// // Copyright 2016 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // FramebufferVk.cpp: // Implements the class methods for FramebufferVk. // #include "libANGLE/renderer/vulkan/FramebufferVk.h" #include #include "common/debug.h" #include "common/vulkan/vk_headers.h" #include "libANGLE/Context.h" #include "libANGLE/Display.h" #include "libANGLE/ErrorStrings.h" #include "libANGLE/formatutils.h" #include "libANGLE/renderer/renderer_utils.h" #include "libANGLE/renderer/vulkan/ContextVk.h" #include "libANGLE/renderer/vulkan/DisplayVk.h" #include "libANGLE/renderer/vulkan/RenderTargetVk.h" #include "libANGLE/renderer/vulkan/RendererVk.h" #include "libANGLE/renderer/vulkan/ResourceVk.h" #include "libANGLE/renderer/vulkan/SurfaceVk.h" #include "libANGLE/renderer/vulkan/vk_format_utils.h" #include "libANGLE/trace.h" namespace rx { namespace { constexpr size_t kMinReadPixelsBufferSize = 128000; // Alignment value to accommodate the largest known, for now, uncompressed Vulkan format // VK_FORMAT_R64G64B64A64_SFLOAT, while supporting 3-component types such as // VK_FORMAT_R16G16B16_SFLOAT. constexpr size_t kReadPixelsBufferAlignment = 32 * 3; // Clear values are only used when loadOp=Clear is set in clearWithRenderPassOp. When starting a // new render pass, the clear value is set to an unlikely value (bright pink) to stand out better // in case of a bug. constexpr VkClearValue kUninitializedClearValue = {{{0.95, 0.05, 0.95, 0.95}}}; // The value to assign an alpha channel that's emulated. The type is unsigned int, though it will // automatically convert to the actual data type. constexpr unsigned int kEmulatedAlphaValue = 1; bool HasSrcBlitFeature(RendererVk *renderer, RenderTargetVk *srcRenderTarget) { angle::FormatID srcFormatID = srcRenderTarget->getImageActualFormatID(); return renderer->hasImageFormatFeatureBits(srcFormatID, VK_FORMAT_FEATURE_BLIT_SRC_BIT); } bool HasDstBlitFeature(RendererVk *renderer, RenderTargetVk *dstRenderTarget) { angle::FormatID dstFormatID = dstRenderTarget->getImageActualFormatID(); return renderer->hasImageFormatFeatureBits(dstFormatID, VK_FORMAT_FEATURE_BLIT_DST_BIT); } // Returns false if destination has any channel the source doesn't. This means that channel was // emulated and using the Vulkan blit command would overwrite that emulated channel. bool AreSrcAndDstColorChannelsBlitCompatible(RenderTargetVk *srcRenderTarget, RenderTargetVk *dstRenderTarget) { const angle::Format &srcFormat = srcRenderTarget->getImageIntendedFormat(); const angle::Format &dstFormat = dstRenderTarget->getImageIntendedFormat(); // Luminance/alpha formats are not renderable, so they can't have ended up in a framebuffer to // participate in a blit. ASSERT(!dstFormat.isLUMA() && !srcFormat.isLUMA()); // All color formats have the red channel. ASSERT(dstFormat.redBits > 0 && srcFormat.redBits > 0); return (dstFormat.greenBits > 0 || srcFormat.greenBits == 0) && (dstFormat.blueBits > 0 || srcFormat.blueBits == 0) && (dstFormat.alphaBits > 0 || srcFormat.alphaBits == 0); } // Returns false if formats are not identical. vkCmdResolveImage and resolve attachments both // require identical formats between source and destination. vkCmdBlitImage additionally requires // the same for depth/stencil formats. bool AreSrcAndDstFormatsIdentical(RenderTargetVk *srcRenderTarget, RenderTargetVk *dstRenderTarget) { angle::FormatID srcFormatID = srcRenderTarget->getImageActualFormatID(); angle::FormatID dstFormatID = dstRenderTarget->getImageActualFormatID(); return srcFormatID == dstFormatID; } bool AreSrcAndDstDepthStencilChannelsBlitCompatible(RenderTargetVk *srcRenderTarget, RenderTargetVk *dstRenderTarget) { const angle::Format &srcFormat = srcRenderTarget->getImageIntendedFormat(); const angle::Format &dstFormat = dstRenderTarget->getImageIntendedFormat(); return (dstFormat.depthBits > 0 || srcFormat.depthBits == 0) && (dstFormat.stencilBits > 0 || srcFormat.stencilBits == 0); } void EarlyAdjustFlipYForPreRotation(SurfaceRotation blitAngleIn, SurfaceRotation *blitAngleOut, bool *blitFlipYOut) { switch (blitAngleIn) { case SurfaceRotation::Identity: // No adjustments needed break; case SurfaceRotation::Rotated90Degrees: *blitAngleOut = SurfaceRotation::Rotated90Degrees; *blitFlipYOut = false; break; case SurfaceRotation::Rotated180Degrees: *blitAngleOut = SurfaceRotation::Rotated180Degrees; break; case SurfaceRotation::Rotated270Degrees: *blitAngleOut = SurfaceRotation::Rotated270Degrees; *blitFlipYOut = false; break; default: UNREACHABLE(); break; } } void AdjustBlitAreaForPreRotation(SurfaceRotation framebufferAngle, const gl::Rectangle &blitAreaIn, const gl::Rectangle &framebufferDimensions, gl::Rectangle *blitAreaOut) { switch (framebufferAngle) { case SurfaceRotation::Identity: // No adjustments needed break; case SurfaceRotation::Rotated90Degrees: blitAreaOut->x = blitAreaIn.y; blitAreaOut->y = blitAreaIn.x; std::swap(blitAreaOut->width, blitAreaOut->height); break; case SurfaceRotation::Rotated180Degrees: blitAreaOut->x = framebufferDimensions.width - blitAreaIn.x - blitAreaIn.width; blitAreaOut->y = framebufferDimensions.height - blitAreaIn.y - blitAreaIn.height; break; case SurfaceRotation::Rotated270Degrees: blitAreaOut->x = framebufferDimensions.height - blitAreaIn.y - blitAreaIn.height; blitAreaOut->y = framebufferDimensions.width - blitAreaIn.x - blitAreaIn.width; std::swap(blitAreaOut->width, blitAreaOut->height); break; default: UNREACHABLE(); break; } } void AdjustDimensionsAndFlipForPreRotation(SurfaceRotation framebufferAngle, gl::Rectangle *framebufferDimensions, bool *flipX, bool *flipY) { switch (framebufferAngle) { case SurfaceRotation::Identity: // No adjustments needed break; case SurfaceRotation::Rotated90Degrees: std::swap(framebufferDimensions->width, framebufferDimensions->height); std::swap(*flipX, *flipY); break; case SurfaceRotation::Rotated180Degrees: break; case SurfaceRotation::Rotated270Degrees: std::swap(framebufferDimensions->width, framebufferDimensions->height); std::swap(*flipX, *flipY); break; default: UNREACHABLE(); break; } } // When blitting, the source and destination areas are viewed like UVs. For example, a 64x64 // texture if flipped should have an offset of 64 in either X or Y which corresponds to U or V of 1. // On the other hand, when resolving, the source and destination areas are used as fragment // coordinates to fetch from. In that case, when flipped, the texture in the above example must // have an offset of 63. void AdjustBlitResolveParametersForResolve(const gl::Rectangle &sourceArea, const gl::Rectangle &destArea, UtilsVk::BlitResolveParameters *params) { params->srcOffset[0] = sourceArea.x; params->srcOffset[1] = sourceArea.y; params->dstOffset[0] = destArea.x; params->dstOffset[1] = destArea.y; if (sourceArea.isReversedX()) { ASSERT(sourceArea.x > 0); --params->srcOffset[0]; } if (sourceArea.isReversedY()) { ASSERT(sourceArea.y > 0); --params->srcOffset[1]; } if (destArea.isReversedX()) { ASSERT(destArea.x > 0); --params->dstOffset[0]; } if (destArea.isReversedY()) { ASSERT(destArea.y > 0); --params->dstOffset[1]; } } // Potentially make adjustments for pre-rotatation. Depending on the angle some of the params need // to be swapped and/or changes made to which axis are flipped. void AdjustBlitResolveParametersForPreRotation(SurfaceRotation framebufferAngle, SurfaceRotation srcFramebufferAngle, UtilsVk::BlitResolveParameters *params) { switch (framebufferAngle) { case SurfaceRotation::Identity: break; case SurfaceRotation::Rotated90Degrees: std::swap(params->stretch[0], params->stretch[1]); std::swap(params->srcOffset[0], params->srcOffset[1]); std::swap(params->rotatedOffsetFactor[0], params->rotatedOffsetFactor[1]); std::swap(params->flipX, params->flipY); if (srcFramebufferAngle == framebufferAngle) { std::swap(params->dstOffset[0], params->dstOffset[1]); std::swap(params->stretch[0], params->stretch[1]); } break; case SurfaceRotation::Rotated180Degrees: // Combine flip info with api flip. params->flipX = !params->flipX; params->flipY = !params->flipY; break; case SurfaceRotation::Rotated270Degrees: std::swap(params->stretch[0], params->stretch[1]); std::swap(params->srcOffset[0], params->srcOffset[1]); std::swap(params->rotatedOffsetFactor[0], params->rotatedOffsetFactor[1]); if (srcFramebufferAngle == framebufferAngle) { std::swap(params->stretch[0], params->stretch[1]); } // Combine flip info with api flip. params->flipX = !params->flipX; params->flipY = !params->flipY; std::swap(params->flipX, params->flipY); break; default: UNREACHABLE(); break; } } bool HasResolveAttachment(const gl::AttachmentArray &colorRenderTargets, const gl::DrawBufferMask &getEnabledDrawBuffers) { for (size_t colorIndexGL : getEnabledDrawBuffers) { RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL]; if (colorRenderTarget->hasResolveAttachment()) { return true; } } return false; } vk::FramebufferNonResolveAttachmentMask MakeUnresolveAttachmentMask(const vk::RenderPassDesc &desc) { vk::FramebufferNonResolveAttachmentMask unresolveMask( desc.getColorUnresolveAttachmentMask().bits()); if (desc.hasDepthUnresolveAttachment()) { unresolveMask.set(vk::kUnpackedDepthIndex); } if (desc.hasStencilUnresolveAttachment()) { unresolveMask.set(vk::kUnpackedStencilIndex); } return unresolveMask; } bool IsAnyAttachment3DWithoutAllLayers(const RenderTargetCache &renderTargetCache, gl::DrawBufferMask colorAttachmentsMask, uint32_t framebufferLayerCount) { const auto &colorRenderTargets = renderTargetCache.getColors(); for (size_t colorIndexGL : colorAttachmentsMask) { RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL]; ASSERT(colorRenderTarget); const vk::ImageHelper &image = colorRenderTarget->getImageForRenderPass(); if (image.getType() == VK_IMAGE_TYPE_3D && image.getExtents().depth > framebufferLayerCount) { return true; } } // Depth/stencil attachments cannot be 3D. ASSERT(renderTargetCache.getDepthStencil() == nullptr || renderTargetCache.getDepthStencil()->getImageForRenderPass().getType() != VK_IMAGE_TYPE_3D); return false; } } // anonymous namespace // static FramebufferVk *FramebufferVk::CreateUserFBO(RendererVk *renderer, const gl::FramebufferState &state) { return new FramebufferVk(renderer, state, nullptr); } // static FramebufferVk *FramebufferVk::CreateDefaultFBO(RendererVk *renderer, const gl::FramebufferState &state, WindowSurfaceVk *backbuffer) { return new FramebufferVk(renderer, state, backbuffer); } FramebufferVk::FramebufferVk(RendererVk *renderer, const gl::FramebufferState &state, WindowSurfaceVk *backbuffer) : FramebufferImpl(state), mBackbuffer(backbuffer), mFramebuffer(nullptr), mActiveColorComponentMasksForClear(0), mReadOnlyDepthFeedbackLoopMode(false) { mReadPixelBuffer.init(renderer, VK_BUFFER_USAGE_TRANSFER_DST_BIT, kReadPixelsBufferAlignment, kMinReadPixelsBufferSize, true, vk::DynamicBufferPolicy::OneShotUse); } FramebufferVk::~FramebufferVk() = default; void FramebufferVk::destroy(const gl::Context *context) { ContextVk *contextVk = vk::GetImpl(context); RendererVk *rendererVk = contextVk->getRenderer(); mReadPixelBuffer.release(rendererVk); mFramebufferCache.clear(contextVk); mFramebufferCache.destroy(rendererVk); mFramebuffer = nullptr; } angle::Result FramebufferVk::discard(const gl::Context *context, size_t count, const GLenum *attachments) { return invalidate(context, count, attachments); } angle::Result FramebufferVk::invalidate(const gl::Context *context, size_t count, const GLenum *attachments) { ContextVk *contextVk = vk::GetImpl(context); ANGLE_TRY(invalidateImpl(contextVk, count, attachments, false, getRotatedCompleteRenderArea(contextVk))); return angle::Result::Continue; } angle::Result FramebufferVk::invalidateSub(const gl::Context *context, size_t count, const GLenum *attachments, const gl::Rectangle &area) { ContextVk *contextVk = vk::GetImpl(context); const gl::Rectangle nonRotatedCompleteRenderArea = getNonRotatedCompleteRenderArea(); gl::Rectangle rotatedInvalidateArea; RotateRectangle(contextVk->getRotationDrawFramebuffer(), contextVk->isViewportFlipEnabledForDrawFBO(), nonRotatedCompleteRenderArea.width, nonRotatedCompleteRenderArea.height, area, &rotatedInvalidateArea); // If invalidateSub() covers the whole framebuffer area, make it behave as invalidate(). // The invalidate area is clipped to the render area for use inside invalidateImpl. const gl::Rectangle completeRenderArea = getRotatedCompleteRenderArea(contextVk); if (ClipRectangle(rotatedInvalidateArea, completeRenderArea, &rotatedInvalidateArea) && rotatedInvalidateArea == completeRenderArea) { return invalidate(context, count, attachments); } // If there are deferred clears, redefer them. syncState may have accumulated deferred clears, // but if the framebuffer's attachments are used after this call not through the framebuffer, // those clears wouldn't get flushed otherwise (for example as the destination of // glCopyTex[Sub]Image, shader storage image, etc). redeferClears(contextVk); if (contextVk->hasStartedRenderPass() && rotatedInvalidateArea.encloses(contextVk->getStartedRenderPassCommands().getRenderArea())) { // Because the render pass's render area is within the invalidated area, it is fine for // invalidateImpl() to use a storeOp of DONT_CARE (i.e. fine to not store the contents of // the invalidated area). ANGLE_TRY(invalidateImpl(contextVk, count, attachments, true, rotatedInvalidateArea)); } else { ANGLE_VK_PERF_WARNING( contextVk, GL_DEBUG_SEVERITY_LOW, "InvalidateSubFramebuffer ignored due to area not covering the render area"); } return angle::Result::Continue; } angle::Result FramebufferVk::clear(const gl::Context *context, GLbitfield mask) { ANGLE_TRACE_EVENT0("gpu.angle", "FramebufferVk::clear"); ContextVk *contextVk = vk::GetImpl(context); bool clearColor = IsMaskFlagSet(mask, static_cast(GL_COLOR_BUFFER_BIT)); bool clearDepth = IsMaskFlagSet(mask, static_cast(GL_DEPTH_BUFFER_BIT)); bool clearStencil = IsMaskFlagSet(mask, static_cast(GL_STENCIL_BUFFER_BIT)); gl::DrawBufferMask clearColorBuffers; if (clearColor) { clearColorBuffers = mState.getEnabledDrawBuffers(); } const VkClearColorValue &clearColorValue = contextVk->getClearColorValue().color; const VkClearDepthStencilValue &clearDepthStencilValue = contextVk->getClearDepthStencilValue().depthStencil; return clearImpl(context, clearColorBuffers, clearDepth, clearStencil, clearColorValue, clearDepthStencilValue); } angle::Result FramebufferVk::clearImpl(const gl::Context *context, gl::DrawBufferMask clearColorBuffers, bool clearDepth, bool clearStencil, const VkClearColorValue &clearColorValue, const VkClearDepthStencilValue &clearDepthStencilValue) { ContextVk *contextVk = vk::GetImpl(context); const gl::Rectangle scissoredRenderArea = getRotatedScissoredRenderArea(contextVk); ASSERT(scissoredRenderArea.width != 0 && scissoredRenderArea.height != 0); // This function assumes that only enabled attachments are asked to be cleared. ASSERT((clearColorBuffers & mState.getEnabledDrawBuffers()) == clearColorBuffers); ASSERT(!clearDepth || mState.getDepthAttachment() != nullptr); ASSERT(!clearStencil || mState.getStencilAttachment() != nullptr); gl::BlendStateExt::ColorMaskStorage::Type colorMasks = contextVk->getClearColorMasks(); bool clearColor = clearColorBuffers.any(); // When this function is called, there should always be something to clear. ASSERT(clearColor || clearDepth || clearStencil); const uint8_t stencilMask = static_cast(contextVk->getState().getDepthStencilState().stencilWritemask); // The front-end should ensure we don't attempt to clear color if all channels are masked. ASSERT(!clearColor || colorMasks != 0); // The front-end should ensure we don't attempt to clear depth if depth write is disabled. ASSERT(!clearDepth || contextVk->getState().getDepthStencilState().depthMask); // The front-end should ensure we don't attempt to clear stencil if all bits are masked. ASSERT(!clearStencil || stencilMask != 0); const bool scissoredClear = scissoredRenderArea != getRotatedCompleteRenderArea(contextVk); // We use the draw path if scissored clear, or color or stencil are masked. Note that depth // clearing is already disabled if there's a depth mask. const bool maskedClearColor = clearColor && (mActiveColorComponentMasksForClear & colorMasks) != mActiveColorComponentMasksForClear; const bool maskedClearStencil = clearStencil && stencilMask != 0xFF; bool clearColorWithDraw = clearColor && (maskedClearColor || scissoredClear); bool clearDepthWithDraw = clearDepth && scissoredClear; bool clearStencilWithDraw = clearStencil && (maskedClearStencil || scissoredClear); const bool isMidRenderPassClear = contextVk->hasStartedRenderPassWithCommands(); if (isMidRenderPassClear) { // If a render pass is open with commands, it must be for this framebuffer. Otherwise, // either FramebufferVk::syncState() or ContextVk::syncState() would have closed it. vk::Framebuffer *currentFramebuffer = nullptr; ANGLE_TRY(getFramebuffer(contextVk, ¤tFramebuffer, nullptr)); ASSERT(contextVk->hasStartedRenderPassWithFramebuffer(currentFramebuffer)); // Emit debug-util markers for this mid-render-pass clear ANGLE_TRY( contextVk->handleGraphicsEventLog(rx::GraphicsEventCmdBuf::InRenderPassCmdBufQueryCmd)); } else { // Emit debug-util markers for this outside-render-pass clear ANGLE_TRY( contextVk->handleGraphicsEventLog(rx::GraphicsEventCmdBuf::InOutsideCmdBufQueryCmd)); } const bool preferDrawOverClearAttachments = contextVk->getRenderer()->getFeatures().preferDrawClearOverVkCmdClearAttachments.enabled; // Merge current clears with the deferred clears, then proceed with only processing deferred // clears. This simplifies the clear paths such that they don't need to consider both the // current and deferred clears. Additionally, it avoids needing to undo an unresolve // operation; say attachment A is deferred cleared and multisampled-render-to-texture // attachment B is currently cleared. Assuming a render pass needs to start (because for // example attachment C needs to clear with a draw path), starting one with only deferred // clears and then applying the current clears won't work as attachment B is unresolved, and // there are no facilities to undo that. if (preferDrawOverClearAttachments && isMidRenderPassClear) { // On buggy hardware, prefer to clear with a draw call instead of vkCmdClearAttachments. // Note that it's impossible to have deferred clears in the middle of the render pass. ASSERT(!mDeferredClears.any()); clearColorWithDraw = clearColor; clearDepthWithDraw = clearDepth; clearStencilWithDraw = clearStencil; } else { gl::DrawBufferMask clearColorDrawBuffersMask; if (clearColor && !clearColorWithDraw) { clearColorDrawBuffersMask = clearColorBuffers; } mergeClearsWithDeferredClears(clearColorDrawBuffersMask, clearDepth && !clearDepthWithDraw, clearStencil && !clearStencilWithDraw, clearColorValue, clearDepthStencilValue); } // If any deferred clears, we can further defer them, clear them with vkCmdClearAttachments or // flush them if necessary. if (mDeferredClears.any()) { const bool clearAnyWithDraw = clearColorWithDraw || clearDepthWithDraw || clearStencilWithDraw; // If we are in an active renderpass that has recorded commands and the framebuffer hasn't // changed, inline the clear. if (isMidRenderPassClear) { ANGLE_VK_PERF_WARNING( contextVk, GL_DEBUG_SEVERITY_LOW, "Clear effectively discarding previous draw call results. Suggest earlier Clear " "followed by masked color or depth/stencil draw calls instead"); ASSERT(!preferDrawOverClearAttachments); // clearWithCommand will operate on deferred clears. ANGLE_TRY(clearWithCommand(contextVk, &contextVk->getStartedRenderPassCommands(), scissoredRenderArea)); } else { ASSERT(!contextVk->hasStartedRenderPass()); // This path will defer the current clears along with deferred clears. This won't work // if any attachment needs to be subsequently cleared with a draw call. In that case, // flush deferred clears, which will start a render pass with deferred clear values. // The subsequent draw call will then operate on the cleared attachments. // // Additionally, if the framebuffer is layered, any attachment is 3D and it has a larger // depth than the framebuffer layers, clears cannot be deferred. This is because the // clear may later need to be flushed with vkCmdClearColorImage, which cannot partially // clear the 3D texture. In that case, the clears are flushed immediately too. bool isAnyAttachment3DWithoutAllLayers = IsAnyAttachment3DWithoutAllLayers( mRenderTargetCache, mState.getColorAttachmentsMask(), mCurrentFramebufferDesc.getLayerCount()); if (clearAnyWithDraw || isAnyAttachment3DWithoutAllLayers) { ANGLE_TRY(flushDeferredClears(contextVk)); } else { redeferClears(contextVk); } } // If nothing left to clear, early out. if (!clearAnyWithDraw) { ASSERT(mDeferredClears.empty()); return angle::Result::Continue; } } if (!clearColorWithDraw) { clearColorBuffers.reset(); } // The most costly clear mode is when we need to mask out specific color channels or stencil // bits. This can only be done with a draw call. return clearWithDraw(contextVk, scissoredRenderArea, clearColorBuffers, clearDepthWithDraw, clearStencilWithDraw, colorMasks, stencilMask, clearColorValue, clearDepthStencilValue); } angle::Result FramebufferVk::clearBufferfv(const gl::Context *context, GLenum buffer, GLint drawbuffer, const GLfloat *values) { VkClearValue clearValue = {}; bool clearDepth = false; gl::DrawBufferMask clearColorBuffers; if (buffer == GL_DEPTH) { clearDepth = true; clearValue.depthStencil.depth = values[0]; } else { clearColorBuffers.set(drawbuffer); clearValue.color.float32[0] = values[0]; clearValue.color.float32[1] = values[1]; clearValue.color.float32[2] = values[2]; clearValue.color.float32[3] = values[3]; } return clearImpl(context, clearColorBuffers, clearDepth, false, clearValue.color, clearValue.depthStencil); } angle::Result FramebufferVk::clearBufferuiv(const gl::Context *context, GLenum buffer, GLint drawbuffer, const GLuint *values) { VkClearValue clearValue = {}; gl::DrawBufferMask clearColorBuffers; clearColorBuffers.set(drawbuffer); clearValue.color.uint32[0] = values[0]; clearValue.color.uint32[1] = values[1]; clearValue.color.uint32[2] = values[2]; clearValue.color.uint32[3] = values[3]; return clearImpl(context, clearColorBuffers, false, false, clearValue.color, clearValue.depthStencil); } angle::Result FramebufferVk::clearBufferiv(const gl::Context *context, GLenum buffer, GLint drawbuffer, const GLint *values) { VkClearValue clearValue = {}; bool clearStencil = false; gl::DrawBufferMask clearColorBuffers; if (buffer == GL_STENCIL) { clearStencil = true; clearValue.depthStencil.stencil = static_cast(values[0]); } else { clearColorBuffers.set(drawbuffer); clearValue.color.int32[0] = values[0]; clearValue.color.int32[1] = values[1]; clearValue.color.int32[2] = values[2]; clearValue.color.int32[3] = values[3]; } return clearImpl(context, clearColorBuffers, false, clearStencil, clearValue.color, clearValue.depthStencil); } angle::Result FramebufferVk::clearBufferfi(const gl::Context *context, GLenum buffer, GLint drawbuffer, GLfloat depth, GLint stencil) { VkClearValue clearValue = {}; clearValue.depthStencil.depth = depth; clearValue.depthStencil.stencil = static_cast(stencil); return clearImpl(context, gl::DrawBufferMask(), true, true, clearValue.color, clearValue.depthStencil); } const gl::InternalFormat &FramebufferVk::getImplementationColorReadFormat( const gl::Context *context) const { ContextVk *contextVk = vk::GetImpl(context); GLenum sizedFormat = mState.getReadAttachment()->getFormat().info->sizedInternalFormat; const vk::Format &vkFormat = contextVk->getRenderer()->getFormat(sizedFormat); GLenum implFormat = vkFormat.getActualRenderableImageFormat().fboImplementationInternalFormat; return gl::GetSizedInternalFormatInfo(implFormat); } angle::Result FramebufferVk::readPixels(const gl::Context *context, const gl::Rectangle &area, GLenum format, GLenum type, const gl::PixelPackState &pack, gl::Buffer *packBuffer, void *pixels) { // Clip read area to framebuffer. const gl::Extents &fbSize = getState().getReadPixelsAttachment(format)->getSize(); const gl::Rectangle fbRect(0, 0, fbSize.width, fbSize.height); ContextVk *contextVk = vk::GetImpl(context); gl::Rectangle clippedArea; if (!ClipRectangle(area, fbRect, &clippedArea)) { // nothing to read return angle::Result::Continue; } // Flush any deferred clears. ANGLE_TRY(flushDeferredClears(contextVk)); GLuint outputSkipBytes = 0; PackPixelsParams params; ANGLE_TRY(vk::ImageHelper::GetReadPixelsParams(contextVk, pack, packBuffer, format, type, area, clippedArea, ¶ms, &outputSkipBytes)); bool flipY = contextVk->isViewportFlipEnabledForReadFBO(); switch (params.rotation = contextVk->getRotationReadFramebuffer()) { case SurfaceRotation::Identity: // Do not rotate gl_Position (surface matches the device's orientation): if (flipY) { params.area.y = fbRect.height - clippedArea.y - clippedArea.height; } break; case SurfaceRotation::Rotated90Degrees: // Rotate gl_Position 90 degrees: params.area.x = clippedArea.y; params.area.y = flipY ? clippedArea.x : fbRect.width - clippedArea.x - clippedArea.width; std::swap(params.area.width, params.area.height); break; case SurfaceRotation::Rotated180Degrees: // Rotate gl_Position 180 degrees: params.area.x = fbRect.width - clippedArea.x - clippedArea.width; params.area.y = flipY ? clippedArea.y : fbRect.height - clippedArea.y - clippedArea.height; break; case SurfaceRotation::Rotated270Degrees: // Rotate gl_Position 270 degrees: params.area.x = fbRect.height - clippedArea.y - clippedArea.height; params.area.y = flipY ? fbRect.width - clippedArea.x - clippedArea.width : clippedArea.x; std::swap(params.area.width, params.area.height); break; default: UNREACHABLE(); break; } if (flipY) { params.reverseRowOrder = !params.reverseRowOrder; } ANGLE_TRY(readPixelsImpl(contextVk, params.area, params, getReadPixelsAspectFlags(format), getReadPixelsRenderTarget(format), static_cast(pixels) + outputSkipBytes)); mReadPixelBuffer.releaseInFlightBuffers(contextVk); return angle::Result::Continue; } RenderTargetVk *FramebufferVk::getDepthStencilRenderTarget() const { return mRenderTargetCache.getDepthStencil(); } RenderTargetVk *FramebufferVk::getColorDrawRenderTarget(size_t colorIndex) const { RenderTargetVk *renderTarget = mRenderTargetCache.getColorDraw(mState, colorIndex); ASSERT(renderTarget && renderTarget->getImageForRenderPass().valid()); return renderTarget; } RenderTargetVk *FramebufferVk::getColorReadRenderTarget() const { RenderTargetVk *renderTarget = mRenderTargetCache.getColorRead(mState); ASSERT(renderTarget && renderTarget->getImageForRenderPass().valid()); return renderTarget; } RenderTargetVk *FramebufferVk::getReadPixelsRenderTarget(GLenum format) const { switch (format) { case GL_DEPTH_COMPONENT: case GL_STENCIL_INDEX_OES: return getDepthStencilRenderTarget(); default: return getColorReadRenderTarget(); } } VkImageAspectFlagBits FramebufferVk::getReadPixelsAspectFlags(GLenum format) const { switch (format) { case GL_DEPTH_COMPONENT: return VK_IMAGE_ASPECT_DEPTH_BIT; case GL_STENCIL_INDEX_OES: return VK_IMAGE_ASPECT_STENCIL_BIT; default: return VK_IMAGE_ASPECT_COLOR_BIT; } } angle::Result FramebufferVk::blitWithCommand(ContextVk *contextVk, const gl::Rectangle &sourceArea, const gl::Rectangle &destArea, RenderTargetVk *readRenderTarget, RenderTargetVk *drawRenderTarget, GLenum filter, bool colorBlit, bool depthBlit, bool stencilBlit, bool flipX, bool flipY) { // Since blitRenderbufferRect is called for each render buffer that needs to be blitted, // it should never be the case that both color and depth/stencil need to be blitted at // at the same time. ASSERT(colorBlit != (depthBlit || stencilBlit)); vk::ImageHelper *srcImage = &readRenderTarget->getImageForCopy(); vk::ImageHelper *dstImage = &drawRenderTarget->getImageForWrite(); VkImageAspectFlags imageAspectMask = srcImage->getAspectFlags(); VkImageAspectFlags blitAspectMask = imageAspectMask; // Remove depth or stencil aspects if they are not requested to be blitted. if (!depthBlit) { blitAspectMask &= ~VK_IMAGE_ASPECT_DEPTH_BIT; } if (!stencilBlit) { blitAspectMask &= ~VK_IMAGE_ASPECT_STENCIL_BIT; } vk::CommandBufferAccess access; access.onImageTransferRead(imageAspectMask, srcImage); access.onImageTransferWrite(drawRenderTarget->getLevelIndex(), 1, drawRenderTarget->getLayerIndex(), 1, imageAspectMask, dstImage); vk::CommandBuffer *commandBuffer; ANGLE_TRY(contextVk->getOutsideRenderPassCommandBuffer(access, &commandBuffer)); VkImageBlit blit = {}; blit.srcSubresource.aspectMask = blitAspectMask; blit.srcSubresource.mipLevel = srcImage->toVkLevel(readRenderTarget->getLevelIndex()).get(); blit.srcSubresource.baseArrayLayer = readRenderTarget->getLayerIndex(); blit.srcSubresource.layerCount = 1; blit.srcOffsets[0] = {sourceArea.x0(), sourceArea.y0(), 0}; blit.srcOffsets[1] = {sourceArea.x1(), sourceArea.y1(), 1}; blit.dstSubresource.aspectMask = blitAspectMask; blit.dstSubresource.mipLevel = dstImage->toVkLevel(drawRenderTarget->getLevelIndex()).get(); blit.dstSubresource.baseArrayLayer = drawRenderTarget->getLayerIndex(); blit.dstSubresource.layerCount = 1; blit.dstOffsets[0] = {destArea.x0(), destArea.y0(), 0}; blit.dstOffsets[1] = {destArea.x1(), destArea.y1(), 1}; commandBuffer->blitImage(srcImage->getImage(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, dstImage->getImage(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &blit, gl_vk::GetFilter(filter)); return angle::Result::Continue; } angle::Result FramebufferVk::blit(const gl::Context *context, const gl::Rectangle &sourceAreaIn, const gl::Rectangle &destAreaIn, GLbitfield mask, GLenum filter) { ContextVk *contextVk = vk::GetImpl(context); RendererVk *renderer = contextVk->getRenderer(); UtilsVk &utilsVk = contextVk->getUtils(); // We can sometimes end up in a blit with some clear commands saved. Ensure all clear commands // are issued before we issue the blit command. ANGLE_TRY(flushDeferredClears(contextVk)); const gl::State &glState = contextVk->getState(); const gl::Framebuffer *srcFramebuffer = glState.getReadFramebuffer(); FramebufferVk *srcFramebufferVk = vk::GetImpl(srcFramebuffer); const bool blitColorBuffer = (mask & GL_COLOR_BUFFER_BIT) != 0; const bool blitDepthBuffer = (mask & GL_DEPTH_BUFFER_BIT) != 0; const bool blitStencilBuffer = (mask & GL_STENCIL_BUFFER_BIT) != 0; // If a framebuffer contains a mixture of multisampled and multisampled-render-to-texture // attachments, this function could be simultaneously doing a blit on one attachment and resolve // on another. For the most part, this means resolve semantics apply. However, as the resolve // path cannot be taken for multisampled-render-to-texture attachments, the distinction of // whether resolve is done for each attachment or blit is made. const bool isColorResolve = blitColorBuffer && srcFramebufferVk->getColorReadRenderTarget()->getImageForCopy().getSamples() > 1; const bool isDepthStencilResolve = (blitDepthBuffer || blitStencilBuffer) && srcFramebufferVk->getDepthStencilRenderTarget()->getImageForCopy().getSamples() > 1; const bool isResolve = isColorResolve || isDepthStencilResolve; bool srcFramebufferFlippedY = contextVk->isViewportFlipEnabledForReadFBO(); bool dstFramebufferFlippedY = contextVk->isViewportFlipEnabledForDrawFBO(); gl::Rectangle sourceArea = sourceAreaIn; gl::Rectangle destArea = destAreaIn; // Note: GLES (all 3.x versions) require source and destination area to be identical when // resolving. ASSERT(!isResolve || (sourceArea.x == destArea.x && sourceArea.y == destArea.y && sourceArea.width == destArea.width && sourceArea.height == destArea.height)); gl::Rectangle srcFramebufferDimensions = srcFramebufferVk->getNonRotatedCompleteRenderArea(); gl::Rectangle dstFramebufferDimensions = getNonRotatedCompleteRenderArea(); // If the destination is flipped in either direction, we will flip the source instead so that // the destination area is always unflipped. sourceArea = sourceArea.flip(destArea.isReversedX(), destArea.isReversedY()); destArea = destArea.removeReversal(); // Calculate the stretch factor prior to any clipping, as it needs to remain constant. const double stretch[2] = { std::abs(sourceArea.width / static_cast(destArea.width)), std::abs(sourceArea.height / static_cast(destArea.height)), }; // Potentially make adjustments for pre-rotatation. To handle various cases (e.g. clipping) // and to not interrupt the normal flow of the code, different adjustments are made in // different parts of the code. These first adjustments are for whether or not to flip the // y-axis, and to note the overall rotation (regardless of whether it is the source or // destination that is rotated). SurfaceRotation srcFramebufferRotation = contextVk->getRotationReadFramebuffer(); SurfaceRotation dstFramebufferRotation = contextVk->getRotationDrawFramebuffer(); SurfaceRotation rotation = SurfaceRotation::Identity; // Both the source and destination cannot be rotated (which would indicate both are the default // framebuffer (i.e. swapchain image). ASSERT((srcFramebufferRotation == SurfaceRotation::Identity) || (dstFramebufferRotation == SurfaceRotation::Identity)); EarlyAdjustFlipYForPreRotation(srcFramebufferRotation, &rotation, &srcFramebufferFlippedY); EarlyAdjustFlipYForPreRotation(dstFramebufferRotation, &rotation, &dstFramebufferFlippedY); // First, clip the source area to framebuffer. That requires transforming the destination area // to match the clipped source. gl::Rectangle absSourceArea = sourceArea.removeReversal(); gl::Rectangle clippedSourceArea; if (!gl::ClipRectangle(srcFramebufferDimensions, absSourceArea, &clippedSourceArea)) { return angle::Result::Continue; } // Resize the destination area based on the new size of source. Note again that stretch is // calculated as SrcDimension/DestDimension. gl::Rectangle srcClippedDestArea; if (isResolve) { // Source and destination areas are identical in resolve (except rotate it, if appropriate). srcClippedDestArea = clippedSourceArea; AdjustBlitAreaForPreRotation(dstFramebufferRotation, clippedSourceArea, dstFramebufferDimensions, &srcClippedDestArea); } else if (clippedSourceArea == absSourceArea) { // If there was no clipping, keep destination area as is (except rotate it, if appropriate). srcClippedDestArea = destArea; AdjustBlitAreaForPreRotation(dstFramebufferRotation, destArea, dstFramebufferDimensions, &srcClippedDestArea); } else { // Shift destination area's x0,y0,x1,y1 by as much as the source area's got shifted (taking // stretching into account). Note that double is used as float doesn't have enough // precision near the end of int range. double x0Shift = std::round((clippedSourceArea.x - absSourceArea.x) / stretch[0]); double y0Shift = std::round((clippedSourceArea.y - absSourceArea.y) / stretch[1]); double x1Shift = std::round((absSourceArea.x1() - clippedSourceArea.x1()) / stretch[0]); double y1Shift = std::round((absSourceArea.y1() - clippedSourceArea.y1()) / stretch[1]); // If the source area was reversed in any direction, the shift should be applied in the // opposite direction as well. if (sourceArea.isReversedX()) { std::swap(x0Shift, x1Shift); } if (sourceArea.isReversedY()) { std::swap(y0Shift, y1Shift); } srcClippedDestArea.x = destArea.x0() + static_cast(x0Shift); srcClippedDestArea.y = destArea.y0() + static_cast(y0Shift); int x1 = destArea.x1() - static_cast(x1Shift); int y1 = destArea.y1() - static_cast(y1Shift); srcClippedDestArea.width = x1 - srcClippedDestArea.x; srcClippedDestArea.height = y1 - srcClippedDestArea.y; // Rotate srcClippedDestArea if the destination is rotated if (dstFramebufferRotation != SurfaceRotation::Identity) { gl::Rectangle originalSrcClippedDestArea = srcClippedDestArea; AdjustBlitAreaForPreRotation(dstFramebufferRotation, originalSrcClippedDestArea, dstFramebufferDimensions, &srcClippedDestArea); } } // If framebuffers are flipped in Y, flip the source and destination area (which define the // transformation regardless of clipping), as well as the blit area (which is the clipped // destination area). if (srcFramebufferFlippedY) { sourceArea.y = srcFramebufferDimensions.height - sourceArea.y; sourceArea.height = -sourceArea.height; } if (dstFramebufferFlippedY) { destArea.y = dstFramebufferDimensions.height - destArea.y; destArea.height = -destArea.height; srcClippedDestArea.y = dstFramebufferDimensions.height - srcClippedDestArea.y - srcClippedDestArea.height; } bool flipX = sourceArea.isReversedX() != destArea.isReversedX(); bool flipY = sourceArea.isReversedY() != destArea.isReversedY(); // GLES doesn't allow flipping the parameters of glBlitFramebuffer if performing a resolve. ASSERT(!isResolve || (flipX == false && flipY == (srcFramebufferFlippedY != dstFramebufferFlippedY))); // Again, transfer the destination flip to source, so destination is unflipped. Note that // destArea was not reversed until the final possible Y-flip. ASSERT(!destArea.isReversedX()); sourceArea = sourceArea.flip(false, destArea.isReversedY()); destArea = destArea.removeReversal(); // Now that clipping and flipping is done, rotate certain values that will be used for // UtilsVk::BlitResolveParameters gl::Rectangle sourceAreaOld = sourceArea; gl::Rectangle destAreaOld = destArea; if (srcFramebufferRotation == rotation) { AdjustBlitAreaForPreRotation(srcFramebufferRotation, sourceAreaOld, srcFramebufferDimensions, &sourceArea); AdjustDimensionsAndFlipForPreRotation(srcFramebufferRotation, &srcFramebufferDimensions, &flipX, &flipY); } SurfaceRotation rememberDestFramebufferRotation = dstFramebufferRotation; if (srcFramebufferRotation == SurfaceRotation::Rotated90Degrees) { dstFramebufferRotation = rotation; } AdjustBlitAreaForPreRotation(dstFramebufferRotation, destAreaOld, dstFramebufferDimensions, &destArea); dstFramebufferRotation = rememberDestFramebufferRotation; // Clip the destination area to the framebuffer size and scissor. Note that we don't care // about the source area anymore. The offset translation is done based on the original source // and destination rectangles. The stretch factor is already calculated as well. gl::Rectangle blitArea; if (!gl::ClipRectangle(getRotatedScissoredRenderArea(contextVk), srcClippedDestArea, &blitArea)) { return angle::Result::Continue; } bool noClip = blitArea == destArea && stretch[0] == 1.0f && stretch[1] == 1.0f; bool noFlip = !flipX && !flipY; bool disableFlippingBlitWithCommand = contextVk->getRenderer()->getFeatures().disableFlippingBlitWithCommand.enabled; UtilsVk::BlitResolveParameters commonParams; commonParams.srcOffset[0] = sourceArea.x; commonParams.srcOffset[1] = sourceArea.y; commonParams.dstOffset[0] = destArea.x; commonParams.dstOffset[1] = destArea.y; commonParams.rotatedOffsetFactor[0] = std::abs(sourceArea.width); commonParams.rotatedOffsetFactor[1] = std::abs(sourceArea.height); commonParams.stretch[0] = static_cast(stretch[0]); commonParams.stretch[1] = static_cast(stretch[1]); commonParams.srcExtents[0] = srcFramebufferDimensions.width; commonParams.srcExtents[1] = srcFramebufferDimensions.height; commonParams.blitArea = blitArea; commonParams.linear = filter == GL_LINEAR; commonParams.flipX = flipX; commonParams.flipY = flipY; commonParams.rotation = rotation; if (blitColorBuffer) { RenderTargetVk *readRenderTarget = srcFramebufferVk->getColorReadRenderTarget(); UtilsVk::BlitResolveParameters params = commonParams; params.srcLayer = readRenderTarget->getLayerIndex(); // Multisampled images are not allowed to have mips. ASSERT(!isColorResolve || readRenderTarget->getLevelIndex() == gl::LevelIndex(0)); // If there was no clipping and the format capabilities allow us, use Vulkan's builtin blit. // The reason clipping is prohibited in this path is that due to rounding errors, it would // be hard to guarantee the image stretching remains perfect. That also allows us not to // have to transform back the destination clipping to source. // // Non-identity pre-rotation cases do not use Vulkan's builtin blit. // // For simplicity, we either blit all render targets with a Vulkan command, or none. bool canBlitWithCommand = !isColorResolve && noClip && (noFlip || !disableFlippingBlitWithCommand) && HasSrcBlitFeature(renderer, readRenderTarget) && (rotation == SurfaceRotation::Identity); // If we need to reinterpret the colorspace then the blit must be done through a shader bool reinterpretsColorspace = mCurrentFramebufferDesc.getWriteControlMode() != gl::SrgbWriteControlMode::Default; bool areChannelsBlitCompatible = true; bool areFormatsIdentical = true; for (size_t colorIndexGL : mState.getEnabledDrawBuffers()) { RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[colorIndexGL]; canBlitWithCommand = canBlitWithCommand && HasDstBlitFeature(renderer, drawRenderTarget); areChannelsBlitCompatible = areChannelsBlitCompatible && AreSrcAndDstColorChannelsBlitCompatible(readRenderTarget, drawRenderTarget); areFormatsIdentical = AreSrcAndDstFormatsIdentical(readRenderTarget, drawRenderTarget); } // Now that all flipping is done, adjust the offsets for resolve and prerotation if (isColorResolve) { AdjustBlitResolveParametersForResolve(sourceArea, destArea, ¶ms); } AdjustBlitResolveParametersForPreRotation(rotation, srcFramebufferRotation, ¶ms); if (canBlitWithCommand && areChannelsBlitCompatible && !reinterpretsColorspace) { for (size_t colorIndexGL : mState.getEnabledDrawBuffers()) { RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[colorIndexGL]; ANGLE_TRY(blitWithCommand(contextVk, sourceArea, destArea, readRenderTarget, drawRenderTarget, filter, true, false, false, flipX, flipY)); } } // If we're not flipping or rotating, use Vulkan's builtin resolve. else if (isColorResolve && !flipX && !flipY && areChannelsBlitCompatible && areFormatsIdentical && rotation == SurfaceRotation::Identity && !reinterpretsColorspace) { // Resolving with a subpass resolve attachment has a few restrictions: // 1.) glBlitFramebuffer() needs to copy the read color attachment to all enabled // attachments in the draw framebuffer, but Vulkan requires a 1:1 relationship for // multisample attachments to resolve attachments in the render pass subpass. // Due to this, we currently only support using resolve attachments when there is a // single draw attachment enabled. // 2.) Using a subpass resolve attachment relies on using the render pass that performs // the draw to still be open, so it can be updated to use the resolve attachment to draw // into. If there's no render pass with commands, then the multisampled render pass is // already done and whose data is already flushed from the tile (in a tile-based // renderer), so there's no chance for the resolve attachment to take advantage of the // data already being present in the tile. vk::Framebuffer *srcVkFramebuffer = nullptr; ANGLE_TRY(srcFramebufferVk->getFramebuffer(contextVk, &srcVkFramebuffer, nullptr)); // TODO(https://anglebug.com/4968): Support multiple open render passes so we can remove // this hack to 'restore' the finished render pass. contextVk->restoreFinishedRenderPass(srcVkFramebuffer); if (mState.getEnabledDrawBuffers().count() == 1 && mCurrentFramebufferDesc.getLayerCount() == 1 && contextVk->hasStartedRenderPassWithFramebuffer(srcVkFramebuffer)) { // glBlitFramebuffer() needs to copy the read color attachment to all enabled // attachments in the draw framebuffer, but Vulkan requires a 1:1 relationship for // multisample attachments to resolve attachments in the render pass subpass. // Due to this, we currently only support using resolve attachments when there is a // single draw attachment enabled. ANGLE_TRY(resolveColorWithSubpass(contextVk, params)); } else { ANGLE_TRY(resolveColorWithCommand(contextVk, params, &readRenderTarget->getImageForCopy())); } } // Otherwise use a shader to do blit or resolve. else { // Flush the render pass, which may incur a vkQueueSubmit, before taking any views. // Otherwise the view serials would not reflect the render pass they are really used in. // http://crbug.com/1272266#c22 ANGLE_TRY( contextVk->flushCommandsAndEndRenderPass(RenderPassClosureReason::PrepareForBlit)); const vk::ImageView *copyImageView = nullptr; ANGLE_TRY(readRenderTarget->getAndRetainCopyImageView(contextVk, ©ImageView)); ANGLE_TRY(utilsVk.colorBlitResolve( contextVk, this, &readRenderTarget->getImageForCopy(), copyImageView, params)); } } if (blitDepthBuffer || blitStencilBuffer) { RenderTargetVk *readRenderTarget = srcFramebufferVk->getDepthStencilRenderTarget(); RenderTargetVk *drawRenderTarget = mRenderTargetCache.getDepthStencil(); UtilsVk::BlitResolveParameters params = commonParams; params.srcLayer = readRenderTarget->getLayerIndex(); // Multisampled images are not allowed to have mips. ASSERT(!isDepthStencilResolve || readRenderTarget->getLevelIndex() == gl::LevelIndex(0)); // Similarly, only blit if there's been no clipping or rotating. bool canBlitWithCommand = !isDepthStencilResolve && noClip && (noFlip || !disableFlippingBlitWithCommand) && HasSrcBlitFeature(renderer, readRenderTarget) && HasDstBlitFeature(renderer, drawRenderTarget) && (rotation == SurfaceRotation::Identity); bool areChannelsBlitCompatible = AreSrcAndDstDepthStencilChannelsBlitCompatible(readRenderTarget, drawRenderTarget); // glBlitFramebuffer requires that depth/stencil blits have matching formats. ASSERT(AreSrcAndDstFormatsIdentical(readRenderTarget, drawRenderTarget)); if (canBlitWithCommand && areChannelsBlitCompatible) { ANGLE_TRY(blitWithCommand(contextVk, sourceArea, destArea, readRenderTarget, drawRenderTarget, filter, false, blitDepthBuffer, blitStencilBuffer, flipX, flipY)); } else { // Now that all flipping is done, adjust the offsets for resolve and prerotation if (isDepthStencilResolve) { AdjustBlitResolveParametersForResolve(sourceArea, destArea, ¶ms); } AdjustBlitResolveParametersForPreRotation(rotation, srcFramebufferRotation, ¶ms); // Create depth- and stencil-only views for reading. vk::DeviceScoped depthView(contextVk->getDevice()); vk::DeviceScoped stencilView(contextVk->getDevice()); vk::ImageHelper *depthStencilImage = &readRenderTarget->getImageForCopy(); vk::LevelIndex levelIndex = depthStencilImage->toVkLevel(readRenderTarget->getLevelIndex()); uint32_t layerIndex = readRenderTarget->getLayerIndex(); gl::TextureType textureType = vk::Get2DTextureType(depthStencilImage->getLayerCount(), depthStencilImage->getSamples()); if (blitDepthBuffer) { ANGLE_TRY(depthStencilImage->initLayerImageView( contextVk, textureType, VK_IMAGE_ASPECT_DEPTH_BIT, gl::SwizzleState(), &depthView.get(), levelIndex, 1, layerIndex, 1, gl::SrgbWriteControlMode::Default)); } if (blitStencilBuffer) { ANGLE_TRY(depthStencilImage->initLayerImageView( contextVk, textureType, VK_IMAGE_ASPECT_STENCIL_BIT, gl::SwizzleState(), &stencilView.get(), levelIndex, 1, layerIndex, 1, gl::SrgbWriteControlMode::Default)); } // If shader stencil export is not possible, defer stencil blit/stencil to another pass. bool hasShaderStencilExport = contextVk->getRenderer()->getFeatures().supportsShaderStencilExport.enabled; // Blit depth. If shader stencil export is present, blit stencil as well. if (blitDepthBuffer || (blitStencilBuffer && hasShaderStencilExport)) { const vk::ImageView *depth = blitDepthBuffer ? &depthView.get() : nullptr; const vk::ImageView *stencil = blitStencilBuffer && hasShaderStencilExport ? &stencilView.get() : nullptr; ANGLE_TRY(utilsVk.depthStencilBlitResolve(contextVk, this, depthStencilImage, depth, stencil, params)); } // If shader stencil export is not present, blit stencil through a different path. if (blitStencilBuffer && !hasShaderStencilExport) { ANGLE_VK_PERF_WARNING(contextVk, GL_DEBUG_SEVERITY_LOW, "Inefficient BlitFramebuffer operation on the stencil aspect " "due to lack of shader stencil export support"); ANGLE_TRY(utilsVk.stencilBlitResolveNoShaderExport( contextVk, this, depthStencilImage, &stencilView.get(), params)); } vk::ImageView depthViewObject = depthView.release(); vk::ImageView stencilViewObject = stencilView.release(); contextVk->addGarbage(&depthViewObject); contextVk->addGarbage(&stencilViewObject); } } return angle::Result::Continue; } void FramebufferVk::updateColorResolveAttachment( uint32_t colorIndexGL, vk::ImageOrBufferViewSubresourceSerial resolveImageViewSerial) { mCurrentFramebufferDesc.updateColorResolve(colorIndexGL, resolveImageViewSerial); mFramebuffer = nullptr; mRenderPassDesc.packColorResolveAttachment(colorIndexGL); } void FramebufferVk::removeColorResolveAttachment(uint32_t colorIndexGL) { mCurrentFramebufferDesc.updateColorResolve(colorIndexGL, vk::kInvalidImageOrBufferViewSubresourceSerial); mFramebuffer = nullptr; mRenderPassDesc.removeColorResolveAttachment(colorIndexGL); } void FramebufferVk::updateLayerCount() { uint32_t layerCount = std::numeric_limits::max(); // Color attachments. const auto &colorRenderTargets = mRenderTargetCache.getColors(); for (size_t colorIndexGL : mState.getColorAttachmentsMask()) { RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL]; ASSERT(colorRenderTarget); layerCount = std::min(layerCount, colorRenderTarget->getLayerCount()); } // Depth/stencil attachment. RenderTargetVk *depthStencilRenderTarget = getDepthStencilRenderTarget(); if (depthStencilRenderTarget) { layerCount = std::min(layerCount, depthStencilRenderTarget->getLayerCount()); } if (layerCount == std::numeric_limits::max()) { layerCount = mState.getDefaultLayers(); } // While layer count and view count are mutually exclusive, they result in different render // passes (and thus framebuffers). For multiview, layer count is set to view count and a flag // signifies that the framebuffer is multiview (as opposed to layered). const bool isMultiview = mState.isMultiview(); if (isMultiview) { layerCount = mState.getNumViews(); } mCurrentFramebufferDesc.updateLayerCount(layerCount); mCurrentFramebufferDesc.updateIsMultiview(isMultiview); } angle::Result FramebufferVk::resolveColorWithSubpass(ContextVk *contextVk, const UtilsVk::BlitResolveParameters ¶ms) { // Vulkan requires a 1:1 relationship for multisample attachments to resolve attachments in the // render pass subpass. Due to this, we currently only support using resolve attachments when // there is a single draw attachment enabled. ASSERT(mState.getEnabledDrawBuffers().count() == 1); uint32_t drawColorIndexGL = static_cast(*mState.getEnabledDrawBuffers().begin()); const gl::State &glState = contextVk->getState(); const gl::Framebuffer *srcFramebuffer = glState.getReadFramebuffer(); FramebufferVk *srcFramebufferVk = vk::GetImpl(srcFramebuffer); uint32_t readColorIndexGL = srcFramebuffer->getState().getReadIndex(); // Use the draw FBO's color attachments as resolve attachments in the read FBO. // - Assign the draw FBO's color attachment Serial to the read FBO's resolve attachment // - Deactivate the source Framebuffer, since the description changed // - Update the renderpass description to indicate there's a resolve attachment vk::ImageOrBufferViewSubresourceSerial resolveImageViewSerial = mCurrentFramebufferDesc.getColorImageViewSerial(drawColorIndexGL); ASSERT(resolveImageViewSerial.viewSerial.valid()); srcFramebufferVk->updateColorResolveAttachment(readColorIndexGL, resolveImageViewSerial); // Since the source FBO was updated with a resolve attachment it didn't have when the render // pass was started, we need to: // 1. Get the new framebuffer // - The draw framebuffer's ImageView will be used as the resolve attachment, so pass it along // in case vkCreateFramebuffer() needs to be called to create a new vkFramebuffer with the new // resolve attachment. RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[drawColorIndexGL]; const vk::ImageView *resolveImageView = nullptr; ANGLE_TRY(drawRenderTarget->getImageView(contextVk, &resolveImageView)); vk::Framebuffer *newSrcFramebuffer = nullptr; ANGLE_TRY(srcFramebufferVk->getFramebuffer(contextVk, &newSrcFramebuffer, resolveImageView)); // 2. Update the CommandBufferHelper with the new framebuffer and render pass vk::CommandBufferHelper &commandBufferHelper = contextVk->getStartedRenderPassCommands(); commandBufferHelper.updateRenderPassForResolve(contextVk, newSrcFramebuffer, srcFramebufferVk->getRenderPassDesc()); // End the render pass now since we don't (yet) support subpass dependencies. drawRenderTarget->onColorResolve(contextVk, mCurrentFramebufferDesc.getLayerCount()); ANGLE_TRY(contextVk->flushCommandsAndEndRenderPass( RenderPassClosureReason::AlreadySpecifiedElsewhere)); // Remove the resolve attachment from the source framebuffer. srcFramebufferVk->removeColorResolveAttachment(readColorIndexGL); return angle::Result::Continue; } angle::Result FramebufferVk::resolveColorWithCommand(ContextVk *contextVk, const UtilsVk::BlitResolveParameters ¶ms, vk::ImageHelper *srcImage) { vk::CommandBufferAccess access; access.onImageTransferRead(VK_IMAGE_ASPECT_COLOR_BIT, srcImage); for (size_t colorIndexGL : mState.getEnabledDrawBuffers()) { RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[colorIndexGL]; vk::ImageHelper &dstImage = drawRenderTarget->getImageForWrite(); access.onImageTransferWrite(drawRenderTarget->getLevelIndex(), 1, drawRenderTarget->getLayerIndex(), 1, VK_IMAGE_ASPECT_COLOR_BIT, &dstImage); } vk::CommandBuffer *commandBuffer; ANGLE_TRY(contextVk->getOutsideRenderPassCommandBuffer(access, &commandBuffer)); VkImageResolve resolveRegion = {}; resolveRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; resolveRegion.srcSubresource.mipLevel = 0; resolveRegion.srcSubresource.baseArrayLayer = params.srcLayer; resolveRegion.srcSubresource.layerCount = 1; resolveRegion.srcOffset.x = params.srcOffset[0]; resolveRegion.srcOffset.y = params.srcOffset[1]; resolveRegion.srcOffset.z = 0; resolveRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; resolveRegion.dstSubresource.layerCount = 1; resolveRegion.dstOffset.x = params.dstOffset[0]; resolveRegion.dstOffset.y = params.dstOffset[1]; resolveRegion.dstOffset.z = 0; resolveRegion.extent.width = params.srcExtents[0]; resolveRegion.extent.height = params.srcExtents[1]; resolveRegion.extent.depth = 1; vk::PerfCounters &perfCounters = contextVk->getPerfCounters(); for (size_t colorIndexGL : mState.getEnabledDrawBuffers()) { RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[colorIndexGL]; vk::ImageHelper &dstImage = drawRenderTarget->getImageForWrite(); vk::LevelIndex levelVk = dstImage.toVkLevel(drawRenderTarget->getLevelIndex()); resolveRegion.dstSubresource.mipLevel = levelVk.get(); resolveRegion.dstSubresource.baseArrayLayer = drawRenderTarget->getLayerIndex(); srcImage->resolve(&dstImage, resolveRegion, commandBuffer); perfCounters.resolveImageCommands++; } return angle::Result::Continue; } gl::FramebufferStatus FramebufferVk::checkStatus(const gl::Context *context) const { // if we have both a depth and stencil buffer, they must refer to the same object // since we only support packed_depth_stencil and not separate depth and stencil if (mState.hasSeparateDepthAndStencilAttachments()) { return gl::FramebufferStatus::Incomplete( GL_FRAMEBUFFER_UNSUPPORTED, gl::err::kFramebufferIncompleteUnsupportedSeparateDepthStencilBuffers); } return gl::FramebufferStatus::Complete(); } angle::Result FramebufferVk::invalidateImpl(ContextVk *contextVk, size_t count, const GLenum *attachments, bool isSubInvalidate, const gl::Rectangle &invalidateArea) { gl::DrawBufferMask invalidateColorBuffers; bool invalidateDepthBuffer = false; bool invalidateStencilBuffer = false; for (size_t i = 0; i < count; ++i) { const GLenum attachment = attachments[i]; switch (attachment) { case GL_DEPTH: case GL_DEPTH_ATTACHMENT: invalidateDepthBuffer = true; break; case GL_STENCIL: case GL_STENCIL_ATTACHMENT: invalidateStencilBuffer = true; break; case GL_DEPTH_STENCIL_ATTACHMENT: invalidateDepthBuffer = true; invalidateStencilBuffer = true; break; default: ASSERT( (attachment >= GL_COLOR_ATTACHMENT0 && attachment <= GL_COLOR_ATTACHMENT15) || (attachment == GL_COLOR)); invalidateColorBuffers.set( attachment == GL_COLOR ? 0u : (attachment - GL_COLOR_ATTACHMENT0)); } } // Shouldn't try to issue deferred clears if invalidating sub framebuffer. ASSERT(mDeferredClears.empty() || !isSubInvalidate); // Remove deferred clears for the invalidated attachments. if (invalidateDepthBuffer) { mDeferredClears.reset(vk::kUnpackedDepthIndex); } if (invalidateStencilBuffer) { mDeferredClears.reset(vk::kUnpackedStencilIndex); } for (size_t colorIndexGL : mState.getEnabledDrawBuffers()) { if (invalidateColorBuffers.test(colorIndexGL)) { mDeferredClears.reset(colorIndexGL); } } // If there are still deferred clears, redefer them. See relevant comment in invalidateSub. redeferClears(contextVk); const auto &colorRenderTargets = mRenderTargetCache.getColors(); RenderTargetVk *depthStencilRenderTarget = mRenderTargetCache.getDepthStencil(); // To ensure we invalidate the right renderpass we require that the current framebuffer be the // same as the current renderpass' framebuffer. E.g. prevent sequence like: //- Bind FBO 1, draw //- Bind FBO 2, draw //- Bind FBO 1, invalidate D/S // to invalidate the D/S of FBO 2 since it would be the currently active renderpass. vk::Framebuffer *currentFramebuffer = nullptr; ANGLE_TRY(getFramebuffer(contextVk, ¤tFramebuffer, nullptr)); if (contextVk->hasStartedRenderPassWithFramebuffer(currentFramebuffer)) { // Set the appropriate storeOp for attachments. vk::PackedAttachmentIndex colorIndexVk(0); for (size_t colorIndexGL : mState.getColorAttachmentsMask()) { if (mState.getEnabledDrawBuffers()[colorIndexGL] && invalidateColorBuffers.test(colorIndexGL)) { contextVk->getStartedRenderPassCommands().invalidateRenderPassColorAttachment( colorIndexVk); } ++colorIndexVk; } if (depthStencilRenderTarget) { const gl::DepthStencilState &dsState = contextVk->getState().getDepthStencilState(); if (invalidateDepthBuffer) { contextVk->getStartedRenderPassCommands().invalidateRenderPassDepthAttachment( dsState, invalidateArea); } if (invalidateStencilBuffer) { contextVk->getStartedRenderPassCommands().invalidateRenderPassStencilAttachment( dsState, invalidateArea); } } if (invalidateColorBuffers.any()) { // Only end the render pass if invalidating at least one color buffer. Do not end the // render pass if only the depth and/or stencil buffer is invalidated. At least one // application invalidates those every frame, disables depth, and then continues to // draw only to the color buffer. // // Since we are not aware of any application that invalidates a color buffer and // continues to draw to it, we leave that unoptimized. ANGLE_TRY(contextVk->flushCommandsAndEndRenderPass( RenderPassClosureReason::ColorBufferInvalidate)); } } // If not a partial invalidate, mark the contents of the invalidated attachments as undefined, // so their loadOp can be set to DONT_CARE in the following render pass. if (!isSubInvalidate) { for (size_t colorIndexGL : mState.getEnabledDrawBuffers()) { if (invalidateColorBuffers.test(colorIndexGL)) { RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL]; ASSERT(colorRenderTarget); colorRenderTarget->invalidateEntireContent(contextVk); } } // If we have a depth / stencil render target, invalidate its aspects. if (depthStencilRenderTarget) { if (invalidateDepthBuffer) { depthStencilRenderTarget->invalidateEntireContent(contextVk); } if (invalidateStencilBuffer) { depthStencilRenderTarget->invalidateEntireStencilContent(contextVk); } } } return angle::Result::Continue; } angle::Result FramebufferVk::updateColorAttachment(const gl::Context *context, uint32_t colorIndexGL) { ANGLE_TRY(mRenderTargetCache.updateColorRenderTarget(context, mState, colorIndexGL)); // Update cached masks for masked clears. RenderTargetVk *renderTarget = mRenderTargetCache.getColors()[colorIndexGL]; if (renderTarget) { const angle::Format &actualFormat = renderTarget->getImageActualFormat(); updateActiveColorMasks(colorIndexGL, actualFormat.redBits > 0, actualFormat.greenBits > 0, actualFormat.blueBits > 0, actualFormat.alphaBits > 0); const angle::Format &intendedFormat = renderTarget->getImageIntendedFormat(); mEmulatedAlphaAttachmentMask.set( colorIndexGL, intendedFormat.alphaBits == 0 && actualFormat.alphaBits > 0); } else { updateActiveColorMasks(colorIndexGL, false, false, false, false); } const bool enabledColor = renderTarget && mState.getColorAttachments()[colorIndexGL].isAttached(); const bool enabledResolve = enabledColor && renderTarget->hasResolveAttachment(); if (enabledColor) { mCurrentFramebufferDesc.updateColor(colorIndexGL, renderTarget->getDrawSubresourceSerial()); } else { mCurrentFramebufferDesc.updateColor(colorIndexGL, vk::kInvalidImageOrBufferViewSubresourceSerial); } if (enabledResolve) { mCurrentFramebufferDesc.updateColorResolve(colorIndexGL, renderTarget->getResolveSubresourceSerial()); } else { mCurrentFramebufferDesc.updateColorResolve(colorIndexGL, vk::kInvalidImageOrBufferViewSubresourceSerial); } return angle::Result::Continue; } angle::Result FramebufferVk::updateDepthStencilAttachment(const gl::Context *context) { ANGLE_TRY(mRenderTargetCache.updateDepthStencilRenderTarget(context, mState)); ContextVk *contextVk = vk::GetImpl(context); updateDepthStencilAttachmentSerial(contextVk); return angle::Result::Continue; } void FramebufferVk::updateDepthStencilAttachmentSerial(ContextVk *contextVk) { RenderTargetVk *depthStencilRT = getDepthStencilRenderTarget(); if (depthStencilRT != nullptr) { mCurrentFramebufferDesc.updateDepthStencil(depthStencilRT->getDrawSubresourceSerial()); } else { mCurrentFramebufferDesc.updateDepthStencil(vk::kInvalidImageOrBufferViewSubresourceSerial); } if (depthStencilRT != nullptr && depthStencilRT->hasResolveAttachment()) { mCurrentFramebufferDesc.updateDepthStencilResolve( depthStencilRT->getResolveSubresourceSerial()); } else { mCurrentFramebufferDesc.updateDepthStencilResolve( vk::kInvalidImageOrBufferViewSubresourceSerial); } } angle::Result FramebufferVk::flushColorAttachmentUpdates(const gl::Context *context, bool deferClears, uint32_t colorIndexGL) { ContextVk *contextVk = vk::GetImpl(context); RenderTargetVk *readRenderTarget = nullptr; RenderTargetVk *drawRenderTarget = nullptr; // It's possible for the read and draw color attachments to be different if different surfaces // are bound, so we need to flush any staged updates to both. // Draw drawRenderTarget = mRenderTargetCache.getColorDraw(mState, colorIndexGL); if (drawRenderTarget) { if (deferClears && mState.getEnabledDrawBuffers().test(colorIndexGL)) { ANGLE_TRY( drawRenderTarget->flushStagedUpdates(contextVk, &mDeferredClears, colorIndexGL, mCurrentFramebufferDesc.getLayerCount())); } else { ANGLE_TRY(drawRenderTarget->flushStagedUpdates( contextVk, nullptr, 0, mCurrentFramebufferDesc.getLayerCount())); } } // Read if (mState.getReadBufferState() != GL_NONE && mState.getReadIndex() == colorIndexGL) { // Flush staged updates to the read render target as well, but only if it's not the same as // the draw render target. This can happen when the read render target is bound to another // surface. readRenderTarget = mRenderTargetCache.getColorRead(mState); if (readRenderTarget && readRenderTarget != drawRenderTarget) { ANGLE_TRY(readRenderTarget->flushStagedUpdates( contextVk, nullptr, 0, mCurrentFramebufferDesc.getLayerCount())); } } return angle::Result::Continue; } angle::Result FramebufferVk::flushDepthStencilAttachmentUpdates(const gl::Context *context, bool deferClears) { ContextVk *contextVk = vk::GetImpl(context); RenderTargetVk *depthStencilRT = getDepthStencilRenderTarget(); if (depthStencilRT == nullptr) { return angle::Result::Continue; } if (deferClears) { return depthStencilRT->flushStagedUpdates(contextVk, &mDeferredClears, vk::kUnpackedDepthIndex, mCurrentFramebufferDesc.getLayerCount()); } return depthStencilRT->flushStagedUpdates(contextVk, nullptr, 0, mCurrentFramebufferDesc.getLayerCount()); } angle::Result FramebufferVk::syncState(const gl::Context *context, GLenum binding, const gl::Framebuffer::DirtyBits &dirtyBits, gl::Command command) { ContextVk *contextVk = vk::GetImpl(context); vk::FramebufferDesc priorFramebufferDesc = mCurrentFramebufferDesc; // Keep track of which attachments have dirty content and need their staged updates flushed. // The respective functions depend on |mCurrentFramebufferDesc::mLayerCount| which is updated // after all attachment render targets are updated. gl::DrawBufferMask dirtyColorAttachments; bool dirtyDepthStencilAttachment = false; bool shouldUpdateColorMaskAndBlend = false; bool shouldUpdateLayerCount = false; bool shouldUpdateSrgbWriteControlMode = false; // For any updated attachments we'll update their Serials below ASSERT(dirtyBits.any()); for (size_t dirtyBit : dirtyBits) { switch (dirtyBit) { case gl::Framebuffer::DIRTY_BIT_DEPTH_ATTACHMENT: case gl::Framebuffer::DIRTY_BIT_DEPTH_BUFFER_CONTENTS: case gl::Framebuffer::DIRTY_BIT_STENCIL_ATTACHMENT: case gl::Framebuffer::DIRTY_BIT_STENCIL_BUFFER_CONTENTS: ANGLE_TRY(updateDepthStencilAttachment(context)); shouldUpdateLayerCount = true; dirtyDepthStencilAttachment = true; break; case gl::Framebuffer::DIRTY_BIT_READ_BUFFER: ANGLE_TRY(mRenderTargetCache.update(context, mState, dirtyBits)); break; case gl::Framebuffer::DIRTY_BIT_DRAW_BUFFERS: shouldUpdateColorMaskAndBlend = true; shouldUpdateLayerCount = true; break; case gl::Framebuffer::DIRTY_BIT_DEFAULT_WIDTH: case gl::Framebuffer::DIRTY_BIT_DEFAULT_HEIGHT: case gl::Framebuffer::DIRTY_BIT_DEFAULT_SAMPLES: case gl::Framebuffer::DIRTY_BIT_DEFAULT_FIXED_SAMPLE_LOCATIONS: // Invalidate the cache. If we have performance critical code hitting this path we // can add related data (such as width/height) to the cache mFramebufferCache.clear(contextVk); mFramebuffer = nullptr; break; case gl::Framebuffer::DIRTY_BIT_FRAMEBUFFER_SRGB_WRITE_CONTROL_MODE: shouldUpdateSrgbWriteControlMode = true; break; case gl::Framebuffer::DIRTY_BIT_DEFAULT_LAYERS: shouldUpdateLayerCount = true; break; default: { static_assert(gl::Framebuffer::DIRTY_BIT_COLOR_ATTACHMENT_0 == 0, "FB dirty bits"); uint32_t colorIndexGL; if (dirtyBit < gl::Framebuffer::DIRTY_BIT_COLOR_ATTACHMENT_MAX) { colorIndexGL = static_cast( dirtyBit - gl::Framebuffer::DIRTY_BIT_COLOR_ATTACHMENT_0); } else { ASSERT(dirtyBit >= gl::Framebuffer::DIRTY_BIT_COLOR_BUFFER_CONTENTS_0 && dirtyBit < gl::Framebuffer::DIRTY_BIT_COLOR_BUFFER_CONTENTS_MAX); colorIndexGL = static_cast( dirtyBit - gl::Framebuffer::DIRTY_BIT_COLOR_BUFFER_CONTENTS_0); } ANGLE_TRY(updateColorAttachment(context, colorIndexGL)); shouldUpdateColorMaskAndBlend = true; shouldUpdateLayerCount = true; dirtyColorAttachments.set(colorIndexGL); break; } } } if (shouldUpdateSrgbWriteControlMode) { // Framebuffer colorspace state has been modified, so refresh the current framebuffer // descriptor to reflect the new state. gl::SrgbWriteControlMode newSrgbWriteControlMode = mState.getWriteControlMode(); mCurrentFramebufferDesc.setWriteControlMode(newSrgbWriteControlMode); mRenderPassDesc.setWriteControlMode(newSrgbWriteControlMode); } if (shouldUpdateColorMaskAndBlend) { contextVk->updateColorMasks(); contextVk->updateBlendFuncsAndEquations(); } if (shouldUpdateLayerCount) { updateLayerCount(); } // Only defer clears for draw framebuffer ops. Note that this will result in a render area that // completely covers the framebuffer, even if the operation that follows is scissored. bool deferClears = binding == GL_DRAW_FRAMEBUFFER; // If we are notified that any attachment is dirty, but we have deferred clears for them, a // flushDeferredClears() call is missing somewhere. ASSERT this to catch these bugs. vk::ClearValuesArray previousDeferredClears = mDeferredClears; for (size_t colorIndexGL : dirtyColorAttachments) { ASSERT(!previousDeferredClears.test(colorIndexGL)); ANGLE_TRY( flushColorAttachmentUpdates(context, deferClears, static_cast(colorIndexGL))); } if (dirtyDepthStencilAttachment) { ASSERT(!previousDeferredClears.testDepth()); ASSERT(!previousDeferredClears.testStencil()); ANGLE_TRY(flushDepthStencilAttachmentUpdates(context, deferClears)); } // No-op redundant changes to prevent closing the RenderPass. if (mCurrentFramebufferDesc == priorFramebufferDesc) { return angle::Result::Continue; } if (command != gl::Command::Blit) { // Don't end the render pass when handling a blit to resolve, since we may be able to // optimize that path which requires modifying the current render pass. // We're deferring the resolve check to FramebufferVk::blit(), since if the read buffer is // multisampled-render-to-texture, then srcFramebuffer->getSamples(context) gives > 1, but // there's no resolve happening as the read buffer's single sampled image will be used as // blit src. FramebufferVk::blit() will handle those details for us. ANGLE_TRY( contextVk->flushCommandsAndEndRenderPass(RenderPassClosureReason::FramebufferChange)); } updateRenderPassDesc(contextVk); // Deactivate Framebuffer mFramebuffer = nullptr; // Notify the ContextVk to update the pipeline desc. return contextVk->onFramebufferChange(this, command); } void FramebufferVk::updateRenderPassDesc(ContextVk *contextVk) { mRenderPassDesc = {}; mRenderPassDesc.setSamples(getSamples()); mRenderPassDesc.setViewCount( mState.isMultiview() && mState.getNumViews() > 1 ? mState.getNumViews() : 0); // Color attachments. const auto &colorRenderTargets = mRenderTargetCache.getColors(); const gl::DrawBufferMask colorAttachmentMask = mState.getColorAttachmentsMask(); for (size_t colorIndexGL = 0; colorIndexGL < colorAttachmentMask.size(); ++colorIndexGL) { if (colorAttachmentMask[colorIndexGL]) { RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL]; ASSERT(colorRenderTarget); mRenderPassDesc.packColorAttachment( colorIndexGL, colorRenderTarget->getImageForRenderPass().getActualFormatID()); // Add the resolve attachment, if any. if (colorRenderTarget->hasResolveAttachment()) { mRenderPassDesc.packColorResolveAttachment(colorIndexGL); } } else { mRenderPassDesc.packColorAttachmentGap(colorIndexGL); } } // Depth/stencil attachment. RenderTargetVk *depthStencilRenderTarget = getDepthStencilRenderTarget(); if (depthStencilRenderTarget) { mRenderPassDesc.packDepthStencilAttachment( depthStencilRenderTarget->getImageForRenderPass().getActualFormatID()); // Add the resolve attachment, if any. if (depthStencilRenderTarget->hasResolveAttachment()) { mRenderPassDesc.packDepthStencilResolveAttachment(); } } // In case bound program uses shader framebuffer fetch and bound attachments are changed without // program change, we update framebuffer fetch mode in Renderpass here. bool programUsesFramebufferFetch = false; const gl::State &glState = contextVk->getState(); const gl::ProgramExecutable *executable = glState.getProgramExecutable(); if (executable) { programUsesFramebufferFetch = executable->usesFramebufferFetch(); } if (programUsesFramebufferFetch != mRenderPassDesc.getFramebufferFetchMode()) { mCurrentFramebufferDesc.updateFramebufferFetchMode(programUsesFramebufferFetch); mRenderPassDesc.setFramebufferFetchMode(programUsesFramebufferFetch); } if (contextVk->getFeatures().supportsMultisampledRenderToSingleSampled.enabled) { // Update descriptions regarding multisampled-render-to-texture use. bool isRenderToTexture = false; for (size_t colorIndexGL : mState.getEnabledDrawBuffers()) { const gl::FramebufferAttachment *color = mState.getColorAttachment(colorIndexGL); ASSERT(color); if (color->isRenderToTexture()) { isRenderToTexture = true; break; } } const gl::FramebufferAttachment *depthStencil = mState.getDepthStencilAttachment(); if (depthStencil && depthStencil->isRenderToTexture()) { isRenderToTexture = true; } mCurrentFramebufferDesc.updateRenderToTexture(isRenderToTexture); mRenderPassDesc.updateRenderToTexture(isRenderToTexture); } mCurrentFramebufferDesc.updateUnresolveMask({}); mRenderPassDesc.setWriteControlMode(mCurrentFramebufferDesc.getWriteControlMode()); } angle::Result FramebufferVk::getFramebuffer(ContextVk *contextVk, vk::Framebuffer **framebufferOut, const vk::ImageView *resolveImageViewIn) { // First return a presently valid Framebuffer if (mFramebuffer != nullptr) { *framebufferOut = &mFramebuffer->getFramebuffer(); return angle::Result::Continue; } // No current FB, so now check for previously cached Framebuffer vk::FramebufferHelper *framebufferHelper = nullptr; if (mFramebufferCache.get(contextVk, mCurrentFramebufferDesc, &framebufferHelper)) { *framebufferOut = &framebufferHelper->getFramebuffer(); return angle::Result::Continue; } vk::RenderPass *compatibleRenderPass = nullptr; ANGLE_TRY(contextVk->getCompatibleRenderPass(mRenderPassDesc, &compatibleRenderPass)); // If we've a Framebuffer provided by a Surface (default FBO/backbuffer), query it. if (mBackbuffer) { return mBackbuffer->getCurrentFramebuffer(contextVk, *compatibleRenderPass, framebufferOut); } // Gather VkImageViews over all FBO attachments, also size of attached region. std::vector attachments; gl::Extents attachmentsSize = mState.getExtents(); ASSERT(attachmentsSize.width != 0 && attachmentsSize.height != 0); // Color attachments. const auto &colorRenderTargets = mRenderTargetCache.getColors(); for (size_t colorIndexGL : mState.getColorAttachmentsMask()) { RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL]; ASSERT(colorRenderTarget); const vk::ImageView *imageView = nullptr; ANGLE_TRY(colorRenderTarget->getImageViewWithColorspace( contextVk, mCurrentFramebufferDesc.getWriteControlMode(), &imageView)); attachments.push_back(imageView->getHandle()); } // Depth/stencil attachment. RenderTargetVk *depthStencilRenderTarget = getDepthStencilRenderTarget(); if (depthStencilRenderTarget) { const vk::ImageView *imageView = nullptr; ANGLE_TRY(depthStencilRenderTarget->getImageView(contextVk, &imageView)); attachments.push_back(imageView->getHandle()); } // Color resolve attachments. if (resolveImageViewIn) { ASSERT(!HasResolveAttachment(colorRenderTargets, mState.getEnabledDrawBuffers())); // Need to use the passed in ImageView for the resolve attachment, since it came from // another Framebuffer. attachments.push_back(resolveImageViewIn->getHandle()); } else { // This Framebuffer owns all of the ImageViews, including its own resolve ImageViews. for (size_t colorIndexGL : mState.getColorAttachmentsMask()) { RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL]; ASSERT(colorRenderTarget); if (colorRenderTarget->hasResolveAttachment()) { const vk::ImageView *resolveImageView = nullptr; ANGLE_TRY(colorRenderTarget->getResolveImageView(contextVk, &resolveImageView)); attachments.push_back(resolveImageView->getHandle()); } } } // Depth/stencil resolve attachment. if (depthStencilRenderTarget && depthStencilRenderTarget->hasResolveAttachment()) { const vk::ImageView *imageView = nullptr; ANGLE_TRY(depthStencilRenderTarget->getResolveImageView(contextVk, &imageView)); attachments.push_back(imageView->getHandle()); } VkFramebufferCreateInfo framebufferInfo = {}; framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; framebufferInfo.flags = 0; framebufferInfo.renderPass = compatibleRenderPass->getHandle(); framebufferInfo.attachmentCount = static_cast(attachments.size()); framebufferInfo.pAttachments = attachments.data(); framebufferInfo.width = static_cast(attachmentsSize.width); framebufferInfo.height = static_cast(attachmentsSize.height); framebufferInfo.layers = 1; if (!mCurrentFramebufferDesc.isMultiview()) { framebufferInfo.layers = std::max(mCurrentFramebufferDesc.getLayerCount(), 1u); } vk::FramebufferHelper newFramebuffer; ANGLE_TRY(newFramebuffer.init(contextVk, framebufferInfo)); // Check that our description matches our attachments. Can catch implementation bugs. ASSERT(static_cast(attachments.size()) == mCurrentFramebufferDesc.attachmentCount()); mFramebufferCache.insert(mCurrentFramebufferDesc, std::move(newFramebuffer)); bool result = mFramebufferCache.get(contextVk, mCurrentFramebufferDesc, &mFramebuffer); ASSERT(result); *framebufferOut = &mFramebuffer->getFramebuffer(); return angle::Result::Continue; } void FramebufferVk::mergeClearsWithDeferredClears( gl::DrawBufferMask clearColorBuffers, bool clearDepth, bool clearStencil, const VkClearColorValue &clearColorValue, const VkClearDepthStencilValue &clearDepthStencilValue) { // Apply clears to mDeferredClears. Note that clears override deferred clears. // Color clears. for (size_t colorIndexGL : clearColorBuffers) { ASSERT(mState.getEnabledDrawBuffers().test(colorIndexGL)); VkClearValue clearValue = getCorrectedColorClearValue(colorIndexGL, clearColorValue); mDeferredClears.store(static_cast(colorIndexGL), VK_IMAGE_ASPECT_COLOR_BIT, clearValue); } // Depth and stencil clears. VkImageAspectFlags dsAspectFlags = 0; VkClearValue dsClearValue = {}; dsClearValue.depthStencil = clearDepthStencilValue; if (clearDepth) { dsAspectFlags |= VK_IMAGE_ASPECT_DEPTH_BIT; } if (clearStencil) { dsAspectFlags |= VK_IMAGE_ASPECT_STENCIL_BIT; } if (dsAspectFlags != 0) { mDeferredClears.store(vk::kUnpackedDepthIndex, dsAspectFlags, dsClearValue); } } angle::Result FramebufferVk::clearWithDraw(ContextVk *contextVk, const gl::Rectangle &clearArea, gl::DrawBufferMask clearColorBuffers, bool clearDepth, bool clearStencil, gl::BlendStateExt::ColorMaskStorage::Type colorMasks, uint8_t stencilMask, const VkClearColorValue &clearColorValue, const VkClearDepthStencilValue &clearDepthStencilValue) { // All deferred clears should be handled already. ASSERT(mDeferredClears.empty()); UtilsVk::ClearFramebufferParameters params = {}; params.clearArea = clearArea; params.colorClearValue = clearColorValue; params.depthStencilClearValue = clearDepthStencilValue; params.stencilMask = stencilMask; params.clearColor = true; params.clearDepth = clearDepth; params.clearStencil = clearStencil; const auto &colorRenderTargets = mRenderTargetCache.getColors(); for (size_t colorIndexGL : clearColorBuffers) { const RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL]; ASSERT(colorRenderTarget); params.colorFormat = &colorRenderTarget->getImageForRenderPass().getActualFormat(); params.colorAttachmentIndexGL = static_cast(colorIndexGL); params.colorMaskFlags = gl::BlendStateExt::ColorMaskStorage::GetValueIndexed(colorIndexGL, colorMasks); if (mEmulatedAlphaAttachmentMask[colorIndexGL]) { params.colorMaskFlags &= ~VK_COLOR_COMPONENT_A_BIT; } // TODO: implement clear of layered framebuffers. UtilsVk::clearFramebuffer should add a // geometry shader that is instanced layerCount times (or loops layerCount times), each time // selecting a different layer. // http://anglebug.com/5453 ASSERT(mCurrentFramebufferDesc.isMultiview() || colorRenderTarget->getLayerCount() == 1); ANGLE_TRY(contextVk->getUtils().clearFramebuffer(contextVk, this, params)); // Clear depth/stencil only once! params.clearDepth = false; params.clearStencil = false; } // If there was no color clear, clear depth/stencil alone. if (params.clearDepth || params.clearStencil) { params.clearColor = false; ANGLE_TRY(contextVk->getUtils().clearFramebuffer(contextVk, this, params)); } return angle::Result::Continue; } VkClearValue FramebufferVk::getCorrectedColorClearValue(size_t colorIndexGL, const VkClearColorValue &clearColor) const { VkClearValue clearValue = {}; clearValue.color = clearColor; if (!mEmulatedAlphaAttachmentMask[colorIndexGL]) { return clearValue; } // If the render target doesn't have alpha, but its emulated format has it, clear the alpha // to 1. RenderTargetVk *renderTarget = getColorDrawRenderTarget(colorIndexGL); const angle::Format &format = renderTarget->getImageActualFormat(); if (format.isUint()) { clearValue.color.uint32[3] = kEmulatedAlphaValue; } else if (format.isSint()) { clearValue.color.int32[3] = kEmulatedAlphaValue; } else { clearValue.color.float32[3] = kEmulatedAlphaValue; } return clearValue; } void FramebufferVk::redeferClears(ContextVk *contextVk) { ASSERT(!contextVk->hasStartedRenderPass() || !mDeferredClears.any()); // Set the appropriate loadOp and clear values for depth and stencil. VkImageAspectFlags dsAspectFlags = 0; VkClearValue dsClearValue = {}; dsClearValue.depthStencil.depth = mDeferredClears.getDepthValue(); dsClearValue.depthStencil.stencil = mDeferredClears.getStencilValue(); if (mDeferredClears.testDepth()) { dsAspectFlags |= VK_IMAGE_ASPECT_DEPTH_BIT; mDeferredClears.reset(vk::kUnpackedDepthIndex); } if (mDeferredClears.testStencil()) { dsAspectFlags |= VK_IMAGE_ASPECT_STENCIL_BIT; mDeferredClears.reset(vk::kUnpackedStencilIndex); } // Go through deferred clears and stage the clears for future. for (size_t colorIndexGL : mDeferredClears.getColorMask()) { ASSERT(mState.getEnabledDrawBuffers().test(colorIndexGL)); RenderTargetVk *renderTarget = getColorDrawRenderTarget(colorIndexGL); gl::ImageIndex imageIndex = renderTarget->getImageIndexForClear(mCurrentFramebufferDesc.getLayerCount()); renderTarget->getImageForWrite().stageClear(imageIndex, VK_IMAGE_ASPECT_COLOR_BIT, mDeferredClears[colorIndexGL]); mDeferredClears.reset(colorIndexGL); } if (dsAspectFlags) { RenderTargetVk *renderTarget = getDepthStencilRenderTarget(); ASSERT(renderTarget); gl::ImageIndex imageIndex = renderTarget->getImageIndexForClear(mCurrentFramebufferDesc.getLayerCount()); renderTarget->getImageForWrite().stageClear(imageIndex, dsAspectFlags, dsClearValue); } } angle::Result FramebufferVk::clearWithCommand(ContextVk *contextVk, vk::CommandBufferHelper *renderpassCommands, const gl::Rectangle &scissoredRenderArea) { // Clear is not affected by viewport, so ContextVk::updateScissor may have decided on a smaller // render area. Grow the render area to the full framebuffer size as this clear path is taken // when not scissored. contextVk->getStartedRenderPassCommands().growRenderArea(contextVk, scissoredRenderArea); gl::AttachmentVector attachments; // Go through deferred clears and add them to the list of attachments to clear. for (size_t colorIndexGL : mDeferredClears.getColorMask()) { ASSERT(mState.getEnabledDrawBuffers().test(colorIndexGL)); ASSERT(getColorDrawRenderTarget(colorIndexGL)->hasDefinedContent()); attachments.emplace_back(VkClearAttachment{VK_IMAGE_ASPECT_COLOR_BIT, static_cast(colorIndexGL), mDeferredClears[colorIndexGL]}); mDeferredClears.reset(colorIndexGL); } // Add depth and stencil to list of attachments as needed. VkImageAspectFlags dsAspectFlags = 0; VkClearValue dsClearValue = {}; dsClearValue.depthStencil.depth = mDeferredClears.getDepthValue(); dsClearValue.depthStencil.stencil = mDeferredClears.getStencilValue(); if (mDeferredClears.testDepth()) { dsAspectFlags |= VK_IMAGE_ASPECT_DEPTH_BIT; // Explicitly mark a depth write because we are clearing the depth buffer. renderpassCommands->onDepthAccess(vk::ResourceAccess::Write); mDeferredClears.reset(vk::kUnpackedDepthIndex); } if (mDeferredClears.testStencil()) { dsAspectFlags |= VK_IMAGE_ASPECT_STENCIL_BIT; // Explicitly mark a stencil write because we are clearing the stencil buffer. renderpassCommands->onStencilAccess(vk::ResourceAccess::Write); mDeferredClears.reset(vk::kUnpackedStencilIndex); } if (dsAspectFlags != 0) { attachments.emplace_back(VkClearAttachment{dsAspectFlags, 0, dsClearValue}); // Because we may have changed the depth stencil access mode, update read only depth mode // now. updateRenderPassReadOnlyDepthMode(contextVk, renderpassCommands); } VkClearRect rect = {}; rect.rect.extent.width = scissoredRenderArea.width; rect.rect.extent.height = scissoredRenderArea.height; rect.layerCount = mCurrentFramebufferDesc.getLayerCount(); vk::CommandBuffer *renderPassCommandBuffer = &renderpassCommands->getCommandBuffer(); renderPassCommandBuffer->clearAttachments(static_cast(attachments.size()), attachments.data(), 1, &rect); return angle::Result::Continue; } angle::Result FramebufferVk::getSamplePosition(const gl::Context *context, size_t index, GLfloat *xy) const { int sampleCount = getSamples(); rx::GetSamplePosition(sampleCount, index, xy); return angle::Result::Continue; } angle::Result FramebufferVk::startNewRenderPass(ContextVk *contextVk, const gl::Rectangle &scissoredRenderArea, vk::CommandBuffer **commandBufferOut, bool *renderPassDescChangedOut) { ANGLE_TRY(contextVk->flushCommandsAndEndRenderPass(RenderPassClosureReason::NewRenderPass)); // Initialize RenderPass info. vk::AttachmentOpsArray renderPassAttachmentOps; vk::PackedClearValuesArray packedClearValues; gl::DrawBufferMask previousUnresolveColorMask = mRenderPassDesc.getColorUnresolveAttachmentMask(); const bool hasDeferredClears = mDeferredClears.any(); const bool previousUnresolveDepth = mRenderPassDesc.hasDepthUnresolveAttachment(); const bool previousUnresolveStencil = mRenderPassDesc.hasStencilUnresolveAttachment(); // Make sure render pass and framebuffer are in agreement w.r.t unresolve attachments. ASSERT(mCurrentFramebufferDesc.getUnresolveAttachmentMask() == MakeUnresolveAttachmentMask(mRenderPassDesc)); // Color attachments. const auto &colorRenderTargets = mRenderTargetCache.getColors(); vk::PackedAttachmentIndex colorIndexVk(0); for (size_t colorIndexGL : mState.getColorAttachmentsMask()) { RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL]; ASSERT(colorRenderTarget); // Color render targets are never entirely transient. Only depth/stencil // multisampled-render-to-texture textures can be so. ASSERT(!colorRenderTarget->isEntirelyTransient()); const vk::RenderPassStoreOp storeOp = colorRenderTarget->isImageTransient() ? vk::RenderPassStoreOp::DontCare : vk::RenderPassStoreOp::Store; if (mDeferredClears.test(colorIndexGL)) { renderPassAttachmentOps.setOps(colorIndexVk, vk::RenderPassLoadOp::Clear, storeOp); packedClearValues.store(colorIndexVk, VK_IMAGE_ASPECT_COLOR_BIT, mDeferredClears[colorIndexGL]); mDeferredClears.reset(colorIndexGL); } else { const vk::RenderPassLoadOp loadOp = colorRenderTarget->hasDefinedContent() ? vk::RenderPassLoadOp::Load : vk::RenderPassLoadOp::DontCare; if (loadOp == vk::RenderPassLoadOp::DontCare && mEmulatedAlphaAttachmentMask[colorIndexGL]) { // This color attachment has a format with no alpha channel, but is emulated with a // format that does have an alpha channel, which must be cleared to 1.0 in order to // be visible. renderPassAttachmentOps.setOps(colorIndexVk, vk::RenderPassLoadOp::Clear, storeOp); VkClearValue emulatedAlphaClearValue = getCorrectedColorClearValue(colorIndexGL, {}); packedClearValues.store(colorIndexVk, VK_IMAGE_ASPECT_COLOR_BIT, emulatedAlphaClearValue); } else { renderPassAttachmentOps.setOps(colorIndexVk, loadOp, storeOp); packedClearValues.store(colorIndexVk, VK_IMAGE_ASPECT_COLOR_BIT, kUninitializedClearValue); } } renderPassAttachmentOps.setStencilOps(colorIndexVk, vk::RenderPassLoadOp::DontCare, vk::RenderPassStoreOp::DontCare); // If there's a resolve attachment, and loadOp needs to be LOAD, the multisampled attachment // needs to take its value from the resolve attachment. In this case, an initial subpass is // added for this very purpose which uses the resolve attachment as input attachment. As a // result, loadOp of the multisampled attachment can remain DONT_CARE. // // Note that this only needs to be done if the multisampled image and the resolve attachment // come from the same source. isImageTransient() indicates whether this should happen. if (colorRenderTarget->hasResolveAttachment() && colorRenderTarget->isImageTransient()) { if (renderPassAttachmentOps[colorIndexVk].loadOp == VK_ATTACHMENT_LOAD_OP_LOAD) { renderPassAttachmentOps[colorIndexVk].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; // Update the render pass desc to specify that this attachment should be unresolved. mRenderPassDesc.packColorUnresolveAttachment(colorIndexGL); } else { mRenderPassDesc.removeColorUnresolveAttachment(colorIndexGL); } } else { ASSERT(!mRenderPassDesc.getColorUnresolveAttachmentMask().test(colorIndexGL)); } ++colorIndexVk; } // Depth/stencil attachment. vk::PackedAttachmentIndex depthStencilAttachmentIndex = vk::kAttachmentIndexInvalid; RenderTargetVk *depthStencilRenderTarget = getDepthStencilRenderTarget(); if (depthStencilRenderTarget) { const bool canExportStencil = contextVk->getRenderer()->getFeatures().supportsShaderStencilExport.enabled; // depth stencil attachment always immediately follows color attachment depthStencilAttachmentIndex = colorIndexVk; vk::RenderPassLoadOp depthLoadOp = vk::RenderPassLoadOp::Load; vk::RenderPassLoadOp stencilLoadOp = vk::RenderPassLoadOp::Load; vk::RenderPassStoreOp depthStoreOp = vk::RenderPassStoreOp::Store; vk::RenderPassStoreOp stencilStoreOp = vk::RenderPassStoreOp::Store; // If the image data was previously discarded (with no update in between), don't attempt to // load the image. Additionally, if the multisampled image data is transient and there is // no resolve attachment, there's no data to load. The latter is the case with // depth/stencil texture attachments per GL_EXT_multisampled_render_to_texture2. if (!depthStencilRenderTarget->hasDefinedContent() || depthStencilRenderTarget->isEntirelyTransient()) { depthLoadOp = vk::RenderPassLoadOp::DontCare; } if (!depthStencilRenderTarget->hasDefinedStencilContent() || depthStencilRenderTarget->isEntirelyTransient()) { stencilLoadOp = vk::RenderPassLoadOp::DontCare; } // If depth/stencil image is transient, no need to store its data at the end of the render // pass. If shader stencil export is not supported, stencil data cannot be unresolved on // the next render pass, so it must be stored/loaded. If the image is entirely transient, // there is no resolve/unresolve and the image data is never stored/loaded. if (depthStencilRenderTarget->isImageTransient()) { depthStoreOp = vk::RenderPassStoreOp::DontCare; if (canExportStencil || depthStencilRenderTarget->isEntirelyTransient()) { stencilStoreOp = vk::RenderPassStoreOp::DontCare; } } if (mDeferredClears.testDepth() || mDeferredClears.testStencil()) { VkClearValue clearValue = {}; if (mDeferredClears.testDepth()) { depthLoadOp = vk::RenderPassLoadOp::Clear; clearValue.depthStencil.depth = mDeferredClears.getDepthValue(); mDeferredClears.reset(vk::kUnpackedDepthIndex); } if (mDeferredClears.testStencil()) { stencilLoadOp = vk::RenderPassLoadOp::Clear; clearValue.depthStencil.stencil = mDeferredClears.getStencilValue(); mDeferredClears.reset(vk::kUnpackedStencilIndex); } // Note the aspect is only depth here. That's intentional. packedClearValues.store(depthStencilAttachmentIndex, VK_IMAGE_ASPECT_DEPTH_BIT, clearValue); } else { // Note the aspect is only depth here. That's intentional. packedClearValues.store(depthStencilAttachmentIndex, VK_IMAGE_ASPECT_DEPTH_BIT, kUninitializedClearValue); } const angle::Format &format = depthStencilRenderTarget->getImageIntendedFormat(); // If the format we picked has stencil but user did not ask for it due to hardware // limitations, use DONT_CARE for load/store. The same logic for depth follows. if (format.stencilBits == 0) { stencilLoadOp = vk::RenderPassLoadOp::DontCare; stencilStoreOp = vk::RenderPassStoreOp::DontCare; } if (format.depthBits == 0) { depthLoadOp = vk::RenderPassLoadOp::DontCare; depthStoreOp = vk::RenderPassStoreOp::DontCare; } // Similar to color attachments, if there's a resolve attachment and the multisampled image // is transient, depth/stencil data need to be unresolved in an initial subpass. // // Note that stencil unresolve is currently only possible if shader stencil export is // supported. if (depthStencilRenderTarget->hasResolveAttachment() && depthStencilRenderTarget->isImageTransient()) { const bool unresolveDepth = depthLoadOp == vk::RenderPassLoadOp::Load; const bool unresolveStencil = stencilLoadOp == vk::RenderPassLoadOp::Load && canExportStencil; if (unresolveDepth) { depthLoadOp = vk::RenderPassLoadOp::DontCare; } if (unresolveStencil) { stencilLoadOp = vk::RenderPassLoadOp::DontCare; } if (unresolveDepth || unresolveStencil) { mRenderPassDesc.packDepthStencilUnresolveAttachment(unresolveDepth, unresolveStencil); } else { mRenderPassDesc.removeDepthStencilUnresolveAttachment(); } } renderPassAttachmentOps.setOps(depthStencilAttachmentIndex, depthLoadOp, depthStoreOp); renderPassAttachmentOps.setStencilOps(depthStencilAttachmentIndex, stencilLoadOp, stencilStoreOp); } // If render pass description is changed, the previous render pass desc is no longer compatible. // Tell the context so that the graphics pipelines can be recreated. // // Note that render passes are compatible only if the differences are in loadOp/storeOp values, // or the existence of resolve attachments in single subpass render passes. The modification // here can add/remove a subpass, or modify its input attachments. gl::DrawBufferMask unresolveColorMask = mRenderPassDesc.getColorUnresolveAttachmentMask(); const bool unresolveDepth = mRenderPassDesc.hasDepthUnresolveAttachment(); const bool unresolveStencil = mRenderPassDesc.hasStencilUnresolveAttachment(); const bool unresolveChanged = previousUnresolveColorMask != unresolveColorMask || previousUnresolveDepth != unresolveDepth || previousUnresolveStencil != unresolveStencil; if (unresolveChanged) { // Make sure framebuffer is recreated. mFramebuffer = nullptr; mCurrentFramebufferDesc.updateUnresolveMask(MakeUnresolveAttachmentMask(mRenderPassDesc)); } vk::Framebuffer *framebuffer = nullptr; ANGLE_TRY(getFramebuffer(contextVk, &framebuffer, nullptr)); // If deferred clears were used in the render pass, expand the render area to the whole // framebuffer. gl::Rectangle renderArea = scissoredRenderArea; if (hasDeferredClears) { renderArea = getRotatedCompleteRenderArea(contextVk); } ANGLE_TRY(contextVk->beginNewRenderPass( *framebuffer, renderArea, mRenderPassDesc, renderPassAttachmentOps, colorIndexVk, depthStencilAttachmentIndex, packedClearValues, commandBufferOut)); // Add the images to the renderpass tracking list (through onColorDraw). vk::PackedAttachmentIndex colorAttachmentIndex(0); for (size_t colorIndexGL : mState.getColorAttachmentsMask()) { RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL]; colorRenderTarget->onColorDraw(contextVk, mCurrentFramebufferDesc.getLayerCount(), colorAttachmentIndex); ++colorAttachmentIndex; } if (depthStencilRenderTarget) { // This must be called after hasDefined*Content() since it will set content to valid. If // the attachment ends up not used in the render pass, contents will be marked undefined at // endRenderPass. The actual layout determination is also deferred until the same time. depthStencilRenderTarget->onDepthStencilDraw(contextVk, mCurrentFramebufferDesc.getLayerCount()); } const bool anyUnresolve = unresolveColorMask.any() || unresolveDepth || unresolveStencil; if (anyUnresolve) { // Unresolve attachments if any. UtilsVk::UnresolveParameters params; params.unresolveColorMask = unresolveColorMask; params.unresolveDepth = unresolveDepth; params.unresolveStencil = unresolveStencil; ANGLE_TRY(contextVk->getUtils().unresolve(contextVk, this, params)); // The unresolve subpass has only one draw call. contextVk->startNextSubpass(); } if (unresolveChanged || anyUnresolve) { contextVk->onDrawFramebufferRenderPassDescChange(this, renderPassDescChangedOut); } return angle::Result::Continue; } void FramebufferVk::updateActiveColorMasks(size_t colorIndexGL, bool r, bool g, bool b, bool a) { gl::BlendStateExt::ColorMaskStorage::SetValueIndexed( colorIndexGL, gl::BlendStateExt::PackColorMask(r, g, b, a), &mActiveColorComponentMasksForClear); } const gl::DrawBufferMask &FramebufferVk::getEmulatedAlphaAttachmentMask() const { return mEmulatedAlphaAttachmentMask; } angle::Result FramebufferVk::readPixelsImpl(ContextVk *contextVk, const gl::Rectangle &area, const PackPixelsParams &packPixelsParams, VkImageAspectFlagBits copyAspectFlags, RenderTargetVk *renderTarget, void *pixels) { ANGLE_TRACE_EVENT0("gpu.angle", "FramebufferVk::readPixelsImpl"); gl::LevelIndex levelGL = renderTarget->getLevelIndex(); uint32_t layer = renderTarget->getLayerIndex(); return renderTarget->getImageForCopy().readPixels(contextVk, area, packPixelsParams, copyAspectFlags, levelGL, layer, pixels, &mReadPixelBuffer); } gl::Extents FramebufferVk::getReadImageExtents() const { RenderTargetVk *readRenderTarget = mRenderTargetCache.getColorRead(mState); return readRenderTarget->getExtents(); } // Return the framebuffer's non-rotated render area. This is a gl::Rectangle that is based on the // dimensions of the framebuffer, IS NOT rotated, and IS NOT y-flipped gl::Rectangle FramebufferVk::getNonRotatedCompleteRenderArea() const { const gl::Box &dimensions = mState.getDimensions(); return gl::Rectangle(0, 0, dimensions.width, dimensions.height); } // Return the framebuffer's rotated render area. This is a gl::Rectangle that is based on the // dimensions of the framebuffer, IS ROTATED for the draw FBO, and IS NOT y-flipped // // Note: Since the rectangle is not scissored (i.e. x and y are guaranteed to be zero), only the // width and height must be swapped if the rotation is 90 or 270 degrees. gl::Rectangle FramebufferVk::getRotatedCompleteRenderArea(ContextVk *contextVk) const { gl::Rectangle renderArea = getNonRotatedCompleteRenderArea(); if (contextVk->isRotatedAspectRatioForDrawFBO()) { // The surface is rotated 90/270 degrees. This changes the aspect ratio of the surface. std::swap(renderArea.width, renderArea.height); } return renderArea; } // Return the framebuffer's scissored and rotated render area. This is a gl::Rectangle that is // based on the dimensions of the framebuffer, is clipped to the scissor, IS ROTATED and IS // Y-FLIPPED for the draw FBO. // // Note: Since the rectangle is scissored, it must be fully rotated, and not just have the width // and height swapped. gl::Rectangle FramebufferVk::getRotatedScissoredRenderArea(ContextVk *contextVk) const { const gl::Rectangle renderArea = getNonRotatedCompleteRenderArea(); bool invertViewport = contextVk->isViewportFlipEnabledForDrawFBO(); gl::Rectangle scissoredArea = ClipRectToScissor(contextVk->getState(), renderArea, false); gl::Rectangle rotatedScissoredArea; RotateRectangle(contextVk->getRotationDrawFramebuffer(), invertViewport, renderArea.width, renderArea.height, scissoredArea, &rotatedScissoredArea); return rotatedScissoredArea; } GLint FramebufferVk::getSamples() const { const gl::FramebufferAttachment *lastAttachment = nullptr; for (size_t colorIndexGL : mState.getEnabledDrawBuffers()) { const gl::FramebufferAttachment *color = mState.getColorAttachment(colorIndexGL); ASSERT(color); if (color->isRenderToTexture()) { return color->getSamples(); } lastAttachment = color; } const gl::FramebufferAttachment *depthStencil = mState.getDepthOrStencilAttachment(); if (depthStencil) { if (depthStencil->isRenderToTexture()) { return depthStencil->getSamples(); } lastAttachment = depthStencil; } // If none of the attachments are multisampled-render-to-texture, take the sample count from the // last attachment (any would have worked, as they would all have the same sample count). return std::max(lastAttachment ? lastAttachment->getSamples() : 1, 1); } angle::Result FramebufferVk::flushDeferredClears(ContextVk *contextVk) { if (mDeferredClears.empty()) { return angle::Result::Continue; } return contextVk->startRenderPass(getRotatedCompleteRenderArea(contextVk), nullptr, nullptr); } void FramebufferVk::updateRenderPassReadOnlyDepthMode(ContextVk *contextVk, vk::CommandBufferHelper *renderPass) { bool readOnlyDepthStencilMode = getDepthStencilRenderTarget() && !getDepthStencilRenderTarget()->hasResolveAttachment() && (mReadOnlyDepthFeedbackLoopMode || !renderPass->hasDepthStencilWriteOrClear()); // If readOnlyDepthStencil is false, we are switching out of read only mode due to depth write. // We must not be in the read only feedback loop mode because the logic in // ContextVk::updateRenderPassDepthStencilAccess() should ensure we end the previous renderpass // and a new renderpass will start with feedback loop disabled. ASSERT(readOnlyDepthStencilMode || !mReadOnlyDepthFeedbackLoopMode); renderPass->updateStartedRenderPassWithDepthMode(readOnlyDepthStencilMode); } void FramebufferVk::onSwitchProgramFramebufferFetch(ContextVk *contextVk, bool programUsesFramebufferFetch) { if (programUsesFramebufferFetch != mRenderPassDesc.getFramebufferFetchMode()) { // Make sure framebuffer is recreated. mFramebuffer = nullptr; mCurrentFramebufferDesc.updateFramebufferFetchMode(programUsesFramebufferFetch); mRenderPassDesc.setFramebufferFetchMode(programUsesFramebufferFetch); contextVk->onDrawFramebufferRenderPassDescChange(this, nullptr); } } // FramebufferCache implementation. void FramebufferCache::destroy(RendererVk *rendererVk) { rendererVk->accumulateCacheStats(VulkanCacheType::Framebuffer, mCacheStats); mPayload.clear(); } bool FramebufferCache::get(ContextVk *contextVk, const vk::FramebufferDesc &desc, vk::FramebufferHelper **framebufferHelperOut) { auto iter = mPayload.find(desc); if (iter != mPayload.end()) { *framebufferHelperOut = &iter->second; mCacheStats.hit(); return true; } mCacheStats.miss(); return false; } void FramebufferCache::insert(const vk::FramebufferDesc &desc, vk::FramebufferHelper &&framebufferHelper) { mPayload.emplace(desc, std::move(framebufferHelper)); } void FramebufferCache::clear(ContextVk *contextVk) { for (auto &entry : mPayload) { vk::FramebufferHelper &tmpFB = entry.second; tmpFB.release(contextVk); } mPayload.clear(); } } // namespace rx