1 /* Copyright 2014, Kenneth MacKay. Licensed under the BSD 2-clause license. */
2
3 #include "uECC.h"
4 #include "uECC_vli.h"
5
6 #ifndef uECC_RNG_MAX_TRIES
7 #define uECC_RNG_MAX_TRIES 64
8 #endif
9
10 #if uECC_ENABLE_VLI_API
11 #define uECC_VLI_API
12 #else
13 #define uECC_VLI_API static
14 #endif
15
16 #define CONCATX(a, ...) a ## __VA_ARGS__
17 #define CONCAT(a, ...) CONCATX(a, __VA_ARGS__)
18
19 #define STRX(a) #a
20 #define STR(a) STRX(a)
21
22 #define EVAL(...) EVAL1(EVAL1(EVAL1(EVAL1(__VA_ARGS__))))
23 #define EVAL1(...) EVAL2(EVAL2(EVAL2(EVAL2(__VA_ARGS__))))
24 #define EVAL2(...) EVAL3(EVAL3(EVAL3(EVAL3(__VA_ARGS__))))
25 #define EVAL3(...) EVAL4(EVAL4(EVAL4(EVAL4(__VA_ARGS__))))
26 #define EVAL4(...) __VA_ARGS__
27
28 #define DEC_1 0
29 #define DEC_2 1
30 #define DEC_3 2
31 #define DEC_4 3
32 #define DEC_5 4
33 #define DEC_6 5
34 #define DEC_7 6
35 #define DEC_8 7
36 #define DEC_9 8
37 #define DEC_10 9
38 #define DEC_11 10
39 #define DEC_12 11
40 #define DEC_13 12
41 #define DEC_14 13
42 #define DEC_15 14
43 #define DEC_16 15
44 #define DEC_17 16
45 #define DEC_18 17
46 #define DEC_19 18
47 #define DEC_20 19
48 #define DEC_21 20
49 #define DEC_22 21
50 #define DEC_23 22
51 #define DEC_24 23
52 #define DEC_25 24
53 #define DEC_26 25
54 #define DEC_27 26
55 #define DEC_28 27
56 #define DEC_29 28
57 #define DEC_30 29
58 #define DEC_31 30
59 #define DEC_32 31
60
61 #define DEC(N) CONCAT(DEC_, N)
62
63 #define SECOND_ARG(_, val, ...) val
64 #define SOME_CHECK_0 ~, 0
65 #define GET_SECOND_ARG(...) SECOND_ARG(__VA_ARGS__, SOME,)
66 #define SOME_OR_0(N) GET_SECOND_ARG(CONCAT(SOME_CHECK_, N))
67
68 #define EMPTY(...)
69 #define DEFER(...) __VA_ARGS__ EMPTY()
70
71 #define REPEAT_NAME_0() REPEAT_0
72 #define REPEAT_NAME_SOME() REPEAT_SOME
73 #define REPEAT_0(...)
74 #define REPEAT_SOME(N, stuff) DEFER(CONCAT(REPEAT_NAME_, SOME_OR_0(DEC(N))))()(DEC(N), stuff) stuff
75 #define REPEAT(N, stuff) EVAL(REPEAT_SOME(N, stuff))
76
77 #define REPEATM_NAME_0() REPEATM_0
78 #define REPEATM_NAME_SOME() REPEATM_SOME
79 #define REPEATM_0(...)
80 #define REPEATM_SOME(N, macro) macro(N) \
81 DEFER(CONCAT(REPEATM_NAME_, SOME_OR_0(DEC(N))))()(DEC(N), macro)
82 #define REPEATM(N, macro) EVAL(REPEATM_SOME(N, macro))
83
84 #include "platform-specific.inc"
85
86 #if (uECC_WORD_SIZE == 1)
87 #if uECC_SUPPORTS_secp160r1
88 #define uECC_MAX_WORDS 21 /* Due to the size of curve_n. */
89 #endif
90 #if uECC_SUPPORTS_secp192r1
91 #undef uECC_MAX_WORDS
92 #define uECC_MAX_WORDS 24
93 #endif
94 #if uECC_SUPPORTS_secp224r1
95 #undef uECC_MAX_WORDS
96 #define uECC_MAX_WORDS 28
97 #endif
98 #if (uECC_SUPPORTS_secp256r1 || uECC_SUPPORTS_secp256k1)
99 #undef uECC_MAX_WORDS
100 #define uECC_MAX_WORDS 32
101 #endif
102 #elif (uECC_WORD_SIZE == 4)
103 #if uECC_SUPPORTS_secp160r1
104 #define uECC_MAX_WORDS 6 /* Due to the size of curve_n. */
105 #endif
106 #if uECC_SUPPORTS_secp192r1
107 #undef uECC_MAX_WORDS
108 #define uECC_MAX_WORDS 6
109 #endif
110 #if uECC_SUPPORTS_secp224r1
111 #undef uECC_MAX_WORDS
112 #define uECC_MAX_WORDS 7
113 #endif
114 #if (uECC_SUPPORTS_secp256r1 || uECC_SUPPORTS_secp256k1)
115 #undef uECC_MAX_WORDS
116 #define uECC_MAX_WORDS 8
117 #endif
118 #elif (uECC_WORD_SIZE == 8)
119 #if uECC_SUPPORTS_secp160r1
120 #define uECC_MAX_WORDS 3
121 #endif
122 #if uECC_SUPPORTS_secp192r1
123 #undef uECC_MAX_WORDS
124 #define uECC_MAX_WORDS 3
125 #endif
126 #if uECC_SUPPORTS_secp224r1
127 #undef uECC_MAX_WORDS
128 #define uECC_MAX_WORDS 4
129 #endif
130 #if (uECC_SUPPORTS_secp256r1 || uECC_SUPPORTS_secp256k1)
131 #undef uECC_MAX_WORDS
132 #define uECC_MAX_WORDS 4
133 #endif
134 #endif /* uECC_WORD_SIZE */
135
136 #define BITS_TO_WORDS(num_bits) ((num_bits + ((uECC_WORD_SIZE * 8) - 1)) / (uECC_WORD_SIZE * 8))
137 #define BITS_TO_BYTES(num_bits) ((num_bits + 7) / 8)
138
139 struct uECC_Curve_t {
140 wordcount_t num_words;
141 wordcount_t num_bytes;
142 bitcount_t num_n_bits;
143 uECC_word_t p[uECC_MAX_WORDS];
144 uECC_word_t n[uECC_MAX_WORDS];
145 uECC_word_t G[uECC_MAX_WORDS * 2];
146 uECC_word_t b[uECC_MAX_WORDS];
147 void (*double_jacobian)(uECC_word_t * X1,
148 uECC_word_t * Y1,
149 uECC_word_t * Z1,
150 uECC_Curve curve);
151 #if uECC_SUPPORT_COMPRESSED_POINT
152 void (*mod_sqrt)(uECC_word_t *a, uECC_Curve curve);
153 #endif
154 void (*x_side)(uECC_word_t *result, const uECC_word_t *x, uECC_Curve curve);
155 #if (uECC_OPTIMIZATION_LEVEL > 0)
156 void (*mmod_fast)(uECC_word_t *result, uECC_word_t *product);
157 #endif
158 };
159
160 #if uECC_VLI_NATIVE_LITTLE_ENDIAN
bcopy(uint8_t * dst,const uint8_t * src,unsigned num_bytes)161 static void bcopy(uint8_t *dst,
162 const uint8_t *src,
163 unsigned num_bytes) {
164 while (0 != num_bytes) {
165 num_bytes--;
166 dst[num_bytes] = src[num_bytes];
167 }
168 }
169 #endif
170
171 static cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left,
172 const uECC_word_t *right,
173 wordcount_t num_words);
174
175 #if (uECC_PLATFORM == uECC_arm || uECC_PLATFORM == uECC_arm_thumb || \
176 uECC_PLATFORM == uECC_arm_thumb2)
177 #include "asm_arm.inc"
178 #endif
179
180 #if (uECC_PLATFORM == uECC_avr)
181 #include "asm_avr.inc"
182 #endif
183
184 #if default_RNG_defined
185 static uECC_RNG_Function g_rng_function = &default_RNG;
186 #else
187 static uECC_RNG_Function g_rng_function = 0;
188 #endif
189
uECC_set_rng(uECC_RNG_Function rng_function)190 void uECC_set_rng(uECC_RNG_Function rng_function) {
191 g_rng_function = rng_function;
192 }
193
uECC_get_rng(void)194 uECC_RNG_Function uECC_get_rng(void) {
195 return g_rng_function;
196 }
197
uECC_curve_private_key_size(uECC_Curve curve)198 int uECC_curve_private_key_size(uECC_Curve curve) {
199 return BITS_TO_BYTES(curve->num_n_bits);
200 }
201
uECC_curve_public_key_size(uECC_Curve curve)202 int uECC_curve_public_key_size(uECC_Curve curve) {
203 return 2 * curve->num_bytes;
204 }
205
206 #if !asm_clear
uECC_vli_clear(uECC_word_t * vli,wordcount_t num_words)207 uECC_VLI_API void uECC_vli_clear(uECC_word_t *vli, wordcount_t num_words) {
208 wordcount_t i;
209 for (i = 0; i < num_words; ++i) {
210 vli[i] = 0;
211 }
212 }
213 #endif /* !asm_clear */
214
215 /* Constant-time comparison to zero - secure way to compare long integers */
216 /* Returns 1 if vli == 0, 0 otherwise. */
uECC_vli_isZero(const uECC_word_t * vli,wordcount_t num_words)217 uECC_VLI_API uECC_word_t uECC_vli_isZero(const uECC_word_t *vli, wordcount_t num_words) {
218 uECC_word_t bits = 0;
219 wordcount_t i;
220 for (i = 0; i < num_words; ++i) {
221 bits |= vli[i];
222 }
223 return (bits == 0);
224 }
225
226 /* Returns nonzero if bit 'bit' of vli is set. */
uECC_vli_testBit(const uECC_word_t * vli,bitcount_t bit)227 uECC_VLI_API uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit) {
228 return (vli[bit >> uECC_WORD_BITS_SHIFT] & ((uECC_word_t)1 << (bit & uECC_WORD_BITS_MASK)));
229 }
230
231 /* Counts the number of words in vli. */
vli_numDigits(const uECC_word_t * vli,const wordcount_t max_words)232 static wordcount_t vli_numDigits(const uECC_word_t *vli, const wordcount_t max_words) {
233 wordcount_t i;
234 /* Search from the end until we find a non-zero digit.
235 We do it in reverse because we expect that most digits will be nonzero. */
236 for (i = max_words - 1; i >= 0 && vli[i] == 0; --i) {
237 }
238
239 return (i + 1);
240 }
241
242 /* Counts the number of bits required to represent vli. */
uECC_vli_numBits(const uECC_word_t * vli,const wordcount_t max_words)243 uECC_VLI_API bitcount_t uECC_vli_numBits(const uECC_word_t *vli, const wordcount_t max_words) {
244 uECC_word_t i;
245 uECC_word_t digit;
246
247 wordcount_t num_digits = vli_numDigits(vli, max_words);
248 if (num_digits == 0) {
249 return 0;
250 }
251
252 digit = vli[num_digits - 1];
253 for (i = 0; digit; ++i) {
254 digit >>= 1;
255 }
256
257 return (((bitcount_t)(num_digits - 1) << uECC_WORD_BITS_SHIFT) + i);
258 }
259
260 /* Sets dest = src. */
261 #if !asm_set
uECC_vli_set(uECC_word_t * dest,const uECC_word_t * src,wordcount_t num_words)262 uECC_VLI_API void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src, wordcount_t num_words) {
263 wordcount_t i;
264 for (i = 0; i < num_words; ++i) {
265 dest[i] = src[i];
266 }
267 }
268 #endif /* !asm_set */
269
270 /* Returns sign of left - right. */
uECC_vli_cmp_unsafe(const uECC_word_t * left,const uECC_word_t * right,wordcount_t num_words)271 static cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left,
272 const uECC_word_t *right,
273 wordcount_t num_words) {
274 wordcount_t i;
275 for (i = num_words - 1; i >= 0; --i) {
276 if (left[i] > right[i]) {
277 return 1;
278 } else if (left[i] < right[i]) {
279 return -1;
280 }
281 }
282 return 0;
283 }
284
285 /* Constant-time comparison function - secure way to compare long integers */
286 /* Returns one if left == right, zero otherwise. */
uECC_vli_equal(const uECC_word_t * left,const uECC_word_t * right,wordcount_t num_words)287 uECC_VLI_API uECC_word_t uECC_vli_equal(const uECC_word_t *left,
288 const uECC_word_t *right,
289 wordcount_t num_words) {
290 uECC_word_t diff = 0;
291 wordcount_t i;
292 for (i = num_words - 1; i >= 0; --i) {
293 diff |= (left[i] ^ right[i]);
294 }
295 return (diff == 0);
296 }
297
298 uECC_VLI_API uECC_word_t uECC_vli_sub(uECC_word_t *result,
299 const uECC_word_t *left,
300 const uECC_word_t *right,
301 wordcount_t num_words);
302
303 /* Returns sign of left - right, in constant time. */
uECC_vli_cmp(const uECC_word_t * left,const uECC_word_t * right,wordcount_t num_words)304 uECC_VLI_API cmpresult_t uECC_vli_cmp(const uECC_word_t *left,
305 const uECC_word_t *right,
306 wordcount_t num_words) {
307 uECC_word_t tmp[uECC_MAX_WORDS];
308 uECC_word_t neg = !!uECC_vli_sub(tmp, left, right, num_words);
309 uECC_word_t equal = uECC_vli_isZero(tmp, num_words);
310 return (!equal - 2 * neg);
311 }
312
313 /* Computes vli = vli >> 1. */
314 #if !asm_rshift1
uECC_vli_rshift1(uECC_word_t * vli,wordcount_t num_words)315 uECC_VLI_API void uECC_vli_rshift1(uECC_word_t *vli, wordcount_t num_words) {
316 uECC_word_t *end = vli;
317 uECC_word_t carry = 0;
318
319 vli += num_words;
320 while (vli-- > end) {
321 uECC_word_t temp = *vli;
322 *vli = (temp >> 1) | carry;
323 carry = temp << (uECC_WORD_BITS - 1);
324 }
325 }
326 #endif /* !asm_rshift1 */
327
328 /* Computes result = left + right, returning carry. Can modify in place. */
329 #if !asm_add
uECC_vli_add(uECC_word_t * result,const uECC_word_t * left,const uECC_word_t * right,wordcount_t num_words)330 uECC_VLI_API uECC_word_t uECC_vli_add(uECC_word_t *result,
331 const uECC_word_t *left,
332 const uECC_word_t *right,
333 wordcount_t num_words) {
334 uECC_word_t carry = 0;
335 wordcount_t i;
336 for (i = 0; i < num_words; ++i) {
337 uECC_word_t sum = left[i] + right[i] + carry;
338 if (sum != left[i]) {
339 carry = (sum < left[i]);
340 }
341 result[i] = sum;
342 }
343 return carry;
344 }
345 #endif /* !asm_add */
346
347 /* Computes result = left - right, returning borrow. Can modify in place. */
348 #if !asm_sub
uECC_vli_sub(uECC_word_t * result,const uECC_word_t * left,const uECC_word_t * right,wordcount_t num_words)349 uECC_VLI_API uECC_word_t uECC_vli_sub(uECC_word_t *result,
350 const uECC_word_t *left,
351 const uECC_word_t *right,
352 wordcount_t num_words) {
353 uECC_word_t borrow = 0;
354 wordcount_t i;
355 for (i = 0; i < num_words; ++i) {
356 uECC_word_t diff = left[i] - right[i] - borrow;
357 if (diff != left[i]) {
358 borrow = (diff > left[i]);
359 }
360 result[i] = diff;
361 }
362 return borrow;
363 }
364 #endif /* !asm_sub */
365
366 #if !asm_mult || (uECC_SQUARE_FUNC && !asm_square) || \
367 (uECC_SUPPORTS_secp256k1 && (uECC_OPTIMIZATION_LEVEL > 0) && \
368 ((uECC_WORD_SIZE == 1) || (uECC_WORD_SIZE == 8)))
muladd(uECC_word_t a,uECC_word_t b,uECC_word_t * r0,uECC_word_t * r1,uECC_word_t * r2)369 static void muladd(uECC_word_t a,
370 uECC_word_t b,
371 uECC_word_t *r0,
372 uECC_word_t *r1,
373 uECC_word_t *r2) {
374 #if uECC_WORD_SIZE == 8 && !SUPPORTS_INT128
375 uint64_t a0 = a & 0xffffffffull;
376 uint64_t a1 = a >> 32;
377 uint64_t b0 = b & 0xffffffffull;
378 uint64_t b1 = b >> 32;
379
380 uint64_t i0 = a0 * b0;
381 uint64_t i1 = a0 * b1;
382 uint64_t i2 = a1 * b0;
383 uint64_t i3 = a1 * b1;
384
385 uint64_t p0, p1;
386
387 i2 += (i0 >> 32);
388 i2 += i1;
389 if (i2 < i1) { /* overflow */
390 i3 += 0x100000000ull;
391 }
392
393 p0 = (i0 & 0xffffffffull) | (i2 << 32);
394 p1 = i3 + (i2 >> 32);
395
396 *r0 += p0;
397 *r1 += (p1 + (*r0 < p0));
398 *r2 += ((*r1 < p1) || (*r1 == p1 && *r0 < p0));
399 #else
400 uECC_dword_t p = (uECC_dword_t)a * b;
401 uECC_dword_t r01 = ((uECC_dword_t)(*r1) << uECC_WORD_BITS) | *r0;
402 r01 += p;
403 *r2 += (r01 < p);
404 *r1 = r01 >> uECC_WORD_BITS;
405 *r0 = (uECC_word_t)r01;
406 #endif
407 }
408 #endif /* muladd needed */
409
410 #if !asm_mult
uECC_vli_mult(uECC_word_t * result,const uECC_word_t * left,const uECC_word_t * right,wordcount_t num_words)411 uECC_VLI_API void uECC_vli_mult(uECC_word_t *result,
412 const uECC_word_t *left,
413 const uECC_word_t *right,
414 wordcount_t num_words) {
415 uECC_word_t r0 = 0;
416 uECC_word_t r1 = 0;
417 uECC_word_t r2 = 0;
418 wordcount_t i, k;
419
420 /* Compute each digit of result in sequence, maintaining the carries. */
421 for (k = 0; k < num_words; ++k) {
422 for (i = 0; i <= k; ++i) {
423 muladd(left[i], right[k - i], &r0, &r1, &r2);
424 }
425 result[k] = r0;
426 r0 = r1;
427 r1 = r2;
428 r2 = 0;
429 }
430 for (k = num_words; k < num_words * 2 - 1; ++k) {
431 for (i = (k + 1) - num_words; i < num_words; ++i) {
432 muladd(left[i], right[k - i], &r0, &r1, &r2);
433 }
434 result[k] = r0;
435 r0 = r1;
436 r1 = r2;
437 r2 = 0;
438 }
439 result[num_words * 2 - 1] = r0;
440 }
441 #endif /* !asm_mult */
442
443 #if uECC_SQUARE_FUNC
444
445 #if !asm_square
mul2add(uECC_word_t a,uECC_word_t b,uECC_word_t * r0,uECC_word_t * r1,uECC_word_t * r2)446 static void mul2add(uECC_word_t a,
447 uECC_word_t b,
448 uECC_word_t *r0,
449 uECC_word_t *r1,
450 uECC_word_t *r2) {
451 #if uECC_WORD_SIZE == 8 && !SUPPORTS_INT128
452 uint64_t a0 = a & 0xffffffffull;
453 uint64_t a1 = a >> 32;
454 uint64_t b0 = b & 0xffffffffull;
455 uint64_t b1 = b >> 32;
456
457 uint64_t i0 = a0 * b0;
458 uint64_t i1 = a0 * b1;
459 uint64_t i2 = a1 * b0;
460 uint64_t i3 = a1 * b1;
461
462 uint64_t p0, p1;
463
464 i2 += (i0 >> 32);
465 i2 += i1;
466 if (i2 < i1)
467 { /* overflow */
468 i3 += 0x100000000ull;
469 }
470
471 p0 = (i0 & 0xffffffffull) | (i2 << 32);
472 p1 = i3 + (i2 >> 32);
473
474 *r2 += (p1 >> 63);
475 p1 = (p1 << 1) | (p0 >> 63);
476 p0 <<= 1;
477
478 *r0 += p0;
479 *r1 += (p1 + (*r0 < p0));
480 *r2 += ((*r1 < p1) || (*r1 == p1 && *r0 < p0));
481 #else
482 uECC_dword_t p = (uECC_dword_t)a * b;
483 uECC_dword_t r01 = ((uECC_dword_t)(*r1) << uECC_WORD_BITS) | *r0;
484 *r2 += (p >> (uECC_WORD_BITS * 2 - 1));
485 p *= 2;
486 r01 += p;
487 *r2 += (r01 < p);
488 *r1 = r01 >> uECC_WORD_BITS;
489 *r0 = (uECC_word_t)r01;
490 #endif
491 }
492
uECC_vli_square(uECC_word_t * result,const uECC_word_t * left,wordcount_t num_words)493 uECC_VLI_API void uECC_vli_square(uECC_word_t *result,
494 const uECC_word_t *left,
495 wordcount_t num_words) {
496 uECC_word_t r0 = 0;
497 uECC_word_t r1 = 0;
498 uECC_word_t r2 = 0;
499
500 wordcount_t i, k;
501
502 for (k = 0; k < num_words * 2 - 1; ++k) {
503 uECC_word_t min = (k < num_words ? 0 : (k + 1) - num_words);
504 for (i = min; i <= k && i <= k - i; ++i) {
505 if (i < k-i) {
506 mul2add(left[i], left[k - i], &r0, &r1, &r2);
507 } else {
508 muladd(left[i], left[k - i], &r0, &r1, &r2);
509 }
510 }
511 result[k] = r0;
512 r0 = r1;
513 r1 = r2;
514 r2 = 0;
515 }
516
517 result[num_words * 2 - 1] = r0;
518 }
519 #endif /* !asm_square */
520
521 #else /* uECC_SQUARE_FUNC */
522
523 #if uECC_ENABLE_VLI_API
uECC_vli_square(uECC_word_t * result,const uECC_word_t * left,wordcount_t num_words)524 uECC_VLI_API void uECC_vli_square(uECC_word_t *result,
525 const uECC_word_t *left,
526 wordcount_t num_words) {
527 uECC_vli_mult(result, left, left, num_words);
528 }
529 #endif /* uECC_ENABLE_VLI_API */
530
531 #endif /* uECC_SQUARE_FUNC */
532
533 /* Computes result = (left + right) % mod.
534 Assumes that left < mod and right < mod, and that result does not overlap mod. */
uECC_vli_modAdd(uECC_word_t * result,const uECC_word_t * left,const uECC_word_t * right,const uECC_word_t * mod,wordcount_t num_words)535 uECC_VLI_API void uECC_vli_modAdd(uECC_word_t *result,
536 const uECC_word_t *left,
537 const uECC_word_t *right,
538 const uECC_word_t *mod,
539 wordcount_t num_words) {
540 uECC_word_t carry = uECC_vli_add(result, left, right, num_words);
541 if (carry || uECC_vli_cmp_unsafe(mod, result, num_words) != 1) {
542 /* result > mod (result = mod + remainder), so subtract mod to get remainder. */
543 uECC_vli_sub(result, result, mod, num_words);
544 }
545 }
546
547 /* Computes result = (left - right) % mod.
548 Assumes that left < mod and right < mod, and that result does not overlap mod. */
uECC_vli_modSub(uECC_word_t * result,const uECC_word_t * left,const uECC_word_t * right,const uECC_word_t * mod,wordcount_t num_words)549 uECC_VLI_API void uECC_vli_modSub(uECC_word_t *result,
550 const uECC_word_t *left,
551 const uECC_word_t *right,
552 const uECC_word_t *mod,
553 wordcount_t num_words) {
554 uECC_word_t l_borrow = uECC_vli_sub(result, left, right, num_words);
555 if (l_borrow) {
556 /* In this case, result == -diff == (max int) - diff. Since -x % d == d - x,
557 we can get the correct result from result + mod (with overflow). */
558 uECC_vli_add(result, result, mod, num_words);
559 }
560 }
561
562 /* Computes result = product % mod, where product is 2N words long. */
563 /* Currently only designed to work for curve_p or curve_n. */
uECC_vli_mmod(uECC_word_t * result,uECC_word_t * product,const uECC_word_t * mod,wordcount_t num_words)564 uECC_VLI_API void uECC_vli_mmod(uECC_word_t *result,
565 uECC_word_t *product,
566 const uECC_word_t *mod,
567 wordcount_t num_words) {
568 uECC_word_t mod_multiple[2 * uECC_MAX_WORDS];
569 uECC_word_t tmp[2 * uECC_MAX_WORDS];
570 uECC_word_t *v[2] = {tmp, product};
571 uECC_word_t index;
572
573 /* Shift mod so its highest set bit is at the maximum position. */
574 bitcount_t shift = (num_words * 2 * uECC_WORD_BITS) - uECC_vli_numBits(mod, num_words);
575 wordcount_t word_shift = shift / uECC_WORD_BITS;
576 wordcount_t bit_shift = shift % uECC_WORD_BITS;
577 uECC_word_t carry = 0;
578 uECC_vli_clear(mod_multiple, word_shift);
579 if (bit_shift > 0) {
580 for(index = 0; index < (uECC_word_t)num_words; ++index) {
581 mod_multiple[word_shift + index] = (mod[index] << bit_shift) | carry;
582 carry = mod[index] >> (uECC_WORD_BITS - bit_shift);
583 }
584 } else {
585 uECC_vli_set(mod_multiple + word_shift, mod, num_words);
586 }
587
588 for (index = 1; shift >= 0; --shift) {
589 uECC_word_t borrow = 0;
590 wordcount_t i;
591 for (i = 0; i < num_words * 2; ++i) {
592 uECC_word_t diff = v[index][i] - mod_multiple[i] - borrow;
593 if (diff != v[index][i]) {
594 borrow = (diff > v[index][i]);
595 }
596 v[1 - index][i] = diff;
597 }
598 index = !(index ^ borrow); /* Swap the index if there was no borrow */
599 uECC_vli_rshift1(mod_multiple, num_words);
600 mod_multiple[num_words - 1] |= mod_multiple[num_words] << (uECC_WORD_BITS - 1);
601 uECC_vli_rshift1(mod_multiple + num_words, num_words);
602 }
603 uECC_vli_set(result, v[index], num_words);
604 }
605
606 /* Computes result = (left * right) % mod. */
uECC_vli_modMult(uECC_word_t * result,const uECC_word_t * left,const uECC_word_t * right,const uECC_word_t * mod,wordcount_t num_words)607 uECC_VLI_API void uECC_vli_modMult(uECC_word_t *result,
608 const uECC_word_t *left,
609 const uECC_word_t *right,
610 const uECC_word_t *mod,
611 wordcount_t num_words) {
612 uECC_word_t product[2 * uECC_MAX_WORDS];
613 uECC_vli_mult(product, left, right, num_words);
614 uECC_vli_mmod(result, product, mod, num_words);
615 }
616
uECC_vli_modMult_fast(uECC_word_t * result,const uECC_word_t * left,const uECC_word_t * right,uECC_Curve curve)617 uECC_VLI_API void uECC_vli_modMult_fast(uECC_word_t *result,
618 const uECC_word_t *left,
619 const uECC_word_t *right,
620 uECC_Curve curve) {
621 uECC_word_t product[2 * uECC_MAX_WORDS];
622 uECC_vli_mult(product, left, right, curve->num_words);
623 #if (uECC_OPTIMIZATION_LEVEL > 0)
624 curve->mmod_fast(result, product);
625 #else
626 uECC_vli_mmod(result, product, curve->p, curve->num_words);
627 #endif
628 }
629
630 #if uECC_SQUARE_FUNC
631
632 #if uECC_ENABLE_VLI_API
633 /* Computes result = left^2 % mod. */
uECC_vli_modSquare(uECC_word_t * result,const uECC_word_t * left,const uECC_word_t * mod,wordcount_t num_words)634 uECC_VLI_API void uECC_vli_modSquare(uECC_word_t *result,
635 const uECC_word_t *left,
636 const uECC_word_t *mod,
637 wordcount_t num_words) {
638 uECC_word_t product[2 * uECC_MAX_WORDS];
639 uECC_vli_square(product, left, num_words);
640 uECC_vli_mmod(result, product, mod, num_words);
641 }
642 #endif /* uECC_ENABLE_VLI_API */
643
uECC_vli_modSquare_fast(uECC_word_t * result,const uECC_word_t * left,uECC_Curve curve)644 uECC_VLI_API void uECC_vli_modSquare_fast(uECC_word_t *result,
645 const uECC_word_t *left,
646 uECC_Curve curve) {
647 uECC_word_t product[2 * uECC_MAX_WORDS];
648 uECC_vli_square(product, left, curve->num_words);
649 #if (uECC_OPTIMIZATION_LEVEL > 0)
650 curve->mmod_fast(result, product);
651 #else
652 uECC_vli_mmod(result, product, curve->p, curve->num_words);
653 #endif
654 }
655
656 #else /* uECC_SQUARE_FUNC */
657
658 #if uECC_ENABLE_VLI_API
uECC_vli_modSquare(uECC_word_t * result,const uECC_word_t * left,const uECC_word_t * mod,wordcount_t num_words)659 uECC_VLI_API void uECC_vli_modSquare(uECC_word_t *result,
660 const uECC_word_t *left,
661 const uECC_word_t *mod,
662 wordcount_t num_words) {
663 uECC_vli_modMult(result, left, left, mod, num_words);
664 }
665 #endif /* uECC_ENABLE_VLI_API */
666
uECC_vli_modSquare_fast(uECC_word_t * result,const uECC_word_t * left,uECC_Curve curve)667 uECC_VLI_API void uECC_vli_modSquare_fast(uECC_word_t *result,
668 const uECC_word_t *left,
669 uECC_Curve curve) {
670 uECC_vli_modMult_fast(result, left, left, curve);
671 }
672
673 #endif /* uECC_SQUARE_FUNC */
674
675 #define EVEN(vli) (!(vli[0] & 1))
vli_modInv_update(uECC_word_t * uv,const uECC_word_t * mod,wordcount_t num_words)676 static void vli_modInv_update(uECC_word_t *uv,
677 const uECC_word_t *mod,
678 wordcount_t num_words) {
679 uECC_word_t carry = 0;
680 if (!EVEN(uv)) {
681 carry = uECC_vli_add(uv, uv, mod, num_words);
682 }
683 uECC_vli_rshift1(uv, num_words);
684 if (carry) {
685 uv[num_words - 1] |= HIGH_BIT_SET;
686 }
687 }
688
689 /* Computes result = (1 / input) % mod. All VLIs are the same size.
690 See "From Euclid's GCD to Montgomery Multiplication to the Great Divide" */
uECC_vli_modInv(uECC_word_t * result,const uECC_word_t * input,const uECC_word_t * mod,wordcount_t num_words)691 uECC_VLI_API void uECC_vli_modInv(uECC_word_t *result,
692 const uECC_word_t *input,
693 const uECC_word_t *mod,
694 wordcount_t num_words) {
695 uECC_word_t a[uECC_MAX_WORDS], b[uECC_MAX_WORDS], u[uECC_MAX_WORDS], v[uECC_MAX_WORDS];
696 cmpresult_t cmpResult;
697
698 if (uECC_vli_isZero(input, num_words)) {
699 uECC_vli_clear(result, num_words);
700 return;
701 }
702
703 uECC_vli_set(a, input, num_words);
704 uECC_vli_set(b, mod, num_words);
705 uECC_vli_clear(u, num_words);
706 u[0] = 1;
707 uECC_vli_clear(v, num_words);
708 while ((cmpResult = uECC_vli_cmp_unsafe(a, b, num_words)) != 0) {
709 if (EVEN(a)) {
710 uECC_vli_rshift1(a, num_words);
711 vli_modInv_update(u, mod, num_words);
712 } else if (EVEN(b)) {
713 uECC_vli_rshift1(b, num_words);
714 vli_modInv_update(v, mod, num_words);
715 } else if (cmpResult > 0) {
716 uECC_vli_sub(a, a, b, num_words);
717 uECC_vli_rshift1(a, num_words);
718 if (uECC_vli_cmp_unsafe(u, v, num_words) < 0) {
719 uECC_vli_add(u, u, mod, num_words);
720 }
721 uECC_vli_sub(u, u, v, num_words);
722 vli_modInv_update(u, mod, num_words);
723 } else {
724 uECC_vli_sub(b, b, a, num_words);
725 uECC_vli_rshift1(b, num_words);
726 if (uECC_vli_cmp_unsafe(v, u, num_words) < 0) {
727 uECC_vli_add(v, v, mod, num_words);
728 }
729 uECC_vli_sub(v, v, u, num_words);
730 vli_modInv_update(v, mod, num_words);
731 }
732 }
733 uECC_vli_set(result, u, num_words);
734 }
735
736 /* ------ Point operations ------ */
737
738 #include "curve-specific.inc"
739
740 /* Returns 1 if 'point' is the point at infinity, 0 otherwise. */
741 #define EccPoint_isZero(point, curve) uECC_vli_isZero((point), (curve)->num_words * 2)
742
743 /* Point multiplication algorithm using Montgomery's ladder with co-Z coordinates.
744 From http://eprint.iacr.org/2011/338.pdf
745 */
746
747 /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
apply_z(uECC_word_t * X1,uECC_word_t * Y1,const uECC_word_t * const Z,uECC_Curve curve)748 static void apply_z(uECC_word_t * X1,
749 uECC_word_t * Y1,
750 const uECC_word_t * const Z,
751 uECC_Curve curve) {
752 uECC_word_t t1[uECC_MAX_WORDS];
753
754 uECC_vli_modSquare_fast(t1, Z, curve); /* z^2 */
755 uECC_vli_modMult_fast(X1, X1, t1, curve); /* x1 * z^2 */
756 uECC_vli_modMult_fast(t1, t1, Z, curve); /* z^3 */
757 uECC_vli_modMult_fast(Y1, Y1, t1, curve); /* y1 * z^3 */
758 }
759
760 /* P = (x1, y1) => 2P, (x2, y2) => P' */
XYcZ_initial_double(uECC_word_t * X1,uECC_word_t * Y1,uECC_word_t * X2,uECC_word_t * Y2,const uECC_word_t * const initial_Z,uECC_Curve curve)761 static void XYcZ_initial_double(uECC_word_t * X1,
762 uECC_word_t * Y1,
763 uECC_word_t * X2,
764 uECC_word_t * Y2,
765 const uECC_word_t * const initial_Z,
766 uECC_Curve curve) {
767 uECC_word_t z[uECC_MAX_WORDS];
768 wordcount_t num_words = curve->num_words;
769 if (initial_Z) {
770 uECC_vli_set(z, initial_Z, num_words);
771 } else {
772 uECC_vli_clear(z, num_words);
773 z[0] = 1;
774 }
775
776 uECC_vli_set(X2, X1, num_words);
777 uECC_vli_set(Y2, Y1, num_words);
778
779 apply_z(X1, Y1, z, curve);
780 curve->double_jacobian(X1, Y1, z, curve);
781 apply_z(X2, Y2, z, curve);
782 }
783
784 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
785 Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
786 or P => P', Q => P + Q
787 */
XYcZ_add(uECC_word_t * X1,uECC_word_t * Y1,uECC_word_t * X2,uECC_word_t * Y2,uECC_Curve curve)788 static void XYcZ_add(uECC_word_t * X1,
789 uECC_word_t * Y1,
790 uECC_word_t * X2,
791 uECC_word_t * Y2,
792 uECC_Curve curve) {
793 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
794 uECC_word_t t5[uECC_MAX_WORDS];
795 wordcount_t num_words = curve->num_words;
796
797 uECC_vli_modSub(t5, X2, X1, curve->p, num_words); /* t5 = x2 - x1 */
798 uECC_vli_modSquare_fast(t5, t5, curve); /* t5 = (x2 - x1)^2 = A */
799 uECC_vli_modMult_fast(X1, X1, t5, curve); /* t1 = x1*A = B */
800 uECC_vli_modMult_fast(X2, X2, t5, curve); /* t3 = x2*A = C */
801 uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y2 - y1 */
802 uECC_vli_modSquare_fast(t5, Y2, curve); /* t5 = (y2 - y1)^2 = D */
803
804 uECC_vli_modSub(t5, t5, X1, curve->p, num_words); /* t5 = D - B */
805 uECC_vli_modSub(t5, t5, X2, curve->p, num_words); /* t5 = D - B - C = x3 */
806 uECC_vli_modSub(X2, X2, X1, curve->p, num_words); /* t3 = C - B */
807 uECC_vli_modMult_fast(Y1, Y1, X2, curve); /* t2 = y1*(C - B) */
808 uECC_vli_modSub(X2, X1, t5, curve->p, num_words); /* t3 = B - x3 */
809 uECC_vli_modMult_fast(Y2, Y2, X2, curve); /* t4 = (y2 - y1)*(B - x3) */
810 uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y3 */
811
812 uECC_vli_set(X2, t5, num_words);
813 }
814
815 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
816 Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
817 or P => P - Q, Q => P + Q
818 */
XYcZ_addC(uECC_word_t * X1,uECC_word_t * Y1,uECC_word_t * X2,uECC_word_t * Y2,uECC_Curve curve)819 static void XYcZ_addC(uECC_word_t * X1,
820 uECC_word_t * Y1,
821 uECC_word_t * X2,
822 uECC_word_t * Y2,
823 uECC_Curve curve) {
824 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
825 uECC_word_t t5[uECC_MAX_WORDS];
826 uECC_word_t t6[uECC_MAX_WORDS];
827 uECC_word_t t7[uECC_MAX_WORDS];
828 wordcount_t num_words = curve->num_words;
829
830 uECC_vli_modSub(t5, X2, X1, curve->p, num_words); /* t5 = x2 - x1 */
831 uECC_vli_modSquare_fast(t5, t5, curve); /* t5 = (x2 - x1)^2 = A */
832 uECC_vli_modMult_fast(X1, X1, t5, curve); /* t1 = x1*A = B */
833 uECC_vli_modMult_fast(X2, X2, t5, curve); /* t3 = x2*A = C */
834 uECC_vli_modAdd(t5, Y2, Y1, curve->p, num_words); /* t5 = y2 + y1 */
835 uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y2 - y1 */
836
837 uECC_vli_modSub(t6, X2, X1, curve->p, num_words); /* t6 = C - B */
838 uECC_vli_modMult_fast(Y1, Y1, t6, curve); /* t2 = y1 * (C - B) = E */
839 uECC_vli_modAdd(t6, X1, X2, curve->p, num_words); /* t6 = B + C */
840 uECC_vli_modSquare_fast(X2, Y2, curve); /* t3 = (y2 - y1)^2 = D */
841 uECC_vli_modSub(X2, X2, t6, curve->p, num_words); /* t3 = D - (B + C) = x3 */
842
843 uECC_vli_modSub(t7, X1, X2, curve->p, num_words); /* t7 = B - x3 */
844 uECC_vli_modMult_fast(Y2, Y2, t7, curve); /* t4 = (y2 - y1)*(B - x3) */
845 uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = (y2 - y1)*(B - x3) - E = y3 */
846
847 uECC_vli_modSquare_fast(t7, t5, curve); /* t7 = (y2 + y1)^2 = F */
848 uECC_vli_modSub(t7, t7, t6, curve->p, num_words); /* t7 = F - (B + C) = x3' */
849 uECC_vli_modSub(t6, t7, X1, curve->p, num_words); /* t6 = x3' - B */
850 uECC_vli_modMult_fast(t6, t6, t5, curve); /* t6 = (y2+y1)*(x3' - B) */
851 uECC_vli_modSub(Y1, t6, Y1, curve->p, num_words); /* t2 = (y2+y1)*(x3' - B) - E = y3' */
852
853 uECC_vli_set(X1, t7, num_words);
854 }
855
856 /* result may overlap point. */
EccPoint_mult(uECC_word_t * result,const uECC_word_t * point,const uECC_word_t * scalar,const uECC_word_t * initial_Z,bitcount_t num_bits,uECC_Curve curve)857 static void EccPoint_mult(uECC_word_t * result,
858 const uECC_word_t * point,
859 const uECC_word_t * scalar,
860 const uECC_word_t * initial_Z,
861 bitcount_t num_bits,
862 uECC_Curve curve) {
863 /* R0 and R1 */
864 uECC_word_t Rx[2][uECC_MAX_WORDS];
865 uECC_word_t Ry[2][uECC_MAX_WORDS];
866 uECC_word_t z[uECC_MAX_WORDS];
867 bitcount_t i;
868 uECC_word_t nb;
869 wordcount_t num_words = curve->num_words;
870
871 uECC_vli_set(Rx[1], point, num_words);
872 uECC_vli_set(Ry[1], point + num_words, num_words);
873
874 XYcZ_initial_double(Rx[1], Ry[1], Rx[0], Ry[0], initial_Z, curve);
875
876 for (i = num_bits - 2; i > 0; --i) {
877 nb = !uECC_vli_testBit(scalar, i);
878 XYcZ_addC(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], curve);
879 XYcZ_add(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], curve);
880 }
881
882 nb = !uECC_vli_testBit(scalar, 0);
883 XYcZ_addC(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], curve);
884
885 /* Find final 1/Z value. */
886 uECC_vli_modSub(z, Rx[1], Rx[0], curve->p, num_words); /* X1 - X0 */
887 uECC_vli_modMult_fast(z, z, Ry[1 - nb], curve); /* Yb * (X1 - X0) */
888 uECC_vli_modMult_fast(z, z, point, curve); /* xP * Yb * (X1 - X0) */
889 uECC_vli_modInv(z, z, curve->p, num_words); /* 1 / (xP * Yb * (X1 - X0)) */
890 /* yP / (xP * Yb * (X1 - X0)) */
891 uECC_vli_modMult_fast(z, z, point + num_words, curve);
892 uECC_vli_modMult_fast(z, z, Rx[1 - nb], curve); /* Xb * yP / (xP * Yb * (X1 - X0)) */
893 /* End 1/Z calculation */
894
895 XYcZ_add(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], curve);
896 apply_z(Rx[0], Ry[0], z, curve);
897
898 uECC_vli_set(result, Rx[0], num_words);
899 uECC_vli_set(result + num_words, Ry[0], num_words);
900 }
901
regularize_k(const uECC_word_t * const k,uECC_word_t * k0,uECC_word_t * k1,uECC_Curve curve)902 static uECC_word_t regularize_k(const uECC_word_t * const k,
903 uECC_word_t *k0,
904 uECC_word_t *k1,
905 uECC_Curve curve) {
906 wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
907 bitcount_t num_n_bits = curve->num_n_bits;
908 uECC_word_t carry = uECC_vli_add(k0, k, curve->n, num_n_words) ||
909 (num_n_bits < ((bitcount_t)num_n_words * uECC_WORD_SIZE * 8) &&
910 uECC_vli_testBit(k0, num_n_bits));
911 uECC_vli_add(k1, k0, curve->n, num_n_words);
912 return carry;
913 }
914
EccPoint_compute_public_key(uECC_word_t * result,uECC_word_t * private_key,uECC_Curve curve)915 static uECC_word_t EccPoint_compute_public_key(uECC_word_t *result,
916 uECC_word_t *private_key,
917 uECC_Curve curve) {
918 uECC_word_t tmp1[uECC_MAX_WORDS];
919 uECC_word_t tmp2[uECC_MAX_WORDS];
920 uECC_word_t *p2[2] = {tmp1, tmp2};
921 uECC_word_t carry;
922
923 /* Regularize the bitcount for the private key so that attackers cannot use a side channel
924 attack to learn the number of leading zeros. */
925 carry = regularize_k(private_key, tmp1, tmp2, curve);
926
927 EccPoint_mult(result, curve->G, p2[!carry], 0, curve->num_n_bits + 1, curve);
928
929 if (EccPoint_isZero(result, curve)) {
930 return 0;
931 }
932 return 1;
933 }
934
935 #if uECC_WORD_SIZE == 1
936
uECC_vli_nativeToBytes(uint8_t * bytes,int num_bytes,const uint8_t * native)937 uECC_VLI_API void uECC_vli_nativeToBytes(uint8_t *bytes,
938 int num_bytes,
939 const uint8_t *native) {
940 wordcount_t i;
941 for (i = 0; i < num_bytes; ++i) {
942 bytes[i] = native[(num_bytes - 1) - i];
943 }
944 }
945
uECC_vli_bytesToNative(uint8_t * native,const uint8_t * bytes,int num_bytes)946 uECC_VLI_API void uECC_vli_bytesToNative(uint8_t *native,
947 const uint8_t *bytes,
948 int num_bytes) {
949 uECC_vli_nativeToBytes(native, num_bytes, bytes);
950 }
951
952 #else
953
uECC_vli_nativeToBytes(uint8_t * bytes,int num_bytes,const uECC_word_t * native)954 uECC_VLI_API void uECC_vli_nativeToBytes(uint8_t *bytes,
955 int num_bytes,
956 const uECC_word_t *native) {
957 wordcount_t i;
958 for (i = 0; i < num_bytes; ++i) {
959 unsigned b = num_bytes - 1 - i;
960 bytes[i] = native[b / uECC_WORD_SIZE] >> (8 * (b % uECC_WORD_SIZE));
961 }
962 }
963
uECC_vli_bytesToNative(uECC_word_t * native,const uint8_t * bytes,int num_bytes)964 uECC_VLI_API void uECC_vli_bytesToNative(uECC_word_t *native,
965 const uint8_t *bytes,
966 int num_bytes) {
967 wordcount_t i;
968 uECC_vli_clear(native, (num_bytes + (uECC_WORD_SIZE - 1)) / uECC_WORD_SIZE);
969 for (i = 0; i < num_bytes; ++i) {
970 unsigned b = num_bytes - 1 - i;
971 native[b / uECC_WORD_SIZE] |=
972 (uECC_word_t)bytes[i] << (8 * (b % uECC_WORD_SIZE));
973 }
974 }
975
976 #endif /* uECC_WORD_SIZE */
977
978 /* Generates a random integer in the range 0 < random < top.
979 Both random and top have num_words words. */
uECC_generate_random_int(uECC_word_t * random,const uECC_word_t * top,wordcount_t num_words)980 uECC_VLI_API int uECC_generate_random_int(uECC_word_t *random,
981 const uECC_word_t *top,
982 wordcount_t num_words) {
983 uECC_word_t mask = (uECC_word_t)-1;
984 uECC_word_t tries;
985 bitcount_t num_bits = uECC_vli_numBits(top, num_words);
986
987 if (!g_rng_function) {
988 return 0;
989 }
990
991 for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
992 if (!g_rng_function((uint8_t *)random, num_words * uECC_WORD_SIZE)) {
993 return 0;
994 }
995 random[num_words - 1] &= mask >> ((bitcount_t)(num_words * uECC_WORD_SIZE * 8 - num_bits));
996 if (!uECC_vli_isZero(random, num_words) &&
997 uECC_vli_cmp(top, random, num_words) == 1) {
998 return 1;
999 }
1000 }
1001 return 0;
1002 }
1003
uECC_make_key(uint8_t * public_key,uint8_t * private_key,uECC_Curve curve)1004 int uECC_make_key(uint8_t *public_key,
1005 uint8_t *private_key,
1006 uECC_Curve curve) {
1007 #if uECC_VLI_NATIVE_LITTLE_ENDIAN
1008 uECC_word_t *_private = (uECC_word_t *)private_key;
1009 uECC_word_t *_public = (uECC_word_t *)public_key;
1010 #else
1011 uECC_word_t _private[uECC_MAX_WORDS];
1012 uECC_word_t _public[uECC_MAX_WORDS * 2];
1013 #endif
1014 uECC_word_t tries;
1015
1016 for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
1017 if (!uECC_generate_random_int(_private, curve->n, BITS_TO_WORDS(curve->num_n_bits))) {
1018 return 0;
1019 }
1020
1021 if (EccPoint_compute_public_key(_public, _private, curve)) {
1022 #if uECC_VLI_NATIVE_LITTLE_ENDIAN == 0
1023 uECC_vli_nativeToBytes(private_key, BITS_TO_BYTES(curve->num_n_bits), _private);
1024 uECC_vli_nativeToBytes(public_key, curve->num_bytes, _public);
1025 uECC_vli_nativeToBytes(
1026 public_key + curve->num_bytes, curve->num_bytes, _public + curve->num_words);
1027 #endif
1028 return 1;
1029 }
1030 }
1031 return 0;
1032 }
1033
uECC_shared_secret(const uint8_t * public_key,const uint8_t * private_key,uint8_t * secret,uECC_Curve curve)1034 int uECC_shared_secret(const uint8_t *public_key,
1035 const uint8_t *private_key,
1036 uint8_t *secret,
1037 uECC_Curve curve) {
1038 uECC_word_t _public[uECC_MAX_WORDS * 2];
1039 uECC_word_t _private[uECC_MAX_WORDS];
1040
1041 uECC_word_t tmp[uECC_MAX_WORDS];
1042 uECC_word_t *p2[2] = {_private, tmp};
1043 uECC_word_t *initial_Z = 0;
1044 uECC_word_t carry;
1045 wordcount_t num_words = curve->num_words;
1046 wordcount_t num_bytes = curve->num_bytes;
1047
1048 #if uECC_VLI_NATIVE_LITTLE_ENDIAN
1049 bcopy((uint8_t *) _private, private_key, num_bytes);
1050 bcopy((uint8_t *) _public, public_key, num_bytes*2);
1051 #else
1052 uECC_vli_bytesToNative(_private, private_key, BITS_TO_BYTES(curve->num_n_bits));
1053 uECC_vli_bytesToNative(_public, public_key, num_bytes);
1054 uECC_vli_bytesToNative(_public + num_words, public_key + num_bytes, num_bytes);
1055 #endif
1056
1057 /* Regularize the bitcount for the private key so that attackers cannot use a side channel
1058 attack to learn the number of leading zeros. */
1059 carry = regularize_k(_private, _private, tmp, curve);
1060
1061 /* If an RNG function was specified, try to get a random initial Z value to improve
1062 protection against side-channel attacks. */
1063 if (g_rng_function) {
1064 if (!uECC_generate_random_int(p2[carry], curve->p, num_words)) {
1065 return 0;
1066 }
1067 initial_Z = p2[carry];
1068 }
1069
1070 EccPoint_mult(_public, _public, p2[!carry], initial_Z, curve->num_n_bits + 1, curve);
1071 #if uECC_VLI_NATIVE_LITTLE_ENDIAN
1072 bcopy((uint8_t *) secret, (uint8_t *) _public, num_bytes);
1073 #else
1074 uECC_vli_nativeToBytes(secret, num_bytes, _public);
1075 #endif
1076 return !EccPoint_isZero(_public, curve);
1077 }
1078
1079 #if uECC_SUPPORT_COMPRESSED_POINT
uECC_compress(const uint8_t * public_key,uint8_t * compressed,uECC_Curve curve)1080 void uECC_compress(const uint8_t *public_key, uint8_t *compressed, uECC_Curve curve) {
1081 wordcount_t i;
1082 for (i = 0; i < curve->num_bytes; ++i) {
1083 compressed[i+1] = public_key[i];
1084 }
1085 #if uECC_VLI_NATIVE_LITTLE_ENDIAN
1086 compressed[0] = 2 + (public_key[curve->num_bytes] & 0x01);
1087 #else
1088 compressed[0] = 2 + (public_key[curve->num_bytes * 2 - 1] & 0x01);
1089 #endif
1090 }
1091
uECC_decompress(const uint8_t * compressed,uint8_t * public_key,uECC_Curve curve)1092 void uECC_decompress(const uint8_t *compressed, uint8_t *public_key, uECC_Curve curve) {
1093 #if uECC_VLI_NATIVE_LITTLE_ENDIAN
1094 uECC_word_t *point = (uECC_word_t *)public_key;
1095 #else
1096 uECC_word_t point[uECC_MAX_WORDS * 2];
1097 #endif
1098 uECC_word_t *y = point + curve->num_words;
1099 #if uECC_VLI_NATIVE_LITTLE_ENDIAN
1100 bcopy(public_key, compressed+1, curve->num_bytes);
1101 #else
1102 uECC_vli_bytesToNative(point, compressed + 1, curve->num_bytes);
1103 #endif
1104 curve->x_side(y, point, curve);
1105 curve->mod_sqrt(y, curve);
1106
1107 if ((y[0] & 0x01) != (compressed[0] & 0x01)) {
1108 uECC_vli_sub(y, curve->p, y, curve->num_words);
1109 }
1110
1111 #if uECC_VLI_NATIVE_LITTLE_ENDIAN == 0
1112 uECC_vli_nativeToBytes(public_key, curve->num_bytes, point);
1113 uECC_vli_nativeToBytes(public_key + curve->num_bytes, curve->num_bytes, y);
1114 #endif
1115 }
1116 #endif /* uECC_SUPPORT_COMPRESSED_POINT */
1117
uECC_valid_point(const uECC_word_t * point,uECC_Curve curve)1118 int uECC_valid_point(const uECC_word_t *point, uECC_Curve curve) {
1119 uECC_word_t tmp1[uECC_MAX_WORDS];
1120 uECC_word_t tmp2[uECC_MAX_WORDS];
1121 wordcount_t num_words = curve->num_words;
1122
1123 /* The point at infinity is invalid. */
1124 if (EccPoint_isZero(point, curve)) {
1125 return 0;
1126 }
1127
1128 /* x and y must be smaller than p. */
1129 if (uECC_vli_cmp_unsafe(curve->p, point, num_words) != 1 ||
1130 uECC_vli_cmp_unsafe(curve->p, point + num_words, num_words) != 1) {
1131 return 0;
1132 }
1133
1134 uECC_vli_modSquare_fast(tmp1, point + num_words, curve);
1135 curve->x_side(tmp2, point, curve); /* tmp2 = x^3 + ax + b */
1136
1137 /* Make sure that y^2 == x^3 + ax + b */
1138 return (int)(uECC_vli_equal(tmp1, tmp2, num_words));
1139 }
1140
uECC_valid_public_key(const uint8_t * public_key,uECC_Curve curve)1141 int uECC_valid_public_key(const uint8_t *public_key, uECC_Curve curve) {
1142 #if uECC_VLI_NATIVE_LITTLE_ENDIAN
1143 uECC_word_t *_public = (uECC_word_t *)public_key;
1144 #else
1145 uECC_word_t _public[uECC_MAX_WORDS * 2];
1146 #endif
1147
1148 #if uECC_VLI_NATIVE_LITTLE_ENDIAN == 0
1149 uECC_vli_bytesToNative(_public, public_key, curve->num_bytes);
1150 uECC_vli_bytesToNative(
1151 _public + curve->num_words, public_key + curve->num_bytes, curve->num_bytes);
1152 #endif
1153 return uECC_valid_point(_public, curve);
1154 }
1155
uECC_compute_public_key(const uint8_t * private_key,uint8_t * public_key,uECC_Curve curve)1156 int uECC_compute_public_key(const uint8_t *private_key, uint8_t *public_key, uECC_Curve curve) {
1157 #if uECC_VLI_NATIVE_LITTLE_ENDIAN
1158 uECC_word_t *_private = (uECC_word_t *)private_key;
1159 uECC_word_t *_public = (uECC_word_t *)public_key;
1160 #else
1161 uECC_word_t _private[uECC_MAX_WORDS];
1162 uECC_word_t _public[uECC_MAX_WORDS * 2];
1163 #endif
1164
1165 #if uECC_VLI_NATIVE_LITTLE_ENDIAN == 0
1166 uECC_vli_bytesToNative(_private, private_key, BITS_TO_BYTES(curve->num_n_bits));
1167 #endif
1168
1169 /* Make sure the private key is in the range [1, n-1]. */
1170 if (uECC_vli_isZero(_private, BITS_TO_WORDS(curve->num_n_bits))) {
1171 return 0;
1172 }
1173
1174 if (uECC_vli_cmp(curve->n, _private, BITS_TO_WORDS(curve->num_n_bits)) != 1) {
1175 return 0;
1176 }
1177
1178 /* Compute public key. */
1179 if (!EccPoint_compute_public_key(_public, _private, curve)) {
1180 return 0;
1181 }
1182
1183 #if uECC_VLI_NATIVE_LITTLE_ENDIAN == 0
1184 uECC_vli_nativeToBytes(public_key, curve->num_bytes, _public);
1185 uECC_vli_nativeToBytes(
1186 public_key + curve->num_bytes, curve->num_bytes, _public + curve->num_words);
1187 #endif
1188 return 1;
1189 }
1190
1191
1192 /* -------- ECDSA code -------- */
1193
bits2int(uECC_word_t * native,const uint8_t * bits,unsigned bits_size,uECC_Curve curve)1194 static void bits2int(uECC_word_t *native,
1195 const uint8_t *bits,
1196 unsigned bits_size,
1197 uECC_Curve curve) {
1198 unsigned num_n_bytes = BITS_TO_BYTES(curve->num_n_bits);
1199 unsigned num_n_words = BITS_TO_WORDS(curve->num_n_bits);
1200 int shift;
1201 uECC_word_t carry;
1202 uECC_word_t *ptr;
1203
1204 if (bits_size > num_n_bytes) {
1205 bits_size = num_n_bytes;
1206 }
1207
1208 uECC_vli_clear(native, num_n_words);
1209 #if uECC_VLI_NATIVE_LITTLE_ENDIAN
1210 bcopy((uint8_t *) native, bits, bits_size);
1211 #else
1212 uECC_vli_bytesToNative(native, bits, bits_size);
1213 #endif
1214 if (bits_size * 8 <= (unsigned)curve->num_n_bits) {
1215 return;
1216 }
1217 shift = bits_size * 8 - curve->num_n_bits;
1218 carry = 0;
1219 ptr = native + num_n_words;
1220 while (ptr-- > native) {
1221 uECC_word_t temp = *ptr;
1222 *ptr = (temp >> shift) | carry;
1223 carry = temp << (uECC_WORD_BITS - shift);
1224 }
1225
1226 /* Reduce mod curve_n */
1227 if (uECC_vli_cmp_unsafe(curve->n, native, num_n_words) != 1) {
1228 uECC_vli_sub(native, native, curve->n, num_n_words);
1229 }
1230 }
1231
uECC_sign_with_k(const uint8_t * private_key,const uint8_t * message_hash,unsigned hash_size,uECC_word_t * k,uint8_t * signature,uECC_Curve curve)1232 static int uECC_sign_with_k(const uint8_t *private_key,
1233 const uint8_t *message_hash,
1234 unsigned hash_size,
1235 uECC_word_t *k,
1236 uint8_t *signature,
1237 uECC_Curve curve) {
1238
1239 uECC_word_t tmp[uECC_MAX_WORDS];
1240 uECC_word_t s[uECC_MAX_WORDS];
1241 uECC_word_t *k2[2] = {tmp, s};
1242 #if uECC_VLI_NATIVE_LITTLE_ENDIAN
1243 uECC_word_t *p = (uECC_word_t *)signature;
1244 #else
1245 uECC_word_t p[uECC_MAX_WORDS * 2];
1246 #endif
1247 uECC_word_t carry;
1248 wordcount_t num_words = curve->num_words;
1249 wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
1250 bitcount_t num_n_bits = curve->num_n_bits;
1251
1252 /* Make sure 0 < k < curve_n */
1253 if (uECC_vli_isZero(k, num_words) || uECC_vli_cmp(curve->n, k, num_n_words) != 1) {
1254 return 0;
1255 }
1256
1257 carry = regularize_k(k, tmp, s, curve);
1258 EccPoint_mult(p, curve->G, k2[!carry], 0, num_n_bits + 1, curve);
1259 if (uECC_vli_isZero(p, num_words)) {
1260 return 0;
1261 }
1262
1263 /* If an RNG function was specified, get a random number
1264 to prevent side channel analysis of k. */
1265 if (!g_rng_function) {
1266 uECC_vli_clear(tmp, num_n_words);
1267 tmp[0] = 1;
1268 } else if (!uECC_generate_random_int(tmp, curve->n, num_n_words)) {
1269 return 0;
1270 }
1271
1272 /* Prevent side channel analysis of uECC_vli_modInv() to determine
1273 bits of k / the private key by premultiplying by a random number */
1274 uECC_vli_modMult(k, k, tmp, curve->n, num_n_words); /* k' = rand * k */
1275 uECC_vli_modInv(k, k, curve->n, num_n_words); /* k = 1 / k' */
1276 uECC_vli_modMult(k, k, tmp, curve->n, num_n_words); /* k = 1 / k */
1277
1278 #if uECC_VLI_NATIVE_LITTLE_ENDIAN == 0
1279 uECC_vli_nativeToBytes(signature, curve->num_bytes, p); /* store r */
1280 #endif
1281
1282 #if uECC_VLI_NATIVE_LITTLE_ENDIAN
1283 bcopy((uint8_t *) tmp, private_key, BITS_TO_BYTES(curve->num_n_bits));
1284 #else
1285 uECC_vli_bytesToNative(tmp, private_key, BITS_TO_BYTES(curve->num_n_bits)); /* tmp = d */
1286 #endif
1287
1288 s[num_n_words - 1] = 0;
1289 uECC_vli_set(s, p, num_words);
1290 uECC_vli_modMult(s, tmp, s, curve->n, num_n_words); /* s = r*d */
1291
1292 bits2int(tmp, message_hash, hash_size, curve);
1293 uECC_vli_modAdd(s, tmp, s, curve->n, num_n_words); /* s = e + r*d */
1294 uECC_vli_modMult(s, s, k, curve->n, num_n_words); /* s = (e + r*d) / k */
1295 if (uECC_vli_numBits(s, num_n_words) > (bitcount_t)curve->num_bytes * 8) {
1296 return 0;
1297 }
1298 #if uECC_VLI_NATIVE_LITTLE_ENDIAN
1299 bcopy((uint8_t *) signature + curve->num_bytes, (uint8_t *) s, curve->num_bytes);
1300 #else
1301 uECC_vli_nativeToBytes(signature + curve->num_bytes, curve->num_bytes, s);
1302 #endif
1303 return 1;
1304 }
1305
uECC_sign(const uint8_t * private_key,const uint8_t * message_hash,unsigned hash_size,uint8_t * signature,uECC_Curve curve)1306 int uECC_sign(const uint8_t *private_key,
1307 const uint8_t *message_hash,
1308 unsigned hash_size,
1309 uint8_t *signature,
1310 uECC_Curve curve) {
1311 uECC_word_t k[uECC_MAX_WORDS];
1312 uECC_word_t tries;
1313
1314 for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
1315 if (!uECC_generate_random_int(k, curve->n, BITS_TO_WORDS(curve->num_n_bits))) {
1316 return 0;
1317 }
1318
1319 if (uECC_sign_with_k(private_key, message_hash, hash_size, k, signature, curve)) {
1320 return 1;
1321 }
1322 }
1323 return 0;
1324 }
1325
1326 /* Compute an HMAC using K as a key (as in RFC 6979). Note that K is always
1327 the same size as the hash result size. */
HMAC_init(const uECC_HashContext * hash_context,const uint8_t * K)1328 static void HMAC_init(const uECC_HashContext *hash_context, const uint8_t *K) {
1329 uint8_t *pad = hash_context->tmp + 2 * hash_context->result_size;
1330 unsigned i;
1331 for (i = 0; i < hash_context->result_size; ++i)
1332 pad[i] = K[i] ^ 0x36;
1333 for (; i < hash_context->block_size; ++i)
1334 pad[i] = 0x36;
1335
1336 hash_context->init_hash(hash_context);
1337 hash_context->update_hash(hash_context, pad, hash_context->block_size);
1338 }
1339
HMAC_update(const uECC_HashContext * hash_context,const uint8_t * message,unsigned message_size)1340 static void HMAC_update(const uECC_HashContext *hash_context,
1341 const uint8_t *message,
1342 unsigned message_size) {
1343 hash_context->update_hash(hash_context, message, message_size);
1344 }
1345
HMAC_finish(const uECC_HashContext * hash_context,const uint8_t * K,uint8_t * result)1346 static void HMAC_finish(const uECC_HashContext *hash_context,
1347 const uint8_t *K,
1348 uint8_t *result) {
1349 uint8_t *pad = hash_context->tmp + 2 * hash_context->result_size;
1350 unsigned i;
1351 for (i = 0; i < hash_context->result_size; ++i)
1352 pad[i] = K[i] ^ 0x5c;
1353 for (; i < hash_context->block_size; ++i)
1354 pad[i] = 0x5c;
1355
1356 hash_context->finish_hash(hash_context, result);
1357
1358 hash_context->init_hash(hash_context);
1359 hash_context->update_hash(hash_context, pad, hash_context->block_size);
1360 hash_context->update_hash(hash_context, result, hash_context->result_size);
1361 hash_context->finish_hash(hash_context, result);
1362 }
1363
1364 /* V = HMAC_K(V) */
update_V(const uECC_HashContext * hash_context,uint8_t * K,uint8_t * V)1365 static void update_V(const uECC_HashContext *hash_context, uint8_t *K, uint8_t *V) {
1366 HMAC_init(hash_context, K);
1367 HMAC_update(hash_context, V, hash_context->result_size);
1368 HMAC_finish(hash_context, K, V);
1369 }
1370
1371 /* Deterministic signing, similar to RFC 6979. Differences are:
1372 * We just use H(m) directly rather than bits2octets(H(m))
1373 (it is not reduced modulo curve_n).
1374 * We generate a value for k (aka T) directly rather than converting endianness.
1375
1376 Layout of hash_context->tmp: <K> | <V> | (1 byte overlapped 0x00 or 0x01) / <HMAC pad> */
uECC_sign_deterministic(const uint8_t * private_key,const uint8_t * message_hash,unsigned hash_size,const uECC_HashContext * hash_context,uint8_t * signature,uECC_Curve curve)1377 int uECC_sign_deterministic(const uint8_t *private_key,
1378 const uint8_t *message_hash,
1379 unsigned hash_size,
1380 const uECC_HashContext *hash_context,
1381 uint8_t *signature,
1382 uECC_Curve curve) {
1383 uint8_t *K = hash_context->tmp;
1384 uint8_t *V = K + hash_context->result_size;
1385 wordcount_t num_bytes = curve->num_bytes;
1386 wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
1387 bitcount_t num_n_bits = curve->num_n_bits;
1388 uECC_word_t tries;
1389 unsigned i;
1390 for (i = 0; i < hash_context->result_size; ++i) {
1391 V[i] = 0x01;
1392 K[i] = 0;
1393 }
1394
1395 /* K = HMAC_K(V || 0x00 || int2octets(x) || h(m)) */
1396 HMAC_init(hash_context, K);
1397 V[hash_context->result_size] = 0x00;
1398 HMAC_update(hash_context, V, hash_context->result_size + 1);
1399 HMAC_update(hash_context, private_key, num_bytes);
1400 HMAC_update(hash_context, message_hash, hash_size);
1401 HMAC_finish(hash_context, K, K);
1402
1403 update_V(hash_context, K, V);
1404
1405 /* K = HMAC_K(V || 0x01 || int2octets(x) || h(m)) */
1406 HMAC_init(hash_context, K);
1407 V[hash_context->result_size] = 0x01;
1408 HMAC_update(hash_context, V, hash_context->result_size + 1);
1409 HMAC_update(hash_context, private_key, num_bytes);
1410 HMAC_update(hash_context, message_hash, hash_size);
1411 HMAC_finish(hash_context, K, K);
1412
1413 update_V(hash_context, K, V);
1414
1415 for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
1416 uECC_word_t T[uECC_MAX_WORDS];
1417 uint8_t *T_ptr = (uint8_t *)T;
1418 wordcount_t T_bytes = 0;
1419 for (;;) {
1420 update_V(hash_context, K, V);
1421 for (i = 0; i < hash_context->result_size; ++i) {
1422 T_ptr[T_bytes++] = V[i];
1423 if (T_bytes >= num_n_words * uECC_WORD_SIZE) {
1424 goto filled;
1425 }
1426 }
1427 }
1428 filled:
1429 if ((bitcount_t)num_n_words * uECC_WORD_SIZE * 8 > num_n_bits) {
1430 uECC_word_t mask = (uECC_word_t)-1;
1431 T[num_n_words - 1] &=
1432 mask >> ((bitcount_t)(num_n_words * uECC_WORD_SIZE * 8 - num_n_bits));
1433 }
1434
1435 if (uECC_sign_with_k(private_key, message_hash, hash_size, T, signature, curve)) {
1436 return 1;
1437 }
1438
1439 /* K = HMAC_K(V || 0x00) */
1440 HMAC_init(hash_context, K);
1441 V[hash_context->result_size] = 0x00;
1442 HMAC_update(hash_context, V, hash_context->result_size + 1);
1443 HMAC_finish(hash_context, K, K);
1444
1445 update_V(hash_context, K, V);
1446 }
1447 return 0;
1448 }
1449
smax(bitcount_t a,bitcount_t b)1450 static bitcount_t smax(bitcount_t a, bitcount_t b) {
1451 return (a > b ? a : b);
1452 }
1453
uECC_verify(const uint8_t * public_key,const uint8_t * message_hash,unsigned hash_size,const uint8_t * signature,uECC_Curve curve)1454 int uECC_verify(const uint8_t *public_key,
1455 const uint8_t *message_hash,
1456 unsigned hash_size,
1457 const uint8_t *signature,
1458 uECC_Curve curve) {
1459 uECC_word_t u1[uECC_MAX_WORDS], u2[uECC_MAX_WORDS];
1460 uECC_word_t z[uECC_MAX_WORDS];
1461 uECC_word_t sum[uECC_MAX_WORDS * 2];
1462 uECC_word_t rx[uECC_MAX_WORDS];
1463 uECC_word_t ry[uECC_MAX_WORDS];
1464 uECC_word_t tx[uECC_MAX_WORDS];
1465 uECC_word_t ty[uECC_MAX_WORDS];
1466 uECC_word_t tz[uECC_MAX_WORDS];
1467 const uECC_word_t *points[4];
1468 const uECC_word_t *point;
1469 bitcount_t num_bits;
1470 bitcount_t i;
1471 #if uECC_VLI_NATIVE_LITTLE_ENDIAN
1472 uECC_word_t *_public = (uECC_word_t *)public_key;
1473 #else
1474 uECC_word_t _public[uECC_MAX_WORDS * 2];
1475 #endif
1476 uECC_word_t r[uECC_MAX_WORDS], s[uECC_MAX_WORDS];
1477 wordcount_t num_words = curve->num_words;
1478 wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
1479
1480 rx[num_n_words - 1] = 0;
1481 r[num_n_words - 1] = 0;
1482 s[num_n_words - 1] = 0;
1483
1484 #if uECC_VLI_NATIVE_LITTLE_ENDIAN
1485 bcopy((uint8_t *) r, signature, curve->num_bytes);
1486 bcopy((uint8_t *) s, signature + curve->num_bytes, curve->num_bytes);
1487 #else
1488 uECC_vli_bytesToNative(_public, public_key, curve->num_bytes);
1489 uECC_vli_bytesToNative(
1490 _public + num_words, public_key + curve->num_bytes, curve->num_bytes);
1491 uECC_vli_bytesToNative(r, signature, curve->num_bytes);
1492 uECC_vli_bytesToNative(s, signature + curve->num_bytes, curve->num_bytes);
1493 #endif
1494
1495 /* r, s must not be 0. */
1496 if (uECC_vli_isZero(r, num_words) || uECC_vli_isZero(s, num_words)) {
1497 return 0;
1498 }
1499
1500 /* r, s must be < n. */
1501 if (uECC_vli_cmp_unsafe(curve->n, r, num_n_words) != 1 ||
1502 uECC_vli_cmp_unsafe(curve->n, s, num_n_words) != 1) {
1503 return 0;
1504 }
1505
1506 /* Calculate u1 and u2. */
1507 uECC_vli_modInv(z, s, curve->n, num_n_words); /* z = 1/s */
1508 u1[num_n_words - 1] = 0;
1509 bits2int(u1, message_hash, hash_size, curve);
1510 uECC_vli_modMult(u1, u1, z, curve->n, num_n_words); /* u1 = e/s */
1511 uECC_vli_modMult(u2, r, z, curve->n, num_n_words); /* u2 = r/s */
1512
1513 /* Calculate sum = G + Q. */
1514 uECC_vli_set(sum, _public, num_words);
1515 uECC_vli_set(sum + num_words, _public + num_words, num_words);
1516 uECC_vli_set(tx, curve->G, num_words);
1517 uECC_vli_set(ty, curve->G + num_words, num_words);
1518 uECC_vli_modSub(z, sum, tx, curve->p, num_words); /* z = x2 - x1 */
1519 XYcZ_add(tx, ty, sum, sum + num_words, curve);
1520 uECC_vli_modInv(z, z, curve->p, num_words); /* z = 1/z */
1521 apply_z(sum, sum + num_words, z, curve);
1522
1523 /* Use Shamir's trick to calculate u1*G + u2*Q */
1524 points[0] = 0;
1525 points[1] = curve->G;
1526 points[2] = _public;
1527 points[3] = sum;
1528 num_bits = smax(uECC_vli_numBits(u1, num_n_words),
1529 uECC_vli_numBits(u2, num_n_words));
1530
1531 point = points[(!!uECC_vli_testBit(u1, num_bits - 1)) |
1532 ((!!uECC_vli_testBit(u2, num_bits - 1)) << 1)];
1533 uECC_vli_set(rx, point, num_words);
1534 uECC_vli_set(ry, point + num_words, num_words);
1535 uECC_vli_clear(z, num_words);
1536 z[0] = 1;
1537
1538 for (i = num_bits - 2; i >= 0; --i) {
1539 uECC_word_t index;
1540 curve->double_jacobian(rx, ry, z, curve);
1541
1542 index = (!!uECC_vli_testBit(u1, i)) | ((!!uECC_vli_testBit(u2, i)) << 1);
1543 point = points[index];
1544 if (point) {
1545 uECC_vli_set(tx, point, num_words);
1546 uECC_vli_set(ty, point + num_words, num_words);
1547 apply_z(tx, ty, z, curve);
1548 uECC_vli_modSub(tz, rx, tx, curve->p, num_words); /* Z = x2 - x1 */
1549 XYcZ_add(tx, ty, rx, ry, curve);
1550 uECC_vli_modMult_fast(z, z, tz, curve);
1551 }
1552 }
1553
1554 uECC_vli_modInv(z, z, curve->p, num_words); /* Z = 1/Z */
1555 apply_z(rx, ry, z, curve);
1556
1557 /* v = x1 (mod n) */
1558 if (uECC_vli_cmp_unsafe(curve->n, rx, num_n_words) != 1) {
1559 uECC_vli_sub(rx, rx, curve->n, num_n_words);
1560 }
1561
1562 /* Accept only if v == r. */
1563 return (int)(uECC_vli_equal(rx, r, num_words));
1564 }
1565
1566 #if uECC_ENABLE_VLI_API
1567
uECC_curve_num_words(uECC_Curve curve)1568 unsigned uECC_curve_num_words(uECC_Curve curve) {
1569 return curve->num_words;
1570 }
1571
uECC_curve_num_bytes(uECC_Curve curve)1572 unsigned uECC_curve_num_bytes(uECC_Curve curve) {
1573 return curve->num_bytes;
1574 }
1575
uECC_curve_num_bits(uECC_Curve curve)1576 unsigned uECC_curve_num_bits(uECC_Curve curve) {
1577 return curve->num_bytes * 8;
1578 }
1579
uECC_curve_num_n_words(uECC_Curve curve)1580 unsigned uECC_curve_num_n_words(uECC_Curve curve) {
1581 return BITS_TO_WORDS(curve->num_n_bits);
1582 }
1583
uECC_curve_num_n_bytes(uECC_Curve curve)1584 unsigned uECC_curve_num_n_bytes(uECC_Curve curve) {
1585 return BITS_TO_BYTES(curve->num_n_bits);
1586 }
1587
uECC_curve_num_n_bits(uECC_Curve curve)1588 unsigned uECC_curve_num_n_bits(uECC_Curve curve) {
1589 return curve->num_n_bits;
1590 }
1591
uECC_curve_p(uECC_Curve curve)1592 const uECC_word_t *uECC_curve_p(uECC_Curve curve) {
1593 return curve->p;
1594 }
1595
uECC_curve_n(uECC_Curve curve)1596 const uECC_word_t *uECC_curve_n(uECC_Curve curve) {
1597 return curve->n;
1598 }
1599
uECC_curve_G(uECC_Curve curve)1600 const uECC_word_t *uECC_curve_G(uECC_Curve curve) {
1601 return curve->G;
1602 }
1603
uECC_curve_b(uECC_Curve curve)1604 const uECC_word_t *uECC_curve_b(uECC_Curve curve) {
1605 return curve->b;
1606 }
1607
1608 #if uECC_SUPPORT_COMPRESSED_POINT
uECC_vli_mod_sqrt(uECC_word_t * a,uECC_Curve curve)1609 void uECC_vli_mod_sqrt(uECC_word_t *a, uECC_Curve curve) {
1610 curve->mod_sqrt(a, curve);
1611 }
1612 #endif
1613
uECC_vli_mmod_fast(uECC_word_t * result,uECC_word_t * product,uECC_Curve curve)1614 void uECC_vli_mmod_fast(uECC_word_t *result, uECC_word_t *product, uECC_Curve curve) {
1615 #if (uECC_OPTIMIZATION_LEVEL > 0)
1616 curve->mmod_fast(result, product);
1617 #else
1618 uECC_vli_mmod(result, product, curve->p, curve->num_words);
1619 #endif
1620 }
1621
uECC_point_mult(uECC_word_t * result,const uECC_word_t * point,const uECC_word_t * scalar,uECC_Curve curve)1622 void uECC_point_mult(uECC_word_t *result,
1623 const uECC_word_t *point,
1624 const uECC_word_t *scalar,
1625 uECC_Curve curve) {
1626 uECC_word_t tmp1[uECC_MAX_WORDS];
1627 uECC_word_t tmp2[uECC_MAX_WORDS];
1628 uECC_word_t *p2[2] = {tmp1, tmp2};
1629 uECC_word_t carry = regularize_k(scalar, tmp1, tmp2, curve);
1630
1631 EccPoint_mult(result, point, p2[!carry], 0, curve->num_n_bits + 1, curve);
1632 }
1633
1634 #endif /* uECC_ENABLE_VLI_API */
1635