• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2020 Espressif Systems (Shanghai) PTE LTD
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "sys/param.h"
16 #include "esp_timer_impl.h"
17 #include "esp_timer.h"
18 #include "esp_err.h"
19 #include "esp_system.h"
20 #include "esp_task.h"
21 #include "esp_attr.h"
22 #include "esp_intr_alloc.h"
23 #include "esp_log.h"
24 #include "esp32/clk.h"
25 #include "driver/periph_ctrl.h"
26 #include "soc/soc.h"
27 #include "soc/timer_group_reg.h"
28 #include "soc/rtc.h"
29 #include "esp_osal/esp_osal.h"
30 
31 /**
32  * @file esp_timer_lac.c
33  * @brief Implementation of chip-specific part of esp_timer
34  *
35  * This implementation uses TG0 LAC timer of the ESP32. This timer is
36  * a 64-bit up-counting timer, with a programmable compare value (called 'alarm'
37  * hereafter). When the timer reaches compare value, interrupt is raised.
38  * The timer can be configured to produce an edge or a level interrupt.
39  */
40 
41 /* Selects which Timer Group peripheral to use */
42 #define LACT_MODULE     0
43 
44 #if LACT_MODULE == 0
45 #define INTR_SOURCE_LACT ETS_TG0_LACT_LEVEL_INTR_SOURCE
46 #define PERIPH_LACT PERIPH_TIMG0_MODULE
47 #elif LACT_MODULE == 1
48 #define INTR_SOURCE_LACT ETS_TG1_LACT_LEVEL_INTR_SOURCE
49 #define PERIPH_LACT PERIPH_TIMG1_MODULE
50 #else
51 #error "Incorrect the number of LACT module (only 0 or 1)"
52 #endif
53 
54 /* Desired number of timer ticks per microsecond.
55  * This value should be small enough so that all possible APB frequencies
56  * could be divided by it without remainder.
57  * On the other hand, the smaller this value is, the longer we need to wait
58  * after setting UPDATE_REG before the timer value can be read.
59  * If TICKS_PER_US == 1, then we need to wait up to 1 microsecond, which
60  * makes esp_timer_impl_get_time function take too much time.
61  * The value TICKS_PER_US == 2 allows for most of the APB frequencies, and
62  * allows reading the counter quickly enough.
63  */
64 #define TICKS_PER_US    2
65 
66 /* Shorter register names, used in this file */
67 #define CONFIG_REG      (TIMG_LACTCONFIG_REG(LACT_MODULE))
68 #define RTC_STEP_REG    (TIMG_LACTRTC_REG(LACT_MODULE))
69 #define ALARM_LO_REG    (TIMG_LACTALARMLO_REG(LACT_MODULE))
70 #define ALARM_HI_REG    (TIMG_LACTALARMHI_REG(LACT_MODULE))
71 #define COUNT_LO_REG    (TIMG_LACTLO_REG(LACT_MODULE))
72 #define COUNT_HI_REG    (TIMG_LACTHI_REG(LACT_MODULE))
73 #define UPDATE_REG      (TIMG_LACTUPDATE_REG(LACT_MODULE))
74 #define LOAD_REG        (TIMG_LACTLOAD_REG(LACT_MODULE))
75 #define LOAD_LO_REG     (TIMG_LACTLOADLO_REG(LACT_MODULE))
76 #define LOAD_HI_REG     (TIMG_LACTLOADHI_REG(LACT_MODULE))
77 #define INT_ENA_REG     (TIMG_INT_ENA_TIMERS_REG(LACT_MODULE))
78 #define INT_ST_REG      (TIMG_INT_ST_TIMERS_REG(LACT_MODULE))
79 #define INT_CLR_REG     (TIMG_INT_CLR_TIMERS_REG(LACT_MODULE))
80 
81 /* Helper type to convert between a 64-bit value and a pair of 32-bit values without shifts and masks */
82 typedef struct {
83     union {
84         struct {
85             uint32_t lo;
86             uint32_t hi;
87         };
88         uint64_t val;
89     };
90 } timer_64b_reg_t;
91 
92 static const char* TAG = "esp_timer_impl";
93 
94 /* Interrupt handle returned by the interrupt allocator */
95 static intr_handle_t s_timer_interrupt_handle;
96 
97 /* Function from the upper layer to be called when the interrupt happens.
98  * Registered in esp_timer_impl_init.
99  */
100 static intr_handler_t s_alarm_handler = NULL;
101 
102 /* Spinlock used to protect access to the hardware registers. */
103 portMUX_TYPE s_time_update_lock = portMUX_INITIALIZER_UNLOCKED;
104 
105 
esp_timer_impl_lock(void)106 void esp_timer_impl_lock(void)
107 {
108     portENTER_CRITICAL(&s_time_update_lock);
109 }
110 
esp_timer_impl_unlock(void)111 void esp_timer_impl_unlock(void)
112 {
113     portEXIT_CRITICAL(&s_time_update_lock);
114 }
115 
esp_timer_impl_get_counter_reg(void)116 uint64_t IRAM_ATTR esp_timer_impl_get_counter_reg(void)
117 {
118     uint32_t lo, hi;
119     uint32_t lo_start = REG_READ(COUNT_LO_REG);
120     uint32_t div = REG_GET_FIELD(CONFIG_REG, TIMG_LACT_DIVIDER);
121     /* The peripheral doesn't have a bit to indicate that the update is done, so we poll the
122      * lower 32 bit part of the counter until it changes, or a timeout expires.
123      */
124     REG_WRITE(UPDATE_REG, 1);
125     do {
126         lo = REG_READ(COUNT_LO_REG);
127     } while (lo == lo_start && div-- > 0);
128 
129     /* Since this function is called without a critical section, verify that LO and HI
130      * registers are consistent. That is, if an interrupt happens between reading LO and
131      * HI registers, and esp_timer_impl_get_time is called from an ISR, then try to
132      * detect this by the change in LO register value, and re-read both registers.
133      */
134     do {
135         lo_start = lo;
136         hi = REG_READ(COUNT_HI_REG);
137         lo = REG_READ(COUNT_LO_REG);
138     } while (lo != lo_start);
139 
140     timer_64b_reg_t result = {
141         .lo = lo,
142         .hi = hi
143     };
144     return result.val;
145 }
146 
esp_timer_impl_get_time(void)147 int64_t IRAM_ATTR esp_timer_impl_get_time(void)
148 {
149     if (s_alarm_handler == NULL) {
150         return 0;
151     }
152     return esp_timer_impl_get_counter_reg() / TICKS_PER_US;
153 }
154 
155 int64_t esp_timer_get_time(void) __attribute__((alias("esp_timer_impl_get_time")));
156 
esp_timer_impl_set_alarm(uint64_t timestamp)157 void IRAM_ATTR esp_timer_impl_set_alarm(uint64_t timestamp)
158 {
159     portENTER_CRITICAL_SAFE(&s_time_update_lock);
160     int64_t offset = TICKS_PER_US * 2;
161     uint64_t now_time = esp_timer_impl_get_counter_reg();
162     timer_64b_reg_t alarm = { .val = MAX(timestamp * TICKS_PER_US, now_time + offset) };
163     do {
164         REG_CLR_BIT(CONFIG_REG, TIMG_LACT_ALARM_EN);
165         REG_WRITE(ALARM_LO_REG, alarm.lo);
166         REG_WRITE(ALARM_HI_REG, alarm.hi);
167         REG_SET_BIT(CONFIG_REG, TIMG_LACT_ALARM_EN);
168         now_time = esp_timer_impl_get_counter_reg();
169         int64_t delta = (int64_t)alarm.val - (int64_t)now_time;
170         if (delta <= 0 && REG_GET_FIELD(INT_ST_REG, TIMG_LACT_INT_ST) == 0) {
171             // new alarm is less than the counter and the interrupt flag is not set
172             offset += abs((int)delta) + TICKS_PER_US * 2;
173             alarm.val = now_time + offset;
174         } else {
175             // finish if either (alarm > counter) or the interrupt flag is already set.
176             break;
177         }
178     } while(1);
179     portEXIT_CRITICAL_SAFE(&s_time_update_lock);
180 }
181 
timer_alarm_isr(void * arg)182 static void IRAM_ATTR timer_alarm_isr(void *arg)
183 {
184     /* Clear interrupt status */
185     REG_WRITE(INT_CLR_REG, TIMG_LACT_INT_CLR);
186     /*  Call the upper layer handler */
187     (*s_alarm_handler)(arg);
188 }
189 
esp_timer_impl_update_apb_freq(uint32_t apb_ticks_per_us)190 void IRAM_ATTR esp_timer_impl_update_apb_freq(uint32_t apb_ticks_per_us)
191 {
192     portENTER_CRITICAL(&s_time_update_lock);
193     assert(apb_ticks_per_us >= 3 && "divider value too low");
194     assert(apb_ticks_per_us % TICKS_PER_US == 0 && "APB frequency (in MHz) should be divisible by TICK_PER_US");
195     REG_SET_FIELD(CONFIG_REG, TIMG_LACT_DIVIDER, apb_ticks_per_us / TICKS_PER_US);
196     portEXIT_CRITICAL(&s_time_update_lock);
197 }
198 
esp_timer_impl_advance(int64_t time_diff_us)199 void esp_timer_impl_advance(int64_t time_diff_us)
200 {
201     portENTER_CRITICAL(&s_time_update_lock);
202     uint64_t now = esp_timer_impl_get_time();
203     timer_64b_reg_t dst = { .val = (now + time_diff_us) * TICKS_PER_US };
204     REG_WRITE(LOAD_LO_REG, dst.lo);
205     REG_WRITE(LOAD_HI_REG, dst.hi);
206     REG_WRITE(LOAD_REG, 1);
207     portEXIT_CRITICAL(&s_time_update_lock);
208 }
209 
esp_timer_impl_init(intr_handler_t alarm_handler)210 esp_err_t esp_timer_impl_init(intr_handler_t alarm_handler)
211 {
212     s_alarm_handler = alarm_handler;
213 
214     periph_module_enable(PERIPH_LACT);
215 
216     /* Reset the state */
217     REG_WRITE(CONFIG_REG, 0);
218     REG_WRITE(LOAD_LO_REG, 0);
219     REG_WRITE(LOAD_HI_REG, 0);
220     REG_WRITE(ALARM_LO_REG, UINT32_MAX);
221     REG_WRITE(ALARM_HI_REG, UINT32_MAX);
222     REG_WRITE(LOAD_REG, 1);
223     REG_SET_BIT(INT_CLR_REG, TIMG_LACT_INT_CLR);
224 
225     esp_err_t err = esp_intr_alloc(INTR_SOURCE_LACT,
226             ESP_INTR_FLAG_INTRDISABLED | ESP_INTR_FLAG_IRAM,
227             &timer_alarm_isr, NULL, &s_timer_interrupt_handle);
228 
229     if (err != ESP_OK) {
230         ESP_EARLY_LOGE(TAG, "esp_intr_alloc failed (0x%0x)", err);
231         return err;
232     }
233 
234     /* In theory, this needs a shared spinlock with the timer group driver.
235      * However since esp_timer_impl_init is called early at startup, this
236      * will not cause issues in practice.
237      */
238     REG_SET_BIT(INT_ENA_REG, TIMG_LACT_INT_ENA);
239 
240     esp_timer_impl_update_apb_freq(esp_clk_apb_freq() / 1000000);
241 
242     REG_SET_BIT(CONFIG_REG, TIMG_LACT_INCREASE |
243         TIMG_LACT_LEVEL_INT_EN |
244         TIMG_LACT_EN);
245 
246     // Set the step for the sleep mode when the timer will work
247     // from a slow_clk frequency instead of the APB frequency.
248     uint32_t slowclk_ticks_per_us = esp_clk_slowclk_cal_get() * TICKS_PER_US;
249     REG_SET_FIELD(RTC_STEP_REG, TIMG_LACT_RTC_STEP_LEN, slowclk_ticks_per_us);
250 
251     ESP_ERROR_CHECK( esp_intr_enable(s_timer_interrupt_handle) );
252 
253     return ESP_OK;
254 }
255 
esp_timer_impl_deinit(void)256 void esp_timer_impl_deinit(void)
257 {
258     REG_WRITE(CONFIG_REG, 0);
259     REG_SET_BIT(INT_CLR_REG, TIMG_LACT_INT_CLR);
260     /* TODO: also clear TIMG_LACT_INT_ENA; however see the note in esp_timer_impl_init. */
261 
262     esp_intr_disable(s_timer_interrupt_handle);
263     esp_intr_free(s_timer_interrupt_handle);
264     s_timer_interrupt_handle = NULL;
265 }
266 
267 /* FIXME: This value is safe for 80MHz APB frequency, should be modified to depend on clock frequency. */
esp_timer_impl_get_min_period_us(void)268 uint64_t IRAM_ATTR esp_timer_impl_get_min_period_us(void)
269 {
270     return 50;
271 }
272 
esp_timer_impl_get_alarm_reg(void)273 uint64_t esp_timer_impl_get_alarm_reg(void)
274 {
275     portENTER_CRITICAL_SAFE(&s_time_update_lock);
276     timer_64b_reg_t alarm = {
277         .lo = REG_READ(ALARM_LO_REG),
278         .hi = REG_READ(ALARM_HI_REG)
279     };
280     portEXIT_CRITICAL_SAFE(&s_time_update_lock);
281     return alarm.val;
282 }
283 
284 void esp_timer_private_update_apb_freq(uint32_t apb_ticks_per_us) __attribute__((alias("esp_timer_impl_update_apb_freq")));
285 void esp_timer_private_advance(int64_t time_us) __attribute__((alias("esp_timer_impl_advance")));
286 void esp_timer_private_lock(void) __attribute__((alias("esp_timer_impl_lock")));
287 void esp_timer_private_unlock(void) __attribute__((alias("esp_timer_impl_unlock")));
288