• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * In-Memory Collection (IMC) Performance Monitor counter support.
4  *
5  * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
6  *           (C) 2017 Anju T Sudhakar, IBM Corporation.
7  *           (C) 2017 Hemant K Shaw, IBM Corporation.
8  */
9 #include <linux/perf_event.h>
10 #include <linux/slab.h>
11 #include <asm/opal.h>
12 #include <asm/imc-pmu.h>
13 #include <asm/cputhreads.h>
14 #include <asm/smp.h>
15 #include <linux/string.h>
16 #include <linux/spinlock.h>
17 
18 /* Nest IMC data structures and variables */
19 
20 /*
21  * Used to avoid races in counting the nest-pmu units during hotplug
22  * register and unregister
23  */
24 static DEFINE_SPINLOCK(nest_init_lock);
25 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
26 static struct imc_pmu **per_nest_pmu_arr;
27 static cpumask_t nest_imc_cpumask;
28 static struct imc_pmu_ref *nest_imc_refc;
29 static int nest_pmus;
30 
31 /* Core IMC data structures and variables */
32 
33 static cpumask_t core_imc_cpumask;
34 static struct imc_pmu_ref *core_imc_refc;
35 static struct imc_pmu *core_imc_pmu;
36 
37 /* Thread IMC data structures and variables */
38 
39 static DEFINE_PER_CPU(u64 *, thread_imc_mem);
40 static struct imc_pmu *thread_imc_pmu;
41 static int thread_imc_mem_size;
42 
43 /* Trace IMC data structures */
44 static DEFINE_PER_CPU(u64 *, trace_imc_mem);
45 static struct imc_pmu_ref *trace_imc_refc;
46 static int trace_imc_mem_size;
47 
48 /*
49  * Global data structure used to avoid races between thread,
50  * core and trace-imc
51  */
52 static struct imc_pmu_ref imc_global_refc = {
53 	.lock = __SPIN_LOCK_INITIALIZER(imc_global_refc.lock),
54 	.id = 0,
55 	.refc = 0,
56 };
57 
imc_event_to_pmu(struct perf_event * event)58 static struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
59 {
60 	return container_of(event->pmu, struct imc_pmu, pmu);
61 }
62 
63 PMU_FORMAT_ATTR(event, "config:0-61");
64 PMU_FORMAT_ATTR(offset, "config:0-31");
65 PMU_FORMAT_ATTR(rvalue, "config:32");
66 PMU_FORMAT_ATTR(mode, "config:33-40");
67 static struct attribute *imc_format_attrs[] = {
68 	&format_attr_event.attr,
69 	&format_attr_offset.attr,
70 	&format_attr_rvalue.attr,
71 	&format_attr_mode.attr,
72 	NULL,
73 };
74 
75 static struct attribute_group imc_format_group = {
76 	.name = "format",
77 	.attrs = imc_format_attrs,
78 };
79 
80 /* Format attribute for imc trace-mode */
81 PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19");
82 PMU_FORMAT_ATTR(cpmc_event, "config:20-27");
83 PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29");
84 PMU_FORMAT_ATTR(cpmc_load, "config:30-61");
85 static struct attribute *trace_imc_format_attrs[] = {
86 	&format_attr_event.attr,
87 	&format_attr_cpmc_reserved.attr,
88 	&format_attr_cpmc_event.attr,
89 	&format_attr_cpmc_samplesel.attr,
90 	&format_attr_cpmc_load.attr,
91 	NULL,
92 };
93 
94 static struct attribute_group trace_imc_format_group = {
95 .name = "format",
96 .attrs = trace_imc_format_attrs,
97 };
98 
99 /* Get the cpumask printed to a buffer "buf" */
imc_pmu_cpumask_get_attr(struct device * dev,struct device_attribute * attr,char * buf)100 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
101 					struct device_attribute *attr,
102 					char *buf)
103 {
104 	struct pmu *pmu = dev_get_drvdata(dev);
105 	struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
106 	cpumask_t *active_mask;
107 
108 	switch(imc_pmu->domain){
109 	case IMC_DOMAIN_NEST:
110 		active_mask = &nest_imc_cpumask;
111 		break;
112 	case IMC_DOMAIN_CORE:
113 		active_mask = &core_imc_cpumask;
114 		break;
115 	default:
116 		return 0;
117 	}
118 
119 	return cpumap_print_to_pagebuf(true, buf, active_mask);
120 }
121 
122 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
123 
124 static struct attribute *imc_pmu_cpumask_attrs[] = {
125 	&dev_attr_cpumask.attr,
126 	NULL,
127 };
128 
129 static struct attribute_group imc_pmu_cpumask_attr_group = {
130 	.attrs = imc_pmu_cpumask_attrs,
131 };
132 
133 /* device_str_attr_create : Populate event "name" and string "str" in attribute */
device_str_attr_create(const char * name,const char * str)134 static struct attribute *device_str_attr_create(const char *name, const char *str)
135 {
136 	struct perf_pmu_events_attr *attr;
137 
138 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
139 	if (!attr)
140 		return NULL;
141 	sysfs_attr_init(&attr->attr.attr);
142 
143 	attr->event_str = str;
144 	attr->attr.attr.name = name;
145 	attr->attr.attr.mode = 0444;
146 	attr->attr.show = perf_event_sysfs_show;
147 
148 	return &attr->attr.attr;
149 }
150 
imc_parse_event(struct device_node * np,const char * scale,const char * unit,const char * prefix,u32 base,struct imc_events * event)151 static int imc_parse_event(struct device_node *np, const char *scale,
152 				  const char *unit, const char *prefix,
153 				  u32 base, struct imc_events *event)
154 {
155 	const char *s;
156 	u32 reg;
157 
158 	if (of_property_read_u32(np, "reg", &reg))
159 		goto error;
160 	/* Add the base_reg value to the "reg" */
161 	event->value = base + reg;
162 
163 	if (of_property_read_string(np, "event-name", &s))
164 		goto error;
165 
166 	event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
167 	if (!event->name)
168 		goto error;
169 
170 	if (of_property_read_string(np, "scale", &s))
171 		s = scale;
172 
173 	if (s) {
174 		event->scale = kstrdup(s, GFP_KERNEL);
175 		if (!event->scale)
176 			goto error;
177 	}
178 
179 	if (of_property_read_string(np, "unit", &s))
180 		s = unit;
181 
182 	if (s) {
183 		event->unit = kstrdup(s, GFP_KERNEL);
184 		if (!event->unit)
185 			goto error;
186 	}
187 
188 	return 0;
189 error:
190 	kfree(event->unit);
191 	kfree(event->scale);
192 	kfree(event->name);
193 	return -EINVAL;
194 }
195 
196 /*
197  * imc_free_events: Function to cleanup the events list, having
198  * 		    "nr_entries".
199  */
imc_free_events(struct imc_events * events,int nr_entries)200 static void imc_free_events(struct imc_events *events, int nr_entries)
201 {
202 	int i;
203 
204 	/* Nothing to clean, return */
205 	if (!events)
206 		return;
207 	for (i = 0; i < nr_entries; i++) {
208 		kfree(events[i].unit);
209 		kfree(events[i].scale);
210 		kfree(events[i].name);
211 	}
212 
213 	kfree(events);
214 }
215 
216 /*
217  * update_events_in_group: Update the "events" information in an attr_group
218  *                         and assign the attr_group to the pmu "pmu".
219  */
update_events_in_group(struct device_node * node,struct imc_pmu * pmu)220 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
221 {
222 	struct attribute_group *attr_group;
223 	struct attribute **attrs, *dev_str;
224 	struct device_node *np, *pmu_events;
225 	u32 handle, base_reg;
226 	int i = 0, j = 0, ct, ret;
227 	const char *prefix, *g_scale, *g_unit;
228 	const char *ev_val_str, *ev_scale_str, *ev_unit_str;
229 
230 	if (!of_property_read_u32(node, "events", &handle))
231 		pmu_events = of_find_node_by_phandle(handle);
232 	else
233 		return 0;
234 
235 	/* Did not find any node with a given phandle */
236 	if (!pmu_events)
237 		return 0;
238 
239 	/* Get a count of number of child nodes */
240 	ct = of_get_child_count(pmu_events);
241 
242 	/* Get the event prefix */
243 	if (of_property_read_string(node, "events-prefix", &prefix))
244 		return 0;
245 
246 	/* Get a global unit and scale data if available */
247 	if (of_property_read_string(node, "scale", &g_scale))
248 		g_scale = NULL;
249 
250 	if (of_property_read_string(node, "unit", &g_unit))
251 		g_unit = NULL;
252 
253 	/* "reg" property gives out the base offset of the counters data */
254 	of_property_read_u32(node, "reg", &base_reg);
255 
256 	/* Allocate memory for the events */
257 	pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
258 	if (!pmu->events)
259 		return -ENOMEM;
260 
261 	ct = 0;
262 	/* Parse the events and update the struct */
263 	for_each_child_of_node(pmu_events, np) {
264 		ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]);
265 		if (!ret)
266 			ct++;
267 	}
268 
269 	/* Allocate memory for attribute group */
270 	attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
271 	if (!attr_group) {
272 		imc_free_events(pmu->events, ct);
273 		return -ENOMEM;
274 	}
275 
276 	/*
277 	 * Allocate memory for attributes.
278 	 * Since we have count of events for this pmu, we also allocate
279 	 * memory for the scale and unit attribute for now.
280 	 * "ct" has the total event structs added from the events-parent node.
281 	 * So allocate three times the "ct" (this includes event, event_scale and
282 	 * event_unit).
283 	 */
284 	attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
285 	if (!attrs) {
286 		kfree(attr_group);
287 		imc_free_events(pmu->events, ct);
288 		return -ENOMEM;
289 	}
290 
291 	attr_group->name = "events";
292 	attr_group->attrs = attrs;
293 	do {
294 		ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value);
295 		dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str);
296 		if (!dev_str)
297 			continue;
298 
299 		attrs[j++] = dev_str;
300 		if (pmu->events[i].scale) {
301 			ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name);
302 			dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale);
303 			if (!dev_str)
304 				continue;
305 
306 			attrs[j++] = dev_str;
307 		}
308 
309 		if (pmu->events[i].unit) {
310 			ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name);
311 			dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit);
312 			if (!dev_str)
313 				continue;
314 
315 			attrs[j++] = dev_str;
316 		}
317 	} while (++i < ct);
318 
319 	/* Save the event attribute */
320 	pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
321 
322 	return 0;
323 }
324 
325 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
get_nest_pmu_ref(int cpu)326 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
327 {
328 	return per_cpu(local_nest_imc_refc, cpu);
329 }
330 
nest_change_cpu_context(int old_cpu,int new_cpu)331 static void nest_change_cpu_context(int old_cpu, int new_cpu)
332 {
333 	struct imc_pmu **pn = per_nest_pmu_arr;
334 
335 	if (old_cpu < 0 || new_cpu < 0)
336 		return;
337 
338 	while (*pn) {
339 		perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
340 		pn++;
341 	}
342 }
343 
ppc_nest_imc_cpu_offline(unsigned int cpu)344 static int ppc_nest_imc_cpu_offline(unsigned int cpu)
345 {
346 	int nid, target = -1;
347 	const struct cpumask *l_cpumask;
348 	struct imc_pmu_ref *ref;
349 
350 	/*
351 	 * Check in the designated list for this cpu. Dont bother
352 	 * if not one of them.
353 	 */
354 	if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
355 		return 0;
356 
357 	/*
358 	 * Check whether nest_imc is registered. We could end up here if the
359 	 * cpuhotplug callback registration fails. i.e, callback invokes the
360 	 * offline path for all successfully registered nodes. At this stage,
361 	 * nest_imc pmu will not be registered and we should return here.
362 	 *
363 	 * We return with a zero since this is not an offline failure. And
364 	 * cpuhp_setup_state() returns the actual failure reason to the caller,
365 	 * which in turn will call the cleanup routine.
366 	 */
367 	if (!nest_pmus)
368 		return 0;
369 
370 	/*
371 	 * Now that this cpu is one of the designated,
372 	 * find a next cpu a) which is online and b) in same chip.
373 	 */
374 	nid = cpu_to_node(cpu);
375 	l_cpumask = cpumask_of_node(nid);
376 	target = cpumask_last(l_cpumask);
377 
378 	/*
379 	 * If this(target) is the last cpu in the cpumask for this chip,
380 	 * check for any possible online cpu in the chip.
381 	 */
382 	if (unlikely(target == cpu))
383 		target = cpumask_any_but(l_cpumask, cpu);
384 
385 	/*
386 	 * Update the cpumask with the target cpu and
387 	 * migrate the context if needed
388 	 */
389 	if (target >= 0 && target < nr_cpu_ids) {
390 		cpumask_set_cpu(target, &nest_imc_cpumask);
391 		nest_change_cpu_context(cpu, target);
392 	} else {
393 		opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
394 				       get_hard_smp_processor_id(cpu));
395 		/*
396 		 * If this is the last cpu in this chip then, skip the reference
397 		 * count lock and make the reference count on this chip zero.
398 		 */
399 		ref = get_nest_pmu_ref(cpu);
400 		if (!ref)
401 			return -EINVAL;
402 
403 		ref->refc = 0;
404 	}
405 	return 0;
406 }
407 
ppc_nest_imc_cpu_online(unsigned int cpu)408 static int ppc_nest_imc_cpu_online(unsigned int cpu)
409 {
410 	const struct cpumask *l_cpumask;
411 	static struct cpumask tmp_mask;
412 	int res;
413 
414 	/* Get the cpumask of this node */
415 	l_cpumask = cpumask_of_node(cpu_to_node(cpu));
416 
417 	/*
418 	 * If this is not the first online CPU on this node, then
419 	 * just return.
420 	 */
421 	if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
422 		return 0;
423 
424 	/*
425 	 * If this is the first online cpu on this node
426 	 * disable the nest counters by making an OPAL call.
427 	 */
428 	res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
429 				     get_hard_smp_processor_id(cpu));
430 	if (res)
431 		return res;
432 
433 	/* Make this CPU the designated target for counter collection */
434 	cpumask_set_cpu(cpu, &nest_imc_cpumask);
435 	return 0;
436 }
437 
nest_pmu_cpumask_init(void)438 static int nest_pmu_cpumask_init(void)
439 {
440 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
441 				 "perf/powerpc/imc:online",
442 				 ppc_nest_imc_cpu_online,
443 				 ppc_nest_imc_cpu_offline);
444 }
445 
nest_imc_counters_release(struct perf_event * event)446 static void nest_imc_counters_release(struct perf_event *event)
447 {
448 	int rc, node_id;
449 	struct imc_pmu_ref *ref;
450 
451 	if (event->cpu < 0)
452 		return;
453 
454 	node_id = cpu_to_node(event->cpu);
455 
456 	/*
457 	 * See if we need to disable the nest PMU.
458 	 * If no events are currently in use, then we have to take a
459 	 * lock to ensure that we don't race with another task doing
460 	 * enable or disable the nest counters.
461 	 */
462 	ref = get_nest_pmu_ref(event->cpu);
463 	if (!ref)
464 		return;
465 
466 	/* Take the lock for this node and then decrement the reference count */
467 	spin_lock(&ref->lock);
468 	if (ref->refc == 0) {
469 		/*
470 		 * The scenario where this is true is, when perf session is
471 		 * started, followed by offlining of all cpus in a given node.
472 		 *
473 		 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
474 		 * function set the ref->count to zero, if the cpu which is
475 		 * about to offline is the last cpu in a given node and make
476 		 * an OPAL call to disable the engine in that node.
477 		 *
478 		 */
479 		spin_unlock(&ref->lock);
480 		return;
481 	}
482 	ref->refc--;
483 	if (ref->refc == 0) {
484 		rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
485 					    get_hard_smp_processor_id(event->cpu));
486 		if (rc) {
487 			spin_unlock(&ref->lock);
488 			pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
489 			return;
490 		}
491 	} else if (ref->refc < 0) {
492 		WARN(1, "nest-imc: Invalid event reference count\n");
493 		ref->refc = 0;
494 	}
495 	spin_unlock(&ref->lock);
496 }
497 
nest_imc_event_init(struct perf_event * event)498 static int nest_imc_event_init(struct perf_event *event)
499 {
500 	int chip_id, rc, node_id;
501 	u32 l_config, config = event->attr.config;
502 	struct imc_mem_info *pcni;
503 	struct imc_pmu *pmu;
504 	struct imc_pmu_ref *ref;
505 	bool flag = false;
506 
507 	if (event->attr.type != event->pmu->type)
508 		return -ENOENT;
509 
510 	/* Sampling not supported */
511 	if (event->hw.sample_period)
512 		return -EINVAL;
513 
514 	if (event->cpu < 0)
515 		return -EINVAL;
516 
517 	pmu = imc_event_to_pmu(event);
518 
519 	/* Sanity check for config (event offset) */
520 	if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
521 		return -EINVAL;
522 
523 	/*
524 	 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
525 	 * Get the base memory addresss for this cpu.
526 	 */
527 	chip_id = cpu_to_chip_id(event->cpu);
528 
529 	/* Return, if chip_id is not valid */
530 	if (chip_id < 0)
531 		return -ENODEV;
532 
533 	pcni = pmu->mem_info;
534 	do {
535 		if (pcni->id == chip_id) {
536 			flag = true;
537 			break;
538 		}
539 		pcni++;
540 	} while (pcni->vbase != 0);
541 
542 	if (!flag)
543 		return -ENODEV;
544 
545 	/*
546 	 * Add the event offset to the base address.
547 	 */
548 	l_config = config & IMC_EVENT_OFFSET_MASK;
549 	event->hw.event_base = (u64)pcni->vbase + l_config;
550 	node_id = cpu_to_node(event->cpu);
551 
552 	/*
553 	 * Get the imc_pmu_ref struct for this node.
554 	 * Take the lock and then increment the count of nest pmu events inited.
555 	 */
556 	ref = get_nest_pmu_ref(event->cpu);
557 	if (!ref)
558 		return -EINVAL;
559 
560 	spin_lock(&ref->lock);
561 	if (ref->refc == 0) {
562 		rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
563 					     get_hard_smp_processor_id(event->cpu));
564 		if (rc) {
565 			spin_unlock(&ref->lock);
566 			pr_err("nest-imc: Unable to start the counters for node %d\n",
567 									node_id);
568 			return rc;
569 		}
570 	}
571 	++ref->refc;
572 	spin_unlock(&ref->lock);
573 
574 	event->destroy = nest_imc_counters_release;
575 	return 0;
576 }
577 
578 /*
579  * core_imc_mem_init : Initializes memory for the current core.
580  *
581  * Uses alloc_pages_node() and uses the returned address as an argument to
582  * an opal call to configure the pdbar. The address sent as an argument is
583  * converted to physical address before the opal call is made. This is the
584  * base address at which the core imc counters are populated.
585  */
core_imc_mem_init(int cpu,int size)586 static int core_imc_mem_init(int cpu, int size)
587 {
588 	int nid, rc = 0, core_id = (cpu / threads_per_core);
589 	struct imc_mem_info *mem_info;
590 	struct page *page;
591 
592 	/*
593 	 * alloc_pages_node() will allocate memory for core in the
594 	 * local node only.
595 	 */
596 	nid = cpu_to_node(cpu);
597 	mem_info = &core_imc_pmu->mem_info[core_id];
598 	mem_info->id = core_id;
599 
600 	/* We need only vbase for core counters */
601 	page = alloc_pages_node(nid,
602 				GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
603 				__GFP_NOWARN, get_order(size));
604 	if (!page)
605 		return -ENOMEM;
606 	mem_info->vbase = page_address(page);
607 
608 	core_imc_refc[core_id].id = core_id;
609 	spin_lock_init(&core_imc_refc[core_id].lock);
610 
611 	rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
612 				__pa((void *)mem_info->vbase),
613 				get_hard_smp_processor_id(cpu));
614 	if (rc) {
615 		free_pages((u64)mem_info->vbase, get_order(size));
616 		mem_info->vbase = NULL;
617 	}
618 
619 	return rc;
620 }
621 
is_core_imc_mem_inited(int cpu)622 static bool is_core_imc_mem_inited(int cpu)
623 {
624 	struct imc_mem_info *mem_info;
625 	int core_id = (cpu / threads_per_core);
626 
627 	mem_info = &core_imc_pmu->mem_info[core_id];
628 	if (!mem_info->vbase)
629 		return false;
630 
631 	return true;
632 }
633 
ppc_core_imc_cpu_online(unsigned int cpu)634 static int ppc_core_imc_cpu_online(unsigned int cpu)
635 {
636 	const struct cpumask *l_cpumask;
637 	static struct cpumask tmp_mask;
638 	int ret = 0;
639 
640 	/* Get the cpumask for this core */
641 	l_cpumask = cpu_sibling_mask(cpu);
642 
643 	/* If a cpu for this core is already set, then, don't do anything */
644 	if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
645 		return 0;
646 
647 	if (!is_core_imc_mem_inited(cpu)) {
648 		ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
649 		if (ret) {
650 			pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
651 			return ret;
652 		}
653 	}
654 
655 	/* set the cpu in the mask */
656 	cpumask_set_cpu(cpu, &core_imc_cpumask);
657 	return 0;
658 }
659 
ppc_core_imc_cpu_offline(unsigned int cpu)660 static int ppc_core_imc_cpu_offline(unsigned int cpu)
661 {
662 	unsigned int core_id;
663 	int ncpu;
664 	struct imc_pmu_ref *ref;
665 
666 	/*
667 	 * clear this cpu out of the mask, if not present in the mask,
668 	 * don't bother doing anything.
669 	 */
670 	if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
671 		return 0;
672 
673 	/*
674 	 * Check whether core_imc is registered. We could end up here
675 	 * if the cpuhotplug callback registration fails. i.e, callback
676 	 * invokes the offline path for all sucessfully registered cpus.
677 	 * At this stage, core_imc pmu will not be registered and we
678 	 * should return here.
679 	 *
680 	 * We return with a zero since this is not an offline failure.
681 	 * And cpuhp_setup_state() returns the actual failure reason
682 	 * to the caller, which inturn will call the cleanup routine.
683 	 */
684 	if (!core_imc_pmu->pmu.event_init)
685 		return 0;
686 
687 	/* Find any online cpu in that core except the current "cpu" */
688 	ncpu = cpumask_last(cpu_sibling_mask(cpu));
689 
690 	if (unlikely(ncpu == cpu))
691 		ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
692 
693 	if (ncpu >= 0 && ncpu < nr_cpu_ids) {
694 		cpumask_set_cpu(ncpu, &core_imc_cpumask);
695 		perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
696 	} else {
697 		/*
698 		 * If this is the last cpu in this core then skip taking reference
699 		 * count lock for this core and directly zero "refc" for this core.
700 		 */
701 		opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
702 				       get_hard_smp_processor_id(cpu));
703 		core_id = cpu / threads_per_core;
704 		ref = &core_imc_refc[core_id];
705 		if (!ref)
706 			return -EINVAL;
707 
708 		ref->refc = 0;
709 		/*
710 		 * Reduce the global reference count, if this is the
711 		 * last cpu in this core and core-imc event running
712 		 * in this cpu.
713 		 */
714 		spin_lock(&imc_global_refc.lock);
715 		if (imc_global_refc.id == IMC_DOMAIN_CORE)
716 			imc_global_refc.refc--;
717 
718 		spin_unlock(&imc_global_refc.lock);
719 	}
720 	return 0;
721 }
722 
core_imc_pmu_cpumask_init(void)723 static int core_imc_pmu_cpumask_init(void)
724 {
725 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
726 				 "perf/powerpc/imc_core:online",
727 				 ppc_core_imc_cpu_online,
728 				 ppc_core_imc_cpu_offline);
729 }
730 
reset_global_refc(struct perf_event * event)731 static void reset_global_refc(struct perf_event *event)
732 {
733 		spin_lock(&imc_global_refc.lock);
734 		imc_global_refc.refc--;
735 
736 		/*
737 		 * If no other thread is running any
738 		 * event for this domain(thread/core/trace),
739 		 * set the global id to zero.
740 		 */
741 		if (imc_global_refc.refc <= 0) {
742 			imc_global_refc.refc = 0;
743 			imc_global_refc.id = 0;
744 		}
745 		spin_unlock(&imc_global_refc.lock);
746 }
747 
core_imc_counters_release(struct perf_event * event)748 static void core_imc_counters_release(struct perf_event *event)
749 {
750 	int rc, core_id;
751 	struct imc_pmu_ref *ref;
752 
753 	if (event->cpu < 0)
754 		return;
755 	/*
756 	 * See if we need to disable the IMC PMU.
757 	 * If no events are currently in use, then we have to take a
758 	 * lock to ensure that we don't race with another task doing
759 	 * enable or disable the core counters.
760 	 */
761 	core_id = event->cpu / threads_per_core;
762 
763 	/* Take the lock and decrement the refernce count for this core */
764 	ref = &core_imc_refc[core_id];
765 	if (!ref)
766 		return;
767 
768 	spin_lock(&ref->lock);
769 	if (ref->refc == 0) {
770 		/*
771 		 * The scenario where this is true is, when perf session is
772 		 * started, followed by offlining of all cpus in a given core.
773 		 *
774 		 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
775 		 * function set the ref->count to zero, if the cpu which is
776 		 * about to offline is the last cpu in a given core and make
777 		 * an OPAL call to disable the engine in that core.
778 		 *
779 		 */
780 		spin_unlock(&ref->lock);
781 		return;
782 	}
783 	ref->refc--;
784 	if (ref->refc == 0) {
785 		rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
786 					    get_hard_smp_processor_id(event->cpu));
787 		if (rc) {
788 			spin_unlock(&ref->lock);
789 			pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
790 			return;
791 		}
792 	} else if (ref->refc < 0) {
793 		WARN(1, "core-imc: Invalid event reference count\n");
794 		ref->refc = 0;
795 	}
796 	spin_unlock(&ref->lock);
797 
798 	reset_global_refc(event);
799 }
800 
core_imc_event_init(struct perf_event * event)801 static int core_imc_event_init(struct perf_event *event)
802 {
803 	int core_id, rc;
804 	u64 config = event->attr.config;
805 	struct imc_mem_info *pcmi;
806 	struct imc_pmu *pmu;
807 	struct imc_pmu_ref *ref;
808 
809 	if (event->attr.type != event->pmu->type)
810 		return -ENOENT;
811 
812 	/* Sampling not supported */
813 	if (event->hw.sample_period)
814 		return -EINVAL;
815 
816 	if (event->cpu < 0)
817 		return -EINVAL;
818 
819 	event->hw.idx = -1;
820 	pmu = imc_event_to_pmu(event);
821 
822 	/* Sanity check for config (event offset) */
823 	if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
824 		return -EINVAL;
825 
826 	if (!is_core_imc_mem_inited(event->cpu))
827 		return -ENODEV;
828 
829 	core_id = event->cpu / threads_per_core;
830 	pcmi = &core_imc_pmu->mem_info[core_id];
831 	if ((!pcmi->vbase))
832 		return -ENODEV;
833 
834 	ref = &core_imc_refc[core_id];
835 	if (!ref)
836 		return -EINVAL;
837 
838 	/*
839 	 * Core pmu units are enabled only when it is used.
840 	 * See if this is triggered for the first time.
841 	 * If yes, take the lock and enable the core counters.
842 	 * If not, just increment the count in core_imc_refc struct.
843 	 */
844 	spin_lock(&ref->lock);
845 	if (ref->refc == 0) {
846 		rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
847 					     get_hard_smp_processor_id(event->cpu));
848 		if (rc) {
849 			spin_unlock(&ref->lock);
850 			pr_err("core-imc: Unable to start the counters for core %d\n",
851 									core_id);
852 			return rc;
853 		}
854 	}
855 	++ref->refc;
856 	spin_unlock(&ref->lock);
857 
858 	/*
859 	 * Since the system can run either in accumulation or trace-mode
860 	 * of IMC at a time, core-imc events are allowed only if no other
861 	 * trace/thread imc events are enabled/monitored.
862 	 *
863 	 * Take the global lock, and check the refc.id
864 	 * to know whether any other trace/thread imc
865 	 * events are running.
866 	 */
867 	spin_lock(&imc_global_refc.lock);
868 	if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_CORE) {
869 		/*
870 		 * No other trace/thread imc events are running in
871 		 * the system, so set the refc.id to core-imc.
872 		 */
873 		imc_global_refc.id = IMC_DOMAIN_CORE;
874 		imc_global_refc.refc++;
875 	} else {
876 		spin_unlock(&imc_global_refc.lock);
877 		return -EBUSY;
878 	}
879 	spin_unlock(&imc_global_refc.lock);
880 
881 	event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
882 	event->destroy = core_imc_counters_release;
883 	return 0;
884 }
885 
886 /*
887  * Allocates a page of memory for each of the online cpus, and load
888  * LDBAR with 0.
889  * The physical base address of the page allocated for a cpu will be
890  * written to the LDBAR for that cpu, when the thread-imc event
891  * is added.
892  *
893  * LDBAR Register Layout:
894  *
895  *  0          4         8         12        16        20        24        28
896  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
897  *   | |       [   ]    [                   Counter Address [8:50]
898  *   | * Mode    |
899  *   |           * PB Scope
900  *   * Enable/Disable
901  *
902  *  32        36        40        44        48        52        56        60
903  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
904  *           Counter Address [8:50]              ]
905  *
906  */
thread_imc_mem_alloc(int cpu_id,int size)907 static int thread_imc_mem_alloc(int cpu_id, int size)
908 {
909 	u64 *local_mem = per_cpu(thread_imc_mem, cpu_id);
910 	int nid = cpu_to_node(cpu_id);
911 
912 	if (!local_mem) {
913 		struct page *page;
914 		/*
915 		 * This case could happen only once at start, since we dont
916 		 * free the memory in cpu offline path.
917 		 */
918 		page = alloc_pages_node(nid,
919 				  GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
920 				  __GFP_NOWARN, get_order(size));
921 		if (!page)
922 			return -ENOMEM;
923 		local_mem = page_address(page);
924 
925 		per_cpu(thread_imc_mem, cpu_id) = local_mem;
926 	}
927 
928 	mtspr(SPRN_LDBAR, 0);
929 	return 0;
930 }
931 
ppc_thread_imc_cpu_online(unsigned int cpu)932 static int ppc_thread_imc_cpu_online(unsigned int cpu)
933 {
934 	return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
935 }
936 
ppc_thread_imc_cpu_offline(unsigned int cpu)937 static int ppc_thread_imc_cpu_offline(unsigned int cpu)
938 {
939 	/*
940 	 * Set the bit 0 of LDBAR to zero.
941 	 *
942 	 * If bit 0 of LDBAR is unset, it will stop posting
943 	 * the counter data to memory.
944 	 * For thread-imc, bit 0 of LDBAR will be set to 1 in the
945 	 * event_add function. So reset this bit here, to stop the updates
946 	 * to memory in the cpu_offline path.
947 	 */
948 	mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
949 
950 	/* Reduce the refc if thread-imc event running on this cpu */
951 	spin_lock(&imc_global_refc.lock);
952 	if (imc_global_refc.id == IMC_DOMAIN_THREAD)
953 		imc_global_refc.refc--;
954 	spin_unlock(&imc_global_refc.lock);
955 
956 	return 0;
957 }
958 
thread_imc_cpu_init(void)959 static int thread_imc_cpu_init(void)
960 {
961 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
962 			  "perf/powerpc/imc_thread:online",
963 			  ppc_thread_imc_cpu_online,
964 			  ppc_thread_imc_cpu_offline);
965 }
966 
thread_imc_event_init(struct perf_event * event)967 static int thread_imc_event_init(struct perf_event *event)
968 {
969 	u32 config = event->attr.config;
970 	struct task_struct *target;
971 	struct imc_pmu *pmu;
972 
973 	if (event->attr.type != event->pmu->type)
974 		return -ENOENT;
975 
976 	if (!perfmon_capable())
977 		return -EACCES;
978 
979 	/* Sampling not supported */
980 	if (event->hw.sample_period)
981 		return -EINVAL;
982 
983 	event->hw.idx = -1;
984 	pmu = imc_event_to_pmu(event);
985 
986 	/* Sanity check for config offset */
987 	if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
988 		return -EINVAL;
989 
990 	target = event->hw.target;
991 	if (!target)
992 		return -EINVAL;
993 
994 	spin_lock(&imc_global_refc.lock);
995 	/*
996 	 * Check if any other trace/core imc events are running in the
997 	 * system, if not set the global id to thread-imc.
998 	 */
999 	if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_THREAD) {
1000 		imc_global_refc.id = IMC_DOMAIN_THREAD;
1001 		imc_global_refc.refc++;
1002 	} else {
1003 		spin_unlock(&imc_global_refc.lock);
1004 		return -EBUSY;
1005 	}
1006 	spin_unlock(&imc_global_refc.lock);
1007 
1008 	event->pmu->task_ctx_nr = perf_sw_context;
1009 	event->destroy = reset_global_refc;
1010 	return 0;
1011 }
1012 
is_thread_imc_pmu(struct perf_event * event)1013 static bool is_thread_imc_pmu(struct perf_event *event)
1014 {
1015 	if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
1016 		return true;
1017 
1018 	return false;
1019 }
1020 
get_event_base_addr(struct perf_event * event)1021 static u64 * get_event_base_addr(struct perf_event *event)
1022 {
1023 	u64 addr;
1024 
1025 	if (is_thread_imc_pmu(event)) {
1026 		addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
1027 		return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
1028 	}
1029 
1030 	return (u64 *)event->hw.event_base;
1031 }
1032 
thread_imc_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)1033 static void thread_imc_pmu_start_txn(struct pmu *pmu,
1034 				     unsigned int txn_flags)
1035 {
1036 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1037 		return;
1038 	perf_pmu_disable(pmu);
1039 }
1040 
thread_imc_pmu_cancel_txn(struct pmu * pmu)1041 static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
1042 {
1043 	perf_pmu_enable(pmu);
1044 }
1045 
thread_imc_pmu_commit_txn(struct pmu * pmu)1046 static int thread_imc_pmu_commit_txn(struct pmu *pmu)
1047 {
1048 	perf_pmu_enable(pmu);
1049 	return 0;
1050 }
1051 
imc_read_counter(struct perf_event * event)1052 static u64 imc_read_counter(struct perf_event *event)
1053 {
1054 	u64 *addr, data;
1055 
1056 	/*
1057 	 * In-Memory Collection (IMC) counters are free flowing counters.
1058 	 * So we take a snapshot of the counter value on enable and save it
1059 	 * to calculate the delta at later stage to present the event counter
1060 	 * value.
1061 	 */
1062 	addr = get_event_base_addr(event);
1063 	data = be64_to_cpu(READ_ONCE(*addr));
1064 	local64_set(&event->hw.prev_count, data);
1065 
1066 	return data;
1067 }
1068 
imc_event_update(struct perf_event * event)1069 static void imc_event_update(struct perf_event *event)
1070 {
1071 	u64 counter_prev, counter_new, final_count;
1072 
1073 	counter_prev = local64_read(&event->hw.prev_count);
1074 	counter_new = imc_read_counter(event);
1075 	final_count = counter_new - counter_prev;
1076 
1077 	/* Update the delta to the event count */
1078 	local64_add(final_count, &event->count);
1079 }
1080 
imc_event_start(struct perf_event * event,int flags)1081 static void imc_event_start(struct perf_event *event, int flags)
1082 {
1083 	/*
1084 	 * In Memory Counters are free flowing counters. HW or the microcode
1085 	 * keeps adding to the counter offset in memory. To get event
1086 	 * counter value, we snapshot the value here and we calculate
1087 	 * delta at later point.
1088 	 */
1089 	imc_read_counter(event);
1090 }
1091 
imc_event_stop(struct perf_event * event,int flags)1092 static void imc_event_stop(struct perf_event *event, int flags)
1093 {
1094 	/*
1095 	 * Take a snapshot and calculate the delta and update
1096 	 * the event counter values.
1097 	 */
1098 	imc_event_update(event);
1099 }
1100 
imc_event_add(struct perf_event * event,int flags)1101 static int imc_event_add(struct perf_event *event, int flags)
1102 {
1103 	if (flags & PERF_EF_START)
1104 		imc_event_start(event, flags);
1105 
1106 	return 0;
1107 }
1108 
thread_imc_event_add(struct perf_event * event,int flags)1109 static int thread_imc_event_add(struct perf_event *event, int flags)
1110 {
1111 	int core_id;
1112 	struct imc_pmu_ref *ref;
1113 	u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id());
1114 
1115 	if (flags & PERF_EF_START)
1116 		imc_event_start(event, flags);
1117 
1118 	if (!is_core_imc_mem_inited(smp_processor_id()))
1119 		return -EINVAL;
1120 
1121 	core_id = smp_processor_id() / threads_per_core;
1122 	ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
1123 	mtspr(SPRN_LDBAR, ldbar_value);
1124 
1125 	/*
1126 	 * imc pmus are enabled only when it is used.
1127 	 * See if this is triggered for the first time.
1128 	 * If yes, take the lock and enable the counters.
1129 	 * If not, just increment the count in ref count struct.
1130 	 */
1131 	ref = &core_imc_refc[core_id];
1132 	if (!ref)
1133 		return -EINVAL;
1134 
1135 	spin_lock(&ref->lock);
1136 	if (ref->refc == 0) {
1137 		if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
1138 		    get_hard_smp_processor_id(smp_processor_id()))) {
1139 			spin_unlock(&ref->lock);
1140 			pr_err("thread-imc: Unable to start the counter\
1141 				for core %d\n", core_id);
1142 			return -EINVAL;
1143 		}
1144 	}
1145 	++ref->refc;
1146 	spin_unlock(&ref->lock);
1147 	return 0;
1148 }
1149 
thread_imc_event_del(struct perf_event * event,int flags)1150 static void thread_imc_event_del(struct perf_event *event, int flags)
1151 {
1152 
1153 	int core_id;
1154 	struct imc_pmu_ref *ref;
1155 
1156 	core_id = smp_processor_id() / threads_per_core;
1157 	ref = &core_imc_refc[core_id];
1158 	if (!ref) {
1159 		pr_debug("imc: Failed to get event reference count\n");
1160 		return;
1161 	}
1162 
1163 	spin_lock(&ref->lock);
1164 	ref->refc--;
1165 	if (ref->refc == 0) {
1166 		if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
1167 		    get_hard_smp_processor_id(smp_processor_id()))) {
1168 			spin_unlock(&ref->lock);
1169 			pr_err("thread-imc: Unable to stop the counters\
1170 				for core %d\n", core_id);
1171 			return;
1172 		}
1173 	} else if (ref->refc < 0) {
1174 		ref->refc = 0;
1175 	}
1176 	spin_unlock(&ref->lock);
1177 
1178 	/* Set bit 0 of LDBAR to zero, to stop posting updates to memory */
1179 	mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1180 
1181 	/*
1182 	 * Take a snapshot and calculate the delta and update
1183 	 * the event counter values.
1184 	 */
1185 	imc_event_update(event);
1186 }
1187 
1188 /*
1189  * Allocate a page of memory for each cpu, and load LDBAR with 0.
1190  */
trace_imc_mem_alloc(int cpu_id,int size)1191 static int trace_imc_mem_alloc(int cpu_id, int size)
1192 {
1193 	u64 *local_mem = per_cpu(trace_imc_mem, cpu_id);
1194 	int phys_id = cpu_to_node(cpu_id), rc = 0;
1195 	int core_id = (cpu_id / threads_per_core);
1196 
1197 	if (!local_mem) {
1198 		struct page *page;
1199 
1200 		page = alloc_pages_node(phys_id,
1201 				GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
1202 				__GFP_NOWARN, get_order(size));
1203 		if (!page)
1204 			return -ENOMEM;
1205 		local_mem = page_address(page);
1206 		per_cpu(trace_imc_mem, cpu_id) = local_mem;
1207 
1208 		/* Initialise the counters for trace mode */
1209 		rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem),
1210 					    get_hard_smp_processor_id(cpu_id));
1211 		if (rc) {
1212 			pr_info("IMC:opal init failed for trace imc\n");
1213 			return rc;
1214 		}
1215 	}
1216 
1217 	trace_imc_refc[core_id].id = core_id;
1218 	spin_lock_init(&trace_imc_refc[core_id].lock);
1219 
1220 	mtspr(SPRN_LDBAR, 0);
1221 	return 0;
1222 }
1223 
ppc_trace_imc_cpu_online(unsigned int cpu)1224 static int ppc_trace_imc_cpu_online(unsigned int cpu)
1225 {
1226 	return trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1227 }
1228 
ppc_trace_imc_cpu_offline(unsigned int cpu)1229 static int ppc_trace_imc_cpu_offline(unsigned int cpu)
1230 {
1231 	/*
1232 	 * No need to set bit 0 of LDBAR to zero, as
1233 	 * it is set to zero for imc trace-mode
1234 	 *
1235 	 * Reduce the refc if any trace-imc event running
1236 	 * on this cpu.
1237 	 */
1238 	spin_lock(&imc_global_refc.lock);
1239 	if (imc_global_refc.id == IMC_DOMAIN_TRACE)
1240 		imc_global_refc.refc--;
1241 	spin_unlock(&imc_global_refc.lock);
1242 
1243 	return 0;
1244 }
1245 
trace_imc_cpu_init(void)1246 static int trace_imc_cpu_init(void)
1247 {
1248 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE,
1249 			  "perf/powerpc/imc_trace:online",
1250 			  ppc_trace_imc_cpu_online,
1251 			  ppc_trace_imc_cpu_offline);
1252 }
1253 
get_trace_imc_event_base_addr(void)1254 static u64 get_trace_imc_event_base_addr(void)
1255 {
1256 	return (u64)per_cpu(trace_imc_mem, smp_processor_id());
1257 }
1258 
1259 /*
1260  * Function to parse trace-imc data obtained
1261  * and to prepare the perf sample.
1262  */
trace_imc_prepare_sample(struct trace_imc_data * mem,struct perf_sample_data * data,u64 * prev_tb,struct perf_event_header * header,struct perf_event * event)1263 static int trace_imc_prepare_sample(struct trace_imc_data *mem,
1264 				    struct perf_sample_data *data,
1265 				    u64 *prev_tb,
1266 				    struct perf_event_header *header,
1267 				    struct perf_event *event)
1268 {
1269 	/* Sanity checks for a valid record */
1270 	if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb)
1271 		*prev_tb = be64_to_cpu(READ_ONCE(mem->tb1));
1272 	else
1273 		return -EINVAL;
1274 
1275 	if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) !=
1276 			 be64_to_cpu(READ_ONCE(mem->tb2)))
1277 		return -EINVAL;
1278 
1279 	/* Prepare perf sample */
1280 	data->ip =  be64_to_cpu(READ_ONCE(mem->ip));
1281 	data->period = event->hw.last_period;
1282 
1283 	header->type = PERF_RECORD_SAMPLE;
1284 	header->size = sizeof(*header) + event->header_size;
1285 	header->misc = 0;
1286 
1287 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
1288 		switch (IMC_TRACE_RECORD_VAL_HVPR(be64_to_cpu(READ_ONCE(mem->val)))) {
1289 		case 0:/* when MSR HV and PR not set in the trace-record */
1290 			header->misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1291 			break;
1292 		case 1: /* MSR HV is 0 and PR is 1 */
1293 			header->misc |= PERF_RECORD_MISC_GUEST_USER;
1294 			break;
1295 		case 2: /* MSR HV is 1 and PR is 0 */
1296 			header->misc |= PERF_RECORD_MISC_KERNEL;
1297 			break;
1298 		case 3: /* MSR HV is 1 and PR is 1 */
1299 			header->misc |= PERF_RECORD_MISC_USER;
1300 			break;
1301 		default:
1302 			pr_info("IMC: Unable to set the flag based on MSR bits\n");
1303 			break;
1304 		}
1305 	} else {
1306 		if (is_kernel_addr(data->ip))
1307 			header->misc |= PERF_RECORD_MISC_KERNEL;
1308 		else
1309 			header->misc |= PERF_RECORD_MISC_USER;
1310 	}
1311 	perf_event_header__init_id(header, data, event);
1312 
1313 	return 0;
1314 }
1315 
dump_trace_imc_data(struct perf_event * event)1316 static void dump_trace_imc_data(struct perf_event *event)
1317 {
1318 	struct trace_imc_data *mem;
1319 	int i, ret;
1320 	u64 prev_tb = 0;
1321 
1322 	mem = (struct trace_imc_data *)get_trace_imc_event_base_addr();
1323 	for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data));
1324 		i++, mem++) {
1325 		struct perf_sample_data data;
1326 		struct perf_event_header header;
1327 
1328 		ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event);
1329 		if (ret) /* Exit, if not a valid record */
1330 			break;
1331 		else {
1332 			/* If this is a valid record, create the sample */
1333 			struct perf_output_handle handle;
1334 
1335 			if (perf_output_begin(&handle, &data, event, header.size))
1336 				return;
1337 
1338 			perf_output_sample(&handle, &header, &data, event);
1339 			perf_output_end(&handle);
1340 		}
1341 	}
1342 }
1343 
trace_imc_event_add(struct perf_event * event,int flags)1344 static int trace_imc_event_add(struct perf_event *event, int flags)
1345 {
1346 	int core_id = smp_processor_id() / threads_per_core;
1347 	struct imc_pmu_ref *ref = NULL;
1348 	u64 local_mem, ldbar_value;
1349 
1350 	/* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */
1351 	local_mem = get_trace_imc_event_base_addr();
1352 	ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE;
1353 
1354 	/* trace-imc reference count */
1355 	if (trace_imc_refc)
1356 		ref = &trace_imc_refc[core_id];
1357 	if (!ref) {
1358 		pr_debug("imc: Failed to get the event reference count\n");
1359 		return -EINVAL;
1360 	}
1361 
1362 	mtspr(SPRN_LDBAR, ldbar_value);
1363 	spin_lock(&ref->lock);
1364 	if (ref->refc == 0) {
1365 		if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE,
1366 				get_hard_smp_processor_id(smp_processor_id()))) {
1367 			spin_unlock(&ref->lock);
1368 			pr_err("trace-imc: Unable to start the counters for core %d\n", core_id);
1369 			return -EINVAL;
1370 		}
1371 	}
1372 	++ref->refc;
1373 	spin_unlock(&ref->lock);
1374 	return 0;
1375 }
1376 
trace_imc_event_read(struct perf_event * event)1377 static void trace_imc_event_read(struct perf_event *event)
1378 {
1379 	return;
1380 }
1381 
trace_imc_event_stop(struct perf_event * event,int flags)1382 static void trace_imc_event_stop(struct perf_event *event, int flags)
1383 {
1384 	u64 local_mem = get_trace_imc_event_base_addr();
1385 	dump_trace_imc_data(event);
1386 	memset((void *)local_mem, 0, sizeof(u64));
1387 }
1388 
trace_imc_event_start(struct perf_event * event,int flags)1389 static void trace_imc_event_start(struct perf_event *event, int flags)
1390 {
1391 	return;
1392 }
1393 
trace_imc_event_del(struct perf_event * event,int flags)1394 static void trace_imc_event_del(struct perf_event *event, int flags)
1395 {
1396 	int core_id = smp_processor_id() / threads_per_core;
1397 	struct imc_pmu_ref *ref = NULL;
1398 
1399 	if (trace_imc_refc)
1400 		ref = &trace_imc_refc[core_id];
1401 	if (!ref) {
1402 		pr_debug("imc: Failed to get event reference count\n");
1403 		return;
1404 	}
1405 
1406 	spin_lock(&ref->lock);
1407 	ref->refc--;
1408 	if (ref->refc == 0) {
1409 		if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE,
1410 				get_hard_smp_processor_id(smp_processor_id()))) {
1411 			spin_unlock(&ref->lock);
1412 			pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id);
1413 			return;
1414 		}
1415 	} else if (ref->refc < 0) {
1416 		ref->refc = 0;
1417 	}
1418 	spin_unlock(&ref->lock);
1419 
1420 	trace_imc_event_stop(event, flags);
1421 }
1422 
trace_imc_event_init(struct perf_event * event)1423 static int trace_imc_event_init(struct perf_event *event)
1424 {
1425 	if (event->attr.type != event->pmu->type)
1426 		return -ENOENT;
1427 
1428 	if (!perfmon_capable())
1429 		return -EACCES;
1430 
1431 	/* Return if this is a couting event */
1432 	if (event->attr.sample_period == 0)
1433 		return -ENOENT;
1434 
1435 	/*
1436 	 * Take the global lock, and make sure
1437 	 * no other thread is running any core/thread imc
1438 	 * events
1439 	 */
1440 	spin_lock(&imc_global_refc.lock);
1441 	if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_TRACE) {
1442 		/*
1443 		 * No core/thread imc events are running in the
1444 		 * system, so set the refc.id to trace-imc.
1445 		 */
1446 		imc_global_refc.id = IMC_DOMAIN_TRACE;
1447 		imc_global_refc.refc++;
1448 	} else {
1449 		spin_unlock(&imc_global_refc.lock);
1450 		return -EBUSY;
1451 	}
1452 	spin_unlock(&imc_global_refc.lock);
1453 
1454 	event->hw.idx = -1;
1455 
1456 	/*
1457 	 * There can only be a single PMU for perf_hw_context events which is assigned to
1458 	 * core PMU. Hence use "perf_sw_context" for trace_imc.
1459 	 */
1460 	event->pmu->task_ctx_nr = perf_sw_context;
1461 	event->destroy = reset_global_refc;
1462 	return 0;
1463 }
1464 
1465 /* update_pmu_ops : Populate the appropriate operations for "pmu" */
update_pmu_ops(struct imc_pmu * pmu)1466 static int update_pmu_ops(struct imc_pmu *pmu)
1467 {
1468 	pmu->pmu.task_ctx_nr = perf_invalid_context;
1469 	pmu->pmu.add = imc_event_add;
1470 	pmu->pmu.del = imc_event_stop;
1471 	pmu->pmu.start = imc_event_start;
1472 	pmu->pmu.stop = imc_event_stop;
1473 	pmu->pmu.read = imc_event_update;
1474 	pmu->pmu.attr_groups = pmu->attr_groups;
1475 	pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1476 	pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1477 
1478 	switch (pmu->domain) {
1479 	case IMC_DOMAIN_NEST:
1480 		pmu->pmu.event_init = nest_imc_event_init;
1481 		pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1482 		break;
1483 	case IMC_DOMAIN_CORE:
1484 		pmu->pmu.event_init = core_imc_event_init;
1485 		pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1486 		break;
1487 	case IMC_DOMAIN_THREAD:
1488 		pmu->pmu.event_init = thread_imc_event_init;
1489 		pmu->pmu.add = thread_imc_event_add;
1490 		pmu->pmu.del = thread_imc_event_del;
1491 		pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1492 		pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1493 		pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1494 		break;
1495 	case IMC_DOMAIN_TRACE:
1496 		pmu->pmu.event_init = trace_imc_event_init;
1497 		pmu->pmu.add = trace_imc_event_add;
1498 		pmu->pmu.del = trace_imc_event_del;
1499 		pmu->pmu.start = trace_imc_event_start;
1500 		pmu->pmu.stop = trace_imc_event_stop;
1501 		pmu->pmu.read = trace_imc_event_read;
1502 		pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group;
1503 	default:
1504 		break;
1505 	}
1506 
1507 	return 0;
1508 }
1509 
1510 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
init_nest_pmu_ref(void)1511 static int init_nest_pmu_ref(void)
1512 {
1513 	int nid, i, cpu;
1514 
1515 	nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1516 								GFP_KERNEL);
1517 
1518 	if (!nest_imc_refc)
1519 		return -ENOMEM;
1520 
1521 	i = 0;
1522 	for_each_node(nid) {
1523 		/*
1524 		 * Take the lock to avoid races while tracking the number of
1525 		 * sessions using the chip's nest pmu units.
1526 		 */
1527 		spin_lock_init(&nest_imc_refc[i].lock);
1528 
1529 		/*
1530 		 * Loop to init the "id" with the node_id. Variable "i" initialized to
1531 		 * 0 and will be used as index to the array. "i" will not go off the
1532 		 * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1533 		 * nodes only.
1534 		 */
1535 		nest_imc_refc[i++].id = nid;
1536 	}
1537 
1538 	/*
1539 	 * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1540 	 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1541 	 */
1542 	for_each_possible_cpu(cpu) {
1543 		nid = cpu_to_node(cpu);
1544 		for (i = 0; i < num_possible_nodes(); i++) {
1545 			if (nest_imc_refc[i].id == nid) {
1546 				per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1547 				break;
1548 			}
1549 		}
1550 	}
1551 	return 0;
1552 }
1553 
cleanup_all_core_imc_memory(void)1554 static void cleanup_all_core_imc_memory(void)
1555 {
1556 	int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1557 	struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1558 	int size = core_imc_pmu->counter_mem_size;
1559 
1560 	/* mem_info will never be NULL */
1561 	for (i = 0; i < nr_cores; i++) {
1562 		if (ptr[i].vbase)
1563 			free_pages((u64)ptr[i].vbase, get_order(size));
1564 	}
1565 
1566 	kfree(ptr);
1567 	kfree(core_imc_refc);
1568 }
1569 
thread_imc_ldbar_disable(void * dummy)1570 static void thread_imc_ldbar_disable(void *dummy)
1571 {
1572 	/*
1573 	 * By setting 0th bit of LDBAR to zero, we disable thread-imc
1574 	 * updates to memory.
1575 	 */
1576 	mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1577 }
1578 
thread_imc_disable(void)1579 void thread_imc_disable(void)
1580 {
1581 	on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1582 }
1583 
cleanup_all_thread_imc_memory(void)1584 static void cleanup_all_thread_imc_memory(void)
1585 {
1586 	int i, order = get_order(thread_imc_mem_size);
1587 
1588 	for_each_online_cpu(i) {
1589 		if (per_cpu(thread_imc_mem, i))
1590 			free_pages((u64)per_cpu(thread_imc_mem, i), order);
1591 
1592 	}
1593 }
1594 
cleanup_all_trace_imc_memory(void)1595 static void cleanup_all_trace_imc_memory(void)
1596 {
1597 	int i, order = get_order(trace_imc_mem_size);
1598 
1599 	for_each_online_cpu(i) {
1600 		if (per_cpu(trace_imc_mem, i))
1601 			free_pages((u64)per_cpu(trace_imc_mem, i), order);
1602 
1603 	}
1604 	kfree(trace_imc_refc);
1605 }
1606 
1607 /* Function to free the attr_groups which are dynamically allocated */
imc_common_mem_free(struct imc_pmu * pmu_ptr)1608 static void imc_common_mem_free(struct imc_pmu *pmu_ptr)
1609 {
1610 	if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1611 		kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1612 	kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1613 }
1614 
1615 /*
1616  * Common function to unregister cpu hotplug callback and
1617  * free the memory.
1618  * TODO: Need to handle pmu unregistering, which will be
1619  * done in followup series.
1620  */
imc_common_cpuhp_mem_free(struct imc_pmu * pmu_ptr)1621 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1622 {
1623 	if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1624 		spin_lock(&nest_init_lock);
1625 		if (nest_pmus == 1) {
1626 			cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1627 			kfree(nest_imc_refc);
1628 			kfree(per_nest_pmu_arr);
1629 			per_nest_pmu_arr = NULL;
1630 		}
1631 
1632 		if (nest_pmus > 0)
1633 			nest_pmus--;
1634 		spin_unlock(&nest_init_lock);
1635 	}
1636 
1637 	/* Free core_imc memory */
1638 	if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1639 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1640 		cleanup_all_core_imc_memory();
1641 	}
1642 
1643 	/* Free thread_imc memory */
1644 	if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1645 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1646 		cleanup_all_thread_imc_memory();
1647 	}
1648 
1649 	if (pmu_ptr->domain == IMC_DOMAIN_TRACE) {
1650 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE);
1651 		cleanup_all_trace_imc_memory();
1652 	}
1653 }
1654 
1655 /*
1656  * Function to unregister thread-imc if core-imc
1657  * is not registered.
1658  */
unregister_thread_imc(void)1659 void unregister_thread_imc(void)
1660 {
1661 	imc_common_cpuhp_mem_free(thread_imc_pmu);
1662 	imc_common_mem_free(thread_imc_pmu);
1663 	perf_pmu_unregister(&thread_imc_pmu->pmu);
1664 }
1665 
1666 /*
1667  * imc_mem_init : Function to support memory allocation for core imc.
1668  */
imc_mem_init(struct imc_pmu * pmu_ptr,struct device_node * parent,int pmu_index)1669 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1670 								int pmu_index)
1671 {
1672 	const char *s;
1673 	int nr_cores, cpu, res = -ENOMEM;
1674 
1675 	if (of_property_read_string(parent, "name", &s))
1676 		return -ENODEV;
1677 
1678 	switch (pmu_ptr->domain) {
1679 	case IMC_DOMAIN_NEST:
1680 		/* Update the pmu name */
1681 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1682 		if (!pmu_ptr->pmu.name)
1683 			goto err;
1684 
1685 		/* Needed for hotplug/migration */
1686 		if (!per_nest_pmu_arr) {
1687 			per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1688 						sizeof(struct imc_pmu *),
1689 						GFP_KERNEL);
1690 			if (!per_nest_pmu_arr)
1691 				goto err;
1692 		}
1693 		per_nest_pmu_arr[pmu_index] = pmu_ptr;
1694 		break;
1695 	case IMC_DOMAIN_CORE:
1696 		/* Update the pmu name */
1697 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1698 		if (!pmu_ptr->pmu.name)
1699 			goto err;
1700 
1701 		nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1702 		pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1703 								GFP_KERNEL);
1704 
1705 		if (!pmu_ptr->mem_info)
1706 			goto err;
1707 
1708 		core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1709 								GFP_KERNEL);
1710 
1711 		if (!core_imc_refc) {
1712 			kfree(pmu_ptr->mem_info);
1713 			goto err;
1714 		}
1715 
1716 		core_imc_pmu = pmu_ptr;
1717 		break;
1718 	case IMC_DOMAIN_THREAD:
1719 		/* Update the pmu name */
1720 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1721 		if (!pmu_ptr->pmu.name)
1722 			goto err;
1723 
1724 		thread_imc_mem_size = pmu_ptr->counter_mem_size;
1725 		for_each_online_cpu(cpu) {
1726 			res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1727 			if (res) {
1728 				cleanup_all_thread_imc_memory();
1729 				goto err;
1730 			}
1731 		}
1732 
1733 		thread_imc_pmu = pmu_ptr;
1734 		break;
1735 	case IMC_DOMAIN_TRACE:
1736 		/* Update the pmu name */
1737 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1738 		if (!pmu_ptr->pmu.name)
1739 			return -ENOMEM;
1740 
1741 		nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1742 		trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1743 								GFP_KERNEL);
1744 		if (!trace_imc_refc)
1745 			return -ENOMEM;
1746 
1747 		trace_imc_mem_size = pmu_ptr->counter_mem_size;
1748 		for_each_online_cpu(cpu) {
1749 			res = trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1750 			if (res) {
1751 				cleanup_all_trace_imc_memory();
1752 				goto err;
1753 			}
1754 		}
1755 		break;
1756 	default:
1757 		return -EINVAL;
1758 	}
1759 
1760 	return 0;
1761 err:
1762 	return res;
1763 }
1764 
1765 /*
1766  * init_imc_pmu : Setup and register the IMC pmu device.
1767  *
1768  * @parent:	Device tree unit node
1769  * @pmu_ptr:	memory allocated for this pmu
1770  * @pmu_idx:	Count of nest pmc registered
1771  *
1772  * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1773  * Handles failure cases and accordingly frees memory.
1774  */
init_imc_pmu(struct device_node * parent,struct imc_pmu * pmu_ptr,int pmu_idx)1775 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1776 {
1777 	int ret;
1778 
1779 	ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1780 	if (ret)
1781 		goto err_free_mem;
1782 
1783 	switch (pmu_ptr->domain) {
1784 	case IMC_DOMAIN_NEST:
1785 		/*
1786 		* Nest imc pmu need only one cpu per chip, we initialize the
1787 		* cpumask for the first nest imc pmu and use the same for the
1788 		* rest. To handle the cpuhotplug callback unregister, we track
1789 		* the number of nest pmus in "nest_pmus".
1790 		*/
1791 		spin_lock(&nest_init_lock);
1792 		if (nest_pmus == 0) {
1793 			ret = init_nest_pmu_ref();
1794 			if (ret) {
1795 				spin_unlock(&nest_init_lock);
1796 				kfree(per_nest_pmu_arr);
1797 				per_nest_pmu_arr = NULL;
1798 				goto err_free_mem;
1799 			}
1800 			/* Register for cpu hotplug notification. */
1801 			ret = nest_pmu_cpumask_init();
1802 			if (ret) {
1803 				spin_unlock(&nest_init_lock);
1804 				kfree(nest_imc_refc);
1805 				kfree(per_nest_pmu_arr);
1806 				per_nest_pmu_arr = NULL;
1807 				goto err_free_mem;
1808 			}
1809 		}
1810 		nest_pmus++;
1811 		spin_unlock(&nest_init_lock);
1812 		break;
1813 	case IMC_DOMAIN_CORE:
1814 		ret = core_imc_pmu_cpumask_init();
1815 		if (ret) {
1816 			cleanup_all_core_imc_memory();
1817 			goto err_free_mem;
1818 		}
1819 
1820 		break;
1821 	case IMC_DOMAIN_THREAD:
1822 		ret = thread_imc_cpu_init();
1823 		if (ret) {
1824 			cleanup_all_thread_imc_memory();
1825 			goto err_free_mem;
1826 		}
1827 
1828 		break;
1829 	case IMC_DOMAIN_TRACE:
1830 		ret = trace_imc_cpu_init();
1831 		if (ret) {
1832 			cleanup_all_trace_imc_memory();
1833 			goto err_free_mem;
1834 		}
1835 
1836 		break;
1837 	default:
1838 		return  -EINVAL;	/* Unknown domain */
1839 	}
1840 
1841 	ret = update_events_in_group(parent, pmu_ptr);
1842 	if (ret)
1843 		goto err_free_cpuhp_mem;
1844 
1845 	ret = update_pmu_ops(pmu_ptr);
1846 	if (ret)
1847 		goto err_free_cpuhp_mem;
1848 
1849 	ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1850 	if (ret)
1851 		goto err_free_cpuhp_mem;
1852 
1853 	pr_debug("%s performance monitor hardware support registered\n",
1854 							pmu_ptr->pmu.name);
1855 
1856 	return 0;
1857 
1858 err_free_cpuhp_mem:
1859 	imc_common_cpuhp_mem_free(pmu_ptr);
1860 err_free_mem:
1861 	imc_common_mem_free(pmu_ptr);
1862 	return ret;
1863 }
1864