/******************************************************************************* // Copyright (c) 2003-2015 Cadence Design Systems, Inc. // // Permission is hereby granted, free of charge, to any person obtaining // a copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to // the following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. // IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY // CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE // SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. -------------------------------------------------------------------------------- */ #include #include #include #include "xtensa_rtos.h" #include "soc/cpu.h" #include "esp_osal.h" #include "task.h" #include "esp_debug_helpers.h" #include "esp_heap_caps.h" #include "esp_heap_caps_init.h" #include "esp_private/crosscore_int.h" #include "esp_intr_alloc.h" #include "esp_log.h" #include "sdkconfig.h" #include "esp_task_wdt.h" #include "esp_task.h" #include "soc/soc_caps.h" #include "soc/efuse_reg.h" #include "soc/dport_access.h" #include "soc/dport_reg.h" #include "esp_int_wdt.h" #include "sdkconfig.h" #if CONFIG_IDF_TARGET_ESP32 #include "esp32/spiram.h" #elif CONFIG_IDF_TARGET_ESP32S2 #include "esp32s2/spiram.h" #elif CONFIG_IDF_TARGET_ESP32S3 #include "esp32s3/spiram.h" #endif #include "esp_private/startup_internal.h" // [refactor-todo] for g_spiram_ok /* Defined in portasm.h */ extern void _frxt_tick_timer_init(void); /* Defined in xtensa_context.S */ extern void _xt_coproc_init(void); static const char* TAG = "cpu_start"; // [refactor-todo]: might be appropriate to change in the future, but // for now maintain the same log output #if CONFIG_FREERTOS_CORETIMER_0 #define SYSTICK_INTR_ID (ETS_INTERNAL_TIMER0_INTR_SOURCE+ETS_INTERNAL_INTR_SOURCE_OFF) #endif #if CONFIG_FREERTOS_CORETIMER_1 #define SYSTICK_INTR_ID (ETS_INTERNAL_TIMER1_INTR_SOURCE+ETS_INTERNAL_INTR_SOURCE_OFF) #endif _Static_assert(tskNO_AFFINITY == CONFIG_FREERTOS_NO_AFFINITY, "incorrect tskNO_AFFINITY value"); /*-----------------------------------------------------------*/ extern volatile int port_xSchedulerRunning[portNUM_PROCESSORS]; unsigned port_interruptNesting[portNUM_PROCESSORS] = {0}; // Interrupt nesting level. Increased/decreased in portasm.c, _frxt_int_enter/_frxt_int_exit BaseType_t port_uxCriticalNesting[portNUM_PROCESSORS] = {0}; BaseType_t port_uxOldInterruptState[portNUM_PROCESSORS] = {0}; /*-----------------------------------------------------------*/ // User exception dispatcher when exiting void _xt_user_exit(void); #if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER // Wrapper to allow task functions to return (increases stack overhead by 16 bytes) static void vPortTaskWrapper(TaskFunction_t pxCode, void *pvParameters) { pxCode(pvParameters); //FreeRTOS tasks should not return. Log the task name and abort. char * pcTaskName = pcTaskGetTaskName(NULL); ESP_LOGE("FreeRTOS", "FreeRTOS Task \"%s\" should not return, Aborting now!", pcTaskName); abort(); } #endif /* * Stack initialization */ #if portUSING_MPU_WRAPPERS StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters, BaseType_t xRunPrivileged ) #else StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters ) #endif { StackType_t *sp, *tp; XtExcFrame *frame; #if XCHAL_CP_NUM > 0 uint32_t *p; #endif uint32_t *threadptr; void *task_thread_local_start; extern int _thread_local_start, _thread_local_end, _flash_rodata_start, _flash_rodata_align; // TODO: check that TLS area fits the stack uint32_t thread_local_sz = (uint8_t *)&_thread_local_end - (uint8_t *)&_thread_local_start; thread_local_sz = ALIGNUP(0x10, thread_local_sz); /* Initialize task's stack so that we have the following structure at the top: ----LOW ADDRESSES ----------------------------------------HIGH ADDRESSES---------- task stack | interrupt stack frame | thread local vars | co-processor save area | ---------------------------------------------------------------------------------- | | SP pxTopOfStack All parts are aligned to 16 byte boundary. */ sp = (StackType_t *) (((UBaseType_t)(pxTopOfStack + 1) - XT_CP_SIZE - thread_local_sz - XT_STK_FRMSZ) & ~0xf); /* Clear the entire frame (do not use memset() because we don't depend on C library) */ for (tp = sp; tp <= pxTopOfStack; ++tp) *tp = 0; frame = (XtExcFrame *) sp; /* Explicitly initialize certain saved registers */ #if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER frame->pc = (UBaseType_t) vPortTaskWrapper; /* task wrapper */ #else frame->pc = (UBaseType_t) pxCode; /* task entrypoint */ #endif frame->a0 = 0; /* to terminate GDB backtrace */ frame->a1 = (UBaseType_t) sp + XT_STK_FRMSZ; /* physical top of stack frame */ frame->exit = (UBaseType_t) _xt_user_exit; /* user exception exit dispatcher */ /* Set initial PS to int level 0, EXCM disabled ('rfe' will enable), user mode. */ /* Also set entry point argument parameter. */ #ifdef __XTENSA_CALL0_ABI__ #if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER frame->a2 = (UBaseType_t) pxCode; frame->a3 = (UBaseType_t) pvParameters; #else frame->a2 = (UBaseType_t) pvParameters; #endif frame->ps = PS_UM | PS_EXCM; #else /* + for windowed ABI also set WOE and CALLINC (pretend task was 'call4'd). */ #if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER frame->a6 = (UBaseType_t) pxCode; frame->a7 = (UBaseType_t) pvParameters; #else frame->a6 = (UBaseType_t) pvParameters; #endif frame->ps = PS_UM | PS_EXCM | PS_WOE | PS_CALLINC(1); #endif #ifdef XT_USE_SWPRI /* Set the initial virtual priority mask value to all 1's. */ frame->vpri = 0xFFFFFFFF; #endif /* Init threadptr register and set up TLS run-time area. * The diagram in port/riscv/port.c illustrates the calculations below. */ task_thread_local_start = (void *)(((uint32_t)pxTopOfStack - XT_CP_SIZE - thread_local_sz) & ~0xf); memcpy(task_thread_local_start, &_thread_local_start, thread_local_sz); threadptr = (uint32_t *)(sp + XT_STK_EXTRA); /* Calculate THREADPTR value. * The generated code will add THREADPTR value to a constant value determined at link time, * to get the address of the TLS variable. * The constant value is calculated by the linker as follows * (search for 'tpoff' in elf32-xtensa.c in BFD): * offset = address - tls_section_vma + align_up(TCB_SIZE, tls_section_alignment) * where TCB_SIZE is hardcoded to 8. * Note this is slightly different compared to the RISC-V port, where offset = address - tls_section_vma. */ const uint32_t tls_section_alignment = (uint32_t) &_flash_rodata_align; /* ALIGN value of .flash.rodata section */ const uint32_t tcb_size = 8; /* Unrelated to FreeRTOS, this is the constant from BFD */ const uint32_t base = (tcb_size + tls_section_alignment - 1) & (~(tls_section_alignment - 1)); *threadptr = (uint32_t)task_thread_local_start - ((uint32_t)&_thread_local_start - (uint32_t)&_flash_rodata_start) - base; #if XCHAL_CP_NUM > 0 /* Init the coprocessor save area (see xtensa_context.h) */ /* No access to TCB here, so derive indirectly. Stack growth is top to bottom. * //p = (uint32_t *) xMPUSettings->coproc_area; */ p = (uint32_t *)(((uint32_t) pxTopOfStack - XT_CP_SIZE) & ~0xf); p[0] = 0; p[1] = 0; p[2] = (((uint32_t) p) + 12 + XCHAL_TOTAL_SA_ALIGN - 1) & -XCHAL_TOTAL_SA_ALIGN; #endif return sp; } /*-----------------------------------------------------------*/ void vPortEndScheduler( void ) { /* It is unlikely that the Xtensa port will get stopped. If required simply disable the tick interrupt here. */ abort(); } /*-----------------------------------------------------------*/ BaseType_t xPortStartScheduler( void ) { // Interrupts are disabled at this point and stack contains PS with enabled interrupts when task context is restored #if XCHAL_CP_NUM > 0 /* Initialize co-processor management for tasks. Leave CPENABLE alone. */ _xt_coproc_init(); #endif /* Init the tick divisor value */ _xt_tick_divisor_init(); /* Setup the hardware to generate the tick. */ _frxt_tick_timer_init(); // port_xSchedulerRunning[xPortGetCoreID()] = 1; // Cannot be directly called from C; never returns __asm__ volatile ("call0 _frxt_dispatch\n"); /* Should not get here. */ return pdTRUE; } /*-----------------------------------------------------------*/ void vPortYieldOtherCore( BaseType_t coreid ) { esp_crosscore_int_send_yield( coreid ); } /*-----------------------------------------------------------*/ /* * Used to set coprocessor area in stack. Current hack is to reuse MPU pointer for coprocessor area. */ #if portUSING_MPU_WRAPPERS void vPortStoreTaskMPUSettings( xMPU_SETTINGS *xMPUSettings, const struct xMEMORY_REGION * const xRegions, StackType_t *pxBottomOfStack, uint32_t usStackDepth ) { #if XCHAL_CP_NUM > 0 xMPUSettings->coproc_area = (StackType_t*)((((uint32_t)(pxBottomOfStack + usStackDepth - 1)) - XT_CP_SIZE ) & ~0xf); /* NOTE: we cannot initialize the coprocessor save area here because FreeRTOS is going to * clear the stack area after we return. This is done in pxPortInitialiseStack(). */ #endif } void vPortReleaseTaskMPUSettings( xMPU_SETTINGS *xMPUSettings ) { /* If task has live floating point registers somewhere, release them */ _xt_coproc_release( xMPUSettings->coproc_area ); } #else void vPortStoreTaskMPUSettings( xMPU_SETTINGS *xMPUSettings, const struct xMEMORY_REGION * const xRegions, StackType_t *pxBottomOfStack, uint32_t usStackDepth ) {;} void vPortReleaseTaskMPUSettings( xMPU_SETTINGS *xMPUSettings ){;} #endif /* * Returns true if the current core is in ISR context; low prio ISR, med prio ISR or timer tick ISR. High prio ISRs * aren't detected here, but they normally cannot call C code, so that should not be an issue anyway. */ BaseType_t xPortInIsrContext(void) { unsigned int irqStatus; BaseType_t ret; irqStatus=portENTER_CRITICAL_NESTED(); ret=(port_interruptNesting[xPortGetCoreID()] != 0); portEXIT_CRITICAL_NESTED(irqStatus); return ret; } /* * This function will be called in High prio ISRs. Returns true if the current core was in ISR context * before calling into high prio ISR context. */ BaseType_t IRAM_ATTR xPortInterruptedFromISRContext(void) { return (port_interruptNesting[xPortGetCoreID()] != 0); } void IRAM_ATTR vPortEvaluateYieldFromISR(int argc, ...) { BaseType_t xYield; va_list ap; va_start(ap, argc); if(argc) { xYield = (BaseType_t)va_arg(ap, int); va_end(ap); } else { //it is a empty parameter vPortYieldFromISR macro call: va_end(ap); traceISR_EXIT_TO_SCHEDULER(); _frxt_setup_switch(); return; } //Yield exists, so need evaluate it first then switch: if(xYield == pdTRUE) { traceISR_EXIT_TO_SCHEDULER(); _frxt_setup_switch(); } } void vPortAssertIfInISR(void) { configASSERT(xPortInIsrContext()); } #define STACK_WATCH_AREA_SIZE 32 #define STACK_WATCH_POINT_NUMBER (SOC_CPU_WATCHPOINTS_NUM - 1) void vPortSetStackWatchpoint( void* pxStackStart ) { //Set watchpoint 1 to watch the last 32 bytes of the stack. //Unfortunately, the Xtensa watchpoints can't set a watchpoint on a random [base - base+n] region because //the size works by masking off the lowest address bits. For that reason, we futz a bit and watch the lowest 32 //bytes of the stack we can actually watch. In general, this can cause the watchpoint to be triggered at most //28 bytes early. The value 32 is chosen because it's larger than the stack canary, which in FreeRTOS is 20 bytes. //This way, we make sure we trigger before/when the stack canary is corrupted, not after. int addr=(int)pxStackStart; addr=(addr+31)&(~31); esp_set_watchpoint(STACK_WATCH_POINT_NUMBER, (char*)addr, 32, ESP_WATCHPOINT_STORE); } uint32_t xPortGetTickRateHz(void) { return (uint32_t)configTICK_RATE_HZ; } void __attribute__((optimize("-O3"))) vPortEnterCritical(portMUX_TYPE *mux) { BaseType_t oldInterruptLevel = portENTER_CRITICAL_NESTED(); /* Interrupts may already be disabled (because we're doing this recursively) * but we can't get the interrupt level after * vPortCPUAquireMutex, because it also may mess with interrupts. * Get it here first, then later figure out if we're nesting * and save for real there. */ vPortCPUAcquireMutex( mux ); BaseType_t coreID = 0;// xPortGetCoreID(); BaseType_t newNesting = port_uxCriticalNesting[coreID] + 1; port_uxCriticalNesting[coreID] = newNesting; if( newNesting == 1 ) { //This is the first time we get called. Save original interrupt level. port_uxOldInterruptState[coreID] = oldInterruptLevel; } } void __attribute__((optimize("-O3"))) vPortExitCritical(portMUX_TYPE *mux) { vPortCPUReleaseMutex( mux ); BaseType_t coreID = 0;// xPortGetCoreID(); BaseType_t nesting = port_uxCriticalNesting[coreID]; if(nesting > 0) { nesting--; port_uxCriticalNesting[coreID] = nesting; if( nesting == 0 ) { portEXIT_CRITICAL_NESTED(port_uxOldInterruptState[coreID]); } } } void __attribute__((weak)) vApplicationStackOverflowHook( TaskHandle_t xTask, char *pcTaskName ) { #define ERR_STR1 "***ERROR*** A stack overflow in task " #define ERR_STR2 " has been detected." const char *str[] = {ERR_STR1, pcTaskName, ERR_STR2}; char buf[sizeof(ERR_STR1) + CONFIG_FREERTOS_MAX_TASK_NAME_LEN + sizeof(ERR_STR2) + 1 /* null char */] = { 0 }; char *dest = buf; for (size_t i = 0 ; i < sizeof(str)/ sizeof(str[0]); i++) { dest = strcat(dest, str[i]); } esp_system_abort(buf); } #if !CONFIG_FREERTOS_UNICORE void esp_startup_start_app_other_cores(void) { // For now, we only support up to two core: 0 and 1. if (xPortGetCoreID() >= 2) { abort(); } // Wait for FreeRTOS initialization to finish on PRO CPU while (port_xSchedulerRunning[0] == 0) { ; } #if CONFIG_APPTRACE_ENABLE // [refactor-todo] move to esp_system initialization esp_err_t err = esp_apptrace_init(); assert(err == ESP_OK && "Failed to init apptrace module on APP CPU!"); #endif #if CONFIG_ESP_INT_WDT //Initialize the interrupt watch dog for CPU1. esp_int_wdt_cpu_init(); #endif esp_crosscore_int_init(); #if CONFIG_IDF_TARGET_ESP32 esp_dport_access_int_init(); #endif ESP_EARLY_LOGI(TAG, "Starting scheduler on APP CPU."); xPortStartScheduler(); abort(); /* Only get to here if FreeRTOS somehow very broken */ } #endif // !CONFIG_FREERTOS_UNICORE extern void esp_startup_start_app_common(void); void esp_startup_start_app(void) { #if !CONFIG_ESP_INT_WDT #if CONFIG_ESP32_ECO3_CACHE_LOCK_FIX assert(!soc_has_cache_lock_bug() && "ESP32 Rev 3 + Dual Core + PSRAM requires INT WDT enabled in project config!"); #endif #endif // ESP32 has single core variants. Check that FreeRTOS has been configured properly. #if CONFIG_IDF_TARGET_ESP32 && !CONFIG_FREERTOS_UNICORE if (REG_GET_BIT(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_VER_DIS_APP_CPU)) { ESP_EARLY_LOGE(TAG, "Running on single core chip, but FreeRTOS is built with dual core support."); ESP_EARLY_LOGE(TAG, "Please enable CONFIG_FREERTOS_UNICORE option in menuconfig."); abort(); } #endif // CONFIG_IDF_TARGET_ESP32 && !CONFIG_FREERTOS_UNICORE esp_startup_start_app_common(); ESP_LOGI(TAG, "Starting scheduler on PRO CPU."); // vTaskStartScheduler(); }