Searched refs:Step (Results 1 – 25 of 38) sorted by relevance
12
50 | Step 1. Set ans := 1.052 | Step 2. Return ans := ans + sign(X)*2^(-126). Exit.59 | Step 1. Filter out extreme cases of input argument.60 | 1.1 If |X| >= 2^(-65), go to Step 1.3.61 | 1.2 Go to Step 7.62 | 1.3 If |X| < 16380 log(2), go to Step 2.63 | 1.4 Go to Step 8.72 | Note also that the constant 16380 log(2) used in Step 1.374 | to Step 2 guarantees |X| < 16380 log(2). There is no harm76 | but close to, 16380 log(2) and the branch to Step 9 is[all …]
32 | Step 0. If X < 0, create a NaN and raise the invalid operation37 | Step 1. Call slognd to obtain Y = log(X), the natural log of X.40 | Step 2. Compute log_10(X) = log(X) * (1/log(10)).47 | Step 0. If X < 0, create a NaN and raise the invalid operation52 | Step 1. Call sLogN to obtain Y = log(X), the natural log of X.54 | Step 2. Compute log_10(X) = log(X) * (1/log(10)).61 | Step 0. If X < 0, create a NaN and raise the invalid operation66 | Step 1. Call slognd to obtain Y = log(X), the natural log of X.69 | Step 2. Compute log_10(X) = log(X) * (1/log(2)).76 | Step 0. If X < 0, create a NaN and raise the invalid operation[all …]
23 | Step 1. Save and strip signs of X and Y: signX := sign(X),28 | Step 2. Set L := expo(X)-expo(Y), k := 0, Q := 0.30 | R := X, go to Step 4.35 | Step 3. Perform MOD(X,Y)36 | 3.1 If R = Y, go to Step 9.38 | 3.3 If j = 0, go to Step 4.40 | Step 3.1.42 | Step 4. At this point, R = X - QY = MOD(X,Y). Set43 | Last_Subtract := false (used in Step 7 below). If44 | MOD is requested, go to Step 6.[all …]
23 | Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5.25 | Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. Note that k = -4, -3,..., or 3.30 | Step 3. Approximate arctan(u) by a polynomial poly.32 | Step 4. Return arctan(F) + poly, arctan(F) is fetched from a table of values35 | Step 5. If |X| >= 16, go to Step 7.37 | Step 6. Approximate arctan(X) by an odd polynomial in X. Exit.39 | Step 7. Define X' = -1/X. Approximate arctan(X') by an odd polynomial in X'.
27 | Step 1. If |X-1| < 1/16, approximate log(X) by an odd polynomial in28 | u, where u = 2(X-1)/(X+1). Otherwise, move on to Step 2.30 | Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first seven34 | Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a polynomial in u,37 | Step 4. Reconstruct log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u)42 | Step 1: If |X| < 1/16, approximate log(1+X) by an odd polynomial in43 | u where u = 2X/(2+X). Otherwise, move on to Step 2.45 | Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done in Step 2
119 @ Step 1 clear RT field of all MSCx registers124 @ Step 2 clear DRI field in MDREFR127 @ Step 3 set SLFRSH bit in MDREFR130 @ Step 4 clear DE bis in MDCNFG133 @ Step 5 clear DRAM refresh control register139 @ Step 6 set force sleep bit in PMCR
34 Step 0: Read include/linux/device.h for object and function definitions.36 Step 1: Registering the bus driver.91 Step 2: Registering Devices.228 Step 3: Registering Drivers.281 Step 4: Define Generic Methods for Drivers.328 Step 5: Support generic driver binding.377 Step 6: Supply a hotplug callback.400 Step 7: Cleaning up the bus driver.
148 * Synchronous Step Down Regulator.181 * Synchronous Step Down Regulator. Also called196 * Synchronous Step Down Regulator. Also called231 * Synchronous Step Down Regulator. Also called VDDAO
52 void odm_SwAntDivChkAntSwitch(struct odm_dm_struct *pDM_Odm, u8 Step);
6704 # Step 1. Set ans := 1.0 #6706 # Step 2. Return ans := ans + sign(X)*2^(-126). Exit. #6713 # Step 1. Filter out extreme cases of input argument. #6714 # 1.1 If |X| >= 2^(-65), go to Step 1.3. #6715 # 1.2 Go to Step 7. #6716 # 1.3 If |X| < 16380 log(2), go to Step 2. #6717 # 1.4 Go to Step 8. #6727 # 16380 log(2) used in Step 1.3 is also in the compact #6728 # form. Thus taking the branch to Step 2 guarantees #6731 # 16380 log(2) and the branch to Step 9 is taken. #[all …]
6160 # Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5. #6162 # Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. #6168 # Step 3. Approximate arctan(u) by a polynomial poly. #6170 # Step 4. Return arctan(F) + poly, arctan(F) is fetched from a #6173 # Step 5. If |X| >= 16, go to Step 7. #6175 # Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. #6177 # Step 7. Define X' = -1/X. Approximate arctan(X') by an odd #6978 # Step 1. Set ans := 0 #6980 # Step 2. Return ans := X + ans. Exit. #6987 # Step 1. Check |X| #[all …]
29 Step 4 will create a new dummy policy valid for your
20 LTC3815 is a Monolithic Synchronous DC/DC Step-Down Converter.
47 Integrated, Step-Down Switching Regulators with PMBus support.
53 - **Step-wise:** The function returns success if the given index value182 - Step-wise defined frame interval.
54 - **Step-wise:** The function returns success if the given index value191 - Step-wise defined frame size.
107 useconds. Step and range are driver-specific.
61 Step 2: board specific .dts file
345 static int Step(char **currentDir, struct Vnode **currentVnode, uint32_t flags) in Step() function429 ret = Step(¤tDir, ¤tVnode, flags); in VnodeLookupAt()
56 considered "better". Step #2 has an optimization for avoiding false results: it61 Step #3 decides on the suggested configuration based on the result from step #2
58 Step sizes are not completely random for all and follow certain
89 Step-by-step instructions for using firescope with early OHCI initialization:
104 Step #2 is taken.110 or when the EH deadline is expired. In these case Step #3 is taken.
1003 + * Step 1 - Decrypt the source. Fast-forward past the associated data1027 + * Step 2 - Verify padding1047 + * Step 3 - Verify hash
517 chip to control Step-Down DC-DC and LDOs. Say Y here to549 chip to control Step-Down DC-DC and LDOs.1089 The TPS51632 is 3-2-1 Phase D-Cap+ Step Down Driverless Controller