• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright The Mbed TLS Contributors
3  *  SPDX-License-Identifier: Apache-2.0
4  *
5  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
6  *  not use this file except in compliance with the License.
7  *  You may obtain a copy of the License at
8  *
9  *  http://www.apache.org/licenses/LICENSE-2.0
10  *
11  *  Unless required by applicable law or agreed to in writing, software
12  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  *  See the License for the specific language governing permissions and
15  *  limitations under the License.
16  *  Copyright (c) 2023 Telink Semiconductor (Shanghai) Co., Ltd. ("TELINK")
17  */
18 
19 /*
20  * References:
21  *
22  * [1] BERNSTEIN, Daniel J. Curve25519: new Diffie-Hellman speed records.
23  *     <http://cr.yp.to/ecdh/curve25519-20060209.pdf>
24  *
25  * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
26  *     for elliptic curve cryptosystems. In : Cryptographic Hardware and
27  *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
28  *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
29  *
30  * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
31  *     render ECC resistant against Side Channel Attacks. IACR Cryptology
32  *     ePrint Archive, 2004, vol. 2004, p. 342.
33  *     <http://eprint.iacr.org/2004/342.pdf>
34  *
35  * [4] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters.
36  *     <http://www.secg.org/sec2-v2.pdf>
37  *
38  * [5] HANKERSON, Darrel, MENEZES, Alfred J., VANSTONE, Scott. Guide to Elliptic
39  *     Curve Cryptography.
40  *
41  * [6] Digital Signature Standard (DSS), FIPS 186-4.
42  *     <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf>
43  *
44  * [7] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer
45  *     Security (TLS), RFC 4492.
46  *     <https://tools.ietf.org/search/rfc4492>
47  *
48  * [8] <http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html>
49  *
50  * [9] COHEN, Henri. A Course in Computational Algebraic Number Theory.
51  *     Springer Science & Business Media, 1 Aug 2000
52  */
53 
54 #ifndef MBEDTLS_ECP_INTERNAL_H
55 #define MBEDTLS_ECP_INTERNAL_H
56 
57 #include "mbedtls/build_info.h"
58 
59 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
60 
61 /**
62  * \brief           Indicate if the Elliptic Curve Point module extension can
63  *                  handle the group.
64  *
65  * \param grp       The pointer to the elliptic curve group that will be the
66  *                  basis of the cryptographic computations.
67  *
68  * \return          Non-zero if successful.
69  */
70 unsigned char mbedtls_internal_ecp_grp_capable(const mbedtls_ecp_group *grp);
71 
72 /**
73  * \brief           Initialise the Elliptic Curve Point module extension.
74  *
75  *                  If mbedtls_internal_ecp_grp_capable returns true for a
76  *                  group, this function has to be able to initialise the
77  *                  module for it.
78  *
79  *                  This module can be a driver to a crypto hardware
80  *                  accelerator, for which this could be an initialise function.
81  *
82  * \param grp       The pointer to the group the module needs to be
83  *                  initialised for.
84  *
85  * \return          0 if successful.
86  */
87 int mbedtls_internal_ecp_init(const mbedtls_ecp_group *grp);
88 
89 /**
90  * \brief           Frees and deallocates the Elliptic Curve Point module
91  *                  extension.
92  *
93  * \param grp       The pointer to the group the module was initialised for.
94  */
95 void mbedtls_internal_ecp_free(const mbedtls_ecp_group *grp);
96 
97 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
98 
99 #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
100 /**
101  * \brief           Randomize jacobian coordinates:
102  *                  (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l.
103  *
104  * \param grp       Pointer to the group representing the curve.
105  *
106  * \param pt        The point on the curve to be randomised, given with Jacobian
107  *                  coordinates.
108  *
109  * \param f_rng     A function pointer to the random number generator.
110  *
111  * \param p_rng     A pointer to the random number generator state.
112  *
113  * \return          0 if successful.
114  */
115 int mbedtls_internal_ecp_randomize_jac(
116     const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng);
117 #endif
118 
119 #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
120 /**
121  * \brief           Addition: R = P + Q, mixed affine-Jacobian coordinates.
122  *
123  *                  The coordinates of Q must be normalized (= affine),
124  *                  but those of P don't need to. R is not normalized.
125  *
126  *                  This function is used only as a subrutine of
127  *                  ecp_mul_comb().
128  *
129  *                  Special cases: (1) P or Q is zero, (2) R is zero,
130  *                      (3) P == Q.
131  *                  None of these cases can happen as intermediate step in
132  *                  ecp_mul_comb():
133  *                      - at each step, P, Q and R are multiples of the base
134  *                      point, the factor being less than its order, so none of
135  *                      them is zero;
136  *                      - Q is an odd multiple of the base point, P an even
137  *                      multiple, due to the choice of precomputed points in the
138  *                      modified comb method.
139  *                  So branches for these cases do not leak secret information.
140  *
141  *                  We accept Q->Z being unset (saving memory in tables) as
142  *                  meaning 1.
143  *
144  *                  Cost in field operations if done by [5] 3.22:
145  *                      1A := 8M + 3S
146  *
147  * \param grp       Pointer to the group representing the curve.
148  *
149  * \param R         Pointer to a point structure to hold the result.
150  *
151  * \param P         Pointer to the first summand, given with Jacobian
152  *                  coordinates
153  *
154  * \param Q         Pointer to the second summand, given with affine
155  *                  coordinates.
156  *
157  * \return          0 if successful.
158  */
159 int mbedtls_internal_ecp_add_mixed(
160     const mbedtls_ecp_group *grp, mbedtls_ecp_point *R, const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q);
161 #endif
162 
163 /**
164  * \brief           Point doubling R = 2 P, Jacobian coordinates.
165  *
166  *                  Cost:   1D := 3M + 4S    (A ==  0)
167  *                          4M + 4S          (A == -3)
168  *                          3M + 6S + 1a     otherwise
169  *                  when the implementation is based on the "dbl-1998-cmo-2"
170  *                  doubling formulas in [8] and standard optimizations are
171  *                  applied when curve parameter A is one of { 0, -3 }.
172  *
173  * \param grp       Pointer to the group representing the curve.
174  *
175  * \param R         Pointer to a point structure to hold the result.
176  *
177  * \param P         Pointer to the point that has to be doubled, given with
178  *                  Jacobian coordinates.
179  *
180  * \return          0 if successful.
181  */
182 #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
183 int mbedtls_internal_ecp_double_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R, const mbedtls_ecp_point *P);
184 #endif
185 
186 /**
187  * \brief           Normalize jacobian coordinates of an array of (pointers to)
188  *                  points.
189  *
190  *                  Using Montgomery's trick to perform only one inversion mod P
191  *                  the cost is:
192  *                      1N(t) := 1I + (6t - 3)M + 1S
193  *                  (See for example Algorithm 10.3.4. in [9])
194  *
195  *                  This function is used only as a subrutine of
196  *                  ecp_mul_comb().
197  *
198  *                  Warning: fails (returning an error) if one of the points is
199  *                  zero!
200  *                  This should never happen, see choice of w in ecp_mul_comb().
201  *
202  * \param grp       Pointer to the group representing the curve.
203  *
204  * \param T         Array of pointers to the points to normalise.
205  *
206  * \param t_len     Number of elements in the array.
207  *
208  * \return          0 if successful,
209  *                      an error if one of the points is zero.
210  */
211 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
212 int mbedtls_internal_ecp_normalize_jac_many(const mbedtls_ecp_group *grp, mbedtls_ecp_point *T[], size_t t_len);
213 #endif
214 
215 /**
216  * \brief           Normalize jacobian coordinates so that Z == 0 || Z == 1.
217  *
218  *                  Cost in field operations if done by [5] 3.2.1:
219  *                      1N := 1I + 3M + 1S
220  *
221  * \param grp       Pointer to the group representing the curve.
222  *
223  * \param pt        pointer to the point to be normalised. This is an
224  *                  input/output parameter.
225  *
226  * \return          0 if successful.
227  */
228 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
229 int mbedtls_internal_ecp_normalize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt);
230 #endif
231 
232 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
233 
234 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
235 
236 #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
237 int mbedtls_internal_ecp_double_add_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R, mbedtls_ecp_point *S,
238     const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q, const mbedtls_mpi *d);
239 #endif
240 
241 /**
242  * \brief           Randomize projective x/z coordinates:
243  *                      (X, Z) -> (l X, l Z) for random l
244  *
245  * \param grp       pointer to the group representing the curve
246  *
247  * \param P         the point on the curve to be randomised given with
248  *                  projective coordinates. This is an input/output parameter.
249  *
250  * \param f_rng     a function pointer to the random number generator
251  *
252  * \param p_rng     a pointer to the random number generator state
253  *
254  * \return          0 if successful
255  */
256 #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
257 int mbedtls_internal_ecp_randomize_mxz(
258     const mbedtls_ecp_group *grp, mbedtls_ecp_point *P, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng);
259 #endif
260 
261 /**
262  * \brief           Normalize Montgomery x/z coordinates: X = X/Z, Z = 1.
263  *
264  * \param grp       pointer to the group representing the curve
265  *
266  * \param P         pointer to the point to be normalised. This is an
267  *                  input/output parameter.
268  *
269  * \return          0 if successful
270  */
271 #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
272 int mbedtls_internal_ecp_normalize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P);
273 #endif
274 
275 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
276 
277 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
278 
279 #endif /* ecp_internal_alt.h */
280