1 // Copyright 2018 The Abseil Authors. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // https://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 // A btree implementation of the STL set and map interfaces. A btree is smaller 16 // and generally also faster than STL set/map (refer to the benchmarks below). 17 // The red-black tree implementation of STL set/map has an overhead of 3 18 // pointers (left, right and parent) plus the node color information for each 19 // stored value. So a set<int32_t> consumes 40 bytes for each value stored in 20 // 64-bit mode. This btree implementation stores multiple values on fixed 21 // size nodes (usually 256 bytes) and doesn't store child pointers for leaf 22 // nodes. The result is that a btree_set<int32_t> may use much less memory per 23 // stored value. For the random insertion benchmark in btree_bench.cc, a 24 // btree_set<int32_t> with node-size of 256 uses 5.1 bytes per stored value. 25 // 26 // The packing of multiple values on to each node of a btree has another effect 27 // besides better space utilization: better cache locality due to fewer cache 28 // lines being accessed. Better cache locality translates into faster 29 // operations. 30 // 31 // CAVEATS 32 // 33 // Insertions and deletions on a btree can cause splitting, merging or 34 // rebalancing of btree nodes. And even without these operations, insertions 35 // and deletions on a btree will move values around within a node. In both 36 // cases, the result is that insertions and deletions can invalidate iterators 37 // pointing to values other than the one being inserted/deleted. Therefore, this 38 // container does not provide pointer stability. This is notably different from 39 // STL set/map which takes care to not invalidate iterators on insert/erase 40 // except, of course, for iterators pointing to the value being erased. A 41 // partial workaround when erasing is available: erase() returns an iterator 42 // pointing to the item just after the one that was erased (or end() if none 43 // exists). 44 45 #ifndef ABSL_CONTAINER_INTERNAL_BTREE_H_ 46 #define ABSL_CONTAINER_INTERNAL_BTREE_H_ 47 48 #include <algorithm> 49 #include <cassert> 50 #include <cstddef> 51 #include <cstdint> 52 #include <cstring> 53 #include <functional> 54 #include <iterator> 55 #include <limits> 56 #include <new> 57 #include <string> 58 #include <type_traits> 59 #include <utility> 60 61 #include "absl/base/macros.h" 62 #include "absl/container/internal/common.h" 63 #include "absl/container/internal/compressed_tuple.h" 64 #include "absl/container/internal/container_memory.h" 65 #include "absl/container/internal/layout.h" 66 #include "absl/memory/memory.h" 67 #include "absl/meta/type_traits.h" 68 #include "absl/strings/cord.h" 69 #include "absl/strings/string_view.h" 70 #include "absl/types/compare.h" 71 #include "absl/utility/utility.h" 72 73 namespace absl { 74 ABSL_NAMESPACE_BEGIN 75 namespace container_internal { 76 77 // A helper class that indicates if the Compare parameter is a key-compare-to 78 // comparator. 79 template <typename Compare, typename T> 80 using btree_is_key_compare_to = 81 std::is_convertible<absl::result_of_t<Compare(const T &, const T &)>, 82 absl::weak_ordering>; 83 84 struct StringBtreeDefaultLess { 85 using is_transparent = void; 86 87 StringBtreeDefaultLess() = default; 88 89 // Compatibility constructor. StringBtreeDefaultLessStringBtreeDefaultLess90 StringBtreeDefaultLess(std::less<std::string>) {} // NOLINT StringBtreeDefaultLessStringBtreeDefaultLess91 StringBtreeDefaultLess(std::less<absl::string_view>) {} // NOLINT 92 93 // Allow converting to std::less for use in key_comp()/value_comp(). 94 explicit operator std::less<std::string>() const { return {}; } 95 explicit operator std::less<absl::string_view>() const { return {}; } 96 explicit operator std::less<absl::Cord>() const { return {}; } 97 operatorStringBtreeDefaultLess98 absl::weak_ordering operator()(absl::string_view lhs, 99 absl::string_view rhs) const { 100 return compare_internal::compare_result_as_ordering(lhs.compare(rhs)); 101 } StringBtreeDefaultLessStringBtreeDefaultLess102 StringBtreeDefaultLess(std::less<absl::Cord>) {} // NOLINT operatorStringBtreeDefaultLess103 absl::weak_ordering operator()(const absl::Cord &lhs, 104 const absl::Cord &rhs) const { 105 return compare_internal::compare_result_as_ordering(lhs.Compare(rhs)); 106 } operatorStringBtreeDefaultLess107 absl::weak_ordering operator()(const absl::Cord &lhs, 108 absl::string_view rhs) const { 109 return compare_internal::compare_result_as_ordering(lhs.Compare(rhs)); 110 } operatorStringBtreeDefaultLess111 absl::weak_ordering operator()(absl::string_view lhs, 112 const absl::Cord &rhs) const { 113 return compare_internal::compare_result_as_ordering(-rhs.Compare(lhs)); 114 } 115 }; 116 117 struct StringBtreeDefaultGreater { 118 using is_transparent = void; 119 120 StringBtreeDefaultGreater() = default; 121 StringBtreeDefaultGreaterStringBtreeDefaultGreater122 StringBtreeDefaultGreater(std::greater<std::string>) {} // NOLINT StringBtreeDefaultGreaterStringBtreeDefaultGreater123 StringBtreeDefaultGreater(std::greater<absl::string_view>) {} // NOLINT 124 125 // Allow converting to std::greater for use in key_comp()/value_comp(). 126 explicit operator std::greater<std::string>() const { return {}; } 127 explicit operator std::greater<absl::string_view>() const { return {}; } 128 explicit operator std::greater<absl::Cord>() const { return {}; } 129 operatorStringBtreeDefaultGreater130 absl::weak_ordering operator()(absl::string_view lhs, 131 absl::string_view rhs) const { 132 return compare_internal::compare_result_as_ordering(rhs.compare(lhs)); 133 } StringBtreeDefaultGreaterStringBtreeDefaultGreater134 StringBtreeDefaultGreater(std::greater<absl::Cord>) {} // NOLINT operatorStringBtreeDefaultGreater135 absl::weak_ordering operator()(const absl::Cord &lhs, 136 const absl::Cord &rhs) const { 137 return compare_internal::compare_result_as_ordering(rhs.Compare(lhs)); 138 } operatorStringBtreeDefaultGreater139 absl::weak_ordering operator()(const absl::Cord &lhs, 140 absl::string_view rhs) const { 141 return compare_internal::compare_result_as_ordering(-lhs.Compare(rhs)); 142 } operatorStringBtreeDefaultGreater143 absl::weak_ordering operator()(absl::string_view lhs, 144 const absl::Cord &rhs) const { 145 return compare_internal::compare_result_as_ordering(rhs.Compare(lhs)); 146 } 147 }; 148 149 // A helper class to convert a boolean comparison into a three-way "compare-to" 150 // comparison that returns an `absl::weak_ordering`. This helper 151 // class is specialized for less<std::string>, greater<std::string>, 152 // less<string_view>, greater<string_view>, less<absl::Cord>, and 153 // greater<absl::Cord>. 154 // 155 // key_compare_to_adapter is provided so that btree users 156 // automatically get the more efficient compare-to code when using common 157 // Abseil string types with common comparison functors. 158 // These string-like specializations also turn on heterogeneous lookup by 159 // default. 160 template <typename Compare> 161 struct key_compare_to_adapter { 162 using type = Compare; 163 }; 164 165 template <> 166 struct key_compare_to_adapter<std::less<std::string>> { 167 using type = StringBtreeDefaultLess; 168 }; 169 170 template <> 171 struct key_compare_to_adapter<std::greater<std::string>> { 172 using type = StringBtreeDefaultGreater; 173 }; 174 175 template <> 176 struct key_compare_to_adapter<std::less<absl::string_view>> { 177 using type = StringBtreeDefaultLess; 178 }; 179 180 template <> 181 struct key_compare_to_adapter<std::greater<absl::string_view>> { 182 using type = StringBtreeDefaultGreater; 183 }; 184 185 template <> 186 struct key_compare_to_adapter<std::less<absl::Cord>> { 187 using type = StringBtreeDefaultLess; 188 }; 189 190 template <> 191 struct key_compare_to_adapter<std::greater<absl::Cord>> { 192 using type = StringBtreeDefaultGreater; 193 }; 194 195 // Detects an 'absl_btree_prefer_linear_node_search' member. This is 196 // a protocol used as an opt-in or opt-out of linear search. 197 // 198 // For example, this would be useful for key types that wrap an integer 199 // and define their own cheap operator<(). For example: 200 // 201 // class K { 202 // public: 203 // using absl_btree_prefer_linear_node_search = std::true_type; 204 // ... 205 // private: 206 // friend bool operator<(K a, K b) { return a.k_ < b.k_; } 207 // int k_; 208 // }; 209 // 210 // btree_map<K, V> m; // Uses linear search 211 // 212 // If T has the preference tag, then it has a preference. 213 // Btree will use the tag's truth value. 214 template <typename T, typename = void> 215 struct has_linear_node_search_preference : std::false_type {}; 216 template <typename T, typename = void> 217 struct prefers_linear_node_search : std::false_type {}; 218 template <typename T> 219 struct has_linear_node_search_preference< 220 T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>> 221 : std::true_type {}; 222 template <typename T> 223 struct prefers_linear_node_search< 224 T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>> 225 : T::absl_btree_prefer_linear_node_search {}; 226 227 template <typename Key, typename Compare, typename Alloc, int TargetNodeSize, 228 bool Multi, typename SlotPolicy> 229 struct common_params { 230 using original_key_compare = Compare; 231 232 // If Compare is a common comparator for a string-like type, then we adapt it 233 // to use heterogeneous lookup and to be a key-compare-to comparator. 234 using key_compare = typename key_compare_to_adapter<Compare>::type; 235 // A type which indicates if we have a key-compare-to functor or a plain old 236 // key-compare functor. 237 using is_key_compare_to = btree_is_key_compare_to<key_compare, Key>; 238 239 using allocator_type = Alloc; 240 using key_type = Key; 241 using size_type = std::make_signed<size_t>::type; 242 using difference_type = ptrdiff_t; 243 244 using slot_policy = SlotPolicy; 245 using slot_type = typename slot_policy::slot_type; 246 using value_type = typename slot_policy::value_type; 247 using init_type = typename slot_policy::mutable_value_type; 248 using pointer = value_type *; 249 using const_pointer = const value_type *; 250 using reference = value_type &; 251 using const_reference = const value_type &; 252 253 // For the given lookup key type, returns whether we can have multiple 254 // equivalent keys in the btree. If this is a multi-container, then we can. 255 // Otherwise, we can have multiple equivalent keys only if all of the 256 // following conditions are met: 257 // - The comparator is transparent. 258 // - The lookup key type is not the same as key_type. 259 // - The comparator is not a StringBtreeDefault{Less,Greater} comparator 260 // that we know has the same equivalence classes for all lookup types. 261 template <typename LookupKey> 262 constexpr static bool can_have_multiple_equivalent_keys() { 263 return Multi || 264 (IsTransparent<key_compare>::value && 265 !std::is_same<LookupKey, Key>::value && 266 !std::is_same<key_compare, StringBtreeDefaultLess>::value && 267 !std::is_same<key_compare, StringBtreeDefaultGreater>::value); 268 } 269 270 enum { 271 kTargetNodeSize = TargetNodeSize, 272 273 // Upper bound for the available space for values. This is largest for leaf 274 // nodes, which have overhead of at least a pointer + 4 bytes (for storing 275 // 3 field_types and an enum). 276 kNodeValueSpace = 277 TargetNodeSize - /*minimum overhead=*/(sizeof(void *) + 4), 278 }; 279 280 // This is an integral type large enough to hold as many 281 // ValueSize-values as will fit a node of TargetNodeSize bytes. 282 using node_count_type = 283 absl::conditional_t<(kNodeValueSpace / sizeof(value_type) > 284 (std::numeric_limits<uint8_t>::max)()), 285 uint16_t, uint8_t>; // NOLINT 286 287 // The following methods are necessary for passing this struct as PolicyTraits 288 // for node_handle and/or are used within btree. 289 static value_type &element(slot_type *slot) { 290 return slot_policy::element(slot); 291 } 292 static const value_type &element(const slot_type *slot) { 293 return slot_policy::element(slot); 294 } 295 template <class... Args> 296 static void construct(Alloc *alloc, slot_type *slot, Args &&... args) { 297 slot_policy::construct(alloc, slot, std::forward<Args>(args)...); 298 } 299 static void construct(Alloc *alloc, slot_type *slot, slot_type *other) { 300 slot_policy::construct(alloc, slot, other); 301 } 302 static void destroy(Alloc *alloc, slot_type *slot) { 303 slot_policy::destroy(alloc, slot); 304 } 305 static void transfer(Alloc *alloc, slot_type *new_slot, slot_type *old_slot) { 306 construct(alloc, new_slot, old_slot); 307 destroy(alloc, old_slot); 308 } 309 static void swap(Alloc *alloc, slot_type *a, slot_type *b) { 310 slot_policy::swap(alloc, a, b); 311 } 312 static void move(Alloc *alloc, slot_type *src, slot_type *dest) { 313 slot_policy::move(alloc, src, dest); 314 } 315 }; 316 317 // A parameters structure for holding the type parameters for a btree_map. 318 // Compare and Alloc should be nothrow copy-constructible. 319 template <typename Key, typename Data, typename Compare, typename Alloc, 320 int TargetNodeSize, bool Multi> 321 struct map_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi, 322 map_slot_policy<Key, Data>> { 323 using super_type = typename map_params::common_params; 324 using mapped_type = Data; 325 // This type allows us to move keys when it is safe to do so. It is safe 326 // for maps in which value_type and mutable_value_type are layout compatible. 327 using slot_policy = typename super_type::slot_policy; 328 using slot_type = typename super_type::slot_type; 329 using value_type = typename super_type::value_type; 330 using init_type = typename super_type::init_type; 331 332 using original_key_compare = typename super_type::original_key_compare; 333 // Reference: https://en.cppreference.com/w/cpp/container/map/value_compare 334 class value_compare { 335 template <typename Params> 336 friend class btree; 337 338 protected: 339 explicit value_compare(original_key_compare c) : comp(std::move(c)) {} 340 341 original_key_compare comp; // NOLINT 342 343 public: 344 auto operator()(const value_type &lhs, const value_type &rhs) const 345 -> decltype(comp(lhs.first, rhs.first)) { 346 return comp(lhs.first, rhs.first); 347 } 348 }; 349 using is_map_container = std::true_type; 350 351 template <typename V> 352 static auto key(const V &value) -> decltype(value.first) { 353 return value.first; 354 } 355 static const Key &key(const slot_type *s) { return slot_policy::key(s); } 356 static const Key &key(slot_type *s) { return slot_policy::key(s); } 357 // For use in node handle. 358 static auto mutable_key(slot_type *s) 359 -> decltype(slot_policy::mutable_key(s)) { 360 return slot_policy::mutable_key(s); 361 } 362 static mapped_type &value(value_type *value) { return value->second; } 363 }; 364 365 // This type implements the necessary functions from the 366 // absl::container_internal::slot_type interface. 367 template <typename Key> 368 struct set_slot_policy { 369 using slot_type = Key; 370 using value_type = Key; 371 using mutable_value_type = Key; 372 373 static value_type &element(slot_type *slot) { return *slot; } 374 static const value_type &element(const slot_type *slot) { return *slot; } 375 376 template <typename Alloc, class... Args> 377 static void construct(Alloc *alloc, slot_type *slot, Args &&... args) { 378 absl::allocator_traits<Alloc>::construct(*alloc, slot, 379 std::forward<Args>(args)...); 380 } 381 382 template <typename Alloc> 383 static void construct(Alloc *alloc, slot_type *slot, slot_type *other) { 384 absl::allocator_traits<Alloc>::construct(*alloc, slot, std::move(*other)); 385 } 386 387 template <typename Alloc> 388 static void destroy(Alloc *alloc, slot_type *slot) { 389 absl::allocator_traits<Alloc>::destroy(*alloc, slot); 390 } 391 392 template <typename Alloc> 393 static void swap(Alloc * /*alloc*/, slot_type *a, slot_type *b) { 394 using std::swap; 395 swap(*a, *b); 396 } 397 398 template <typename Alloc> 399 static void move(Alloc * /*alloc*/, slot_type *src, slot_type *dest) { 400 *dest = std::move(*src); 401 } 402 }; 403 404 // A parameters structure for holding the type parameters for a btree_set. 405 // Compare and Alloc should be nothrow copy-constructible. 406 template <typename Key, typename Compare, typename Alloc, int TargetNodeSize, 407 bool Multi> 408 struct set_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi, 409 set_slot_policy<Key>> { 410 using value_type = Key; 411 using slot_type = typename set_params::common_params::slot_type; 412 using value_compare = 413 typename set_params::common_params::original_key_compare; 414 using is_map_container = std::false_type; 415 416 template <typename V> 417 static const V &key(const V &value) { return value; } 418 static const Key &key(const slot_type *slot) { return *slot; } 419 static const Key &key(slot_type *slot) { return *slot; } 420 }; 421 422 // An adapter class that converts a lower-bound compare into an upper-bound 423 // compare. Note: there is no need to make a version of this adapter specialized 424 // for key-compare-to functors because the upper-bound (the first value greater 425 // than the input) is never an exact match. 426 template <typename Compare> 427 struct upper_bound_adapter { 428 explicit upper_bound_adapter(const Compare &c) : comp(c) {} 429 template <typename K1, typename K2> 430 bool operator()(const K1 &a, const K2 &b) const { 431 // Returns true when a is not greater than b. 432 return !compare_internal::compare_result_as_less_than(comp(b, a)); 433 } 434 435 private: 436 Compare comp; 437 }; 438 439 enum class MatchKind : uint8_t { kEq, kNe }; 440 441 template <typename V, bool IsCompareTo> 442 struct SearchResult { 443 V value; 444 MatchKind match; 445 446 static constexpr bool HasMatch() { return true; } 447 bool IsEq() const { return match == MatchKind::kEq; } 448 }; 449 450 // When we don't use CompareTo, `match` is not present. 451 // This ensures that callers can't use it accidentally when it provides no 452 // useful information. 453 template <typename V> 454 struct SearchResult<V, false> { 455 SearchResult() {} 456 explicit SearchResult(V value) : value(value) {} 457 SearchResult(V value, MatchKind /*match*/) : value(value) {} 458 459 V value; 460 461 static constexpr bool HasMatch() { return false; } 462 static constexpr bool IsEq() { return false; } 463 }; 464 465 // A node in the btree holding. The same node type is used for both internal 466 // and leaf nodes in the btree, though the nodes are allocated in such a way 467 // that the children array is only valid in internal nodes. 468 template <typename Params> 469 class btree_node { 470 using is_key_compare_to = typename Params::is_key_compare_to; 471 using field_type = typename Params::node_count_type; 472 using allocator_type = typename Params::allocator_type; 473 using slot_type = typename Params::slot_type; 474 475 public: 476 using params_type = Params; 477 using key_type = typename Params::key_type; 478 using value_type = typename Params::value_type; 479 using pointer = typename Params::pointer; 480 using const_pointer = typename Params::const_pointer; 481 using reference = typename Params::reference; 482 using const_reference = typename Params::const_reference; 483 using key_compare = typename Params::key_compare; 484 using size_type = typename Params::size_type; 485 using difference_type = typename Params::difference_type; 486 487 // Btree decides whether to use linear node search as follows: 488 // - If the comparator expresses a preference, use that. 489 // - If the key expresses a preference, use that. 490 // - If the key is arithmetic and the comparator is std::less or 491 // std::greater, choose linear. 492 // - Otherwise, choose binary. 493 // TODO(ezb): Might make sense to add condition(s) based on node-size. 494 using use_linear_search = std::integral_constant< 495 bool, 496 has_linear_node_search_preference<key_compare>::value 497 ? prefers_linear_node_search<key_compare>::value 498 : has_linear_node_search_preference<key_type>::value 499 ? prefers_linear_node_search<key_type>::value 500 : std::is_arithmetic<key_type>::value && 501 (std::is_same<std::less<key_type>, key_compare>::value || 502 std::is_same<std::greater<key_type>, 503 key_compare>::value)>; 504 505 // This class is organized by absl::container_internal::Layout as if it had 506 // the following structure: 507 // // A pointer to the node's parent. 508 // btree_node *parent; 509 // 510 // // The position of the node in the node's parent. 511 // field_type position; 512 // // The index of the first populated value in `values`. 513 // // TODO(ezb): right now, `start` is always 0. Update insertion/merge 514 // // logic to allow for floating storage within nodes. 515 // field_type start; 516 // // The index after the last populated value in `values`. Currently, this 517 // // is the same as the count of values. 518 // field_type finish; 519 // // The maximum number of values the node can hold. This is an integer in 520 // // [1, kNodeSlots] for root leaf nodes, kNodeSlots for non-root leaf 521 // // nodes, and kInternalNodeMaxCount (as a sentinel value) for internal 522 // // nodes (even though there are still kNodeSlots values in the node). 523 // // TODO(ezb): make max_count use only 4 bits and record log2(capacity) 524 // // to free extra bits for is_root, etc. 525 // field_type max_count; 526 // 527 // // The array of values. The capacity is `max_count` for leaf nodes and 528 // // kNodeSlots for internal nodes. Only the values in 529 // // [start, finish) have been initialized and are valid. 530 // slot_type values[max_count]; 531 // 532 // // The array of child pointers. The keys in children[i] are all less 533 // // than key(i). The keys in children[i + 1] are all greater than key(i). 534 // // There are 0 children for leaf nodes and kNodeSlots + 1 children for 535 // // internal nodes. 536 // btree_node *children[kNodeSlots + 1]; 537 // 538 // This class is only constructed by EmptyNodeType. Normally, pointers to the 539 // layout above are allocated, cast to btree_node*, and de-allocated within 540 // the btree implementation. 541 ~btree_node() = default; 542 btree_node(btree_node const &) = delete; 543 btree_node &operator=(btree_node const &) = delete; 544 545 // Public for EmptyNodeType. 546 constexpr static size_type Alignment() { 547 static_assert(LeafLayout(1).Alignment() == InternalLayout().Alignment(), 548 "Alignment of all nodes must be equal."); 549 return InternalLayout().Alignment(); 550 } 551 552 protected: 553 btree_node() = default; 554 555 private: 556 using layout_type = absl::container_internal::Layout<btree_node *, field_type, 557 slot_type, btree_node *>; 558 constexpr static size_type SizeWithNSlots(size_type n) { 559 return layout_type(/*parent*/ 1, 560 /*position, start, finish, max_count*/ 4, 561 /*slots*/ n, 562 /*children*/ 0) 563 .AllocSize(); 564 } 565 // A lower bound for the overhead of fields other than values in a leaf node. 566 constexpr static size_type MinimumOverhead() { 567 return SizeWithNSlots(1) - sizeof(value_type); 568 } 569 570 // Compute how many values we can fit onto a leaf node taking into account 571 // padding. 572 constexpr static size_type NodeTargetSlots(const int begin, const int end) { 573 return begin == end ? begin 574 : SizeWithNSlots((begin + end) / 2 + 1) > 575 params_type::kTargetNodeSize 576 ? NodeTargetSlots(begin, (begin + end) / 2) 577 : NodeTargetSlots((begin + end) / 2 + 1, end); 578 } 579 580 enum { 581 kTargetNodeSize = params_type::kTargetNodeSize, 582 kNodeTargetSlots = NodeTargetSlots(0, params_type::kTargetNodeSize), 583 584 // We need a minimum of 3 slots per internal node in order to perform 585 // splitting (1 value for the two nodes involved in the split and 1 value 586 // propagated to the parent as the delimiter for the split). For performance 587 // reasons, we don't allow 3 slots-per-node due to bad worst case occupancy 588 // of 1/3 (for a node, not a b-tree). 589 kMinNodeSlots = 4, 590 591 kNodeSlots = 592 kNodeTargetSlots >= kMinNodeSlots ? kNodeTargetSlots : kMinNodeSlots, 593 594 // The node is internal (i.e. is not a leaf node) if and only if `max_count` 595 // has this value. 596 kInternalNodeMaxCount = 0, 597 }; 598 599 // Leaves can have less than kNodeSlots values. 600 constexpr static layout_type LeafLayout(const int slot_count = kNodeSlots) { 601 return layout_type(/*parent*/ 1, 602 /*position, start, finish, max_count*/ 4, 603 /*slots*/ slot_count, 604 /*children*/ 0); 605 } 606 constexpr static layout_type InternalLayout() { 607 return layout_type(/*parent*/ 1, 608 /*position, start, finish, max_count*/ 4, 609 /*slots*/ kNodeSlots, 610 /*children*/ kNodeSlots + 1); 611 } 612 constexpr static size_type LeafSize(const int slot_count = kNodeSlots) { 613 return LeafLayout(slot_count).AllocSize(); 614 } 615 constexpr static size_type InternalSize() { 616 return InternalLayout().AllocSize(); 617 } 618 619 // N is the index of the type in the Layout definition. 620 // ElementType<N> is the Nth type in the Layout definition. 621 template <size_type N> 622 inline typename layout_type::template ElementType<N> *GetField() { 623 // We assert that we don't read from values that aren't there. 624 assert(N < 3 || !leaf()); 625 return InternalLayout().template Pointer<N>(reinterpret_cast<char *>(this)); 626 } 627 template <size_type N> 628 inline const typename layout_type::template ElementType<N> *GetField() const { 629 assert(N < 3 || !leaf()); 630 return InternalLayout().template Pointer<N>( 631 reinterpret_cast<const char *>(this)); 632 } 633 void set_parent(btree_node *p) { *GetField<0>() = p; } 634 field_type &mutable_finish() { return GetField<1>()[2]; } 635 slot_type *slot(int i) { return &GetField<2>()[i]; } 636 slot_type *start_slot() { return slot(start()); } 637 slot_type *finish_slot() { return slot(finish()); } 638 const slot_type *slot(int i) const { return &GetField<2>()[i]; } 639 void set_position(field_type v) { GetField<1>()[0] = v; } 640 void set_start(field_type v) { GetField<1>()[1] = v; } 641 void set_finish(field_type v) { GetField<1>()[2] = v; } 642 // This method is only called by the node init methods. 643 void set_max_count(field_type v) { GetField<1>()[3] = v; } 644 645 public: 646 // Whether this is a leaf node or not. This value doesn't change after the 647 // node is created. 648 bool leaf() const { return GetField<1>()[3] != kInternalNodeMaxCount; } 649 650 // Getter for the position of this node in its parent. 651 field_type position() const { return GetField<1>()[0]; } 652 653 // Getter for the offset of the first value in the `values` array. 654 field_type start() const { 655 // TODO(ezb): when floating storage is implemented, return GetField<1>()[1]; 656 assert(GetField<1>()[1] == 0); 657 return 0; 658 } 659 660 // Getter for the offset after the last value in the `values` array. 661 field_type finish() const { return GetField<1>()[2]; } 662 663 // Getters for the number of values stored in this node. 664 field_type count() const { 665 assert(finish() >= start()); 666 return finish() - start(); 667 } 668 field_type max_count() const { 669 // Internal nodes have max_count==kInternalNodeMaxCount. 670 // Leaf nodes have max_count in [1, kNodeSlots]. 671 const field_type max_count = GetField<1>()[3]; 672 return max_count == field_type{kInternalNodeMaxCount} 673 ? field_type{kNodeSlots} 674 : max_count; 675 } 676 677 // Getter for the parent of this node. 678 btree_node *parent() const { return *GetField<0>(); } 679 // Getter for whether the node is the root of the tree. The parent of the 680 // root of the tree is the leftmost node in the tree which is guaranteed to 681 // be a leaf. 682 bool is_root() const { return parent()->leaf(); } 683 void make_root() { 684 assert(parent()->is_root()); 685 set_parent(parent()->parent()); 686 } 687 688 // Getters for the key/value at position i in the node. 689 const key_type &key(int i) const { return params_type::key(slot(i)); } 690 reference value(int i) { return params_type::element(slot(i)); } 691 const_reference value(int i) const { return params_type::element(slot(i)); } 692 693 // Getters/setter for the child at position i in the node. 694 btree_node *child(int i) const { return GetField<3>()[i]; } 695 btree_node *start_child() const { return child(start()); } 696 btree_node *&mutable_child(int i) { return GetField<3>()[i]; } 697 void clear_child(int i) { 698 absl::container_internal::SanitizerPoisonObject(&mutable_child(i)); 699 } 700 void set_child(int i, btree_node *c) { 701 absl::container_internal::SanitizerUnpoisonObject(&mutable_child(i)); 702 mutable_child(i) = c; 703 c->set_position(i); 704 } 705 void init_child(int i, btree_node *c) { 706 set_child(i, c); 707 c->set_parent(this); 708 } 709 710 // Returns the position of the first value whose key is not less than k. 711 template <typename K> 712 SearchResult<int, is_key_compare_to::value> lower_bound( 713 const K &k, const key_compare &comp) const { 714 return use_linear_search::value ? linear_search(k, comp) 715 : binary_search(k, comp); 716 } 717 // Returns the position of the first value whose key is greater than k. 718 template <typename K> 719 int upper_bound(const K &k, const key_compare &comp) const { 720 auto upper_compare = upper_bound_adapter<key_compare>(comp); 721 return use_linear_search::value ? linear_search(k, upper_compare).value 722 : binary_search(k, upper_compare).value; 723 } 724 725 template <typename K, typename Compare> 726 SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value> 727 linear_search(const K &k, const Compare &comp) const { 728 return linear_search_impl(k, start(), finish(), comp, 729 btree_is_key_compare_to<Compare, key_type>()); 730 } 731 732 template <typename K, typename Compare> 733 SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value> 734 binary_search(const K &k, const Compare &comp) const { 735 return binary_search_impl(k, start(), finish(), comp, 736 btree_is_key_compare_to<Compare, key_type>()); 737 } 738 739 // Returns the position of the first value whose key is not less than k using 740 // linear search performed using plain compare. 741 template <typename K, typename Compare> 742 SearchResult<int, false> linear_search_impl( 743 const K &k, int s, const int e, const Compare &comp, 744 std::false_type /* IsCompareTo */) const { 745 while (s < e) { 746 if (!comp(key(s), k)) { 747 break; 748 } 749 ++s; 750 } 751 return SearchResult<int, false>{s}; 752 } 753 754 // Returns the position of the first value whose key is not less than k using 755 // linear search performed using compare-to. 756 template <typename K, typename Compare> 757 SearchResult<int, true> linear_search_impl( 758 const K &k, int s, const int e, const Compare &comp, 759 std::true_type /* IsCompareTo */) const { 760 while (s < e) { 761 const absl::weak_ordering c = comp(key(s), k); 762 if (c == 0) { 763 return {s, MatchKind::kEq}; 764 } else if (c > 0) { 765 break; 766 } 767 ++s; 768 } 769 return {s, MatchKind::kNe}; 770 } 771 772 // Returns the position of the first value whose key is not less than k using 773 // binary search performed using plain compare. 774 template <typename K, typename Compare> 775 SearchResult<int, false> binary_search_impl( 776 const K &k, int s, int e, const Compare &comp, 777 std::false_type /* IsCompareTo */) const { 778 while (s != e) { 779 const int mid = (s + e) >> 1; 780 if (comp(key(mid), k)) { 781 s = mid + 1; 782 } else { 783 e = mid; 784 } 785 } 786 return SearchResult<int, false>{s}; 787 } 788 789 // Returns the position of the first value whose key is not less than k using 790 // binary search performed using compare-to. 791 template <typename K, typename CompareTo> 792 SearchResult<int, true> binary_search_impl( 793 const K &k, int s, int e, const CompareTo &comp, 794 std::true_type /* IsCompareTo */) const { 795 if (params_type::template can_have_multiple_equivalent_keys<K>()) { 796 MatchKind exact_match = MatchKind::kNe; 797 while (s != e) { 798 const int mid = (s + e) >> 1; 799 const absl::weak_ordering c = comp(key(mid), k); 800 if (c < 0) { 801 s = mid + 1; 802 } else { 803 e = mid; 804 if (c == 0) { 805 // Need to return the first value whose key is not less than k, 806 // which requires continuing the binary search if there could be 807 // multiple equivalent keys. 808 exact_match = MatchKind::kEq; 809 } 810 } 811 } 812 return {s, exact_match}; 813 } else { // Can't have multiple equivalent keys. 814 while (s != e) { 815 const int mid = (s + e) >> 1; 816 const absl::weak_ordering c = comp(key(mid), k); 817 if (c < 0) { 818 s = mid + 1; 819 } else if (c > 0) { 820 e = mid; 821 } else { 822 return {mid, MatchKind::kEq}; 823 } 824 } 825 return {s, MatchKind::kNe}; 826 } 827 } 828 829 // Emplaces a value at position i, shifting all existing values and 830 // children at positions >= i to the right by 1. 831 template <typename... Args> 832 void emplace_value(size_type i, allocator_type *alloc, Args &&... args); 833 834 // Removes the values at positions [i, i + to_erase), shifting all existing 835 // values and children after that range to the left by to_erase. Clears all 836 // children between [i, i + to_erase). 837 void remove_values(field_type i, field_type to_erase, allocator_type *alloc); 838 839 // Rebalances a node with its right sibling. 840 void rebalance_right_to_left(int to_move, btree_node *right, 841 allocator_type *alloc); 842 void rebalance_left_to_right(int to_move, btree_node *right, 843 allocator_type *alloc); 844 845 // Splits a node, moving a portion of the node's values to its right sibling. 846 void split(int insert_position, btree_node *dest, allocator_type *alloc); 847 848 // Merges a node with its right sibling, moving all of the values and the 849 // delimiting key in the parent node onto itself, and deleting the src node. 850 void merge(btree_node *src, allocator_type *alloc); 851 852 // Node allocation/deletion routines. 853 void init_leaf(btree_node *parent, int max_count) { 854 set_parent(parent); 855 set_position(0); 856 set_start(0); 857 set_finish(0); 858 set_max_count(max_count); 859 absl::container_internal::SanitizerPoisonMemoryRegion( 860 start_slot(), max_count * sizeof(slot_type)); 861 } 862 void init_internal(btree_node *parent) { 863 init_leaf(parent, kNodeSlots); 864 // Set `max_count` to a sentinel value to indicate that this node is 865 // internal. 866 set_max_count(kInternalNodeMaxCount); 867 absl::container_internal::SanitizerPoisonMemoryRegion( 868 &mutable_child(start()), (kNodeSlots + 1) * sizeof(btree_node *)); 869 } 870 871 static void deallocate(const size_type size, btree_node *node, 872 allocator_type *alloc) { 873 absl::container_internal::Deallocate<Alignment()>(alloc, node, size); 874 } 875 876 // Deletes a node and all of its children. 877 static void clear_and_delete(btree_node *node, allocator_type *alloc); 878 879 private: 880 template <typename... Args> 881 void value_init(const field_type i, allocator_type *alloc, Args &&... args) { 882 absl::container_internal::SanitizerUnpoisonObject(slot(i)); 883 params_type::construct(alloc, slot(i), std::forward<Args>(args)...); 884 } 885 void value_destroy(const field_type i, allocator_type *alloc) { 886 params_type::destroy(alloc, slot(i)); 887 absl::container_internal::SanitizerPoisonObject(slot(i)); 888 } 889 void value_destroy_n(const field_type i, const field_type n, 890 allocator_type *alloc) { 891 for (slot_type *s = slot(i), *end = slot(i + n); s != end; ++s) { 892 params_type::destroy(alloc, s); 893 absl::container_internal::SanitizerPoisonObject(s); 894 } 895 } 896 897 static void transfer(slot_type *dest, slot_type *src, allocator_type *alloc) { 898 absl::container_internal::SanitizerUnpoisonObject(dest); 899 params_type::transfer(alloc, dest, src); 900 absl::container_internal::SanitizerPoisonObject(src); 901 } 902 903 // Transfers value from slot `src_i` in `src_node` to slot `dest_i` in `this`. 904 void transfer(const size_type dest_i, const size_type src_i, 905 btree_node *src_node, allocator_type *alloc) { 906 transfer(slot(dest_i), src_node->slot(src_i), alloc); 907 } 908 909 // Transfers `n` values starting at value `src_i` in `src_node` into the 910 // values starting at value `dest_i` in `this`. 911 void transfer_n(const size_type n, const size_type dest_i, 912 const size_type src_i, btree_node *src_node, 913 allocator_type *alloc) { 914 for (slot_type *src = src_node->slot(src_i), *end = src + n, 915 *dest = slot(dest_i); 916 src != end; ++src, ++dest) { 917 transfer(dest, src, alloc); 918 } 919 } 920 921 // Same as above, except that we start at the end and work our way to the 922 // beginning. 923 void transfer_n_backward(const size_type n, const size_type dest_i, 924 const size_type src_i, btree_node *src_node, 925 allocator_type *alloc) { 926 for (slot_type *src = src_node->slot(src_i + n - 1), *end = src - n, 927 *dest = slot(dest_i + n - 1); 928 src != end; --src, --dest) { 929 transfer(dest, src, alloc); 930 } 931 } 932 933 template <typename P> 934 friend class btree; 935 template <typename N, typename R, typename P> 936 friend struct btree_iterator; 937 friend class BtreeNodePeer; 938 }; 939 940 template <typename Node, typename Reference, typename Pointer> 941 struct btree_iterator { 942 private: 943 using key_type = typename Node::key_type; 944 using size_type = typename Node::size_type; 945 using params_type = typename Node::params_type; 946 using is_map_container = typename params_type::is_map_container; 947 948 using node_type = Node; 949 using normal_node = typename std::remove_const<Node>::type; 950 using const_node = const Node; 951 using normal_pointer = typename params_type::pointer; 952 using normal_reference = typename params_type::reference; 953 using const_pointer = typename params_type::const_pointer; 954 using const_reference = typename params_type::const_reference; 955 using slot_type = typename params_type::slot_type; 956 957 using iterator = 958 btree_iterator<normal_node, normal_reference, normal_pointer>; 959 using const_iterator = 960 btree_iterator<const_node, const_reference, const_pointer>; 961 962 public: 963 // These aliases are public for std::iterator_traits. 964 using difference_type = typename Node::difference_type; 965 using value_type = typename params_type::value_type; 966 using pointer = Pointer; 967 using reference = Reference; 968 using iterator_category = std::bidirectional_iterator_tag; 969 970 btree_iterator() : node(nullptr), position(-1) {} 971 explicit btree_iterator(Node *n) : node(n), position(n->start()) {} 972 btree_iterator(Node *n, int p) : node(n), position(p) {} 973 974 // NOTE: this SFINAE allows for implicit conversions from iterator to 975 // const_iterator, but it specifically avoids hiding the copy constructor so 976 // that the trivial one will be used when possible. 977 template <typename N, typename R, typename P, 978 absl::enable_if_t< 979 std::is_same<btree_iterator<N, R, P>, iterator>::value && 980 std::is_same<btree_iterator, const_iterator>::value, 981 int> = 0> 982 btree_iterator(const btree_iterator<N, R, P> other) // NOLINT 983 : node(other.node), position(other.position) {} 984 985 private: 986 // This SFINAE allows explicit conversions from const_iterator to 987 // iterator, but also avoids hiding the copy constructor. 988 // NOTE: the const_cast is safe because this constructor is only called by 989 // non-const methods and the container owns the nodes. 990 template <typename N, typename R, typename P, 991 absl::enable_if_t< 992 std::is_same<btree_iterator<N, R, P>, const_iterator>::value && 993 std::is_same<btree_iterator, iterator>::value, 994 int> = 0> 995 explicit btree_iterator(const btree_iterator<N, R, P> other) 996 : node(const_cast<node_type *>(other.node)), position(other.position) {} 997 998 // Increment/decrement the iterator. 999 void increment() { 1000 if (node->leaf() && ++position < node->finish()) { 1001 return; 1002 } 1003 increment_slow(); 1004 } 1005 void increment_slow(); 1006 1007 void decrement() { 1008 if (node->leaf() && --position >= node->start()) { 1009 return; 1010 } 1011 decrement_slow(); 1012 } 1013 void decrement_slow(); 1014 1015 public: 1016 bool operator==(const iterator &other) const { 1017 return node == other.node && position == other.position; 1018 } 1019 bool operator==(const const_iterator &other) const { 1020 return node == other.node && position == other.position; 1021 } 1022 bool operator!=(const iterator &other) const { 1023 return node != other.node || position != other.position; 1024 } 1025 bool operator!=(const const_iterator &other) const { 1026 return node != other.node || position != other.position; 1027 } 1028 1029 // Accessors for the key/value the iterator is pointing at. 1030 reference operator*() const { 1031 ABSL_HARDENING_ASSERT(node != nullptr); 1032 ABSL_HARDENING_ASSERT(node->start() <= position); 1033 ABSL_HARDENING_ASSERT(node->finish() > position); 1034 return node->value(position); 1035 } 1036 pointer operator->() const { return &operator*(); } 1037 1038 btree_iterator &operator++() { 1039 increment(); 1040 return *this; 1041 } 1042 btree_iterator &operator--() { 1043 decrement(); 1044 return *this; 1045 } 1046 btree_iterator operator++(int) { 1047 btree_iterator tmp = *this; 1048 ++*this; 1049 return tmp; 1050 } 1051 btree_iterator operator--(int) { 1052 btree_iterator tmp = *this; 1053 --*this; 1054 return tmp; 1055 } 1056 1057 private: 1058 friend iterator; 1059 friend const_iterator; 1060 template <typename Params> 1061 friend class btree; 1062 template <typename Tree> 1063 friend class btree_container; 1064 template <typename Tree> 1065 friend class btree_set_container; 1066 template <typename Tree> 1067 friend class btree_map_container; 1068 template <typename Tree> 1069 friend class btree_multiset_container; 1070 template <typename TreeType, typename CheckerType> 1071 friend class base_checker; 1072 1073 const key_type &key() const { return node->key(position); } 1074 slot_type *slot() { return node->slot(position); } 1075 1076 // The node in the tree the iterator is pointing at. 1077 Node *node; 1078 // The position within the node of the tree the iterator is pointing at. 1079 // NOTE: this is an int rather than a field_type because iterators can point 1080 // to invalid positions (such as -1) in certain circumstances. 1081 int position; 1082 }; 1083 1084 template <typename Params> 1085 class btree { 1086 using node_type = btree_node<Params>; 1087 using is_key_compare_to = typename Params::is_key_compare_to; 1088 using init_type = typename Params::init_type; 1089 using field_type = typename node_type::field_type; 1090 1091 // We use a static empty node for the root/leftmost/rightmost of empty btrees 1092 // in order to avoid branching in begin()/end(). 1093 struct alignas(node_type::Alignment()) EmptyNodeType : node_type { 1094 using field_type = typename node_type::field_type; 1095 node_type *parent; 1096 field_type position = 0; 1097 field_type start = 0; 1098 field_type finish = 0; 1099 // max_count must be != kInternalNodeMaxCount (so that this node is regarded 1100 // as a leaf node). max_count() is never called when the tree is empty. 1101 field_type max_count = node_type::kInternalNodeMaxCount + 1; 1102 1103 #ifdef _MSC_VER 1104 // MSVC has constexpr code generations bugs here. 1105 EmptyNodeType() : parent(this) {} 1106 #else 1107 constexpr EmptyNodeType(node_type *p) : parent(p) {} 1108 #endif 1109 }; 1110 1111 static node_type *EmptyNode() { 1112 #ifdef _MSC_VER 1113 static EmptyNodeType *empty_node = new EmptyNodeType; 1114 // This assert fails on some other construction methods. 1115 assert(empty_node->parent == empty_node); 1116 return empty_node; 1117 #else 1118 static constexpr EmptyNodeType empty_node( 1119 const_cast<EmptyNodeType *>(&empty_node)); 1120 return const_cast<EmptyNodeType *>(&empty_node); 1121 #endif 1122 } 1123 1124 enum : uint32_t { 1125 kNodeSlots = node_type::kNodeSlots, 1126 kMinNodeValues = kNodeSlots / 2, 1127 }; 1128 1129 struct node_stats { 1130 using size_type = typename Params::size_type; 1131 1132 node_stats(size_type l, size_type i) : leaf_nodes(l), internal_nodes(i) {} 1133 1134 node_stats &operator+=(const node_stats &other) { 1135 leaf_nodes += other.leaf_nodes; 1136 internal_nodes += other.internal_nodes; 1137 return *this; 1138 } 1139 1140 size_type leaf_nodes; 1141 size_type internal_nodes; 1142 }; 1143 1144 public: 1145 using key_type = typename Params::key_type; 1146 using value_type = typename Params::value_type; 1147 using size_type = typename Params::size_type; 1148 using difference_type = typename Params::difference_type; 1149 using key_compare = typename Params::key_compare; 1150 using original_key_compare = typename Params::original_key_compare; 1151 using value_compare = typename Params::value_compare; 1152 using allocator_type = typename Params::allocator_type; 1153 using reference = typename Params::reference; 1154 using const_reference = typename Params::const_reference; 1155 using pointer = typename Params::pointer; 1156 using const_pointer = typename Params::const_pointer; 1157 using iterator = 1158 typename btree_iterator<node_type, reference, pointer>::iterator; 1159 using const_iterator = typename iterator::const_iterator; 1160 using reverse_iterator = std::reverse_iterator<iterator>; 1161 using const_reverse_iterator = std::reverse_iterator<const_iterator>; 1162 using node_handle_type = node_handle<Params, Params, allocator_type>; 1163 1164 // Internal types made public for use by btree_container types. 1165 using params_type = Params; 1166 using slot_type = typename Params::slot_type; 1167 1168 private: 1169 // For use in copy_or_move_values_in_order. 1170 const value_type &maybe_move_from_iterator(const_iterator it) { return *it; } 1171 value_type &&maybe_move_from_iterator(iterator it) { 1172 // This is a destructive operation on the other container so it's safe for 1173 // us to const_cast and move from the keys here even if it's a set. 1174 return std::move(const_cast<value_type &>(*it)); 1175 } 1176 1177 // Copies or moves (depending on the template parameter) the values in 1178 // other into this btree in their order in other. This btree must be empty 1179 // before this method is called. This method is used in copy construction, 1180 // copy assignment, and move assignment. 1181 template <typename Btree> 1182 void copy_or_move_values_in_order(Btree &other); 1183 1184 // Validates that various assumptions/requirements are true at compile time. 1185 constexpr static bool static_assert_validation(); 1186 1187 public: 1188 btree(const key_compare &comp, const allocator_type &alloc) 1189 : root_(comp, alloc, EmptyNode()), rightmost_(EmptyNode()), size_(0) {} 1190 1191 btree(const btree &other) : btree(other, other.allocator()) {} 1192 btree(const btree &other, const allocator_type &alloc) 1193 : btree(other.key_comp(), alloc) { 1194 copy_or_move_values_in_order(other); 1195 } 1196 btree(btree &&other) noexcept 1197 : root_(std::move(other.root_)), 1198 rightmost_(absl::exchange(other.rightmost_, EmptyNode())), 1199 size_(absl::exchange(other.size_, 0)) { 1200 other.mutable_root() = EmptyNode(); 1201 } 1202 btree(btree &&other, const allocator_type &alloc) 1203 : btree(other.key_comp(), alloc) { 1204 if (alloc == other.allocator()) { 1205 swap(other); 1206 } else { 1207 // Move values from `other` one at a time when allocators are different. 1208 copy_or_move_values_in_order(other); 1209 } 1210 } 1211 1212 ~btree() { 1213 // Put static_asserts in destructor to avoid triggering them before the type 1214 // is complete. 1215 static_assert(static_assert_validation(), "This call must be elided."); 1216 clear(); 1217 } 1218 1219 // Assign the contents of other to *this. 1220 btree &operator=(const btree &other); 1221 btree &operator=(btree &&other) noexcept; 1222 1223 iterator begin() { return iterator(leftmost()); } 1224 const_iterator begin() const { return const_iterator(leftmost()); } 1225 iterator end() { return iterator(rightmost_, rightmost_->finish()); } 1226 const_iterator end() const { 1227 return const_iterator(rightmost_, rightmost_->finish()); 1228 } 1229 reverse_iterator rbegin() { return reverse_iterator(end()); } 1230 const_reverse_iterator rbegin() const { 1231 return const_reverse_iterator(end()); 1232 } 1233 reverse_iterator rend() { return reverse_iterator(begin()); } 1234 const_reverse_iterator rend() const { 1235 return const_reverse_iterator(begin()); 1236 } 1237 1238 // Finds the first element whose key is not less than `key`. 1239 template <typename K> 1240 iterator lower_bound(const K &key) { 1241 return internal_end(internal_lower_bound(key).value); 1242 } 1243 template <typename K> 1244 const_iterator lower_bound(const K &key) const { 1245 return internal_end(internal_lower_bound(key).value); 1246 } 1247 1248 // Finds the first element whose key is not less than `key` and also returns 1249 // whether that element is equal to `key`. 1250 template <typename K> 1251 std::pair<iterator, bool> lower_bound_equal(const K &key) const; 1252 1253 // Finds the first element whose key is greater than `key`. 1254 template <typename K> 1255 iterator upper_bound(const K &key) { 1256 return internal_end(internal_upper_bound(key)); 1257 } 1258 template <typename K> 1259 const_iterator upper_bound(const K &key) const { 1260 return internal_end(internal_upper_bound(key)); 1261 } 1262 1263 // Finds the range of values which compare equal to key. The first member of 1264 // the returned pair is equal to lower_bound(key). The second member of the 1265 // pair is equal to upper_bound(key). 1266 template <typename K> 1267 std::pair<iterator, iterator> equal_range(const K &key); 1268 template <typename K> 1269 std::pair<const_iterator, const_iterator> equal_range(const K &key) const { 1270 return const_cast<btree *>(this)->equal_range(key); 1271 } 1272 1273 // Inserts a value into the btree only if it does not already exist. The 1274 // boolean return value indicates whether insertion succeeded or failed. 1275 // Requirement: if `key` already exists in the btree, does not consume `args`. 1276 // Requirement: `key` is never referenced after consuming `args`. 1277 template <typename K, typename... Args> 1278 std::pair<iterator, bool> insert_unique(const K &key, Args &&... args); 1279 1280 // Inserts with hint. Checks to see if the value should be placed immediately 1281 // before `position` in the tree. If so, then the insertion will take 1282 // amortized constant time. If not, the insertion will take amortized 1283 // logarithmic time as if a call to insert_unique() were made. 1284 // Requirement: if `key` already exists in the btree, does not consume `args`. 1285 // Requirement: `key` is never referenced after consuming `args`. 1286 template <typename K, typename... Args> 1287 std::pair<iterator, bool> insert_hint_unique(iterator position, 1288 const K &key, 1289 Args &&... args); 1290 1291 // Insert a range of values into the btree. 1292 // Note: the first overload avoids constructing a value_type if the key 1293 // already exists in the btree. 1294 template <typename InputIterator, 1295 typename = decltype(std::declval<const key_compare &>()( 1296 params_type::key(*std::declval<InputIterator>()), 1297 std::declval<const key_type &>()))> 1298 void insert_iterator_unique(InputIterator b, InputIterator e, int); 1299 // We need the second overload for cases in which we need to construct a 1300 // value_type in order to compare it with the keys already in the btree. 1301 template <typename InputIterator> 1302 void insert_iterator_unique(InputIterator b, InputIterator e, char); 1303 1304 // Inserts a value into the btree. 1305 template <typename ValueType> 1306 iterator insert_multi(const key_type &key, ValueType &&v); 1307 1308 // Inserts a value into the btree. 1309 template <typename ValueType> 1310 iterator insert_multi(ValueType &&v) { 1311 return insert_multi(params_type::key(v), std::forward<ValueType>(v)); 1312 } 1313 1314 // Insert with hint. Check to see if the value should be placed immediately 1315 // before position in the tree. If it does, then the insertion will take 1316 // amortized constant time. If not, the insertion will take amortized 1317 // logarithmic time as if a call to insert_multi(v) were made. 1318 template <typename ValueType> 1319 iterator insert_hint_multi(iterator position, ValueType &&v); 1320 1321 // Insert a range of values into the btree. 1322 template <typename InputIterator> 1323 void insert_iterator_multi(InputIterator b, InputIterator e); 1324 1325 // Erase the specified iterator from the btree. The iterator must be valid 1326 // (i.e. not equal to end()). Return an iterator pointing to the node after 1327 // the one that was erased (or end() if none exists). 1328 // Requirement: does not read the value at `*iter`. 1329 iterator erase(iterator iter); 1330 1331 // Erases range. Returns the number of keys erased and an iterator pointing 1332 // to the element after the last erased element. 1333 std::pair<size_type, iterator> erase_range(iterator begin, iterator end); 1334 1335 // Finds an element with key equivalent to `key` or returns `end()` if `key` 1336 // is not present. 1337 template <typename K> 1338 iterator find(const K &key) { 1339 return internal_end(internal_find(key)); 1340 } 1341 template <typename K> 1342 const_iterator find(const K &key) const { 1343 return internal_end(internal_find(key)); 1344 } 1345 1346 // Clear the btree, deleting all of the values it contains. 1347 void clear(); 1348 1349 // Swaps the contents of `this` and `other`. 1350 void swap(btree &other); 1351 1352 const key_compare &key_comp() const noexcept { 1353 return root_.template get<0>(); 1354 } 1355 template <typename K1, typename K2> 1356 bool compare_keys(const K1 &a, const K2 &b) const { 1357 return compare_internal::compare_result_as_less_than(key_comp()(a, b)); 1358 } 1359 1360 value_compare value_comp() const { 1361 return value_compare(original_key_compare(key_comp())); 1362 } 1363 1364 // Verifies the structure of the btree. 1365 void verify() const; 1366 1367 // Size routines. 1368 size_type size() const { return size_; } 1369 size_type max_size() const { return (std::numeric_limits<size_type>::max)(); } 1370 bool empty() const { return size_ == 0; } 1371 1372 // The height of the btree. An empty tree will have height 0. 1373 size_type height() const { 1374 size_type h = 0; 1375 if (!empty()) { 1376 // Count the length of the chain from the leftmost node up to the 1377 // root. We actually count from the root back around to the level below 1378 // the root, but the calculation is the same because of the circularity 1379 // of that traversal. 1380 const node_type *n = root(); 1381 do { 1382 ++h; 1383 n = n->parent(); 1384 } while (n != root()); 1385 } 1386 return h; 1387 } 1388 1389 // The number of internal, leaf and total nodes used by the btree. 1390 size_type leaf_nodes() const { return internal_stats(root()).leaf_nodes; } 1391 size_type internal_nodes() const { 1392 return internal_stats(root()).internal_nodes; 1393 } 1394 size_type nodes() const { 1395 node_stats stats = internal_stats(root()); 1396 return stats.leaf_nodes + stats.internal_nodes; 1397 } 1398 1399 // The total number of bytes used by the btree. 1400 size_type bytes_used() const { 1401 node_stats stats = internal_stats(root()); 1402 if (stats.leaf_nodes == 1 && stats.internal_nodes == 0) { 1403 return sizeof(*this) + node_type::LeafSize(root()->max_count()); 1404 } else { 1405 return sizeof(*this) + stats.leaf_nodes * node_type::LeafSize() + 1406 stats.internal_nodes * node_type::InternalSize(); 1407 } 1408 } 1409 1410 // The average number of bytes used per value stored in the btree assuming 1411 // random insertion order. 1412 static double average_bytes_per_value() { 1413 // The expected number of values per node with random insertion order is the 1414 // average of the maximum and minimum numbers of values per node. 1415 const double expected_values_per_node = 1416 (kNodeSlots + kMinNodeValues) / 2.0; 1417 return node_type::LeafSize() / expected_values_per_node; 1418 } 1419 1420 // The fullness of the btree. Computed as the number of elements in the btree 1421 // divided by the maximum number of elements a tree with the current number 1422 // of nodes could hold. A value of 1 indicates perfect space 1423 // utilization. Smaller values indicate space wastage. 1424 // Returns 0 for empty trees. 1425 double fullness() const { 1426 if (empty()) return 0.0; 1427 return static_cast<double>(size()) / (nodes() * kNodeSlots); 1428 } 1429 // The overhead of the btree structure in bytes per node. Computed as the 1430 // total number of bytes used by the btree minus the number of bytes used for 1431 // storing elements divided by the number of elements. 1432 // Returns 0 for empty trees. 1433 double overhead() const { 1434 if (empty()) return 0.0; 1435 return (bytes_used() - size() * sizeof(value_type)) / 1436 static_cast<double>(size()); 1437 } 1438 1439 // The allocator used by the btree. 1440 allocator_type get_allocator() const { return allocator(); } 1441 1442 private: 1443 // Internal accessor routines. 1444 node_type *root() { return root_.template get<2>(); } 1445 const node_type *root() const { return root_.template get<2>(); } 1446 node_type *&mutable_root() noexcept { return root_.template get<2>(); } 1447 key_compare *mutable_key_comp() noexcept { return &root_.template get<0>(); } 1448 1449 // The leftmost node is stored as the parent of the root node. 1450 node_type *leftmost() { return root()->parent(); } 1451 const node_type *leftmost() const { return root()->parent(); } 1452 1453 // Allocator routines. 1454 allocator_type *mutable_allocator() noexcept { 1455 return &root_.template get<1>(); 1456 } 1457 const allocator_type &allocator() const noexcept { 1458 return root_.template get<1>(); 1459 } 1460 1461 // Allocates a correctly aligned node of at least size bytes using the 1462 // allocator. 1463 node_type *allocate(const size_type size) { 1464 return reinterpret_cast<node_type *>( 1465 absl::container_internal::Allocate<node_type::Alignment()>( 1466 mutable_allocator(), size)); 1467 } 1468 1469 // Node creation/deletion routines. 1470 node_type *new_internal_node(node_type *parent) { 1471 node_type *n = allocate(node_type::InternalSize()); 1472 n->init_internal(parent); 1473 return n; 1474 } 1475 node_type *new_leaf_node(node_type *parent) { 1476 node_type *n = allocate(node_type::LeafSize()); 1477 n->init_leaf(parent, kNodeSlots); 1478 return n; 1479 } 1480 node_type *new_leaf_root_node(const int max_count) { 1481 node_type *n = allocate(node_type::LeafSize(max_count)); 1482 n->init_leaf(/*parent=*/n, max_count); 1483 return n; 1484 } 1485 1486 // Deletion helper routines. 1487 iterator rebalance_after_delete(iterator iter); 1488 1489 // Rebalances or splits the node iter points to. 1490 void rebalance_or_split(iterator *iter); 1491 1492 // Merges the values of left, right and the delimiting key on their parent 1493 // onto left, removing the delimiting key and deleting right. 1494 void merge_nodes(node_type *left, node_type *right); 1495 1496 // Tries to merge node with its left or right sibling, and failing that, 1497 // rebalance with its left or right sibling. Returns true if a merge 1498 // occurred, at which point it is no longer valid to access node. Returns 1499 // false if no merging took place. 1500 bool try_merge_or_rebalance(iterator *iter); 1501 1502 // Tries to shrink the height of the tree by 1. 1503 void try_shrink(); 1504 1505 iterator internal_end(iterator iter) { 1506 return iter.node != nullptr ? iter : end(); 1507 } 1508 const_iterator internal_end(const_iterator iter) const { 1509 return iter.node != nullptr ? iter : end(); 1510 } 1511 1512 // Emplaces a value into the btree immediately before iter. Requires that 1513 // key(v) <= iter.key() and (--iter).key() <= key(v). 1514 template <typename... Args> 1515 iterator internal_emplace(iterator iter, Args &&... args); 1516 1517 // Returns an iterator pointing to the first value >= the value "iter" is 1518 // pointing at. Note that "iter" might be pointing to an invalid location such 1519 // as iter.position == iter.node->finish(). This routine simply moves iter up 1520 // in the tree to a valid location. 1521 // Requires: iter.node is non-null. 1522 template <typename IterType> 1523 static IterType internal_last(IterType iter); 1524 1525 // Returns an iterator pointing to the leaf position at which key would 1526 // reside in the tree, unless there is an exact match - in which case, the 1527 // result may not be on a leaf. When there's a three-way comparator, we can 1528 // return whether there was an exact match. This allows the caller to avoid a 1529 // subsequent comparison to determine if an exact match was made, which is 1530 // important for keys with expensive comparison, such as strings. 1531 template <typename K> 1532 SearchResult<iterator, is_key_compare_to::value> internal_locate( 1533 const K &key) const; 1534 1535 // Internal routine which implements lower_bound(). 1536 template <typename K> 1537 SearchResult<iterator, is_key_compare_to::value> internal_lower_bound( 1538 const K &key) const; 1539 1540 // Internal routine which implements upper_bound(). 1541 template <typename K> 1542 iterator internal_upper_bound(const K &key) const; 1543 1544 // Internal routine which implements find(). 1545 template <typename K> 1546 iterator internal_find(const K &key) const; 1547 1548 // Verifies the tree structure of node. 1549 int internal_verify(const node_type *node, const key_type *lo, 1550 const key_type *hi) const; 1551 1552 node_stats internal_stats(const node_type *node) const { 1553 // The root can be a static empty node. 1554 if (node == nullptr || (node == root() && empty())) { 1555 return node_stats(0, 0); 1556 } 1557 if (node->leaf()) { 1558 return node_stats(1, 0); 1559 } 1560 node_stats res(0, 1); 1561 for (int i = node->start(); i <= node->finish(); ++i) { 1562 res += internal_stats(node->child(i)); 1563 } 1564 return res; 1565 } 1566 1567 // We use compressed tuple in order to save space because key_compare and 1568 // allocator_type are usually empty. 1569 absl::container_internal::CompressedTuple<key_compare, allocator_type, 1570 node_type *> 1571 root_; 1572 1573 // A pointer to the rightmost node. Note that the leftmost node is stored as 1574 // the root's parent. 1575 node_type *rightmost_; 1576 1577 // Number of values. 1578 size_type size_; 1579 }; 1580 1581 //// 1582 // btree_node methods 1583 template <typename P> 1584 template <typename... Args> 1585 inline void btree_node<P>::emplace_value(const size_type i, 1586 allocator_type *alloc, 1587 Args &&... args) { 1588 assert(i >= start()); 1589 assert(i <= finish()); 1590 // Shift old values to create space for new value and then construct it in 1591 // place. 1592 if (i < finish()) { 1593 transfer_n_backward(finish() - i, /*dest_i=*/i + 1, /*src_i=*/i, this, 1594 alloc); 1595 } 1596 value_init(i, alloc, std::forward<Args>(args)...); 1597 set_finish(finish() + 1); 1598 1599 if (!leaf() && finish() > i + 1) { 1600 for (int j = finish(); j > i + 1; --j) { 1601 set_child(j, child(j - 1)); 1602 } 1603 clear_child(i + 1); 1604 } 1605 } 1606 1607 template <typename P> 1608 inline void btree_node<P>::remove_values(const field_type i, 1609 const field_type to_erase, 1610 allocator_type *alloc) { 1611 // Transfer values after the removed range into their new places. 1612 value_destroy_n(i, to_erase, alloc); 1613 const field_type orig_finish = finish(); 1614 const field_type src_i = i + to_erase; 1615 transfer_n(orig_finish - src_i, i, src_i, this, alloc); 1616 1617 if (!leaf()) { 1618 // Delete all children between begin and end. 1619 for (int j = 0; j < to_erase; ++j) { 1620 clear_and_delete(child(i + j + 1), alloc); 1621 } 1622 // Rotate children after end into new positions. 1623 for (int j = i + to_erase + 1; j <= orig_finish; ++j) { 1624 set_child(j - to_erase, child(j)); 1625 clear_child(j); 1626 } 1627 } 1628 set_finish(orig_finish - to_erase); 1629 } 1630 1631 template <typename P> 1632 void btree_node<P>::rebalance_right_to_left(const int to_move, 1633 btree_node *right, 1634 allocator_type *alloc) { 1635 assert(parent() == right->parent()); 1636 assert(position() + 1 == right->position()); 1637 assert(right->count() >= count()); 1638 assert(to_move >= 1); 1639 assert(to_move <= right->count()); 1640 1641 // 1) Move the delimiting value in the parent to the left node. 1642 transfer(finish(), position(), parent(), alloc); 1643 1644 // 2) Move the (to_move - 1) values from the right node to the left node. 1645 transfer_n(to_move - 1, finish() + 1, right->start(), right, alloc); 1646 1647 // 3) Move the new delimiting value to the parent from the right node. 1648 parent()->transfer(position(), right->start() + to_move - 1, right, alloc); 1649 1650 // 4) Shift the values in the right node to their correct positions. 1651 right->transfer_n(right->count() - to_move, right->start(), 1652 right->start() + to_move, right, alloc); 1653 1654 if (!leaf()) { 1655 // Move the child pointers from the right to the left node. 1656 for (int i = 0; i < to_move; ++i) { 1657 init_child(finish() + i + 1, right->child(i)); 1658 } 1659 for (int i = right->start(); i <= right->finish() - to_move; ++i) { 1660 assert(i + to_move <= right->max_count()); 1661 right->init_child(i, right->child(i + to_move)); 1662 right->clear_child(i + to_move); 1663 } 1664 } 1665 1666 // Fixup `finish` on the left and right nodes. 1667 set_finish(finish() + to_move); 1668 right->set_finish(right->finish() - to_move); 1669 } 1670 1671 template <typename P> 1672 void btree_node<P>::rebalance_left_to_right(const int to_move, 1673 btree_node *right, 1674 allocator_type *alloc) { 1675 assert(parent() == right->parent()); 1676 assert(position() + 1 == right->position()); 1677 assert(count() >= right->count()); 1678 assert(to_move >= 1); 1679 assert(to_move <= count()); 1680 1681 // Values in the right node are shifted to the right to make room for the 1682 // new to_move values. Then, the delimiting value in the parent and the 1683 // other (to_move - 1) values in the left node are moved into the right node. 1684 // Lastly, a new delimiting value is moved from the left node into the 1685 // parent, and the remaining empty left node entries are destroyed. 1686 1687 // 1) Shift existing values in the right node to their correct positions. 1688 right->transfer_n_backward(right->count(), right->start() + to_move, 1689 right->start(), right, alloc); 1690 1691 // 2) Move the delimiting value in the parent to the right node. 1692 right->transfer(right->start() + to_move - 1, position(), parent(), alloc); 1693 1694 // 3) Move the (to_move - 1) values from the left node to the right node. 1695 right->transfer_n(to_move - 1, right->start(), finish() - (to_move - 1), this, 1696 alloc); 1697 1698 // 4) Move the new delimiting value to the parent from the left node. 1699 parent()->transfer(position(), finish() - to_move, this, alloc); 1700 1701 if (!leaf()) { 1702 // Move the child pointers from the left to the right node. 1703 for (int i = right->finish(); i >= right->start(); --i) { 1704 right->init_child(i + to_move, right->child(i)); 1705 right->clear_child(i); 1706 } 1707 for (int i = 1; i <= to_move; ++i) { 1708 right->init_child(i - 1, child(finish() - to_move + i)); 1709 clear_child(finish() - to_move + i); 1710 } 1711 } 1712 1713 // Fixup the counts on the left and right nodes. 1714 set_finish(finish() - to_move); 1715 right->set_finish(right->finish() + to_move); 1716 } 1717 1718 template <typename P> 1719 void btree_node<P>::split(const int insert_position, btree_node *dest, 1720 allocator_type *alloc) { 1721 assert(dest->count() == 0); 1722 assert(max_count() == kNodeSlots); 1723 1724 // We bias the split based on the position being inserted. If we're 1725 // inserting at the beginning of the left node then bias the split to put 1726 // more values on the right node. If we're inserting at the end of the 1727 // right node then bias the split to put more values on the left node. 1728 if (insert_position == start()) { 1729 dest->set_finish(dest->start() + finish() - 1); 1730 } else if (insert_position == kNodeSlots) { 1731 dest->set_finish(dest->start()); 1732 } else { 1733 dest->set_finish(dest->start() + count() / 2); 1734 } 1735 set_finish(finish() - dest->count()); 1736 assert(count() >= 1); 1737 1738 // Move values from the left sibling to the right sibling. 1739 dest->transfer_n(dest->count(), dest->start(), finish(), this, alloc); 1740 1741 // The split key is the largest value in the left sibling. 1742 --mutable_finish(); 1743 parent()->emplace_value(position(), alloc, finish_slot()); 1744 value_destroy(finish(), alloc); 1745 parent()->init_child(position() + 1, dest); 1746 1747 if (!leaf()) { 1748 for (int i = dest->start(), j = finish() + 1; i <= dest->finish(); 1749 ++i, ++j) { 1750 assert(child(j) != nullptr); 1751 dest->init_child(i, child(j)); 1752 clear_child(j); 1753 } 1754 } 1755 } 1756 1757 template <typename P> 1758 void btree_node<P>::merge(btree_node *src, allocator_type *alloc) { 1759 assert(parent() == src->parent()); 1760 assert(position() + 1 == src->position()); 1761 1762 // Move the delimiting value to the left node. 1763 value_init(finish(), alloc, parent()->slot(position())); 1764 1765 // Move the values from the right to the left node. 1766 transfer_n(src->count(), finish() + 1, src->start(), src, alloc); 1767 1768 if (!leaf()) { 1769 // Move the child pointers from the right to the left node. 1770 for (int i = src->start(), j = finish() + 1; i <= src->finish(); ++i, ++j) { 1771 init_child(j, src->child(i)); 1772 src->clear_child(i); 1773 } 1774 } 1775 1776 // Fixup `finish` on the src and dest nodes. 1777 set_finish(start() + 1 + count() + src->count()); 1778 src->set_finish(src->start()); 1779 1780 // Remove the value on the parent node and delete the src node. 1781 parent()->remove_values(position(), /*to_erase=*/1, alloc); 1782 } 1783 1784 template <typename P> 1785 void btree_node<P>::clear_and_delete(btree_node *node, allocator_type *alloc) { 1786 if (node->leaf()) { 1787 node->value_destroy_n(node->start(), node->count(), alloc); 1788 deallocate(LeafSize(node->max_count()), node, alloc); 1789 return; 1790 } 1791 if (node->count() == 0) { 1792 deallocate(InternalSize(), node, alloc); 1793 return; 1794 } 1795 1796 // The parent of the root of the subtree we are deleting. 1797 btree_node *delete_root_parent = node->parent(); 1798 1799 // Navigate to the leftmost leaf under node, and then delete upwards. 1800 while (!node->leaf()) node = node->start_child(); 1801 // Use `int` because `pos` needs to be able to hold `kNodeSlots+1`, which 1802 // isn't guaranteed to be a valid `field_type`. 1803 int pos = node->position(); 1804 btree_node *parent = node->parent(); 1805 for (;;) { 1806 // In each iteration of the next loop, we delete one leaf node and go right. 1807 assert(pos <= parent->finish()); 1808 do { 1809 node = parent->child(pos); 1810 if (!node->leaf()) { 1811 // Navigate to the leftmost leaf under node. 1812 while (!node->leaf()) node = node->start_child(); 1813 pos = node->position(); 1814 parent = node->parent(); 1815 } 1816 node->value_destroy_n(node->start(), node->count(), alloc); 1817 deallocate(LeafSize(node->max_count()), node, alloc); 1818 ++pos; 1819 } while (pos <= parent->finish()); 1820 1821 // Once we've deleted all children of parent, delete parent and go up/right. 1822 assert(pos > parent->finish()); 1823 do { 1824 node = parent; 1825 pos = node->position(); 1826 parent = node->parent(); 1827 node->value_destroy_n(node->start(), node->count(), alloc); 1828 deallocate(InternalSize(), node, alloc); 1829 if (parent == delete_root_parent) return; 1830 ++pos; 1831 } while (pos > parent->finish()); 1832 } 1833 } 1834 1835 //// 1836 // btree_iterator methods 1837 template <typename N, typename R, typename P> 1838 void btree_iterator<N, R, P>::increment_slow() { 1839 if (node->leaf()) { 1840 assert(position >= node->finish()); 1841 btree_iterator save(*this); 1842 while (position == node->finish() && !node->is_root()) { 1843 assert(node->parent()->child(node->position()) == node); 1844 position = node->position(); 1845 node = node->parent(); 1846 } 1847 // TODO(ezb): assert we aren't incrementing end() instead of handling. 1848 if (position == node->finish()) { 1849 *this = save; 1850 } 1851 } else { 1852 assert(position < node->finish()); 1853 node = node->child(position + 1); 1854 while (!node->leaf()) { 1855 node = node->start_child(); 1856 } 1857 position = node->start(); 1858 } 1859 } 1860 1861 template <typename N, typename R, typename P> 1862 void btree_iterator<N, R, P>::decrement_slow() { 1863 if (node->leaf()) { 1864 assert(position <= -1); 1865 btree_iterator save(*this); 1866 while (position < node->start() && !node->is_root()) { 1867 assert(node->parent()->child(node->position()) == node); 1868 position = node->position() - 1; 1869 node = node->parent(); 1870 } 1871 // TODO(ezb): assert we aren't decrementing begin() instead of handling. 1872 if (position < node->start()) { 1873 *this = save; 1874 } 1875 } else { 1876 assert(position >= node->start()); 1877 node = node->child(position); 1878 while (!node->leaf()) { 1879 node = node->child(node->finish()); 1880 } 1881 position = node->finish() - 1; 1882 } 1883 } 1884 1885 //// 1886 // btree methods 1887 template <typename P> 1888 template <typename Btree> 1889 void btree<P>::copy_or_move_values_in_order(Btree &other) { 1890 static_assert(std::is_same<btree, Btree>::value || 1891 std::is_same<const btree, Btree>::value, 1892 "Btree type must be same or const."); 1893 assert(empty()); 1894 1895 // We can avoid key comparisons because we know the order of the 1896 // values is the same order we'll store them in. 1897 auto iter = other.begin(); 1898 if (iter == other.end()) return; 1899 insert_multi(maybe_move_from_iterator(iter)); 1900 ++iter; 1901 for (; iter != other.end(); ++iter) { 1902 // If the btree is not empty, we can just insert the new value at the end 1903 // of the tree. 1904 internal_emplace(end(), maybe_move_from_iterator(iter)); 1905 } 1906 } 1907 1908 template <typename P> 1909 constexpr bool btree<P>::static_assert_validation() { 1910 static_assert(std::is_nothrow_copy_constructible<key_compare>::value, 1911 "Key comparison must be nothrow copy constructible"); 1912 static_assert(std::is_nothrow_copy_constructible<allocator_type>::value, 1913 "Allocator must be nothrow copy constructible"); 1914 static_assert(type_traits_internal::is_trivially_copyable<iterator>::value, 1915 "iterator not trivially copyable."); 1916 1917 // Note: We assert that kTargetValues, which is computed from 1918 // Params::kTargetNodeSize, must fit the node_type::field_type. 1919 static_assert( 1920 kNodeSlots < (1 << (8 * sizeof(typename node_type::field_type))), 1921 "target node size too large"); 1922 1923 // Verify that key_compare returns an absl::{weak,strong}_ordering or bool. 1924 using compare_result_type = 1925 absl::result_of_t<key_compare(key_type, key_type)>; 1926 static_assert( 1927 std::is_same<compare_result_type, bool>::value || 1928 std::is_convertible<compare_result_type, absl::weak_ordering>::value, 1929 "key comparison function must return absl::{weak,strong}_ordering or " 1930 "bool."); 1931 1932 // Test the assumption made in setting kNodeValueSpace. 1933 static_assert(node_type::MinimumOverhead() >= sizeof(void *) + 4, 1934 "node space assumption incorrect"); 1935 1936 return true; 1937 } 1938 1939 template <typename P> 1940 template <typename K> 1941 auto btree<P>::lower_bound_equal(const K &key) const 1942 -> std::pair<iterator, bool> { 1943 const SearchResult<iterator, is_key_compare_to::value> res = 1944 internal_lower_bound(key); 1945 const iterator lower = iterator(internal_end(res.value)); 1946 const bool equal = res.HasMatch() 1947 ? res.IsEq() 1948 : lower != end() && !compare_keys(key, lower.key()); 1949 return {lower, equal}; 1950 } 1951 1952 template <typename P> 1953 template <typename K> 1954 auto btree<P>::equal_range(const K &key) -> std::pair<iterator, iterator> { 1955 const std::pair<iterator, bool> lower_and_equal = lower_bound_equal(key); 1956 const iterator lower = lower_and_equal.first; 1957 if (!lower_and_equal.second) { 1958 return {lower, lower}; 1959 } 1960 1961 const iterator next = std::next(lower); 1962 if (!params_type::template can_have_multiple_equivalent_keys<K>()) { 1963 // The next iterator after lower must point to a key greater than `key`. 1964 // Note: if this assert fails, then it may indicate that the comparator does 1965 // not meet the equivalence requirements for Compare 1966 // (see https://en.cppreference.com/w/cpp/named_req/Compare). 1967 assert(next == end() || compare_keys(key, next.key())); 1968 return {lower, next}; 1969 } 1970 // Try once more to avoid the call to upper_bound() if there's only one 1971 // equivalent key. This should prevent all calls to upper_bound() in cases of 1972 // unique-containers with heterogeneous comparators in which all comparison 1973 // operators have the same equivalence classes. 1974 if (next == end() || compare_keys(key, next.key())) return {lower, next}; 1975 1976 // In this case, we need to call upper_bound() to avoid worst case O(N) 1977 // behavior if we were to iterate over equal keys. 1978 return {lower, upper_bound(key)}; 1979 } 1980 1981 template <typename P> 1982 template <typename K, typename... Args> 1983 auto btree<P>::insert_unique(const K &key, Args &&... args) 1984 -> std::pair<iterator, bool> { 1985 if (empty()) { 1986 mutable_root() = rightmost_ = new_leaf_root_node(1); 1987 } 1988 1989 SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key); 1990 iterator iter = res.value; 1991 1992 if (res.HasMatch()) { 1993 if (res.IsEq()) { 1994 // The key already exists in the tree, do nothing. 1995 return {iter, false}; 1996 } 1997 } else { 1998 iterator last = internal_last(iter); 1999 if (last.node && !compare_keys(key, last.key())) { 2000 // The key already exists in the tree, do nothing. 2001 return {last, false}; 2002 } 2003 } 2004 return {internal_emplace(iter, std::forward<Args>(args)...), true}; 2005 } 2006 2007 template <typename P> 2008 template <typename K, typename... Args> 2009 inline auto btree<P>::insert_hint_unique(iterator position, const K &key, 2010 Args &&... args) 2011 -> std::pair<iterator, bool> { 2012 if (!empty()) { 2013 if (position == end() || compare_keys(key, position.key())) { 2014 if (position == begin() || compare_keys(std::prev(position).key(), key)) { 2015 // prev.key() < key < position.key() 2016 return {internal_emplace(position, std::forward<Args>(args)...), true}; 2017 } 2018 } else if (compare_keys(position.key(), key)) { 2019 ++position; 2020 if (position == end() || compare_keys(key, position.key())) { 2021 // {original `position`}.key() < key < {current `position`}.key() 2022 return {internal_emplace(position, std::forward<Args>(args)...), true}; 2023 } 2024 } else { 2025 // position.key() == key 2026 return {position, false}; 2027 } 2028 } 2029 return insert_unique(key, std::forward<Args>(args)...); 2030 } 2031 2032 template <typename P> 2033 template <typename InputIterator, typename> 2034 void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, int) { 2035 for (; b != e; ++b) { 2036 insert_hint_unique(end(), params_type::key(*b), *b); 2037 } 2038 } 2039 2040 template <typename P> 2041 template <typename InputIterator> 2042 void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, char) { 2043 for (; b != e; ++b) { 2044 init_type value(*b); 2045 insert_hint_unique(end(), params_type::key(value), std::move(value)); 2046 } 2047 } 2048 2049 template <typename P> 2050 template <typename ValueType> 2051 auto btree<P>::insert_multi(const key_type &key, ValueType &&v) -> iterator { 2052 if (empty()) { 2053 mutable_root() = rightmost_ = new_leaf_root_node(1); 2054 } 2055 2056 iterator iter = internal_upper_bound(key); 2057 if (iter.node == nullptr) { 2058 iter = end(); 2059 } 2060 return internal_emplace(iter, std::forward<ValueType>(v)); 2061 } 2062 2063 template <typename P> 2064 template <typename ValueType> 2065 auto btree<P>::insert_hint_multi(iterator position, ValueType &&v) -> iterator { 2066 if (!empty()) { 2067 const key_type &key = params_type::key(v); 2068 if (position == end() || !compare_keys(position.key(), key)) { 2069 if (position == begin() || 2070 !compare_keys(key, std::prev(position).key())) { 2071 // prev.key() <= key <= position.key() 2072 return internal_emplace(position, std::forward<ValueType>(v)); 2073 } 2074 } else { 2075 ++position; 2076 if (position == end() || !compare_keys(position.key(), key)) { 2077 // {original `position`}.key() < key < {current `position`}.key() 2078 return internal_emplace(position, std::forward<ValueType>(v)); 2079 } 2080 } 2081 } 2082 return insert_multi(std::forward<ValueType>(v)); 2083 } 2084 2085 template <typename P> 2086 template <typename InputIterator> 2087 void btree<P>::insert_iterator_multi(InputIterator b, InputIterator e) { 2088 for (; b != e; ++b) { 2089 insert_hint_multi(end(), *b); 2090 } 2091 } 2092 2093 template <typename P> 2094 auto btree<P>::operator=(const btree &other) -> btree & { 2095 if (this != &other) { 2096 clear(); 2097 2098 *mutable_key_comp() = other.key_comp(); 2099 if (absl::allocator_traits< 2100 allocator_type>::propagate_on_container_copy_assignment::value) { 2101 *mutable_allocator() = other.allocator(); 2102 } 2103 2104 copy_or_move_values_in_order(other); 2105 } 2106 return *this; 2107 } 2108 2109 template <typename P> 2110 auto btree<P>::operator=(btree &&other) noexcept -> btree & { 2111 if (this != &other) { 2112 clear(); 2113 2114 using std::swap; 2115 if (absl::allocator_traits< 2116 allocator_type>::propagate_on_container_copy_assignment::value) { 2117 // Note: `root_` also contains the allocator and the key comparator. 2118 swap(root_, other.root_); 2119 swap(rightmost_, other.rightmost_); 2120 swap(size_, other.size_); 2121 } else { 2122 if (allocator() == other.allocator()) { 2123 swap(mutable_root(), other.mutable_root()); 2124 swap(*mutable_key_comp(), *other.mutable_key_comp()); 2125 swap(rightmost_, other.rightmost_); 2126 swap(size_, other.size_); 2127 } else { 2128 // We aren't allowed to propagate the allocator and the allocator is 2129 // different so we can't take over its memory. We must move each element 2130 // individually. We need both `other` and `this` to have `other`s key 2131 // comparator while moving the values so we can't swap the key 2132 // comparators. 2133 *mutable_key_comp() = other.key_comp(); 2134 copy_or_move_values_in_order(other); 2135 } 2136 } 2137 } 2138 return *this; 2139 } 2140 2141 template <typename P> 2142 auto btree<P>::erase(iterator iter) -> iterator { 2143 bool internal_delete = false; 2144 if (!iter.node->leaf()) { 2145 // Deletion of a value on an internal node. First, move the largest value 2146 // from our left child here, then delete that position (in remove_values() 2147 // below). We can get to the largest value from our left child by 2148 // decrementing iter. 2149 iterator internal_iter(iter); 2150 --iter; 2151 assert(iter.node->leaf()); 2152 params_type::move(mutable_allocator(), iter.node->slot(iter.position), 2153 internal_iter.node->slot(internal_iter.position)); 2154 internal_delete = true; 2155 } 2156 2157 // Delete the key from the leaf. 2158 iter.node->remove_values(iter.position, /*to_erase=*/1, mutable_allocator()); 2159 --size_; 2160 2161 // We want to return the next value after the one we just erased. If we 2162 // erased from an internal node (internal_delete == true), then the next 2163 // value is ++(++iter). If we erased from a leaf node (internal_delete == 2164 // false) then the next value is ++iter. Note that ++iter may point to an 2165 // internal node and the value in the internal node may move to a leaf node 2166 // (iter.node) when rebalancing is performed at the leaf level. 2167 2168 iterator res = rebalance_after_delete(iter); 2169 2170 // If we erased from an internal node, advance the iterator. 2171 if (internal_delete) { 2172 ++res; 2173 } 2174 return res; 2175 } 2176 2177 template <typename P> 2178 auto btree<P>::rebalance_after_delete(iterator iter) -> iterator { 2179 // Merge/rebalance as we walk back up the tree. 2180 iterator res(iter); 2181 bool first_iteration = true; 2182 for (;;) { 2183 if (iter.node == root()) { 2184 try_shrink(); 2185 if (empty()) { 2186 return end(); 2187 } 2188 break; 2189 } 2190 if (iter.node->count() >= kMinNodeValues) { 2191 break; 2192 } 2193 bool merged = try_merge_or_rebalance(&iter); 2194 // On the first iteration, we should update `res` with `iter` because `res` 2195 // may have been invalidated. 2196 if (first_iteration) { 2197 res = iter; 2198 first_iteration = false; 2199 } 2200 if (!merged) { 2201 break; 2202 } 2203 iter.position = iter.node->position(); 2204 iter.node = iter.node->parent(); 2205 } 2206 2207 // Adjust our return value. If we're pointing at the end of a node, advance 2208 // the iterator. 2209 if (res.position == res.node->finish()) { 2210 res.position = res.node->finish() - 1; 2211 ++res; 2212 } 2213 2214 return res; 2215 } 2216 2217 template <typename P> 2218 auto btree<P>::erase_range(iterator begin, iterator end) 2219 -> std::pair<size_type, iterator> { 2220 difference_type count = std::distance(begin, end); 2221 assert(count >= 0); 2222 2223 if (count == 0) { 2224 return {0, begin}; 2225 } 2226 2227 if (count == size_) { 2228 clear(); 2229 return {count, this->end()}; 2230 } 2231 2232 if (begin.node == end.node) { 2233 assert(end.position > begin.position); 2234 begin.node->remove_values(begin.position, end.position - begin.position, 2235 mutable_allocator()); 2236 size_ -= count; 2237 return {count, rebalance_after_delete(begin)}; 2238 } 2239 2240 const size_type target_size = size_ - count; 2241 while (size_ > target_size) { 2242 if (begin.node->leaf()) { 2243 const size_type remaining_to_erase = size_ - target_size; 2244 const size_type remaining_in_node = begin.node->finish() - begin.position; 2245 const size_type to_erase = 2246 (std::min)(remaining_to_erase, remaining_in_node); 2247 begin.node->remove_values(begin.position, to_erase, mutable_allocator()); 2248 size_ -= to_erase; 2249 begin = rebalance_after_delete(begin); 2250 } else { 2251 begin = erase(begin); 2252 } 2253 } 2254 return {count, begin}; 2255 } 2256 2257 template <typename P> 2258 void btree<P>::clear() { 2259 if (!empty()) { 2260 node_type::clear_and_delete(root(), mutable_allocator()); 2261 } 2262 mutable_root() = EmptyNode(); 2263 rightmost_ = EmptyNode(); 2264 size_ = 0; 2265 } 2266 2267 template <typename P> 2268 void btree<P>::swap(btree &other) { 2269 using std::swap; 2270 if (absl::allocator_traits< 2271 allocator_type>::propagate_on_container_swap::value) { 2272 // Note: `root_` also contains the allocator and the key comparator. 2273 swap(root_, other.root_); 2274 } else { 2275 // It's undefined behavior if the allocators are unequal here. 2276 assert(allocator() == other.allocator()); 2277 swap(mutable_root(), other.mutable_root()); 2278 swap(*mutable_key_comp(), *other.mutable_key_comp()); 2279 } 2280 swap(rightmost_, other.rightmost_); 2281 swap(size_, other.size_); 2282 } 2283 2284 template <typename P> 2285 void btree<P>::verify() const { 2286 assert(root() != nullptr); 2287 assert(leftmost() != nullptr); 2288 assert(rightmost_ != nullptr); 2289 assert(empty() || size() == internal_verify(root(), nullptr, nullptr)); 2290 assert(leftmost() == (++const_iterator(root(), -1)).node); 2291 assert(rightmost_ == (--const_iterator(root(), root()->finish())).node); 2292 assert(leftmost()->leaf()); 2293 assert(rightmost_->leaf()); 2294 } 2295 2296 template <typename P> 2297 void btree<P>::rebalance_or_split(iterator *iter) { 2298 node_type *&node = iter->node; 2299 int &insert_position = iter->position; 2300 assert(node->count() == node->max_count()); 2301 assert(kNodeSlots == node->max_count()); 2302 2303 // First try to make room on the node by rebalancing. 2304 node_type *parent = node->parent(); 2305 if (node != root()) { 2306 if (node->position() > parent->start()) { 2307 // Try rebalancing with our left sibling. 2308 node_type *left = parent->child(node->position() - 1); 2309 assert(left->max_count() == kNodeSlots); 2310 if (left->count() < kNodeSlots) { 2311 // We bias rebalancing based on the position being inserted. If we're 2312 // inserting at the end of the right node then we bias rebalancing to 2313 // fill up the left node. 2314 int to_move = (kNodeSlots - left->count()) / 2315 (1 + (insert_position < static_cast<int>(kNodeSlots))); 2316 to_move = (std::max)(1, to_move); 2317 2318 if (insert_position - to_move >= node->start() || 2319 left->count() + to_move < static_cast<int>(kNodeSlots)) { 2320 left->rebalance_right_to_left(to_move, node, mutable_allocator()); 2321 2322 assert(node->max_count() - node->count() == to_move); 2323 insert_position = insert_position - to_move; 2324 if (insert_position < node->start()) { 2325 insert_position = insert_position + left->count() + 1; 2326 node = left; 2327 } 2328 2329 assert(node->count() < node->max_count()); 2330 return; 2331 } 2332 } 2333 } 2334 2335 if (node->position() < parent->finish()) { 2336 // Try rebalancing with our right sibling. 2337 node_type *right = parent->child(node->position() + 1); 2338 assert(right->max_count() == kNodeSlots); 2339 if (right->count() < kNodeSlots) { 2340 // We bias rebalancing based on the position being inserted. If we're 2341 // inserting at the beginning of the left node then we bias rebalancing 2342 // to fill up the right node. 2343 int to_move = (static_cast<int>(kNodeSlots) - right->count()) / 2344 (1 + (insert_position > node->start())); 2345 to_move = (std::max)(1, to_move); 2346 2347 if (insert_position <= node->finish() - to_move || 2348 right->count() + to_move < static_cast<int>(kNodeSlots)) { 2349 node->rebalance_left_to_right(to_move, right, mutable_allocator()); 2350 2351 if (insert_position > node->finish()) { 2352 insert_position = insert_position - node->count() - 1; 2353 node = right; 2354 } 2355 2356 assert(node->count() < node->max_count()); 2357 return; 2358 } 2359 } 2360 } 2361 2362 // Rebalancing failed, make sure there is room on the parent node for a new 2363 // value. 2364 assert(parent->max_count() == kNodeSlots); 2365 if (parent->count() == kNodeSlots) { 2366 iterator parent_iter(node->parent(), node->position()); 2367 rebalance_or_split(&parent_iter); 2368 } 2369 } else { 2370 // Rebalancing not possible because this is the root node. 2371 // Create a new root node and set the current root node as the child of the 2372 // new root. 2373 parent = new_internal_node(parent); 2374 parent->init_child(parent->start(), root()); 2375 mutable_root() = parent; 2376 // If the former root was a leaf node, then it's now the rightmost node. 2377 assert(!parent->start_child()->leaf() || 2378 parent->start_child() == rightmost_); 2379 } 2380 2381 // Split the node. 2382 node_type *split_node; 2383 if (node->leaf()) { 2384 split_node = new_leaf_node(parent); 2385 node->split(insert_position, split_node, mutable_allocator()); 2386 if (rightmost_ == node) rightmost_ = split_node; 2387 } else { 2388 split_node = new_internal_node(parent); 2389 node->split(insert_position, split_node, mutable_allocator()); 2390 } 2391 2392 if (insert_position > node->finish()) { 2393 insert_position = insert_position - node->count() - 1; 2394 node = split_node; 2395 } 2396 } 2397 2398 template <typename P> 2399 void btree<P>::merge_nodes(node_type *left, node_type *right) { 2400 left->merge(right, mutable_allocator()); 2401 if (rightmost_ == right) rightmost_ = left; 2402 } 2403 2404 template <typename P> 2405 bool btree<P>::try_merge_or_rebalance(iterator *iter) { 2406 node_type *parent = iter->node->parent(); 2407 if (iter->node->position() > parent->start()) { 2408 // Try merging with our left sibling. 2409 node_type *left = parent->child(iter->node->position() - 1); 2410 assert(left->max_count() == kNodeSlots); 2411 if (1U + left->count() + iter->node->count() <= kNodeSlots) { 2412 iter->position += 1 + left->count(); 2413 merge_nodes(left, iter->node); 2414 iter->node = left; 2415 return true; 2416 } 2417 } 2418 if (iter->node->position() < parent->finish()) { 2419 // Try merging with our right sibling. 2420 node_type *right = parent->child(iter->node->position() + 1); 2421 assert(right->max_count() == kNodeSlots); 2422 if (1U + iter->node->count() + right->count() <= kNodeSlots) { 2423 merge_nodes(iter->node, right); 2424 return true; 2425 } 2426 // Try rebalancing with our right sibling. We don't perform rebalancing if 2427 // we deleted the first element from iter->node and the node is not 2428 // empty. This is a small optimization for the common pattern of deleting 2429 // from the front of the tree. 2430 if (right->count() > kMinNodeValues && 2431 (iter->node->count() == 0 || iter->position > iter->node->start())) { 2432 int to_move = (right->count() - iter->node->count()) / 2; 2433 to_move = (std::min)(to_move, right->count() - 1); 2434 iter->node->rebalance_right_to_left(to_move, right, mutable_allocator()); 2435 return false; 2436 } 2437 } 2438 if (iter->node->position() > parent->start()) { 2439 // Try rebalancing with our left sibling. We don't perform rebalancing if 2440 // we deleted the last element from iter->node and the node is not 2441 // empty. This is a small optimization for the common pattern of deleting 2442 // from the back of the tree. 2443 node_type *left = parent->child(iter->node->position() - 1); 2444 if (left->count() > kMinNodeValues && 2445 (iter->node->count() == 0 || iter->position < iter->node->finish())) { 2446 int to_move = (left->count() - iter->node->count()) / 2; 2447 to_move = (std::min)(to_move, left->count() - 1); 2448 left->rebalance_left_to_right(to_move, iter->node, mutable_allocator()); 2449 iter->position += to_move; 2450 return false; 2451 } 2452 } 2453 return false; 2454 } 2455 2456 template <typename P> 2457 void btree<P>::try_shrink() { 2458 node_type *orig_root = root(); 2459 if (orig_root->count() > 0) { 2460 return; 2461 } 2462 // Deleted the last item on the root node, shrink the height of the tree. 2463 if (orig_root->leaf()) { 2464 assert(size() == 0); 2465 mutable_root() = rightmost_ = EmptyNode(); 2466 } else { 2467 node_type *child = orig_root->start_child(); 2468 child->make_root(); 2469 mutable_root() = child; 2470 } 2471 node_type::clear_and_delete(orig_root, mutable_allocator()); 2472 } 2473 2474 template <typename P> 2475 template <typename IterType> 2476 inline IterType btree<P>::internal_last(IterType iter) { 2477 assert(iter.node != nullptr); 2478 while (iter.position == iter.node->finish()) { 2479 iter.position = iter.node->position(); 2480 iter.node = iter.node->parent(); 2481 if (iter.node->leaf()) { 2482 iter.node = nullptr; 2483 break; 2484 } 2485 } 2486 return iter; 2487 } 2488 2489 template <typename P> 2490 template <typename... Args> 2491 inline auto btree<P>::internal_emplace(iterator iter, Args &&... args) 2492 -> iterator { 2493 if (!iter.node->leaf()) { 2494 // We can't insert on an internal node. Instead, we'll insert after the 2495 // previous value which is guaranteed to be on a leaf node. 2496 --iter; 2497 ++iter.position; 2498 } 2499 const field_type max_count = iter.node->max_count(); 2500 allocator_type *alloc = mutable_allocator(); 2501 if (iter.node->count() == max_count) { 2502 // Make room in the leaf for the new item. 2503 if (max_count < kNodeSlots) { 2504 // Insertion into the root where the root is smaller than the full node 2505 // size. Simply grow the size of the root node. 2506 assert(iter.node == root()); 2507 iter.node = 2508 new_leaf_root_node((std::min<int>)(kNodeSlots, 2 * max_count)); 2509 // Transfer the values from the old root to the new root. 2510 node_type *old_root = root(); 2511 node_type *new_root = iter.node; 2512 new_root->transfer_n(old_root->count(), new_root->start(), 2513 old_root->start(), old_root, alloc); 2514 new_root->set_finish(old_root->finish()); 2515 old_root->set_finish(old_root->start()); 2516 node_type::clear_and_delete(old_root, alloc); 2517 mutable_root() = rightmost_ = new_root; 2518 } else { 2519 rebalance_or_split(&iter); 2520 } 2521 } 2522 iter.node->emplace_value(iter.position, alloc, std::forward<Args>(args)...); 2523 ++size_; 2524 return iter; 2525 } 2526 2527 template <typename P> 2528 template <typename K> 2529 inline auto btree<P>::internal_locate(const K &key) const 2530 -> SearchResult<iterator, is_key_compare_to::value> { 2531 iterator iter(const_cast<node_type *>(root())); 2532 for (;;) { 2533 SearchResult<int, is_key_compare_to::value> res = 2534 iter.node->lower_bound(key, key_comp()); 2535 iter.position = res.value; 2536 if (res.IsEq()) { 2537 return {iter, MatchKind::kEq}; 2538 } 2539 // Note: in the non-key-compare-to case, we don't need to walk all the way 2540 // down the tree if the keys are equal, but determining equality would 2541 // require doing an extra comparison on each node on the way down, and we 2542 // will need to go all the way to the leaf node in the expected case. 2543 if (iter.node->leaf()) { 2544 break; 2545 } 2546 iter.node = iter.node->child(iter.position); 2547 } 2548 // Note: in the non-key-compare-to case, the key may actually be equivalent 2549 // here (and the MatchKind::kNe is ignored). 2550 return {iter, MatchKind::kNe}; 2551 } 2552 2553 template <typename P> 2554 template <typename K> 2555 auto btree<P>::internal_lower_bound(const K &key) const 2556 -> SearchResult<iterator, is_key_compare_to::value> { 2557 if (!params_type::template can_have_multiple_equivalent_keys<K>()) { 2558 SearchResult<iterator, is_key_compare_to::value> ret = internal_locate(key); 2559 ret.value = internal_last(ret.value); 2560 return ret; 2561 } 2562 iterator iter(const_cast<node_type *>(root())); 2563 SearchResult<int, is_key_compare_to::value> res; 2564 bool seen_eq = false; 2565 for (;;) { 2566 res = iter.node->lower_bound(key, key_comp()); 2567 iter.position = res.value; 2568 if (iter.node->leaf()) { 2569 break; 2570 } 2571 seen_eq = seen_eq || res.IsEq(); 2572 iter.node = iter.node->child(iter.position); 2573 } 2574 if (res.IsEq()) return {iter, MatchKind::kEq}; 2575 return {internal_last(iter), seen_eq ? MatchKind::kEq : MatchKind::kNe}; 2576 } 2577 2578 template <typename P> 2579 template <typename K> 2580 auto btree<P>::internal_upper_bound(const K &key) const -> iterator { 2581 iterator iter(const_cast<node_type *>(root())); 2582 for (;;) { 2583 iter.position = iter.node->upper_bound(key, key_comp()); 2584 if (iter.node->leaf()) { 2585 break; 2586 } 2587 iter.node = iter.node->child(iter.position); 2588 } 2589 return internal_last(iter); 2590 } 2591 2592 template <typename P> 2593 template <typename K> 2594 auto btree<P>::internal_find(const K &key) const -> iterator { 2595 SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key); 2596 if (res.HasMatch()) { 2597 if (res.IsEq()) { 2598 return res.value; 2599 } 2600 } else { 2601 const iterator iter = internal_last(res.value); 2602 if (iter.node != nullptr && !compare_keys(key, iter.key())) { 2603 return iter; 2604 } 2605 } 2606 return {nullptr, 0}; 2607 } 2608 2609 template <typename P> 2610 int btree<P>::internal_verify(const node_type *node, const key_type *lo, 2611 const key_type *hi) const { 2612 assert(node->count() > 0); 2613 assert(node->count() <= node->max_count()); 2614 if (lo) { 2615 assert(!compare_keys(node->key(node->start()), *lo)); 2616 } 2617 if (hi) { 2618 assert(!compare_keys(*hi, node->key(node->finish() - 1))); 2619 } 2620 for (int i = node->start() + 1; i < node->finish(); ++i) { 2621 assert(!compare_keys(node->key(i), node->key(i - 1))); 2622 } 2623 int count = node->count(); 2624 if (!node->leaf()) { 2625 for (int i = node->start(); i <= node->finish(); ++i) { 2626 assert(node->child(i) != nullptr); 2627 assert(node->child(i)->parent() == node); 2628 assert(node->child(i)->position() == i); 2629 count += internal_verify(node->child(i), 2630 i == node->start() ? lo : &node->key(i - 1), 2631 i == node->finish() ? hi : &node->key(i)); 2632 } 2633 } 2634 return count; 2635 } 2636 2637 } // namespace container_internal 2638 ABSL_NAMESPACE_END 2639 } // namespace absl 2640 2641 #endif // ABSL_CONTAINER_INTERNAL_BTREE_H_ 2642