/* * Copyright (c) 2022 FuZhou Lockzhiner Electronic Co., Ltd. All rights reserved. */ /////////////////////////////////////////////////////////////////////////////// // \author (c) Marco Paland (info@paland.com) // 2014-2019, PALANDesign Hannover, Germany // // \license The MIT License (MIT) // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // // \brief Tiny printf, sprintf and (v)snprintf implementation, optimized for speed on // embedded systems with a very limited resources. These routines are thread // safe and reentrant! // Use this instead of the bloated standard/newlib printf cause these use // malloc for printf (and may not be thread safe). // /////////////////////////////////////////////////////////////////////////////// #include #include #include "uart_debug.h" #include "printf.h" // define this globally (e.g. gcc -DPRINTF_INCLUDE_CONFIG_H ...) to include the // printf_config.h header file // default: undefined #ifdef PRINTF_INCLUDE_CONFIG_H #include "printf_config.h" #endif // 'ntoa' conversion buffer size, this must be big enough to hold one converted // numeric number including padded zeros (dynamically created on stack) // default: 32 byte #ifndef PRINTF_NTOA_BUFFER_SIZE #define PRINTF_NTOA_BUFFER_SIZE 32U #endif // 'ftoa' conversion buffer size, this must be big enough to hold one converted // float number including padded zeros (dynamically created on stack) // default: 32 byte #ifndef PRINTF_FTOA_BUFFER_SIZE #define PRINTF_FTOA_BUFFER_SIZE 32U #endif // support for the floating point type (%f) // default: activated #ifndef PRINTF_DISABLE_SUPPORT_FLOAT #define PRINTF_SUPPORT_FLOAT #endif // support for exponential floating point notation (%e/%g) // default: activated #ifndef PRINTF_DISABLE_SUPPORT_EXPONENTIAL #define PRINTF_SUPPORT_EXPONENTIAL #endif // define the default floating point precision // default: 6 digits #ifndef PRINTF_DEFAULT_FLOAT_PRECISION #define PRINTF_DEFAULT_FLOAT_PRECISION 6U #endif // define the largest float suitable to print with %f // default: 1e9 #ifndef PRINTF_MAX_FLOAT #define PRINTF_MAX_FLOAT 1e9 #endif // support for the long long types (%llu or %p) // default: activated #ifndef PRINTF_DISABLE_SUPPORT_LONG_LONG #define PRINTF_SUPPORT_LONG_LONG #endif // support for the ptrdiff_t type (%t) // ptrdiff_t is normally defined in as long or long long type // default: activated #ifndef PRINTF_DISABLE_SUPPORT_PTRDIFF_T #define PRINTF_SUPPORT_PTRDIFF_T #endif // internal flag definitions #define FLAGS_ZEROPAD (1U << 0U) #define FLAGS_LEFT (1U << 1U) #define FLAGS_PLUS (1U << 2U) #define FLAGS_SPACE (1U << 3U) #define FLAGS_HASH (1U << 4U) #define FLAGS_UPPERCASE (1U << 5U) #define FLAGS_CHAR (1U << 6U) #define FLAGS_SHORT (1U << 7U) #define FLAGS_LONG (1U << 8U) #define FLAGS_LONG_LONG (1U << 9U) #define FLAGS_PRECISION (1U << 10U) #define FLAGS_ADAPT_EXP (1U << 11U) // import float.h for DBL_MAX #if defined(PRINTF_SUPPORT_FLOAT) #include #endif // output function type typedef void (*out_fct_type)(char character, void* buffer, size_t idx, size_t maxlen); // wrapper (used as buffer) for output function type typedef struct { void (*fct)(char character, void* arg); void* arg; } out_fct_wrap_type; // internal buffer output static inline void _out_buffer(char character, void* buffer, size_t idx, size_t maxlen) { if (idx < maxlen) { ((char*)buffer)[idx] = character; } } // internal null output static inline void _out_null(char character, void* buffer, size_t idx, size_t maxlen) { (void)character; (void)buffer; (void)idx; (void)maxlen; } enum HAL_UART_ID_T { HAL_UART_ID_0 = 0 }; // internal _putchar wrapper static inline void _out_char(char character, void* buffer, size_t idx, size_t maxlen) { (void)buffer; (void)idx; (void)maxlen; if (character) { uart_debug_putc(character); } } // internal output function wrapper static inline void _out_fct(char character, void* buffer, size_t idx, size_t maxlen) { (void)idx; (void)maxlen; if (character) { // buffer is the output fct pointer ((out_fct_wrap_type*)buffer)->fct(character, ((out_fct_wrap_type*)buffer)->arg); } } // internal secure strlen // \return The length of the string (excluding the terminating 0) limited by 'maxsize' static inline unsigned int _strnlen_s(const char* str, size_t maxsize) { size_t str_maxsize = maxsize; const char* s; for (s = str; *s && str_maxsize--; ++s) { } return (unsigned int)(s - str); } // internal test if char is a digit (0-9) // \return true if char is a digit static inline bool _is_digit(char ch) { return (ch >= '0') && (ch <= '9'); } // internal ASCII string to unsigned int conversion static unsigned int _atoi(const char** str) { unsigned int i = 0U; while (_is_digit(**str)) { i = i * 10U + (unsigned int)(*((*str)++) - '0'); } return i; } // output the specified string in reverse, taking care of any zero-padding static size_t _out_rev(out_fct_type out, char* buffer, size_t buffer_idx, size_t maxlen, const char* buf, size_t buf_len, unsigned int buf_width, unsigned int flags) { const size_t start_idx = buffer_idx; size_t idx = buffer_idx; size_t len = buf_len; unsigned int width = buf_width; // pad spaces up to given width if (!(flags & FLAGS_LEFT) && !(flags & FLAGS_ZEROPAD)) { for (size_t i = len; i < width; i++) { out(' ', buffer, idx++, maxlen); } } // reverse string while (len) { out(buf[--len], buffer, idx++, maxlen); } // append pad spaces up to given width if (flags & FLAGS_LEFT) { while (idx - start_idx < width) { out(' ', buffer, idx++, maxlen); } } return idx; } // internal itoa format static size_t _ntoa_format(out_fct_type out, char* buffer, size_t idx, size_t maxlen, char* buf, size_t buf_len, bool negative, unsigned int base, unsigned int prec, unsigned int prec_width, unsigned int flags) { size_t len = buf_len; unsigned int width = prec_width; // pad leading zeros if (!(flags & FLAGS_LEFT)) { if (width && (flags & FLAGS_ZEROPAD) && (negative || (flags & (FLAGS_PLUS | FLAGS_SPACE)))) { width--; } while ((len < prec) && (len < PRINTF_NTOA_BUFFER_SIZE)) { buf[len++] = '0'; } while ((flags & FLAGS_ZEROPAD) && (len < width) && (len < PRINTF_NTOA_BUFFER_SIZE)) { buf[len++] = '0'; } } // handle hash if (flags & FLAGS_HASH) { if (!(flags & FLAGS_PRECISION) && len && ((len == prec) || (len == width))) { len--; if (len && (base == 16U)) { len--; } } if ((base == 16U) && !(flags & FLAGS_UPPERCASE) && (len < PRINTF_NTOA_BUFFER_SIZE)) { buf[len++] = 'x'; } else if ((base == 16U) && (flags & FLAGS_UPPERCASE) && (len < PRINTF_NTOA_BUFFER_SIZE)) { buf[len++] = 'X'; } else if ((base == 2U) && (len < PRINTF_NTOA_BUFFER_SIZE)) { buf[len++] = 'b'; } if (len < PRINTF_NTOA_BUFFER_SIZE) { buf[len++] = '0'; } } if (len < PRINTF_NTOA_BUFFER_SIZE) { if (negative) { buf[len++] = '-'; } else if (flags & FLAGS_PLUS) { buf[len++] = '+'; // ignore the space if the '+' exists } else if (flags & FLAGS_SPACE) { buf[len++] = ' '; } } return _out_rev(out, buffer, idx, maxlen, buf, len, width, flags); } // internal itoa for 'long' type static size_t _ntoa_long(out_fct_type out, char* buffer, size_t idx, size_t maxlen, unsigned long l_value, bool negative, unsigned long base, unsigned int prec, unsigned int width, unsigned int l_flags) { unsigned long value = l_value; unsigned int flags = l_flags; char buf[PRINTF_NTOA_BUFFER_SIZE]; size_t len = 0U; char num_count = 10; // no hash for 0 values if (!value) { flags &= ~FLAGS_HASH; } // write if precision != 0 and value is != 0 if (!(flags & FLAGS_PRECISION) || value) { do { if (base == 0) { return 0; } const char digit = (char)(value % base); buf[len++] = digit < num_count ? '0' + digit : (flags & FLAGS_UPPERCASE ? 'A' : 'a') + digit - num_count; value /= base; } while (value && (len < PRINTF_NTOA_BUFFER_SIZE)); } return _ntoa_format(out, buffer, idx, maxlen, buf, len, negative, (unsigned int)base, prec, width, flags); } // internal itoa for 'long long' type #if defined(PRINTF_SUPPORT_LONG_LONG) static size_t _ntoa_long_long(out_fct_type out, char* buffer, size_t idx, size_t maxlen, unsigned long long l_value, bool negative, unsigned long long base, unsigned int prec, unsigned int width, unsigned int l_flags) { unsigned int flags = l_flags; unsigned long long value = l_value; char buf[PRINTF_NTOA_BUFFER_SIZE]; size_t len = 0U; char num_count = 10; // no hash for 0 values if (!value) { flags &= ~FLAGS_HASH; } // write if precision != 0 and value is != 0 if (!(flags & FLAGS_PRECISION) || value) { do { char digit; if (base == 0) { digit = 0; } else { digit = (char)(value % base); } buf[len++] = digit < num_count ? '0' + digit : (flags & FLAGS_UPPERCASE ? 'A' : 'a') + digit - num_count; if (base == 0) { value = 0; } else { value /= base; } } while (value && (len < PRINTF_NTOA_BUFFER_SIZE)); } return _ntoa_format(out, buffer, idx, maxlen, buf, len, negative, (unsigned int)base, prec, width, flags); } #endif // PRINTF_SUPPORT_LONG_LONG #if defined(PRINTF_SUPPORT_FLOAT) #if defined(PRINTF_SUPPORT_EXPONENTIAL) // forward declaration so that _ftoa can switch to exp notation for values > PRINTF_MAX_FLOAT static size_t _etoa(out_fct_type out, char* buffer, size_t idx, size_t maxlen, double value, unsigned int prec, unsigned int width, unsigned int flags); #endif // internal ftoa for fixed decimal floating point static size_t _ftoa(out_fct_type out, char* buffer, size_t idx, size_t maxlen, double d_value, unsigned int i_prec, unsigned int i_width, unsigned int flags) { double value = d_value; unsigned int prec = i_prec; unsigned int width = i_width; char buf[PRINTF_FTOA_BUFFER_SIZE]; size_t len = 0U; double diff = 0.0; // powers of 10 static const double pow10[] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000 }; double half = 0.5; size_t limit_precision = 9U; int ascii_0 = (int)('0'); int num_count = 10; // test for special values if (value != value) { return _out_rev(out, buffer, idx, maxlen, "nan", strlen("nan"), width, flags); } if (value < -DBL_MAX) { return _out_rev(out, buffer, idx, maxlen, "fni-", strlen("fni-"), width, flags); } if (value > DBL_MAX) { return _out_rev(out, buffer, idx, maxlen, (flags & FLAGS_PLUS) ? "fni+" : "fni", (flags & FLAGS_PLUS) ? strlen("fni-") : strlen("fni"), width, flags); } // test for very large values // standard printf behavior is to print EVERY whole number digit // -- which could be 100s of characters overflowing your buffers == bad if ((value > PRINTF_MAX_FLOAT) || (value < -PRINTF_MAX_FLOAT)) { #if defined(PRINTF_SUPPORT_EXPONENTIAL) return _etoa(out, buffer, idx, maxlen, value, prec, width, flags); #else return 0U; #endif } // test for negative bool negative = false; if (value < 0) { negative = true; value = 0 - value; } // set default precision, if not set explicitly if (!(flags & FLAGS_PRECISION)) { prec = PRINTF_DEFAULT_FLOAT_PRECISION; } // limit precision to 9, cause a prec >= 10 can lead to overflow errors while ((len < PRINTF_FTOA_BUFFER_SIZE) && (prec > limit_precision)) { buf[len++] = '0'; prec--; } int whole = (int)value; double tmp = (value - whole) * pow10[prec]; unsigned long frac = (unsigned long)tmp; diff = tmp - frac; if (diff > half) { ++frac; // handle rollover, e.g. case 0.99 with prec 1 is 1.0 if (frac >= pow10[prec]) { frac = 0; ++whole; } } else if (diff < half) { } else if ((frac == 0U) || (frac & 1U)) { // if halfway, round up if odd OR if last digit is 0 ++frac; } if (prec == 0U) { diff = value - (double)whole; if ((!(diff < half) || (diff > half)) && (whole & 1)) { // exactly 0.5 and ODD, then round up // 1.5 -> 2, but 2.5 -> 2 ++whole; } } else { unsigned int count = prec; // now do fractional part, as an unsigned number while (len < PRINTF_FTOA_BUFFER_SIZE) { --count; buf[len++] = (char)(ascii_0 + (frac % num_count)); if (!(frac /= 10U)) { break; } } // add extra 0s while ((len < PRINTF_FTOA_BUFFER_SIZE) && (count-- > 0U)) { buf[len++] = '0'; } if (len < PRINTF_FTOA_BUFFER_SIZE) { // add decimal buf[len++] = '.'; } } // do whole part, number is reversed while (len < PRINTF_FTOA_BUFFER_SIZE) { buf[len++] = (char)(ascii_0 + (whole % num_count)); if (!(whole /= num_count)) { break; } } // pad leading zeros if (!(flags & FLAGS_LEFT) && (flags & FLAGS_ZEROPAD)) { if (width && (negative || (flags & (FLAGS_PLUS | FLAGS_SPACE)))) { width--; } while ((len < width) && (len < PRINTF_FTOA_BUFFER_SIZE)) { buf[len++] = '0'; } } if (len < PRINTF_FTOA_BUFFER_SIZE) { if (negative) { buf[len++] = '-'; } else if (flags & FLAGS_PLUS) { buf[len++] = '+'; // ignore the space if the '+' exists } else if (flags & FLAGS_SPACE) { buf[len++] = ' '; } } return _out_rev(out, buffer, idx, maxlen, buf, len, width, flags); } #if defined(PRINTF_SUPPORT_EXPONENTIAL) // internal ftoa variant for exponential floating-point type, // contributed by Martijn Jasperse static size_t _etoa(out_fct_type out, char* buffer, size_t idx, size_t maxlen, double value, unsigned int prec, unsigned int width, unsigned int flags) { #define CONV_F_RATE 10 #define NTOA_LONG_BASE_MAX 10 size_t s_idx = idx; unsigned int i_prec = prec; unsigned int i_flags = flags; double d_value = value; double half = 0.5; double exp_base = 2.0; double exp_six = 6.0; double exp_ten = 10.0; double exp_fourteen = 14.0; uint64_t exp2_eff1 = 52U; uint64_t exp2_eff2 = 0x7FFU; uint64_t exp2_eff3 = 1023U; double exp2_eff4 = 3.321928094887362; int exp2_eff3_int = 1023; double expval_eff1 = 0.1760912590558; double expval_eff2 = 0.301029995663981; double expval_eff3 = 1.5; double expval_eff4 = 0.289529654602168; int expval_eff5_int = 100; double z_eff1 = 2.302585092994046; double z_eff2 = 0.6931471805599453; unsigned int minwidth_four = 4U; unsigned int minwidth_five = 5U; double fall_back_min = 1e-4; double fall_back_max = 1e6; // check for NaN and special values if ((d_value != d_value) || (d_value > DBL_MAX) || (d_value < -DBL_MAX)) { return _ftoa(out, buffer, s_idx, maxlen, value, i_prec, width, i_flags); } // determine the sign const bool negative = d_value < 0; if (negative) { d_value = -d_value; } // default precision if (!(i_flags & FLAGS_PRECISION)) { i_prec = PRINTF_DEFAULT_FLOAT_PRECISION; } // determine the decimal exponent // based on the algorithm by David Gay (https://www.ampl.com/netlib/fp/dtoa.c) union { uint64_t U; double F; } conv; conv.F = d_value; int exp2 = (int)((conv.U >> exp2_eff1) & exp2_eff2) - exp2_eff3_int; // effectively log2 // drop the exponent so conv.F is now in [1,2) conv.U = (conv.U & ((1ULL << exp2_eff1) - 1U)) | (exp2_eff3 << exp2_eff1); // now approximate log10 from the log2 integer part and an expansion of ln around 1.5 int expval = (int)(expval_eff1 + exp2 * expval_eff2 + (conv.F - expval_eff3) * expval_eff4); // now we want to compute 10^expval but we want to be sure it won't overflow exp2 = (int)(expval * exp2_eff4 + half); const double z = expval * z_eff1 - exp2 * z_eff2; const double z2 = z * z; conv.U = (uint64_t)(exp2 + exp2_eff3_int) << exp2_eff1; // compute exp(z) using continued fractions, // see https://en.wikipedia.org/wiki/Exponential_function#Continued_fractions_for_ex conv.F *= 1 + exp_base * z / (exp_base - z + (z2 / (exp_six + (z2 / (exp_ten + z2 / exp_fourteen))))); // correct for rounding errors if (d_value < conv.F) { expval--; conv.F /= CONV_F_RATE; } // the exponent format is "%+03d" and largest value is "307", so set aside 4-5 characters unsigned int minwidth = ((expval < expval_eff5_int) && (expval > -expval_eff5_int)) ? minwidth_four : minwidth_five; // in "%g" mode, "prec" is the number of *significant figures* not decimals if (i_flags & FLAGS_ADAPT_EXP) { // do we want to fall-back to "%f" mode? if ((d_value >= fall_back_min) && (d_value < fall_back_max)) { if ((int)i_prec > expval) { i_prec = (unsigned)((int)i_prec - expval - 1); } else { i_prec = 0; } i_flags |= FLAGS_PRECISION; // make sure _ftoa respects precision // no characters in exponent minwidth = 0U; expval = 0; } else { // we use one sigfig for the whole part if ((i_prec > 0) && (i_flags & FLAGS_PRECISION)) { --i_prec; } } } // will everything fit? unsigned int fwidth = width; if (width > minwidth) { // we didn't fall-back so subtract the characters required for the exponent fwidth -= minwidth; } else { // not enough characters, so go back to default sizing fwidth = 0U; } if ((i_flags & FLAGS_LEFT) && minwidth) { // if we're padding on the right, DON'T pad the floating part fwidth = 0U; } // rescale the float value if (expval) { d_value /= conv.F; } // output the floating part const size_t start_idx = s_idx; s_idx = _ftoa(out, buffer, s_idx, maxlen, negative ? -d_value : d_value, i_prec, fwidth, i_flags & ~FLAGS_ADAPT_EXP); // output the exponent part if (minwidth) { // output the exponential symbol out((i_flags & FLAGS_UPPERCASE) ? 'E' : 'e', buffer, s_idx++, maxlen); // output the exponent value s_idx = _ntoa_long(out, buffer, s_idx, maxlen, (expval < 0) ? -expval : expval, expval < 0, NTOA_LONG_BASE_MAX, 0, minwidth - 1, FLAGS_ZEROPAD | FLAGS_PLUS); // might need to right-pad spaces if (i_flags & FLAGS_LEFT) { while (s_idx - start_idx < width) { out(' ', buffer, s_idx++, maxlen); } } } return s_idx; } #endif // PRINTF_SUPPORT_EXPONENTIAL #endif // PRINTF_SUPPORT_FLOAT // internal vsnprintf static int vsnprintf_s(out_fct_type out, char* buffer, const size_t maxlen, const char* format, va_list va) { unsigned int flags, width, precision, n; size_t idx = 0U; out_fct_type out_tmp = out; char *format_tmp = format; if (!buffer) { // use null output function out_tmp = _out_null; } while (*format_tmp) { // format specifier? %[flags][width][.precision][length] if (*format_tmp != '%') { // no out_tmp(*format_tmp, buffer, idx++, maxlen); format_tmp++; continue; } else { // yes, evaluate it format_tmp++; } // evaluate flags flags = 0U; do { switch (*format_tmp) { case '0': flags |= FLAGS_ZEROPAD; format_tmp++; n = 1U; break; case '-': flags |= FLAGS_LEFT; format_tmp++; n = 1U; break; case '+': flags |= FLAGS_PLUS; format_tmp++; n = 1U; break; case ' ': flags |= FLAGS_SPACE; format_tmp++; n = 1U; break; case '#': flags |= FLAGS_HASH; format_tmp++; n = 1U; break; default : n = 0U; break; } } while (n); // evaluate width field width = 0U; if (_is_digit(*format_tmp)) { width = _atoi(&format_tmp); } else if (*format_tmp == '*') { const int w = va_arg(va, int); if (w < 0) { flags |= FLAGS_LEFT; // reverse padding width = (unsigned int) - w; } else { width = (unsigned int)w; } format_tmp++; } // evaluate precision field precision = 0U; if (*format_tmp == '.') { flags |= FLAGS_PRECISION; format_tmp++; if (_is_digit(*format_tmp)) { precision = _atoi(&format_tmp); } else if (*format_tmp == '*') { const int prec = (int)va_arg(va, int); precision = prec > 0 ? (unsigned int)prec : 0U; format_tmp++; } } // evaluate length field switch (*format_tmp) { case 'l' : flags |= FLAGS_LONG; format_tmp++; if (*format_tmp == 'l') { flags |= FLAGS_LONG_LONG; format_tmp++; } break; case 'h' : flags |= FLAGS_SHORT; format_tmp++; if (*format_tmp == 'h') { flags |= FLAGS_CHAR; format_tmp++; } break; #if defined(PRINTF_SUPPORT_PTRDIFF_T) case 't' : flags |= (sizeof(ptrdiff_t) == sizeof(long) ? FLAGS_LONG : FLAGS_LONG_LONG); format_tmp++; break; #endif case 'j' : flags |= (sizeof(intmax_t) == sizeof(long) ? FLAGS_LONG : FLAGS_LONG_LONG); format_tmp++; break; case 'z' : flags |= (sizeof(size_t) == sizeof(long) ? FLAGS_LONG : FLAGS_LONG_LONG); format_tmp++; break; default : break; } // evaluate specifier switch (*format_tmp) { case 'd' : case 'i' : case 'u' : case 'x' : case 'X' : case 'o' : case 'b' : { // set the base unsigned int base; if (*format_tmp == 'x' || *format_tmp == 'X') { base = 16U; } else if (*format_tmp == 'o') { base = 8U; } else if (*format_tmp == 'b') { base = 2U; } else { base = 10U; flags &= ~FLAGS_HASH; // no hash for dec format_tmp } // uppercase if (*format_tmp == 'X') { flags |= FLAGS_UPPERCASE; } // no plus or space flag for u, x, X, o, b if ((*format_tmp != 'i') && (*format_tmp != 'd')) { flags &= ~(FLAGS_PLUS | FLAGS_SPACE); } // ignore '0' flag when precision is given if (flags & FLAGS_PRECISION) { flags &= ~FLAGS_ZEROPAD; } // convert the integer if ((*format_tmp == 'i') || (*format_tmp == 'd')) { // signed if (flags & FLAGS_LONG_LONG) { #if defined(PRINTF_SUPPORT_LONG_LONG) const long long value = va_arg(va, long long); idx = _ntoa_long_long(out_tmp, buffer, idx, maxlen, (unsigned long long)(value > 0 ? value : 0 - value), value < 0, base, precision, width, flags); #endif } else if (flags & FLAGS_LONG) { const long value = va_arg(va, long); idx = _ntoa_long(out_tmp, buffer, idx, maxlen, (unsigned long)(value > 0 ? value : 0 - value), value < 0, base, precision, width, flags); } else { const int value = (flags & FLAGS_CHAR) ? (char)va_arg(va, int) : (flags & FLAGS_SHORT) ? (short int)va_arg(va, int) : va_arg(va, int); idx = _ntoa_long(out_tmp, buffer, idx, maxlen, (unsigned int)(value > 0 ? value : 0 - value), value < 0, base, precision, width, flags); } } else { // unsigned if (flags & FLAGS_LONG_LONG) { #if defined(PRINTF_SUPPORT_LONG_LONG) idx = _ntoa_long_long(out_tmp, buffer, idx, maxlen, va_arg(va, unsigned long long), false, base, precision, width, flags); #endif } else if (flags & FLAGS_LONG) { idx = _ntoa_long(out_tmp, buffer, idx, maxlen, va_arg(va, unsigned long), false, base, precision, width, flags); } else { const unsigned int value = (flags & FLAGS_CHAR) ? (unsigned char)va_arg(va, unsigned int) : (flags & FLAGS_SHORT) ? (unsigned short int)va_arg(va, unsigned int) : va_arg(va, unsigned int); idx = _ntoa_long(out_tmp, buffer, idx, maxlen, value, false, base, precision, width, flags); } } format_tmp++; break; } #if defined(PRINTF_SUPPORT_FLOAT) case 'f' : case 'F' : if (*format_tmp == 'F') { flags |= FLAGS_UPPERCASE; } idx = _ftoa(out_tmp, buffer, idx, maxlen, va_arg(va, double), precision, width, flags); format_tmp++; break; #if defined(PRINTF_SUPPORT_EXPONENTIAL) case 'e': case 'E': case 'g': case 'G': if ((*format_tmp == 'g') || (*format_tmp == 'G')) { flags |= FLAGS_ADAPT_EXP; } if ((*format_tmp == 'E') || (*format_tmp == 'G')) { flags |= FLAGS_UPPERCASE; } idx = _etoa(out_tmp, buffer, idx, maxlen, va_arg(va, double), precision, width, flags); format_tmp++; break; #endif // PRINTF_SUPPORT_EXPONENTIAL #endif // PRINTF_SUPPORT_FLOAT case 'c' : { unsigned int l = 1U; // pre padding if (!(flags & FLAGS_LEFT)) { while (l++ < width) { out_tmp(' ', buffer, idx++, maxlen); } } // char output out_tmp((char)va_arg(va, int), buffer, idx++, maxlen); // post padding if (flags & FLAGS_LEFT) { while (l++ < width) { out_tmp(' ', buffer, idx++, maxlen); } } format_tmp++; break; } case 's' : { const char* p = va_arg(va, char*); if (!p) { p = '(null)'; } unsigned int l = _strnlen_s(p, precision ? precision : (size_t) -1); // pre padding if (flags & FLAGS_PRECISION) { l = (l < precision ? l : precision); } if (!(flags & FLAGS_LEFT)) { while (l++ < width) { out_tmp(' ', buffer, idx++, maxlen); } } // string output while ((*p != 0) && (!(flags & FLAGS_PRECISION) || precision--)) { out_tmp(*(p++), buffer, idx++, maxlen); } // post padding if (flags & FLAGS_LEFT) { while (l++ < width) { out_tmp(' ', buffer, idx++, maxlen); } } format_tmp++; break; } case 'p' : { width = sizeof(void*) * 2U; flags |= FLAGS_ZEROPAD | FLAGS_UPPERCASE; #if defined(PRINTF_SUPPORT_LONG_LONG) const bool is_ll = sizeof(uintptr_t) == sizeof(long long); if (is_ll) { idx = _ntoa_long_long(out_tmp, buffer, idx, maxlen, (uintptr_t)va_arg(va, void*), false, 16U, precision, width, flags); } else { #endif idx = _ntoa_long(out_tmp, buffer, idx, maxlen, (unsigned long)((uintptr_t)va_arg(va, void*)), false, 16U, precision, width, flags); #if defined(PRINTF_SUPPORT_LONG_LONG) } #endif format_tmp++; break; } case '%' : out_tmp('%', buffer, idx++, maxlen); format_tmp++; break; default : out_tmp(*format_tmp, buffer, idx++, maxlen); format_tmp++; break; } } // termination out_tmp((char)0, buffer, idx < maxlen ? idx : maxlen - 1U, maxlen); // return written chars without terminating \0 return (int)idx; } int __wrap_printf(const char* format, ...) { va_list va; va_start(va, format); char buffer[1]; int ret = vsnprintf_s(_out_char, buffer, (size_t) -1, format, va); if (ret < 0) { return 0; } va_end(va); return ret; } int __wrap_snprintf(char* buffer, size_t count, const char* format, ...) { va_list va; va_start(va, format); const int ret = vsnprintf_s(_out_buffer, buffer, count, format, va); va_end(va); return ret; } int __wrap_vsnprintf(char* buffer, size_t count, const char* format, va_list va) { return vsnprintf_s(_out_buffer, buffer, count, format, va); } int fctprintf(void (*out)(char character, void* arg), void* arg, const char* format, ...) { va_list va; va_start(va, format); const out_fct_wrap_type out_fct_wrap = { out, arg }; int ret = vsnprintf_s(_out_fct, (char*)(uintptr_t)&out_fct_wrap, (size_t) -1, format, va); if (ret < 0) { return 0; } va_end(va); return ret; }