• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * User interface for Resource Alloction in Resource Director Technology(RDT)
4  *
5  * Copyright (C) 2016 Intel Corporation
6  *
7  * Author: Fenghua Yu <fenghua.yu@intel.com>
8  *
9  * More information about RDT be found in the Intel (R) x86 Architecture
10  * Software Developer Manual.
11  */
12 
13 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cacheinfo.h>
16 #include <linux/cpu.h>
17 #include <linux/debugfs.h>
18 #include <linux/fs.h>
19 #include <linux/fs_parser.h>
20 #include <linux/sysfs.h>
21 #include <linux/kernfs.h>
22 #include <linux/seq_buf.h>
23 #include <linux/seq_file.h>
24 #include <linux/sched/signal.h>
25 #include <linux/sched/task.h>
26 #include <linux/slab.h>
27 #include <linux/task_work.h>
28 #include <linux/user_namespace.h>
29 
30 #include <uapi/linux/magic.h>
31 
32 #include <asm/resctrl.h>
33 #include "internal.h"
34 
35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
38 static struct kernfs_root *rdt_root;
39 struct rdtgroup rdtgroup_default;
40 LIST_HEAD(rdt_all_groups);
41 
42 /* Kernel fs node for "info" directory under root */
43 static struct kernfs_node *kn_info;
44 
45 /* Kernel fs node for "mon_groups" directory under root */
46 static struct kernfs_node *kn_mongrp;
47 
48 /* Kernel fs node for "mon_data" directory under root */
49 static struct kernfs_node *kn_mondata;
50 
51 static struct seq_buf last_cmd_status;
52 static char last_cmd_status_buf[512];
53 
54 struct dentry *debugfs_resctrl;
55 
rdt_last_cmd_clear(void)56 void rdt_last_cmd_clear(void)
57 {
58 	lockdep_assert_held(&rdtgroup_mutex);
59 	seq_buf_clear(&last_cmd_status);
60 }
61 
rdt_last_cmd_puts(const char * s)62 void rdt_last_cmd_puts(const char *s)
63 {
64 	lockdep_assert_held(&rdtgroup_mutex);
65 	seq_buf_puts(&last_cmd_status, s);
66 }
67 
rdt_last_cmd_printf(const char * fmt,...)68 void rdt_last_cmd_printf(const char *fmt, ...)
69 {
70 	va_list ap;
71 
72 	va_start(ap, fmt);
73 	lockdep_assert_held(&rdtgroup_mutex);
74 	seq_buf_vprintf(&last_cmd_status, fmt, ap);
75 	va_end(ap);
76 }
77 
78 /*
79  * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
80  * we can keep a bitmap of free CLOSIDs in a single integer.
81  *
82  * Using a global CLOSID across all resources has some advantages and
83  * some drawbacks:
84  * + We can simply set "current->closid" to assign a task to a resource
85  *   group.
86  * + Context switch code can avoid extra memory references deciding which
87  *   CLOSID to load into the PQR_ASSOC MSR
88  * - We give up some options in configuring resource groups across multi-socket
89  *   systems.
90  * - Our choices on how to configure each resource become progressively more
91  *   limited as the number of resources grows.
92  */
93 static int closid_free_map;
94 static int closid_free_map_len;
95 
closids_supported(void)96 int closids_supported(void)
97 {
98 	return closid_free_map_len;
99 }
100 
closid_init(void)101 static void closid_init(void)
102 {
103 	struct rdt_resource *r;
104 	int rdt_min_closid = 32;
105 
106 	/* Compute rdt_min_closid across all resources */
107 	for_each_alloc_enabled_rdt_resource(r)
108 		rdt_min_closid = min(rdt_min_closid, r->num_closid);
109 
110 	closid_free_map = BIT_MASK(rdt_min_closid) - 1;
111 
112 	/* CLOSID 0 is always reserved for the default group */
113 	closid_free_map &= ~1;
114 	closid_free_map_len = rdt_min_closid;
115 }
116 
closid_alloc(void)117 static int closid_alloc(void)
118 {
119 	u32 closid = ffs(closid_free_map);
120 
121 	if (closid == 0)
122 		return -ENOSPC;
123 	closid--;
124 	closid_free_map &= ~(1 << closid);
125 
126 	return closid;
127 }
128 
closid_free(int closid)129 void closid_free(int closid)
130 {
131 	closid_free_map |= 1 << closid;
132 }
133 
134 /**
135  * closid_allocated - test if provided closid is in use
136  * @closid: closid to be tested
137  *
138  * Return: true if @closid is currently associated with a resource group,
139  * false if @closid is free
140  */
closid_allocated(unsigned int closid)141 static bool closid_allocated(unsigned int closid)
142 {
143 	return (closid_free_map & (1 << closid)) == 0;
144 }
145 
146 /**
147  * rdtgroup_mode_by_closid - Return mode of resource group with closid
148  * @closid: closid if the resource group
149  *
150  * Each resource group is associated with a @closid. Here the mode
151  * of a resource group can be queried by searching for it using its closid.
152  *
153  * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
154  */
rdtgroup_mode_by_closid(int closid)155 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
156 {
157 	struct rdtgroup *rdtgrp;
158 
159 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
160 		if (rdtgrp->closid == closid)
161 			return rdtgrp->mode;
162 	}
163 
164 	return RDT_NUM_MODES;
165 }
166 
167 static const char * const rdt_mode_str[] = {
168 	[RDT_MODE_SHAREABLE]		= "shareable",
169 	[RDT_MODE_EXCLUSIVE]		= "exclusive",
170 	[RDT_MODE_PSEUDO_LOCKSETUP]	= "pseudo-locksetup",
171 	[RDT_MODE_PSEUDO_LOCKED]	= "pseudo-locked",
172 };
173 
174 /**
175  * rdtgroup_mode_str - Return the string representation of mode
176  * @mode: the resource group mode as &enum rdtgroup_mode
177  *
178  * Return: string representation of valid mode, "unknown" otherwise
179  */
rdtgroup_mode_str(enum rdtgrp_mode mode)180 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
181 {
182 	if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
183 		return "unknown";
184 
185 	return rdt_mode_str[mode];
186 }
187 
188 /* set uid and gid of rdtgroup dirs and files to that of the creator */
rdtgroup_kn_set_ugid(struct kernfs_node * kn)189 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
190 {
191 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
192 				.ia_uid = current_fsuid(),
193 				.ia_gid = current_fsgid(), };
194 
195 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
196 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
197 		return 0;
198 
199 	return kernfs_setattr(kn, &iattr);
200 }
201 
rdtgroup_add_file(struct kernfs_node * parent_kn,struct rftype * rft)202 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
203 {
204 	struct kernfs_node *kn;
205 	int ret;
206 
207 	kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
208 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
209 				  0, rft->kf_ops, rft, NULL, NULL);
210 	if (IS_ERR(kn))
211 		return PTR_ERR(kn);
212 
213 	ret = rdtgroup_kn_set_ugid(kn);
214 	if (ret) {
215 		kernfs_remove(kn);
216 		return ret;
217 	}
218 
219 	return 0;
220 }
221 
rdtgroup_seqfile_show(struct seq_file * m,void * arg)222 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
223 {
224 	struct kernfs_open_file *of = m->private;
225 	struct rftype *rft = of->kn->priv;
226 
227 	if (rft->seq_show)
228 		return rft->seq_show(of, m, arg);
229 	return 0;
230 }
231 
rdtgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)232 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
233 				   size_t nbytes, loff_t off)
234 {
235 	struct rftype *rft = of->kn->priv;
236 
237 	if (rft->write)
238 		return rft->write(of, buf, nbytes, off);
239 
240 	return -EINVAL;
241 }
242 
243 static struct kernfs_ops rdtgroup_kf_single_ops = {
244 	.atomic_write_len	= PAGE_SIZE,
245 	.write			= rdtgroup_file_write,
246 	.seq_show		= rdtgroup_seqfile_show,
247 };
248 
249 static struct kernfs_ops kf_mondata_ops = {
250 	.atomic_write_len	= PAGE_SIZE,
251 	.seq_show		= rdtgroup_mondata_show,
252 };
253 
is_cpu_list(struct kernfs_open_file * of)254 static bool is_cpu_list(struct kernfs_open_file *of)
255 {
256 	struct rftype *rft = of->kn->priv;
257 
258 	return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
259 }
260 
rdtgroup_cpus_show(struct kernfs_open_file * of,struct seq_file * s,void * v)261 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
262 			      struct seq_file *s, void *v)
263 {
264 	struct rdtgroup *rdtgrp;
265 	struct cpumask *mask;
266 	int ret = 0;
267 
268 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
269 
270 	if (rdtgrp) {
271 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
272 			if (!rdtgrp->plr->d) {
273 				rdt_last_cmd_clear();
274 				rdt_last_cmd_puts("Cache domain offline\n");
275 				ret = -ENODEV;
276 			} else {
277 				mask = &rdtgrp->plr->d->cpu_mask;
278 				seq_printf(s, is_cpu_list(of) ?
279 					   "%*pbl\n" : "%*pb\n",
280 					   cpumask_pr_args(mask));
281 			}
282 		} else {
283 			seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
284 				   cpumask_pr_args(&rdtgrp->cpu_mask));
285 		}
286 	} else {
287 		ret = -ENOENT;
288 	}
289 	rdtgroup_kn_unlock(of->kn);
290 
291 	return ret;
292 }
293 
294 /*
295  * This is safe against resctrl_sched_in() called from __switch_to()
296  * because __switch_to() is executed with interrupts disabled. A local call
297  * from update_closid_rmid() is proteced against __switch_to() because
298  * preemption is disabled.
299  */
update_cpu_closid_rmid(void * info)300 static void update_cpu_closid_rmid(void *info)
301 {
302 	struct rdtgroup *r = info;
303 
304 	if (r) {
305 		this_cpu_write(pqr_state.default_closid, r->closid);
306 		this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
307 	}
308 
309 	/*
310 	 * We cannot unconditionally write the MSR because the current
311 	 * executing task might have its own closid selected. Just reuse
312 	 * the context switch code.
313 	 */
314 	resctrl_sched_in(current);
315 }
316 
317 /*
318  * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
319  *
320  * Per task closids/rmids must have been set up before calling this function.
321  */
322 static void
update_closid_rmid(const struct cpumask * cpu_mask,struct rdtgroup * r)323 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
324 {
325 	int cpu = get_cpu();
326 
327 	if (cpumask_test_cpu(cpu, cpu_mask))
328 		update_cpu_closid_rmid(r);
329 	smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
330 	put_cpu();
331 }
332 
cpus_mon_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask)333 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
334 			  cpumask_var_t tmpmask)
335 {
336 	struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
337 	struct list_head *head;
338 
339 	/* Check whether cpus belong to parent ctrl group */
340 	cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
341 	if (cpumask_weight(tmpmask)) {
342 		rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
343 		return -EINVAL;
344 	}
345 
346 	/* Check whether cpus are dropped from this group */
347 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
348 	if (cpumask_weight(tmpmask)) {
349 		/* Give any dropped cpus to parent rdtgroup */
350 		cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
351 		update_closid_rmid(tmpmask, prgrp);
352 	}
353 
354 	/*
355 	 * If we added cpus, remove them from previous group that owned them
356 	 * and update per-cpu rmid
357 	 */
358 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
359 	if (cpumask_weight(tmpmask)) {
360 		head = &prgrp->mon.crdtgrp_list;
361 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
362 			if (crgrp == rdtgrp)
363 				continue;
364 			cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
365 				       tmpmask);
366 		}
367 		update_closid_rmid(tmpmask, rdtgrp);
368 	}
369 
370 	/* Done pushing/pulling - update this group with new mask */
371 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
372 
373 	return 0;
374 }
375 
cpumask_rdtgrp_clear(struct rdtgroup * r,struct cpumask * m)376 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
377 {
378 	struct rdtgroup *crgrp;
379 
380 	cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
381 	/* update the child mon group masks as well*/
382 	list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
383 		cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
384 }
385 
cpus_ctrl_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask,cpumask_var_t tmpmask1)386 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
387 			   cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
388 {
389 	struct rdtgroup *r, *crgrp;
390 	struct list_head *head;
391 
392 	/* Check whether cpus are dropped from this group */
393 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
394 	if (cpumask_weight(tmpmask)) {
395 		/* Can't drop from default group */
396 		if (rdtgrp == &rdtgroup_default) {
397 			rdt_last_cmd_puts("Can't drop CPUs from default group\n");
398 			return -EINVAL;
399 		}
400 
401 		/* Give any dropped cpus to rdtgroup_default */
402 		cpumask_or(&rdtgroup_default.cpu_mask,
403 			   &rdtgroup_default.cpu_mask, tmpmask);
404 		update_closid_rmid(tmpmask, &rdtgroup_default);
405 	}
406 
407 	/*
408 	 * If we added cpus, remove them from previous group and
409 	 * the prev group's child groups that owned them
410 	 * and update per-cpu closid/rmid.
411 	 */
412 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
413 	if (cpumask_weight(tmpmask)) {
414 		list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
415 			if (r == rdtgrp)
416 				continue;
417 			cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
418 			if (cpumask_weight(tmpmask1))
419 				cpumask_rdtgrp_clear(r, tmpmask1);
420 		}
421 		update_closid_rmid(tmpmask, rdtgrp);
422 	}
423 
424 	/* Done pushing/pulling - update this group with new mask */
425 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
426 
427 	/*
428 	 * Clear child mon group masks since there is a new parent mask
429 	 * now and update the rmid for the cpus the child lost.
430 	 */
431 	head = &rdtgrp->mon.crdtgrp_list;
432 	list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
433 		cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
434 		update_closid_rmid(tmpmask, rdtgrp);
435 		cpumask_clear(&crgrp->cpu_mask);
436 	}
437 
438 	return 0;
439 }
440 
rdtgroup_cpus_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)441 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
442 				   char *buf, size_t nbytes, loff_t off)
443 {
444 	cpumask_var_t tmpmask, newmask, tmpmask1;
445 	struct rdtgroup *rdtgrp;
446 	int ret;
447 
448 	if (!buf)
449 		return -EINVAL;
450 
451 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
452 		return -ENOMEM;
453 	if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
454 		free_cpumask_var(tmpmask);
455 		return -ENOMEM;
456 	}
457 	if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
458 		free_cpumask_var(tmpmask);
459 		free_cpumask_var(newmask);
460 		return -ENOMEM;
461 	}
462 
463 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
464 	if (!rdtgrp) {
465 		ret = -ENOENT;
466 		goto unlock;
467 	}
468 
469 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
470 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
471 		ret = -EINVAL;
472 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
473 		goto unlock;
474 	}
475 
476 	if (is_cpu_list(of))
477 		ret = cpulist_parse(buf, newmask);
478 	else
479 		ret = cpumask_parse(buf, newmask);
480 
481 	if (ret) {
482 		rdt_last_cmd_puts("Bad CPU list/mask\n");
483 		goto unlock;
484 	}
485 
486 	/* check that user didn't specify any offline cpus */
487 	cpumask_andnot(tmpmask, newmask, cpu_online_mask);
488 	if (cpumask_weight(tmpmask)) {
489 		ret = -EINVAL;
490 		rdt_last_cmd_puts("Can only assign online CPUs\n");
491 		goto unlock;
492 	}
493 
494 	if (rdtgrp->type == RDTCTRL_GROUP)
495 		ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
496 	else if (rdtgrp->type == RDTMON_GROUP)
497 		ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
498 	else
499 		ret = -EINVAL;
500 
501 unlock:
502 	rdtgroup_kn_unlock(of->kn);
503 	free_cpumask_var(tmpmask);
504 	free_cpumask_var(newmask);
505 	free_cpumask_var(tmpmask1);
506 
507 	return ret ?: nbytes;
508 }
509 
510 /**
511  * rdtgroup_remove - the helper to remove resource group safely
512  * @rdtgrp: resource group to remove
513  *
514  * On resource group creation via a mkdir, an extra kernfs_node reference is
515  * taken to ensure that the rdtgroup structure remains accessible for the
516  * rdtgroup_kn_unlock() calls where it is removed.
517  *
518  * Drop the extra reference here, then free the rdtgroup structure.
519  *
520  * Return: void
521  */
rdtgroup_remove(struct rdtgroup * rdtgrp)522 static void rdtgroup_remove(struct rdtgroup *rdtgrp)
523 {
524 	kernfs_put(rdtgrp->kn);
525 	kfree(rdtgrp);
526 }
527 
_update_task_closid_rmid(void * task)528 static void _update_task_closid_rmid(void *task)
529 {
530 	/*
531 	 * If the task is still current on this CPU, update PQR_ASSOC MSR.
532 	 * Otherwise, the MSR is updated when the task is scheduled in.
533 	 */
534 	if (task == current)
535 		resctrl_sched_in(task);
536 }
537 
update_task_closid_rmid(struct task_struct * t)538 static void update_task_closid_rmid(struct task_struct *t)
539 {
540 	if (IS_ENABLED(CONFIG_SMP) && task_curr(t))
541 		smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1);
542 	else
543 		_update_task_closid_rmid(t);
544 }
545 
__rdtgroup_move_task(struct task_struct * tsk,struct rdtgroup * rdtgrp)546 static int __rdtgroup_move_task(struct task_struct *tsk,
547 				struct rdtgroup *rdtgrp)
548 {
549 	/* If the task is already in rdtgrp, no need to move the task. */
550 	if ((rdtgrp->type == RDTCTRL_GROUP && tsk->closid == rdtgrp->closid &&
551 	     tsk->rmid == rdtgrp->mon.rmid) ||
552 	    (rdtgrp->type == RDTMON_GROUP && tsk->rmid == rdtgrp->mon.rmid &&
553 	     tsk->closid == rdtgrp->mon.parent->closid))
554 		return 0;
555 
556 	/*
557 	 * Set the task's closid/rmid before the PQR_ASSOC MSR can be
558 	 * updated by them.
559 	 *
560 	 * For ctrl_mon groups, move both closid and rmid.
561 	 * For monitor groups, can move the tasks only from
562 	 * their parent CTRL group.
563 	 */
564 
565 	if (rdtgrp->type == RDTCTRL_GROUP) {
566 		WRITE_ONCE(tsk->closid, rdtgrp->closid);
567 		WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
568 	} else if (rdtgrp->type == RDTMON_GROUP) {
569 		if (rdtgrp->mon.parent->closid == tsk->closid) {
570 			WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
571 		} else {
572 			rdt_last_cmd_puts("Can't move task to different control group\n");
573 			return -EINVAL;
574 		}
575 	}
576 
577 	/*
578 	 * Ensure the task's closid and rmid are written before determining if
579 	 * the task is current that will decide if it will be interrupted.
580 	 * This pairs with the full barrier between the rq->curr update and
581 	 * resctrl_sched_in() during context switch.
582 	 */
583 	smp_mb();
584 
585 	/*
586 	 * By now, the task's closid and rmid are set. If the task is current
587 	 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
588 	 * group go into effect. If the task is not current, the MSR will be
589 	 * updated when the task is scheduled in.
590 	 */
591 	update_task_closid_rmid(tsk);
592 
593 	return 0;
594 }
595 
is_closid_match(struct task_struct * t,struct rdtgroup * r)596 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
597 {
598 	return (rdt_alloc_capable &&
599 	       (r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
600 }
601 
is_rmid_match(struct task_struct * t,struct rdtgroup * r)602 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
603 {
604 	return (rdt_mon_capable &&
605 	       (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
606 }
607 
608 /**
609  * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
610  * @r: Resource group
611  *
612  * Return: 1 if tasks have been assigned to @r, 0 otherwise
613  */
rdtgroup_tasks_assigned(struct rdtgroup * r)614 int rdtgroup_tasks_assigned(struct rdtgroup *r)
615 {
616 	struct task_struct *p, *t;
617 	int ret = 0;
618 
619 	lockdep_assert_held(&rdtgroup_mutex);
620 
621 	rcu_read_lock();
622 	for_each_process_thread(p, t) {
623 		if (is_closid_match(t, r) || is_rmid_match(t, r)) {
624 			ret = 1;
625 			break;
626 		}
627 	}
628 	rcu_read_unlock();
629 
630 	return ret;
631 }
632 
rdtgroup_task_write_permission(struct task_struct * task,struct kernfs_open_file * of)633 static int rdtgroup_task_write_permission(struct task_struct *task,
634 					  struct kernfs_open_file *of)
635 {
636 	const struct cred *tcred = get_task_cred(task);
637 	const struct cred *cred = current_cred();
638 	int ret = 0;
639 
640 	/*
641 	 * Even if we're attaching all tasks in the thread group, we only
642 	 * need to check permissions on one of them.
643 	 */
644 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
645 	    !uid_eq(cred->euid, tcred->uid) &&
646 	    !uid_eq(cred->euid, tcred->suid)) {
647 		rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
648 		ret = -EPERM;
649 	}
650 
651 	put_cred(tcred);
652 	return ret;
653 }
654 
rdtgroup_move_task(pid_t pid,struct rdtgroup * rdtgrp,struct kernfs_open_file * of)655 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
656 			      struct kernfs_open_file *of)
657 {
658 	struct task_struct *tsk;
659 	int ret;
660 
661 	rcu_read_lock();
662 	if (pid) {
663 		tsk = find_task_by_vpid(pid);
664 		if (!tsk) {
665 			rcu_read_unlock();
666 			rdt_last_cmd_printf("No task %d\n", pid);
667 			return -ESRCH;
668 		}
669 	} else {
670 		tsk = current;
671 	}
672 
673 	get_task_struct(tsk);
674 	rcu_read_unlock();
675 
676 	ret = rdtgroup_task_write_permission(tsk, of);
677 	if (!ret)
678 		ret = __rdtgroup_move_task(tsk, rdtgrp);
679 
680 	put_task_struct(tsk);
681 	return ret;
682 }
683 
rdtgroup_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)684 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
685 				    char *buf, size_t nbytes, loff_t off)
686 {
687 	struct rdtgroup *rdtgrp;
688 	int ret = 0;
689 	pid_t pid;
690 
691 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
692 		return -EINVAL;
693 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
694 	if (!rdtgrp) {
695 		rdtgroup_kn_unlock(of->kn);
696 		return -ENOENT;
697 	}
698 	rdt_last_cmd_clear();
699 
700 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
701 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
702 		ret = -EINVAL;
703 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
704 		goto unlock;
705 	}
706 
707 	ret = rdtgroup_move_task(pid, rdtgrp, of);
708 
709 unlock:
710 	rdtgroup_kn_unlock(of->kn);
711 
712 	return ret ?: nbytes;
713 }
714 
show_rdt_tasks(struct rdtgroup * r,struct seq_file * s)715 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
716 {
717 	struct task_struct *p, *t;
718 
719 	rcu_read_lock();
720 	for_each_process_thread(p, t) {
721 		if (is_closid_match(t, r) || is_rmid_match(t, r))
722 			seq_printf(s, "%d\n", t->pid);
723 	}
724 	rcu_read_unlock();
725 }
726 
rdtgroup_tasks_show(struct kernfs_open_file * of,struct seq_file * s,void * v)727 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
728 			       struct seq_file *s, void *v)
729 {
730 	struct rdtgroup *rdtgrp;
731 	int ret = 0;
732 
733 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
734 	if (rdtgrp)
735 		show_rdt_tasks(rdtgrp, s);
736 	else
737 		ret = -ENOENT;
738 	rdtgroup_kn_unlock(of->kn);
739 
740 	return ret;
741 }
742 
743 #ifdef CONFIG_PROC_CPU_RESCTRL
744 
745 /*
746  * A task can only be part of one resctrl control group and of one monitor
747  * group which is associated to that control group.
748  *
749  * 1)   res:
750  *      mon:
751  *
752  *    resctrl is not available.
753  *
754  * 2)   res:/
755  *      mon:
756  *
757  *    Task is part of the root resctrl control group, and it is not associated
758  *    to any monitor group.
759  *
760  * 3)  res:/
761  *     mon:mon0
762  *
763  *    Task is part of the root resctrl control group and monitor group mon0.
764  *
765  * 4)  res:group0
766  *     mon:
767  *
768  *    Task is part of resctrl control group group0, and it is not associated
769  *    to any monitor group.
770  *
771  * 5) res:group0
772  *    mon:mon1
773  *
774  *    Task is part of resctrl control group group0 and monitor group mon1.
775  */
proc_resctrl_show(struct seq_file * s,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)776 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns,
777 		      struct pid *pid, struct task_struct *tsk)
778 {
779 	struct rdtgroup *rdtg;
780 	int ret = 0;
781 
782 	mutex_lock(&rdtgroup_mutex);
783 
784 	/* Return empty if resctrl has not been mounted. */
785 	if (!static_branch_unlikely(&rdt_enable_key)) {
786 		seq_puts(s, "res:\nmon:\n");
787 		goto unlock;
788 	}
789 
790 	list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) {
791 		struct rdtgroup *crg;
792 
793 		/*
794 		 * Task information is only relevant for shareable
795 		 * and exclusive groups.
796 		 */
797 		if (rdtg->mode != RDT_MODE_SHAREABLE &&
798 		    rdtg->mode != RDT_MODE_EXCLUSIVE)
799 			continue;
800 
801 		if (rdtg->closid != tsk->closid)
802 			continue;
803 
804 		seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "",
805 			   rdtg->kn->name);
806 		seq_puts(s, "mon:");
807 		list_for_each_entry(crg, &rdtg->mon.crdtgrp_list,
808 				    mon.crdtgrp_list) {
809 			if (tsk->rmid != crg->mon.rmid)
810 				continue;
811 			seq_printf(s, "%s", crg->kn->name);
812 			break;
813 		}
814 		seq_putc(s, '\n');
815 		goto unlock;
816 	}
817 	/*
818 	 * The above search should succeed. Otherwise return
819 	 * with an error.
820 	 */
821 	ret = -ENOENT;
822 unlock:
823 	mutex_unlock(&rdtgroup_mutex);
824 
825 	return ret;
826 }
827 #endif
828 
rdt_last_cmd_status_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)829 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
830 				    struct seq_file *seq, void *v)
831 {
832 	int len;
833 
834 	mutex_lock(&rdtgroup_mutex);
835 	len = seq_buf_used(&last_cmd_status);
836 	if (len)
837 		seq_printf(seq, "%.*s", len, last_cmd_status_buf);
838 	else
839 		seq_puts(seq, "ok\n");
840 	mutex_unlock(&rdtgroup_mutex);
841 	return 0;
842 }
843 
rdt_num_closids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)844 static int rdt_num_closids_show(struct kernfs_open_file *of,
845 				struct seq_file *seq, void *v)
846 {
847 	struct rdt_resource *r = of->kn->parent->priv;
848 
849 	seq_printf(seq, "%d\n", r->num_closid);
850 	return 0;
851 }
852 
rdt_default_ctrl_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)853 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
854 			     struct seq_file *seq, void *v)
855 {
856 	struct rdt_resource *r = of->kn->parent->priv;
857 
858 	seq_printf(seq, "%x\n", r->default_ctrl);
859 	return 0;
860 }
861 
rdt_min_cbm_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)862 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
863 			     struct seq_file *seq, void *v)
864 {
865 	struct rdt_resource *r = of->kn->parent->priv;
866 
867 	seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
868 	return 0;
869 }
870 
rdt_shareable_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)871 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
872 				   struct seq_file *seq, void *v)
873 {
874 	struct rdt_resource *r = of->kn->parent->priv;
875 
876 	seq_printf(seq, "%x\n", r->cache.shareable_bits);
877 	return 0;
878 }
879 
880 /**
881  * rdt_bit_usage_show - Display current usage of resources
882  *
883  * A domain is a shared resource that can now be allocated differently. Here
884  * we display the current regions of the domain as an annotated bitmask.
885  * For each domain of this resource its allocation bitmask
886  * is annotated as below to indicate the current usage of the corresponding bit:
887  *   0 - currently unused
888  *   X - currently available for sharing and used by software and hardware
889  *   H - currently used by hardware only but available for software use
890  *   S - currently used and shareable by software only
891  *   E - currently used exclusively by one resource group
892  *   P - currently pseudo-locked by one resource group
893  */
rdt_bit_usage_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)894 static int rdt_bit_usage_show(struct kernfs_open_file *of,
895 			      struct seq_file *seq, void *v)
896 {
897 	struct rdt_resource *r = of->kn->parent->priv;
898 	/*
899 	 * Use unsigned long even though only 32 bits are used to ensure
900 	 * test_bit() is used safely.
901 	 */
902 	unsigned long sw_shareable = 0, hw_shareable = 0;
903 	unsigned long exclusive = 0, pseudo_locked = 0;
904 	struct rdt_domain *dom;
905 	int i, hwb, swb, excl, psl;
906 	enum rdtgrp_mode mode;
907 	bool sep = false;
908 	u32 *ctrl;
909 
910 	mutex_lock(&rdtgroup_mutex);
911 	hw_shareable = r->cache.shareable_bits;
912 	list_for_each_entry(dom, &r->domains, list) {
913 		if (sep)
914 			seq_putc(seq, ';');
915 		ctrl = dom->ctrl_val;
916 		sw_shareable = 0;
917 		exclusive = 0;
918 		seq_printf(seq, "%d=", dom->id);
919 		for (i = 0; i < closids_supported(); i++, ctrl++) {
920 			if (!closid_allocated(i))
921 				continue;
922 			mode = rdtgroup_mode_by_closid(i);
923 			switch (mode) {
924 			case RDT_MODE_SHAREABLE:
925 				sw_shareable |= *ctrl;
926 				break;
927 			case RDT_MODE_EXCLUSIVE:
928 				exclusive |= *ctrl;
929 				break;
930 			case RDT_MODE_PSEUDO_LOCKSETUP:
931 			/*
932 			 * RDT_MODE_PSEUDO_LOCKSETUP is possible
933 			 * here but not included since the CBM
934 			 * associated with this CLOSID in this mode
935 			 * is not initialized and no task or cpu can be
936 			 * assigned this CLOSID.
937 			 */
938 				break;
939 			case RDT_MODE_PSEUDO_LOCKED:
940 			case RDT_NUM_MODES:
941 				WARN(1,
942 				     "invalid mode for closid %d\n", i);
943 				break;
944 			}
945 		}
946 		for (i = r->cache.cbm_len - 1; i >= 0; i--) {
947 			pseudo_locked = dom->plr ? dom->plr->cbm : 0;
948 			hwb = test_bit(i, &hw_shareable);
949 			swb = test_bit(i, &sw_shareable);
950 			excl = test_bit(i, &exclusive);
951 			psl = test_bit(i, &pseudo_locked);
952 			if (hwb && swb)
953 				seq_putc(seq, 'X');
954 			else if (hwb && !swb)
955 				seq_putc(seq, 'H');
956 			else if (!hwb && swb)
957 				seq_putc(seq, 'S');
958 			else if (excl)
959 				seq_putc(seq, 'E');
960 			else if (psl)
961 				seq_putc(seq, 'P');
962 			else /* Unused bits remain */
963 				seq_putc(seq, '0');
964 		}
965 		sep = true;
966 	}
967 	seq_putc(seq, '\n');
968 	mutex_unlock(&rdtgroup_mutex);
969 	return 0;
970 }
971 
rdt_min_bw_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)972 static int rdt_min_bw_show(struct kernfs_open_file *of,
973 			     struct seq_file *seq, void *v)
974 {
975 	struct rdt_resource *r = of->kn->parent->priv;
976 
977 	seq_printf(seq, "%u\n", r->membw.min_bw);
978 	return 0;
979 }
980 
rdt_num_rmids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)981 static int rdt_num_rmids_show(struct kernfs_open_file *of,
982 			      struct seq_file *seq, void *v)
983 {
984 	struct rdt_resource *r = of->kn->parent->priv;
985 
986 	seq_printf(seq, "%d\n", r->num_rmid);
987 
988 	return 0;
989 }
990 
rdt_mon_features_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)991 static int rdt_mon_features_show(struct kernfs_open_file *of,
992 				 struct seq_file *seq, void *v)
993 {
994 	struct rdt_resource *r = of->kn->parent->priv;
995 	struct mon_evt *mevt;
996 
997 	list_for_each_entry(mevt, &r->evt_list, list)
998 		seq_printf(seq, "%s\n", mevt->name);
999 
1000 	return 0;
1001 }
1002 
rdt_bw_gran_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1003 static int rdt_bw_gran_show(struct kernfs_open_file *of,
1004 			     struct seq_file *seq, void *v)
1005 {
1006 	struct rdt_resource *r = of->kn->parent->priv;
1007 
1008 	seq_printf(seq, "%u\n", r->membw.bw_gran);
1009 	return 0;
1010 }
1011 
rdt_delay_linear_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1012 static int rdt_delay_linear_show(struct kernfs_open_file *of,
1013 			     struct seq_file *seq, void *v)
1014 {
1015 	struct rdt_resource *r = of->kn->parent->priv;
1016 
1017 	seq_printf(seq, "%u\n", r->membw.delay_linear);
1018 	return 0;
1019 }
1020 
max_threshold_occ_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1021 static int max_threshold_occ_show(struct kernfs_open_file *of,
1022 				  struct seq_file *seq, void *v)
1023 {
1024 	struct rdt_resource *r = of->kn->parent->priv;
1025 
1026 	seq_printf(seq, "%u\n", resctrl_cqm_threshold * r->mon_scale);
1027 
1028 	return 0;
1029 }
1030 
rdt_thread_throttle_mode_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1031 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of,
1032 					 struct seq_file *seq, void *v)
1033 {
1034 	struct rdt_resource *r = of->kn->parent->priv;
1035 
1036 	if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD)
1037 		seq_puts(seq, "per-thread\n");
1038 	else
1039 		seq_puts(seq, "max\n");
1040 
1041 	return 0;
1042 }
1043 
max_threshold_occ_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1044 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
1045 				       char *buf, size_t nbytes, loff_t off)
1046 {
1047 	struct rdt_resource *r = of->kn->parent->priv;
1048 	unsigned int bytes;
1049 	int ret;
1050 
1051 	ret = kstrtouint(buf, 0, &bytes);
1052 	if (ret)
1053 		return ret;
1054 
1055 	if (bytes > (boot_cpu_data.x86_cache_size * 1024))
1056 		return -EINVAL;
1057 
1058 	resctrl_cqm_threshold = bytes / r->mon_scale;
1059 
1060 	return nbytes;
1061 }
1062 
1063 /*
1064  * rdtgroup_mode_show - Display mode of this resource group
1065  */
rdtgroup_mode_show(struct kernfs_open_file * of,struct seq_file * s,void * v)1066 static int rdtgroup_mode_show(struct kernfs_open_file *of,
1067 			      struct seq_file *s, void *v)
1068 {
1069 	struct rdtgroup *rdtgrp;
1070 
1071 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1072 	if (!rdtgrp) {
1073 		rdtgroup_kn_unlock(of->kn);
1074 		return -ENOENT;
1075 	}
1076 
1077 	seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
1078 
1079 	rdtgroup_kn_unlock(of->kn);
1080 	return 0;
1081 }
1082 
1083 /**
1084  * rdt_cdp_peer_get - Retrieve CDP peer if it exists
1085  * @r: RDT resource to which RDT domain @d belongs
1086  * @d: Cache instance for which a CDP peer is requested
1087  * @r_cdp: RDT resource that shares hardware with @r (RDT resource peer)
1088  *         Used to return the result.
1089  * @d_cdp: RDT domain that shares hardware with @d (RDT domain peer)
1090  *         Used to return the result.
1091  *
1092  * RDT resources are managed independently and by extension the RDT domains
1093  * (RDT resource instances) are managed independently also. The Code and
1094  * Data Prioritization (CDP) RDT resources, while managed independently,
1095  * could refer to the same underlying hardware. For example,
1096  * RDT_RESOURCE_L2CODE and RDT_RESOURCE_L2DATA both refer to the L2 cache.
1097  *
1098  * When provided with an RDT resource @r and an instance of that RDT
1099  * resource @d rdt_cdp_peer_get() will return if there is a peer RDT
1100  * resource and the exact instance that shares the same hardware.
1101  *
1102  * Return: 0 if a CDP peer was found, <0 on error or if no CDP peer exists.
1103  *         If a CDP peer was found, @r_cdp will point to the peer RDT resource
1104  *         and @d_cdp will point to the peer RDT domain.
1105  */
rdt_cdp_peer_get(struct rdt_resource * r,struct rdt_domain * d,struct rdt_resource ** r_cdp,struct rdt_domain ** d_cdp)1106 static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d,
1107 			    struct rdt_resource **r_cdp,
1108 			    struct rdt_domain **d_cdp)
1109 {
1110 	struct rdt_resource *_r_cdp = NULL;
1111 	struct rdt_domain *_d_cdp = NULL;
1112 	int ret = 0;
1113 
1114 	switch (r->rid) {
1115 	case RDT_RESOURCE_L3DATA:
1116 		_r_cdp = &rdt_resources_all[RDT_RESOURCE_L3CODE];
1117 		break;
1118 	case RDT_RESOURCE_L3CODE:
1119 		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L3DATA];
1120 		break;
1121 	case RDT_RESOURCE_L2DATA:
1122 		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L2CODE];
1123 		break;
1124 	case RDT_RESOURCE_L2CODE:
1125 		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L2DATA];
1126 		break;
1127 	default:
1128 		ret = -ENOENT;
1129 		goto out;
1130 	}
1131 
1132 	/*
1133 	 * When a new CPU comes online and CDP is enabled then the new
1134 	 * RDT domains (if any) associated with both CDP RDT resources
1135 	 * are added in the same CPU online routine while the
1136 	 * rdtgroup_mutex is held. It should thus not happen for one
1137 	 * RDT domain to exist and be associated with its RDT CDP
1138 	 * resource but there is no RDT domain associated with the
1139 	 * peer RDT CDP resource. Hence the WARN.
1140 	 */
1141 	_d_cdp = rdt_find_domain(_r_cdp, d->id, NULL);
1142 	if (WARN_ON(IS_ERR_OR_NULL(_d_cdp))) {
1143 		_r_cdp = NULL;
1144 		_d_cdp = NULL;
1145 		ret = -EINVAL;
1146 	}
1147 
1148 out:
1149 	*r_cdp = _r_cdp;
1150 	*d_cdp = _d_cdp;
1151 
1152 	return ret;
1153 }
1154 
1155 /**
1156  * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1157  * @r: Resource to which domain instance @d belongs.
1158  * @d: The domain instance for which @closid is being tested.
1159  * @cbm: Capacity bitmask being tested.
1160  * @closid: Intended closid for @cbm.
1161  * @exclusive: Only check if overlaps with exclusive resource groups
1162  *
1163  * Checks if provided @cbm intended to be used for @closid on domain
1164  * @d overlaps with any other closids or other hardware usage associated
1165  * with this domain. If @exclusive is true then only overlaps with
1166  * resource groups in exclusive mode will be considered. If @exclusive
1167  * is false then overlaps with any resource group or hardware entities
1168  * will be considered.
1169  *
1170  * @cbm is unsigned long, even if only 32 bits are used, to make the
1171  * bitmap functions work correctly.
1172  *
1173  * Return: false if CBM does not overlap, true if it does.
1174  */
__rdtgroup_cbm_overlaps(struct rdt_resource * r,struct rdt_domain * d,unsigned long cbm,int closid,bool exclusive)1175 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1176 				    unsigned long cbm, int closid, bool exclusive)
1177 {
1178 	enum rdtgrp_mode mode;
1179 	unsigned long ctrl_b;
1180 	u32 *ctrl;
1181 	int i;
1182 
1183 	/* Check for any overlap with regions used by hardware directly */
1184 	if (!exclusive) {
1185 		ctrl_b = r->cache.shareable_bits;
1186 		if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1187 			return true;
1188 	}
1189 
1190 	/* Check for overlap with other resource groups */
1191 	ctrl = d->ctrl_val;
1192 	for (i = 0; i < closids_supported(); i++, ctrl++) {
1193 		ctrl_b = *ctrl;
1194 		mode = rdtgroup_mode_by_closid(i);
1195 		if (closid_allocated(i) && i != closid &&
1196 		    mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1197 			if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1198 				if (exclusive) {
1199 					if (mode == RDT_MODE_EXCLUSIVE)
1200 						return true;
1201 					continue;
1202 				}
1203 				return true;
1204 			}
1205 		}
1206 	}
1207 
1208 	return false;
1209 }
1210 
1211 /**
1212  * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1213  * @r: Resource to which domain instance @d belongs.
1214  * @d: The domain instance for which @closid is being tested.
1215  * @cbm: Capacity bitmask being tested.
1216  * @closid: Intended closid for @cbm.
1217  * @exclusive: Only check if overlaps with exclusive resource groups
1218  *
1219  * Resources that can be allocated using a CBM can use the CBM to control
1220  * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1221  * for overlap. Overlap test is not limited to the specific resource for
1222  * which the CBM is intended though - when dealing with CDP resources that
1223  * share the underlying hardware the overlap check should be performed on
1224  * the CDP resource sharing the hardware also.
1225  *
1226  * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1227  * overlap test.
1228  *
1229  * Return: true if CBM overlap detected, false if there is no overlap
1230  */
rdtgroup_cbm_overlaps(struct rdt_resource * r,struct rdt_domain * d,unsigned long cbm,int closid,bool exclusive)1231 bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1232 			   unsigned long cbm, int closid, bool exclusive)
1233 {
1234 	struct rdt_resource *r_cdp;
1235 	struct rdt_domain *d_cdp;
1236 
1237 	if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, exclusive))
1238 		return true;
1239 
1240 	if (rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp) < 0)
1241 		return false;
1242 
1243 	return  __rdtgroup_cbm_overlaps(r_cdp, d_cdp, cbm, closid, exclusive);
1244 }
1245 
1246 /**
1247  * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1248  *
1249  * An exclusive resource group implies that there should be no sharing of
1250  * its allocated resources. At the time this group is considered to be
1251  * exclusive this test can determine if its current schemata supports this
1252  * setting by testing for overlap with all other resource groups.
1253  *
1254  * Return: true if resource group can be exclusive, false if there is overlap
1255  * with allocations of other resource groups and thus this resource group
1256  * cannot be exclusive.
1257  */
rdtgroup_mode_test_exclusive(struct rdtgroup * rdtgrp)1258 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1259 {
1260 	int closid = rdtgrp->closid;
1261 	struct rdt_resource *r;
1262 	bool has_cache = false;
1263 	struct rdt_domain *d;
1264 
1265 	for_each_alloc_enabled_rdt_resource(r) {
1266 		if (r->rid == RDT_RESOURCE_MBA)
1267 			continue;
1268 		has_cache = true;
1269 		list_for_each_entry(d, &r->domains, list) {
1270 			if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid],
1271 						  rdtgrp->closid, false)) {
1272 				rdt_last_cmd_puts("Schemata overlaps\n");
1273 				return false;
1274 			}
1275 		}
1276 	}
1277 
1278 	if (!has_cache) {
1279 		rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1280 		return false;
1281 	}
1282 
1283 	return true;
1284 }
1285 
1286 /**
1287  * rdtgroup_mode_write - Modify the resource group's mode
1288  *
1289  */
rdtgroup_mode_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1290 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1291 				   char *buf, size_t nbytes, loff_t off)
1292 {
1293 	struct rdtgroup *rdtgrp;
1294 	enum rdtgrp_mode mode;
1295 	int ret = 0;
1296 
1297 	/* Valid input requires a trailing newline */
1298 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1299 		return -EINVAL;
1300 	buf[nbytes - 1] = '\0';
1301 
1302 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1303 	if (!rdtgrp) {
1304 		rdtgroup_kn_unlock(of->kn);
1305 		return -ENOENT;
1306 	}
1307 
1308 	rdt_last_cmd_clear();
1309 
1310 	mode = rdtgrp->mode;
1311 
1312 	if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1313 	    (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1314 	    (!strcmp(buf, "pseudo-locksetup") &&
1315 	     mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1316 	    (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1317 		goto out;
1318 
1319 	if (mode == RDT_MODE_PSEUDO_LOCKED) {
1320 		rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1321 		ret = -EINVAL;
1322 		goto out;
1323 	}
1324 
1325 	if (!strcmp(buf, "shareable")) {
1326 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1327 			ret = rdtgroup_locksetup_exit(rdtgrp);
1328 			if (ret)
1329 				goto out;
1330 		}
1331 		rdtgrp->mode = RDT_MODE_SHAREABLE;
1332 	} else if (!strcmp(buf, "exclusive")) {
1333 		if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1334 			ret = -EINVAL;
1335 			goto out;
1336 		}
1337 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1338 			ret = rdtgroup_locksetup_exit(rdtgrp);
1339 			if (ret)
1340 				goto out;
1341 		}
1342 		rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1343 	} else if (!strcmp(buf, "pseudo-locksetup")) {
1344 		ret = rdtgroup_locksetup_enter(rdtgrp);
1345 		if (ret)
1346 			goto out;
1347 		rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1348 	} else {
1349 		rdt_last_cmd_puts("Unknown or unsupported mode\n");
1350 		ret = -EINVAL;
1351 	}
1352 
1353 out:
1354 	rdtgroup_kn_unlock(of->kn);
1355 	return ret ?: nbytes;
1356 }
1357 
1358 /**
1359  * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1360  * @r: RDT resource to which @d belongs.
1361  * @d: RDT domain instance.
1362  * @cbm: bitmask for which the size should be computed.
1363  *
1364  * The bitmask provided associated with the RDT domain instance @d will be
1365  * translated into how many bytes it represents. The size in bytes is
1366  * computed by first dividing the total cache size by the CBM length to
1367  * determine how many bytes each bit in the bitmask represents. The result
1368  * is multiplied with the number of bits set in the bitmask.
1369  *
1370  * @cbm is unsigned long, even if only 32 bits are used to make the
1371  * bitmap functions work correctly.
1372  */
rdtgroup_cbm_to_size(struct rdt_resource * r,struct rdt_domain * d,unsigned long cbm)1373 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1374 				  struct rdt_domain *d, unsigned long cbm)
1375 {
1376 	struct cpu_cacheinfo *ci;
1377 	unsigned int size = 0;
1378 	int num_b, i;
1379 
1380 	num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1381 	ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1382 	for (i = 0; i < ci->num_leaves; i++) {
1383 		if (ci->info_list[i].level == r->cache_level) {
1384 			size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1385 			break;
1386 		}
1387 	}
1388 
1389 	return size;
1390 }
1391 
1392 /**
1393  * rdtgroup_size_show - Display size in bytes of allocated regions
1394  *
1395  * The "size" file mirrors the layout of the "schemata" file, printing the
1396  * size in bytes of each region instead of the capacity bitmask.
1397  *
1398  */
rdtgroup_size_show(struct kernfs_open_file * of,struct seq_file * s,void * v)1399 static int rdtgroup_size_show(struct kernfs_open_file *of,
1400 			      struct seq_file *s, void *v)
1401 {
1402 	struct rdtgroup *rdtgrp;
1403 	struct rdt_resource *r;
1404 	struct rdt_domain *d;
1405 	unsigned int size;
1406 	int ret = 0;
1407 	bool sep;
1408 	u32 ctrl;
1409 
1410 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1411 	if (!rdtgrp) {
1412 		rdtgroup_kn_unlock(of->kn);
1413 		return -ENOENT;
1414 	}
1415 
1416 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1417 		if (!rdtgrp->plr->d) {
1418 			rdt_last_cmd_clear();
1419 			rdt_last_cmd_puts("Cache domain offline\n");
1420 			ret = -ENODEV;
1421 		} else {
1422 			seq_printf(s, "%*s:", max_name_width,
1423 				   rdtgrp->plr->r->name);
1424 			size = rdtgroup_cbm_to_size(rdtgrp->plr->r,
1425 						    rdtgrp->plr->d,
1426 						    rdtgrp->plr->cbm);
1427 			seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1428 		}
1429 		goto out;
1430 	}
1431 
1432 	for_each_alloc_enabled_rdt_resource(r) {
1433 		sep = false;
1434 		seq_printf(s, "%*s:", max_name_width, r->name);
1435 		list_for_each_entry(d, &r->domains, list) {
1436 			if (sep)
1437 				seq_putc(s, ';');
1438 			if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1439 				size = 0;
1440 			} else {
1441 				ctrl = (!is_mba_sc(r) ?
1442 						d->ctrl_val[rdtgrp->closid] :
1443 						d->mbps_val[rdtgrp->closid]);
1444 				if (r->rid == RDT_RESOURCE_MBA)
1445 					size = ctrl;
1446 				else
1447 					size = rdtgroup_cbm_to_size(r, d, ctrl);
1448 			}
1449 			seq_printf(s, "%d=%u", d->id, size);
1450 			sep = true;
1451 		}
1452 		seq_putc(s, '\n');
1453 	}
1454 
1455 out:
1456 	rdtgroup_kn_unlock(of->kn);
1457 
1458 	return ret;
1459 }
1460 
1461 /* rdtgroup information files for one cache resource. */
1462 static struct rftype res_common_files[] = {
1463 	{
1464 		.name		= "last_cmd_status",
1465 		.mode		= 0444,
1466 		.kf_ops		= &rdtgroup_kf_single_ops,
1467 		.seq_show	= rdt_last_cmd_status_show,
1468 		.fflags		= RF_TOP_INFO,
1469 	},
1470 	{
1471 		.name		= "num_closids",
1472 		.mode		= 0444,
1473 		.kf_ops		= &rdtgroup_kf_single_ops,
1474 		.seq_show	= rdt_num_closids_show,
1475 		.fflags		= RF_CTRL_INFO,
1476 	},
1477 	{
1478 		.name		= "mon_features",
1479 		.mode		= 0444,
1480 		.kf_ops		= &rdtgroup_kf_single_ops,
1481 		.seq_show	= rdt_mon_features_show,
1482 		.fflags		= RF_MON_INFO,
1483 	},
1484 	{
1485 		.name		= "num_rmids",
1486 		.mode		= 0444,
1487 		.kf_ops		= &rdtgroup_kf_single_ops,
1488 		.seq_show	= rdt_num_rmids_show,
1489 		.fflags		= RF_MON_INFO,
1490 	},
1491 	{
1492 		.name		= "cbm_mask",
1493 		.mode		= 0444,
1494 		.kf_ops		= &rdtgroup_kf_single_ops,
1495 		.seq_show	= rdt_default_ctrl_show,
1496 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1497 	},
1498 	{
1499 		.name		= "min_cbm_bits",
1500 		.mode		= 0444,
1501 		.kf_ops		= &rdtgroup_kf_single_ops,
1502 		.seq_show	= rdt_min_cbm_bits_show,
1503 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1504 	},
1505 	{
1506 		.name		= "shareable_bits",
1507 		.mode		= 0444,
1508 		.kf_ops		= &rdtgroup_kf_single_ops,
1509 		.seq_show	= rdt_shareable_bits_show,
1510 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1511 	},
1512 	{
1513 		.name		= "bit_usage",
1514 		.mode		= 0444,
1515 		.kf_ops		= &rdtgroup_kf_single_ops,
1516 		.seq_show	= rdt_bit_usage_show,
1517 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1518 	},
1519 	{
1520 		.name		= "min_bandwidth",
1521 		.mode		= 0444,
1522 		.kf_ops		= &rdtgroup_kf_single_ops,
1523 		.seq_show	= rdt_min_bw_show,
1524 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1525 	},
1526 	{
1527 		.name		= "bandwidth_gran",
1528 		.mode		= 0444,
1529 		.kf_ops		= &rdtgroup_kf_single_ops,
1530 		.seq_show	= rdt_bw_gran_show,
1531 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1532 	},
1533 	{
1534 		.name		= "delay_linear",
1535 		.mode		= 0444,
1536 		.kf_ops		= &rdtgroup_kf_single_ops,
1537 		.seq_show	= rdt_delay_linear_show,
1538 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1539 	},
1540 	/*
1541 	 * Platform specific which (if any) capabilities are provided by
1542 	 * thread_throttle_mode. Defer "fflags" initialization to platform
1543 	 * discovery.
1544 	 */
1545 	{
1546 		.name		= "thread_throttle_mode",
1547 		.mode		= 0444,
1548 		.kf_ops		= &rdtgroup_kf_single_ops,
1549 		.seq_show	= rdt_thread_throttle_mode_show,
1550 	},
1551 	{
1552 		.name		= "max_threshold_occupancy",
1553 		.mode		= 0644,
1554 		.kf_ops		= &rdtgroup_kf_single_ops,
1555 		.write		= max_threshold_occ_write,
1556 		.seq_show	= max_threshold_occ_show,
1557 		.fflags		= RF_MON_INFO | RFTYPE_RES_CACHE,
1558 	},
1559 	{
1560 		.name		= "cpus",
1561 		.mode		= 0644,
1562 		.kf_ops		= &rdtgroup_kf_single_ops,
1563 		.write		= rdtgroup_cpus_write,
1564 		.seq_show	= rdtgroup_cpus_show,
1565 		.fflags		= RFTYPE_BASE,
1566 	},
1567 	{
1568 		.name		= "cpus_list",
1569 		.mode		= 0644,
1570 		.kf_ops		= &rdtgroup_kf_single_ops,
1571 		.write		= rdtgroup_cpus_write,
1572 		.seq_show	= rdtgroup_cpus_show,
1573 		.flags		= RFTYPE_FLAGS_CPUS_LIST,
1574 		.fflags		= RFTYPE_BASE,
1575 	},
1576 	{
1577 		.name		= "tasks",
1578 		.mode		= 0644,
1579 		.kf_ops		= &rdtgroup_kf_single_ops,
1580 		.write		= rdtgroup_tasks_write,
1581 		.seq_show	= rdtgroup_tasks_show,
1582 		.fflags		= RFTYPE_BASE,
1583 	},
1584 	{
1585 		.name		= "schemata",
1586 		.mode		= 0644,
1587 		.kf_ops		= &rdtgroup_kf_single_ops,
1588 		.write		= rdtgroup_schemata_write,
1589 		.seq_show	= rdtgroup_schemata_show,
1590 		.fflags		= RF_CTRL_BASE,
1591 	},
1592 	{
1593 		.name		= "mode",
1594 		.mode		= 0644,
1595 		.kf_ops		= &rdtgroup_kf_single_ops,
1596 		.write		= rdtgroup_mode_write,
1597 		.seq_show	= rdtgroup_mode_show,
1598 		.fflags		= RF_CTRL_BASE,
1599 	},
1600 	{
1601 		.name		= "size",
1602 		.mode		= 0444,
1603 		.kf_ops		= &rdtgroup_kf_single_ops,
1604 		.seq_show	= rdtgroup_size_show,
1605 		.fflags		= RF_CTRL_BASE,
1606 	},
1607 
1608 };
1609 
rdtgroup_add_files(struct kernfs_node * kn,unsigned long fflags)1610 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1611 {
1612 	struct rftype *rfts, *rft;
1613 	int ret, len;
1614 
1615 	rfts = res_common_files;
1616 	len = ARRAY_SIZE(res_common_files);
1617 
1618 	lockdep_assert_held(&rdtgroup_mutex);
1619 
1620 	for (rft = rfts; rft < rfts + len; rft++) {
1621 		if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) {
1622 			ret = rdtgroup_add_file(kn, rft);
1623 			if (ret)
1624 				goto error;
1625 		}
1626 	}
1627 
1628 	return 0;
1629 error:
1630 	pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1631 	while (--rft >= rfts) {
1632 		if ((fflags & rft->fflags) == rft->fflags)
1633 			kernfs_remove_by_name(kn, rft->name);
1634 	}
1635 	return ret;
1636 }
1637 
rdtgroup_get_rftype_by_name(const char * name)1638 static struct rftype *rdtgroup_get_rftype_by_name(const char *name)
1639 {
1640 	struct rftype *rfts, *rft;
1641 	int len;
1642 
1643 	rfts = res_common_files;
1644 	len = ARRAY_SIZE(res_common_files);
1645 
1646 	for (rft = rfts; rft < rfts + len; rft++) {
1647 		if (!strcmp(rft->name, name))
1648 			return rft;
1649 	}
1650 
1651 	return NULL;
1652 }
1653 
thread_throttle_mode_init(void)1654 void __init thread_throttle_mode_init(void)
1655 {
1656 	struct rftype *rft;
1657 
1658 	rft = rdtgroup_get_rftype_by_name("thread_throttle_mode");
1659 	if (!rft)
1660 		return;
1661 
1662 	rft->fflags = RF_CTRL_INFO | RFTYPE_RES_MB;
1663 }
1664 
1665 /**
1666  * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
1667  * @r: The resource group with which the file is associated.
1668  * @name: Name of the file
1669  *
1670  * The permissions of named resctrl file, directory, or link are modified
1671  * to not allow read, write, or execute by any user.
1672  *
1673  * WARNING: This function is intended to communicate to the user that the
1674  * resctrl file has been locked down - that it is not relevant to the
1675  * particular state the system finds itself in. It should not be relied
1676  * on to protect from user access because after the file's permissions
1677  * are restricted the user can still change the permissions using chmod
1678  * from the command line.
1679  *
1680  * Return: 0 on success, <0 on failure.
1681  */
rdtgroup_kn_mode_restrict(struct rdtgroup * r,const char * name)1682 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
1683 {
1684 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
1685 	struct kernfs_node *kn;
1686 	int ret = 0;
1687 
1688 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1689 	if (!kn)
1690 		return -ENOENT;
1691 
1692 	switch (kernfs_type(kn)) {
1693 	case KERNFS_DIR:
1694 		iattr.ia_mode = S_IFDIR;
1695 		break;
1696 	case KERNFS_FILE:
1697 		iattr.ia_mode = S_IFREG;
1698 		break;
1699 	case KERNFS_LINK:
1700 		iattr.ia_mode = S_IFLNK;
1701 		break;
1702 	}
1703 
1704 	ret = kernfs_setattr(kn, &iattr);
1705 	kernfs_put(kn);
1706 	return ret;
1707 }
1708 
1709 /**
1710  * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
1711  * @r: The resource group with which the file is associated.
1712  * @name: Name of the file
1713  * @mask: Mask of permissions that should be restored
1714  *
1715  * Restore the permissions of the named file. If @name is a directory the
1716  * permissions of its parent will be used.
1717  *
1718  * Return: 0 on success, <0 on failure.
1719  */
rdtgroup_kn_mode_restore(struct rdtgroup * r,const char * name,umode_t mask)1720 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
1721 			     umode_t mask)
1722 {
1723 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
1724 	struct kernfs_node *kn, *parent;
1725 	struct rftype *rfts, *rft;
1726 	int ret, len;
1727 
1728 	rfts = res_common_files;
1729 	len = ARRAY_SIZE(res_common_files);
1730 
1731 	for (rft = rfts; rft < rfts + len; rft++) {
1732 		if (!strcmp(rft->name, name))
1733 			iattr.ia_mode = rft->mode & mask;
1734 	}
1735 
1736 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1737 	if (!kn)
1738 		return -ENOENT;
1739 
1740 	switch (kernfs_type(kn)) {
1741 	case KERNFS_DIR:
1742 		parent = kernfs_get_parent(kn);
1743 		if (parent) {
1744 			iattr.ia_mode |= parent->mode;
1745 			kernfs_put(parent);
1746 		}
1747 		iattr.ia_mode |= S_IFDIR;
1748 		break;
1749 	case KERNFS_FILE:
1750 		iattr.ia_mode |= S_IFREG;
1751 		break;
1752 	case KERNFS_LINK:
1753 		iattr.ia_mode |= S_IFLNK;
1754 		break;
1755 	}
1756 
1757 	ret = kernfs_setattr(kn, &iattr);
1758 	kernfs_put(kn);
1759 	return ret;
1760 }
1761 
rdtgroup_mkdir_info_resdir(struct rdt_resource * r,char * name,unsigned long fflags)1762 static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name,
1763 				      unsigned long fflags)
1764 {
1765 	struct kernfs_node *kn_subdir;
1766 	int ret;
1767 
1768 	kn_subdir = kernfs_create_dir(kn_info, name,
1769 				      kn_info->mode, r);
1770 	if (IS_ERR(kn_subdir))
1771 		return PTR_ERR(kn_subdir);
1772 
1773 	ret = rdtgroup_kn_set_ugid(kn_subdir);
1774 	if (ret)
1775 		return ret;
1776 
1777 	ret = rdtgroup_add_files(kn_subdir, fflags);
1778 	if (!ret)
1779 		kernfs_activate(kn_subdir);
1780 
1781 	return ret;
1782 }
1783 
rdtgroup_create_info_dir(struct kernfs_node * parent_kn)1784 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
1785 {
1786 	struct rdt_resource *r;
1787 	unsigned long fflags;
1788 	char name[32];
1789 	int ret;
1790 
1791 	/* create the directory */
1792 	kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
1793 	if (IS_ERR(kn_info))
1794 		return PTR_ERR(kn_info);
1795 
1796 	ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
1797 	if (ret)
1798 		goto out_destroy;
1799 
1800 	for_each_alloc_enabled_rdt_resource(r) {
1801 		fflags =  r->fflags | RF_CTRL_INFO;
1802 		ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags);
1803 		if (ret)
1804 			goto out_destroy;
1805 	}
1806 
1807 	for_each_mon_enabled_rdt_resource(r) {
1808 		fflags =  r->fflags | RF_MON_INFO;
1809 		sprintf(name, "%s_MON", r->name);
1810 		ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
1811 		if (ret)
1812 			goto out_destroy;
1813 	}
1814 
1815 	ret = rdtgroup_kn_set_ugid(kn_info);
1816 	if (ret)
1817 		goto out_destroy;
1818 
1819 	kernfs_activate(kn_info);
1820 
1821 	return 0;
1822 
1823 out_destroy:
1824 	kernfs_remove(kn_info);
1825 	return ret;
1826 }
1827 
1828 static int
mongroup_create_dir(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,char * name,struct kernfs_node ** dest_kn)1829 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
1830 		    char *name, struct kernfs_node **dest_kn)
1831 {
1832 	struct kernfs_node *kn;
1833 	int ret;
1834 
1835 	/* create the directory */
1836 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
1837 	if (IS_ERR(kn))
1838 		return PTR_ERR(kn);
1839 
1840 	if (dest_kn)
1841 		*dest_kn = kn;
1842 
1843 	ret = rdtgroup_kn_set_ugid(kn);
1844 	if (ret)
1845 		goto out_destroy;
1846 
1847 	kernfs_activate(kn);
1848 
1849 	return 0;
1850 
1851 out_destroy:
1852 	kernfs_remove(kn);
1853 	return ret;
1854 }
1855 
l3_qos_cfg_update(void * arg)1856 static void l3_qos_cfg_update(void *arg)
1857 {
1858 	bool *enable = arg;
1859 
1860 	wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
1861 }
1862 
l2_qos_cfg_update(void * arg)1863 static void l2_qos_cfg_update(void *arg)
1864 {
1865 	bool *enable = arg;
1866 
1867 	wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
1868 }
1869 
is_mba_linear(void)1870 static inline bool is_mba_linear(void)
1871 {
1872 	return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear;
1873 }
1874 
set_cache_qos_cfg(int level,bool enable)1875 static int set_cache_qos_cfg(int level, bool enable)
1876 {
1877 	void (*update)(void *arg);
1878 	struct rdt_resource *r_l;
1879 	cpumask_var_t cpu_mask;
1880 	struct rdt_domain *d;
1881 	int cpu;
1882 
1883 	if (level == RDT_RESOURCE_L3)
1884 		update = l3_qos_cfg_update;
1885 	else if (level == RDT_RESOURCE_L2)
1886 		update = l2_qos_cfg_update;
1887 	else
1888 		return -EINVAL;
1889 
1890 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1891 		return -ENOMEM;
1892 
1893 	r_l = &rdt_resources_all[level];
1894 	list_for_each_entry(d, &r_l->domains, list) {
1895 		if (r_l->cache.arch_has_per_cpu_cfg)
1896 			/* Pick all the CPUs in the domain instance */
1897 			for_each_cpu(cpu, &d->cpu_mask)
1898 				cpumask_set_cpu(cpu, cpu_mask);
1899 		else
1900 			/* Pick one CPU from each domain instance to update MSR */
1901 			cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
1902 	}
1903 	cpu = get_cpu();
1904 	/* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
1905 	if (cpumask_test_cpu(cpu, cpu_mask))
1906 		update(&enable);
1907 	/* Update QOS_CFG MSR on all other cpus in cpu_mask. */
1908 	smp_call_function_many(cpu_mask, update, &enable, 1);
1909 	put_cpu();
1910 
1911 	free_cpumask_var(cpu_mask);
1912 
1913 	return 0;
1914 }
1915 
1916 /* Restore the qos cfg state when a domain comes online */
rdt_domain_reconfigure_cdp(struct rdt_resource * r)1917 void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
1918 {
1919 	if (!r->alloc_capable)
1920 		return;
1921 
1922 	if (r == &rdt_resources_all[RDT_RESOURCE_L2DATA])
1923 		l2_qos_cfg_update(&r->alloc_enabled);
1924 
1925 	if (r == &rdt_resources_all[RDT_RESOURCE_L3DATA])
1926 		l3_qos_cfg_update(&r->alloc_enabled);
1927 }
1928 
1929 /*
1930  * Enable or disable the MBA software controller
1931  * which helps user specify bandwidth in MBps.
1932  * MBA software controller is supported only if
1933  * MBM is supported and MBA is in linear scale.
1934  */
set_mba_sc(bool mba_sc)1935 static int set_mba_sc(bool mba_sc)
1936 {
1937 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA];
1938 	struct rdt_domain *d;
1939 
1940 	if (!is_mbm_enabled() || !is_mba_linear() ||
1941 	    mba_sc == is_mba_sc(r))
1942 		return -EINVAL;
1943 
1944 	r->membw.mba_sc = mba_sc;
1945 	list_for_each_entry(d, &r->domains, list)
1946 		setup_default_ctrlval(r, d->ctrl_val, d->mbps_val);
1947 
1948 	return 0;
1949 }
1950 
cdp_enable(int level,int data_type,int code_type)1951 static int cdp_enable(int level, int data_type, int code_type)
1952 {
1953 	struct rdt_resource *r_ldata = &rdt_resources_all[data_type];
1954 	struct rdt_resource *r_lcode = &rdt_resources_all[code_type];
1955 	struct rdt_resource *r_l = &rdt_resources_all[level];
1956 	int ret;
1957 
1958 	if (!r_l->alloc_capable || !r_ldata->alloc_capable ||
1959 	    !r_lcode->alloc_capable)
1960 		return -EINVAL;
1961 
1962 	ret = set_cache_qos_cfg(level, true);
1963 	if (!ret) {
1964 		r_l->alloc_enabled = false;
1965 		r_ldata->alloc_enabled = true;
1966 		r_lcode->alloc_enabled = true;
1967 	}
1968 	return ret;
1969 }
1970 
cdpl3_enable(void)1971 static int cdpl3_enable(void)
1972 {
1973 	return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA,
1974 			  RDT_RESOURCE_L3CODE);
1975 }
1976 
cdpl2_enable(void)1977 static int cdpl2_enable(void)
1978 {
1979 	return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA,
1980 			  RDT_RESOURCE_L2CODE);
1981 }
1982 
cdp_disable(int level,int data_type,int code_type)1983 static void cdp_disable(int level, int data_type, int code_type)
1984 {
1985 	struct rdt_resource *r = &rdt_resources_all[level];
1986 
1987 	r->alloc_enabled = r->alloc_capable;
1988 
1989 	if (rdt_resources_all[data_type].alloc_enabled) {
1990 		rdt_resources_all[data_type].alloc_enabled = false;
1991 		rdt_resources_all[code_type].alloc_enabled = false;
1992 		set_cache_qos_cfg(level, false);
1993 	}
1994 }
1995 
cdpl3_disable(void)1996 static void cdpl3_disable(void)
1997 {
1998 	cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE);
1999 }
2000 
cdpl2_disable(void)2001 static void cdpl2_disable(void)
2002 {
2003 	cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE);
2004 }
2005 
cdp_disable_all(void)2006 static void cdp_disable_all(void)
2007 {
2008 	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
2009 		cdpl3_disable();
2010 	if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
2011 		cdpl2_disable();
2012 }
2013 
2014 /*
2015  * We don't allow rdtgroup directories to be created anywhere
2016  * except the root directory. Thus when looking for the rdtgroup
2017  * structure for a kernfs node we are either looking at a directory,
2018  * in which case the rdtgroup structure is pointed at by the "priv"
2019  * field, otherwise we have a file, and need only look to the parent
2020  * to find the rdtgroup.
2021  */
kernfs_to_rdtgroup(struct kernfs_node * kn)2022 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
2023 {
2024 	if (kernfs_type(kn) == KERNFS_DIR) {
2025 		/*
2026 		 * All the resource directories use "kn->priv"
2027 		 * to point to the "struct rdtgroup" for the
2028 		 * resource. "info" and its subdirectories don't
2029 		 * have rdtgroup structures, so return NULL here.
2030 		 */
2031 		if (kn == kn_info || kn->parent == kn_info)
2032 			return NULL;
2033 		else
2034 			return kn->priv;
2035 	} else {
2036 		return kn->parent->priv;
2037 	}
2038 }
2039 
rdtgroup_kn_lock_live(struct kernfs_node * kn)2040 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
2041 {
2042 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2043 
2044 	if (!rdtgrp)
2045 		return NULL;
2046 
2047 	atomic_inc(&rdtgrp->waitcount);
2048 	kernfs_break_active_protection(kn);
2049 
2050 	mutex_lock(&rdtgroup_mutex);
2051 
2052 	/* Was this group deleted while we waited? */
2053 	if (rdtgrp->flags & RDT_DELETED)
2054 		return NULL;
2055 
2056 	return rdtgrp;
2057 }
2058 
rdtgroup_kn_unlock(struct kernfs_node * kn)2059 void rdtgroup_kn_unlock(struct kernfs_node *kn)
2060 {
2061 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2062 
2063 	if (!rdtgrp)
2064 		return;
2065 
2066 	mutex_unlock(&rdtgroup_mutex);
2067 
2068 	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
2069 	    (rdtgrp->flags & RDT_DELETED)) {
2070 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2071 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2072 			rdtgroup_pseudo_lock_remove(rdtgrp);
2073 		kernfs_unbreak_active_protection(kn);
2074 		rdtgroup_remove(rdtgrp);
2075 	} else {
2076 		kernfs_unbreak_active_protection(kn);
2077 	}
2078 }
2079 
2080 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2081 			     struct rdtgroup *prgrp,
2082 			     struct kernfs_node **mon_data_kn);
2083 
rdt_enable_ctx(struct rdt_fs_context * ctx)2084 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
2085 {
2086 	int ret = 0;
2087 
2088 	if (ctx->enable_cdpl2)
2089 		ret = cdpl2_enable();
2090 
2091 	if (!ret && ctx->enable_cdpl3)
2092 		ret = cdpl3_enable();
2093 
2094 	if (!ret && ctx->enable_mba_mbps)
2095 		ret = set_mba_sc(true);
2096 
2097 	return ret;
2098 }
2099 
rdt_get_tree(struct fs_context * fc)2100 static int rdt_get_tree(struct fs_context *fc)
2101 {
2102 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2103 	struct rdt_domain *dom;
2104 	struct rdt_resource *r;
2105 	int ret;
2106 
2107 	cpus_read_lock();
2108 	mutex_lock(&rdtgroup_mutex);
2109 	/*
2110 	 * resctrl file system can only be mounted once.
2111 	 */
2112 	if (static_branch_unlikely(&rdt_enable_key)) {
2113 		ret = -EBUSY;
2114 		goto out;
2115 	}
2116 
2117 	ret = rdt_enable_ctx(ctx);
2118 	if (ret < 0)
2119 		goto out_cdp;
2120 
2121 	closid_init();
2122 
2123 	ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
2124 	if (ret < 0)
2125 		goto out_mba;
2126 
2127 	if (rdt_mon_capable) {
2128 		ret = mongroup_create_dir(rdtgroup_default.kn,
2129 					  &rdtgroup_default, "mon_groups",
2130 					  &kn_mongrp);
2131 		if (ret < 0)
2132 			goto out_info;
2133 
2134 		ret = mkdir_mondata_all(rdtgroup_default.kn,
2135 					&rdtgroup_default, &kn_mondata);
2136 		if (ret < 0)
2137 			goto out_mongrp;
2138 		rdtgroup_default.mon.mon_data_kn = kn_mondata;
2139 	}
2140 
2141 	ret = rdt_pseudo_lock_init();
2142 	if (ret)
2143 		goto out_mondata;
2144 
2145 	ret = kernfs_get_tree(fc);
2146 	if (ret < 0)
2147 		goto out_psl;
2148 
2149 	if (rdt_alloc_capable)
2150 		static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
2151 	if (rdt_mon_capable)
2152 		static_branch_enable_cpuslocked(&rdt_mon_enable_key);
2153 
2154 	if (rdt_alloc_capable || rdt_mon_capable)
2155 		static_branch_enable_cpuslocked(&rdt_enable_key);
2156 
2157 	if (is_mbm_enabled()) {
2158 		r = &rdt_resources_all[RDT_RESOURCE_L3];
2159 		list_for_each_entry(dom, &r->domains, list)
2160 			mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2161 	}
2162 
2163 	goto out;
2164 
2165 out_psl:
2166 	rdt_pseudo_lock_release();
2167 out_mondata:
2168 	if (rdt_mon_capable)
2169 		kernfs_remove(kn_mondata);
2170 out_mongrp:
2171 	if (rdt_mon_capable)
2172 		kernfs_remove(kn_mongrp);
2173 out_info:
2174 	kernfs_remove(kn_info);
2175 out_mba:
2176 	if (ctx->enable_mba_mbps)
2177 		set_mba_sc(false);
2178 out_cdp:
2179 	cdp_disable_all();
2180 out:
2181 	rdt_last_cmd_clear();
2182 	mutex_unlock(&rdtgroup_mutex);
2183 	cpus_read_unlock();
2184 	return ret;
2185 }
2186 
2187 enum rdt_param {
2188 	Opt_cdp,
2189 	Opt_cdpl2,
2190 	Opt_mba_mbps,
2191 	nr__rdt_params
2192 };
2193 
2194 static const struct fs_parameter_spec rdt_fs_parameters[] = {
2195 	fsparam_flag("cdp",		Opt_cdp),
2196 	fsparam_flag("cdpl2",		Opt_cdpl2),
2197 	fsparam_flag("mba_MBps",	Opt_mba_mbps),
2198 	{}
2199 };
2200 
rdt_parse_param(struct fs_context * fc,struct fs_parameter * param)2201 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2202 {
2203 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2204 	struct fs_parse_result result;
2205 	int opt;
2206 
2207 	opt = fs_parse(fc, rdt_fs_parameters, param, &result);
2208 	if (opt < 0)
2209 		return opt;
2210 
2211 	switch (opt) {
2212 	case Opt_cdp:
2213 		ctx->enable_cdpl3 = true;
2214 		return 0;
2215 	case Opt_cdpl2:
2216 		ctx->enable_cdpl2 = true;
2217 		return 0;
2218 	case Opt_mba_mbps:
2219 		if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2220 			return -EINVAL;
2221 		ctx->enable_mba_mbps = true;
2222 		return 0;
2223 	}
2224 
2225 	return -EINVAL;
2226 }
2227 
rdt_fs_context_free(struct fs_context * fc)2228 static void rdt_fs_context_free(struct fs_context *fc)
2229 {
2230 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2231 
2232 	kernfs_free_fs_context(fc);
2233 	kfree(ctx);
2234 }
2235 
2236 static const struct fs_context_operations rdt_fs_context_ops = {
2237 	.free		= rdt_fs_context_free,
2238 	.parse_param	= rdt_parse_param,
2239 	.get_tree	= rdt_get_tree,
2240 };
2241 
rdt_init_fs_context(struct fs_context * fc)2242 static int rdt_init_fs_context(struct fs_context *fc)
2243 {
2244 	struct rdt_fs_context *ctx;
2245 
2246 	ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2247 	if (!ctx)
2248 		return -ENOMEM;
2249 
2250 	ctx->kfc.root = rdt_root;
2251 	ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2252 	fc->fs_private = &ctx->kfc;
2253 	fc->ops = &rdt_fs_context_ops;
2254 	put_user_ns(fc->user_ns);
2255 	fc->user_ns = get_user_ns(&init_user_ns);
2256 	fc->global = true;
2257 	return 0;
2258 }
2259 
reset_all_ctrls(struct rdt_resource * r)2260 static int reset_all_ctrls(struct rdt_resource *r)
2261 {
2262 	struct msr_param msr_param;
2263 	cpumask_var_t cpu_mask;
2264 	struct rdt_domain *d;
2265 	int i, cpu;
2266 
2267 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2268 		return -ENOMEM;
2269 
2270 	msr_param.res = r;
2271 	msr_param.low = 0;
2272 	msr_param.high = r->num_closid;
2273 
2274 	/*
2275 	 * Disable resource control for this resource by setting all
2276 	 * CBMs in all domains to the maximum mask value. Pick one CPU
2277 	 * from each domain to update the MSRs below.
2278 	 */
2279 	list_for_each_entry(d, &r->domains, list) {
2280 		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2281 
2282 		for (i = 0; i < r->num_closid; i++)
2283 			d->ctrl_val[i] = r->default_ctrl;
2284 	}
2285 	cpu = get_cpu();
2286 	/* Update CBM on this cpu if it's in cpu_mask. */
2287 	if (cpumask_test_cpu(cpu, cpu_mask))
2288 		rdt_ctrl_update(&msr_param);
2289 	/* Update CBM on all other cpus in cpu_mask. */
2290 	smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2291 	put_cpu();
2292 
2293 	free_cpumask_var(cpu_mask);
2294 
2295 	return 0;
2296 }
2297 
2298 /*
2299  * Move tasks from one to the other group. If @from is NULL, then all tasks
2300  * in the systems are moved unconditionally (used for teardown).
2301  *
2302  * If @mask is not NULL the cpus on which moved tasks are running are set
2303  * in that mask so the update smp function call is restricted to affected
2304  * cpus.
2305  */
rdt_move_group_tasks(struct rdtgroup * from,struct rdtgroup * to,struct cpumask * mask)2306 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2307 				 struct cpumask *mask)
2308 {
2309 	struct task_struct *p, *t;
2310 
2311 	read_lock(&tasklist_lock);
2312 	for_each_process_thread(p, t) {
2313 		if (!from || is_closid_match(t, from) ||
2314 		    is_rmid_match(t, from)) {
2315 			WRITE_ONCE(t->closid, to->closid);
2316 			WRITE_ONCE(t->rmid, to->mon.rmid);
2317 
2318 			/*
2319 			 * Order the closid/rmid stores above before the loads
2320 			 * in task_curr(). This pairs with the full barrier
2321 			 * between the rq->curr update and resctrl_sched_in()
2322 			 * during context switch.
2323 			 */
2324 			smp_mb();
2325 
2326 			/*
2327 			 * If the task is on a CPU, set the CPU in the mask.
2328 			 * The detection is inaccurate as tasks might move or
2329 			 * schedule before the smp function call takes place.
2330 			 * In such a case the function call is pointless, but
2331 			 * there is no other side effect.
2332 			 */
2333 			if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t))
2334 				cpumask_set_cpu(task_cpu(t), mask);
2335 		}
2336 	}
2337 	read_unlock(&tasklist_lock);
2338 }
2339 
free_all_child_rdtgrp(struct rdtgroup * rdtgrp)2340 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2341 {
2342 	struct rdtgroup *sentry, *stmp;
2343 	struct list_head *head;
2344 
2345 	head = &rdtgrp->mon.crdtgrp_list;
2346 	list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2347 		free_rmid(sentry->mon.rmid);
2348 		list_del(&sentry->mon.crdtgrp_list);
2349 
2350 		if (atomic_read(&sentry->waitcount) != 0)
2351 			sentry->flags = RDT_DELETED;
2352 		else
2353 			rdtgroup_remove(sentry);
2354 	}
2355 }
2356 
2357 /*
2358  * Forcibly remove all of subdirectories under root.
2359  */
rmdir_all_sub(void)2360 static void rmdir_all_sub(void)
2361 {
2362 	struct rdtgroup *rdtgrp, *tmp;
2363 
2364 	/* Move all tasks to the default resource group */
2365 	rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2366 
2367 	list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2368 		/* Free any child rmids */
2369 		free_all_child_rdtgrp(rdtgrp);
2370 
2371 		/* Remove each rdtgroup other than root */
2372 		if (rdtgrp == &rdtgroup_default)
2373 			continue;
2374 
2375 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2376 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2377 			rdtgroup_pseudo_lock_remove(rdtgrp);
2378 
2379 		/*
2380 		 * Give any CPUs back to the default group. We cannot copy
2381 		 * cpu_online_mask because a CPU might have executed the
2382 		 * offline callback already, but is still marked online.
2383 		 */
2384 		cpumask_or(&rdtgroup_default.cpu_mask,
2385 			   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2386 
2387 		free_rmid(rdtgrp->mon.rmid);
2388 
2389 		kernfs_remove(rdtgrp->kn);
2390 		list_del(&rdtgrp->rdtgroup_list);
2391 
2392 		if (atomic_read(&rdtgrp->waitcount) != 0)
2393 			rdtgrp->flags = RDT_DELETED;
2394 		else
2395 			rdtgroup_remove(rdtgrp);
2396 	}
2397 	/* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2398 	update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2399 
2400 	kernfs_remove(kn_info);
2401 	kernfs_remove(kn_mongrp);
2402 	kernfs_remove(kn_mondata);
2403 }
2404 
rdt_kill_sb(struct super_block * sb)2405 static void rdt_kill_sb(struct super_block *sb)
2406 {
2407 	struct rdt_resource *r;
2408 
2409 	cpus_read_lock();
2410 	mutex_lock(&rdtgroup_mutex);
2411 
2412 	set_mba_sc(false);
2413 
2414 	/*Put everything back to default values. */
2415 	for_each_alloc_enabled_rdt_resource(r)
2416 		reset_all_ctrls(r);
2417 	cdp_disable_all();
2418 	rmdir_all_sub();
2419 	rdt_pseudo_lock_release();
2420 	rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2421 	static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2422 	static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2423 	static_branch_disable_cpuslocked(&rdt_enable_key);
2424 	kernfs_kill_sb(sb);
2425 	mutex_unlock(&rdtgroup_mutex);
2426 	cpus_read_unlock();
2427 }
2428 
2429 static struct file_system_type rdt_fs_type = {
2430 	.name			= "resctrl",
2431 	.init_fs_context	= rdt_init_fs_context,
2432 	.parameters		= rdt_fs_parameters,
2433 	.kill_sb		= rdt_kill_sb,
2434 };
2435 
mon_addfile(struct kernfs_node * parent_kn,const char * name,void * priv)2436 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2437 		       void *priv)
2438 {
2439 	struct kernfs_node *kn;
2440 	int ret = 0;
2441 
2442 	kn = __kernfs_create_file(parent_kn, name, 0444,
2443 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2444 				  &kf_mondata_ops, priv, NULL, NULL);
2445 	if (IS_ERR(kn))
2446 		return PTR_ERR(kn);
2447 
2448 	ret = rdtgroup_kn_set_ugid(kn);
2449 	if (ret) {
2450 		kernfs_remove(kn);
2451 		return ret;
2452 	}
2453 
2454 	return ret;
2455 }
2456 
2457 /*
2458  * Remove all subdirectories of mon_data of ctrl_mon groups
2459  * and monitor groups with given domain id.
2460  */
rmdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,unsigned int dom_id)2461 void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id)
2462 {
2463 	struct rdtgroup *prgrp, *crgrp;
2464 	char name[32];
2465 
2466 	if (!r->mon_enabled)
2467 		return;
2468 
2469 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2470 		sprintf(name, "mon_%s_%02d", r->name, dom_id);
2471 		kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2472 
2473 		list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2474 			kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2475 	}
2476 }
2477 
mkdir_mondata_subdir(struct kernfs_node * parent_kn,struct rdt_domain * d,struct rdt_resource * r,struct rdtgroup * prgrp)2478 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2479 				struct rdt_domain *d,
2480 				struct rdt_resource *r, struct rdtgroup *prgrp)
2481 {
2482 	union mon_data_bits priv;
2483 	struct kernfs_node *kn;
2484 	struct mon_evt *mevt;
2485 	struct rmid_read rr;
2486 	char name[32];
2487 	int ret;
2488 
2489 	sprintf(name, "mon_%s_%02d", r->name, d->id);
2490 	/* create the directory */
2491 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2492 	if (IS_ERR(kn))
2493 		return PTR_ERR(kn);
2494 
2495 	ret = rdtgroup_kn_set_ugid(kn);
2496 	if (ret)
2497 		goto out_destroy;
2498 
2499 	if (WARN_ON(list_empty(&r->evt_list))) {
2500 		ret = -EPERM;
2501 		goto out_destroy;
2502 	}
2503 
2504 	priv.u.rid = r->rid;
2505 	priv.u.domid = d->id;
2506 	list_for_each_entry(mevt, &r->evt_list, list) {
2507 		priv.u.evtid = mevt->evtid;
2508 		ret = mon_addfile(kn, mevt->name, priv.priv);
2509 		if (ret)
2510 			goto out_destroy;
2511 
2512 		if (is_mbm_event(mevt->evtid))
2513 			mon_event_read(&rr, r, d, prgrp, mevt->evtid, true);
2514 	}
2515 	kernfs_activate(kn);
2516 	return 0;
2517 
2518 out_destroy:
2519 	kernfs_remove(kn);
2520 	return ret;
2521 }
2522 
2523 /*
2524  * Add all subdirectories of mon_data for "ctrl_mon" groups
2525  * and "monitor" groups with given domain id.
2526  */
mkdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,struct rdt_domain * d)2527 void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2528 				    struct rdt_domain *d)
2529 {
2530 	struct kernfs_node *parent_kn;
2531 	struct rdtgroup *prgrp, *crgrp;
2532 	struct list_head *head;
2533 
2534 	if (!r->mon_enabled)
2535 		return;
2536 
2537 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2538 		parent_kn = prgrp->mon.mon_data_kn;
2539 		mkdir_mondata_subdir(parent_kn, d, r, prgrp);
2540 
2541 		head = &prgrp->mon.crdtgrp_list;
2542 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
2543 			parent_kn = crgrp->mon.mon_data_kn;
2544 			mkdir_mondata_subdir(parent_kn, d, r, crgrp);
2545 		}
2546 	}
2547 }
2548 
mkdir_mondata_subdir_alldom(struct kernfs_node * parent_kn,struct rdt_resource * r,struct rdtgroup * prgrp)2549 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
2550 				       struct rdt_resource *r,
2551 				       struct rdtgroup *prgrp)
2552 {
2553 	struct rdt_domain *dom;
2554 	int ret;
2555 
2556 	list_for_each_entry(dom, &r->domains, list) {
2557 		ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
2558 		if (ret)
2559 			return ret;
2560 	}
2561 
2562 	return 0;
2563 }
2564 
2565 /*
2566  * This creates a directory mon_data which contains the monitored data.
2567  *
2568  * mon_data has one directory for each domain whic are named
2569  * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
2570  * with L3 domain looks as below:
2571  * ./mon_data:
2572  * mon_L3_00
2573  * mon_L3_01
2574  * mon_L3_02
2575  * ...
2576  *
2577  * Each domain directory has one file per event:
2578  * ./mon_L3_00/:
2579  * llc_occupancy
2580  *
2581  */
mkdir_mondata_all(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,struct kernfs_node ** dest_kn)2582 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2583 			     struct rdtgroup *prgrp,
2584 			     struct kernfs_node **dest_kn)
2585 {
2586 	struct rdt_resource *r;
2587 	struct kernfs_node *kn;
2588 	int ret;
2589 
2590 	/*
2591 	 * Create the mon_data directory first.
2592 	 */
2593 	ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
2594 	if (ret)
2595 		return ret;
2596 
2597 	if (dest_kn)
2598 		*dest_kn = kn;
2599 
2600 	/*
2601 	 * Create the subdirectories for each domain. Note that all events
2602 	 * in a domain like L3 are grouped into a resource whose domain is L3
2603 	 */
2604 	for_each_mon_enabled_rdt_resource(r) {
2605 		ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
2606 		if (ret)
2607 			goto out_destroy;
2608 	}
2609 
2610 	return 0;
2611 
2612 out_destroy:
2613 	kernfs_remove(kn);
2614 	return ret;
2615 }
2616 
2617 /**
2618  * cbm_ensure_valid - Enforce validity on provided CBM
2619  * @_val:	Candidate CBM
2620  * @r:		RDT resource to which the CBM belongs
2621  *
2622  * The provided CBM represents all cache portions available for use. This
2623  * may be represented by a bitmap that does not consist of contiguous ones
2624  * and thus be an invalid CBM.
2625  * Here the provided CBM is forced to be a valid CBM by only considering
2626  * the first set of contiguous bits as valid and clearing all bits.
2627  * The intention here is to provide a valid default CBM with which a new
2628  * resource group is initialized. The user can follow this with a
2629  * modification to the CBM if the default does not satisfy the
2630  * requirements.
2631  */
cbm_ensure_valid(u32 _val,struct rdt_resource * r)2632 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
2633 {
2634 	unsigned int cbm_len = r->cache.cbm_len;
2635 	unsigned long first_bit, zero_bit;
2636 	unsigned long val = _val;
2637 
2638 	if (!val)
2639 		return 0;
2640 
2641 	first_bit = find_first_bit(&val, cbm_len);
2642 	zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
2643 
2644 	/* Clear any remaining bits to ensure contiguous region */
2645 	bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
2646 	return (u32)val;
2647 }
2648 
2649 /*
2650  * Initialize cache resources per RDT domain
2651  *
2652  * Set the RDT domain up to start off with all usable allocations. That is,
2653  * all shareable and unused bits. All-zero CBM is invalid.
2654  */
__init_one_rdt_domain(struct rdt_domain * d,struct rdt_resource * r,u32 closid)2655 static int __init_one_rdt_domain(struct rdt_domain *d, struct rdt_resource *r,
2656 				 u32 closid)
2657 {
2658 	struct rdt_resource *r_cdp = NULL;
2659 	struct rdt_domain *d_cdp = NULL;
2660 	u32 used_b = 0, unused_b = 0;
2661 	unsigned long tmp_cbm;
2662 	enum rdtgrp_mode mode;
2663 	u32 peer_ctl, *ctrl;
2664 	int i;
2665 
2666 	rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp);
2667 	d->have_new_ctrl = false;
2668 	d->new_ctrl = r->cache.shareable_bits;
2669 	used_b = r->cache.shareable_bits;
2670 	ctrl = d->ctrl_val;
2671 	for (i = 0; i < closids_supported(); i++, ctrl++) {
2672 		if (closid_allocated(i) && i != closid) {
2673 			mode = rdtgroup_mode_by_closid(i);
2674 			if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
2675 				/*
2676 				 * ctrl values for locksetup aren't relevant
2677 				 * until the schemata is written, and the mode
2678 				 * becomes RDT_MODE_PSEUDO_LOCKED.
2679 				 */
2680 				continue;
2681 			/*
2682 			 * If CDP is active include peer domain's
2683 			 * usage to ensure there is no overlap
2684 			 * with an exclusive group.
2685 			 */
2686 			if (d_cdp)
2687 				peer_ctl = d_cdp->ctrl_val[i];
2688 			else
2689 				peer_ctl = 0;
2690 			used_b |= *ctrl | peer_ctl;
2691 			if (mode == RDT_MODE_SHAREABLE)
2692 				d->new_ctrl |= *ctrl | peer_ctl;
2693 		}
2694 	}
2695 	if (d->plr && d->plr->cbm > 0)
2696 		used_b |= d->plr->cbm;
2697 	unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
2698 	unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
2699 	d->new_ctrl |= unused_b;
2700 	/*
2701 	 * Force the initial CBM to be valid, user can
2702 	 * modify the CBM based on system availability.
2703 	 */
2704 	d->new_ctrl = cbm_ensure_valid(d->new_ctrl, r);
2705 	/*
2706 	 * Assign the u32 CBM to an unsigned long to ensure that
2707 	 * bitmap_weight() does not access out-of-bound memory.
2708 	 */
2709 	tmp_cbm = d->new_ctrl;
2710 	if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
2711 		rdt_last_cmd_printf("No space on %s:%d\n", r->name, d->id);
2712 		return -ENOSPC;
2713 	}
2714 	d->have_new_ctrl = true;
2715 
2716 	return 0;
2717 }
2718 
2719 /*
2720  * Initialize cache resources with default values.
2721  *
2722  * A new RDT group is being created on an allocation capable (CAT)
2723  * supporting system. Set this group up to start off with all usable
2724  * allocations.
2725  *
2726  * If there are no more shareable bits available on any domain then
2727  * the entire allocation will fail.
2728  */
rdtgroup_init_cat(struct rdt_resource * r,u32 closid)2729 static int rdtgroup_init_cat(struct rdt_resource *r, u32 closid)
2730 {
2731 	struct rdt_domain *d;
2732 	int ret;
2733 
2734 	list_for_each_entry(d, &r->domains, list) {
2735 		ret = __init_one_rdt_domain(d, r, closid);
2736 		if (ret < 0)
2737 			return ret;
2738 	}
2739 
2740 	return 0;
2741 }
2742 
2743 /* Initialize MBA resource with default values. */
rdtgroup_init_mba(struct rdt_resource * r)2744 static void rdtgroup_init_mba(struct rdt_resource *r)
2745 {
2746 	struct rdt_domain *d;
2747 
2748 	list_for_each_entry(d, &r->domains, list) {
2749 		d->new_ctrl = is_mba_sc(r) ? MBA_MAX_MBPS : r->default_ctrl;
2750 		d->have_new_ctrl = true;
2751 	}
2752 }
2753 
2754 /* Initialize the RDT group's allocations. */
rdtgroup_init_alloc(struct rdtgroup * rdtgrp)2755 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
2756 {
2757 	struct rdt_resource *r;
2758 	int ret;
2759 
2760 	for_each_alloc_enabled_rdt_resource(r) {
2761 		if (r->rid == RDT_RESOURCE_MBA) {
2762 			rdtgroup_init_mba(r);
2763 		} else {
2764 			ret = rdtgroup_init_cat(r, rdtgrp->closid);
2765 			if (ret < 0)
2766 				return ret;
2767 		}
2768 
2769 		ret = update_domains(r, rdtgrp->closid);
2770 		if (ret < 0) {
2771 			rdt_last_cmd_puts("Failed to initialize allocations\n");
2772 			return ret;
2773 		}
2774 
2775 	}
2776 
2777 	rdtgrp->mode = RDT_MODE_SHAREABLE;
2778 
2779 	return 0;
2780 }
2781 
mkdir_rdt_prepare(struct kernfs_node * parent_kn,const char * name,umode_t mode,enum rdt_group_type rtype,struct rdtgroup ** r)2782 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
2783 			     const char *name, umode_t mode,
2784 			     enum rdt_group_type rtype, struct rdtgroup **r)
2785 {
2786 	struct rdtgroup *prdtgrp, *rdtgrp;
2787 	struct kernfs_node *kn;
2788 	uint files = 0;
2789 	int ret;
2790 
2791 	prdtgrp = rdtgroup_kn_lock_live(parent_kn);
2792 	if (!prdtgrp) {
2793 		ret = -ENODEV;
2794 		goto out_unlock;
2795 	}
2796 
2797 	if (rtype == RDTMON_GROUP &&
2798 	    (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2799 	     prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
2800 		ret = -EINVAL;
2801 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
2802 		goto out_unlock;
2803 	}
2804 
2805 	/* allocate the rdtgroup. */
2806 	rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
2807 	if (!rdtgrp) {
2808 		ret = -ENOSPC;
2809 		rdt_last_cmd_puts("Kernel out of memory\n");
2810 		goto out_unlock;
2811 	}
2812 	*r = rdtgrp;
2813 	rdtgrp->mon.parent = prdtgrp;
2814 	rdtgrp->type = rtype;
2815 	INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
2816 
2817 	/* kernfs creates the directory for rdtgrp */
2818 	kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
2819 	if (IS_ERR(kn)) {
2820 		ret = PTR_ERR(kn);
2821 		rdt_last_cmd_puts("kernfs create error\n");
2822 		goto out_free_rgrp;
2823 	}
2824 	rdtgrp->kn = kn;
2825 
2826 	/*
2827 	 * kernfs_remove() will drop the reference count on "kn" which
2828 	 * will free it. But we still need it to stick around for the
2829 	 * rdtgroup_kn_unlock(kn) call. Take one extra reference here,
2830 	 * which will be dropped by kernfs_put() in rdtgroup_remove().
2831 	 */
2832 	kernfs_get(kn);
2833 
2834 	ret = rdtgroup_kn_set_ugid(kn);
2835 	if (ret) {
2836 		rdt_last_cmd_puts("kernfs perm error\n");
2837 		goto out_destroy;
2838 	}
2839 
2840 	files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
2841 	ret = rdtgroup_add_files(kn, files);
2842 	if (ret) {
2843 		rdt_last_cmd_puts("kernfs fill error\n");
2844 		goto out_destroy;
2845 	}
2846 
2847 	if (rdt_mon_capable) {
2848 		ret = alloc_rmid();
2849 		if (ret < 0) {
2850 			rdt_last_cmd_puts("Out of RMIDs\n");
2851 			goto out_destroy;
2852 		}
2853 		rdtgrp->mon.rmid = ret;
2854 
2855 		ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
2856 		if (ret) {
2857 			rdt_last_cmd_puts("kernfs subdir error\n");
2858 			goto out_idfree;
2859 		}
2860 	}
2861 	kernfs_activate(kn);
2862 
2863 	/*
2864 	 * The caller unlocks the parent_kn upon success.
2865 	 */
2866 	return 0;
2867 
2868 out_idfree:
2869 	free_rmid(rdtgrp->mon.rmid);
2870 out_destroy:
2871 	kernfs_put(rdtgrp->kn);
2872 	kernfs_remove(rdtgrp->kn);
2873 out_free_rgrp:
2874 	kfree(rdtgrp);
2875 out_unlock:
2876 	rdtgroup_kn_unlock(parent_kn);
2877 	return ret;
2878 }
2879 
mkdir_rdt_prepare_clean(struct rdtgroup * rgrp)2880 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
2881 {
2882 	kernfs_remove(rgrp->kn);
2883 	free_rmid(rgrp->mon.rmid);
2884 	rdtgroup_remove(rgrp);
2885 }
2886 
2887 /*
2888  * Create a monitor group under "mon_groups" directory of a control
2889  * and monitor group(ctrl_mon). This is a resource group
2890  * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
2891  */
rdtgroup_mkdir_mon(struct kernfs_node * parent_kn,const char * name,umode_t mode)2892 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
2893 			      const char *name, umode_t mode)
2894 {
2895 	struct rdtgroup *rdtgrp, *prgrp;
2896 	int ret;
2897 
2898 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp);
2899 	if (ret)
2900 		return ret;
2901 
2902 	prgrp = rdtgrp->mon.parent;
2903 	rdtgrp->closid = prgrp->closid;
2904 
2905 	/*
2906 	 * Add the rdtgrp to the list of rdtgrps the parent
2907 	 * ctrl_mon group has to track.
2908 	 */
2909 	list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
2910 
2911 	rdtgroup_kn_unlock(parent_kn);
2912 	return ret;
2913 }
2914 
2915 /*
2916  * These are rdtgroups created under the root directory. Can be used
2917  * to allocate and monitor resources.
2918  */
rdtgroup_mkdir_ctrl_mon(struct kernfs_node * parent_kn,const char * name,umode_t mode)2919 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
2920 				   const char *name, umode_t mode)
2921 {
2922 	struct rdtgroup *rdtgrp;
2923 	struct kernfs_node *kn;
2924 	u32 closid;
2925 	int ret;
2926 
2927 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp);
2928 	if (ret)
2929 		return ret;
2930 
2931 	kn = rdtgrp->kn;
2932 	ret = closid_alloc();
2933 	if (ret < 0) {
2934 		rdt_last_cmd_puts("Out of CLOSIDs\n");
2935 		goto out_common_fail;
2936 	}
2937 	closid = ret;
2938 	ret = 0;
2939 
2940 	rdtgrp->closid = closid;
2941 	ret = rdtgroup_init_alloc(rdtgrp);
2942 	if (ret < 0)
2943 		goto out_id_free;
2944 
2945 	list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
2946 
2947 	if (rdt_mon_capable) {
2948 		/*
2949 		 * Create an empty mon_groups directory to hold the subset
2950 		 * of tasks and cpus to monitor.
2951 		 */
2952 		ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
2953 		if (ret) {
2954 			rdt_last_cmd_puts("kernfs subdir error\n");
2955 			goto out_del_list;
2956 		}
2957 	}
2958 
2959 	goto out_unlock;
2960 
2961 out_del_list:
2962 	list_del(&rdtgrp->rdtgroup_list);
2963 out_id_free:
2964 	closid_free(closid);
2965 out_common_fail:
2966 	mkdir_rdt_prepare_clean(rdtgrp);
2967 out_unlock:
2968 	rdtgroup_kn_unlock(parent_kn);
2969 	return ret;
2970 }
2971 
2972 /*
2973  * We allow creating mon groups only with in a directory called "mon_groups"
2974  * which is present in every ctrl_mon group. Check if this is a valid
2975  * "mon_groups" directory.
2976  *
2977  * 1. The directory should be named "mon_groups".
2978  * 2. The mon group itself should "not" be named "mon_groups".
2979  *   This makes sure "mon_groups" directory always has a ctrl_mon group
2980  *   as parent.
2981  */
is_mon_groups(struct kernfs_node * kn,const char * name)2982 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
2983 {
2984 	return (!strcmp(kn->name, "mon_groups") &&
2985 		strcmp(name, "mon_groups"));
2986 }
2987 
rdtgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)2988 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
2989 			  umode_t mode)
2990 {
2991 	/* Do not accept '\n' to avoid unparsable situation. */
2992 	if (strchr(name, '\n'))
2993 		return -EINVAL;
2994 
2995 	/*
2996 	 * If the parent directory is the root directory and RDT
2997 	 * allocation is supported, add a control and monitoring
2998 	 * subdirectory
2999 	 */
3000 	if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
3001 		return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode);
3002 
3003 	/*
3004 	 * If RDT monitoring is supported and the parent directory is a valid
3005 	 * "mon_groups" directory, add a monitoring subdirectory.
3006 	 */
3007 	if (rdt_mon_capable && is_mon_groups(parent_kn, name))
3008 		return rdtgroup_mkdir_mon(parent_kn, name, mode);
3009 
3010 	return -EPERM;
3011 }
3012 
rdtgroup_rmdir_mon(struct kernfs_node * kn,struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)3013 static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
3014 			      cpumask_var_t tmpmask)
3015 {
3016 	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3017 	int cpu;
3018 
3019 	/* Give any tasks back to the parent group */
3020 	rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
3021 
3022 	/* Update per cpu rmid of the moved CPUs first */
3023 	for_each_cpu(cpu, &rdtgrp->cpu_mask)
3024 		per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
3025 	/*
3026 	 * Update the MSR on moved CPUs and CPUs which have moved
3027 	 * task running on them.
3028 	 */
3029 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3030 	update_closid_rmid(tmpmask, NULL);
3031 
3032 	rdtgrp->flags = RDT_DELETED;
3033 	free_rmid(rdtgrp->mon.rmid);
3034 
3035 	/*
3036 	 * Remove the rdtgrp from the parent ctrl_mon group's list
3037 	 */
3038 	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3039 	list_del(&rdtgrp->mon.crdtgrp_list);
3040 
3041 	kernfs_remove(rdtgrp->kn);
3042 
3043 	return 0;
3044 }
3045 
rdtgroup_ctrl_remove(struct kernfs_node * kn,struct rdtgroup * rdtgrp)3046 static int rdtgroup_ctrl_remove(struct kernfs_node *kn,
3047 				struct rdtgroup *rdtgrp)
3048 {
3049 	rdtgrp->flags = RDT_DELETED;
3050 	list_del(&rdtgrp->rdtgroup_list);
3051 
3052 	kernfs_remove(rdtgrp->kn);
3053 	return 0;
3054 }
3055 
rdtgroup_rmdir_ctrl(struct kernfs_node * kn,struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)3056 static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
3057 			       cpumask_var_t tmpmask)
3058 {
3059 	int cpu;
3060 
3061 	/* Give any tasks back to the default group */
3062 	rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
3063 
3064 	/* Give any CPUs back to the default group */
3065 	cpumask_or(&rdtgroup_default.cpu_mask,
3066 		   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
3067 
3068 	/* Update per cpu closid and rmid of the moved CPUs first */
3069 	for_each_cpu(cpu, &rdtgrp->cpu_mask) {
3070 		per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
3071 		per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
3072 	}
3073 
3074 	/*
3075 	 * Update the MSR on moved CPUs and CPUs which have moved
3076 	 * task running on them.
3077 	 */
3078 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3079 	update_closid_rmid(tmpmask, NULL);
3080 
3081 	closid_free(rdtgrp->closid);
3082 	free_rmid(rdtgrp->mon.rmid);
3083 
3084 	rdtgroup_ctrl_remove(kn, rdtgrp);
3085 
3086 	/*
3087 	 * Free all the child monitor group rmids.
3088 	 */
3089 	free_all_child_rdtgrp(rdtgrp);
3090 
3091 	return 0;
3092 }
3093 
rdtgroup_rmdir(struct kernfs_node * kn)3094 static int rdtgroup_rmdir(struct kernfs_node *kn)
3095 {
3096 	struct kernfs_node *parent_kn = kn->parent;
3097 	struct rdtgroup *rdtgrp;
3098 	cpumask_var_t tmpmask;
3099 	int ret = 0;
3100 
3101 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
3102 		return -ENOMEM;
3103 
3104 	rdtgrp = rdtgroup_kn_lock_live(kn);
3105 	if (!rdtgrp) {
3106 		ret = -EPERM;
3107 		goto out;
3108 	}
3109 
3110 	/*
3111 	 * If the rdtgroup is a ctrl_mon group and parent directory
3112 	 * is the root directory, remove the ctrl_mon group.
3113 	 *
3114 	 * If the rdtgroup is a mon group and parent directory
3115 	 * is a valid "mon_groups" directory, remove the mon group.
3116 	 */
3117 	if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
3118 	    rdtgrp != &rdtgroup_default) {
3119 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3120 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
3121 			ret = rdtgroup_ctrl_remove(kn, rdtgrp);
3122 		} else {
3123 			ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask);
3124 		}
3125 	} else if (rdtgrp->type == RDTMON_GROUP &&
3126 		 is_mon_groups(parent_kn, kn->name)) {
3127 		ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask);
3128 	} else {
3129 		ret = -EPERM;
3130 	}
3131 
3132 out:
3133 	rdtgroup_kn_unlock(kn);
3134 	free_cpumask_var(tmpmask);
3135 	return ret;
3136 }
3137 
rdtgroup_show_options(struct seq_file * seq,struct kernfs_root * kf)3138 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3139 {
3140 	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
3141 		seq_puts(seq, ",cdp");
3142 
3143 	if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
3144 		seq_puts(seq, ",cdpl2");
3145 
3146 	if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA]))
3147 		seq_puts(seq, ",mba_MBps");
3148 
3149 	return 0;
3150 }
3151 
3152 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3153 	.mkdir		= rdtgroup_mkdir,
3154 	.rmdir		= rdtgroup_rmdir,
3155 	.show_options	= rdtgroup_show_options,
3156 };
3157 
rdtgroup_setup_root(void)3158 static int __init rdtgroup_setup_root(void)
3159 {
3160 	int ret;
3161 
3162 	rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3163 				      KERNFS_ROOT_CREATE_DEACTIVATED |
3164 				      KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3165 				      &rdtgroup_default);
3166 	if (IS_ERR(rdt_root))
3167 		return PTR_ERR(rdt_root);
3168 
3169 	mutex_lock(&rdtgroup_mutex);
3170 
3171 	rdtgroup_default.closid = 0;
3172 	rdtgroup_default.mon.rmid = 0;
3173 	rdtgroup_default.type = RDTCTRL_GROUP;
3174 	INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3175 
3176 	list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3177 
3178 	ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE);
3179 	if (ret) {
3180 		kernfs_destroy_root(rdt_root);
3181 		goto out;
3182 	}
3183 
3184 	rdtgroup_default.kn = rdt_root->kn;
3185 	kernfs_activate(rdtgroup_default.kn);
3186 
3187 out:
3188 	mutex_unlock(&rdtgroup_mutex);
3189 
3190 	return ret;
3191 }
3192 
3193 /*
3194  * rdtgroup_init - rdtgroup initialization
3195  *
3196  * Setup resctrl file system including set up root, create mount point,
3197  * register rdtgroup filesystem, and initialize files under root directory.
3198  *
3199  * Return: 0 on success or -errno
3200  */
rdtgroup_init(void)3201 int __init rdtgroup_init(void)
3202 {
3203 	int ret = 0;
3204 
3205 	seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3206 		     sizeof(last_cmd_status_buf));
3207 
3208 	ret = rdtgroup_setup_root();
3209 	if (ret)
3210 		return ret;
3211 
3212 	ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3213 	if (ret)
3214 		goto cleanup_root;
3215 
3216 	ret = register_filesystem(&rdt_fs_type);
3217 	if (ret)
3218 		goto cleanup_mountpoint;
3219 
3220 	/*
3221 	 * Adding the resctrl debugfs directory here may not be ideal since
3222 	 * it would let the resctrl debugfs directory appear on the debugfs
3223 	 * filesystem before the resctrl filesystem is mounted.
3224 	 * It may also be ok since that would enable debugging of RDT before
3225 	 * resctrl is mounted.
3226 	 * The reason why the debugfs directory is created here and not in
3227 	 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and
3228 	 * during the debugfs directory creation also &sb->s_type->i_mutex_key
3229 	 * (the lockdep class of inode->i_rwsem). Other filesystem
3230 	 * interactions (eg. SyS_getdents) have the lock ordering:
3231 	 * &sb->s_type->i_mutex_key --> &mm->mmap_lock
3232 	 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex
3233 	 * is taken, thus creating dependency:
3234 	 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause
3235 	 * issues considering the other two lock dependencies.
3236 	 * By creating the debugfs directory here we avoid a dependency
3237 	 * that may cause deadlock (even though file operations cannot
3238 	 * occur until the filesystem is mounted, but I do not know how to
3239 	 * tell lockdep that).
3240 	 */
3241 	debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3242 
3243 	return 0;
3244 
3245 cleanup_mountpoint:
3246 	sysfs_remove_mount_point(fs_kobj, "resctrl");
3247 cleanup_root:
3248 	kernfs_destroy_root(rdt_root);
3249 
3250 	return ret;
3251 }
3252 
rdtgroup_exit(void)3253 void __exit rdtgroup_exit(void)
3254 {
3255 	debugfs_remove_recursive(debugfs_resctrl);
3256 	unregister_filesystem(&rdt_fs_type);
3257 	sysfs_remove_mount_point(fs_kobj, "resctrl");
3258 	kernfs_destroy_root(rdt_root);
3259 }
3260