 0;
1838 mddev->external = 0;
1839 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1840 mddev->ctime = le64_to_cpu(sb->ctime);
1841 mddev->utime = le64_to_cpu(sb->utime);
1842 mddev->level = le32_to_cpu(sb->level);
1843 mddev->clevel[0] = 0;
1844 mddev->layout = le32_to_cpu(sb->layout);
1845 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1846 mddev->dev_sectors = le64_to_cpu(sb->size);
1847 mddev->events = ev1;
1848 mddev->bitmap_info.offset = 0;
1849 mddev->bitmap_info.space = 0;
1850 /* Default location for bitmap is 1K after superblock
1851 * using 3K - total of 4K
1852 */
1853 mddev->bitmap_info.default_offset = 1024 >> 9;
1854 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1855 mddev->reshape_backwards = 0;
1856
1857 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1858 memcpy(mddev->uuid, sb->set_uuid, 16);
1859
1860 mddev->max_disks = (4096-256)/2;
1861
1862 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1863 mddev->bitmap_info.file == NULL) {
1864 mddev->bitmap_info.offset =
1865 (__s32)le32_to_cpu(sb->bitmap_offset);
1866 /* Metadata doesn't record how much space is available.
1867 * For 1.0, we assume we can use up to the superblock
1868 * if before, else to 4K beyond superblock.
1869 * For others, assume no change is possible.
1870 */
1871 if (mddev->minor_version > 0)
1872 mddev->bitmap_info.space = 0;
1873 else if (mddev->bitmap_info.offset > 0)
1874 mddev->bitmap_info.space =
1875 8 - mddev->bitmap_info.offset;
1876 else
1877 mddev->bitmap_info.space =
1878 -mddev->bitmap_info.offset;
1879 }
1880
1881 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1882 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1883 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1884 mddev->new_level = le32_to_cpu(sb->new_level);
1885 mddev->new_layout = le32_to_cpu(sb->new_layout);
1886 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1887 if (mddev->delta_disks < 0 ||
1888 (mddev->delta_disks == 0 &&
1889 (le32_to_cpu(sb->feature_map)
1890 & MD_FEATURE_RESHAPE_BACKWARDS)))
1891 mddev->reshape_backwards = 1;
1892 } else {
1893 mddev->reshape_position = MaxSector;
1894 mddev->delta_disks = 0;
1895 mddev->new_level = mddev->level;
1896 mddev->new_layout = mddev->layout;
1897 mddev->new_chunk_sectors = mddev->chunk_sectors;
1898 }
1899
1900 if (mddev->level == 0 &&
1901 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT))
1902 mddev->layout = -1;
1903
1904 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1905 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1906
1907 if (le32_to_cpu(sb->feature_map) &
1908 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1909 if (le32_to_cpu(sb->feature_map) &
1910 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1911 return -EINVAL;
1912 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1913 (le32_to_cpu(sb->feature_map) &
1914 MD_FEATURE_MULTIPLE_PPLS))
1915 return -EINVAL;
1916 set_bit(MD_HAS_PPL, &mddev->flags);
1917 }
1918 } else if (mddev->pers == NULL) {
1919 /* Insist of good event counter while assembling, except for
1920 * spares (which don't need an event count) */
1921 ++ev1;
1922 if (rdev->desc_nr >= 0 &&
1923 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1924 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1925 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1926 if (ev1 < mddev->events)
1927 return -EINVAL;
1928 } else if (mddev->bitmap) {
1929 /* If adding to array with a bitmap, then we can accept an
1930 * older device, but not too old.
1931 */
1932 if (ev1 < mddev->bitmap->events_cleared)
1933 return 0;
1934 if (ev1 < mddev->events)
1935 set_bit(Bitmap_sync, &rdev->flags);
1936 } else {
1937 if (ev1 < mddev->events)
1938 /* just a hot-add of a new device, leave raid_disk at -1 */
1939 return 0;
1940 }
1941 if (mddev->level != LEVEL_MULTIPATH) {
1942 int role;
1943 if (rdev->desc_nr < 0 ||
1944 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1945 role = MD_DISK_ROLE_SPARE;
1946 rdev->desc_nr = -1;
1947 } else
1948 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1949 switch(role) {
1950 case MD_DISK_ROLE_SPARE: /* spare */
1951 break;
1952 case MD_DISK_ROLE_FAULTY: /* faulty */
1953 set_bit(Faulty, &rdev->flags);
1954 break;
1955 case MD_DISK_ROLE_JOURNAL: /* journal device */
1956 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1957 /* journal device without journal feature */
1958 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1959 return -EINVAL;
1960 }
1961 set_bit(Journal, &rdev->flags);
1962 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1963 rdev->raid_disk = 0;
1964 break;
1965 default:
1966 rdev->saved_raid_disk = role;
1967 if ((le32_to_cpu(sb->feature_map) &
1968 MD_FEATURE_RECOVERY_OFFSET)) {
1969 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1970 if (!(le32_to_cpu(sb->feature_map) &
1971 MD_FEATURE_RECOVERY_BITMAP))
1972 rdev->saved_raid_disk = -1;
1973 } else {
1974 /*
1975 * If the array is FROZEN, then the device can't
1976 * be in_sync with rest of array.
1977 */
1978 if (!test_bit(MD_RECOVERY_FROZEN,
1979 &mddev->recovery))
1980 set_bit(In_sync, &rdev->flags);
1981 }
1982 rdev->raid_disk = role;
1983 break;
1984 }
1985 if (sb->devflags & WriteMostly1)
1986 set_bit(WriteMostly, &rdev->flags);
1987 if (sb->devflags & FailFast1)
1988 set_bit(FailFast, &rdev->flags);
1989 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1990 set_bit(Replacement, &rdev->flags);
1991 } else /* MULTIPATH are always insync */
1992 set_bit(In_sync, &rdev->flags);
1993
1994 return 0;
1995 }
1996
super_1_sync(struct mddev * mddev,struct md_rdev * rdev)1997 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1998 {
1999 struct mdp_superblock_1 *sb;
2000 struct md_rdev *rdev2;
2001 int max_dev, i;
2002 /* make rdev->sb match mddev and rdev data. */
2003
2004 sb = page_address(rdev->sb_page);
2005
2006 sb->feature_map = 0;
2007 sb->pad0 = 0;
2008 sb->recovery_offset = cpu_to_le64(0);
2009 memset(sb->pad3, 0, sizeof(sb->pad3));
2010
2011 sb->utime = cpu_to_le64((__u64)mddev->utime);
2012 sb->events = cpu_to_le64(mddev->events);
2013 if (mddev->in_sync)
2014 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
2015 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
2016 sb->resync_offset = cpu_to_le64(MaxSector);
2017 else
2018 sb->resync_offset = cpu_to_le64(0);
2019
2020 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
2021
2022 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
2023 sb->size = cpu_to_le64(mddev->dev_sectors);
2024 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
2025 sb->level = cpu_to_le32(mddev->level);
2026 sb->layout = cpu_to_le32(mddev->layout);
2027 if (test_bit(FailFast, &rdev->flags))
2028 sb->devflags |= FailFast1;
2029 else
2030 sb->devflags &= ~FailFast1;
2031
2032 if (test_bit(WriteMostly, &rdev->flags))
2033 sb->devflags |= WriteMostly1;
2034 else
2035 sb->devflags &= ~WriteMostly1;
2036 sb->data_offset = cpu_to_le64(rdev->data_offset);
2037 sb->data_size = cpu_to_le64(rdev->sectors);
2038
2039 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
2040 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
2041 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
2042 }
2043
2044 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
2045 !test_bit(In_sync, &rdev->flags)) {
2046 sb->feature_map |=
2047 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
2048 sb->recovery_offset =
2049 cpu_to_le64(rdev->recovery_offset);
2050 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
2051 sb->feature_map |=
2052 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
2053 }
2054 /* Note: recovery_offset and journal_tail share space */
2055 if (test_bit(Journal, &rdev->flags))
2056 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
2057 if (test_bit(Replacement, &rdev->flags))
2058 sb->feature_map |=
2059 cpu_to_le32(MD_FEATURE_REPLACEMENT);
2060
2061 if (mddev->reshape_position != MaxSector) {
2062 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
2063 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2064 sb->new_layout = cpu_to_le32(mddev->new_layout);
2065 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2066 sb->new_level = cpu_to_le32(mddev->new_level);
2067 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
2068 if (mddev->delta_disks == 0 &&
2069 mddev->reshape_backwards)
2070 sb->feature_map
2071 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
2072 if (rdev->new_data_offset != rdev->data_offset) {
2073 sb->feature_map
2074 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
2075 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
2076 - rdev->data_offset));
2077 }
2078 }
2079
2080 if (mddev_is_clustered(mddev))
2081 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
2082
2083 if (rdev->badblocks.count == 0)
2084 /* Nothing to do for bad blocks*/ ;
2085 else if (sb->bblog_offset == 0)
2086 /* Cannot record bad blocks on this device */
2087 md_error(mddev, rdev);
2088 else {
2089 struct badblocks *bb = &rdev->badblocks;
2090 __le64 *bbp = (__le64 *)page_address(rdev->bb_page);
2091 u64 *p = bb->page;
2092 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
2093 if (bb->changed) {
2094 unsigned seq;
2095
2096 retry:
2097 seq = read_seqbegin(&bb->lock);
2098
2099 memset(bbp, 0xff, PAGE_SIZE);
2100
2101 for (i = 0 ; i < bb->count ; i++) {
2102 u64 internal_bb = p[i];
2103 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
2104 | BB_LEN(internal_bb));
2105 bbp[i] = cpu_to_le64(store_bb);
2106 }
2107 bb->changed = 0;
2108 if (read_seqretry(&bb->lock, seq))
2109 goto retry;
2110
2111 bb->sector = (rdev->sb_start +
2112 (int)le32_to_cpu(sb->bblog_offset));
2113 bb->size = le16_to_cpu(sb->bblog_size);
2114 }
2115 }
2116
2117 max_dev = 0;
2118 rdev_for_each(rdev2, mddev)
2119 if (rdev2->desc_nr+1 > max_dev)
2120 max_dev = rdev2->desc_nr+1;
2121
2122 if (max_dev > le32_to_cpu(sb->max_dev)) {
2123 int bmask;
2124 sb->max_dev = cpu_to_le32(max_dev);
2125 rdev->sb_size = max_dev * 2 + 256;
2126 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
2127 if (rdev->sb_size & bmask)
2128 rdev->sb_size = (rdev->sb_size | bmask) + 1;
2129 } else
2130 max_dev = le32_to_cpu(sb->max_dev);
2131
2132 for (i=0; i<max_dev;i++)
2133 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2134
2135 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
2136 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
2137
2138 if (test_bit(MD_HAS_PPL, &mddev->flags)) {
2139 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
2140 sb->feature_map |=
2141 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
2142 else
2143 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
2144 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
2145 sb->ppl.size = cpu_to_le16(rdev->ppl.size);
2146 }
2147
2148 rdev_for_each(rdev2, mddev) {
2149 i = rdev2->desc_nr;
2150 if (test_bit(Faulty, &rdev2->flags))
2151 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
2152 else if (test_bit(In_sync, &rdev2->flags))
2153 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2154 else if (test_bit(Journal, &rdev2->flags))
2155 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
2156 else if (rdev2->raid_disk >= 0)
2157 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2158 else
2159 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2160 }
2161
2162 sb->sb_csum = calc_sb_1_csum(sb);
2163 }
2164
super_1_choose_bm_space(sector_t dev_size)2165 static sector_t super_1_choose_bm_space(sector_t dev_size)
2166 {
2167 sector_t bm_space;
2168
2169 /* if the device is bigger than 8Gig, save 64k for bitmap
2170 * usage, if bigger than 200Gig, save 128k
2171 */
2172 if (dev_size < 64*2)
2173 bm_space = 0;
2174 else if (dev_size - 64*2 >= 200*1024*1024*2)
2175 bm_space = 128*2;
2176 else if (dev_size - 4*2 > 8*1024*1024*2)
2177 bm_space = 64*2;
2178 else
2179 bm_space = 4*2;
2180 return bm_space;
2181 }
2182
2183 static unsigned long long
super_1_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)2184 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
2185 {
2186 struct mdp_superblock_1 *sb;
2187 sector_t max_sectors;
2188 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
2189 return 0; /* component must fit device */
2190 if (rdev->data_offset != rdev->new_data_offset)
2191 return 0; /* too confusing */
2192 if (rdev->sb_start < rdev->data_offset) {
2193 /* minor versions 1 and 2; superblock before data */
2194 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
2195 max_sectors -= rdev->data_offset;
2196 if (!num_sectors || num_sectors > max_sectors)
2197 num_sectors = max_sectors;
2198 } else if (rdev->mddev->bitmap_info.offset) {
2199 /* minor version 0 with bitmap we can't move */
2200 return 0;
2201 } else {
2202 /* minor version 0; superblock after data */
2203 sector_t sb_start, bm_space;
2204 sector_t dev_size = i_size_read(rdev->bdev->bd_inode) >> 9;
2205
2206 /* 8K is for superblock */
2207 sb_start = dev_size - 8*2;
2208 sb_start &= ~(sector_t)(4*2 - 1);
2209
2210 bm_space = super_1_choose_bm_space(dev_size);
2211
2212 /* Space that can be used to store date needs to decrease
2213 * superblock bitmap space and bad block space(4K)
2214 */
2215 max_sectors = sb_start - bm_space - 4*2;
2216
2217 if (!num_sectors || num_sectors > max_sectors)
2218 num_sectors = max_sectors;
2219 rdev->sb_start = sb_start;
2220 }
2221 sb = page_address(rdev->sb_page);
2222 sb->data_size = cpu_to_le64(num_sectors);
2223 sb->super_offset = cpu_to_le64(rdev->sb_start);
2224 sb->sb_csum = calc_sb_1_csum(sb);
2225 do {
2226 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
2227 rdev->sb_page);
2228 } while (md_super_wait(rdev->mddev) < 0);
2229 return num_sectors;
2230
2231 }
2232
2233 static int
super_1_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)2234 super_1_allow_new_offset(struct md_rdev *rdev,
2235 unsigned long long new_offset)
2236 {
2237 /* All necessary checks on new >= old have been done */
2238 struct bitmap *bitmap;
2239 if (new_offset >= rdev->data_offset)
2240 return 1;
2241
2242 /* with 1.0 metadata, there is no metadata to tread on
2243 * so we can always move back */
2244 if (rdev->mddev->minor_version == 0)
2245 return 1;
2246
2247 /* otherwise we must be sure not to step on
2248 * any metadata, so stay:
2249 * 36K beyond start of superblock
2250 * beyond end of badblocks
2251 * beyond write-intent bitmap
2252 */
2253 if (rdev->sb_start + (32+4)*2 > new_offset)
2254 return 0;
2255 bitmap = rdev->mddev->bitmap;
2256 if (bitmap && !rdev->mddev->bitmap_info.file &&
2257 rdev->sb_start + rdev->mddev->bitmap_info.offset +
2258 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2259 return 0;
2260 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2261 return 0;
2262
2263 return 1;
2264 }
2265
2266 static struct super_type super_types[] = {
2267 [0] = {
2268 .name = "0.90.0",
2269 .owner = THIS_MODULE,
2270 .load_super = super_90_load,
2271 .validate_super = super_90_validate,
2272 .sync_super = super_90_sync,
2273 .rdev_size_change = super_90_rdev_size_change,
2274 .allow_new_offset = super_90_allow_new_offset,
2275 },
2276 [1] = {
2277 .name = "md-1",
2278 .owner = THIS_MODULE,
2279 .load_super = super_1_load,
2280 .validate_super = super_1_validate,
2281 .sync_super = super_1_sync,
2282 .rdev_size_change = super_1_rdev_size_change,
2283 .allow_new_offset = super_1_allow_new_offset,
2284 },
2285 };
2286
sync_super(struct mddev * mddev,struct md_rdev * rdev)2287 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2288 {
2289 if (mddev->sync_super) {
2290 mddev->sync_super(mddev, rdev);
2291 return;
2292 }
2293
2294 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2295
2296 super_types[mddev->major_version].sync_super(mddev, rdev);
2297 }
2298
match_mddev_units(struct mddev * mddev1,struct mddev * mddev2)2299 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2300 {
2301 struct md_rdev *rdev, *rdev2;
2302
2303 rcu_read_lock();
2304 rdev_for_each_rcu(rdev, mddev1) {
2305 if (test_bit(Faulty, &rdev->flags) ||
2306 test_bit(Journal, &rdev->flags) ||
2307 rdev->raid_disk == -1)
2308 continue;
2309 rdev_for_each_rcu(rdev2, mddev2) {
2310 if (test_bit(Faulty, &rdev2->flags) ||
2311 test_bit(Journal, &rdev2->flags) ||
2312 rdev2->raid_disk == -1)
2313 continue;
2314 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) {
2315 rcu_read_unlock();
2316 return 1;
2317 }
2318 }
2319 }
2320 rcu_read_unlock();
2321 return 0;
2322 }
2323
2324 static LIST_HEAD(pending_raid_disks);
2325
2326 /*
2327 * Try to register data integrity profile for an mddev
2328 *
2329 * This is called when an array is started and after a disk has been kicked
2330 * from the array. It only succeeds if all working and active component devices
2331 * are integrity capable with matching profiles.
2332 */
md_integrity_register(struct mddev * mddev)2333 int md_integrity_register(struct mddev *mddev)
2334 {
2335 struct md_rdev *rdev, *reference = NULL;
2336
2337 if (list_empty(&mddev->disks))
2338 return 0; /* nothing to do */
2339 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2340 return 0; /* shouldn't register, or already is */
2341 rdev_for_each(rdev, mddev) {
2342 /* skip spares and non-functional disks */
2343 if (test_bit(Faulty, &rdev->flags))
2344 continue;
2345 if (rdev->raid_disk < 0)
2346 continue;
2347 if (!reference) {
2348 /* Use the first rdev as the reference */
2349 reference = rdev;
2350 continue;
2351 }
2352 /* does this rdev's profile match the reference profile? */
2353 if (blk_integrity_compare(reference->bdev->bd_disk,
2354 rdev->bdev->bd_disk) < 0)
2355 return -EINVAL;
2356 }
2357 if (!reference || !bdev_get_integrity(reference->bdev))
2358 return 0;
2359 /*
2360 * All component devices are integrity capable and have matching
2361 * profiles, register the common profile for the md device.
2362 */
2363 blk_integrity_register(mddev->gendisk,
2364 bdev_get_integrity(reference->bdev));
2365
2366 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2367 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) {
2368 pr_err("md: failed to create integrity pool for %s\n",
2369 mdname(mddev));
2370 return -EINVAL;
2371 }
2372 return 0;
2373 }
2374 EXPORT_SYMBOL(md_integrity_register);
2375
2376 /*
2377 * Attempt to add an rdev, but only if it is consistent with the current
2378 * integrity profile
2379 */
md_integrity_add_rdev(struct md_rdev * rdev,struct mddev * mddev)2380 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2381 {
2382 struct blk_integrity *bi_mddev;
2383 char name[BDEVNAME_SIZE];
2384
2385 if (!mddev->gendisk)
2386 return 0;
2387
2388 bi_mddev = blk_get_integrity(mddev->gendisk);
2389
2390 if (!bi_mddev) /* nothing to do */
2391 return 0;
2392
2393 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2394 pr_err("%s: incompatible integrity profile for %s\n",
2395 mdname(mddev), bdevname(rdev->bdev, name));
2396 return -ENXIO;
2397 }
2398
2399 return 0;
2400 }
2401 EXPORT_SYMBOL(md_integrity_add_rdev);
2402
bind_rdev_to_array(struct md_rdev * rdev,struct mddev * mddev)2403 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2404 {
2405 char b[BDEVNAME_SIZE];
2406 struct kobject *ko;
2407 int err;
2408
2409 /* prevent duplicates */
2410 if (find_rdev(mddev, rdev->bdev->bd_dev))
2411 return -EEXIST;
2412
2413 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) &&
2414 mddev->pers)
2415 return -EROFS;
2416
2417 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2418 if (!test_bit(Journal, &rdev->flags) &&
2419 rdev->sectors &&
2420 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2421 if (mddev->pers) {
2422 /* Cannot change size, so fail
2423 * If mddev->level <= 0, then we don't care
2424 * about aligning sizes (e.g. linear)
2425 */
2426 if (mddev->level > 0)
2427 return -ENOSPC;
2428 } else
2429 mddev->dev_sectors = rdev->sectors;
2430 }
2431
2432 /* Verify rdev->desc_nr is unique.
2433 * If it is -1, assign a free number, else
2434 * check number is not in use
2435 */
2436 rcu_read_lock();
2437 if (rdev->desc_nr < 0) {
2438 int choice = 0;
2439 if (mddev->pers)
2440 choice = mddev->raid_disks;
2441 while (md_find_rdev_nr_rcu(mddev, choice))
2442 choice++;
2443 rdev->desc_nr = choice;
2444 } else {
2445 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2446 rcu_read_unlock();
2447 return -EBUSY;
2448 }
2449 }
2450 rcu_read_unlock();
2451 if (!test_bit(Journal, &rdev->flags) &&
2452 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2453 pr_warn("md: %s: array is limited to %d devices\n",
2454 mdname(mddev), mddev->max_disks);
2455 return -EBUSY;
2456 }
2457 bdevname(rdev->bdev,b);
2458 strreplace(b, '/', '!');
2459
2460 rdev->mddev = mddev;
2461 pr_debug("md: bind<%s>\n", b);
2462
2463 if (mddev->raid_disks)
2464 mddev_create_serial_pool(mddev, rdev, false);
2465
2466 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2467 goto fail;
2468
2469 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2470 /* failure here is OK */
2471 err = sysfs_create_link(&rdev->kobj, ko, "block");
2472 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2473 rdev->sysfs_unack_badblocks =
2474 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks");
2475 rdev->sysfs_badblocks =
2476 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks");
2477
2478 list_add_rcu(&rdev->same_set, &mddev->disks);
2479 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2480
2481 /* May as well allow recovery to be retried once */
2482 mddev->recovery_disabled++;
2483
2484 return 0;
2485
2486 fail:
2487 pr_warn("md: failed to register dev-%s for %s\n",
2488 b, mdname(mddev));
2489 return err;
2490 }
2491
rdev_delayed_delete(struct work_struct * ws)2492 static void rdev_delayed_delete(struct work_struct *ws)
2493 {
2494 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2495 kobject_del(&rdev->kobj);
2496 kobject_put(&rdev->kobj);
2497 }
2498
unbind_rdev_from_array(struct md_rdev * rdev)2499 static void unbind_rdev_from_array(struct md_rdev *rdev)
2500 {
2501 char b[BDEVNAME_SIZE];
2502
2503 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2504 list_del_rcu(&rdev->same_set);
2505 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
2506 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2507 rdev->mddev = NULL;
2508 sysfs_remove_link(&rdev->kobj, "block");
2509 sysfs_put(rdev->sysfs_state);
2510 sysfs_put(rdev->sysfs_unack_badblocks);
2511 sysfs_put(rdev->sysfs_badblocks);
2512 rdev->sysfs_state = NULL;
2513 rdev->sysfs_unack_badblocks = NULL;
2514 rdev->sysfs_badblocks = NULL;
2515 rdev->badblocks.count = 0;
2516 /* We need to delay this, otherwise we can deadlock when
2517 * writing to 'remove' to "dev/state". We also need
2518 * to delay it due to rcu usage.
2519 */
2520 synchronize_rcu();
2521 INIT_WORK(&rdev->del_work, rdev_delayed_delete);
2522 kobject_get(&rdev->kobj);
2523 queue_work(md_rdev_misc_wq, &rdev->del_work);
2524 }
2525
2526 /*
2527 * prevent the device from being mounted, repartitioned or
2528 * otherwise reused by a RAID array (or any other kernel
2529 * subsystem), by bd_claiming the device.
2530 */
lock_rdev(struct md_rdev * rdev,dev_t dev,int shared)2531 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2532 {
2533 int err = 0;
2534 struct block_device *bdev;
2535
2536 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2537 shared ? (struct md_rdev *)lock_rdev : rdev);
2538 if (IS_ERR(bdev)) {
2539 pr_warn("md: could not open device unknown-block(%u,%u).\n",
2540 MAJOR(dev), MINOR(dev));
2541 return PTR_ERR(bdev);
2542 }
2543 rdev->bdev = bdev;
2544 return err;
2545 }
2546
unlock_rdev(struct md_rdev * rdev)2547 static void unlock_rdev(struct md_rdev *rdev)
2548 {
2549 struct block_device *bdev = rdev->bdev;
2550 rdev->bdev = NULL;
2551 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2552 }
2553
2554 void md_autodetect_dev(dev_t dev);
2555
export_rdev(struct md_rdev * rdev)2556 static void export_rdev(struct md_rdev *rdev)
2557 {
2558 char b[BDEVNAME_SIZE];
2559
2560 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
2561 md_rdev_clear(rdev);
2562 #ifndef MODULE
2563 if (test_bit(AutoDetected, &rdev->flags))
2564 md_autodetect_dev(rdev->bdev->bd_dev);
2565 #endif
2566 unlock_rdev(rdev);
2567 kobject_put(&rdev->kobj);
2568 }
2569
md_kick_rdev_from_array(struct md_rdev * rdev)2570 void md_kick_rdev_from_array(struct md_rdev *rdev)
2571 {
2572 unbind_rdev_from_array(rdev);
2573 export_rdev(rdev);
2574 }
2575 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2576
export_array(struct mddev * mddev)2577 static void export_array(struct mddev *mddev)
2578 {
2579 struct md_rdev *rdev;
2580
2581 while (!list_empty(&mddev->disks)) {
2582 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2583 same_set);
2584 md_kick_rdev_from_array(rdev);
2585 }
2586 mddev->raid_disks = 0;
2587 mddev->major_version = 0;
2588 }
2589
set_in_sync(struct mddev * mddev)2590 static bool set_in_sync(struct mddev *mddev)
2591 {
2592 lockdep_assert_held(&mddev->lock);
2593 if (!mddev->in_sync) {
2594 mddev->sync_checkers++;
2595 spin_unlock(&mddev->lock);
2596 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2597 spin_lock(&mddev->lock);
2598 if (!mddev->in_sync &&
2599 percpu_ref_is_zero(&mddev->writes_pending)) {
2600 mddev->in_sync = 1;
2601 /*
2602 * Ensure ->in_sync is visible before we clear
2603 * ->sync_checkers.
2604 */
2605 smp_mb();
2606 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2607 sysfs_notify_dirent_safe(mddev->sysfs_state);
2608 }
2609 if (--mddev->sync_checkers == 0)
2610 percpu_ref_switch_to_percpu(&mddev->writes_pending);
2611 }
2612 if (mddev->safemode == 1)
2613 mddev->safemode = 0;
2614 return mddev->in_sync;
2615 }
2616
sync_sbs(struct mddev * mddev,int nospares)2617 static void sync_sbs(struct mddev *mddev, int nospares)
2618 {
2619 /* Update each superblock (in-memory image), but
2620 * if we are allowed to, skip spares which already
2621 * have the right event counter, or have one earlier
2622 * (which would mean they aren't being marked as dirty
2623 * with the rest of the array)
2624 */
2625 struct md_rdev *rdev;
2626 rdev_for_each(rdev, mddev) {
2627 if (rdev->sb_events == mddev->events ||
2628 (nospares &&
2629 rdev->raid_disk < 0 &&
2630 rdev->sb_events+1 == mddev->events)) {
2631 /* Don't update this superblock */
2632 rdev->sb_loaded = 2;
2633 } else {
2634 sync_super(mddev, rdev);
2635 rdev->sb_loaded = 1;
2636 }
2637 }
2638 }
2639
does_sb_need_changing(struct mddev * mddev)2640 static bool does_sb_need_changing(struct mddev *mddev)
2641 {
2642 struct md_rdev *rdev = NULL, *iter;
2643 struct mdp_superblock_1 *sb;
2644 int role;
2645
2646 /* Find a good rdev */
2647 rdev_for_each(iter, mddev)
2648 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) {
2649 rdev = iter;
2650 break;
2651 }
2652
2653 /* No good device found. */
2654 if (!rdev)
2655 return false;
2656
2657 sb = page_address(rdev->sb_page);
2658 /* Check if a device has become faulty or a spare become active */
2659 rdev_for_each(rdev, mddev) {
2660 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2661 /* Device activated? */
2662 if (role == 0xffff && rdev->raid_disk >=0 &&
2663 !test_bit(Faulty, &rdev->flags))
2664 return true;
2665 /* Device turned faulty? */
2666 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2667 return true;
2668 }
2669
2670 /* Check if any mddev parameters have changed */
2671 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2672 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2673 (mddev->layout != le32_to_cpu(sb->layout)) ||
2674 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2675 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2676 return true;
2677
2678 return false;
2679 }
2680
md_update_sb(struct mddev * mddev,int force_change)2681 void md_update_sb(struct mddev *mddev, int force_change)
2682 {
2683 struct md_rdev *rdev;
2684 int sync_req;
2685 int nospares = 0;
2686 int any_badblocks_changed = 0;
2687 int ret = -1;
2688
2689 if (mddev->ro) {
2690 if (force_change)
2691 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2692 return;
2693 }
2694
2695 repeat:
2696 if (mddev_is_clustered(mddev)) {
2697 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2698 force_change = 1;
2699 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2700 nospares = 1;
2701 ret = md_cluster_ops->metadata_update_start(mddev);
2702 /* Has someone else has updated the sb */
2703 if (!does_sb_need_changing(mddev)) {
2704 if (ret == 0)
2705 md_cluster_ops->metadata_update_cancel(mddev);
2706 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2707 BIT(MD_SB_CHANGE_DEVS) |
2708 BIT(MD_SB_CHANGE_CLEAN));
2709 return;
2710 }
2711 }
2712
2713 /*
2714 * First make sure individual recovery_offsets are correct
2715 * curr_resync_completed can only be used during recovery.
2716 * During reshape/resync it might use array-addresses rather
2717 * that device addresses.
2718 */
2719 rdev_for_each(rdev, mddev) {
2720 if (rdev->raid_disk >= 0 &&
2721 mddev->delta_disks >= 0 &&
2722 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2723 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2724 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2725 !test_bit(Journal, &rdev->flags) &&
2726 !test_bit(In_sync, &rdev->flags) &&
2727 mddev->curr_resync_completed > rdev->recovery_offset)
2728 rdev->recovery_offset = mddev->curr_resync_completed;
2729
2730 }
2731 if (!mddev->persistent) {
2732 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2733 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2734 if (!mddev->external) {
2735 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2736 rdev_for_each(rdev, mddev) {
2737 if (rdev->badblocks.changed) {
2738 rdev->badblocks.changed = 0;
2739 ack_all_badblocks(&rdev->badblocks);
2740 md_error(mddev, rdev);
2741 }
2742 clear_bit(Blocked, &rdev->flags);
2743 clear_bit(BlockedBadBlocks, &rdev->flags);
2744 wake_up(&rdev->blocked_wait);
2745 }
2746 }
2747 wake_up(&mddev->sb_wait);
2748 return;
2749 }
2750
2751 spin_lock(&mddev->lock);
2752
2753 mddev->utime = ktime_get_real_seconds();
2754
2755 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2756 force_change = 1;
2757 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2758 /* just a clean<-> dirty transition, possibly leave spares alone,
2759 * though if events isn't the right even/odd, we will have to do
2760 * spares after all
2761 */
2762 nospares = 1;
2763 if (force_change)
2764 nospares = 0;
2765 if (mddev->degraded)
2766 /* If the array is degraded, then skipping spares is both
2767 * dangerous and fairly pointless.
2768 * Dangerous because a device that was removed from the array
2769 * might have a event_count that still looks up-to-date,
2770 * so it can be re-added without a resync.
2771 * Pointless because if there are any spares to skip,
2772 * then a recovery will happen and soon that array won't
2773 * be degraded any more and the spare can go back to sleep then.
2774 */
2775 nospares = 0;
2776
2777 sync_req = mddev->in_sync;
2778
2779 /* If this is just a dirty<->clean transition, and the array is clean
2780 * and 'events' is odd, we can roll back to the previous clean state */
2781 if (nospares
2782 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2783 && mddev->can_decrease_events
2784 && mddev->events != 1) {
2785 mddev->events--;
2786 mddev->can_decrease_events = 0;
2787 } else {
2788 /* otherwise we have to go forward and ... */
2789 mddev->events ++;
2790 mddev->can_decrease_events = nospares;
2791 }
2792
2793 /*
2794 * This 64-bit counter should never wrap.
2795 * Either we are in around ~1 trillion A.C., assuming
2796 * 1 reboot per second, or we have a bug...
2797 */
2798 WARN_ON(mddev->events == 0);
2799
2800 rdev_for_each(rdev, mddev) {
2801 if (rdev->badblocks.changed)
2802 any_badblocks_changed++;
2803 if (test_bit(Faulty, &rdev->flags))
2804 set_bit(FaultRecorded, &rdev->flags);
2805 }
2806
2807 sync_sbs(mddev, nospares);
2808 spin_unlock(&mddev->lock);
2809
2810 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2811 mdname(mddev), mddev->in_sync);
2812
2813 if (mddev->queue)
2814 blk_add_trace_msg(mddev->queue, "md md_update_sb");
2815 rewrite:
2816 md_bitmap_update_sb(mddev->bitmap);
2817 rdev_for_each(rdev, mddev) {
2818 char b[BDEVNAME_SIZE];
2819
2820 if (rdev->sb_loaded != 1)
2821 continue; /* no noise on spare devices */
2822
2823 if (!test_bit(Faulty, &rdev->flags)) {
2824 md_super_write(mddev,rdev,
2825 rdev->sb_start, rdev->sb_size,
2826 rdev->sb_page);
2827 pr_debug("md: (write) %s's sb offset: %llu\n",
2828 bdevname(rdev->bdev, b),
2829 (unsigned long long)rdev->sb_start);
2830 rdev->sb_events = mddev->events;
2831 if (rdev->badblocks.size) {
2832 md_super_write(mddev, rdev,
2833 rdev->badblocks.sector,
2834 rdev->badblocks.size << 9,
2835 rdev->bb_page);
2836 rdev->badblocks.size = 0;
2837 }
2838
2839 } else
2840 pr_debug("md: %s (skipping faulty)\n",
2841 bdevname(rdev->bdev, b));
2842
2843 if (mddev->level == LEVEL_MULTIPATH)
2844 /* only need to write one superblock... */
2845 break;
2846 }
2847 if (md_super_wait(mddev) < 0)
2848 goto rewrite;
2849 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2850
2851 if (mddev_is_clustered(mddev) && ret == 0)
2852 md_cluster_ops->metadata_update_finish(mddev);
2853
2854 if (mddev->in_sync != sync_req ||
2855 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2856 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2857 /* have to write it out again */
2858 goto repeat;
2859 wake_up(&mddev->sb_wait);
2860 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2861 sysfs_notify_dirent_safe(mddev->sysfs_completed);
2862
2863 rdev_for_each(rdev, mddev) {
2864 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2865 clear_bit(Blocked, &rdev->flags);
2866
2867 if (any_badblocks_changed)
2868 ack_all_badblocks(&rdev->badblocks);
2869 clear_bit(BlockedBadBlocks, &rdev->flags);
2870 wake_up(&rdev->blocked_wait);
2871 }
2872 }
2873 EXPORT_SYMBOL(md_update_sb);
2874
add_bound_rdev(struct md_rdev * rdev)2875 static int add_bound_rdev(struct md_rdev *rdev)
2876 {
2877 struct mddev *mddev = rdev->mddev;
2878 int err = 0;
2879 bool add_journal = test_bit(Journal, &rdev->flags);
2880
2881 if (!mddev->pers->hot_remove_disk || add_journal) {
2882 /* If there is hot_add_disk but no hot_remove_disk
2883 * then added disks for geometry changes,
2884 * and should be added immediately.
2885 */
2886 super_types[mddev->major_version].
2887 validate_super(mddev, rdev);
2888 if (add_journal)
2889 mddev_suspend(mddev);
2890 err = mddev->pers->hot_add_disk(mddev, rdev);
2891 if (add_journal)
2892 mddev_resume(mddev);
2893 if (err) {
2894 md_kick_rdev_from_array(rdev);
2895 return err;
2896 }
2897 }
2898 sysfs_notify_dirent_safe(rdev->sysfs_state);
2899
2900 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2901 if (mddev->degraded)
2902 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2903 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2904 md_new_event(mddev);
2905 md_wakeup_thread(mddev->thread);
2906 return 0;
2907 }
2908
2909 /* words written to sysfs files may, or may not, be \n terminated.
2910 * We want to accept with case. For this we use cmd_match.
2911 */
cmd_match(const char * cmd,const char * str)2912 static int cmd_match(const char *cmd, const char *str)
2913 {
2914 /* See if cmd, written into a sysfs file, matches
2915 * str. They must either be the same, or cmd can
2916 * have a trailing newline
2917 */
2918 while (*cmd && *str && *cmd == *str) {
2919 cmd++;
2920 str++;
2921 }
2922 if (*cmd == '\n')
2923 cmd++;
2924 if (*str || *cmd)
2925 return 0;
2926 return 1;
2927 }
2928
2929 struct rdev_sysfs_entry {
2930 struct attribute attr;
2931 ssize_t (*show)(struct md_rdev *, char *);
2932 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2933 };
2934
2935 static ssize_t
state_show(struct md_rdev * rdev,char * page)2936 state_show(struct md_rdev *rdev, char *page)
2937 {
2938 char *sep = ",";
2939 size_t len = 0;
2940 unsigned long flags = READ_ONCE(rdev->flags);
2941
2942 if (test_bit(Faulty, &flags) ||
2943 (!test_bit(ExternalBbl, &flags) &&
2944 rdev->badblocks.unacked_exist))
2945 len += sprintf(page+len, "faulty%s", sep);
2946 if (test_bit(In_sync, &flags))
2947 len += sprintf(page+len, "in_sync%s", sep);
2948 if (test_bit(Journal, &flags))
2949 len += sprintf(page+len, "journal%s", sep);
2950 if (test_bit(WriteMostly, &flags))
2951 len += sprintf(page+len, "write_mostly%s", sep);
2952 if (test_bit(Blocked, &flags) ||
2953 (rdev->badblocks.unacked_exist
2954 && !test_bit(Faulty, &flags)))
2955 len += sprintf(page+len, "blocked%s", sep);
2956 if (!test_bit(Faulty, &flags) &&
2957 !test_bit(Journal, &flags) &&
2958 !test_bit(In_sync, &flags))
2959 len += sprintf(page+len, "spare%s", sep);
2960 if (test_bit(WriteErrorSeen, &flags))
2961 len += sprintf(page+len, "write_error%s", sep);
2962 if (test_bit(WantReplacement, &flags))
2963 len += sprintf(page+len, "want_replacement%s", sep);
2964 if (test_bit(Replacement, &flags))
2965 len += sprintf(page+len, "replacement%s", sep);
2966 if (test_bit(ExternalBbl, &flags))
2967 len += sprintf(page+len, "external_bbl%s", sep);
2968 if (test_bit(FailFast, &flags))
2969 len += sprintf(page+len, "failfast%s", sep);
2970
2971 if (len)
2972 len -= strlen(sep);
2973
2974 return len+sprintf(page+len, "\n");
2975 }
2976
2977 static ssize_t
state_store(struct md_rdev * rdev,const char * buf,size_t len)2978 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2979 {
2980 /* can write
2981 * faulty - simulates an error
2982 * remove - disconnects the device
2983 * writemostly - sets write_mostly
2984 * -writemostly - clears write_mostly
2985 * blocked - sets the Blocked flags
2986 * -blocked - clears the Blocked and possibly simulates an error
2987 * insync - sets Insync providing device isn't active
2988 * -insync - clear Insync for a device with a slot assigned,
2989 * so that it gets rebuilt based on bitmap
2990 * write_error - sets WriteErrorSeen
2991 * -write_error - clears WriteErrorSeen
2992 * {,-}failfast - set/clear FailFast
2993 */
2994
2995 struct mddev *mddev = rdev->mddev;
2996 int err = -EINVAL;
2997 bool need_update_sb = false;
2998
2999 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
3000 md_error(rdev->mddev, rdev);
3001 if (test_bit(Faulty, &rdev->flags))
3002 err = 0;
3003 else
3004 err = -EBUSY;
3005 } else if (cmd_match(buf, "remove")) {
3006 if (rdev->mddev->pers) {
3007 clear_bit(Blocked, &rdev->flags);
3008 remove_and_add_spares(rdev->mddev, rdev);
3009 }
3010 if (rdev->raid_disk >= 0)
3011 err = -EBUSY;
3012 else {
3013 err = 0;
3014 if (mddev_is_clustered(mddev))
3015 err = md_cluster_ops->remove_disk(mddev, rdev);
3016
3017 if (err == 0) {
3018 md_kick_rdev_from_array(rdev);
3019 if (mddev->pers) {
3020 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3021 md_wakeup_thread(mddev->thread);
3022 }
3023 md_new_event(mddev);
3024 }
3025 }
3026 } else if (cmd_match(buf, "writemostly")) {
3027 set_bit(WriteMostly, &rdev->flags);
3028 mddev_create_serial_pool(rdev->mddev, rdev, false);
3029 need_update_sb = true;
3030 err = 0;
3031 } else if (cmd_match(buf, "-writemostly")) {
3032 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
3033 clear_bit(WriteMostly, &rdev->flags);
3034 need_update_sb = true;
3035 err = 0;
3036 } else if (cmd_match(buf, "blocked")) {
3037 set_bit(Blocked, &rdev->flags);
3038 err = 0;
3039 } else if (cmd_match(buf, "-blocked")) {
3040 if (!test_bit(Faulty, &rdev->flags) &&
3041 !test_bit(ExternalBbl, &rdev->flags) &&
3042 rdev->badblocks.unacked_exist) {
3043 /* metadata handler doesn't understand badblocks,
3044 * so we need to fail the device
3045 */
3046 md_error(rdev->mddev, rdev);
3047 }
3048 clear_bit(Blocked, &rdev->flags);
3049 clear_bit(BlockedBadBlocks, &rdev->flags);
3050 wake_up(&rdev->blocked_wait);
3051 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3052 md_wakeup_thread(rdev->mddev->thread);
3053
3054 err = 0;
3055 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
3056 set_bit(In_sync, &rdev->flags);
3057 err = 0;
3058 } else if (cmd_match(buf, "failfast")) {
3059 set_bit(FailFast, &rdev->flags);
3060 need_update_sb = true;
3061 err = 0;
3062 } else if (cmd_match(buf, "-failfast")) {
3063 clear_bit(FailFast, &rdev->flags);
3064 need_update_sb = true;
3065 err = 0;
3066 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
3067 !test_bit(Journal, &rdev->flags)) {
3068 if (rdev->mddev->pers == NULL) {
3069 clear_bit(In_sync, &rdev->flags);
3070 rdev->saved_raid_disk = rdev->raid_disk;
3071 rdev->raid_disk = -1;
3072 err = 0;
3073 }
3074 } else if (cmd_match(buf, "write_error")) {
3075 set_bit(WriteErrorSeen, &rdev->flags);
3076 err = 0;
3077 } else if (cmd_match(buf, "-write_error")) {
3078 clear_bit(WriteErrorSeen, &rdev->flags);
3079 err = 0;
3080 } else if (cmd_match(buf, "want_replacement")) {
3081 /* Any non-spare device that is not a replacement can
3082 * become want_replacement at any time, but we then need to
3083 * check if recovery is needed.
3084 */
3085 if (rdev->raid_disk >= 0 &&
3086 !test_bit(Journal, &rdev->flags) &&
3087 !test_bit(Replacement, &rdev->flags))
3088 set_bit(WantReplacement, &rdev->flags);
3089 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3090 md_wakeup_thread(rdev->mddev->thread);
3091 err = 0;
3092 } else if (cmd_match(buf, "-want_replacement")) {
3093 /* Clearing 'want_replacement' is always allowed.
3094 * Once replacements starts it is too late though.
3095 */
3096 err = 0;
3097 clear_bit(WantReplacement, &rdev->flags);
3098 } else if (cmd_match(buf, "replacement")) {
3099 /* Can only set a device as a replacement when array has not
3100 * yet been started. Once running, replacement is automatic
3101 * from spares, or by assigning 'slot'.
3102 */
3103 if (rdev->mddev->pers)
3104 err = -EBUSY;
3105 else {
3106 set_bit(Replacement, &rdev->flags);
3107 err = 0;
3108 }
3109 } else if (cmd_match(buf, "-replacement")) {
3110 /* Similarly, can only clear Replacement before start */
3111 if (rdev->mddev->pers)
3112 err = -EBUSY;
3113 else {
3114 clear_bit(Replacement, &rdev->flags);
3115 err = 0;
3116 }
3117 } else if (cmd_match(buf, "re-add")) {
3118 if (!rdev->mddev->pers)
3119 err = -EINVAL;
3120 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
3121 rdev->saved_raid_disk >= 0) {
3122 /* clear_bit is performed _after_ all the devices
3123 * have their local Faulty bit cleared. If any writes
3124 * happen in the meantime in the local node, they
3125 * will land in the local bitmap, which will be synced
3126 * by this node eventually
3127 */
3128 if (!mddev_is_clustered(rdev->mddev) ||
3129 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
3130 clear_bit(Faulty, &rdev->flags);
3131 err = add_bound_rdev(rdev);
3132 }
3133 } else
3134 err = -EBUSY;
3135 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
3136 set_bit(ExternalBbl, &rdev->flags);
3137 rdev->badblocks.shift = 0;
3138 err = 0;
3139 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
3140 clear_bit(ExternalBbl, &rdev->flags);
3141 err = 0;
3142 }
3143 if (need_update_sb)
3144 md_update_sb(mddev, 1);
3145 if (!err)
3146 sysfs_notify_dirent_safe(rdev->sysfs_state);
3147 return err ? err : len;
3148 }
3149 static struct rdev_sysfs_entry rdev_state =
3150 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
3151
3152 static ssize_t
errors_show(struct md_rdev * rdev,char * page)3153 errors_show(struct md_rdev *rdev, char *page)
3154 {
3155 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
3156 }
3157
3158 static ssize_t
errors_store(struct md_rdev * rdev,const char * buf,size_t len)3159 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
3160 {
3161 unsigned int n;
3162 int rv;
3163
3164 rv = kstrtouint(buf, 10, &n);
3165 if (rv < 0)
3166 return rv;
3167 atomic_set(&rdev->corrected_errors, n);
3168 return len;
3169 }
3170 static struct rdev_sysfs_entry rdev_errors =
3171 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
3172
3173 static ssize_t
slot_show(struct md_rdev * rdev,char * page)3174 slot_show(struct md_rdev *rdev, char *page)
3175 {
3176 if (test_bit(Journal, &rdev->flags))
3177 return sprintf(page, "journal\n");
3178 else if (rdev->raid_disk < 0)
3179 return sprintf(page, "none\n");
3180 else
3181 return sprintf(page, "%d\n", rdev->raid_disk);
3182 }
3183
3184 static ssize_t
slot_store(struct md_rdev * rdev,const char * buf,size_t len)3185 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
3186 {
3187 int slot;
3188 int err;
3189
3190 if (test_bit(Journal, &rdev->flags))
3191 return -EBUSY;
3192 if (strncmp(buf, "none", 4)==0)
3193 slot = -1;
3194 else {
3195 err = kstrtouint(buf, 10, (unsigned int *)&slot);
3196 if (err < 0)
3197 return err;
3198 }
3199 if (rdev->mddev->pers && slot == -1) {
3200 /* Setting 'slot' on an active array requires also
3201 * updating the 'rd%d' link, and communicating
3202 * with the personality with ->hot_*_disk.
3203 * For now we only support removing
3204 * failed/spare devices. This normally happens automatically,
3205 * but not when the metadata is externally managed.
3206 */
3207 if (rdev->raid_disk == -1)
3208 return -EEXIST;
3209 /* personality does all needed checks */
3210 if (rdev->mddev->pers->hot_remove_disk == NULL)
3211 return -EINVAL;
3212 clear_bit(Blocked, &rdev->flags);
3213 remove_and_add_spares(rdev->mddev, rdev);
3214 if (rdev->raid_disk >= 0)
3215 return -EBUSY;
3216 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3217 md_wakeup_thread(rdev->mddev->thread);
3218 } else if (rdev->mddev->pers) {
3219 /* Activating a spare .. or possibly reactivating
3220 * if we ever get bitmaps working here.
3221 */
3222 int err;
3223
3224 if (rdev->raid_disk != -1)
3225 return -EBUSY;
3226
3227 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
3228 return -EBUSY;
3229
3230 if (rdev->mddev->pers->hot_add_disk == NULL)
3231 return -EINVAL;
3232
3233 if (slot >= rdev->mddev->raid_disks &&
3234 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3235 return -ENOSPC;
3236
3237 rdev->raid_disk = slot;
3238 if (test_bit(In_sync, &rdev->flags))
3239 rdev->saved_raid_disk = slot;
3240 else
3241 rdev->saved_raid_disk = -1;
3242 clear_bit(In_sync, &rdev->flags);
3243 clear_bit(Bitmap_sync, &rdev->flags);
3244 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev);
3245 if (err) {
3246 rdev->raid_disk = -1;
3247 return err;
3248 } else
3249 sysfs_notify_dirent_safe(rdev->sysfs_state);
3250 /* failure here is OK */;
3251 sysfs_link_rdev(rdev->mddev, rdev);
3252 /* don't wakeup anyone, leave that to userspace. */
3253 } else {
3254 if (slot >= rdev->mddev->raid_disks &&
3255 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3256 return -ENOSPC;
3257 rdev->raid_disk = slot;
3258 /* assume it is working */
3259 clear_bit(Faulty, &rdev->flags);
3260 clear_bit(WriteMostly, &rdev->flags);
3261 set_bit(In_sync, &rdev->flags);
3262 sysfs_notify_dirent_safe(rdev->sysfs_state);
3263 }
3264 return len;
3265 }
3266
3267 static struct rdev_sysfs_entry rdev_slot =
3268 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3269
3270 static ssize_t
offset_show(struct md_rdev * rdev,char * page)3271 offset_show(struct md_rdev *rdev, char *page)
3272 {
3273 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3274 }
3275
3276 static ssize_t
offset_store(struct md_rdev * rdev,const char * buf,size_t len)3277 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3278 {
3279 unsigned long long offset;
3280 if (kstrtoull(buf, 10, &offset) < 0)
3281 return -EINVAL;
3282 if (rdev->mddev->pers && rdev->raid_disk >= 0)
3283 return -EBUSY;
3284 if (rdev->sectors && rdev->mddev->external)
3285 /* Must set offset before size, so overlap checks
3286 * can be sane */
3287 return -EBUSY;
3288 rdev->data_offset = offset;
3289 rdev->new_data_offset = offset;
3290 return len;
3291 }
3292
3293 static struct rdev_sysfs_entry rdev_offset =
3294 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3295
new_offset_show(struct md_rdev * rdev,char * page)3296 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3297 {
3298 return sprintf(page, "%llu\n",
3299 (unsigned long long)rdev->new_data_offset);
3300 }
3301
new_offset_store(struct md_rdev * rdev,const char * buf,size_t len)3302 static ssize_t new_offset_store(struct md_rdev *rdev,
3303 const char *buf, size_t len)
3304 {
3305 unsigned long long new_offset;
3306 struct mddev *mddev = rdev->mddev;
3307
3308 if (kstrtoull(buf, 10, &new_offset) < 0)
3309 return -EINVAL;
3310
3311 if (mddev->sync_thread ||
3312 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3313 return -EBUSY;
3314 if (new_offset == rdev->data_offset)
3315 /* reset is always permitted */
3316 ;
3317 else if (new_offset > rdev->data_offset) {
3318 /* must not push array size beyond rdev_sectors */
3319 if (new_offset - rdev->data_offset
3320 + mddev->dev_sectors > rdev->sectors)
3321 return -E2BIG;
3322 }
3323 /* Metadata worries about other space details. */
3324
3325 /* decreasing the offset is inconsistent with a backwards
3326 * reshape.
3327 */
3328 if (new_offset < rdev->data_offset &&
3329 mddev->reshape_backwards)
3330 return -EINVAL;
3331 /* Increasing offset is inconsistent with forwards
3332 * reshape. reshape_direction should be set to
3333 * 'backwards' first.
3334 */
3335 if (new_offset > rdev->data_offset &&
3336 !mddev->reshape_backwards)
3337 return -EINVAL;
3338
3339 if (mddev->pers && mddev->persistent &&
3340 !super_types[mddev->major_version]
3341 .allow_new_offset(rdev, new_offset))
3342 return -E2BIG;
3343 rdev->new_data_offset = new_offset;
3344 if (new_offset > rdev->data_offset)
3345 mddev->reshape_backwards = 1;
3346 else if (new_offset < rdev->data_offset)
3347 mddev->reshape_backwards = 0;
3348
3349 return len;
3350 }
3351 static struct rdev_sysfs_entry rdev_new_offset =
3352 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3353
3354 static ssize_t
rdev_size_show(struct md_rdev * rdev,char * page)3355 rdev_size_show(struct md_rdev *rdev, char *page)
3356 {
3357 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3358 }
3359
overlaps(sector_t s1,sector_t l1,sector_t s2,sector_t l2)3360 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3361 {
3362 /* check if two start/length pairs overlap */
3363 if (s1+l1 <= s2)
3364 return 0;
3365 if (s2+l2 <= s1)
3366 return 0;
3367 return 1;
3368 }
3369
strict_blocks_to_sectors(const char * buf,sector_t * sectors)3370 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3371 {
3372 unsigned long long blocks;
3373 sector_t new;
3374
3375 if (kstrtoull(buf, 10, &blocks) < 0)
3376 return -EINVAL;
3377
3378 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3379 return -EINVAL; /* sector conversion overflow */
3380
3381 new = blocks * 2;
3382 if (new != blocks * 2)
3383 return -EINVAL; /* unsigned long long to sector_t overflow */
3384
3385 *sectors = new;
3386 return 0;
3387 }
3388
3389 static ssize_t
rdev_size_store(struct md_rdev * rdev,const char * buf,size_t len)3390 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3391 {
3392 struct mddev *my_mddev = rdev->mddev;
3393 sector_t oldsectors = rdev->sectors;
3394 sector_t sectors;
3395
3396 if (test_bit(Journal, &rdev->flags))
3397 return -EBUSY;
3398 if (strict_blocks_to_sectors(buf, §ors) < 0)
3399 return -EINVAL;
3400 if (rdev->data_offset != rdev->new_data_offset)
3401 return -EINVAL; /* too confusing */
3402 if (my_mddev->pers && rdev->raid_disk >= 0) {
3403 if (my_mddev->persistent) {
3404 sectors = super_types[my_mddev->major_version].
3405 rdev_size_change(rdev, sectors);
3406 if (!sectors)
3407 return -EBUSY;
3408 } else if (!sectors)
3409 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3410 rdev->data_offset;
3411 if (!my_mddev->pers->resize)
3412 /* Cannot change size for RAID0 or Linear etc */
3413 return -EINVAL;
3414 }
3415 if (sectors < my_mddev->dev_sectors)
3416 return -EINVAL; /* component must fit device */
3417
3418 rdev->sectors = sectors;
3419 if (sectors > oldsectors && my_mddev->external) {
3420 /* Need to check that all other rdevs with the same
3421 * ->bdev do not overlap. 'rcu' is sufficient to walk
3422 * the rdev lists safely.
3423 * This check does not provide a hard guarantee, it
3424 * just helps avoid dangerous mistakes.
3425 */
3426 struct mddev *mddev;
3427 int overlap = 0;
3428 struct list_head *tmp;
3429
3430 rcu_read_lock();
3431 for_each_mddev(mddev, tmp) {
3432 struct md_rdev *rdev2;
3433
3434 rdev_for_each(rdev2, mddev)
3435 if (rdev->bdev == rdev2->bdev &&
3436 rdev != rdev2 &&
3437 overlaps(rdev->data_offset, rdev->sectors,
3438 rdev2->data_offset,
3439 rdev2->sectors)) {
3440 overlap = 1;
3441 break;
3442 }
3443 if (overlap) {
3444 mddev_put(mddev);
3445 break;
3446 }
3447 }
3448 rcu_read_unlock();
3449 if (overlap) {
3450 /* Someone else could have slipped in a size
3451 * change here, but doing so is just silly.
3452 * We put oldsectors back because we *know* it is
3453 * safe, and trust userspace not to race with
3454 * itself
3455 */
3456 rdev->sectors = oldsectors;
3457 return -EBUSY;
3458 }
3459 }
3460 return len;
3461 }
3462
3463 static struct rdev_sysfs_entry rdev_size =
3464 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3465
recovery_start_show(struct md_rdev * rdev,char * page)3466 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3467 {
3468 unsigned long long recovery_start = rdev->recovery_offset;
3469
3470 if (test_bit(In_sync, &rdev->flags) ||
3471 recovery_start == MaxSector)
3472 return sprintf(page, "none\n");
3473
3474 return sprintf(page, "%llu\n", recovery_start);
3475 }
3476
recovery_start_store(struct md_rdev * rdev,const char * buf,size_t len)3477 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3478 {
3479 unsigned long long recovery_start;
3480
3481 if (cmd_match(buf, "none"))
3482 recovery_start = MaxSector;
3483 else if (kstrtoull(buf, 10, &recovery_start))
3484 return -EINVAL;
3485
3486 if (rdev->mddev->pers &&
3487 rdev->raid_disk >= 0)
3488 return -EBUSY;
3489
3490 rdev->recovery_offset = recovery_start;
3491 if (recovery_start == MaxSector)
3492 set_bit(In_sync, &rdev->flags);
3493 else
3494 clear_bit(In_sync, &rdev->flags);
3495 return len;
3496 }
3497
3498 static struct rdev_sysfs_entry rdev_recovery_start =
3499 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3500
3501 /* sysfs access to bad-blocks list.
3502 * We present two files.
3503 * 'bad-blocks' lists sector numbers and lengths of ranges that
3504 * are recorded as bad. The list is truncated to fit within
3505 * the one-page limit of sysfs.
3506 * Writing "sector length" to this file adds an acknowledged
3507 * bad block list.
3508 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3509 * been acknowledged. Writing to this file adds bad blocks
3510 * without acknowledging them. This is largely for testing.
3511 */
bb_show(struct md_rdev * rdev,char * page)3512 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3513 {
3514 return badblocks_show(&rdev->badblocks, page, 0);
3515 }
bb_store(struct md_rdev * rdev,const char * page,size_t len)3516 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3517 {
3518 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3519 /* Maybe that ack was all we needed */
3520 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3521 wake_up(&rdev->blocked_wait);
3522 return rv;
3523 }
3524 static struct rdev_sysfs_entry rdev_bad_blocks =
3525 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3526
ubb_show(struct md_rdev * rdev,char * page)3527 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3528 {
3529 return badblocks_show(&rdev->badblocks, page, 1);
3530 }
ubb_store(struct md_rdev * rdev,const char * page,size_t len)3531 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3532 {
3533 return badblocks_store(&rdev->badblocks, page, len, 1);
3534 }
3535 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3536 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3537
3538 static ssize_t
ppl_sector_show(struct md_rdev * rdev,char * page)3539 ppl_sector_show(struct md_rdev *rdev, char *page)
3540 {
3541 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3542 }
3543
3544 static ssize_t
ppl_sector_store(struct md_rdev * rdev,const char * buf,size_t len)3545 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3546 {
3547 unsigned long long sector;
3548
3549 if (kstrtoull(buf, 10, §or) < 0)
3550 return -EINVAL;
3551 if (sector != (sector_t)sector)
3552 return -EINVAL;
3553
3554 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3555 rdev->raid_disk >= 0)
3556 return -EBUSY;
3557
3558 if (rdev->mddev->persistent) {
3559 if (rdev->mddev->major_version == 0)
3560 return -EINVAL;
3561 if ((sector > rdev->sb_start &&
3562 sector - rdev->sb_start > S16_MAX) ||
3563 (sector < rdev->sb_start &&
3564 rdev->sb_start - sector > -S16_MIN))
3565 return -EINVAL;
3566 rdev->ppl.offset = sector - rdev->sb_start;
3567 } else if (!rdev->mddev->external) {
3568 return -EBUSY;
3569 }
3570 rdev->ppl.sector = sector;
3571 return len;
3572 }
3573
3574 static struct rdev_sysfs_entry rdev_ppl_sector =
3575 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3576
3577 static ssize_t
ppl_size_show(struct md_rdev * rdev,char * page)3578 ppl_size_show(struct md_rdev *rdev, char *page)
3579 {
3580 return sprintf(page, "%u\n", rdev->ppl.size);
3581 }
3582
3583 static ssize_t
ppl_size_store(struct md_rdev * rdev,const char * buf,size_t len)3584 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3585 {
3586 unsigned int size;
3587
3588 if (kstrtouint(buf, 10, &size) < 0)
3589 return -EINVAL;
3590
3591 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3592 rdev->raid_disk >= 0)
3593 return -EBUSY;
3594
3595 if (rdev->mddev->persistent) {
3596 if (rdev->mddev->major_version == 0)
3597 return -EINVAL;
3598 if (size > U16_MAX)
3599 return -EINVAL;
3600 } else if (!rdev->mddev->external) {
3601 return -EBUSY;
3602 }
3603 rdev->ppl.size = size;
3604 return len;
3605 }
3606
3607 static struct rdev_sysfs_entry rdev_ppl_size =
3608 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3609
3610 static struct attribute *rdev_default_attrs[] = {
3611 &rdev_state.attr,
3612 &rdev_errors.attr,
3613 &rdev_slot.attr,
3614 &rdev_offset.attr,
3615 &rdev_new_offset.attr,
3616 &rdev_size.attr,
3617 &rdev_recovery_start.attr,
3618 &rdev_bad_blocks.attr,
3619 &rdev_unack_bad_blocks.attr,
3620 &rdev_ppl_sector.attr,
3621 &rdev_ppl_size.attr,
3622 NULL,
3623 };
3624 static ssize_t
rdev_attr_show(struct kobject * kobj,struct attribute * attr,char * page)3625 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3626 {
3627 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3628 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3629
3630 if (!entry->show)
3631 return -EIO;
3632 if (!rdev->mddev)
3633 return -ENODEV;
3634 return entry->show(rdev, page);
3635 }
3636
3637 static ssize_t
rdev_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)3638 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3639 const char *page, size_t length)
3640 {
3641 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3642 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3643 ssize_t rv;
3644 struct mddev *mddev = rdev->mddev;
3645
3646 if (!entry->store)
3647 return -EIO;
3648 if (!capable(CAP_SYS_ADMIN))
3649 return -EACCES;
3650 rv = mddev ? mddev_lock(mddev) : -ENODEV;
3651 if (!rv) {
3652 if (rdev->mddev == NULL)
3653 rv = -ENODEV;
3654 else
3655 rv = entry->store(rdev, page, length);
3656 mddev_unlock(mddev);
3657 }
3658 return rv;
3659 }
3660
rdev_free(struct kobject * ko)3661 static void rdev_free(struct kobject *ko)
3662 {
3663 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3664 kfree(rdev);
3665 }
3666 static const struct sysfs_ops rdev_sysfs_ops = {
3667 .show = rdev_attr_show,
3668 .store = rdev_attr_store,
3669 };
3670 static struct kobj_type rdev_ktype = {
3671 .release = rdev_free,
3672 .sysfs_ops = &rdev_sysfs_ops,
3673 .default_attrs = rdev_default_attrs,
3674 };
3675
md_rdev_init(struct md_rdev * rdev)3676 int md_rdev_init(struct md_rdev *rdev)
3677 {
3678 rdev->desc_nr = -1;
3679 rdev->saved_raid_disk = -1;
3680 rdev->raid_disk = -1;
3681 rdev->flags = 0;
3682 rdev->data_offset = 0;
3683 rdev->new_data_offset = 0;
3684 rdev->sb_events = 0;
3685 rdev->last_read_error = 0;
3686 rdev->sb_loaded = 0;
3687 rdev->bb_page = NULL;
3688 atomic_set(&rdev->nr_pending, 0);
3689 atomic_set(&rdev->read_errors, 0);
3690 atomic_set(&rdev->corrected_errors, 0);
3691
3692 INIT_LIST_HEAD(&rdev->same_set);
3693 init_waitqueue_head(&rdev->blocked_wait);
3694
3695 /* Add space to store bad block list.
3696 * This reserves the space even on arrays where it cannot
3697 * be used - I wonder if that matters
3698 */
3699 return badblocks_init(&rdev->badblocks, 0);
3700 }
3701 EXPORT_SYMBOL_GPL(md_rdev_init);
3702 /*
3703 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3704 *
3705 * mark the device faulty if:
3706 *
3707 * - the device is nonexistent (zero size)
3708 * - the device has no valid superblock
3709 *
3710 * a faulty rdev _never_ has rdev->sb set.
3711 */
md_import_device(dev_t newdev,int super_format,int super_minor)3712 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3713 {
3714 char b[BDEVNAME_SIZE];
3715 int err;
3716 struct md_rdev *rdev;
3717 sector_t size;
3718
3719 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3720 if (!rdev)
3721 return ERR_PTR(-ENOMEM);
3722
3723 err = md_rdev_init(rdev);
3724 if (err)
3725 goto abort_free;
3726 err = alloc_disk_sb(rdev);
3727 if (err)
3728 goto abort_free;
3729
3730 err = lock_rdev(rdev, newdev, super_format == -2);
3731 if (err)
3732 goto abort_free;
3733
3734 kobject_init(&rdev->kobj, &rdev_ktype);
3735
3736 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3737 if (!size) {
3738 pr_warn("md: %s has zero or unknown size, marking faulty!\n",
3739 bdevname(rdev->bdev,b));
3740 err = -EINVAL;
3741 goto abort_free;
3742 }
3743
3744 if (super_format >= 0) {
3745 err = super_types[super_format].
3746 load_super(rdev, NULL, super_minor);
3747 if (err == -EINVAL) {
3748 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
3749 bdevname(rdev->bdev,b),
3750 super_format, super_minor);
3751 goto abort_free;
3752 }
3753 if (err < 0) {
3754 pr_warn("md: could not read %s's sb, not importing!\n",
3755 bdevname(rdev->bdev,b));
3756 goto abort_free;
3757 }
3758 }
3759
3760 return rdev;
3761
3762 abort_free:
3763 if (rdev->bdev)
3764 unlock_rdev(rdev);
3765 md_rdev_clear(rdev);
3766 kfree(rdev);
3767 return ERR_PTR(err);
3768 }
3769
3770 /*
3771 * Check a full RAID array for plausibility
3772 */
3773
analyze_sbs(struct mddev * mddev)3774 static int analyze_sbs(struct mddev *mddev)
3775 {
3776 int i;
3777 struct md_rdev *rdev, *freshest, *tmp;
3778 char b[BDEVNAME_SIZE];
3779
3780 freshest = NULL;
3781 rdev_for_each_safe(rdev, tmp, mddev)
3782 switch (super_types[mddev->major_version].
3783 load_super(rdev, freshest, mddev->minor_version)) {
3784 case 1:
3785 freshest = rdev;
3786 break;
3787 case 0:
3788 break;
3789 default:
3790 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
3791 bdevname(rdev->bdev,b));
3792 md_kick_rdev_from_array(rdev);
3793 }
3794
3795 /* Cannot find a valid fresh disk */
3796 if (!freshest) {
3797 pr_warn("md: cannot find a valid disk\n");
3798 return -EINVAL;
3799 }
3800
3801 super_types[mddev->major_version].
3802 validate_super(mddev, freshest);
3803
3804 i = 0;
3805 rdev_for_each_safe(rdev, tmp, mddev) {
3806 if (mddev->max_disks &&
3807 (rdev->desc_nr >= mddev->max_disks ||
3808 i > mddev->max_disks)) {
3809 pr_warn("md: %s: %s: only %d devices permitted\n",
3810 mdname(mddev), bdevname(rdev->bdev, b),
3811 mddev->max_disks);
3812 md_kick_rdev_from_array(rdev);
3813 continue;
3814 }
3815 if (rdev != freshest) {
3816 if (super_types[mddev->major_version].
3817 validate_super(mddev, rdev)) {
3818 pr_warn("md: kicking non-fresh %s from array!\n",
3819 bdevname(rdev->bdev,b));
3820 md_kick_rdev_from_array(rdev);
3821 continue;
3822 }
3823 }
3824 if (mddev->level == LEVEL_MULTIPATH) {
3825 rdev->desc_nr = i++;
3826 rdev->raid_disk = rdev->desc_nr;
3827 set_bit(In_sync, &rdev->flags);
3828 } else if (rdev->raid_disk >=
3829 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3830 !test_bit(Journal, &rdev->flags)) {
3831 rdev->raid_disk = -1;
3832 clear_bit(In_sync, &rdev->flags);
3833 }
3834 }
3835
3836 return 0;
3837 }
3838
3839 /* Read a fixed-point number.
3840 * Numbers in sysfs attributes should be in "standard" units where
3841 * possible, so time should be in seconds.
3842 * However we internally use a a much smaller unit such as
3843 * milliseconds or jiffies.
3844 * This function takes a decimal number with a possible fractional
3845 * component, and produces an integer which is the result of
3846 * multiplying that number by 10^'scale'.
3847 * all without any floating-point arithmetic.
3848 */
strict_strtoul_scaled(const char * cp,unsigned long * res,int scale)3849 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3850 {
3851 unsigned long result = 0;
3852 long decimals = -1;
3853 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3854 if (*cp == '.')
3855 decimals = 0;
3856 else if (decimals < scale) {
3857 unsigned int value;
3858 value = *cp - '0';
3859 result = result * 10 + value;
3860 if (decimals >= 0)
3861 decimals++;
3862 }
3863 cp++;
3864 }
3865 if (*cp == '\n')
3866 cp++;
3867 if (*cp)
3868 return -EINVAL;
3869 if (decimals < 0)
3870 decimals = 0;
3871 *res = result * int_pow(10, scale - decimals);
3872 return 0;
3873 }
3874
3875 static ssize_t
safe_delay_show(struct mddev * mddev,char * page)3876 safe_delay_show(struct mddev *mddev, char *page)
3877 {
3878 int msec = (mddev->safemode_delay*1000)/HZ;
3879 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3880 }
3881 static ssize_t
safe_delay_store(struct mddev * mddev,const char * cbuf,size_t len)3882 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3883 {
3884 unsigned long msec;
3885
3886 if (mddev_is_clustered(mddev)) {
3887 pr_warn("md: Safemode is disabled for clustered mode\n");
3888 return -EINVAL;
3889 }
3890
3891 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3892 return -EINVAL;
3893 if (msec == 0)
3894 mddev->safemode_delay = 0;
3895 else {
3896 unsigned long old_delay = mddev->safemode_delay;
3897 unsigned long new_delay = (msec*HZ)/1000;
3898
3899 if (new_delay == 0)
3900 new_delay = 1;
3901 mddev->safemode_delay = new_delay;
3902 if (new_delay < old_delay || old_delay == 0)
3903 mod_timer(&mddev->safemode_timer, jiffies+1);
3904 }
3905 return len;
3906 }
3907 static struct md_sysfs_entry md_safe_delay =
3908 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3909
3910 static ssize_t
level_show(struct mddev * mddev,char * page)3911 level_show(struct mddev *mddev, char *page)
3912 {
3913 struct md_personality *p;
3914 int ret;
3915 spin_lock(&mddev->lock);
3916 p = mddev->pers;
3917 if (p)
3918 ret = sprintf(page, "%s\n", p->name);
3919 else if (mddev->clevel[0])
3920 ret = sprintf(page, "%s\n", mddev->clevel);
3921 else if (mddev->level != LEVEL_NONE)
3922 ret = sprintf(page, "%d\n", mddev->level);
3923 else
3924 ret = 0;
3925 spin_unlock(&mddev->lock);
3926 return ret;
3927 }
3928
3929 static ssize_t
level_store(struct mddev * mddev,const char * buf,size_t len)3930 level_store(struct mddev *mddev, const char *buf, size_t len)
3931 {
3932 char clevel[16];
3933 ssize_t rv;
3934 size_t slen = len;
3935 struct md_personality *pers, *oldpers;
3936 long level;
3937 void *priv, *oldpriv;
3938 struct md_rdev *rdev;
3939
3940 if (slen == 0 || slen >= sizeof(clevel))
3941 return -EINVAL;
3942
3943 rv = mddev_lock(mddev);
3944 if (rv)
3945 return rv;
3946
3947 if (mddev->pers == NULL) {
3948 strncpy(mddev->clevel, buf, slen);
3949 if (mddev->clevel[slen-1] == '\n')
3950 slen--;
3951 mddev->clevel[slen] = 0;
3952 mddev->level = LEVEL_NONE;
3953 rv = len;
3954 goto out_unlock;
3955 }
3956 rv = -EROFS;
3957 if (mddev->ro)
3958 goto out_unlock;
3959
3960 /* request to change the personality. Need to ensure:
3961 * - array is not engaged in resync/recovery/reshape
3962 * - old personality can be suspended
3963 * - new personality will access other array.
3964 */
3965
3966 rv = -EBUSY;
3967 if (mddev->sync_thread ||
3968 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3969 mddev->reshape_position != MaxSector ||
3970 mddev->sysfs_active)
3971 goto out_unlock;
3972
3973 rv = -EINVAL;
3974 if (!mddev->pers->quiesce) {
3975 pr_warn("md: %s: %s does not support online personality change\n",
3976 mdname(mddev), mddev->pers->name);
3977 goto out_unlock;
3978 }
3979
3980 /* Now find the new personality */
3981 strncpy(clevel, buf, slen);
3982 if (clevel[slen-1] == '\n')
3983 slen--;
3984 clevel[slen] = 0;
3985 if (kstrtol(clevel, 10, &level))
3986 level = LEVEL_NONE;
3987
3988 if (request_module("md-%s", clevel) != 0)
3989 request_module("md-level-%s", clevel);
3990 spin_lock(&pers_lock);
3991 pers = find_pers(level, clevel);
3992 if (!pers || !try_module_get(pers->owner)) {
3993 spin_unlock(&pers_lock);
3994 pr_warn("md: personality %s not loaded\n", clevel);
3995 rv = -EINVAL;
3996 goto out_unlock;
3997 }
3998 spin_unlock(&pers_lock);
3999
4000 if (pers == mddev->pers) {
4001 /* Nothing to do! */
4002 module_put(pers->owner);
4003 rv = len;
4004 goto out_unlock;
4005 }
4006 if (!pers->takeover) {
4007 module_put(pers->owner);
4008 pr_warn("md: %s: %s does not support personality takeover\n",
4009 mdname(mddev), clevel);
4010 rv = -EINVAL;
4011 goto out_unlock;
4012 }
4013
4014 rdev_for_each(rdev, mddev)
4015 rdev->new_raid_disk = rdev->raid_disk;
4016
4017 /* ->takeover must set new_* and/or delta_disks
4018 * if it succeeds, and may set them when it fails.
4019 */
4020 priv = pers->takeover(mddev);
4021 if (IS_ERR(priv)) {
4022 mddev->new_level = mddev->level;
4023 mddev->new_layout = mddev->layout;
4024 mddev->new_chunk_sectors = mddev->chunk_sectors;
4025 mddev->raid_disks -= mddev->delta_disks;
4026 mddev->delta_disks = 0;
4027 mddev->reshape_backwards = 0;
4028 module_put(pers->owner);
4029 pr_warn("md: %s: %s would not accept array\n",
4030 mdname(mddev), clevel);
4031 rv = PTR_ERR(priv);
4032 goto out_unlock;
4033 }
4034
4035 /* Looks like we have a winner */
4036 mddev_suspend(mddev);
4037 mddev_detach(mddev);
4038
4039 spin_lock(&mddev->lock);
4040 oldpers = mddev->pers;
4041 oldpriv = mddev->private;
4042 mddev->pers = pers;
4043 mddev->private = priv;
4044 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4045 mddev->level = mddev->new_level;
4046 mddev->layout = mddev->new_layout;
4047 mddev->chunk_sectors = mddev->new_chunk_sectors;
4048 mddev->delta_disks = 0;
4049 mddev->reshape_backwards = 0;
4050 mddev->degraded = 0;
4051 spin_unlock(&mddev->lock);
4052
4053 if (oldpers->sync_request == NULL &&
4054 mddev->external) {
4055 /* We are converting from a no-redundancy array
4056 * to a redundancy array and metadata is managed
4057 * externally so we need to be sure that writes
4058 * won't block due to a need to transition
4059 * clean->dirty
4060 * until external management is started.
4061 */
4062 mddev->in_sync = 0;
4063 mddev->safemode_delay = 0;
4064 mddev->safemode = 0;
4065 }
4066
4067 oldpers->free(mddev, oldpriv);
4068
4069 if (oldpers->sync_request == NULL &&
4070 pers->sync_request != NULL) {
4071 /* need to add the md_redundancy_group */
4072 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4073 pr_warn("md: cannot register extra attributes for %s\n",
4074 mdname(mddev));
4075 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4076 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
4077 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
4078 }
4079 if (oldpers->sync_request != NULL &&
4080 pers->sync_request == NULL) {
4081 /* need to remove the md_redundancy_group */
4082 if (mddev->to_remove == NULL)
4083 mddev->to_remove = &md_redundancy_group;
4084 }
4085
4086 module_put(oldpers->owner);
4087
4088 rdev_for_each(rdev, mddev) {
4089 if (rdev->raid_disk < 0)
4090 continue;
4091 if (rdev->new_raid_disk >= mddev->raid_disks)
4092 rdev->new_raid_disk = -1;
4093 if (rdev->new_raid_disk == rdev->raid_disk)
4094 continue;
4095 sysfs_unlink_rdev(mddev, rdev);
4096 }
4097 rdev_for_each(rdev, mddev) {
4098 if (rdev->raid_disk < 0)
4099 continue;
4100 if (rdev->new_raid_disk == rdev->raid_disk)
4101 continue;
4102 rdev->raid_disk = rdev->new_raid_disk;
4103 if (rdev->raid_disk < 0)
4104 clear_bit(In_sync, &rdev->flags);
4105 else {
4106 if (sysfs_link_rdev(mddev, rdev))
4107 pr_warn("md: cannot register rd%d for %s after level change\n",
4108 rdev->raid_disk, mdname(mddev));
4109 }
4110 }
4111
4112 if (pers->sync_request == NULL) {
4113 /* this is now an array without redundancy, so
4114 * it must always be in_sync
4115 */
4116 mddev->in_sync = 1;
4117 del_timer_sync(&mddev->safemode_timer);
4118 }
4119 blk_set_stacking_limits(&mddev->queue->limits);
4120 pers->run(mddev);
4121 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4122 mddev_resume(mddev);
4123 if (!mddev->thread)
4124 md_update_sb(mddev, 1);
4125 sysfs_notify_dirent_safe(mddev->sysfs_level);
4126 md_new_event(mddev);
4127 rv = len;
4128 out_unlock:
4129 mddev_unlock(mddev);
4130 return rv;
4131 }
4132
4133 static struct md_sysfs_entry md_level =
4134 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
4135
4136 static ssize_t
layout_show(struct mddev * mddev,char * page)4137 layout_show(struct mddev *mddev, char *page)
4138 {
4139 /* just a number, not meaningful for all levels */
4140 if (mddev->reshape_position != MaxSector &&
4141 mddev->layout != mddev->new_layout)
4142 return sprintf(page, "%d (%d)\n",
4143 mddev->new_layout, mddev->layout);
4144 return sprintf(page, "%d\n", mddev->layout);
4145 }
4146
4147 static ssize_t
layout_store(struct mddev * mddev,const char * buf,size_t len)4148 layout_store(struct mddev *mddev, const char *buf, size_t len)
4149 {
4150 unsigned int n;
4151 int err;
4152
4153 err = kstrtouint(buf, 10, &n);
4154 if (err < 0)
4155 return err;
4156 err = mddev_lock(mddev);
4157 if (err)
4158 return err;
4159
4160 if (mddev->pers) {
4161 if (mddev->pers->check_reshape == NULL)
4162 err = -EBUSY;
4163 else if (mddev->ro)
4164 err = -EROFS;
4165 else {
4166 mddev->new_layout = n;
4167 err = mddev->pers->check_reshape(mddev);
4168 if (err)
4169 mddev->new_layout = mddev->layout;
4170 }
4171 } else {
4172 mddev->new_layout = n;
4173 if (mddev->reshape_position == MaxSector)
4174 mddev->layout = n;
4175 }
4176 mddev_unlock(mddev);
4177 return err ?: len;
4178 }
4179 static struct md_sysfs_entry md_layout =
4180 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
4181
4182 static ssize_t
raid_disks_show(struct mddev * mddev,char * page)4183 raid_disks_show(struct mddev *mddev, char *page)
4184 {
4185 if (mddev->raid_disks == 0)
4186 return 0;
4187 if (mddev->reshape_position != MaxSector &&
4188 mddev->delta_disks != 0)
4189 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
4190 mddev->raid_disks - mddev->delta_disks);
4191 return sprintf(page, "%d\n", mddev->raid_disks);
4192 }
4193
4194 static int update_raid_disks(struct mddev *mddev, int raid_disks);
4195
4196 static ssize_t
raid_disks_store(struct mddev * mddev,const char * buf,size_t len)4197 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
4198 {
4199 unsigned int n;
4200 int err;
4201
4202 err = kstrtouint(buf, 10, &n);
4203 if (err < 0)
4204 return err;
4205
4206 err = mddev_lock(mddev);
4207 if (err)
4208 return err;
4209 if (mddev->pers)
4210 err = update_raid_disks(mddev, n);
4211 else if (mddev->reshape_position != MaxSector) {
4212 struct md_rdev *rdev;
4213 int olddisks = mddev->raid_disks - mddev->delta_disks;
4214
4215 err = -EINVAL;
4216 rdev_for_each(rdev, mddev) {
4217 if (olddisks < n &&
4218 rdev->data_offset < rdev->new_data_offset)
4219 goto out_unlock;
4220 if (olddisks > n &&
4221 rdev->data_offset > rdev->new_data_offset)
4222 goto out_unlock;
4223 }
4224 err = 0;
4225 mddev->delta_disks = n - olddisks;
4226 mddev->raid_disks = n;
4227 mddev->reshape_backwards = (mddev->delta_disks < 0);
4228 } else
4229 mddev->raid_disks = n;
4230 out_unlock:
4231 mddev_unlock(mddev);
4232 return err ? err : len;
4233 }
4234 static struct md_sysfs_entry md_raid_disks =
4235 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
4236
4237 static ssize_t
uuid_show(struct mddev * mddev,char * page)4238 uuid_show(struct mddev *mddev, char *page)
4239 {
4240 return sprintf(page, "%pU\n", mddev->uuid);
4241 }
4242 static struct md_sysfs_entry md_uuid =
4243 __ATTR(uuid, S_IRUGO, uuid_show, NULL);
4244
4245 static ssize_t
chunk_size_show(struct mddev * mddev,char * page)4246 chunk_size_show(struct mddev *mddev, char *page)
4247 {
4248 if (mddev->reshape_position != MaxSector &&
4249 mddev->chunk_sectors != mddev->new_chunk_sectors)
4250 return sprintf(page, "%d (%d)\n",
4251 mddev->new_chunk_sectors << 9,
4252 mddev->chunk_sectors << 9);
4253 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
4254 }
4255
4256 static ssize_t
chunk_size_store(struct mddev * mddev,const char * buf,size_t len)4257 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
4258 {
4259 unsigned long n;
4260 int err;
4261
4262 err = kstrtoul(buf, 10, &n);
4263 if (err < 0)
4264 return err;
4265
4266 err = mddev_lock(mddev);
4267 if (err)
4268 return err;
4269 if (mddev->pers) {
4270 if (mddev->pers->check_reshape == NULL)
4271 err = -EBUSY;
4272 else if (mddev->ro)
4273 err = -EROFS;
4274 else {
4275 mddev->new_chunk_sectors = n >> 9;
4276 err = mddev->pers->check_reshape(mddev);
4277 if (err)
4278 mddev->new_chunk_sectors = mddev->chunk_sectors;
4279 }
4280 } else {
4281 mddev->new_chunk_sectors = n >> 9;
4282 if (mddev->reshape_position == MaxSector)
4283 mddev->chunk_sectors = n >> 9;
4284 }
4285 mddev_unlock(mddev);
4286 return err ?: len;
4287 }
4288 static struct md_sysfs_entry md_chunk_size =
4289 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4290
4291 static ssize_t
resync_start_show(struct mddev * mddev,char * page)4292 resync_start_show(struct mddev *mddev, char *page)
4293 {
4294 if (mddev->recovery_cp == MaxSector)
4295 return sprintf(page, "none\n");
4296 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4297 }
4298
4299 static ssize_t
resync_start_store(struct mddev * mddev,const char * buf,size_t len)4300 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4301 {
4302 unsigned long long n;
4303 int err;
4304
4305 if (cmd_match(buf, "none"))
4306 n = MaxSector;
4307 else {
4308 err = kstrtoull(buf, 10, &n);
4309 if (err < 0)
4310 return err;
4311 if (n != (sector_t)n)
4312 return -EINVAL;
4313 }
4314
4315 err = mddev_lock(mddev);
4316 if (err)
4317 return err;
4318 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4319 err = -EBUSY;
4320
4321 if (!err) {
4322 mddev->recovery_cp = n;
4323 if (mddev->pers)
4324 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4325 }
4326 mddev_unlock(mddev);
4327 return err ?: len;
4328 }
4329 static struct md_sysfs_entry md_resync_start =
4330 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4331 resync_start_show, resync_start_store);
4332
4333 /*
4334 * The array state can be:
4335 *
4336 * clear
4337 * No devices, no size, no level
4338 * Equivalent to STOP_ARRAY ioctl
4339 * inactive
4340 * May have some settings, but array is not active
4341 * all IO results in error
4342 * When written, doesn't tear down array, but just stops it
4343 * suspended (not supported yet)
4344 * All IO requests will block. The array can be reconfigured.
4345 * Writing this, if accepted, will block until array is quiescent
4346 * readonly
4347 * no resync can happen. no superblocks get written.
4348 * write requests fail
4349 * read-auto
4350 * like readonly, but behaves like 'clean' on a write request.
4351 *
4352 * clean - no pending writes, but otherwise active.
4353 * When written to inactive array, starts without resync
4354 * If a write request arrives then
4355 * if metadata is known, mark 'dirty' and switch to 'active'.
4356 * if not known, block and switch to write-pending
4357 * If written to an active array that has pending writes, then fails.
4358 * active
4359 * fully active: IO and resync can be happening.
4360 * When written to inactive array, starts with resync
4361 *
4362 * write-pending
4363 * clean, but writes are blocked waiting for 'active' to be written.
4364 *
4365 * active-idle
4366 * like active, but no writes have been seen for a while (100msec).
4367 *
4368 * broken
4369 * RAID0/LINEAR-only: same as clean, but array is missing a member.
4370 * It's useful because RAID0/LINEAR mounted-arrays aren't stopped
4371 * when a member is gone, so this state will at least alert the
4372 * user that something is wrong.
4373 */
4374 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4375 write_pending, active_idle, broken, bad_word};
4376 static char *array_states[] = {
4377 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4378 "write-pending", "active-idle", "broken", NULL };
4379
match_word(const char * word,char ** list)4380 static int match_word(const char *word, char **list)
4381 {
4382 int n;
4383 for (n=0; list[n]; n++)
4384 if (cmd_match(word, list[n]))
4385 break;
4386 return n;
4387 }
4388
4389 static ssize_t
array_state_show(struct mddev * mddev,char * page)4390 array_state_show(struct mddev *mddev, char *page)
4391 {
4392 enum array_state st = inactive;
4393
4394 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) {
4395 switch(mddev->ro) {
4396 case 1:
4397 st = readonly;
4398 break;
4399 case 2:
4400 st = read_auto;
4401 break;
4402 case 0:
4403 spin_lock(&mddev->lock);
4404 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4405 st = write_pending;
4406 else if (mddev->in_sync)
4407 st = clean;
4408 else if (mddev->safemode)
4409 st = active_idle;
4410 else
4411 st = active;
4412 spin_unlock(&mddev->lock);
4413 }
4414
4415 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean)
4416 st = broken;
4417 } else {
4418 if (list_empty(&mddev->disks) &&
4419 mddev->raid_disks == 0 &&
4420 mddev->dev_sectors == 0)
4421 st = clear;
4422 else
4423 st = inactive;
4424 }
4425 return sprintf(page, "%s\n", array_states[st]);
4426 }
4427
4428 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4429 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4430 static int restart_array(struct mddev *mddev);
4431
4432 static ssize_t
array_state_store(struct mddev * mddev,const char * buf,size_t len)4433 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4434 {
4435 int err = 0;
4436 enum array_state st = match_word(buf, array_states);
4437
4438 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
4439 /* don't take reconfig_mutex when toggling between
4440 * clean and active
4441 */
4442 spin_lock(&mddev->lock);
4443 if (st == active) {
4444 restart_array(mddev);
4445 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4446 md_wakeup_thread(mddev->thread);
4447 wake_up(&mddev->sb_wait);
4448 } else /* st == clean */ {
4449 restart_array(mddev);
4450 if (!set_in_sync(mddev))
4451 err = -EBUSY;
4452 }
4453 if (!err)
4454 sysfs_notify_dirent_safe(mddev->sysfs_state);
4455 spin_unlock(&mddev->lock);
4456 return err ?: len;
4457 }
4458 err = mddev_lock(mddev);
4459 if (err)
4460 return err;
4461 err = -EINVAL;
4462 switch(st) {
4463 case bad_word:
4464 break;
4465 case clear:
4466 /* stopping an active array */
4467 err = do_md_stop(mddev, 0, NULL);
4468 break;
4469 case inactive:
4470 /* stopping an active array */
4471 if (mddev->pers)
4472 err = do_md_stop(mddev, 2, NULL);
4473 else
4474 err = 0; /* already inactive */
4475 break;
4476 case suspended:
4477 break; /* not supported yet */
4478 case readonly:
4479 if (mddev->pers)
4480 err = md_set_readonly(mddev, NULL);
4481 else {
4482 mddev->ro = 1;
4483 set_disk_ro(mddev->gendisk, 1);
4484 err = do_md_run(mddev);
4485 }
4486 break;
4487 case read_auto:
4488 if (mddev->pers) {
4489 if (mddev->ro == 0)
4490 err = md_set_readonly(mddev, NULL);
4491 else if (mddev->ro == 1)
4492 err = restart_array(mddev);
4493 if (err == 0) {
4494 mddev->ro = 2;
4495 set_disk_ro(mddev->gendisk, 0);
4496 }
4497 } else {
4498 mddev->ro = 2;
4499 err = do_md_run(mddev);
4500 }
4501 break;
4502 case clean:
4503 if (mddev->pers) {
4504 err = restart_array(mddev);
4505 if (err)
4506 break;
4507 spin_lock(&mddev->lock);
4508 if (!set_in_sync(mddev))
4509 err = -EBUSY;
4510 spin_unlock(&mddev->lock);
4511 } else
4512 err = -EINVAL;
4513 break;
4514 case active:
4515 if (mddev->pers) {
4516 err = restart_array(mddev);
4517 if (err)
4518 break;
4519 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4520 wake_up(&mddev->sb_wait);
4521 err = 0;
4522 } else {
4523 mddev->ro = 0;
4524 set_disk_ro(mddev->gendisk, 0);
4525 err = do_md_run(mddev);
4526 }
4527 break;
4528 case write_pending:
4529 case active_idle:
4530 case broken:
4531 /* these cannot be set */
4532 break;
4533 }
4534
4535 if (!err) {
4536 if (mddev->hold_active == UNTIL_IOCTL)
4537 mddev->hold_active = 0;
4538 sysfs_notify_dirent_safe(mddev->sysfs_state);
4539 }
4540 mddev_unlock(mddev);
4541 return err ?: len;
4542 }
4543 static struct md_sysfs_entry md_array_state =
4544 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4545
4546 static ssize_t
max_corrected_read_errors_show(struct mddev * mddev,char * page)4547 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4548 return sprintf(page, "%d\n",
4549 atomic_read(&mddev->max_corr_read_errors));
4550 }
4551
4552 static ssize_t
max_corrected_read_errors_store(struct mddev * mddev,const char * buf,size_t len)4553 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4554 {
4555 unsigned int n;
4556 int rv;
4557
4558 rv = kstrtouint(buf, 10, &n);
4559 if (rv < 0)
4560 return rv;
4561 atomic_set(&mddev->max_corr_read_errors, n);
4562 return len;
4563 }
4564
4565 static struct md_sysfs_entry max_corr_read_errors =
4566 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4567 max_corrected_read_errors_store);
4568
4569 static ssize_t
null_show(struct mddev * mddev,char * page)4570 null_show(struct mddev *mddev, char *page)
4571 {
4572 return -EINVAL;
4573 }
4574
4575 /* need to ensure rdev_delayed_delete() has completed */
flush_rdev_wq(struct mddev * mddev)4576 static void flush_rdev_wq(struct mddev *mddev)
4577 {
4578 struct md_rdev *rdev;
4579
4580 rcu_read_lock();
4581 rdev_for_each_rcu(rdev, mddev)
4582 if (work_pending(&rdev->del_work)) {
4583 flush_workqueue(md_rdev_misc_wq);
4584 break;
4585 }
4586 rcu_read_unlock();
4587 }
4588
4589 static ssize_t
new_dev_store(struct mddev * mddev,const char * buf,size_t len)4590 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4591 {
4592 /* buf must be %d:%d\n? giving major and minor numbers */
4593 /* The new device is added to the array.
4594 * If the array has a persistent superblock, we read the
4595 * superblock to initialise info and check validity.
4596 * Otherwise, only checking done is that in bind_rdev_to_array,
4597 * which mainly checks size.
4598 */
4599 char *e;
4600 int major = simple_strtoul(buf, &e, 10);
4601 int minor;
4602 dev_t dev;
4603 struct md_rdev *rdev;
4604 int err;
4605
4606 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4607 return -EINVAL;
4608 minor = simple_strtoul(e+1, &e, 10);
4609 if (*e && *e != '\n')
4610 return -EINVAL;
4611 dev = MKDEV(major, minor);
4612 if (major != MAJOR(dev) ||
4613 minor != MINOR(dev))
4614 return -EOVERFLOW;
4615
4616 flush_rdev_wq(mddev);
4617 err = mddev_lock(mddev);
4618 if (err)
4619 return err;
4620 if (mddev->persistent) {
4621 rdev = md_import_device(dev, mddev->major_version,
4622 mddev->minor_version);
4623 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4624 struct md_rdev *rdev0
4625 = list_entry(mddev->disks.next,
4626 struct md_rdev, same_set);
4627 err = super_types[mddev->major_version]
4628 .load_super(rdev, rdev0, mddev->minor_version);
4629 if (err < 0)
4630 goto out;
4631 }
4632 } else if (mddev->external)
4633 rdev = md_import_device(dev, -2, -1);
4634 else
4635 rdev = md_import_device(dev, -1, -1);
4636
4637 if (IS_ERR(rdev)) {
4638 mddev_unlock(mddev);
4639 return PTR_ERR(rdev);
4640 }
4641 err = bind_rdev_to_array(rdev, mddev);
4642 out:
4643 if (err)
4644 export_rdev(rdev);
4645 mddev_unlock(mddev);
4646 if (!err)
4647 md_new_event(mddev);
4648 return err ? err : len;
4649 }
4650
4651 static struct md_sysfs_entry md_new_device =
4652 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4653
4654 static ssize_t
bitmap_store(struct mddev * mddev,const char * buf,size_t len)4655 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4656 {
4657 char *end;
4658 unsigned long chunk, end_chunk;
4659 int err;
4660
4661 err = mddev_lock(mddev);
4662 if (err)
4663 return err;
4664 if (!mddev->bitmap)
4665 goto out;
4666 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4667 while (*buf) {
4668 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4669 if (buf == end) break;
4670 if (*end == '-') { /* range */
4671 buf = end + 1;
4672 end_chunk = simple_strtoul(buf, &end, 0);
4673 if (buf == end) break;
4674 }
4675 if (*end && !isspace(*end)) break;
4676 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4677 buf = skip_spaces(end);
4678 }
4679 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4680 out:
4681 mddev_unlock(mddev);
4682 return len;
4683 }
4684
4685 static struct md_sysfs_entry md_bitmap =
4686 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4687
4688 static ssize_t
size_show(struct mddev * mddev,char * page)4689 size_show(struct mddev *mddev, char *page)
4690 {
4691 return sprintf(page, "%llu\n",
4692 (unsigned long long)mddev->dev_sectors / 2);
4693 }
4694
4695 static int update_size(struct mddev *mddev, sector_t num_sectors);
4696
4697 static ssize_t
size_store(struct mddev * mddev,const char * buf,size_t len)4698 size_store(struct mddev *mddev, const char *buf, size_t len)
4699 {
4700 /* If array is inactive, we can reduce the component size, but
4701 * not increase it (except from 0).
4702 * If array is active, we can try an on-line resize
4703 */
4704 sector_t sectors;
4705 int err = strict_blocks_to_sectors(buf, §ors);
4706
4707 if (err < 0)
4708 return err;
4709 err = mddev_lock(mddev);
4710 if (err)
4711 return err;
4712 if (mddev->pers) {
4713 err = update_size(mddev, sectors);
4714 if (err == 0)
4715 md_update_sb(mddev, 1);
4716 } else {
4717 if (mddev->dev_sectors == 0 ||
4718 mddev->dev_sectors > sectors)
4719 mddev->dev_sectors = sectors;
4720 else
4721 err = -ENOSPC;
4722 }
4723 mddev_unlock(mddev);
4724 return err ? err : len;
4725 }
4726
4727 static struct md_sysfs_entry md_size =
4728 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4729
4730 /* Metadata version.
4731 * This is one of
4732 * 'none' for arrays with no metadata (good luck...)
4733 * 'external' for arrays with externally managed metadata,
4734 * or N.M for internally known formats
4735 */
4736 static ssize_t
metadata_show(struct mddev * mddev,char * page)4737 metadata_show(struct mddev *mddev, char *page)
4738 {
4739 if (mddev->persistent)
4740 return sprintf(page, "%d.%d\n",
4741 mddev->major_version, mddev->minor_version);
4742 else if (mddev->external)
4743 return sprintf(page, "external:%s\n", mddev->metadata_type);
4744 else
4745 return sprintf(page, "none\n");
4746 }
4747
4748 static ssize_t
metadata_store(struct mddev * mddev,const char * buf,size_t len)4749 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4750 {
4751 int major, minor;
4752 char *e;
4753 int err;
4754 /* Changing the details of 'external' metadata is
4755 * always permitted. Otherwise there must be
4756 * no devices attached to the array.
4757 */
4758
4759 err = mddev_lock(mddev);
4760 if (err)
4761 return err;
4762 err = -EBUSY;
4763 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4764 ;
4765 else if (!list_empty(&mddev->disks))
4766 goto out_unlock;
4767
4768 err = 0;
4769 if (cmd_match(buf, "none")) {
4770 mddev->persistent = 0;
4771 mddev->external = 0;
4772 mddev->major_version = 0;
4773 mddev->minor_version = 90;
4774 goto out_unlock;
4775 }
4776 if (strncmp(buf, "external:", 9) == 0) {
4777 size_t namelen = len-9;
4778 if (namelen >= sizeof(mddev->metadata_type))
4779 namelen = sizeof(mddev->metadata_type)-1;
4780 strncpy(mddev->metadata_type, buf+9, namelen);
4781 mddev->metadata_type[namelen] = 0;
4782 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4783 mddev->metadata_type[--namelen] = 0;
4784 mddev->persistent = 0;
4785 mddev->external = 1;
4786 mddev->major_version = 0;
4787 mddev->minor_version = 90;
4788 goto out_unlock;
4789 }
4790 major = simple_strtoul(buf, &e, 10);
4791 err = -EINVAL;
4792 if (e==buf || *e != '.')
4793 goto out_unlock;
4794 buf = e+1;
4795 minor = simple_strtoul(buf, &e, 10);
4796 if (e==buf || (*e && *e != '\n') )
4797 goto out_unlock;
4798 err = -ENOENT;
4799 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4800 goto out_unlock;
4801 mddev->major_version = major;
4802 mddev->minor_version = minor;
4803 mddev->persistent = 1;
4804 mddev->external = 0;
4805 err = 0;
4806 out_unlock:
4807 mddev_unlock(mddev);
4808 return err ?: len;
4809 }
4810
4811 static struct md_sysfs_entry md_metadata =
4812 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4813
4814 static ssize_t
action_show(struct mddev * mddev,char * page)4815 action_show(struct mddev *mddev, char *page)
4816 {
4817 char *type = "idle";
4818 unsigned long recovery = mddev->recovery;
4819 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4820 type = "frozen";
4821 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4822 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4823 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4824 type = "reshape";
4825 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4826 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4827 type = "resync";
4828 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4829 type = "check";
4830 else
4831 type = "repair";
4832 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4833 type = "recover";
4834 else if (mddev->reshape_position != MaxSector)
4835 type = "reshape";
4836 }
4837 return sprintf(page, "%s\n", type);
4838 }
4839
4840 static ssize_t
action_store(struct mddev * mddev,const char * page,size_t len)4841 action_store(struct mddev *mddev, const char *page, size_t len)
4842 {
4843 if (!mddev->pers || !mddev->pers->sync_request)
4844 return -EINVAL;
4845
4846
4847 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4848 if (cmd_match(page, "frozen"))
4849 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4850 else
4851 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4852 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4853 mddev_lock(mddev) == 0) {
4854 if (work_pending(&mddev->del_work))
4855 flush_workqueue(md_misc_wq);
4856 if (mddev->sync_thread) {
4857 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4858 md_reap_sync_thread(mddev);
4859 }
4860 mddev_unlock(mddev);
4861 }
4862 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4863 return -EBUSY;
4864 else if (cmd_match(page, "resync"))
4865 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4866 else if (cmd_match(page, "recover")) {
4867 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4868 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4869 } else if (cmd_match(page, "reshape")) {
4870 int err;
4871 if (mddev->pers->start_reshape == NULL)
4872 return -EINVAL;
4873 err = mddev_lock(mddev);
4874 if (!err) {
4875 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4876 err = -EBUSY;
4877 else {
4878 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4879 err = mddev->pers->start_reshape(mddev);
4880 }
4881 mddev_unlock(mddev);
4882 }
4883 if (err)
4884 return err;
4885 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
4886 } else {
4887 if (cmd_match(page, "check"))
4888 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4889 else if (!cmd_match(page, "repair"))
4890 return -EINVAL;
4891 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4892 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4893 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4894 }
4895 if (mddev->ro == 2) {
4896 /* A write to sync_action is enough to justify
4897 * canceling read-auto mode
4898 */
4899 mddev->ro = 0;
4900 md_wakeup_thread(mddev->sync_thread);
4901 }
4902 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4903 md_wakeup_thread(mddev->thread);
4904 sysfs_notify_dirent_safe(mddev->sysfs_action);
4905 return len;
4906 }
4907
4908 static struct md_sysfs_entry md_scan_mode =
4909 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4910
4911 static ssize_t
last_sync_action_show(struct mddev * mddev,char * page)4912 last_sync_action_show(struct mddev *mddev, char *page)
4913 {
4914 return sprintf(page, "%s\n", mddev->last_sync_action);
4915 }
4916
4917 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4918
4919 static ssize_t
mismatch_cnt_show(struct mddev * mddev,char * page)4920 mismatch_cnt_show(struct mddev *mddev, char *page)
4921 {
4922 return sprintf(page, "%llu\n",
4923 (unsigned long long)
4924 atomic64_read(&mddev->resync_mismatches));
4925 }
4926
4927 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4928
4929 static ssize_t
sync_min_show(struct mddev * mddev,char * page)4930 sync_min_show(struct mddev *mddev, char *page)
4931 {
4932 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4933 mddev->sync_speed_min ? "local": "system");
4934 }
4935
4936 static ssize_t
sync_min_store(struct mddev * mddev,const char * buf,size_t len)4937 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4938 {
4939 unsigned int min;
4940 int rv;
4941
4942 if (strncmp(buf, "system", 6)==0) {
4943 min = 0;
4944 } else {
4945 rv = kstrtouint(buf, 10, &min);
4946 if (rv < 0)
4947 return rv;
4948 if (min == 0)
4949 return -EINVAL;
4950 }
4951 mddev->sync_speed_min = min;
4952 return len;
4953 }
4954
4955 static struct md_sysfs_entry md_sync_min =
4956 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4957
4958 static ssize_t
sync_max_show(struct mddev * mddev,char * page)4959 sync_max_show(struct mddev *mddev, char *page)
4960 {
4961 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4962 mddev->sync_speed_max ? "local": "system");
4963 }
4964
4965 static ssize_t
sync_max_store(struct mddev * mddev,const char * buf,size_t len)4966 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4967 {
4968 unsigned int max;
4969 int rv;
4970
4971 if (strncmp(buf, "system", 6)==0) {
4972 max = 0;
4973 } else {
4974 rv = kstrtouint(buf, 10, &max);
4975 if (rv < 0)
4976 return rv;
4977 if (max == 0)
4978 return -EINVAL;
4979 }
4980 mddev->sync_speed_max = max;
4981 return len;
4982 }
4983
4984 static struct md_sysfs_entry md_sync_max =
4985 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4986
4987 static ssize_t
degraded_show(struct mddev * mddev,char * page)4988 degraded_show(struct mddev *mddev, char *page)
4989 {
4990 return sprintf(page, "%d\n", mddev->degraded);
4991 }
4992 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4993
4994 static ssize_t
sync_force_parallel_show(struct mddev * mddev,char * page)4995 sync_force_parallel_show(struct mddev *mddev, char *page)
4996 {
4997 return sprintf(page, "%d\n", mddev->parallel_resync);
4998 }
4999
5000 static ssize_t
sync_force_parallel_store(struct mddev * mddev,const char * buf,size_t len)5001 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
5002 {
5003 long n;
5004
5005 if (kstrtol(buf, 10, &n))
5006 return -EINVAL;
5007
5008 if (n != 0 && n != 1)
5009 return -EINVAL;
5010
5011 mddev->parallel_resync = n;
5012
5013 if (mddev->sync_thread)
5014 wake_up(&resync_wait);
5015
5016 return len;
5017 }
5018
5019 /* force parallel resync, even with shared block devices */
5020 static struct md_sysfs_entry md_sync_force_parallel =
5021 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
5022 sync_force_parallel_show, sync_force_parallel_store);
5023
5024 static ssize_t
sync_speed_show(struct mddev * mddev,char * page)5025 sync_speed_show(struct mddev *mddev, char *page)
5026 {
5027 unsigned long resync, dt, db;
5028 if (mddev->curr_resync == 0)
5029 return sprintf(page, "none\n");
5030 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
5031 dt = (jiffies - mddev->resync_mark) / HZ;
5032 if (!dt) dt++;
5033 db = resync - mddev->resync_mark_cnt;
5034 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
5035 }
5036
5037 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
5038
5039 static ssize_t
sync_completed_show(struct mddev * mddev,char * page)5040 sync_completed_show(struct mddev *mddev, char *page)
5041 {
5042 unsigned long long max_sectors, resync;
5043
5044 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5045 return sprintf(page, "none\n");
5046
5047 if (mddev->curr_resync == 1 ||
5048 mddev->curr_resync == 2)
5049 return sprintf(page, "delayed\n");
5050
5051 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
5052 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5053 max_sectors = mddev->resync_max_sectors;
5054 else
5055 max_sectors = mddev->dev_sectors;
5056
5057 resync = mddev->curr_resync_completed;
5058 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
5059 }
5060
5061 static struct md_sysfs_entry md_sync_completed =
5062 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
5063
5064 static ssize_t
min_sync_show(struct mddev * mddev,char * page)5065 min_sync_show(struct mddev *mddev, char *page)
5066 {
5067 return sprintf(page, "%llu\n",
5068 (unsigned long long)mddev->resync_min);
5069 }
5070 static ssize_t
min_sync_store(struct mddev * mddev,const char * buf,size_t len)5071 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
5072 {
5073 unsigned long long min;
5074 int err;
5075
5076 if (kstrtoull(buf, 10, &min))
5077 return -EINVAL;
5078
5079 spin_lock(&mddev->lock);
5080 err = -EINVAL;
5081 if (min > mddev->resync_max)
5082 goto out_unlock;
5083
5084 err = -EBUSY;
5085 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5086 goto out_unlock;
5087
5088 /* Round down to multiple of 4K for safety */
5089 mddev->resync_min = round_down(min, 8);
5090 err = 0;
5091
5092 out_unlock:
5093 spin_unlock(&mddev->lock);
5094 return err ?: len;
5095 }
5096
5097 static struct md_sysfs_entry md_min_sync =
5098 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
5099
5100 static ssize_t
max_sync_show(struct mddev * mddev,char * page)5101 max_sync_show(struct mddev *mddev, char *page)
5102 {
5103 if (mddev->resync_max == MaxSector)
5104 return sprintf(page, "max\n");
5105 else
5106 return sprintf(page, "%llu\n",
5107 (unsigned long long)mddev->resync_max);
5108 }
5109 static ssize_t
max_sync_store(struct mddev * mddev,const char * buf,size_t len)5110 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
5111 {
5112 int err;
5113 spin_lock(&mddev->lock);
5114 if (strncmp(buf, "max", 3) == 0)
5115 mddev->resync_max = MaxSector;
5116 else {
5117 unsigned long long max;
5118 int chunk;
5119
5120 err = -EINVAL;
5121 if (kstrtoull(buf, 10, &max))
5122 goto out_unlock;
5123 if (max < mddev->resync_min)
5124 goto out_unlock;
5125
5126 err = -EBUSY;
5127 if (max < mddev->resync_max &&
5128 mddev->ro == 0 &&
5129 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5130 goto out_unlock;
5131
5132 /* Must be a multiple of chunk_size */
5133 chunk = mddev->chunk_sectors;
5134 if (chunk) {
5135 sector_t temp = max;
5136
5137 err = -EINVAL;
5138 if (sector_div(temp, chunk))
5139 goto out_unlock;
5140 }
5141 mddev->resync_max = max;
5142 }
5143 wake_up(&mddev->recovery_wait);
5144 err = 0;
5145 out_unlock:
5146 spin_unlock(&mddev->lock);
5147 return err ?: len;
5148 }
5149
5150 static struct md_sysfs_entry md_max_sync =
5151 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
5152
5153 static ssize_t
suspend_lo_show(struct mddev * mddev,char * page)5154 suspend_lo_show(struct mddev *mddev, char *page)
5155 {
5156 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
5157 }
5158
5159 static ssize_t
suspend_lo_store(struct mddev * mddev,const char * buf,size_t len)5160 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
5161 {
5162 unsigned long long new;
5163 int err;
5164
5165 err = kstrtoull(buf, 10, &new);
5166 if (err < 0)
5167 return err;
5168 if (new != (sector_t)new)
5169 return -EINVAL;
5170
5171 err = mddev_lock(mddev);
5172 if (err)
5173 return err;
5174 err = -EINVAL;
5175 if (mddev->pers == NULL ||
5176 mddev->pers->quiesce == NULL)
5177 goto unlock;
5178 mddev_suspend(mddev);
5179 mddev->suspend_lo = new;
5180 mddev_resume(mddev);
5181
5182 err = 0;
5183 unlock:
5184 mddev_unlock(mddev);
5185 return err ?: len;
5186 }
5187 static struct md_sysfs_entry md_suspend_lo =
5188 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
5189
5190 static ssize_t
suspend_hi_show(struct mddev * mddev,char * page)5191 suspend_hi_show(struct mddev *mddev, char *page)
5192 {
5193 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
5194 }
5195
5196 static ssize_t
suspend_hi_store(struct mddev * mddev,const char * buf,size_t len)5197 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
5198 {
5199 unsigned long long new;
5200 int err;
5201
5202 err = kstrtoull(buf, 10, &new);
5203 if (err < 0)
5204 return err;
5205 if (new != (sector_t)new)
5206 return -EINVAL;
5207
5208 err = mddev_lock(mddev);
5209 if (err)
5210 return err;
5211 err = -EINVAL;
5212 if (mddev->pers == NULL)
5213 goto unlock;
5214
5215 mddev_suspend(mddev);
5216 mddev->suspend_hi = new;
5217 mddev_resume(mddev);
5218
5219 err = 0;
5220 unlock:
5221 mddev_unlock(mddev);
5222 return err ?: len;
5223 }
5224 static struct md_sysfs_entry md_suspend_hi =
5225 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
5226
5227 static ssize_t
reshape_position_show(struct mddev * mddev,char * page)5228 reshape_position_show(struct mddev *mddev, char *page)
5229 {
5230 if (mddev->reshape_position != MaxSector)
5231 return sprintf(page, "%llu\n",
5232 (unsigned long long)mddev->reshape_position);
5233 strcpy(page, "none\n");
5234 return 5;
5235 }
5236
5237 static ssize_t
reshape_position_store(struct mddev * mddev,const char * buf,size_t len)5238 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
5239 {
5240 struct md_rdev *rdev;
5241 unsigned long long new;
5242 int err;
5243
5244 err = kstrtoull(buf, 10, &new);
5245 if (err < 0)
5246 return err;
5247 if (new != (sector_t)new)
5248 return -EINVAL;
5249 err = mddev_lock(mddev);
5250 if (err)
5251 return err;
5252 err = -EBUSY;
5253 if (mddev->pers)
5254 goto unlock;
5255 mddev->reshape_position = new;
5256 mddev->delta_disks = 0;
5257 mddev->reshape_backwards = 0;
5258 mddev->new_level = mddev->level;
5259 mddev->new_layout = mddev->layout;
5260 mddev->new_chunk_sectors = mddev->chunk_sectors;
5261 rdev_for_each(rdev, mddev)
5262 rdev->new_data_offset = rdev->data_offset;
5263 err = 0;
5264 unlock:
5265 mddev_unlock(mddev);
5266 return err ?: len;
5267 }
5268
5269 static struct md_sysfs_entry md_reshape_position =
5270 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
5271 reshape_position_store);
5272
5273 static ssize_t
reshape_direction_show(struct mddev * mddev,char * page)5274 reshape_direction_show(struct mddev *mddev, char *page)
5275 {
5276 return sprintf(page, "%s\n",
5277 mddev->reshape_backwards ? "backwards" : "forwards");
5278 }
5279
5280 static ssize_t
reshape_direction_store(struct mddev * mddev,const char * buf,size_t len)5281 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
5282 {
5283 int backwards = 0;
5284 int err;
5285
5286 if (cmd_match(buf, "forwards"))
5287 backwards = 0;
5288 else if (cmd_match(buf, "backwards"))
5289 backwards = 1;
5290 else
5291 return -EINVAL;
5292 if (mddev->reshape_backwards == backwards)
5293 return len;
5294
5295 err = mddev_lock(mddev);
5296 if (err)
5297 return err;
5298 /* check if we are allowed to change */
5299 if (mddev->delta_disks)
5300 err = -EBUSY;
5301 else if (mddev->persistent &&
5302 mddev->major_version == 0)
5303 err = -EINVAL;
5304 else
5305 mddev->reshape_backwards = backwards;
5306 mddev_unlock(mddev);
5307 return err ?: len;
5308 }
5309
5310 static struct md_sysfs_entry md_reshape_direction =
5311 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5312 reshape_direction_store);
5313
5314 static ssize_t
array_size_show(struct mddev * mddev,char * page)5315 array_size_show(struct mddev *mddev, char *page)
5316 {
5317 if (mddev->external_size)
5318 return sprintf(page, "%llu\n",
5319 (unsigned long long)mddev->array_sectors/2);
5320 else
5321 return sprintf(page, "default\n");
5322 }
5323
5324 static ssize_t
array_size_store(struct mddev * mddev,const char * buf,size_t len)5325 array_size_store(struct mddev *mddev, const char *buf, size_t len)
5326 {
5327 sector_t sectors;
5328 int err;
5329
5330 err = mddev_lock(mddev);
5331 if (err)
5332 return err;
5333
5334 /* cluster raid doesn't support change array_sectors */
5335 if (mddev_is_clustered(mddev)) {
5336 mddev_unlock(mddev);
5337 return -EINVAL;
5338 }
5339
5340 if (strncmp(buf, "default", 7) == 0) {
5341 if (mddev->pers)
5342 sectors = mddev->pers->size(mddev, 0, 0);
5343 else
5344 sectors = mddev->array_sectors;
5345
5346 mddev->external_size = 0;
5347 } else {
5348 if (strict_blocks_to_sectors(buf, §ors) < 0)
5349 err = -EINVAL;
5350 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5351 err = -E2BIG;
5352 else
5353 mddev->external_size = 1;
5354 }
5355
5356 if (!err) {
5357 mddev->array_sectors = sectors;
5358 if (mddev->pers) {
5359 set_capacity(mddev->gendisk, mddev->array_sectors);
5360 revalidate_disk_size(mddev->gendisk, true);
5361 }
5362 }
5363 mddev_unlock(mddev);
5364 return err ?: len;
5365 }
5366
5367 static struct md_sysfs_entry md_array_size =
5368 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5369 array_size_store);
5370
5371 static ssize_t
consistency_policy_show(struct mddev * mddev,char * page)5372 consistency_policy_show(struct mddev *mddev, char *page)
5373 {
5374 int ret;
5375
5376 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5377 ret = sprintf(page, "journal\n");
5378 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5379 ret = sprintf(page, "ppl\n");
5380 } else if (mddev->bitmap) {
5381 ret = sprintf(page, "bitmap\n");
5382 } else if (mddev->pers) {
5383 if (mddev->pers->sync_request)
5384 ret = sprintf(page, "resync\n");
5385 else
5386 ret = sprintf(page, "none\n");
5387 } else {
5388 ret = sprintf(page, "unknown\n");
5389 }
5390
5391 return ret;
5392 }
5393
5394 static ssize_t
consistency_policy_store(struct mddev * mddev,const char * buf,size_t len)5395 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5396 {
5397 int err = 0;
5398
5399 if (mddev->pers) {
5400 if (mddev->pers->change_consistency_policy)
5401 err = mddev->pers->change_consistency_policy(mddev, buf);
5402 else
5403 err = -EBUSY;
5404 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5405 set_bit(MD_HAS_PPL, &mddev->flags);
5406 } else {
5407 err = -EINVAL;
5408 }
5409
5410 return err ? err : len;
5411 }
5412
5413 static struct md_sysfs_entry md_consistency_policy =
5414 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5415 consistency_policy_store);
5416
fail_last_dev_show(struct mddev * mddev,char * page)5417 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page)
5418 {
5419 return sprintf(page, "%d\n", mddev->fail_last_dev);
5420 }
5421
5422 /*
5423 * Setting fail_last_dev to true to allow last device to be forcibly removed
5424 * from RAID1/RAID10.
5425 */
5426 static ssize_t
fail_last_dev_store(struct mddev * mddev,const char * buf,size_t len)5427 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len)
5428 {
5429 int ret;
5430 bool value;
5431
5432 ret = kstrtobool(buf, &value);
5433 if (ret)
5434 return ret;
5435
5436 if (value != mddev->fail_last_dev)
5437 mddev->fail_last_dev = value;
5438
5439 return len;
5440 }
5441 static struct md_sysfs_entry md_fail_last_dev =
5442 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show,
5443 fail_last_dev_store);
5444
serialize_policy_show(struct mddev * mddev,char * page)5445 static ssize_t serialize_policy_show(struct mddev *mddev, char *page)
5446 {
5447 if (mddev->pers == NULL || (mddev->pers->level != 1))
5448 return sprintf(page, "n/a\n");
5449 else
5450 return sprintf(page, "%d\n", mddev->serialize_policy);
5451 }
5452
5453 /*
5454 * Setting serialize_policy to true to enforce write IO is not reordered
5455 * for raid1.
5456 */
5457 static ssize_t
serialize_policy_store(struct mddev * mddev,const char * buf,size_t len)5458 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len)
5459 {
5460 int err;
5461 bool value;
5462
5463 err = kstrtobool(buf, &value);
5464 if (err)
5465 return err;
5466
5467 if (value == mddev->serialize_policy)
5468 return len;
5469
5470 err = mddev_lock(mddev);
5471 if (err)
5472 return err;
5473 if (mddev->pers == NULL || (mddev->pers->level != 1)) {
5474 pr_err("md: serialize_policy is only effective for raid1\n");
5475 err = -EINVAL;
5476 goto unlock;
5477 }
5478
5479 mddev_suspend(mddev);
5480 if (value)
5481 mddev_create_serial_pool(mddev, NULL, true);
5482 else
5483 mddev_destroy_serial_pool(mddev, NULL, true);
5484 mddev->serialize_policy = value;
5485 mddev_resume(mddev);
5486 unlock:
5487 mddev_unlock(mddev);
5488 return err ?: len;
5489 }
5490
5491 static struct md_sysfs_entry md_serialize_policy =
5492 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
5493 serialize_policy_store);
5494
5495
5496 static struct attribute *md_default_attrs[] = {
5497 &md_level.attr,
5498 &md_layout.attr,
5499 &md_raid_disks.attr,
5500 &md_uuid.attr,
5501 &md_chunk_size.attr,
5502 &md_size.attr,
5503 &md_resync_start.attr,
5504 &md_metadata.attr,
5505 &md_new_device.attr,
5506 &md_safe_delay.attr,
5507 &md_array_state.attr,
5508 &md_reshape_position.attr,
5509 &md_reshape_direction.attr,
5510 &md_array_size.attr,
5511 &max_corr_read_errors.attr,
5512 &md_consistency_policy.attr,
5513 &md_fail_last_dev.attr,
5514 &md_serialize_policy.attr,
5515 NULL,
5516 };
5517
5518 static struct attribute *md_redundancy_attrs[] = {
5519 &md_scan_mode.attr,
5520 &md_last_scan_mode.attr,
5521 &md_mismatches.attr,
5522 &md_sync_min.attr,
5523 &md_sync_max.attr,
5524 &md_sync_speed.attr,
5525 &md_sync_force_parallel.attr,
5526 &md_sync_completed.attr,
5527 &md_min_sync.attr,
5528 &md_max_sync.attr,
5529 &md_suspend_lo.attr,
5530 &md_suspend_hi.attr,
5531 &md_bitmap.attr,
5532 &md_degraded.attr,
5533 NULL,
5534 };
5535 static struct attribute_group md_redundancy_group = {
5536 .name = NULL,
5537 .attrs = md_redundancy_attrs,
5538 };
5539
5540 static ssize_t
md_attr_show(struct kobject * kobj,struct attribute * attr,char * page)5541 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5542 {
5543 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5544 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5545 ssize_t rv;
5546
5547 if (!entry->show)
5548 return -EIO;
5549 spin_lock(&all_mddevs_lock);
5550 if (list_empty(&mddev->all_mddevs)) {
5551 spin_unlock(&all_mddevs_lock);
5552 return -EBUSY;
5553 }
5554 mddev_get(mddev);
5555 spin_unlock(&all_mddevs_lock);
5556
5557 rv = entry->show(mddev, page);
5558 mddev_put(mddev);
5559 return rv;
5560 }
5561
5562 static ssize_t
md_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)5563 md_attr_store(struct kobject *kobj, struct attribute *attr,
5564 const char *page, size_t length)
5565 {
5566 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5567 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5568 ssize_t rv;
5569
5570 if (!entry->store)
5571 return -EIO;
5572 if (!capable(CAP_SYS_ADMIN))
5573 return -EACCES;
5574 spin_lock(&all_mddevs_lock);
5575 if (list_empty(&mddev->all_mddevs)) {
5576 spin_unlock(&all_mddevs_lock);
5577 return -EBUSY;
5578 }
5579 mddev_get(mddev);
5580 spin_unlock(&all_mddevs_lock);
5581 rv = entry->store(mddev, page, length);
5582 mddev_put(mddev);
5583 return rv;
5584 }
5585
md_free(struct kobject * ko)5586 static void md_free(struct kobject *ko)
5587 {
5588 struct mddev *mddev = container_of(ko, struct mddev, kobj);
5589
5590 if (mddev->sysfs_state)
5591 sysfs_put(mddev->sysfs_state);
5592 if (mddev->sysfs_level)
5593 sysfs_put(mddev->sysfs_level);
5594
5595 if (mddev->gendisk)
5596 del_gendisk(mddev->gendisk);
5597 if (mddev->queue)
5598 blk_cleanup_queue(mddev->queue);
5599 if (mddev->gendisk)
5600 put_disk(mddev->gendisk);
5601 percpu_ref_exit(&mddev->writes_pending);
5602
5603 bioset_exit(&mddev->bio_set);
5604 bioset_exit(&mddev->sync_set);
5605 kfree(mddev);
5606 }
5607
5608 static const struct sysfs_ops md_sysfs_ops = {
5609 .show = md_attr_show,
5610 .store = md_attr_store,
5611 };
5612 static struct kobj_type md_ktype = {
5613 .release = md_free,
5614 .sysfs_ops = &md_sysfs_ops,
5615 .default_attrs = md_default_attrs,
5616 };
5617
5618 int mdp_major = 0;
5619
mddev_delayed_delete(struct work_struct * ws)5620 static void mddev_delayed_delete(struct work_struct *ws)
5621 {
5622 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5623
5624 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
5625 kobject_del(&mddev->kobj);
5626 kobject_put(&mddev->kobj);
5627 }
5628
no_op(struct percpu_ref * r)5629 static void no_op(struct percpu_ref *r) {}
5630
mddev_init_writes_pending(struct mddev * mddev)5631 int mddev_init_writes_pending(struct mddev *mddev)
5632 {
5633 if (mddev->writes_pending.percpu_count_ptr)
5634 return 0;
5635 if (percpu_ref_init(&mddev->writes_pending, no_op,
5636 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0)
5637 return -ENOMEM;
5638 /* We want to start with the refcount at zero */
5639 percpu_ref_put(&mddev->writes_pending);
5640 return 0;
5641 }
5642 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5643
md_alloc(dev_t dev,char * name)5644 static int md_alloc(dev_t dev, char *name)
5645 {
5646 /*
5647 * If dev is zero, name is the name of a device to allocate with
5648 * an arbitrary minor number. It will be "md_???"
5649 * If dev is non-zero it must be a device number with a MAJOR of
5650 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
5651 * the device is being created by opening a node in /dev.
5652 * If "name" is not NULL, the device is being created by
5653 * writing to /sys/module/md_mod/parameters/new_array.
5654 */
5655 static DEFINE_MUTEX(disks_mutex);
5656 struct mddev *mddev = mddev_find_or_alloc(dev);
5657 struct gendisk *disk;
5658 int partitioned;
5659 int shift;
5660 int unit;
5661 int error;
5662
5663 if (!mddev)
5664 return -ENODEV;
5665
5666 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5667 shift = partitioned ? MdpMinorShift : 0;
5668 unit = MINOR(mddev->unit) >> shift;
5669
5670 /* wait for any previous instance of this device to be
5671 * completely removed (mddev_delayed_delete).
5672 */
5673 flush_workqueue(md_misc_wq);
5674
5675 mutex_lock(&disks_mutex);
5676 error = -EEXIST;
5677 if (mddev->gendisk)
5678 goto abort;
5679
5680 if (name && !dev) {
5681 /* Need to ensure that 'name' is not a duplicate.
5682 */
5683 struct mddev *mddev2;
5684 spin_lock(&all_mddevs_lock);
5685
5686 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5687 if (mddev2->gendisk &&
5688 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5689 spin_unlock(&all_mddevs_lock);
5690 goto abort;
5691 }
5692 spin_unlock(&all_mddevs_lock);
5693 }
5694 if (name && dev)
5695 /*
5696 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5697 */
5698 mddev->hold_active = UNTIL_STOP;
5699
5700 error = -ENOMEM;
5701 mddev->queue = blk_alloc_queue(NUMA_NO_NODE);
5702 if (!mddev->queue)
5703 goto abort;
5704
5705 blk_set_stacking_limits(&mddev->queue->limits);
5706
5707 disk = alloc_disk(1 << shift);
5708 if (!disk) {
5709 blk_cleanup_queue(mddev->queue);
5710 mddev->queue = NULL;
5711 goto abort;
5712 }
5713 disk->major = MAJOR(mddev->unit);
5714 disk->first_minor = unit << shift;
5715 if (name)
5716 strcpy(disk->disk_name, name);
5717 else if (partitioned)
5718 sprintf(disk->disk_name, "md_d%d", unit);
5719 else
5720 sprintf(disk->disk_name, "md%d", unit);
5721 disk->fops = &md_fops;
5722 disk->private_data = mddev;
5723 disk->queue = mddev->queue;
5724 blk_queue_write_cache(mddev->queue, true, true);
5725 /* Allow extended partitions. This makes the
5726 * 'mdp' device redundant, but we can't really
5727 * remove it now.
5728 */
5729 disk->flags |= GENHD_FL_EXT_DEVT;
5730 disk->events |= DISK_EVENT_MEDIA_CHANGE;
5731 mddev->gendisk = disk;
5732 add_disk(disk);
5733
5734 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
5735 if (error) {
5736 /* This isn't possible, but as kobject_init_and_add is marked
5737 * __must_check, we must do something with the result
5738 */
5739 pr_debug("md: cannot register %s/md - name in use\n",
5740 disk->disk_name);
5741 error = 0;
5742 }
5743 if (mddev->kobj.sd &&
5744 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5745 pr_debug("pointless warning\n");
5746 abort:
5747 mutex_unlock(&disks_mutex);
5748 if (!error && mddev->kobj.sd) {
5749 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5750 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5751 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level");
5752 }
5753 mddev_put(mddev);
5754 return error;
5755 }
5756
md_probe(dev_t dev,int * part,void * data)5757 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5758 {
5759 if (create_on_open)
5760 md_alloc(dev, NULL);
5761 return NULL;
5762 }
5763
add_named_array(const char * val,const struct kernel_param * kp)5764 static int add_named_array(const char *val, const struct kernel_param *kp)
5765 {
5766 /*
5767 * val must be "md_*" or "mdNNN".
5768 * For "md_*" we allocate an array with a large free minor number, and
5769 * set the name to val. val must not already be an active name.
5770 * For "mdNNN" we allocate an array with the minor number NNN
5771 * which must not already be in use.
5772 */
5773 int len = strlen(val);
5774 char buf[DISK_NAME_LEN];
5775 unsigned long devnum;
5776
5777 while (len && val[len-1] == '\n')
5778 len--;
5779 if (len >= DISK_NAME_LEN)
5780 return -E2BIG;
5781 strlcpy(buf, val, len+1);
5782 if (strncmp(buf, "md_", 3) == 0)
5783 return md_alloc(0, buf);
5784 if (strncmp(buf, "md", 2) == 0 &&
5785 isdigit(buf[2]) &&
5786 kstrtoul(buf+2, 10, &devnum) == 0 &&
5787 devnum <= MINORMASK)
5788 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
5789
5790 return -EINVAL;
5791 }
5792
md_safemode_timeout(struct timer_list * t)5793 static void md_safemode_timeout(struct timer_list *t)
5794 {
5795 struct mddev *mddev = from_timer(mddev, t, safemode_timer);
5796
5797 mddev->safemode = 1;
5798 if (mddev->external)
5799 sysfs_notify_dirent_safe(mddev->sysfs_state);
5800
5801 md_wakeup_thread(mddev->thread);
5802 }
5803
5804 static int start_dirty_degraded;
5805
md_run(struct mddev * mddev)5806 int md_run(struct mddev *mddev)
5807 {
5808 int err;
5809 struct md_rdev *rdev;
5810 struct md_personality *pers;
5811
5812 if (list_empty(&mddev->disks))
5813 /* cannot run an array with no devices.. */
5814 return -EINVAL;
5815
5816 if (mddev->pers)
5817 return -EBUSY;
5818 /* Cannot run until previous stop completes properly */
5819 if (mddev->sysfs_active)
5820 return -EBUSY;
5821
5822 /*
5823 * Analyze all RAID superblock(s)
5824 */
5825 if (!mddev->raid_disks) {
5826 if (!mddev->persistent)
5827 return -EINVAL;
5828 err = analyze_sbs(mddev);
5829 if (err)
5830 return -EINVAL;
5831 }
5832
5833 if (mddev->level != LEVEL_NONE)
5834 request_module("md-level-%d", mddev->level);
5835 else if (mddev->clevel[0])
5836 request_module("md-%s", mddev->clevel);
5837
5838 /*
5839 * Drop all container device buffers, from now on
5840 * the only valid external interface is through the md
5841 * device.
5842 */
5843 mddev->has_superblocks = false;
5844 rdev_for_each(rdev, mddev) {
5845 if (test_bit(Faulty, &rdev->flags))
5846 continue;
5847 sync_blockdev(rdev->bdev);
5848 invalidate_bdev(rdev->bdev);
5849 if (mddev->ro != 1 &&
5850 (bdev_read_only(rdev->bdev) ||
5851 bdev_read_only(rdev->meta_bdev))) {
5852 mddev->ro = 1;
5853 if (mddev->gendisk)
5854 set_disk_ro(mddev->gendisk, 1);
5855 }
5856
5857 if (rdev->sb_page)
5858 mddev->has_superblocks = true;
5859
5860 /* perform some consistency tests on the device.
5861 * We don't want the data to overlap the metadata,
5862 * Internal Bitmap issues have been handled elsewhere.
5863 */
5864 if (rdev->meta_bdev) {
5865 /* Nothing to check */;
5866 } else if (rdev->data_offset < rdev->sb_start) {
5867 if (mddev->dev_sectors &&
5868 rdev->data_offset + mddev->dev_sectors
5869 > rdev->sb_start) {
5870 pr_warn("md: %s: data overlaps metadata\n",
5871 mdname(mddev));
5872 return -EINVAL;
5873 }
5874 } else {
5875 if (rdev->sb_start + rdev->sb_size/512
5876 > rdev->data_offset) {
5877 pr_warn("md: %s: metadata overlaps data\n",
5878 mdname(mddev));
5879 return -EINVAL;
5880 }
5881 }
5882 sysfs_notify_dirent_safe(rdev->sysfs_state);
5883 }
5884
5885 if (!bioset_initialized(&mddev->bio_set)) {
5886 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5887 if (err)
5888 return err;
5889 }
5890 if (!bioset_initialized(&mddev->sync_set)) {
5891 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5892 if (err)
5893 return err;
5894 }
5895
5896 spin_lock(&pers_lock);
5897 pers = find_pers(mddev->level, mddev->clevel);
5898 if (!pers || !try_module_get(pers->owner)) {
5899 spin_unlock(&pers_lock);
5900 if (mddev->level != LEVEL_NONE)
5901 pr_warn("md: personality for level %d is not loaded!\n",
5902 mddev->level);
5903 else
5904 pr_warn("md: personality for level %s is not loaded!\n",
5905 mddev->clevel);
5906 err = -EINVAL;
5907 goto abort;
5908 }
5909 spin_unlock(&pers_lock);
5910 if (mddev->level != pers->level) {
5911 mddev->level = pers->level;
5912 mddev->new_level = pers->level;
5913 }
5914 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5915
5916 if (mddev->reshape_position != MaxSector &&
5917 pers->start_reshape == NULL) {
5918 /* This personality cannot handle reshaping... */
5919 module_put(pers->owner);
5920 err = -EINVAL;
5921 goto abort;
5922 }
5923
5924 if (pers->sync_request) {
5925 /* Warn if this is a potentially silly
5926 * configuration.
5927 */
5928 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5929 struct md_rdev *rdev2;
5930 int warned = 0;
5931
5932 rdev_for_each(rdev, mddev)
5933 rdev_for_each(rdev2, mddev) {
5934 if (rdev < rdev2 &&
5935 rdev->bdev->bd_disk ==
5936 rdev2->bdev->bd_disk) {
5937 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
5938 mdname(mddev),
5939 bdevname(rdev->bdev,b),
5940 bdevname(rdev2->bdev,b2));
5941 warned = 1;
5942 }
5943 }
5944
5945 if (warned)
5946 pr_warn("True protection against single-disk failure might be compromised.\n");
5947 }
5948
5949 mddev->recovery = 0;
5950 /* may be over-ridden by personality */
5951 mddev->resync_max_sectors = mddev->dev_sectors;
5952
5953 mddev->ok_start_degraded = start_dirty_degraded;
5954
5955 if (start_readonly && mddev->ro == 0)
5956 mddev->ro = 2; /* read-only, but switch on first write */
5957
5958 err = pers->run(mddev);
5959 if (err)
5960 pr_warn("md: pers->run() failed ...\n");
5961 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5962 WARN_ONCE(!mddev->external_size,
5963 "%s: default size too small, but 'external_size' not in effect?\n",
5964 __func__);
5965 pr_warn("md: invalid array_size %llu > default size %llu\n",
5966 (unsigned long long)mddev->array_sectors / 2,
5967 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5968 err = -EINVAL;
5969 }
5970 if (err == 0 && pers->sync_request &&
5971 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5972 struct bitmap *bitmap;
5973
5974 bitmap = md_bitmap_create(mddev, -1);
5975 if (IS_ERR(bitmap)) {
5976 err = PTR_ERR(bitmap);
5977 pr_warn("%s: failed to create bitmap (%d)\n",
5978 mdname(mddev), err);
5979 } else
5980 mddev->bitmap = bitmap;
5981
5982 }
5983 if (err)
5984 goto bitmap_abort;
5985
5986 if (mddev->bitmap_info.max_write_behind > 0) {
5987 bool create_pool = false;
5988
5989 rdev_for_each(rdev, mddev) {
5990 if (test_bit(WriteMostly, &rdev->flags) &&
5991 rdev_init_serial(rdev))
5992 create_pool = true;
5993 }
5994 if (create_pool && mddev->serial_info_pool == NULL) {
5995 mddev->serial_info_pool =
5996 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
5997 sizeof(struct serial_info));
5998 if (!mddev->serial_info_pool) {
5999 err = -ENOMEM;
6000 goto bitmap_abort;
6001 }
6002 }
6003 }
6004
6005 if (mddev->queue) {
6006 bool nonrot = true;
6007
6008 rdev_for_each(rdev, mddev) {
6009 if (rdev->raid_disk >= 0 &&
6010 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6011 nonrot = false;
6012 break;
6013 }
6014 }
6015 if (mddev->degraded)
6016 nonrot = false;
6017 if (nonrot)
6018 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
6019 else
6020 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
6021 }
6022 if (pers->sync_request) {
6023 if (mddev->kobj.sd &&
6024 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
6025 pr_warn("md: cannot register extra attributes for %s\n",
6026 mdname(mddev));
6027 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
6028 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
6029 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
6030 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
6031 mddev->ro = 0;
6032
6033 atomic_set(&mddev->max_corr_read_errors,
6034 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
6035 mddev->safemode = 0;
6036 if (mddev_is_clustered(mddev))
6037 mddev->safemode_delay = 0;
6038 else
6039 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
6040 mddev->in_sync = 1;
6041 smp_wmb();
6042 spin_lock(&mddev->lock);
6043 mddev->pers = pers;
6044 spin_unlock(&mddev->lock);
6045 rdev_for_each(rdev, mddev)
6046 if (rdev->raid_disk >= 0)
6047 sysfs_link_rdev(mddev, rdev); /* failure here is OK */
6048
6049 if (mddev->degraded && !mddev->ro)
6050 /* This ensures that recovering status is reported immediately
6051 * via sysfs - until a lack of spares is confirmed.
6052 */
6053 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6054 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6055
6056 if (mddev->sb_flags)
6057 md_update_sb(mddev, 0);
6058
6059 md_new_event(mddev);
6060 return 0;
6061
6062 bitmap_abort:
6063 mddev_detach(mddev);
6064 if (mddev->private)
6065 pers->free(mddev, mddev->private);
6066 mddev->private = NULL;
6067 module_put(pers->owner);
6068 md_bitmap_destroy(mddev);
6069 abort:
6070 bioset_exit(&mddev->bio_set);
6071 bioset_exit(&mddev->sync_set);
6072 return err;
6073 }
6074 EXPORT_SYMBOL_GPL(md_run);
6075
do_md_run(struct mddev * mddev)6076 int do_md_run(struct mddev *mddev)
6077 {
6078 int err;
6079
6080 set_bit(MD_NOT_READY, &mddev->flags);
6081 err = md_run(mddev);
6082 if (err)
6083 goto out;
6084 err = md_bitmap_load(mddev);
6085 if (err) {
6086 md_bitmap_destroy(mddev);
6087 goto out;
6088 }
6089
6090 if (mddev_is_clustered(mddev))
6091 md_allow_write(mddev);
6092
6093 /* run start up tasks that require md_thread */
6094 md_start(mddev);
6095
6096 md_wakeup_thread(mddev->thread);
6097 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
6098
6099 set_capacity(mddev->gendisk, mddev->array_sectors);
6100 revalidate_disk_size(mddev->gendisk, true);
6101 clear_bit(MD_NOT_READY, &mddev->flags);
6102 mddev->changed = 1;
6103 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
6104 sysfs_notify_dirent_safe(mddev->sysfs_state);
6105 sysfs_notify_dirent_safe(mddev->sysfs_action);
6106 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
6107 out:
6108 clear_bit(MD_NOT_READY, &mddev->flags);
6109 return err;
6110 }
6111
md_start(struct mddev * mddev)6112 int md_start(struct mddev *mddev)
6113 {
6114 int ret = 0;
6115
6116 if (mddev->pers->start) {
6117 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6118 md_wakeup_thread(mddev->thread);
6119 ret = mddev->pers->start(mddev);
6120 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6121 md_wakeup_thread(mddev->sync_thread);
6122 }
6123 return ret;
6124 }
6125 EXPORT_SYMBOL_GPL(md_start);
6126
restart_array(struct mddev * mddev)6127 static int restart_array(struct mddev *mddev)
6128 {
6129 struct gendisk *disk = mddev->gendisk;
6130 struct md_rdev *rdev;
6131 bool has_journal = false;
6132 bool has_readonly = false;
6133
6134 /* Complain if it has no devices */
6135 if (list_empty(&mddev->disks))
6136 return -ENXIO;
6137 if (!mddev->pers)
6138 return -EINVAL;
6139 if (!mddev->ro)
6140 return -EBUSY;
6141
6142 rcu_read_lock();
6143 rdev_for_each_rcu(rdev, mddev) {
6144 if (test_bit(Journal, &rdev->flags) &&
6145 !test_bit(Faulty, &rdev->flags))
6146 has_journal = true;
6147 if (bdev_read_only(rdev->bdev))
6148 has_readonly = true;
6149 }
6150 rcu_read_unlock();
6151 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
6152 /* Don't restart rw with journal missing/faulty */
6153 return -EINVAL;
6154 if (has_readonly)
6155 return -EROFS;
6156
6157 mddev->safemode = 0;
6158 mddev->ro = 0;
6159 set_disk_ro(disk, 0);
6160 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
6161 /* Kick recovery or resync if necessary */
6162 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6163 md_wakeup_thread(mddev->thread);
6164 md_wakeup_thread(mddev->sync_thread);
6165 sysfs_notify_dirent_safe(mddev->sysfs_state);
6166 return 0;
6167 }
6168
md_clean(struct mddev * mddev)6169 static void md_clean(struct mddev *mddev)
6170 {
6171 mddev->array_sectors = 0;
6172 mddev->external_size = 0;
6173 mddev->dev_sectors = 0;
6174 mddev->raid_disks = 0;
6175 mddev->recovery_cp = 0;
6176 mddev->resync_min = 0;
6177 mddev->resync_max = MaxSector;
6178 mddev->reshape_position = MaxSector;
6179 mddev->external = 0;
6180 mddev->persistent = 0;
6181 mddev->level = LEVEL_NONE;
6182 mddev->clevel[0] = 0;
6183 mddev->flags = 0;
6184 mddev->sb_flags = 0;
6185 mddev->ro = 0;
6186 mddev->metadata_type[0] = 0;
6187 mddev->chunk_sectors = 0;
6188 mddev->ctime = mddev->utime = 0;
6189 mddev->layout = 0;
6190 mddev->max_disks = 0;
6191 mddev->events = 0;
6192 mddev->can_decrease_events = 0;
6193 mddev->delta_disks = 0;
6194 mddev->reshape_backwards = 0;
6195 mddev->new_level = LEVEL_NONE;
6196 mddev->new_layout = 0;
6197 mddev->new_chunk_sectors = 0;
6198 mddev->curr_resync = 0;
6199 atomic64_set(&mddev->resync_mismatches, 0);
6200 mddev->suspend_lo = mddev->suspend_hi = 0;
6201 mddev->sync_speed_min = mddev->sync_speed_max = 0;
6202 mddev->recovery = 0;
6203 mddev->in_sync = 0;
6204 mddev->changed = 0;
6205 mddev->degraded = 0;
6206 mddev->safemode = 0;
6207 mddev->private = NULL;
6208 mddev->cluster_info = NULL;
6209 mddev->bitmap_info.offset = 0;
6210 mddev->bitmap_info.default_offset = 0;
6211 mddev->bitmap_info.default_space = 0;
6212 mddev->bitmap_info.chunksize = 0;
6213 mddev->bitmap_info.daemon_sleep = 0;
6214 mddev->bitmap_info.max_write_behind = 0;
6215 mddev->bitmap_info.nodes = 0;
6216 }
6217
__md_stop_writes(struct mddev * mddev)6218 static void __md_stop_writes(struct mddev *mddev)
6219 {
6220 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6221 if (work_pending(&mddev->del_work))
6222 flush_workqueue(md_misc_wq);
6223 if (mddev->sync_thread) {
6224 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6225 md_reap_sync_thread(mddev);
6226 }
6227
6228 del_timer_sync(&mddev->safemode_timer);
6229
6230 if (mddev->pers && mddev->pers->quiesce) {
6231 mddev->pers->quiesce(mddev, 1);
6232 mddev->pers->quiesce(mddev, 0);
6233 }
6234 md_bitmap_flush(mddev);
6235
6236 if (mddev->ro == 0 &&
6237 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
6238 mddev->sb_flags)) {
6239 /* mark array as shutdown cleanly */
6240 if (!mddev_is_clustered(mddev))
6241 mddev->in_sync = 1;
6242 md_update_sb(mddev, 1);
6243 }
6244 /* disable policy to guarantee rdevs free resources for serialization */
6245 mddev->serialize_policy = 0;
6246 mddev_destroy_serial_pool(mddev, NULL, true);
6247 }
6248
md_stop_writes(struct mddev * mddev)6249 void md_stop_writes(struct mddev *mddev)
6250 {
6251 mddev_lock_nointr(mddev);
6252 __md_stop_writes(mddev);
6253 mddev_unlock(mddev);
6254 }
6255 EXPORT_SYMBOL_GPL(md_stop_writes);
6256
mddev_detach(struct mddev * mddev)6257 static void mddev_detach(struct mddev *mddev)
6258 {
6259 md_bitmap_wait_behind_writes(mddev);
6260 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) {
6261 mddev->pers->quiesce(mddev, 1);
6262 mddev->pers->quiesce(mddev, 0);
6263 }
6264 md_unregister_thread(&mddev->thread);
6265 if (mddev->queue)
6266 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
6267 }
6268
__md_stop(struct mddev * mddev)6269 static void __md_stop(struct mddev *mddev)
6270 {
6271 struct md_personality *pers = mddev->pers;
6272 md_bitmap_destroy(mddev);
6273 mddev_detach(mddev);
6274 /* Ensure ->event_work is done */
6275 if (mddev->event_work.func)
6276 flush_workqueue(md_misc_wq);
6277 spin_lock(&mddev->lock);
6278 mddev->pers = NULL;
6279 spin_unlock(&mddev->lock);
6280 pers->free(mddev, mddev->private);
6281 mddev->private = NULL;
6282 if (pers->sync_request && mddev->to_remove == NULL)
6283 mddev->to_remove = &md_redundancy_group;
6284 module_put(pers->owner);
6285 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6286 }
6287
md_stop(struct mddev * mddev)6288 void md_stop(struct mddev *mddev)
6289 {
6290 /* stop the array and free an attached data structures.
6291 * This is called from dm-raid
6292 */
6293 __md_stop_writes(mddev);
6294 __md_stop(mddev);
6295 bioset_exit(&mddev->bio_set);
6296 bioset_exit(&mddev->sync_set);
6297 }
6298
6299 EXPORT_SYMBOL_GPL(md_stop);
6300
md_set_readonly(struct mddev * mddev,struct block_device * bdev)6301 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
6302 {
6303 int err = 0;
6304 int did_freeze = 0;
6305
6306 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6307 did_freeze = 1;
6308 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6309 md_wakeup_thread(mddev->thread);
6310 }
6311 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6312 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6313 if (mddev->sync_thread)
6314 /* Thread might be blocked waiting for metadata update
6315 * which will now never happen */
6316 wake_up_process(mddev->sync_thread->tsk);
6317
6318 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6319 return -EBUSY;
6320 mddev_unlock(mddev);
6321 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
6322 &mddev->recovery));
6323 wait_event(mddev->sb_wait,
6324 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
6325 mddev_lock_nointr(mddev);
6326
6327 mutex_lock(&mddev->open_mutex);
6328 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6329 mddev->sync_thread ||
6330 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6331 pr_warn("md: %s still in use.\n",mdname(mddev));
6332 if (did_freeze) {
6333 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6334 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6335 md_wakeup_thread(mddev->thread);
6336 }
6337 err = -EBUSY;
6338 goto out;
6339 }
6340 if (mddev->pers) {
6341 __md_stop_writes(mddev);
6342
6343 err = -ENXIO;
6344 if (mddev->ro==1)
6345 goto out;
6346 mddev->ro = 1;
6347 set_disk_ro(mddev->gendisk, 1);
6348 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6349 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6350 md_wakeup_thread(mddev->thread);
6351 sysfs_notify_dirent_safe(mddev->sysfs_state);
6352 err = 0;
6353 }
6354 out:
6355 mutex_unlock(&mddev->open_mutex);
6356 return err;
6357 }
6358
6359 /* mode:
6360 * 0 - completely stop and dis-assemble array
6361 * 2 - stop but do not disassemble array
6362 */
do_md_stop(struct mddev * mddev,int mode,struct block_device * bdev)6363 static int do_md_stop(struct mddev *mddev, int mode,
6364 struct block_device *bdev)
6365 {
6366 struct gendisk *disk = mddev->gendisk;
6367 struct md_rdev *rdev;
6368 int did_freeze = 0;
6369
6370 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6371 did_freeze = 1;
6372 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6373 md_wakeup_thread(mddev->thread);
6374 }
6375 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6376 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6377 if (mddev->sync_thread)
6378 /* Thread might be blocked waiting for metadata update
6379 * which will now never happen */
6380 wake_up_process(mddev->sync_thread->tsk);
6381
6382 mddev_unlock(mddev);
6383 wait_event(resync_wait, (mddev->sync_thread == NULL &&
6384 !test_bit(MD_RECOVERY_RUNNING,
6385 &mddev->recovery)));
6386 mddev_lock_nointr(mddev);
6387
6388 mutex_lock(&mddev->open_mutex);
6389 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6390 mddev->sysfs_active ||
6391 mddev->sync_thread ||
6392 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6393 pr_warn("md: %s still in use.\n",mdname(mddev));
6394 mutex_unlock(&mddev->open_mutex);
6395 if (did_freeze) {
6396 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6397 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6398 md_wakeup_thread(mddev->thread);
6399 }
6400 return -EBUSY;
6401 }
6402 if (mddev->pers) {
6403 if (mddev->ro)
6404 set_disk_ro(disk, 0);
6405
6406 __md_stop_writes(mddev);
6407 __md_stop(mddev);
6408
6409 /* tell userspace to handle 'inactive' */
6410 sysfs_notify_dirent_safe(mddev->sysfs_state);
6411
6412 rdev_for_each(rdev, mddev)
6413 if (rdev->raid_disk >= 0)
6414 sysfs_unlink_rdev(mddev, rdev);
6415
6416 set_capacity(disk, 0);
6417 mutex_unlock(&mddev->open_mutex);
6418 mddev->changed = 1;
6419 revalidate_disk_size(disk, true);
6420
6421 if (mddev->ro)
6422 mddev->ro = 0;
6423 } else
6424 mutex_unlock(&mddev->open_mutex);
6425 /*
6426 * Free resources if final stop
6427 */
6428 if (mode == 0) {
6429 pr_info("md: %s stopped.\n", mdname(mddev));
6430
6431 if (mddev->bitmap_info.file) {
6432 struct file *f = mddev->bitmap_info.file;
6433 spin_lock(&mddev->lock);
6434 mddev->bitmap_info.file = NULL;
6435 spin_unlock(&mddev->lock);
6436 fput(f);
6437 }
6438 mddev->bitmap_info.offset = 0;
6439
6440 export_array(mddev);
6441
6442 md_clean(mddev);
6443 if (mddev->hold_active == UNTIL_STOP)
6444 mddev->hold_active = 0;
6445 }
6446 md_new_event(mddev);
6447 sysfs_notify_dirent_safe(mddev->sysfs_state);
6448 return 0;
6449 }
6450
6451 #ifndef MODULE
autorun_array(struct mddev * mddev)6452 static void autorun_array(struct mddev *mddev)
6453 {
6454 struct md_rdev *rdev;
6455 int err;
6456
6457 if (list_empty(&mddev->disks))
6458 return;
6459
6460 pr_info("md: running: ");
6461
6462 rdev_for_each(rdev, mddev) {
6463 char b[BDEVNAME_SIZE];
6464 pr_cont("<%s>", bdevname(rdev->bdev,b));
6465 }
6466 pr_cont("\n");
6467
6468 err = do_md_run(mddev);
6469 if (err) {
6470 pr_warn("md: do_md_run() returned %d\n", err);
6471 do_md_stop(mddev, 0, NULL);
6472 }
6473 }
6474
6475 /*
6476 * lets try to run arrays based on all disks that have arrived
6477 * until now. (those are in pending_raid_disks)
6478 *
6479 * the method: pick the first pending disk, collect all disks with
6480 * the same UUID, remove all from the pending list and put them into
6481 * the 'same_array' list. Then order this list based on superblock
6482 * update time (freshest comes first), kick out 'old' disks and
6483 * compare superblocks. If everything's fine then run it.
6484 *
6485 * If "unit" is allocated, then bump its reference count
6486 */
autorun_devices(int part)6487 static void autorun_devices(int part)
6488 {
6489 struct md_rdev *rdev0, *rdev, *tmp;
6490 struct mddev *mddev;
6491 char b[BDEVNAME_SIZE];
6492
6493 pr_info("md: autorun ...\n");
6494 while (!list_empty(&pending_raid_disks)) {
6495 int unit;
6496 dev_t dev;
6497 LIST_HEAD(candidates);
6498 rdev0 = list_entry(pending_raid_disks.next,
6499 struct md_rdev, same_set);
6500
6501 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
6502 INIT_LIST_HEAD(&candidates);
6503 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6504 if (super_90_load(rdev, rdev0, 0) >= 0) {
6505 pr_debug("md: adding %s ...\n",
6506 bdevname(rdev->bdev,b));
6507 list_move(&rdev->same_set, &candidates);
6508 }
6509 /*
6510 * now we have a set of devices, with all of them having
6511 * mostly sane superblocks. It's time to allocate the
6512 * mddev.
6513 */
6514 if (part) {
6515 dev = MKDEV(mdp_major,
6516 rdev0->preferred_minor << MdpMinorShift);
6517 unit = MINOR(dev) >> MdpMinorShift;
6518 } else {
6519 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6520 unit = MINOR(dev);
6521 }
6522 if (rdev0->preferred_minor != unit) {
6523 pr_warn("md: unit number in %s is bad: %d\n",
6524 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
6525 break;
6526 }
6527
6528 md_probe(dev, NULL, NULL);
6529 mddev = mddev_find(dev);
6530 if (!mddev)
6531 break;
6532
6533 if (mddev_lock(mddev))
6534 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6535 else if (mddev->raid_disks || mddev->major_version
6536 || !list_empty(&mddev->disks)) {
6537 pr_warn("md: %s already running, cannot run %s\n",
6538 mdname(mddev), bdevname(rdev0->bdev,b));
6539 mddev_unlock(mddev);
6540 } else {
6541 pr_debug("md: created %s\n", mdname(mddev));
6542 mddev->persistent = 1;
6543 rdev_for_each_list(rdev, tmp, &candidates) {
6544 list_del_init(&rdev->same_set);
6545 if (bind_rdev_to_array(rdev, mddev))
6546 export_rdev(rdev);
6547 }
6548 autorun_array(mddev);
6549 mddev_unlock(mddev);
6550 }
6551 /* on success, candidates will be empty, on error
6552 * it won't...
6553 */
6554 rdev_for_each_list(rdev, tmp, &candidates) {
6555 list_del_init(&rdev->same_set);
6556 export_rdev(rdev);
6557 }
6558 mddev_put(mddev);
6559 }
6560 pr_info("md: ... autorun DONE.\n");
6561 }
6562 #endif /* !MODULE */
6563
get_version(void __user * arg)6564 static int get_version(void __user *arg)
6565 {
6566 mdu_version_t ver;
6567
6568 ver.major = MD_MAJOR_VERSION;
6569 ver.minor = MD_MINOR_VERSION;
6570 ver.patchlevel = MD_PATCHLEVEL_VERSION;
6571
6572 if (copy_to_user(arg, &ver, sizeof(ver)))
6573 return -EFAULT;
6574
6575 return 0;
6576 }
6577
get_array_info(struct mddev * mddev,void __user * arg)6578 static int get_array_info(struct mddev *mddev, void __user *arg)
6579 {
6580 mdu_array_info_t info;
6581 int nr,working,insync,failed,spare;
6582 struct md_rdev *rdev;
6583
6584 nr = working = insync = failed = spare = 0;
6585 rcu_read_lock();
6586 rdev_for_each_rcu(rdev, mddev) {
6587 nr++;
6588 if (test_bit(Faulty, &rdev->flags))
6589 failed++;
6590 else {
6591 working++;
6592 if (test_bit(In_sync, &rdev->flags))
6593 insync++;
6594 else if (test_bit(Journal, &rdev->flags))
6595 /* TODO: add journal count to md_u.h */
6596 ;
6597 else
6598 spare++;
6599 }
6600 }
6601 rcu_read_unlock();
6602
6603 info.major_version = mddev->major_version;
6604 info.minor_version = mddev->minor_version;
6605 info.patch_version = MD_PATCHLEVEL_VERSION;
6606 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6607 info.level = mddev->level;
6608 info.size = mddev->dev_sectors / 2;
6609 if (info.size != mddev->dev_sectors / 2) /* overflow */
6610 info.size = -1;
6611 info.nr_disks = nr;
6612 info.raid_disks = mddev->raid_disks;
6613 info.md_minor = mddev->md_minor;
6614 info.not_persistent= !mddev->persistent;
6615
6616 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6617 info.state = 0;
6618 if (mddev->in_sync)
6619 info.state = (1<<MD_SB_CLEAN);
6620 if (mddev->bitmap && mddev->bitmap_info.offset)
6621 info.state |= (1<<MD_SB_BITMAP_PRESENT);
6622 if (mddev_is_clustered(mddev))
6623 info.state |= (1<<MD_SB_CLUSTERED);
6624 info.active_disks = insync;
6625 info.working_disks = working;
6626 info.failed_disks = failed;
6627 info.spare_disks = spare;
6628
6629 info.layout = mddev->layout;
6630 info.chunk_size = mddev->chunk_sectors << 9;
6631
6632 if (copy_to_user(arg, &info, sizeof(info)))
6633 return -EFAULT;
6634
6635 return 0;
6636 }
6637
get_bitmap_file(struct mddev * mddev,void __user * arg)6638 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6639 {
6640 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6641 char *ptr;
6642 int err;
6643
6644 file = kzalloc(sizeof(*file), GFP_NOIO);
6645 if (!file)
6646 return -ENOMEM;
6647
6648 err = 0;
6649 spin_lock(&mddev->lock);
6650 /* bitmap enabled */
6651 if (mddev->bitmap_info.file) {
6652 ptr = file_path(mddev->bitmap_info.file, file->pathname,
6653 sizeof(file->pathname));
6654 if (IS_ERR(ptr))
6655 err = PTR_ERR(ptr);
6656 else
6657 memmove(file->pathname, ptr,
6658 sizeof(file->pathname)-(ptr-file->pathname));
6659 }
6660 spin_unlock(&mddev->lock);
6661
6662 if (err == 0 &&
6663 copy_to_user(arg, file, sizeof(*file)))
6664 err = -EFAULT;
6665
6666 kfree(file);
6667 return err;
6668 }
6669
get_disk_info(struct mddev * mddev,void __user * arg)6670 static int get_disk_info(struct mddev *mddev, void __user * arg)
6671 {
6672 mdu_disk_info_t info;
6673 struct md_rdev *rdev;
6674
6675 if (copy_from_user(&info, arg, sizeof(info)))
6676 return -EFAULT;
6677
6678 rcu_read_lock();
6679 rdev = md_find_rdev_nr_rcu(mddev, info.number);
6680 if (rdev) {
6681 info.major = MAJOR(rdev->bdev->bd_dev);
6682 info.minor = MINOR(rdev->bdev->bd_dev);
6683 info.raid_disk = rdev->raid_disk;
6684 info.state = 0;
6685 if (test_bit(Faulty, &rdev->flags))
6686 info.state |= (1<<MD_DISK_FAULTY);
6687 else if (test_bit(In_sync, &rdev->flags)) {
6688 info.state |= (1<<MD_DISK_ACTIVE);
6689 info.state |= (1<<MD_DISK_SYNC);
6690 }
6691 if (test_bit(Journal, &rdev->flags))
6692 info.state |= (1<<MD_DISK_JOURNAL);
6693 if (test_bit(WriteMostly, &rdev->flags))
6694 info.state |= (1<<MD_DISK_WRITEMOSTLY);
6695 if (test_bit(FailFast, &rdev->flags))
6696 info.state |= (1<<MD_DISK_FAILFAST);
6697 } else {
6698 info.major = info.minor = 0;
6699 info.raid_disk = -1;
6700 info.state = (1<<MD_DISK_REMOVED);
6701 }
6702 rcu_read_unlock();
6703
6704 if (copy_to_user(arg, &info, sizeof(info)))
6705 return -EFAULT;
6706
6707 return 0;
6708 }
6709
md_add_new_disk(struct mddev * mddev,struct mdu_disk_info_s * info)6710 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info)
6711 {
6712 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
6713 struct md_rdev *rdev;
6714 dev_t dev = MKDEV(info->major,info->minor);
6715
6716 if (mddev_is_clustered(mddev) &&
6717 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6718 pr_warn("%s: Cannot add to clustered mddev.\n",
6719 mdname(mddev));
6720 return -EINVAL;
6721 }
6722
6723 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6724 return -EOVERFLOW;
6725
6726 if (!mddev->raid_disks) {
6727 int err;
6728 /* expecting a device which has a superblock */
6729 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6730 if (IS_ERR(rdev)) {
6731 pr_warn("md: md_import_device returned %ld\n",
6732 PTR_ERR(rdev));
6733 return PTR_ERR(rdev);
6734 }
6735 if (!list_empty(&mddev->disks)) {
6736 struct md_rdev *rdev0
6737 = list_entry(mddev->disks.next,
6738 struct md_rdev, same_set);
6739 err = super_types[mddev->major_version]
6740 .load_super(rdev, rdev0, mddev->minor_version);
6741 if (err < 0) {
6742 pr_warn("md: %s has different UUID to %s\n",
6743 bdevname(rdev->bdev,b),
6744 bdevname(rdev0->bdev,b2));
6745 export_rdev(rdev);
6746 return -EINVAL;
6747 }
6748 }
6749 err = bind_rdev_to_array(rdev, mddev);
6750 if (err)
6751 export_rdev(rdev);
6752 return err;
6753 }
6754
6755 /*
6756 * md_add_new_disk can be used once the array is assembled
6757 * to add "hot spares". They must already have a superblock
6758 * written
6759 */
6760 if (mddev->pers) {
6761 int err;
6762 if (!mddev->pers->hot_add_disk) {
6763 pr_warn("%s: personality does not support diskops!\n",
6764 mdname(mddev));
6765 return -EINVAL;
6766 }
6767 if (mddev->persistent)
6768 rdev = md_import_device(dev, mddev->major_version,
6769 mddev->minor_version);
6770 else
6771 rdev = md_import_device(dev, -1, -1);
6772 if (IS_ERR(rdev)) {
6773 pr_warn("md: md_import_device returned %ld\n",
6774 PTR_ERR(rdev));
6775 return PTR_ERR(rdev);
6776 }
6777 /* set saved_raid_disk if appropriate */
6778 if (!mddev->persistent) {
6779 if (info->state & (1<<MD_DISK_SYNC) &&
6780 info->raid_disk < mddev->raid_disks) {
6781 rdev->raid_disk = info->raid_disk;
6782 set_bit(In_sync, &rdev->flags);
6783 clear_bit(Bitmap_sync, &rdev->flags);
6784 } else
6785 rdev->raid_disk = -1;
6786 rdev->saved_raid_disk = rdev->raid_disk;
6787 } else
6788 super_types[mddev->major_version].
6789 validate_super(mddev, rdev);
6790 if ((info->state & (1<<MD_DISK_SYNC)) &&
6791 rdev->raid_disk != info->raid_disk) {
6792 /* This was a hot-add request, but events doesn't
6793 * match, so reject it.
6794 */
6795 export_rdev(rdev);
6796 return -EINVAL;
6797 }
6798
6799 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6800 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6801 set_bit(WriteMostly, &rdev->flags);
6802 else
6803 clear_bit(WriteMostly, &rdev->flags);
6804 if (info->state & (1<<MD_DISK_FAILFAST))
6805 set_bit(FailFast, &rdev->flags);
6806 else
6807 clear_bit(FailFast, &rdev->flags);
6808
6809 if (info->state & (1<<MD_DISK_JOURNAL)) {
6810 struct md_rdev *rdev2;
6811 bool has_journal = false;
6812
6813 /* make sure no existing journal disk */
6814 rdev_for_each(rdev2, mddev) {
6815 if (test_bit(Journal, &rdev2->flags)) {
6816 has_journal = true;
6817 break;
6818 }
6819 }
6820 if (has_journal || mddev->bitmap) {
6821 export_rdev(rdev);
6822 return -EBUSY;
6823 }
6824 set_bit(Journal, &rdev->flags);
6825 }
6826 /*
6827 * check whether the device shows up in other nodes
6828 */
6829 if (mddev_is_clustered(mddev)) {
6830 if (info->state & (1 << MD_DISK_CANDIDATE))
6831 set_bit(Candidate, &rdev->flags);
6832 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6833 /* --add initiated by this node */
6834 err = md_cluster_ops->add_new_disk(mddev, rdev);
6835 if (err) {
6836 export_rdev(rdev);
6837 return err;
6838 }
6839 }
6840 }
6841
6842 rdev->raid_disk = -1;
6843 err = bind_rdev_to_array(rdev, mddev);
6844
6845 if (err)
6846 export_rdev(rdev);
6847
6848 if (mddev_is_clustered(mddev)) {
6849 if (info->state & (1 << MD_DISK_CANDIDATE)) {
6850 if (!err) {
6851 err = md_cluster_ops->new_disk_ack(mddev,
6852 err == 0);
6853 if (err)
6854 md_kick_rdev_from_array(rdev);
6855 }
6856 } else {
6857 if (err)
6858 md_cluster_ops->add_new_disk_cancel(mddev);
6859 else
6860 err = add_bound_rdev(rdev);
6861 }
6862
6863 } else if (!err)
6864 err = add_bound_rdev(rdev);
6865
6866 return err;
6867 }
6868
6869 /* otherwise, md_add_new_disk is only allowed
6870 * for major_version==0 superblocks
6871 */
6872 if (mddev->major_version != 0) {
6873 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6874 return -EINVAL;
6875 }
6876
6877 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6878 int err;
6879 rdev = md_import_device(dev, -1, 0);
6880 if (IS_ERR(rdev)) {
6881 pr_warn("md: error, md_import_device() returned %ld\n",
6882 PTR_ERR(rdev));
6883 return PTR_ERR(rdev);
6884 }
6885 rdev->desc_nr = info->number;
6886 if (info->raid_disk < mddev->raid_disks)
6887 rdev->raid_disk = info->raid_disk;
6888 else
6889 rdev->raid_disk = -1;
6890
6891 if (rdev->raid_disk < mddev->raid_disks)
6892 if (info->state & (1<<MD_DISK_SYNC))
6893 set_bit(In_sync, &rdev->flags);
6894
6895 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6896 set_bit(WriteMostly, &rdev->flags);
6897 if (info->state & (1<<MD_DISK_FAILFAST))
6898 set_bit(FailFast, &rdev->flags);
6899
6900 if (!mddev->persistent) {
6901 pr_debug("md: nonpersistent superblock ...\n");
6902 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6903 } else
6904 rdev->sb_start = calc_dev_sboffset(rdev);
6905 rdev->sectors = rdev->sb_start;
6906
6907 err = bind_rdev_to_array(rdev, mddev);
6908 if (err) {
6909 export_rdev(rdev);
6910 return err;
6911 }
6912 }
6913
6914 return 0;
6915 }
6916
hot_remove_disk(struct mddev * mddev,dev_t dev)6917 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6918 {
6919 char b[BDEVNAME_SIZE];
6920 struct md_rdev *rdev;
6921
6922 if (!mddev->pers)
6923 return -ENODEV;
6924
6925 rdev = find_rdev(mddev, dev);
6926 if (!rdev)
6927 return -ENXIO;
6928
6929 if (rdev->raid_disk < 0)
6930 goto kick_rdev;
6931
6932 clear_bit(Blocked, &rdev->flags);
6933 remove_and_add_spares(mddev, rdev);
6934
6935 if (rdev->raid_disk >= 0)
6936 goto busy;
6937
6938 kick_rdev:
6939 if (mddev_is_clustered(mddev)) {
6940 if (md_cluster_ops->remove_disk(mddev, rdev))
6941 goto busy;
6942 }
6943
6944 md_kick_rdev_from_array(rdev);
6945 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6946 if (mddev->thread)
6947 md_wakeup_thread(mddev->thread);
6948 else
6949 md_update_sb(mddev, 1);
6950 md_new_event(mddev);
6951
6952 return 0;
6953 busy:
6954 pr_debug("md: cannot remove active disk %s from %s ...\n",
6955 bdevname(rdev->bdev,b), mdname(mddev));
6956 return -EBUSY;
6957 }
6958
hot_add_disk(struct mddev * mddev,dev_t dev)6959 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6960 {
6961 char b[BDEVNAME_SIZE];
6962 int err;
6963 struct md_rdev *rdev;
6964
6965 if (!mddev->pers)
6966 return -ENODEV;
6967
6968 if (mddev->major_version != 0) {
6969 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
6970 mdname(mddev));
6971 return -EINVAL;
6972 }
6973 if (!mddev->pers->hot_add_disk) {
6974 pr_warn("%s: personality does not support diskops!\n",
6975 mdname(mddev));
6976 return -EINVAL;
6977 }
6978
6979 rdev = md_import_device(dev, -1, 0);
6980 if (IS_ERR(rdev)) {
6981 pr_warn("md: error, md_import_device() returned %ld\n",
6982 PTR_ERR(rdev));
6983 return -EINVAL;
6984 }
6985
6986 if (mddev->persistent)
6987 rdev->sb_start = calc_dev_sboffset(rdev);
6988 else
6989 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6990
6991 rdev->sectors = rdev->sb_start;
6992
6993 if (test_bit(Faulty, &rdev->flags)) {
6994 pr_warn("md: can not hot-add faulty %s disk to %s!\n",
6995 bdevname(rdev->bdev,b), mdname(mddev));
6996 err = -EINVAL;
6997 goto abort_export;
6998 }
6999
7000 clear_bit(In_sync, &rdev->flags);
7001 rdev->desc_nr = -1;
7002 rdev->saved_raid_disk = -1;
7003 err = bind_rdev_to_array(rdev, mddev);
7004 if (err)
7005 goto abort_export;
7006
7007 /*
7008 * The rest should better be atomic, we can have disk failures
7009 * noticed in interrupt contexts ...
7010 */
7011
7012 rdev->raid_disk = -1;
7013
7014 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7015 if (!mddev->thread)
7016 md_update_sb(mddev, 1);
7017 /*
7018 * Kick recovery, maybe this spare has to be added to the
7019 * array immediately.
7020 */
7021 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7022 md_wakeup_thread(mddev->thread);
7023 md_new_event(mddev);
7024 return 0;
7025
7026 abort_export:
7027 export_rdev(rdev);
7028 return err;
7029 }
7030
set_bitmap_file(struct mddev * mddev,int fd)7031 static int set_bitmap_file(struct mddev *mddev, int fd)
7032 {
7033 int err = 0;
7034
7035 if (mddev->pers) {
7036 if (!mddev->pers->quiesce || !mddev->thread)
7037 return -EBUSY;
7038 if (mddev->recovery || mddev->sync_thread)
7039 return -EBUSY;
7040 /* we should be able to change the bitmap.. */
7041 }
7042
7043 if (fd >= 0) {
7044 struct inode *inode;
7045 struct file *f;
7046
7047 if (mddev->bitmap || mddev->bitmap_info.file)
7048 return -EEXIST; /* cannot add when bitmap is present */
7049 f = fget(fd);
7050
7051 if (f == NULL) {
7052 pr_warn("%s: error: failed to get bitmap file\n",
7053 mdname(mddev));
7054 return -EBADF;
7055 }
7056
7057 inode = f->f_mapping->host;
7058 if (!S_ISREG(inode->i_mode)) {
7059 pr_warn("%s: error: bitmap file must be a regular file\n",
7060 mdname(mddev));
7061 err = -EBADF;
7062 } else if (!(f->f_mode & FMODE_WRITE)) {
7063 pr_warn("%s: error: bitmap file must open for write\n",
7064 mdname(mddev));
7065 err = -EBADF;
7066 } else if (atomic_read(&inode->i_writecount) != 1) {
7067 pr_warn("%s: error: bitmap file is already in use\n",
7068 mdname(mddev));
7069 err = -EBUSY;
7070 }
7071 if (err) {
7072 fput(f);
7073 return err;
7074 }
7075 mddev->bitmap_info.file = f;
7076 mddev->bitmap_info.offset = 0; /* file overrides offset */
7077 } else if (mddev->bitmap == NULL)
7078 return -ENOENT; /* cannot remove what isn't there */
7079 err = 0;
7080 if (mddev->pers) {
7081 if (fd >= 0) {
7082 struct bitmap *bitmap;
7083
7084 bitmap = md_bitmap_create(mddev, -1);
7085 mddev_suspend(mddev);
7086 if (!IS_ERR(bitmap)) {
7087 mddev->bitmap = bitmap;
7088 err = md_bitmap_load(mddev);
7089 } else
7090 err = PTR_ERR(bitmap);
7091 if (err) {
7092 md_bitmap_destroy(mddev);
7093 fd = -1;
7094 }
7095 mddev_resume(mddev);
7096 } else if (fd < 0) {
7097 mddev_suspend(mddev);
7098 md_bitmap_destroy(mddev);
7099 mddev_resume(mddev);
7100 }
7101 }
7102 if (fd < 0) {
7103 struct file *f = mddev->bitmap_info.file;
7104 if (f) {
7105 spin_lock(&mddev->lock);
7106 mddev->bitmap_info.file = NULL;
7107 spin_unlock(&mddev->lock);
7108 fput(f);
7109 }
7110 }
7111
7112 return err;
7113 }
7114
7115 /*
7116 * md_set_array_info is used two different ways
7117 * The original usage is when creating a new array.
7118 * In this usage, raid_disks is > 0 and it together with
7119 * level, size, not_persistent,layout,chunksize determine the
7120 * shape of the array.
7121 * This will always create an array with a type-0.90.0 superblock.
7122 * The newer usage is when assembling an array.
7123 * In this case raid_disks will be 0, and the major_version field is
7124 * use to determine which style super-blocks are to be found on the devices.
7125 * The minor and patch _version numbers are also kept incase the
7126 * super_block handler wishes to interpret them.
7127 */
md_set_array_info(struct mddev * mddev,struct mdu_array_info_s * info)7128 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info)
7129 {
7130 if (info->raid_disks == 0) {
7131 /* just setting version number for superblock loading */
7132 if (info->major_version < 0 ||
7133 info->major_version >= ARRAY_SIZE(super_types) ||
7134 super_types[info->major_version].name == NULL) {
7135 /* maybe try to auto-load a module? */
7136 pr_warn("md: superblock version %d not known\n",
7137 info->major_version);
7138 return -EINVAL;
7139 }
7140 mddev->major_version = info->major_version;
7141 mddev->minor_version = info->minor_version;
7142 mddev->patch_version = info->patch_version;
7143 mddev->persistent = !info->not_persistent;
7144 /* ensure mddev_put doesn't delete this now that there
7145 * is some minimal configuration.
7146 */
7147 mddev->ctime = ktime_get_real_seconds();
7148 return 0;
7149 }
7150 mddev->major_version = MD_MAJOR_VERSION;
7151 mddev->minor_version = MD_MINOR_VERSION;
7152 mddev->patch_version = MD_PATCHLEVEL_VERSION;
7153 mddev->ctime = ktime_get_real_seconds();
7154
7155 mddev->level = info->level;
7156 mddev->clevel[0] = 0;
7157 mddev->dev_sectors = 2 * (sector_t)info->size;
7158 mddev->raid_disks = info->raid_disks;
7159 /* don't set md_minor, it is determined by which /dev/md* was
7160 * openned
7161 */
7162 if (info->state & (1<<MD_SB_CLEAN))
7163 mddev->recovery_cp = MaxSector;
7164 else
7165 mddev->recovery_cp = 0;
7166 mddev->persistent = ! info->not_persistent;
7167 mddev->external = 0;
7168
7169 mddev->layout = info->layout;
7170 if (mddev->level == 0)
7171 /* Cannot trust RAID0 layout info here */
7172 mddev->layout = -1;
7173 mddev->chunk_sectors = info->chunk_size >> 9;
7174
7175 if (mddev->persistent) {
7176 mddev->max_disks = MD_SB_DISKS;
7177 mddev->flags = 0;
7178 mddev->sb_flags = 0;
7179 }
7180 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7181
7182 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
7183 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
7184 mddev->bitmap_info.offset = 0;
7185
7186 mddev->reshape_position = MaxSector;
7187
7188 /*
7189 * Generate a 128 bit UUID
7190 */
7191 get_random_bytes(mddev->uuid, 16);
7192
7193 mddev->new_level = mddev->level;
7194 mddev->new_chunk_sectors = mddev->chunk_sectors;
7195 mddev->new_layout = mddev->layout;
7196 mddev->delta_disks = 0;
7197 mddev->reshape_backwards = 0;
7198
7199 return 0;
7200 }
7201
md_set_array_sectors(struct mddev * mddev,sector_t array_sectors)7202 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
7203 {
7204 lockdep_assert_held(&mddev->reconfig_mutex);
7205
7206 if (mddev->external_size)
7207 return;
7208
7209 mddev->array_sectors = array_sectors;
7210 }
7211 EXPORT_SYMBOL(md_set_array_sectors);
7212
update_size(struct mddev * mddev,sector_t num_sectors)7213 static int update_size(struct mddev *mddev, sector_t num_sectors)
7214 {
7215 struct md_rdev *rdev;
7216 int rv;
7217 int fit = (num_sectors == 0);
7218 sector_t old_dev_sectors = mddev->dev_sectors;
7219
7220 if (mddev->pers->resize == NULL)
7221 return -EINVAL;
7222 /* The "num_sectors" is the number of sectors of each device that
7223 * is used. This can only make sense for arrays with redundancy.
7224 * linear and raid0 always use whatever space is available. We can only
7225 * consider changing this number if no resync or reconstruction is
7226 * happening, and if the new size is acceptable. It must fit before the
7227 * sb_start or, if that is <data_offset, it must fit before the size
7228 * of each device. If num_sectors is zero, we find the largest size
7229 * that fits.
7230 */
7231 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7232 mddev->sync_thread)
7233 return -EBUSY;
7234 if (mddev->ro)
7235 return -EROFS;
7236
7237 rdev_for_each(rdev, mddev) {
7238 sector_t avail = rdev->sectors;
7239
7240 if (fit && (num_sectors == 0 || num_sectors > avail))
7241 num_sectors = avail;
7242 if (avail < num_sectors)
7243 return -ENOSPC;
7244 }
7245 rv = mddev->pers->resize(mddev, num_sectors);
7246 if (!rv) {
7247 if (mddev_is_clustered(mddev))
7248 md_cluster_ops->update_size(mddev, old_dev_sectors);
7249 else if (mddev->queue) {
7250 set_capacity(mddev->gendisk, mddev->array_sectors);
7251 revalidate_disk_size(mddev->gendisk, true);
7252 }
7253 }
7254 return rv;
7255 }
7256
update_raid_disks(struct mddev * mddev,int raid_disks)7257 static int update_raid_disks(struct mddev *mddev, int raid_disks)
7258 {
7259 int rv;
7260 struct md_rdev *rdev;
7261 /* change the number of raid disks */
7262 if (mddev->pers->check_reshape == NULL)
7263 return -EINVAL;
7264 if (mddev->ro)
7265 return -EROFS;
7266 if (raid_disks <= 0 ||
7267 (mddev->max_disks && raid_disks >= mddev->max_disks))
7268 return -EINVAL;
7269 if (mddev->sync_thread ||
7270 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7271 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) ||
7272 mddev->reshape_position != MaxSector)
7273 return -EBUSY;
7274
7275 rdev_for_each(rdev, mddev) {
7276 if (mddev->raid_disks < raid_disks &&
7277 rdev->data_offset < rdev->new_data_offset)
7278 return -EINVAL;
7279 if (mddev->raid_disks > raid_disks &&
7280 rdev->data_offset > rdev->new_data_offset)
7281 return -EINVAL;
7282 }
7283
7284 mddev->delta_disks = raid_disks - mddev->raid_disks;
7285 if (mddev->delta_disks < 0)
7286 mddev->reshape_backwards = 1;
7287 else if (mddev->delta_disks > 0)
7288 mddev->reshape_backwards = 0;
7289
7290 rv = mddev->pers->check_reshape(mddev);
7291 if (rv < 0) {
7292 mddev->delta_disks = 0;
7293 mddev->reshape_backwards = 0;
7294 }
7295 return rv;
7296 }
7297
7298 /*
7299 * update_array_info is used to change the configuration of an
7300 * on-line array.
7301 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
7302 * fields in the info are checked against the array.
7303 * Any differences that cannot be handled will cause an error.
7304 * Normally, only one change can be managed at a time.
7305 */
update_array_info(struct mddev * mddev,mdu_array_info_t * info)7306 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
7307 {
7308 int rv = 0;
7309 int cnt = 0;
7310 int state = 0;
7311
7312 /* calculate expected state,ignoring low bits */
7313 if (mddev->bitmap && mddev->bitmap_info.offset)
7314 state |= (1 << MD_SB_BITMAP_PRESENT);
7315
7316 if (mddev->major_version != info->major_version ||
7317 mddev->minor_version != info->minor_version ||
7318 /* mddev->patch_version != info->patch_version || */
7319 mddev->ctime != info->ctime ||
7320 mddev->level != info->level ||
7321 /* mddev->layout != info->layout || */
7322 mddev->persistent != !info->not_persistent ||
7323 mddev->chunk_sectors != info->chunk_size >> 9 ||
7324 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
7325 ((state^info->state) & 0xfffffe00)
7326 )
7327 return -EINVAL;
7328 /* Check there is only one change */
7329 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7330 cnt++;
7331 if (mddev->raid_disks != info->raid_disks)
7332 cnt++;
7333 if (mddev->layout != info->layout)
7334 cnt++;
7335 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
7336 cnt++;
7337 if (cnt == 0)
7338 return 0;
7339 if (cnt > 1)
7340 return -EINVAL;
7341
7342 if (mddev->layout != info->layout) {
7343 /* Change layout
7344 * we don't need to do anything at the md level, the
7345 * personality will take care of it all.
7346 */
7347 if (mddev->pers->check_reshape == NULL)
7348 return -EINVAL;
7349 else {
7350 mddev->new_layout = info->layout;
7351 rv = mddev->pers->check_reshape(mddev);
7352 if (rv)
7353 mddev->new_layout = mddev->layout;
7354 return rv;
7355 }
7356 }
7357 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7358 rv = update_size(mddev, (sector_t)info->size * 2);
7359
7360 if (mddev->raid_disks != info->raid_disks)
7361 rv = update_raid_disks(mddev, info->raid_disks);
7362
7363 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
7364 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
7365 rv = -EINVAL;
7366 goto err;
7367 }
7368 if (mddev->recovery || mddev->sync_thread) {
7369 rv = -EBUSY;
7370 goto err;
7371 }
7372 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
7373 struct bitmap *bitmap;
7374 /* add the bitmap */
7375 if (mddev->bitmap) {
7376 rv = -EEXIST;
7377 goto err;
7378 }
7379 if (mddev->bitmap_info.default_offset == 0) {
7380 rv = -EINVAL;
7381 goto err;
7382 }
7383 mddev->bitmap_info.offset =
7384 mddev->bitmap_info.default_offset;
7385 mddev->bitmap_info.space =
7386 mddev->bitmap_info.default_space;
7387 bitmap = md_bitmap_create(mddev, -1);
7388 mddev_suspend(mddev);
7389 if (!IS_ERR(bitmap)) {
7390 mddev->bitmap = bitmap;
7391 rv = md_bitmap_load(mddev);
7392 } else
7393 rv = PTR_ERR(bitmap);
7394 if (rv)
7395 md_bitmap_destroy(mddev);
7396 mddev_resume(mddev);
7397 } else {
7398 /* remove the bitmap */
7399 if (!mddev->bitmap) {
7400 rv = -ENOENT;
7401 goto err;
7402 }
7403 if (mddev->bitmap->storage.file) {
7404 rv = -EINVAL;
7405 goto err;
7406 }
7407 if (mddev->bitmap_info.nodes) {
7408 /* hold PW on all the bitmap lock */
7409 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
7410 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
7411 rv = -EPERM;
7412 md_cluster_ops->unlock_all_bitmaps(mddev);
7413 goto err;
7414 }
7415
7416 mddev->bitmap_info.nodes = 0;
7417 md_cluster_ops->leave(mddev);
7418 module_put(md_cluster_mod);
7419 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
7420 }
7421 mddev_suspend(mddev);
7422 md_bitmap_destroy(mddev);
7423 mddev_resume(mddev);
7424 mddev->bitmap_info.offset = 0;
7425 }
7426 }
7427 md_update_sb(mddev, 1);
7428 return rv;
7429 err:
7430 return rv;
7431 }
7432
set_disk_faulty(struct mddev * mddev,dev_t dev)7433 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7434 {
7435 struct md_rdev *rdev;
7436 int err = 0;
7437
7438 if (mddev->pers == NULL)
7439 return -ENODEV;
7440
7441 rcu_read_lock();
7442 rdev = md_find_rdev_rcu(mddev, dev);
7443 if (!rdev)
7444 err = -ENODEV;
7445 else {
7446 md_error(mddev, rdev);
7447 if (!test_bit(Faulty, &rdev->flags))
7448 err = -EBUSY;
7449 }
7450 rcu_read_unlock();
7451 return err;
7452 }
7453
7454 /*
7455 * We have a problem here : there is no easy way to give a CHS
7456 * virtual geometry. We currently pretend that we have a 2 heads
7457 * 4 sectors (with a BIG number of cylinders...). This drives
7458 * dosfs just mad... ;-)
7459 */
md_getgeo(struct block_device * bdev,struct hd_geometry * geo)7460 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7461 {
7462 struct mddev *mddev = bdev->bd_disk->private_data;
7463
7464 geo->heads = 2;
7465 geo->sectors = 4;
7466 geo->cylinders = mddev->array_sectors / 8;
7467 return 0;
7468 }
7469
md_ioctl_valid(unsigned int cmd)7470 static inline bool md_ioctl_valid(unsigned int cmd)
7471 {
7472 switch (cmd) {
7473 case ADD_NEW_DISK:
7474 case BLKROSET:
7475 case GET_ARRAY_INFO:
7476 case GET_BITMAP_FILE:
7477 case GET_DISK_INFO:
7478 case HOT_ADD_DISK:
7479 case HOT_REMOVE_DISK:
7480 case RAID_VERSION:
7481 case RESTART_ARRAY_RW:
7482 case RUN_ARRAY:
7483 case SET_ARRAY_INFO:
7484 case SET_BITMAP_FILE:
7485 case SET_DISK_FAULTY:
7486 case STOP_ARRAY:
7487 case STOP_ARRAY_RO:
7488 case CLUSTERED_DISK_NACK:
7489 return true;
7490 default:
7491 return false;
7492 }
7493 }
7494
md_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)7495 static int md_ioctl(struct block_device *bdev, fmode_t mode,
7496 unsigned int cmd, unsigned long arg)
7497 {
7498 int err = 0;
7499 void __user *argp = (void __user *)arg;
7500 struct mddev *mddev = NULL;
7501 int ro;
7502 bool did_set_md_closing = false;
7503
7504 if (!md_ioctl_valid(cmd))
7505 return -ENOTTY;
7506
7507 switch (cmd) {
7508 case RAID_VERSION:
7509 case GET_ARRAY_INFO:
7510 case GET_DISK_INFO:
7511 break;
7512 default:
7513 if (!capable(CAP_SYS_ADMIN))
7514 return -EACCES;
7515 }
7516
7517 /*
7518 * Commands dealing with the RAID driver but not any
7519 * particular array:
7520 */
7521 switch (cmd) {
7522 case RAID_VERSION:
7523 err = get_version(argp);
7524 goto out;
7525 default:;
7526 }
7527
7528 /*
7529 * Commands creating/starting a new array:
7530 */
7531
7532 mddev = bdev->bd_disk->private_data;
7533
7534 if (!mddev) {
7535 BUG();
7536 goto out;
7537 }
7538
7539 /* Some actions do not requires the mutex */
7540 switch (cmd) {
7541 case GET_ARRAY_INFO:
7542 if (!mddev->raid_disks && !mddev->external)
7543 err = -ENODEV;
7544 else
7545 err = get_array_info(mddev, argp);
7546 goto out;
7547
7548 case GET_DISK_INFO:
7549 if (!mddev->raid_disks && !mddev->external)
7550 err = -ENODEV;
7551 else
7552 err = get_disk_info(mddev, argp);
7553 goto out;
7554
7555 case SET_DISK_FAULTY:
7556 err = set_disk_faulty(mddev, new_decode_dev(arg));
7557 goto out;
7558
7559 case GET_BITMAP_FILE:
7560 err = get_bitmap_file(mddev, argp);
7561 goto out;
7562
7563 }
7564
7565 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK)
7566 flush_rdev_wq(mddev);
7567
7568 if (cmd == HOT_REMOVE_DISK)
7569 /* need to ensure recovery thread has run */
7570 wait_event_interruptible_timeout(mddev->sb_wait,
7571 !test_bit(MD_RECOVERY_NEEDED,
7572 &mddev->recovery),
7573 msecs_to_jiffies(5000));
7574 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7575 /* Need to flush page cache, and ensure no-one else opens
7576 * and writes
7577 */
7578 mutex_lock(&mddev->open_mutex);
7579 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7580 mutex_unlock(&mddev->open_mutex);
7581 err = -EBUSY;
7582 goto out;
7583 }
7584 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) {
7585 mutex_unlock(&mddev->open_mutex);
7586 err = -EBUSY;
7587 goto out;
7588 }
7589 did_set_md_closing = true;
7590 mutex_unlock(&mddev->open_mutex);
7591 sync_blockdev(bdev);
7592 }
7593 err = mddev_lock(mddev);
7594 if (err) {
7595 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7596 err, cmd);
7597 goto out;
7598 }
7599
7600 if (cmd == SET_ARRAY_INFO) {
7601 mdu_array_info_t info;
7602 if (!arg)
7603 memset(&info, 0, sizeof(info));
7604 else if (copy_from_user(&info, argp, sizeof(info))) {
7605 err = -EFAULT;
7606 goto unlock;
7607 }
7608 if (mddev->pers) {
7609 err = update_array_info(mddev, &info);
7610 if (err) {
7611 pr_warn("md: couldn't update array info. %d\n", err);
7612 goto unlock;
7613 }
7614 goto unlock;
7615 }
7616 if (!list_empty(&mddev->disks)) {
7617 pr_warn("md: array %s already has disks!\n", mdname(mddev));
7618 err = -EBUSY;
7619 goto unlock;
7620 }
7621 if (mddev->raid_disks) {
7622 pr_warn("md: array %s already initialised!\n", mdname(mddev));
7623 err = -EBUSY;
7624 goto unlock;
7625 }
7626 err = md_set_array_info(mddev, &info);
7627 if (err) {
7628 pr_warn("md: couldn't set array info. %d\n", err);
7629 goto unlock;
7630 }
7631 goto unlock;
7632 }
7633
7634 /*
7635 * Commands querying/configuring an existing array:
7636 */
7637 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7638 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7639 if ((!mddev->raid_disks && !mddev->external)
7640 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7641 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7642 && cmd != GET_BITMAP_FILE) {
7643 err = -ENODEV;
7644 goto unlock;
7645 }
7646
7647 /*
7648 * Commands even a read-only array can execute:
7649 */
7650 switch (cmd) {
7651 case RESTART_ARRAY_RW:
7652 err = restart_array(mddev);
7653 goto unlock;
7654
7655 case STOP_ARRAY:
7656 err = do_md_stop(mddev, 0, bdev);
7657 goto unlock;
7658
7659 case STOP_ARRAY_RO:
7660 err = md_set_readonly(mddev, bdev);
7661 goto unlock;
7662
7663 case HOT_REMOVE_DISK:
7664 err = hot_remove_disk(mddev, new_decode_dev(arg));
7665 goto unlock;
7666
7667 case ADD_NEW_DISK:
7668 /* We can support ADD_NEW_DISK on read-only arrays
7669 * only if we are re-adding a preexisting device.
7670 * So require mddev->pers and MD_DISK_SYNC.
7671 */
7672 if (mddev->pers) {
7673 mdu_disk_info_t info;
7674 if (copy_from_user(&info, argp, sizeof(info)))
7675 err = -EFAULT;
7676 else if (!(info.state & (1<<MD_DISK_SYNC)))
7677 /* Need to clear read-only for this */
7678 break;
7679 else
7680 err = md_add_new_disk(mddev, &info);
7681 goto unlock;
7682 }
7683 break;
7684
7685 case BLKROSET:
7686 if (get_user(ro, (int __user *)(arg))) {
7687 err = -EFAULT;
7688 goto unlock;
7689 }
7690 err = -EINVAL;
7691
7692 /* if the bdev is going readonly the value of mddev->ro
7693 * does not matter, no writes are coming
7694 */
7695 if (ro)
7696 goto unlock;
7697
7698 /* are we are already prepared for writes? */
7699 if (mddev->ro != 1)
7700 goto unlock;
7701
7702 /* transitioning to readauto need only happen for
7703 * arrays that call md_write_start
7704 */
7705 if (mddev->pers) {
7706 err = restart_array(mddev);
7707 if (err == 0) {
7708 mddev->ro = 2;
7709 set_disk_ro(mddev->gendisk, 0);
7710 }
7711 }
7712 goto unlock;
7713 }
7714
7715 /*
7716 * The remaining ioctls are changing the state of the
7717 * superblock, so we do not allow them on read-only arrays.
7718 */
7719 if (mddev->ro && mddev->pers) {
7720 if (mddev->ro == 2) {
7721 mddev->ro = 0;
7722 sysfs_notify_dirent_safe(mddev->sysfs_state);
7723 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7724 /* mddev_unlock will wake thread */
7725 /* If a device failed while we were read-only, we
7726 * need to make sure the metadata is updated now.
7727 */
7728 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7729 mddev_unlock(mddev);
7730 wait_event(mddev->sb_wait,
7731 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7732 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7733 mddev_lock_nointr(mddev);
7734 }
7735 } else {
7736 err = -EROFS;
7737 goto unlock;
7738 }
7739 }
7740
7741 switch (cmd) {
7742 case ADD_NEW_DISK:
7743 {
7744 mdu_disk_info_t info;
7745 if (copy_from_user(&info, argp, sizeof(info)))
7746 err = -EFAULT;
7747 else
7748 err = md_add_new_disk(mddev, &info);
7749 goto unlock;
7750 }
7751
7752 case CLUSTERED_DISK_NACK:
7753 if (mddev_is_clustered(mddev))
7754 md_cluster_ops->new_disk_ack(mddev, false);
7755 else
7756 err = -EINVAL;
7757 goto unlock;
7758
7759 case HOT_ADD_DISK:
7760 err = hot_add_disk(mddev, new_decode_dev(arg));
7761 goto unlock;
7762
7763 case RUN_ARRAY:
7764 err = do_md_run(mddev);
7765 goto unlock;
7766
7767 case SET_BITMAP_FILE:
7768 err = set_bitmap_file(mddev, (int)arg);
7769 goto unlock;
7770
7771 default:
7772 err = -EINVAL;
7773 goto unlock;
7774 }
7775
7776 unlock:
7777 if (mddev->hold_active == UNTIL_IOCTL &&
7778 err != -EINVAL)
7779 mddev->hold_active = 0;
7780 mddev_unlock(mddev);
7781 out:
7782 if(did_set_md_closing)
7783 clear_bit(MD_CLOSING, &mddev->flags);
7784 return err;
7785 }
7786 #ifdef CONFIG_COMPAT
md_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)7787 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7788 unsigned int cmd, unsigned long arg)
7789 {
7790 switch (cmd) {
7791 case HOT_REMOVE_DISK:
7792 case HOT_ADD_DISK:
7793 case SET_DISK_FAULTY:
7794 case SET_BITMAP_FILE:
7795 /* These take in integer arg, do not convert */
7796 break;
7797 default:
7798 arg = (unsigned long)compat_ptr(arg);
7799 break;
7800 }
7801
7802 return md_ioctl(bdev, mode, cmd, arg);
7803 }
7804 #endif /* CONFIG_COMPAT */
7805
md_open(struct block_device * bdev,fmode_t mode)7806 static int md_open(struct block_device *bdev, fmode_t mode)
7807 {
7808 /*
7809 * Succeed if we can lock the mddev, which confirms that
7810 * it isn't being stopped right now.
7811 */
7812 struct mddev *mddev = mddev_find(bdev->bd_dev);
7813 int err;
7814
7815 if (!mddev)
7816 return -ENODEV;
7817
7818 if (mddev->gendisk != bdev->bd_disk) {
7819 /* we are racing with mddev_put which is discarding this
7820 * bd_disk.
7821 */
7822 mddev_put(mddev);
7823 /* Wait until bdev->bd_disk is definitely gone */
7824 if (work_pending(&mddev->del_work))
7825 flush_workqueue(md_misc_wq);
7826 return -EBUSY;
7827 }
7828 BUG_ON(mddev != bdev->bd_disk->private_data);
7829
7830 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7831 goto out;
7832
7833 if (test_bit(MD_CLOSING, &mddev->flags)) {
7834 mutex_unlock(&mddev->open_mutex);
7835 err = -ENODEV;
7836 goto out;
7837 }
7838
7839 err = 0;
7840 atomic_inc(&mddev->openers);
7841 mutex_unlock(&mddev->open_mutex);
7842
7843 bdev_check_media_change(bdev);
7844 out:
7845 if (err)
7846 mddev_put(mddev);
7847 return err;
7848 }
7849
md_release(struct gendisk * disk,fmode_t mode)7850 static void md_release(struct gendisk *disk, fmode_t mode)
7851 {
7852 struct mddev *mddev = disk->private_data;
7853
7854 BUG_ON(!mddev);
7855 atomic_dec(&mddev->openers);
7856 mddev_put(mddev);
7857 }
7858
md_check_events(struct gendisk * disk,unsigned int clearing)7859 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing)
7860 {
7861 struct mddev *mddev = disk->private_data;
7862 unsigned int ret = 0;
7863
7864 if (mddev->changed)
7865 ret = DISK_EVENT_MEDIA_CHANGE;
7866 mddev->changed = 0;
7867 return ret;
7868 }
7869
7870 const struct block_device_operations md_fops =
7871 {
7872 .owner = THIS_MODULE,
7873 .submit_bio = md_submit_bio,
7874 .open = md_open,
7875 .release = md_release,
7876 .ioctl = md_ioctl,
7877 #ifdef CONFIG_COMPAT
7878 .compat_ioctl = md_compat_ioctl,
7879 #endif
7880 .getgeo = md_getgeo,
7881 .check_events = md_check_events,
7882 };
7883
md_thread(void * arg)7884 static int md_thread(void *arg)
7885 {
7886 struct md_thread *thread = arg;
7887
7888 /*
7889 * md_thread is a 'system-thread', it's priority should be very
7890 * high. We avoid resource deadlocks individually in each
7891 * raid personality. (RAID5 does preallocation) We also use RR and
7892 * the very same RT priority as kswapd, thus we will never get
7893 * into a priority inversion deadlock.
7894 *
7895 * we definitely have to have equal or higher priority than
7896 * bdflush, otherwise bdflush will deadlock if there are too
7897 * many dirty RAID5 blocks.
7898 */
7899
7900 allow_signal(SIGKILL);
7901 while (!kthread_should_stop()) {
7902
7903 /* We need to wait INTERRUPTIBLE so that
7904 * we don't add to the load-average.
7905 * That means we need to be sure no signals are
7906 * pending
7907 */
7908 if (signal_pending(current))
7909 flush_signals(current);
7910
7911 wait_event_interruptible_timeout
7912 (thread->wqueue,
7913 test_bit(THREAD_WAKEUP, &thread->flags)
7914 || kthread_should_stop() || kthread_should_park(),
7915 thread->timeout);
7916
7917 clear_bit(THREAD_WAKEUP, &thread->flags);
7918 if (kthread_should_park())
7919 kthread_parkme();
7920 if (!kthread_should_stop())
7921 thread->run(thread);
7922 }
7923
7924 return 0;
7925 }
7926
md_wakeup_thread(struct md_thread * thread)7927 void md_wakeup_thread(struct md_thread *thread)
7928 {
7929 if (thread) {
7930 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7931 set_bit(THREAD_WAKEUP, &thread->flags);
7932 wake_up(&thread->wqueue);
7933 }
7934 }
7935 EXPORT_SYMBOL(md_wakeup_thread);
7936
md_register_thread(void (* run)(struct md_thread *),struct mddev * mddev,const char * name)7937 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7938 struct mddev *mddev, const char *name)
7939 {
7940 struct md_thread *thread;
7941
7942 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7943 if (!thread)
7944 return NULL;
7945
7946 init_waitqueue_head(&thread->wqueue);
7947
7948 thread->run = run;
7949 thread->mddev = mddev;
7950 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7951 thread->tsk = kthread_run(md_thread, thread,
7952 "%s_%s",
7953 mdname(thread->mddev),
7954 name);
7955 if (IS_ERR(thread->tsk)) {
7956 kfree(thread);
7957 return NULL;
7958 }
7959 return thread;
7960 }
7961 EXPORT_SYMBOL(md_register_thread);
7962
md_unregister_thread(struct md_thread ** threadp)7963 void md_unregister_thread(struct md_thread **threadp)
7964 {
7965 struct md_thread *thread;
7966
7967 /*
7968 * Locking ensures that mddev_unlock does not wake_up a
7969 * non-existent thread
7970 */
7971 spin_lock(&pers_lock);
7972 thread = *threadp;
7973 if (!thread) {
7974 spin_unlock(&pers_lock);
7975 return;
7976 }
7977 *threadp = NULL;
7978 spin_unlock(&pers_lock);
7979
7980 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7981 kthread_stop(thread->tsk);
7982 kfree(thread);
7983 }
7984 EXPORT_SYMBOL(md_unregister_thread);
7985
md_error(struct mddev * mddev,struct md_rdev * rdev)7986 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7987 {
7988 if (!rdev || test_bit(Faulty, &rdev->flags))
7989 return;
7990
7991 if (!mddev->pers || !mddev->pers->error_handler)
7992 return;
7993 mddev->pers->error_handler(mddev,rdev);
7994 if (mddev->degraded)
7995 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7996 sysfs_notify_dirent_safe(rdev->sysfs_state);
7997 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7998 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7999 md_wakeup_thread(mddev->thread);
8000 if (mddev->event_work.func)
8001 queue_work(md_misc_wq, &mddev->event_work);
8002 md_new_event(mddev);
8003 }
8004 EXPORT_SYMBOL(md_error);
8005
8006 /* seq_file implementation /proc/mdstat */
8007
status_unused(struct seq_file * seq)8008 static void status_unused(struct seq_file *seq)
8009 {
8010 int i = 0;
8011 struct md_rdev *rdev;
8012
8013 seq_printf(seq, "unused devices: ");
8014
8015 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
8016 char b[BDEVNAME_SIZE];
8017 i++;
8018 seq_printf(seq, "%s ",
8019 bdevname(rdev->bdev,b));
8020 }
8021 if (!i)
8022 seq_printf(seq, "<none>");
8023
8024 seq_printf(seq, "\n");
8025 }
8026
status_resync(struct seq_file * seq,struct mddev * mddev)8027 static int status_resync(struct seq_file *seq, struct mddev *mddev)
8028 {
8029 sector_t max_sectors, resync, res;
8030 unsigned long dt, db = 0;
8031 sector_t rt, curr_mark_cnt, resync_mark_cnt;
8032 int scale, recovery_active;
8033 unsigned int per_milli;
8034
8035 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8036 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8037 max_sectors = mddev->resync_max_sectors;
8038 else
8039 max_sectors = mddev->dev_sectors;
8040
8041 resync = mddev->curr_resync;
8042 if (resync <= 3) {
8043 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8044 /* Still cleaning up */
8045 resync = max_sectors;
8046 } else if (resync > max_sectors)
8047 resync = max_sectors;
8048 else
8049 resync -= atomic_read(&mddev->recovery_active);
8050
8051 if (resync == 0) {
8052 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
8053 struct md_rdev *rdev;
8054
8055 rdev_for_each(rdev, mddev)
8056 if (rdev->raid_disk >= 0 &&
8057 !test_bit(Faulty, &rdev->flags) &&
8058 rdev->recovery_offset != MaxSector &&
8059 rdev->recovery_offset) {
8060 seq_printf(seq, "\trecover=REMOTE");
8061 return 1;
8062 }
8063 if (mddev->reshape_position != MaxSector)
8064 seq_printf(seq, "\treshape=REMOTE");
8065 else
8066 seq_printf(seq, "\tresync=REMOTE");
8067 return 1;
8068 }
8069 if (mddev->recovery_cp < MaxSector) {
8070 seq_printf(seq, "\tresync=PENDING");
8071 return 1;
8072 }
8073 return 0;
8074 }
8075 if (resync < 3) {
8076 seq_printf(seq, "\tresync=DELAYED");
8077 return 1;
8078 }
8079
8080 WARN_ON(max_sectors == 0);
8081 /* Pick 'scale' such that (resync>>scale)*1000 will fit
8082 * in a sector_t, and (max_sectors>>scale) will fit in a
8083 * u32, as those are the requirements for sector_div.
8084 * Thus 'scale' must be at least 10
8085 */
8086 scale = 10;
8087 if (sizeof(sector_t) > sizeof(unsigned long)) {
8088 while ( max_sectors/2 > (1ULL<<(scale+32)))
8089 scale++;
8090 }
8091 res = (resync>>scale)*1000;
8092 sector_div(res, (u32)((max_sectors>>scale)+1));
8093
8094 per_milli = res;
8095 {
8096 int i, x = per_milli/50, y = 20-x;
8097 seq_printf(seq, "[");
8098 for (i = 0; i < x; i++)
8099 seq_printf(seq, "=");
8100 seq_printf(seq, ">");
8101 for (i = 0; i < y; i++)
8102 seq_printf(seq, ".");
8103 seq_printf(seq, "] ");
8104 }
8105 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
8106 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
8107 "reshape" :
8108 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
8109 "check" :
8110 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
8111 "resync" : "recovery"))),
8112 per_milli/10, per_milli % 10,
8113 (unsigned long long) resync/2,
8114 (unsigned long long) max_sectors/2);
8115
8116 /*
8117 * dt: time from mark until now
8118 * db: blocks written from mark until now
8119 * rt: remaining time
8120 *
8121 * rt is a sector_t, which is always 64bit now. We are keeping
8122 * the original algorithm, but it is not really necessary.
8123 *
8124 * Original algorithm:
8125 * So we divide before multiply in case it is 32bit and close
8126 * to the limit.
8127 * We scale the divisor (db) by 32 to avoid losing precision
8128 * near the end of resync when the number of remaining sectors
8129 * is close to 'db'.
8130 * We then divide rt by 32 after multiplying by db to compensate.
8131 * The '+1' avoids division by zero if db is very small.
8132 */
8133 dt = ((jiffies - mddev->resync_mark) / HZ);
8134 if (!dt) dt++;
8135
8136 curr_mark_cnt = mddev->curr_mark_cnt;
8137 recovery_active = atomic_read(&mddev->recovery_active);
8138 resync_mark_cnt = mddev->resync_mark_cnt;
8139
8140 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
8141 db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
8142
8143 rt = max_sectors - resync; /* number of remaining sectors */
8144 rt = div64_u64(rt, db/32+1);
8145 rt *= dt;
8146 rt >>= 5;
8147
8148 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
8149 ((unsigned long)rt % 60)/6);
8150
8151 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
8152 return 1;
8153 }
8154
md_seq_start(struct seq_file * seq,loff_t * pos)8155 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
8156 {
8157 struct list_head *tmp;
8158 loff_t l = *pos;
8159 struct mddev *mddev;
8160
8161 if (l == 0x10000) {
8162 ++*pos;
8163 return (void *)2;
8164 }
8165 if (l > 0x10000)
8166 return NULL;
8167 if (!l--)
8168 /* header */
8169 return (void*)1;
8170
8171 spin_lock(&all_mddevs_lock);
8172 list_for_each(tmp,&all_mddevs)
8173 if (!l--) {
8174 mddev = list_entry(tmp, struct mddev, all_mddevs);
8175 mddev_get(mddev);
8176 spin_unlock(&all_mddevs_lock);
8177 return mddev;
8178 }
8179 spin_unlock(&all_mddevs_lock);
8180 if (!l--)
8181 return (void*)2;/* tail */
8182 return NULL;
8183 }
8184
md_seq_next(struct seq_file * seq,void * v,loff_t * pos)8185 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
8186 {
8187 struct list_head *tmp;
8188 struct mddev *next_mddev, *mddev = v;
8189
8190 ++*pos;
8191 if (v == (void*)2)
8192 return NULL;
8193
8194 spin_lock(&all_mddevs_lock);
8195 if (v == (void*)1)
8196 tmp = all_mddevs.next;
8197 else
8198 tmp = mddev->all_mddevs.next;
8199 if (tmp != &all_mddevs)
8200 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
8201 else {
8202 next_mddev = (void*)2;
8203 *pos = 0x10000;
8204 }
8205 spin_unlock(&all_mddevs_lock);
8206
8207 if (v != (void*)1)
8208 mddev_put(mddev);
8209 return next_mddev;
8210
8211 }
8212
md_seq_stop(struct seq_file * seq,void * v)8213 static void md_seq_stop(struct seq_file *seq, void *v)
8214 {
8215 struct mddev *mddev = v;
8216
8217 if (mddev && v != (void*)1 && v != (void*)2)
8218 mddev_put(mddev);
8219 }
8220
md_seq_show(struct seq_file * seq,void * v)8221 static int md_seq_show(struct seq_file *seq, void *v)
8222 {
8223 struct mddev *mddev = v;
8224 sector_t sectors;
8225 struct md_rdev *rdev;
8226
8227 if (v == (void*)1) {
8228 struct md_personality *pers;
8229 seq_printf(seq, "Personalities : ");
8230 spin_lock(&pers_lock);
8231 list_for_each_entry(pers, &pers_list, list)
8232 seq_printf(seq, "[%s] ", pers->name);
8233
8234 spin_unlock(&pers_lock);
8235 seq_printf(seq, "\n");
8236 seq->poll_event = atomic_read(&md_event_count);
8237 return 0;
8238 }
8239 if (v == (void*)2) {
8240 status_unused(seq);
8241 return 0;
8242 }
8243
8244 spin_lock(&mddev->lock);
8245 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
8246 seq_printf(seq, "%s : %sactive", mdname(mddev),
8247 mddev->pers ? "" : "in");
8248 if (mddev->pers) {
8249 if (mddev->ro==1)
8250 seq_printf(seq, " (read-only)");
8251 if (mddev->ro==2)
8252 seq_printf(seq, " (auto-read-only)");
8253 seq_printf(seq, " %s", mddev->pers->name);
8254 }
8255
8256 sectors = 0;
8257 rcu_read_lock();
8258 rdev_for_each_rcu(rdev, mddev) {
8259 char b[BDEVNAME_SIZE];
8260 seq_printf(seq, " %s[%d]",
8261 bdevname(rdev->bdev,b), rdev->desc_nr);
8262 if (test_bit(WriteMostly, &rdev->flags))
8263 seq_printf(seq, "(W)");
8264 if (test_bit(Journal, &rdev->flags))
8265 seq_printf(seq, "(J)");
8266 if (test_bit(Faulty, &rdev->flags)) {
8267 seq_printf(seq, "(F)");
8268 continue;
8269 }
8270 if (rdev->raid_disk < 0)
8271 seq_printf(seq, "(S)"); /* spare */
8272 if (test_bit(Replacement, &rdev->flags))
8273 seq_printf(seq, "(R)");
8274 sectors += rdev->sectors;
8275 }
8276 rcu_read_unlock();
8277
8278 if (!list_empty(&mddev->disks)) {
8279 if (mddev->pers)
8280 seq_printf(seq, "\n %llu blocks",
8281 (unsigned long long)
8282 mddev->array_sectors / 2);
8283 else
8284 seq_printf(seq, "\n %llu blocks",
8285 (unsigned long long)sectors / 2);
8286 }
8287 if (mddev->persistent) {
8288 if (mddev->major_version != 0 ||
8289 mddev->minor_version != 90) {
8290 seq_printf(seq," super %d.%d",
8291 mddev->major_version,
8292 mddev->minor_version);
8293 }
8294 } else if (mddev->external)
8295 seq_printf(seq, " super external:%s",
8296 mddev->metadata_type);
8297 else
8298 seq_printf(seq, " super non-persistent");
8299
8300 if (mddev->pers) {
8301 mddev->pers->status(seq, mddev);
8302 seq_printf(seq, "\n ");
8303 if (mddev->pers->sync_request) {
8304 if (status_resync(seq, mddev))
8305 seq_printf(seq, "\n ");
8306 }
8307 } else
8308 seq_printf(seq, "\n ");
8309
8310 md_bitmap_status(seq, mddev->bitmap);
8311
8312 seq_printf(seq, "\n");
8313 }
8314 spin_unlock(&mddev->lock);
8315
8316 return 0;
8317 }
8318
8319 static const struct seq_operations md_seq_ops = {
8320 .start = md_seq_start,
8321 .next = md_seq_next,
8322 .stop = md_seq_stop,
8323 .show = md_seq_show,
8324 };
8325
md_seq_open(struct inode * inode,struct file * file)8326 static int md_seq_open(struct inode *inode, struct file *file)
8327 {
8328 struct seq_file *seq;
8329 int error;
8330
8331 error = seq_open(file, &md_seq_ops);
8332 if (error)
8333 return error;
8334
8335 seq = file->private_data;
8336 seq->poll_event = atomic_read(&md_event_count);
8337 return error;
8338 }
8339
8340 static int md_unloading;
mdstat_poll(struct file * filp,poll_table * wait)8341 static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
8342 {
8343 struct seq_file *seq = filp->private_data;
8344 __poll_t mask;
8345
8346 if (md_unloading)
8347 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
8348 poll_wait(filp, &md_event_waiters, wait);
8349
8350 /* always allow read */
8351 mask = EPOLLIN | EPOLLRDNORM;
8352
8353 if (seq->poll_event != atomic_read(&md_event_count))
8354 mask |= EPOLLERR | EPOLLPRI;
8355 return mask;
8356 }
8357
8358 static const struct proc_ops mdstat_proc_ops = {
8359 .proc_open = md_seq_open,
8360 .proc_read = seq_read,
8361 .proc_lseek = seq_lseek,
8362 .proc_release = seq_release,
8363 .proc_poll = mdstat_poll,
8364 };
8365
register_md_personality(struct md_personality * p)8366 int register_md_personality(struct md_personality *p)
8367 {
8368 pr_debug("md: %s personality registered for level %d\n",
8369 p->name, p->level);
8370 spin_lock(&pers_lock);
8371 list_add_tail(&p->list, &pers_list);
8372 spin_unlock(&pers_lock);
8373 return 0;
8374 }
8375 EXPORT_SYMBOL(register_md_personality);
8376
unregister_md_personality(struct md_personality * p)8377 int unregister_md_personality(struct md_personality *p)
8378 {
8379 pr_debug("md: %s personality unregistered\n", p->name);
8380 spin_lock(&pers_lock);
8381 list_del_init(&p->list);
8382 spin_unlock(&pers_lock);
8383 return 0;
8384 }
8385 EXPORT_SYMBOL(unregister_md_personality);
8386
register_md_cluster_operations(struct md_cluster_operations * ops,struct module * module)8387 int register_md_cluster_operations(struct md_cluster_operations *ops,
8388 struct module *module)
8389 {
8390 int ret = 0;
8391 spin_lock(&pers_lock);
8392 if (md_cluster_ops != NULL)
8393 ret = -EALREADY;
8394 else {
8395 md_cluster_ops = ops;
8396 md_cluster_mod = module;
8397 }
8398 spin_unlock(&pers_lock);
8399 return ret;
8400 }
8401 EXPORT_SYMBOL(register_md_cluster_operations);
8402
unregister_md_cluster_operations(void)8403 int unregister_md_cluster_operations(void)
8404 {
8405 spin_lock(&pers_lock);
8406 md_cluster_ops = NULL;
8407 spin_unlock(&pers_lock);
8408 return 0;
8409 }
8410 EXPORT_SYMBOL(unregister_md_cluster_operations);
8411
md_setup_cluster(struct mddev * mddev,int nodes)8412 int md_setup_cluster(struct mddev *mddev, int nodes)
8413 {
8414 int ret;
8415 if (!md_cluster_ops)
8416 request_module("md-cluster");
8417 spin_lock(&pers_lock);
8418 /* ensure module won't be unloaded */
8419 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
8420 pr_warn("can't find md-cluster module or get it's reference.\n");
8421 spin_unlock(&pers_lock);
8422 return -ENOENT;
8423 }
8424 spin_unlock(&pers_lock);
8425
8426 ret = md_cluster_ops->join(mddev, nodes);
8427 if (!ret)
8428 mddev->safemode_delay = 0;
8429 return ret;
8430 }
8431
md_cluster_stop(struct mddev * mddev)8432 void md_cluster_stop(struct mddev *mddev)
8433 {
8434 if (!md_cluster_ops)
8435 return;
8436 md_cluster_ops->leave(mddev);
8437 module_put(md_cluster_mod);
8438 }
8439
is_mddev_idle(struct mddev * mddev,int init)8440 static int is_mddev_idle(struct mddev *mddev, int init)
8441 {
8442 struct md_rdev *rdev;
8443 int idle;
8444 int curr_events;
8445
8446 idle = 1;
8447 rcu_read_lock();
8448 rdev_for_each_rcu(rdev, mddev) {
8449 struct gendisk *disk = rdev->bdev->bd_disk;
8450 curr_events = (int)part_stat_read_accum(&disk->part0, sectors) -
8451 atomic_read(&disk->sync_io);
8452 /* sync IO will cause sync_io to increase before the disk_stats
8453 * as sync_io is counted when a request starts, and
8454 * disk_stats is counted when it completes.
8455 * So resync activity will cause curr_events to be smaller than
8456 * when there was no such activity.
8457 * non-sync IO will cause disk_stat to increase without
8458 * increasing sync_io so curr_events will (eventually)
8459 * be larger than it was before. Once it becomes
8460 * substantially larger, the test below will cause
8461 * the array to appear non-idle, and resync will slow
8462 * down.
8463 * If there is a lot of outstanding resync activity when
8464 * we set last_event to curr_events, then all that activity
8465 * completing might cause the array to appear non-idle
8466 * and resync will be slowed down even though there might
8467 * not have been non-resync activity. This will only
8468 * happen once though. 'last_events' will soon reflect
8469 * the state where there is little or no outstanding
8470 * resync requests, and further resync activity will
8471 * always make curr_events less than last_events.
8472 *
8473 */
8474 if (init || curr_events - rdev->last_events > 64) {
8475 rdev->last_events = curr_events;
8476 idle = 0;
8477 }
8478 }
8479 rcu_read_unlock();
8480 return idle;
8481 }
8482
md_done_sync(struct mddev * mddev,int blocks,int ok)8483 void md_done_sync(struct mddev *mddev, int blocks, int ok)
8484 {
8485 /* another "blocks" (512byte) blocks have been synced */
8486 atomic_sub(blocks, &mddev->recovery_active);
8487 wake_up(&mddev->recovery_wait);
8488 if (!ok) {
8489 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8490 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8491 md_wakeup_thread(mddev->thread);
8492 // stop recovery, signal do_sync ....
8493 }
8494 }
8495 EXPORT_SYMBOL(md_done_sync);
8496
8497 /* md_write_start(mddev, bi)
8498 * If we need to update some array metadata (e.g. 'active' flag
8499 * in superblock) before writing, schedule a superblock update
8500 * and wait for it to complete.
8501 * A return value of 'false' means that the write wasn't recorded
8502 * and cannot proceed as the array is being suspend.
8503 */
md_write_start(struct mddev * mddev,struct bio * bi)8504 bool md_write_start(struct mddev *mddev, struct bio *bi)
8505 {
8506 int did_change = 0;
8507
8508 if (bio_data_dir(bi) != WRITE)
8509 return true;
8510
8511 BUG_ON(mddev->ro == 1);
8512 if (mddev->ro == 2) {
8513 /* need to switch to read/write */
8514 mddev->ro = 0;
8515 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8516 md_wakeup_thread(mddev->thread);
8517 md_wakeup_thread(mddev->sync_thread);
8518 did_change = 1;
8519 }
8520 rcu_read_lock();
8521 percpu_ref_get(&mddev->writes_pending);
8522 smp_mb(); /* Match smp_mb in set_in_sync() */
8523 if (mddev->safemode == 1)
8524 mddev->safemode = 0;
8525 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8526 if (mddev->in_sync || mddev->sync_checkers) {
8527 spin_lock(&mddev->lock);
8528 if (mddev->in_sync) {
8529 mddev->in_sync = 0;
8530 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8531 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8532 md_wakeup_thread(mddev->thread);
8533 did_change = 1;
8534 }
8535 spin_unlock(&mddev->lock);
8536 }
8537 rcu_read_unlock();
8538 if (did_change)
8539 sysfs_notify_dirent_safe(mddev->sysfs_state);
8540 if (!mddev->has_superblocks)
8541 return true;
8542 wait_event(mddev->sb_wait,
8543 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8544 mddev->suspended);
8545 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8546 percpu_ref_put(&mddev->writes_pending);
8547 return false;
8548 }
8549 return true;
8550 }
8551 EXPORT_SYMBOL(md_write_start);
8552
8553 /* md_write_inc can only be called when md_write_start() has
8554 * already been called at least once of the current request.
8555 * It increments the counter and is useful when a single request
8556 * is split into several parts. Each part causes an increment and
8557 * so needs a matching md_write_end().
8558 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8559 * a spinlocked region.
8560 */
md_write_inc(struct mddev * mddev,struct bio * bi)8561 void md_write_inc(struct mddev *mddev, struct bio *bi)
8562 {
8563 if (bio_data_dir(bi) != WRITE)
8564 return;
8565 WARN_ON_ONCE(mddev->in_sync || mddev->ro);
8566 percpu_ref_get(&mddev->writes_pending);
8567 }
8568 EXPORT_SYMBOL(md_write_inc);
8569
md_write_end(struct mddev * mddev)8570 void md_write_end(struct mddev *mddev)
8571 {
8572 percpu_ref_put(&mddev->writes_pending);
8573
8574 if (mddev->safemode == 2)
8575 md_wakeup_thread(mddev->thread);
8576 else if (mddev->safemode_delay)
8577 /* The roundup() ensures this only performs locking once
8578 * every ->safemode_delay jiffies
8579 */
8580 mod_timer(&mddev->safemode_timer,
8581 roundup(jiffies, mddev->safemode_delay) +
8582 mddev->safemode_delay);
8583 }
8584
8585 EXPORT_SYMBOL(md_write_end);
8586
8587 /* md_allow_write(mddev)
8588 * Calling this ensures that the array is marked 'active' so that writes
8589 * may proceed without blocking. It is important to call this before
8590 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8591 * Must be called with mddev_lock held.
8592 */
md_allow_write(struct mddev * mddev)8593 void md_allow_write(struct mddev *mddev)
8594 {
8595 if (!mddev->pers)
8596 return;
8597 if (mddev->ro)
8598 return;
8599 if (!mddev->pers->sync_request)
8600 return;
8601
8602 spin_lock(&mddev->lock);
8603 if (mddev->in_sync) {
8604 mddev->in_sync = 0;
8605 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8606 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8607 if (mddev->safemode_delay &&
8608 mddev->safemode == 0)
8609 mddev->safemode = 1;
8610 spin_unlock(&mddev->lock);
8611 md_update_sb(mddev, 0);
8612 sysfs_notify_dirent_safe(mddev->sysfs_state);
8613 /* wait for the dirty state to be recorded in the metadata */
8614 wait_event(mddev->sb_wait,
8615 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8616 } else
8617 spin_unlock(&mddev->lock);
8618 }
8619 EXPORT_SYMBOL_GPL(md_allow_write);
8620
8621 #define SYNC_MARKS 10
8622 #define SYNC_MARK_STEP (3*HZ)
8623 #define UPDATE_FREQUENCY (5*60*HZ)
md_do_sync(struct md_thread * thread)8624 void md_do_sync(struct md_thread *thread)
8625 {
8626 struct mddev *mddev = thread->mddev;
8627 struct mddev *mddev2;
8628 unsigned int currspeed = 0, window;
8629 sector_t max_sectors,j, io_sectors, recovery_done;
8630 unsigned long mark[SYNC_MARKS];
8631 unsigned long update_time;
8632 sector_t mark_cnt[SYNC_MARKS];
8633 int last_mark,m;
8634 struct list_head *tmp;
8635 sector_t last_check;
8636 int skipped = 0;
8637 struct md_rdev *rdev;
8638 char *desc, *action = NULL;
8639 struct blk_plug plug;
8640 int ret;
8641
8642 /* just incase thread restarts... */
8643 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8644 test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
8645 return;
8646 if (mddev->ro) {/* never try to sync a read-only array */
8647 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8648 return;
8649 }
8650
8651 if (mddev_is_clustered(mddev)) {
8652 ret = md_cluster_ops->resync_start(mddev);
8653 if (ret)
8654 goto skip;
8655
8656 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8657 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8658 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8659 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8660 && ((unsigned long long)mddev->curr_resync_completed
8661 < (unsigned long long)mddev->resync_max_sectors))
8662 goto skip;
8663 }
8664
8665 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8666 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8667 desc = "data-check";
8668 action = "check";
8669 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8670 desc = "requested-resync";
8671 action = "repair";
8672 } else
8673 desc = "resync";
8674 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8675 desc = "reshape";
8676 else
8677 desc = "recovery";
8678
8679 mddev->last_sync_action = action ?: desc;
8680
8681 /* we overload curr_resync somewhat here.
8682 * 0 == not engaged in resync at all
8683 * 2 == checking that there is no conflict with another sync
8684 * 1 == like 2, but have yielded to allow conflicting resync to
8685 * commence
8686 * other == active in resync - this many blocks
8687 *
8688 * Before starting a resync we must have set curr_resync to
8689 * 2, and then checked that every "conflicting" array has curr_resync
8690 * less than ours. When we find one that is the same or higher
8691 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
8692 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8693 * This will mean we have to start checking from the beginning again.
8694 *
8695 */
8696
8697 do {
8698 int mddev2_minor = -1;
8699 mddev->curr_resync = 2;
8700
8701 try_again:
8702 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8703 goto skip;
8704 for_each_mddev(mddev2, tmp) {
8705 if (mddev2 == mddev)
8706 continue;
8707 if (!mddev->parallel_resync
8708 && mddev2->curr_resync
8709 && match_mddev_units(mddev, mddev2)) {
8710 DEFINE_WAIT(wq);
8711 if (mddev < mddev2 && mddev->curr_resync == 2) {
8712 /* arbitrarily yield */
8713 mddev->curr_resync = 1;
8714 wake_up(&resync_wait);
8715 }
8716 if (mddev > mddev2 && mddev->curr_resync == 1)
8717 /* no need to wait here, we can wait the next
8718 * time 'round when curr_resync == 2
8719 */
8720 continue;
8721 /* We need to wait 'interruptible' so as not to
8722 * contribute to the load average, and not to
8723 * be caught by 'softlockup'
8724 */
8725 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8726 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8727 mddev2->curr_resync >= mddev->curr_resync) {
8728 if (mddev2_minor != mddev2->md_minor) {
8729 mddev2_minor = mddev2->md_minor;
8730 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8731 desc, mdname(mddev),
8732 mdname(mddev2));
8733 }
8734 mddev_put(mddev2);
8735 if (signal_pending(current))
8736 flush_signals(current);
8737 schedule();
8738 finish_wait(&resync_wait, &wq);
8739 goto try_again;
8740 }
8741 finish_wait(&resync_wait, &wq);
8742 }
8743 }
8744 } while (mddev->curr_resync < 2);
8745
8746 j = 0;
8747 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8748 /* resync follows the size requested by the personality,
8749 * which defaults to physical size, but can be virtual size
8750 */
8751 max_sectors = mddev->resync_max_sectors;
8752 atomic64_set(&mddev->resync_mismatches, 0);
8753 /* we don't use the checkpoint if there's a bitmap */
8754 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8755 j = mddev->resync_min;
8756 else if (!mddev->bitmap)
8757 j = mddev->recovery_cp;
8758
8759 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
8760 max_sectors = mddev->resync_max_sectors;
8761 /*
8762 * If the original node aborts reshaping then we continue the
8763 * reshaping, so set j again to avoid restart reshape from the
8764 * first beginning
8765 */
8766 if (mddev_is_clustered(mddev) &&
8767 mddev->reshape_position != MaxSector)
8768 j = mddev->reshape_position;
8769 } else {
8770 /* recovery follows the physical size of devices */
8771 max_sectors = mddev->dev_sectors;
8772 j = MaxSector;
8773 rcu_read_lock();
8774 rdev_for_each_rcu(rdev, mddev)
8775 if (rdev->raid_disk >= 0 &&
8776 !test_bit(Journal, &rdev->flags) &&
8777 !test_bit(Faulty, &rdev->flags) &&
8778 !test_bit(In_sync, &rdev->flags) &&
8779 rdev->recovery_offset < j)
8780 j = rdev->recovery_offset;
8781 rcu_read_unlock();
8782
8783 /* If there is a bitmap, we need to make sure all
8784 * writes that started before we added a spare
8785 * complete before we start doing a recovery.
8786 * Otherwise the write might complete and (via
8787 * bitmap_endwrite) set a bit in the bitmap after the
8788 * recovery has checked that bit and skipped that
8789 * region.
8790 */
8791 if (mddev->bitmap) {
8792 mddev->pers->quiesce(mddev, 1);
8793 mddev->pers->quiesce(mddev, 0);
8794 }
8795 }
8796
8797 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8798 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
8799 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8800 speed_max(mddev), desc);
8801
8802 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8803
8804 io_sectors = 0;
8805 for (m = 0; m < SYNC_MARKS; m++) {
8806 mark[m] = jiffies;
8807 mark_cnt[m] = io_sectors;
8808 }
8809 last_mark = 0;
8810 mddev->resync_mark = mark[last_mark];
8811 mddev->resync_mark_cnt = mark_cnt[last_mark];
8812
8813 /*
8814 * Tune reconstruction:
8815 */
8816 window = 32 * (PAGE_SIZE / 512);
8817 pr_debug("md: using %dk window, over a total of %lluk.\n",
8818 window/2, (unsigned long long)max_sectors/2);
8819
8820 atomic_set(&mddev->recovery_active, 0);
8821 last_check = 0;
8822
8823 if (j>2) {
8824 pr_debug("md: resuming %s of %s from checkpoint.\n",
8825 desc, mdname(mddev));
8826 mddev->curr_resync = j;
8827 } else
8828 mddev->curr_resync = 3; /* no longer delayed */
8829 mddev->curr_resync_completed = j;
8830 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8831 md_new_event(mddev);
8832 update_time = jiffies;
8833
8834 blk_start_plug(&plug);
8835 while (j < max_sectors) {
8836 sector_t sectors;
8837
8838 skipped = 0;
8839
8840 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8841 ((mddev->curr_resync > mddev->curr_resync_completed &&
8842 (mddev->curr_resync - mddev->curr_resync_completed)
8843 > (max_sectors >> 4)) ||
8844 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8845 (j - mddev->curr_resync_completed)*2
8846 >= mddev->resync_max - mddev->curr_resync_completed ||
8847 mddev->curr_resync_completed > mddev->resync_max
8848 )) {
8849 /* time to update curr_resync_completed */
8850 wait_event(mddev->recovery_wait,
8851 atomic_read(&mddev->recovery_active) == 0);
8852 mddev->curr_resync_completed = j;
8853 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8854 j > mddev->recovery_cp)
8855 mddev->recovery_cp = j;
8856 update_time = jiffies;
8857 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8858 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8859 }
8860
8861 while (j >= mddev->resync_max &&
8862 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8863 /* As this condition is controlled by user-space,
8864 * we can block indefinitely, so use '_interruptible'
8865 * to avoid triggering warnings.
8866 */
8867 flush_signals(current); /* just in case */
8868 wait_event_interruptible(mddev->recovery_wait,
8869 mddev->resync_max > j
8870 || test_bit(MD_RECOVERY_INTR,
8871 &mddev->recovery));
8872 }
8873
8874 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8875 break;
8876
8877 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8878 if (sectors == 0) {
8879 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8880 break;
8881 }
8882
8883 if (!skipped) { /* actual IO requested */
8884 io_sectors += sectors;
8885 atomic_add(sectors, &mddev->recovery_active);
8886 }
8887
8888 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8889 break;
8890
8891 j += sectors;
8892 if (j > max_sectors)
8893 /* when skipping, extra large numbers can be returned. */
8894 j = max_sectors;
8895 if (j > 2)
8896 mddev->curr_resync = j;
8897 mddev->curr_mark_cnt = io_sectors;
8898 if (last_check == 0)
8899 /* this is the earliest that rebuild will be
8900 * visible in /proc/mdstat
8901 */
8902 md_new_event(mddev);
8903
8904 if (last_check + window > io_sectors || j == max_sectors)
8905 continue;
8906
8907 last_check = io_sectors;
8908 repeat:
8909 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8910 /* step marks */
8911 int next = (last_mark+1) % SYNC_MARKS;
8912
8913 mddev->resync_mark = mark[next];
8914 mddev->resync_mark_cnt = mark_cnt[next];
8915 mark[next] = jiffies;
8916 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8917 last_mark = next;
8918 }
8919
8920 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8921 break;
8922
8923 /*
8924 * this loop exits only if either when we are slower than
8925 * the 'hard' speed limit, or the system was IO-idle for
8926 * a jiffy.
8927 * the system might be non-idle CPU-wise, but we only care
8928 * about not overloading the IO subsystem. (things like an
8929 * e2fsck being done on the RAID array should execute fast)
8930 */
8931 cond_resched();
8932
8933 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8934 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8935 /((jiffies-mddev->resync_mark)/HZ +1) +1;
8936
8937 if (currspeed > speed_min(mddev)) {
8938 if (currspeed > speed_max(mddev)) {
8939 msleep(500);
8940 goto repeat;
8941 }
8942 if (!is_mddev_idle(mddev, 0)) {
8943 /*
8944 * Give other IO more of a chance.
8945 * The faster the devices, the less we wait.
8946 */
8947 wait_event(mddev->recovery_wait,
8948 !atomic_read(&mddev->recovery_active));
8949 }
8950 }
8951 }
8952 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
8953 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8954 ? "interrupted" : "done");
8955 /*
8956 * this also signals 'finished resyncing' to md_stop
8957 */
8958 blk_finish_plug(&plug);
8959 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8960
8961 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8962 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8963 mddev->curr_resync > 3) {
8964 mddev->curr_resync_completed = mddev->curr_resync;
8965 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8966 }
8967 mddev->pers->sync_request(mddev, max_sectors, &skipped);
8968
8969 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8970 mddev->curr_resync > 3) {
8971 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8972 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8973 if (mddev->curr_resync >= mddev->recovery_cp) {
8974 pr_debug("md: checkpointing %s of %s.\n",
8975 desc, mdname(mddev));
8976 if (test_bit(MD_RECOVERY_ERROR,
8977 &mddev->recovery))
8978 mddev->recovery_cp =
8979 mddev->curr_resync_completed;
8980 else
8981 mddev->recovery_cp =
8982 mddev->curr_resync;
8983 }
8984 } else
8985 mddev->recovery_cp = MaxSector;
8986 } else {
8987 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8988 mddev->curr_resync = MaxSector;
8989 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8990 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
8991 rcu_read_lock();
8992 rdev_for_each_rcu(rdev, mddev)
8993 if (rdev->raid_disk >= 0 &&
8994 mddev->delta_disks >= 0 &&
8995 !test_bit(Journal, &rdev->flags) &&
8996 !test_bit(Faulty, &rdev->flags) &&
8997 !test_bit(In_sync, &rdev->flags) &&
8998 rdev->recovery_offset < mddev->curr_resync)
8999 rdev->recovery_offset = mddev->curr_resync;
9000 rcu_read_unlock();
9001 }
9002 }
9003 }
9004 skip:
9005 /* set CHANGE_PENDING here since maybe another update is needed,
9006 * so other nodes are informed. It should be harmless for normal
9007 * raid */
9008 set_mask_bits(&mddev->sb_flags, 0,
9009 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
9010
9011 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9012 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9013 mddev->delta_disks > 0 &&
9014 mddev->pers->finish_reshape &&
9015 mddev->pers->size &&
9016 mddev->queue) {
9017 mddev_lock_nointr(mddev);
9018 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
9019 mddev_unlock(mddev);
9020 if (!mddev_is_clustered(mddev)) {
9021 set_capacity(mddev->gendisk, mddev->array_sectors);
9022 revalidate_disk_size(mddev->gendisk, true);
9023 }
9024 }
9025
9026 spin_lock(&mddev->lock);
9027 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9028 /* We completed so min/max setting can be forgotten if used. */
9029 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9030 mddev->resync_min = 0;
9031 mddev->resync_max = MaxSector;
9032 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9033 mddev->resync_min = mddev->curr_resync_completed;
9034 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
9035 mddev->curr_resync = 0;
9036 spin_unlock(&mddev->lock);
9037
9038 wake_up(&resync_wait);
9039 md_wakeup_thread(mddev->thread);
9040 return;
9041 }
9042 EXPORT_SYMBOL_GPL(md_do_sync);
9043
remove_and_add_spares(struct mddev * mddev,struct md_rdev * this)9044 static int remove_and_add_spares(struct mddev *mddev,
9045 struct md_rdev *this)
9046 {
9047 struct md_rdev *rdev;
9048 int spares = 0;
9049 int removed = 0;
9050 bool remove_some = false;
9051
9052 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
9053 /* Mustn't remove devices when resync thread is running */
9054 return 0;
9055
9056 rdev_for_each(rdev, mddev) {
9057 if ((this == NULL || rdev == this) &&
9058 rdev->raid_disk >= 0 &&
9059 !test_bit(Blocked, &rdev->flags) &&
9060 test_bit(Faulty, &rdev->flags) &&
9061 atomic_read(&rdev->nr_pending)==0) {
9062 /* Faulty non-Blocked devices with nr_pending == 0
9063 * never get nr_pending incremented,
9064 * never get Faulty cleared, and never get Blocked set.
9065 * So we can synchronize_rcu now rather than once per device
9066 */
9067 remove_some = true;
9068 set_bit(RemoveSynchronized, &rdev->flags);
9069 }
9070 }
9071
9072 if (remove_some)
9073 synchronize_rcu();
9074 rdev_for_each(rdev, mddev) {
9075 if ((this == NULL || rdev == this) &&
9076 rdev->raid_disk >= 0 &&
9077 !test_bit(Blocked, &rdev->flags) &&
9078 ((test_bit(RemoveSynchronized, &rdev->flags) ||
9079 (!test_bit(In_sync, &rdev->flags) &&
9080 !test_bit(Journal, &rdev->flags))) &&
9081 atomic_read(&rdev->nr_pending)==0)) {
9082 if (mddev->pers->hot_remove_disk(
9083 mddev, rdev) == 0) {
9084 sysfs_unlink_rdev(mddev, rdev);
9085 rdev->saved_raid_disk = rdev->raid_disk;
9086 rdev->raid_disk = -1;
9087 removed++;
9088 }
9089 }
9090 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
9091 clear_bit(RemoveSynchronized, &rdev->flags);
9092 }
9093
9094 if (removed && mddev->kobj.sd)
9095 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9096
9097 if (this && removed)
9098 goto no_add;
9099
9100 rdev_for_each(rdev, mddev) {
9101 if (this && this != rdev)
9102 continue;
9103 if (test_bit(Candidate, &rdev->flags))
9104 continue;
9105 if (rdev->raid_disk >= 0 &&
9106 !test_bit(In_sync, &rdev->flags) &&
9107 !test_bit(Journal, &rdev->flags) &&
9108 !test_bit(Faulty, &rdev->flags))
9109 spares++;
9110 if (rdev->raid_disk >= 0)
9111 continue;
9112 if (test_bit(Faulty, &rdev->flags))
9113 continue;
9114 if (!test_bit(Journal, &rdev->flags)) {
9115 if (mddev->ro &&
9116 ! (rdev->saved_raid_disk >= 0 &&
9117 !test_bit(Bitmap_sync, &rdev->flags)))
9118 continue;
9119
9120 rdev->recovery_offset = 0;
9121 }
9122 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) {
9123 /* failure here is OK */
9124 sysfs_link_rdev(mddev, rdev);
9125 if (!test_bit(Journal, &rdev->flags))
9126 spares++;
9127 md_new_event(mddev);
9128 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9129 }
9130 }
9131 no_add:
9132 if (removed)
9133 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9134 return spares;
9135 }
9136
md_start_sync(struct work_struct * ws)9137 static void md_start_sync(struct work_struct *ws)
9138 {
9139 struct mddev *mddev = container_of(ws, struct mddev, del_work);
9140
9141 mddev->sync_thread = md_register_thread(md_do_sync,
9142 mddev,
9143 "resync");
9144 if (!mddev->sync_thread) {
9145 pr_warn("%s: could not start resync thread...\n",
9146 mdname(mddev));
9147 /* leave the spares where they are, it shouldn't hurt */
9148 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9149 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9150 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9151 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9152 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9153 wake_up(&resync_wait);
9154 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9155 &mddev->recovery))
9156 if (mddev->sysfs_action)
9157 sysfs_notify_dirent_safe(mddev->sysfs_action);
9158 } else
9159 md_wakeup_thread(mddev->sync_thread);
9160 sysfs_notify_dirent_safe(mddev->sysfs_action);
9161 md_new_event(mddev);
9162 }
9163
9164 /*
9165 * This routine is regularly called by all per-raid-array threads to
9166 * deal with generic issues like resync and super-block update.
9167 * Raid personalities that don't have a thread (linear/raid0) do not
9168 * need this as they never do any recovery or update the superblock.
9169 *
9170 * It does not do any resync itself, but rather "forks" off other threads
9171 * to do that as needed.
9172 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
9173 * "->recovery" and create a thread at ->sync_thread.
9174 * When the thread finishes it sets MD_RECOVERY_DONE
9175 * and wakeups up this thread which will reap the thread and finish up.
9176 * This thread also removes any faulty devices (with nr_pending == 0).
9177 *
9178 * The overall approach is:
9179 * 1/ if the superblock needs updating, update it.
9180 * 2/ If a recovery thread is running, don't do anything else.
9181 * 3/ If recovery has finished, clean up, possibly marking spares active.
9182 * 4/ If there are any faulty devices, remove them.
9183 * 5/ If array is degraded, try to add spares devices
9184 * 6/ If array has spares or is not in-sync, start a resync thread.
9185 */
md_check_recovery(struct mddev * mddev)9186 void md_check_recovery(struct mddev *mddev)
9187 {
9188 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
9189 /* Write superblock - thread that called mddev_suspend()
9190 * holds reconfig_mutex for us.
9191 */
9192 set_bit(MD_UPDATING_SB, &mddev->flags);
9193 smp_mb__after_atomic();
9194 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
9195 md_update_sb(mddev, 0);
9196 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
9197 wake_up(&mddev->sb_wait);
9198 }
9199
9200 if (mddev->suspended)
9201 return;
9202
9203 if (mddev->bitmap)
9204 md_bitmap_daemon_work(mddev);
9205
9206 if (signal_pending(current)) {
9207 if (mddev->pers->sync_request && !mddev->external) {
9208 pr_debug("md: %s in immediate safe mode\n",
9209 mdname(mddev));
9210 mddev->safemode = 2;
9211 }
9212 flush_signals(current);
9213 }
9214
9215 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
9216 return;
9217 if ( ! (
9218 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
9219 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9220 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
9221 (mddev->external == 0 && mddev->safemode == 1) ||
9222 (mddev->safemode == 2
9223 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
9224 ))
9225 return;
9226
9227 if (mddev_trylock(mddev)) {
9228 int spares = 0;
9229 bool try_set_sync = mddev->safemode != 0;
9230
9231 if (!mddev->external && mddev->safemode == 1)
9232 mddev->safemode = 0;
9233
9234 if (mddev->ro) {
9235 struct md_rdev *rdev;
9236 if (!mddev->external && mddev->in_sync)
9237 /* 'Blocked' flag not needed as failed devices
9238 * will be recorded if array switched to read/write.
9239 * Leaving it set will prevent the device
9240 * from being removed.
9241 */
9242 rdev_for_each(rdev, mddev)
9243 clear_bit(Blocked, &rdev->flags);
9244 /* On a read-only array we can:
9245 * - remove failed devices
9246 * - add already-in_sync devices if the array itself
9247 * is in-sync.
9248 * As we only add devices that are already in-sync,
9249 * we can activate the spares immediately.
9250 */
9251 remove_and_add_spares(mddev, NULL);
9252 /* There is no thread, but we need to call
9253 * ->spare_active and clear saved_raid_disk
9254 */
9255 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9256 md_reap_sync_thread(mddev);
9257 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9258 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9259 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
9260 goto unlock;
9261 }
9262
9263 if (mddev_is_clustered(mddev)) {
9264 struct md_rdev *rdev, *tmp;
9265 /* kick the device if another node issued a
9266 * remove disk.
9267 */
9268 rdev_for_each_safe(rdev, tmp, mddev) {
9269 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
9270 rdev->raid_disk < 0)
9271 md_kick_rdev_from_array(rdev);
9272 }
9273 }
9274
9275 if (try_set_sync && !mddev->external && !mddev->in_sync) {
9276 spin_lock(&mddev->lock);
9277 set_in_sync(mddev);
9278 spin_unlock(&mddev->lock);
9279 }
9280
9281 if (mddev->sb_flags)
9282 md_update_sb(mddev, 0);
9283
9284 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
9285 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
9286 /* resync/recovery still happening */
9287 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9288 goto unlock;
9289 }
9290 if (mddev->sync_thread) {
9291 md_reap_sync_thread(mddev);
9292 goto unlock;
9293 }
9294 /* Set RUNNING before clearing NEEDED to avoid
9295 * any transients in the value of "sync_action".
9296 */
9297 mddev->curr_resync_completed = 0;
9298 spin_lock(&mddev->lock);
9299 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9300 spin_unlock(&mddev->lock);
9301 /* Clear some bits that don't mean anything, but
9302 * might be left set
9303 */
9304 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
9305 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9306
9307 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9308 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
9309 goto not_running;
9310 /* no recovery is running.
9311 * remove any failed drives, then
9312 * add spares if possible.
9313 * Spares are also removed and re-added, to allow
9314 * the personality to fail the re-add.
9315 */
9316
9317 if (mddev->reshape_position != MaxSector) {
9318 if (mddev->pers->check_reshape == NULL ||
9319 mddev->pers->check_reshape(mddev) != 0)
9320 /* Cannot proceed */
9321 goto not_running;
9322 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9323 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9324 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
9325 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9326 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9327 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9328 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9329 } else if (mddev->recovery_cp < MaxSector) {
9330 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9331 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9332 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
9333 /* nothing to be done ... */
9334 goto not_running;
9335
9336 if (mddev->pers->sync_request) {
9337 if (spares) {
9338 /* We are adding a device or devices to an array
9339 * which has the bitmap stored on all devices.
9340 * So make sure all bitmap pages get written
9341 */
9342 md_bitmap_write_all(mddev->bitmap);
9343 }
9344 INIT_WORK(&mddev->del_work, md_start_sync);
9345 queue_work(md_misc_wq, &mddev->del_work);
9346 goto unlock;
9347 }
9348 not_running:
9349 if (!mddev->sync_thread) {
9350 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9351 wake_up(&resync_wait);
9352 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9353 &mddev->recovery))
9354 if (mddev->sysfs_action)
9355 sysfs_notify_dirent_safe(mddev->sysfs_action);
9356 }
9357 unlock:
9358 wake_up(&mddev->sb_wait);
9359 mddev_unlock(mddev);
9360 }
9361 }
9362 EXPORT_SYMBOL(md_check_recovery);
9363
md_reap_sync_thread(struct mddev * mddev)9364 void md_reap_sync_thread(struct mddev *mddev)
9365 {
9366 struct md_rdev *rdev;
9367 sector_t old_dev_sectors = mddev->dev_sectors;
9368 bool is_reshaped = false;
9369
9370 /* resync has finished, collect result */
9371 md_unregister_thread(&mddev->sync_thread);
9372 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9373 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
9374 mddev->degraded != mddev->raid_disks) {
9375 /* success...*/
9376 /* activate any spares */
9377 if (mddev->pers->spare_active(mddev)) {
9378 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9379 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9380 }
9381 }
9382 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9383 mddev->pers->finish_reshape) {
9384 mddev->pers->finish_reshape(mddev);
9385 if (mddev_is_clustered(mddev))
9386 is_reshaped = true;
9387 }
9388
9389 /* If array is no-longer degraded, then any saved_raid_disk
9390 * information must be scrapped.
9391 */
9392 if (!mddev->degraded)
9393 rdev_for_each(rdev, mddev)
9394 rdev->saved_raid_disk = -1;
9395
9396 md_update_sb(mddev, 1);
9397 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
9398 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
9399 * clustered raid */
9400 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
9401 md_cluster_ops->resync_finish(mddev);
9402 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9403 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9404 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9405 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9406 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9407 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9408 /*
9409 * We call md_cluster_ops->update_size here because sync_size could
9410 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
9411 * so it is time to update size across cluster.
9412 */
9413 if (mddev_is_clustered(mddev) && is_reshaped
9414 && !test_bit(MD_CLOSING, &mddev->flags))
9415 md_cluster_ops->update_size(mddev, old_dev_sectors);
9416 wake_up(&resync_wait);
9417 /* flag recovery needed just to double check */
9418 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9419 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9420 sysfs_notify_dirent_safe(mddev->sysfs_action);
9421 md_new_event(mddev);
9422 if (mddev->event_work.func)
9423 queue_work(md_misc_wq, &mddev->event_work);
9424 }
9425 EXPORT_SYMBOL(md_reap_sync_thread);
9426
md_wait_for_blocked_rdev(struct md_rdev * rdev,struct mddev * mddev)9427 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9428 {
9429 sysfs_notify_dirent_safe(rdev->sysfs_state);
9430 wait_event_timeout(rdev->blocked_wait,
9431 !test_bit(Blocked, &rdev->flags) &&
9432 !test_bit(BlockedBadBlocks, &rdev->flags),
9433 msecs_to_jiffies(5000));
9434 rdev_dec_pending(rdev, mddev);
9435 }
9436 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9437
md_finish_reshape(struct mddev * mddev)9438 void md_finish_reshape(struct mddev *mddev)
9439 {
9440 /* called be personality module when reshape completes. */
9441 struct md_rdev *rdev;
9442
9443 rdev_for_each(rdev, mddev) {
9444 if (rdev->data_offset > rdev->new_data_offset)
9445 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9446 else
9447 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9448 rdev->data_offset = rdev->new_data_offset;
9449 }
9450 }
9451 EXPORT_SYMBOL(md_finish_reshape);
9452
9453 /* Bad block management */
9454
9455 /* Returns 1 on success, 0 on failure */
rdev_set_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)9456 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9457 int is_new)
9458 {
9459 struct mddev *mddev = rdev->mddev;
9460 int rv;
9461 if (is_new)
9462 s += rdev->new_data_offset;
9463 else
9464 s += rdev->data_offset;
9465 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9466 if (rv == 0) {
9467 /* Make sure they get written out promptly */
9468 if (test_bit(ExternalBbl, &rdev->flags))
9469 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks);
9470 sysfs_notify_dirent_safe(rdev->sysfs_state);
9471 set_mask_bits(&mddev->sb_flags, 0,
9472 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9473 md_wakeup_thread(rdev->mddev->thread);
9474 return 1;
9475 } else
9476 return 0;
9477 }
9478 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9479
rdev_clear_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)9480 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9481 int is_new)
9482 {
9483 int rv;
9484 if (is_new)
9485 s += rdev->new_data_offset;
9486 else
9487 s += rdev->data_offset;
9488 rv = badblocks_clear(&rdev->badblocks, s, sectors);
9489 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9490 sysfs_notify_dirent_safe(rdev->sysfs_badblocks);
9491 return rv;
9492 }
9493 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9494
md_notify_reboot(struct notifier_block * this,unsigned long code,void * x)9495 static int md_notify_reboot(struct notifier_block *this,
9496 unsigned long code, void *x)
9497 {
9498 struct list_head *tmp;
9499 struct mddev *mddev;
9500 int need_delay = 0;
9501
9502 for_each_mddev(mddev, tmp) {
9503 if (mddev_trylock(mddev)) {
9504 if (mddev->pers)
9505 __md_stop_writes(mddev);
9506 if (mddev->persistent)
9507 mddev->safemode = 2;
9508 mddev_unlock(mddev);
9509 }
9510 need_delay = 1;
9511 }
9512 /*
9513 * certain more exotic SCSI devices are known to be
9514 * volatile wrt too early system reboots. While the
9515 * right place to handle this issue is the given
9516 * driver, we do want to have a safe RAID driver ...
9517 */
9518 if (need_delay)
9519 mdelay(1000*1);
9520
9521 return NOTIFY_DONE;
9522 }
9523
9524 static struct notifier_block md_notifier = {
9525 .notifier_call = md_notify_reboot,
9526 .next = NULL,
9527 .priority = INT_MAX, /* before any real devices */
9528 };
9529
md_geninit(void)9530 static void md_geninit(void)
9531 {
9532 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9533
9534 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops);
9535 }
9536
md_init(void)9537 static int __init md_init(void)
9538 {
9539 int ret = -ENOMEM;
9540
9541 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9542 if (!md_wq)
9543 goto err_wq;
9544
9545 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9546 if (!md_misc_wq)
9547 goto err_misc_wq;
9548
9549 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0);
9550 if (!md_rdev_misc_wq)
9551 goto err_rdev_misc_wq;
9552
9553 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
9554 goto err_md;
9555
9556 if ((ret = register_blkdev(0, "mdp")) < 0)
9557 goto err_mdp;
9558 mdp_major = ret;
9559
9560 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
9561 md_probe, NULL, NULL);
9562 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
9563 md_probe, NULL, NULL);
9564
9565 register_reboot_notifier(&md_notifier);
9566 raid_table_header = register_sysctl_table(raid_root_table);
9567
9568 md_geninit();
9569 return 0;
9570
9571 err_mdp:
9572 unregister_blkdev(MD_MAJOR, "md");
9573 err_md:
9574 destroy_workqueue(md_rdev_misc_wq);
9575 err_rdev_misc_wq:
9576 destroy_workqueue(md_misc_wq);
9577 err_misc_wq:
9578 destroy_workqueue(md_wq);
9579 err_wq:
9580 return ret;
9581 }
9582
check_sb_changes(struct mddev * mddev,struct md_rdev * rdev)9583 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9584 {
9585 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9586 struct md_rdev *rdev2, *tmp;
9587 int role, ret;
9588 char b[BDEVNAME_SIZE];
9589
9590 /*
9591 * If size is changed in another node then we need to
9592 * do resize as well.
9593 */
9594 if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9595 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9596 if (ret)
9597 pr_info("md-cluster: resize failed\n");
9598 else
9599 md_bitmap_update_sb(mddev->bitmap);
9600 }
9601
9602 /* Check for change of roles in the active devices */
9603 rdev_for_each_safe(rdev2, tmp, mddev) {
9604 if (test_bit(Faulty, &rdev2->flags))
9605 continue;
9606
9607 /* Check if the roles changed */
9608 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9609
9610 if (test_bit(Candidate, &rdev2->flags)) {
9611 if (role == 0xfffe) {
9612 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9613 md_kick_rdev_from_array(rdev2);
9614 continue;
9615 }
9616 else
9617 clear_bit(Candidate, &rdev2->flags);
9618 }
9619
9620 if (role != rdev2->raid_disk) {
9621 /*
9622 * got activated except reshape is happening.
9623 */
9624 if (rdev2->raid_disk == -1 && role != 0xffff &&
9625 !(le32_to_cpu(sb->feature_map) &
9626 MD_FEATURE_RESHAPE_ACTIVE)) {
9627 rdev2->saved_raid_disk = role;
9628 ret = remove_and_add_spares(mddev, rdev2);
9629 pr_info("Activated spare: %s\n",
9630 bdevname(rdev2->bdev,b));
9631 /* wakeup mddev->thread here, so array could
9632 * perform resync with the new activated disk */
9633 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9634 md_wakeup_thread(mddev->thread);
9635 }
9636 /* device faulty
9637 * We just want to do the minimum to mark the disk
9638 * as faulty. The recovery is performed by the
9639 * one who initiated the error.
9640 */
9641 if ((role == 0xfffe) || (role == 0xfffd)) {
9642 md_error(mddev, rdev2);
9643 clear_bit(Blocked, &rdev2->flags);
9644 }
9645 }
9646 }
9647
9648 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) {
9649 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9650 if (ret)
9651 pr_warn("md: updating array disks failed. %d\n", ret);
9652 }
9653
9654 /*
9655 * Since mddev->delta_disks has already updated in update_raid_disks,
9656 * so it is time to check reshape.
9657 */
9658 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9659 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9660 /*
9661 * reshape is happening in the remote node, we need to
9662 * update reshape_position and call start_reshape.
9663 */
9664 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
9665 if (mddev->pers->update_reshape_pos)
9666 mddev->pers->update_reshape_pos(mddev);
9667 if (mddev->pers->start_reshape)
9668 mddev->pers->start_reshape(mddev);
9669 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9670 mddev->reshape_position != MaxSector &&
9671 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9672 /* reshape is just done in another node. */
9673 mddev->reshape_position = MaxSector;
9674 if (mddev->pers->update_reshape_pos)
9675 mddev->pers->update_reshape_pos(mddev);
9676 }
9677
9678 /* Finally set the event to be up to date */
9679 mddev->events = le64_to_cpu(sb->events);
9680 }
9681
read_rdev(struct mddev * mddev,struct md_rdev * rdev)9682 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9683 {
9684 int err;
9685 struct page *swapout = rdev->sb_page;
9686 struct mdp_superblock_1 *sb;
9687
9688 /* Store the sb page of the rdev in the swapout temporary
9689 * variable in case we err in the future
9690 */
9691 rdev->sb_page = NULL;
9692 err = alloc_disk_sb(rdev);
9693 if (err == 0) {
9694 ClearPageUptodate(rdev->sb_page);
9695 rdev->sb_loaded = 0;
9696 err = super_types[mddev->major_version].
9697 load_super(rdev, NULL, mddev->minor_version);
9698 }
9699 if (err < 0) {
9700 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9701 __func__, __LINE__, rdev->desc_nr, err);
9702 if (rdev->sb_page)
9703 put_page(rdev->sb_page);
9704 rdev->sb_page = swapout;
9705 rdev->sb_loaded = 1;
9706 return err;
9707 }
9708
9709 sb = page_address(rdev->sb_page);
9710 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9711 * is not set
9712 */
9713
9714 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9715 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9716
9717 /* The other node finished recovery, call spare_active to set
9718 * device In_sync and mddev->degraded
9719 */
9720 if (rdev->recovery_offset == MaxSector &&
9721 !test_bit(In_sync, &rdev->flags) &&
9722 mddev->pers->spare_active(mddev))
9723 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9724
9725 put_page(swapout);
9726 return 0;
9727 }
9728
md_reload_sb(struct mddev * mddev,int nr)9729 void md_reload_sb(struct mddev *mddev, int nr)
9730 {
9731 struct md_rdev *rdev = NULL, *iter;
9732 int err;
9733
9734 /* Find the rdev */
9735 rdev_for_each_rcu(iter, mddev) {
9736 if (iter->desc_nr == nr) {
9737 rdev = iter;
9738 break;
9739 }
9740 }
9741
9742 if (!rdev) {
9743 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9744 return;
9745 }
9746
9747 err = read_rdev(mddev, rdev);
9748 if (err < 0)
9749 return;
9750
9751 check_sb_changes(mddev, rdev);
9752
9753 /* Read all rdev's to update recovery_offset */
9754 rdev_for_each_rcu(rdev, mddev) {
9755 if (!test_bit(Faulty, &rdev->flags))
9756 read_rdev(mddev, rdev);
9757 }
9758 }
9759 EXPORT_SYMBOL(md_reload_sb);
9760
9761 #ifndef MODULE
9762
9763 /*
9764 * Searches all registered partitions for autorun RAID arrays
9765 * at boot time.
9766 */
9767
9768 static DEFINE_MUTEX(detected_devices_mutex);
9769 static LIST_HEAD(all_detected_devices);
9770 struct detected_devices_node {
9771 struct list_head list;
9772 dev_t dev;
9773 };
9774
md_autodetect_dev(dev_t dev)9775 void md_autodetect_dev(dev_t dev)
9776 {
9777 struct detected_devices_node *node_detected_dev;
9778
9779 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9780 if (node_detected_dev) {
9781 node_detected_dev->dev = dev;
9782 mutex_lock(&detected_devices_mutex);
9783 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9784 mutex_unlock(&detected_devices_mutex);
9785 }
9786 }
9787
md_autostart_arrays(int part)9788 void md_autostart_arrays(int part)
9789 {
9790 struct md_rdev *rdev;
9791 struct detected_devices_node *node_detected_dev;
9792 dev_t dev;
9793 int i_scanned, i_passed;
9794
9795 i_scanned = 0;
9796 i_passed = 0;
9797
9798 pr_info("md: Autodetecting RAID arrays.\n");
9799
9800 mutex_lock(&detected_devices_mutex);
9801 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9802 i_scanned++;
9803 node_detected_dev = list_entry(all_detected_devices.next,
9804 struct detected_devices_node, list);
9805 list_del(&node_detected_dev->list);
9806 dev = node_detected_dev->dev;
9807 kfree(node_detected_dev);
9808 mutex_unlock(&detected_devices_mutex);
9809 rdev = md_import_device(dev,0, 90);
9810 mutex_lock(&detected_devices_mutex);
9811 if (IS_ERR(rdev))
9812 continue;
9813
9814 if (test_bit(Faulty, &rdev->flags))
9815 continue;
9816
9817 set_bit(AutoDetected, &rdev->flags);
9818 list_add(&rdev->same_set, &pending_raid_disks);
9819 i_passed++;
9820 }
9821 mutex_unlock(&detected_devices_mutex);
9822
9823 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9824
9825 autorun_devices(part);
9826 }
9827
9828 #endif /* !MODULE */
9829
md_exit(void)9830 static __exit void md_exit(void)
9831 {
9832 struct mddev *mddev;
9833 struct list_head *tmp;
9834 int delay = 1;
9835
9836 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9837 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9838
9839 unregister_blkdev(MD_MAJOR,"md");
9840 unregister_blkdev(mdp_major, "mdp");
9841 unregister_reboot_notifier(&md_notifier);
9842 unregister_sysctl_table(raid_table_header);
9843
9844 /* We cannot unload the modules while some process is
9845 * waiting for us in select() or poll() - wake them up
9846 */
9847 md_unloading = 1;
9848 while (waitqueue_active(&md_event_waiters)) {
9849 /* not safe to leave yet */
9850 wake_up(&md_event_waiters);
9851 msleep(delay);
9852 delay += delay;
9853 }
9854 remove_proc_entry("mdstat", NULL);
9855
9856 for_each_mddev(mddev, tmp) {
9857 export_array(mddev);
9858 mddev->ctime = 0;
9859 mddev->hold_active = 0;
9860 /*
9861 * for_each_mddev() will call mddev_put() at the end of each
9862 * iteration. As the mddev is now fully clear, this will
9863 * schedule the mddev for destruction by a workqueue, and the
9864 * destroy_workqueue() below will wait for that to complete.
9865 */
9866 }
9867 destroy_workqueue(md_rdev_misc_wq);
9868 destroy_workqueue(md_misc_wq);
9869 destroy_workqueue(md_wq);
9870 }
9871
9872 subsys_initcall(md_init);
module_exit(md_exit)9873 module_exit(md_exit)
9874
9875 static int get_ro(char *buffer, const struct kernel_param *kp)
9876 {
9877 return sprintf(buffer, "%d\n", start_readonly);
9878 }
set_ro(const char * val,const struct kernel_param * kp)9879 static int set_ro(const char *val, const struct kernel_param *kp)
9880 {
9881 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9882 }
9883
9884 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9885 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9886 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9887 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
9888
9889 MODULE_LICENSE("GPL");
9890 MODULE_DESCRIPTION("MD RAID framework");
9891 MODULE_ALIAS("md");
9892 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
9893