• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2021 Huawei Device Co., Ltd.
3  * Licensed under the Apache License, Version 2.0 (the "License");
4  * you may not use this file except in compliance with the License.
5  * You may obtain a copy of the License at
6  *
7  *     http://www.apache.org/licenses/LICENSE-2.0
8  *
9  * Unless required by applicable law or agreed to in writing, software
10  * distributed under the License is distributed on an "AS IS" BASIS,
11  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12  * See the License for the specific language governing permissions and
13  * limitations under the License.
14  */
15 
16 #include "basic_transformer.h"
17 #include <iostream>
18 #include <new>
19 #include <unistd.h>
20 #include "image_utils.h"
21 #include "pixel_convert.h"
22 #include "pixel_map.h"
23 #ifndef _WIN32
24 #include "securec.h"
25 #else
26 #include "memory.h"
27 #endif
28 
29 #if !defined(_WIN32) && !defined(_APPLE) &&!defined(IOS_PLATFORM) &&!defined(A_PLATFORM)
30 #include "ashmem.h"
31 #include <sys/mman.h>
32 #endif
33 
34 #undef LOG_DOMAIN
35 #define LOG_DOMAIN LOG_TAG_DOMAIN_ID_IMAGE
36 
37 #undef LOG_TAG
38 #define LOG_TAG "BasicTransformer"
39 
40 namespace {
41     constexpr uint32_t RGB24_R_MASK = 0x00ff0000;
42     constexpr uint32_t RGB24_G_MASK = 0x0000ff00;
43     constexpr uint32_t RGB24_B_MASK = 0x000000ff;
44     constexpr uint16_t RGB16_R_MASK = 0xf800;
45     constexpr uint16_t RGB16_G_MASK = 0x07e0;
46     constexpr uint16_t RGB16_B_MASK = 0x001f;
47 
48     constexpr uint32_t RGB32_RGB16_R_SHIFT = 0x13;
49     constexpr uint32_t RGB32_RGB16_G_SHIFT = 0xA;
50     constexpr uint32_t RGB32_RGB16_B_SHIFT = 0x3;
51 
52     constexpr uint32_t RGB16_RGB32_R_SHIFT = 0x8;
53     constexpr uint32_t RGB16_RGB32_G_SHIFT = 0x3;
54     constexpr uint32_t RGB16_RGB32_B_SHIFT = 0x3;
55 
56     constexpr uint32_t RGB24_R_SHIFT = 0x10;
57     constexpr uint32_t RGB24_G_SHIFT = 0x8;
58     constexpr uint32_t OFFSET_0 = 0;
59     constexpr uint32_t OFFSET_1 = 1;
60     constexpr uint32_t OFFSET_2 = 2;
61 }
62 namespace OHOS {
63 namespace Media {
64 using namespace std;
ResetParam()65 void BasicTransformer::ResetParam()
66 {
67     matrix_ = Matrix();
68     minX_ = 0.0f;
69     minY_ = 0.0f;
70 }
71 
SetScaleParam(const float sx,const float sy)72 void BasicTransformer::SetScaleParam(const float sx, const float sy)
73 {
74     Matrix m;
75     m.SetScale(sx, sy);
76     matrix_.SetConcat(m);
77 }
78 
SetTranslateParam(const float tx,const float ty)79 void BasicTransformer::SetTranslateParam(const float tx, const float ty)
80 {
81     Matrix m;
82     m.SetTranslate(tx, ty);
83     matrix_.SetConcat(m);
84 }
85 
SetRotateParam(const float degrees,const float px,const float py)86 void BasicTransformer::SetRotateParam(const float degrees, const float px, const float py)
87 {
88     Matrix m;
89     m.SetRotate(degrees, px, py);
90     matrix_.SetConcat(m);
91 }
92 
GetDstDimension(const Size & srcSize,Size & dstSize)93 void BasicTransformer::GetDstDimension(const Size &srcSize, Size &dstSize)
94 {
95     Matrix::OperType operType = matrix_.GetOperType();
96     if ((static_cast<uint8_t>(operType) & Matrix::SCALE) == Matrix::SCALE) {
97         dstSize.width = static_cast<int32_t>(srcSize.width * fabs(matrix_.GetScaleX()) + FHALF);
98         dstSize.height = static_cast<int32_t>(srcSize.height * fabs(matrix_.GetScaleY()) + FHALF);
99     }
100 
101     if ((static_cast<uint8_t>(operType) & Matrix::ROTATEORSKEW) == Matrix::ROTATEORSKEW) {
102         Matrix::CalcXYProc fInvProc = Matrix::GetXYProc(operType);
103         GetRotateDimension(fInvProc, srcSize, dstSize);
104     }
105 
106     if ((static_cast<uint8_t>(operType) & Matrix::TRANSLATE) == Matrix::TRANSLATE) {
107         if (matrix_.GetTransX() > 0) {
108             dstSize.width = static_cast<int32_t>(srcSize.width + matrix_.GetTransX() + FHALF);
109         }
110         if (matrix_.GetTranY() > 0) {
111             dstSize.height = static_cast<int32_t>(srcSize.height + matrix_.GetTranY() + FHALF);
112         }
113     }
114 }
115 
CheckAllocateBuffer(PixmapInfo & outPixmap,AllocateMem allocate,int & fd,uint64_t & bufferSize,Size & dstSize)116 bool BasicTransformer::CheckAllocateBuffer(PixmapInfo &outPixmap, AllocateMem allocate,
117                                            int &fd, uint64_t &bufferSize, Size &dstSize)
118 {
119     if (bufferSize == 0 || bufferSize > PIXEL_MAP_MAX_RAM_SIZE) {
120         IMAGE_LOGE("[BasicTransformer]Invalid value of bufferSize");
121         return false;
122     }
123     if (allocate == nullptr) {
124         outPixmap.data = static_cast<uint8_t *>(malloc(bufferSize));
125     } else {
126         outPixmap.data = allocate(dstSize, bufferSize, fd, outPixmap.uniqueId);
127         auto tmp = std::make_unique<int32_t>();
128         *tmp = fd;
129         outPixmap.context = tmp.release();
130     }
131     if (outPixmap.data == nullptr) {
132         IMAGE_LOGE("[BasicTransformer]apply heap memory failed");
133         return false;
134     }
135     return true;
136 }
137 
ReleaseBuffer(AllocatorType allocatorType,int fd,int dataSize,uint8_t * buffer)138 void BasicTransformer::ReleaseBuffer(AllocatorType allocatorType, int fd, int dataSize, uint8_t *buffer)
139 {
140 #if !defined(_WIN32) && !defined(_APPLE) &&!defined(IOS_PLATFORM) &&!defined(A_PLATFORM)
141     if (allocatorType == AllocatorType::SHARE_MEM_ALLOC) {
142         if (buffer != nullptr) {
143             ::munmap(buffer, dataSize);
144             ::close(fd);
145         }
146         return;
147     }
148 #endif
149 
150     if (allocatorType == AllocatorType::HEAP_ALLOC) {
151         if (buffer != nullptr) {
152             free(buffer);
153         }
154         return;
155     }
156 }
157 
TransformPixmap(const PixmapInfo & inPixmap,PixmapInfo & outPixmap,AllocateMem allocate)158 uint32_t BasicTransformer::TransformPixmap(const PixmapInfo &inPixmap, PixmapInfo &outPixmap, AllocateMem allocate)
159 {
160     if (inPixmap.data == nullptr) {
161         IMAGE_LOGE("[BasicTransformer]input data is null.");
162         return ERR_IMAGE_GENERAL_ERROR;
163     }
164     int32_t pixelBytes = ImageUtils::GetPixelBytes(inPixmap.imageInfo.pixelFormat);
165     if (pixelBytes == 0) {
166         IMAGE_LOGE("[BasicTransformer]input pixel is invalid.");
167         return ERR_IMAGE_INVALID_PIXEL;
168     }
169 
170     Size dstSize = inPixmap.imageInfo.size;
171     GetDstDimension(inPixmap.imageInfo.size, dstSize);
172     outPixmap.imageInfo.size = dstSize;
173     if (dstSize.width <= 0 || dstSize.height <= 0) {
174         IMAGE_LOGE("[BasicTransformer]buffer size is invalid.");
175         return ERR_IMAGE_ALLOC_MEMORY_FAILED;
176     }
177 
178     uint64_t bufferSize = static_cast<uint64_t>(dstSize.width) * dstSize.height * pixelBytes;
179     if (bufferSize > PIXEL_MAP_MAX_RAM_SIZE) {
180         IMAGE_LOGE("[BasicTransformer] buffer size:%{public}llu out of range.",
181             static_cast<unsigned long long>(bufferSize));
182         return ERR_IMAGE_ALLOC_MEMORY_FAILED;
183     }
184     int fd = 0;
185     if (!(CheckAllocateBuffer(outPixmap, allocate, fd, bufferSize, dstSize))) {
186         return ERR_IMAGE_ALLOC_MEMORY_FAILED;
187     }
188     outPixmap.bufferSize = bufferSize;
189     outPixmap.imageInfo.pixelFormat = inPixmap.imageInfo.pixelFormat;
190     outPixmap.imageInfo.colorSpace = inPixmap.imageInfo.colorSpace;
191     outPixmap.imageInfo.alphaType = inPixmap.imageInfo.alphaType;
192     outPixmap.imageInfo.baseDensity = inPixmap.imageInfo.baseDensity;
193 
194     if (memset_s(outPixmap.data, bufferSize * sizeof(uint8_t), COLOR_DEFAULT, bufferSize * sizeof(uint8_t)) != EOK) {
195         IMAGE_LOGE("[BasicTransformer]apply heap memory failed.");
196         ReleaseBuffer((allocate == nullptr) ? AllocatorType::HEAP_ALLOC : AllocatorType::SHARE_MEM_ALLOC,
197             fd, bufferSize, outPixmap.data);
198         return ERR_IMAGE_GENERAL_ERROR;
199     }
200 
201     if (!DrawPixelmap(inPixmap, pixelBytes, dstSize, outPixmap.data)) {
202         IMAGE_LOGE("[BasicTransformer] the matrix can not invert.");
203         ReleaseBuffer((allocate == nullptr) ? AllocatorType::HEAP_ALLOC : AllocatorType::SHARE_MEM_ALLOC,
204             fd, bufferSize, outPixmap.data);
205         return ERR_IMAGE_MATRIX_NOT_INVERT;
206     }
207     return IMAGE_SUCCESS;
208 }
209 
pointLoop(Point & pt,const Size & size)210 static inline void pointLoop(Point &pt, const Size &size)
211 {
212     if (pt.x < 0) {
213         pt.x = size.width + pt.x;
214     }
215     if (pt.y < 0) {
216         pt.y = size.height + pt.y;
217     }
218 }
219 
DrawPixelmap(const PixmapInfo & pixmapInfo,const int32_t pixelBytes,const Size & size,uint8_t * data)220 bool BasicTransformer::DrawPixelmap(const PixmapInfo &pixmapInfo, const int32_t pixelBytes, const Size &size,
221                                     uint8_t *data)
222 {
223     Matrix invertMatrix;
224     if (!(matrix_.Invert(invertMatrix))) {
225         return false;
226     }
227 
228     uint32_t rb = pixmapInfo.imageInfo.size.width * pixelBytes;
229     Matrix::OperType operType = matrix_.GetOperType();
230     Matrix::CalcXYProc fInvProc = Matrix::GetXYProc(operType);
231 
232     for (int32_t y = 0; y < size.height; ++y) {
233         for (int32_t x = 0; x < size.width; ++x) {
234             Point srcPoint;
235             // Center coordinate alignment, need to add 0.5, so the boundary can also be considered
236             fInvProc(invertMatrix, static_cast<float>(x) + minX_ + FHALF, static_cast<float>(y) + minY_ + FHALF,
237                      srcPoint);
238             if ((static_cast<uint8_t>(operType) & Matrix::OperType::SCALE) == Matrix::OperType::SCALE) {
239                 pointLoop(srcPoint, pixmapInfo.imageInfo.size);
240             }
241             if (CheckOutOfRange(srcPoint, pixmapInfo.imageInfo.size)) {
242                 continue;
243             }
244             uint32_t shiftBytes = (y * size.width + x) * pixelBytes;
245             BilinearProc(srcPoint, pixmapInfo, rb, shiftBytes, data);
246         }
247     }
248 
249     return true;
250 }
251 
GetRotateDimension(Matrix::CalcXYProc fInvProc,const Size & srcSize,Size & dstSize)252 void BasicTransformer::GetRotateDimension(Matrix::CalcXYProc fInvProc, const Size &srcSize, Size &dstSize)
253 {
254     Point dstP1;
255     Point dstP2;
256     Point dstP3;
257     Point dstP4;
258 
259     float fx = static_cast<float>(srcSize.width);
260     float fy = static_cast<float>(srcSize.height);
261     fInvProc(matrix_, 0.0f, 0.0f, dstP1);
262     fInvProc(matrix_, fx, 0.0f, dstP2);
263     fInvProc(matrix_, 0.0f, fy, dstP3);
264     fInvProc(matrix_, fx, fy, dstP4);
265 
266     // For rotation, the width and height will change, so you need to take the maximum of the two diagonals.
267     dstSize.width = static_cast<int32_t>(fmaxf(fabsf(dstP4.x - dstP1.x), fabsf(dstP3.x - dstP2.x)) + FHALF);
268     dstSize.height = static_cast<int32_t>(fmaxf(fabsf(dstP4.y - dstP1.y), fabsf(dstP3.y - dstP2.y)) + FHALF);
269 
270     float min14X = std::min(dstP1.x, dstP4.x);
271     float min23X = std::min(dstP2.x, dstP3.x);
272     minX_ = std::min(min14X, min23X);
273 
274     float min14Y = std::min(dstP1.y, dstP4.y);
275     float min23Y = std::min(dstP2.y, dstP3.y);
276     minY_ = std::min(min14Y, min23Y);
277 }
278 
RGB565to32(uint16_t c)279 static uint32_t RGB565to32(uint16_t c)
280 {
281     uint32_t color = c;
282     uint32_t r = (color & RGB16_R_MASK) >> RGB16_RGB32_R_SHIFT;
283     uint32_t g = (color & RGB16_G_MASK) >> RGB16_RGB32_G_SHIFT;
284     uint32_t b = (color & RGB16_B_MASK) << RGB16_RGB32_B_SHIFT;
285     return (r << SHIFT_16_BIT) | (g << SHIFT_8_BIT) | b;
286 }
287 
Color32toRGB565(uint32_t c)288 static uint16_t Color32toRGB565(uint32_t c)
289 {
290     uint16_t r = (c & RGB24_R_MASK) >> RGB32_RGB16_R_SHIFT;
291     uint16_t g = (c & RGB24_G_MASK) >> RGB32_RGB16_G_SHIFT;
292     uint16_t b = (c & RGB24_B_MASK) >> RGB32_RGB16_B_SHIFT;
293     return (r << SHIFT_11_BIT) | (g << SHIFT_5_BIT) | b;
294 }
295 
296 struct BilinearPixelProcArgs {
297     PixelFormat format;
298     uint8_t* in;
299     uint8_t* out;
300     uint32_t rowBytes;
301     uint32_t subx;
302     uint32_t suby;
303 };
304 
BilinearPixelProc(const AroundPos aroundPos,struct BilinearPixelProcArgs & args)305 void BasicTransformer::BilinearPixelProc(const AroundPos aroundPos, struct BilinearPixelProcArgs &args)
306 {
307     AroundPixels aroundPixels;
308     uint32_t filterColor = OFFSET_0;
309 
310     switch (args.format) {
311         case PixelFormat::RGBA_8888:
312         case PixelFormat::ARGB_8888:
313         case PixelFormat::BGRA_8888:
314             {
315                 GetAroundPixelRGBA(aroundPos, args.in, args.rowBytes, aroundPixels);
316                 uint32_t *tmp32 = reinterpret_cast<uint32_t *>(args.out);
317                 *tmp32 = FilterProc(args.subx, args.suby, aroundPixels);
318                 break;
319             }
320         case PixelFormat::RGB_565:
321             {    GetAroundPixelRGB565(aroundPos, args.in, args.rowBytes, aroundPixels);
322                 filterColor = FilterProc(args.subx, args.suby, aroundPixels);
323                 uint16_t *tmp16 = reinterpret_cast<uint16_t *>(args.out);
324                 *tmp16 = Color32toRGB565(filterColor);
325                 break;
326             }
327         case PixelFormat::RGB_888:
328             {
329                 GetAroundPixelRGB888(aroundPos, args.in, args.rowBytes, aroundPixels);
330                 filterColor = FilterProc(args.subx, args.suby, aroundPixels);
331                 *(args.out) = static_cast<uint8_t>((filterColor & RGB24_R_MASK) >> RGB24_R_SHIFT);
332                 *((args.out) + OFFSET_1) =
333                     static_cast<uint8_t>((filterColor & RGB24_G_MASK) >> RGB24_G_SHIFT);
334                 *((args.out) + OFFSET_2) = static_cast<uint8_t>(filterColor & RGB24_B_MASK);
335                 break;
336             }
337         case PixelFormat::ALPHA_8:
338             {
339                 GetAroundPixelALPHA8(aroundPos, args.in, args.rowBytes, aroundPixels);
340                 filterColor = FilterProc(args.subx, args.suby, aroundPixels);
341                 *(args.out) = static_cast<uint8_t>(filterColor & RGB24_B_MASK);
342                 break;
343             }
344         default:
345             IMAGE_LOGE("[BasicTransformer] pixel format not supported, format:%{public}d",
346                 args.format);
347     }
348 }
349 
BilinearProc(const Point & pt,const PixmapInfo & pixmapInfo,const uint32_t rb,const int32_t shiftBytes,uint8_t * data)350 void BasicTransformer::BilinearProc(const Point &pt, const PixmapInfo &pixmapInfo, const uint32_t rb,
351                                     const int32_t shiftBytes, uint8_t *data)
352 {
353     uint32_t srcX = (pt.x * MULTI_65536) - HALF_BASIC < 0 ? 0 : (pt.x * MULTI_65536) - HALF_BASIC;
354     uint32_t srcY = (pt.y * MULTI_65536) - HALF_BASIC < 0 ? 0 : (pt.y * MULTI_65536) - HALF_BASIC;
355 
356     struct BilinearPixelProcArgs procArgs;
357     procArgs.format = pixmapInfo.imageInfo.pixelFormat;
358     procArgs.in = pixmapInfo.data;
359     procArgs.out = data + shiftBytes;
360     procArgs.rowBytes = rb;
361     procArgs.subx = GetSubValue(srcX);
362     procArgs.suby = GetSubValue(srcY);
363 
364     AroundPos aroundPos;
365     aroundPos.x0 = RightShift16Bit(srcX, pixmapInfo.imageInfo.size.width - 1);
366     aroundPos.x1 = RightShift16Bit(srcX + BASIC, pixmapInfo.imageInfo.size.width - 1);
367     aroundPos.y0 = RightShift16Bit(srcY, pixmapInfo.imageInfo.size.height - 1);
368     aroundPos.y1 = RightShift16Bit(srcY + BASIC, pixmapInfo.imageInfo.size.height - 1);
369 
370     BilinearPixelProc(aroundPos, procArgs);
371 }
372 
GetAroundPixelRGB565(const AroundPos aroundPos,uint8_t * data,uint32_t rb,AroundPixels & aroundPixels)373 void BasicTransformer::GetAroundPixelRGB565(const AroundPos aroundPos, uint8_t *data, uint32_t rb,
374                                             AroundPixels &aroundPixels)
375 {
376     const uint16_t *row0 = reinterpret_cast<uint16_t *>(data + aroundPos.y0 * rb);
377     const uint16_t *row1 = reinterpret_cast<uint16_t *>(data + aroundPos.y1 * rb);
378 
379     aroundPixels.color00 = RGB565to32(row0[aroundPos.x0]);
380     aroundPixels.color01 = RGB565to32(row0[aroundPos.x1]);
381     aroundPixels.color10 = RGB565to32(row1[aroundPos.x0]);
382     aroundPixels.color11 = RGB565to32(row1[aroundPos.x1]);
383 }
384 
GetAroundPixelRGB888(const AroundPos aroundPos,uint8_t * data,uint32_t rb,AroundPixels & aroundPixels)385 void BasicTransformer::GetAroundPixelRGB888(const AroundPos aroundPos, uint8_t *data, uint32_t rb,
386                                             AroundPixels &aroundPixels)
387 {
388     const uint8_t *row0 = data + aroundPos.y0 * rb;
389     const uint8_t *row1 = data + aroundPos.y1 * rb;
390     uint32_t current0 = aroundPos.x0 * RGB888_BYTE;
391     uint32_t current1 = aroundPos.x1 * RGB888_BYTE;
392     // The RGB888 format occupies 3 bytes, and an int integer is formed by OR operation.
393     aroundPixels.color00 =
394         (row0[current0] << SHIFT_16_BIT) | (row0[current0 + 1] << SHIFT_8_BIT) | (row0[current0 + 2]);
395     aroundPixels.color01 =
396         (row0[current1] << SHIFT_16_BIT) | (row0[current1 + 1] << SHIFT_8_BIT) | (row0[current1 + 2]);
397     aroundPixels.color10 =
398         (row1[current0] << SHIFT_16_BIT) | (row1[current0 + 1] << SHIFT_8_BIT) | (row1[current0 + 2]);
399     aroundPixels.color11 =
400         (row1[current1] << SHIFT_16_BIT) | (row1[current1 + 1] << SHIFT_8_BIT) | (row1[current1 + 2]);
401 }
402 
GetAroundPixelRGBA(const AroundPos aroundPos,uint8_t * data,uint32_t rb,AroundPixels & aroundPixels)403 void BasicTransformer::GetAroundPixelRGBA(const AroundPos aroundPos, uint8_t *data,
404                                           uint32_t rb, AroundPixels &aroundPixels)
405 {
406     const uint32_t *row0 = reinterpret_cast<uint32_t *>(data + aroundPos.y0 * rb);
407     const uint32_t *row1 = reinterpret_cast<uint32_t *>(data + aroundPos.y1 * rb);
408     aroundPixels.color00 = row0[aroundPos.x0];
409     aroundPixels.color01 = row0[aroundPos.x1];
410     aroundPixels.color10 = row1[aroundPos.x0];
411     aroundPixels.color11 = row1[aroundPos.x1];
412 }
413 
GetAroundPixelALPHA8(const AroundPos aroundPos,uint8_t * data,uint32_t rb,AroundPixels & aroundPixels)414 void BasicTransformer::GetAroundPixelALPHA8(const AroundPos aroundPos, uint8_t *data, uint32_t rb,
415                                             AroundPixels &aroundPixels)
416 {
417     const uint8_t *row0 = data + aroundPos.y0 * rb;
418     const uint8_t *row1 = data + aroundPos.y1 * rb;
419     aroundPixels.color00 = row0[aroundPos.x0];
420     aroundPixels.color01 = row0[aroundPos.x1];
421     aroundPixels.color10 = row1[aroundPos.x0];
422     aroundPixels.color11 = row1[aroundPos.x1];
423 }
424 
RightShift16Bit(uint32_t num,int32_t maxNum)425 uint32_t BasicTransformer::RightShift16Bit(uint32_t num, int32_t maxNum)
426 {
427     /*
428      * When the original image coordinates are obtained,
429      * the first 16 bits are shifted to the left, so the right shift is 16 bits here.
430      */
431     return ClampMax(num >> 16, maxNum);
432 }
433 
FilterProc(const uint32_t subx,const uint32_t suby,const AroundPixels & aroundPixels)434 uint32_t BasicTransformer::FilterProc(const uint32_t subx, const uint32_t suby, const AroundPixels &aroundPixels)
435 {
436     int32_t xy = subx * suby;
437     // Mask 0xFF00FF ensures that high and low 16 bits can be calculated simultaneously
438     const uint32_t mask = 0xFF00FF;
439 
440     /* All values are first magnified 16 times (left shift 4bit) and then divide 256 (right shift 8bit).
441      * Reference formula f(i+u,j+v) = (1-u)(1-v)f(i,j) + (1-u)vf(i,j+1) + u(1-v)f(i+1,j) + uvf(i+1,j+1),
442      * The subx is u, the suby is y,
443      * color00 is f(i,j), color 01 is f(i,j+1), color 10 is f(i+1,j), color11 is f(i+1,j+1).
444      */
445     int32_t scale = 256 - 16 * suby - 16 * subx + xy;
446     uint32_t lo = (aroundPixels.color00 & mask) * scale;
447     uint32_t hi = ((aroundPixels.color00 >> 8) & mask) * scale;
448 
449     scale = 16 * subx - xy;
450     lo += (aroundPixels.color01 & mask) * scale;
451     hi += ((aroundPixels.color01 >> 8) & mask) * scale;
452 
453     scale = 16 * suby - xy;
454     lo += (aroundPixels.color10 & mask) * scale;
455     hi += ((aroundPixels.color10 >> 8) & mask) * scale;
456 
457     lo += (aroundPixels.color11 & mask) * xy;
458     hi += ((aroundPixels.color11 >> 8) & mask) * xy;
459 
460     return ((lo >> 8) & mask) | (hi & ~mask);
461 }
462 } // namespace Media
463 } // namespace OHOS
464