Lines Matching full:order
229 static void __free_pages_ok(struct page *page, unsigned int order,
306 static bool page_contains_unaccepted(struct page *page, unsigned int order);
307 static void accept_page(struct page *page, unsigned int order);
308 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
334 _deferred_grow_zone(struct zone *zone, unsigned int order) in _deferred_grow_zone() argument
336 return deferred_grow_zone(zone, order); in _deferred_grow_zone()
523 static inline unsigned int order_to_pindex(int migratetype, int order) in order_to_pindex() argument
526 if (order > PAGE_ALLOC_COSTLY_ORDER) { in order_to_pindex()
527 VM_BUG_ON(order != pageblock_order); in order_to_pindex()
531 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); in order_to_pindex()
534 return (MIGRATE_PCPTYPES * order) + migratetype; in order_to_pindex()
539 int order = pindex / MIGRATE_PCPTYPES; in pindex_to_order() local
543 order = pageblock_order; in pindex_to_order()
545 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); in pindex_to_order()
548 return order; in pindex_to_order()
551 static inline bool pcp_allowed_order(unsigned int order) in pcp_allowed_order() argument
553 if (order <= PAGE_ALLOC_COSTLY_ORDER) in pcp_allowed_order()
556 if (order == pageblock_order) in pcp_allowed_order()
562 static inline void free_the_page(struct page *page, unsigned int order) in free_the_page() argument
564 if (pcp_allowed_order(order)) /* Via pcp? */ in free_the_page()
565 free_unref_page(page, order); in free_the_page()
567 __free_pages_ok(page, order, FPI_NONE); in free_the_page()
571 * Higher-order pages are called "compound pages". They are structured thusly:
578 * The first tail page's ->compound_order holds the order of allocation.
579 * This usage means that zero-order pages may not be compound.
582 void prep_compound_page(struct page *page, unsigned int order) in prep_compound_page() argument
585 int nr_pages = 1 << order; in prep_compound_page()
591 prep_compound_head(page, order); in prep_compound_page()
608 static inline void set_buddy_order(struct page *page, unsigned int order) in set_buddy_order() argument
610 set_page_private(page, order); in set_buddy_order()
627 int order, int migratetype) in compaction_capture() argument
629 if (!capc || order != capc->cc->order) in compaction_capture()
638 * Do not let lower order allocations pollute a movable pageblock. in compaction_capture()
641 * have trouble finding a high-order free page. in compaction_capture()
643 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) in compaction_capture()
658 int order, int migratetype) in compaction_capture() argument
666 unsigned int order, int migratetype) in add_to_free_list() argument
668 struct free_area *area = &zone->free_area[order]; in add_to_free_list()
676 unsigned int order, int migratetype) in add_to_free_list_tail() argument
678 struct free_area *area = &zone->free_area[order]; in add_to_free_list_tail()
690 unsigned int order, int migratetype) in move_to_free_list() argument
692 struct free_area *area = &zone->free_area[order]; in move_to_free_list()
698 unsigned int order) in del_page_from_free_list() argument
707 zone->free_area[order].nr_free--; in del_page_from_free_list()
719 * of the next-highest order is free. If it is, it's possible
723 * as a higher order page
727 struct page *page, unsigned int order) in buddy_merge_likely() argument
732 if (order >= MAX_ORDER - 1) in buddy_merge_likely()
738 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, in buddy_merge_likely()
755 * free pages of length of (1 << order) and marked with PageBuddy.
756 * Page's order is recorded in page_private(page) field.
768 struct zone *zone, unsigned int order, in __free_one_page() argument
782 __mod_zone_freepage_state(zone, 1 << order, migratetype); in __free_one_page()
784 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); in __free_one_page()
787 while (order < MAX_ORDER) { in __free_one_page()
788 if (compaction_capture(capc, page, order, migratetype)) { in __free_one_page()
789 __mod_zone_freepage_state(zone, -(1 << order), in __free_one_page()
794 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); in __free_one_page()
798 if (unlikely(order >= pageblock_order)) { in __free_one_page()
815 * merge with it and move up one order. in __free_one_page()
818 clear_page_guard(zone, buddy, order, migratetype); in __free_one_page()
820 del_page_from_free_list(buddy, zone, order); in __free_one_page()
824 order++; in __free_one_page()
828 set_buddy_order(page, order); in __free_one_page()
832 else if (is_shuffle_order(order)) in __free_one_page()
835 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); in __free_one_page()
838 add_to_free_list_tail(page, zone, order, migratetype); in __free_one_page()
840 add_to_free_list(page, zone, order, migratetype); in __free_one_page()
844 page_reporting_notify_free(order); in __free_one_page()
850 * @order: the order of the page
861 unsigned int order, unsigned long split_pfn_offset) in split_free_page() argument
876 if (!PageBuddy(free_page) || buddy_order(free_page) != order) { in split_free_page()
883 __mod_zone_freepage_state(zone, -(1UL << order), mt); in split_free_page()
885 del_page_from_free_list(free_page, zone, order); in split_free_page()
887 pfn < free_page_pfn + (1UL << order);) { in split_free_page()
891 pfn ? __ffs(pfn) : order, in split_free_page()
899 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); in split_free_page()
1079 unsigned int order, fpi_t fpi_flags) in free_pages_prepare() argument
1087 trace_mm_page_free(page, order); in free_pages_prepare()
1088 kmsan_free_page(page, order); in free_pages_prepare()
1090 if (unlikely(PageHWPoison(page)) && !order) { in free_pages_prepare()
1096 __memcg_kmem_uncharge_page(page, order); in free_pages_prepare()
1097 reset_page_owner(page, order); in free_pages_prepare()
1098 page_table_check_free(page, order); in free_pages_prepare()
1104 * avoid checking PageCompound for order-0 pages. in free_pages_prepare()
1106 if (unlikely(order)) { in free_pages_prepare()
1110 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); in free_pages_prepare()
1114 for (i = 1; i < (1 << order); i++) { in free_pages_prepare()
1129 __memcg_kmem_uncharge_page(page, order); in free_pages_prepare()
1139 reset_page_owner(page, order); in free_pages_prepare()
1140 page_table_check_free(page, order); in free_pages_prepare()
1144 PAGE_SIZE << order); in free_pages_prepare()
1146 PAGE_SIZE << order); in free_pages_prepare()
1149 kernel_poison_pages(page, 1 << order); in free_pages_prepare()
1160 kasan_poison_pages(page, order, init); in free_pages_prepare()
1167 kernel_init_pages(page, 1 << order); in free_pages_prepare()
1174 arch_free_page(page, order); in free_pages_prepare()
1176 debug_pagealloc_unmap_pages(page, 1 << order); in free_pages_prepare()
1191 unsigned int order; in free_pcppages_bulk() local
1218 order = pindex_to_order(pindex); in free_pcppages_bulk()
1219 nr_pages = 1 << order; in free_pcppages_bulk()
1237 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); in free_pcppages_bulk()
1238 trace_mm_page_pcpu_drain(page, order, mt); in free_pcppages_bulk()
1247 unsigned int order, in free_one_page() argument
1257 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); in free_one_page()
1261 static void __free_pages_ok(struct page *page, unsigned int order, in __free_pages_ok() argument
1269 if (!free_pages_prepare(page, order, fpi_flags)) in __free_pages_ok()
1284 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); in __free_pages_ok()
1287 __count_vm_events(PGFREE, 1 << order); in __free_pages_ok()
1290 void __free_pages_core(struct page *page, unsigned int order) in __free_pages_core() argument
1292 unsigned int nr_pages = 1 << order; in __free_pages_core()
1312 if (page_contains_unaccepted(page, order)) { in __free_pages_core()
1313 if (order == MAX_ORDER && __free_unaccepted(page)) in __free_pages_core()
1316 accept_page(page, order); in __free_pages_core()
1323 __free_pages_ok(page, order, FPI_TO_TAIL); in __free_pages_core()
1343 * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1379 * The order of subdivision here is critical for the IO subsystem.
1380 * Please do not alter this order without good reasons and regression
1382 * the order in which smaller blocks are delivered depends on the order
1384 * influencing the order in which pages are delivered to the IO
1441 static inline bool check_new_pages(struct page *page, unsigned int order) in check_new_pages() argument
1444 for (int i = 0; i < (1 << order); i++) { in check_new_pages()
1483 inline void post_alloc_hook(struct page *page, unsigned int order, in post_alloc_hook() argument
1494 arch_alloc_page(page, order); in post_alloc_hook()
1495 debug_pagealloc_map_pages(page, 1 << order); in post_alloc_hook()
1502 kernel_unpoison_pages(page, 1 << order); in post_alloc_hook()
1516 for (i = 0; i != 1 << order; ++i) in post_alloc_hook()
1523 kasan_unpoison_pages(page, order, init)) { in post_alloc_hook()
1532 for (i = 0; i != 1 << order; ++i) in post_alloc_hook()
1537 kernel_init_pages(page, 1 << order); in post_alloc_hook()
1539 set_page_owner(page, order, gfp_flags); in post_alloc_hook()
1540 page_table_check_alloc(page, order); in post_alloc_hook()
1543 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, in prep_new_page() argument
1546 post_alloc_hook(page, order, gfp_flags); in prep_new_page()
1548 if (order && (gfp_flags & __GFP_COMP)) in prep_new_page()
1549 prep_compound_page(page, order); in prep_new_page()
1568 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, in __rmqueue_smallest() argument
1576 for (current_order = order; current_order <= MAX_ORDER; ++current_order) { in __rmqueue_smallest()
1582 expand(zone, page, order, current_order, migratetype); in __rmqueue_smallest()
1584 trace_mm_page_alloc_zone_locked(page, order, migratetype, in __rmqueue_smallest()
1585 pcp_allowed_order(order) && in __rmqueue_smallest()
1595 * This array describes the order lists are fallen back to when
1608 unsigned int order) in __rmqueue_cma_fallback() argument
1610 return __rmqueue_smallest(zone, order, MIGRATE_CMA); in __rmqueue_cma_fallback()
1614 unsigned int order) { return NULL; } in __rmqueue_cma_fallback() argument
1628 unsigned int order; in move_freepages() local
1650 order = buddy_order(page); in move_freepages()
1651 move_to_free_list(page, zone, order, migratetype); in move_freepages()
1652 pfn += 1 << order; in move_freepages()
1653 pages_moved += 1 << order; in move_freepages()
1704 static bool can_steal_fallback(unsigned int order, int start_mt) in can_steal_fallback() argument
1707 * Leaving this order check is intended, although there is in can_steal_fallback()
1708 * relaxed order check in next check. The reason is that in can_steal_fallback()
1713 if (order >= pageblock_order) in can_steal_fallback()
1716 if (order >= pageblock_order / 2 || in can_steal_fallback()
1763 * This function implements actual steal behaviour. If order is large enough,
1846 * Check whether there is a suitable fallback freepage with requested order.
1851 int find_suitable_fallback(struct free_area *area, unsigned int order, in find_suitable_fallback() argument
1866 if (can_steal_fallback(order, migratetype)) in find_suitable_fallback()
1880 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1881 * there are no empty page blocks that contain a page with a suitable order
1917 * potentially hurts the reliability of high-order allocations when under
1932 int order; in unreserve_highatomic_pageblock() local
1946 for (order = 0; order <= MAX_ORDER; order++) { in unreserve_highatomic_pageblock()
1947 struct free_area *area = &(zone->free_area[order]); in unreserve_highatomic_pageblock()
2002 * The use of signed ints for order and current_order is a deliberate
2007 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, in __rmqueue_fallback() argument
2012 int min_order = order; in __rmqueue_fallback()
2022 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) in __rmqueue_fallback()
2047 && current_order > order) in __rmqueue_fallback()
2056 for (current_order = order; current_order <= MAX_ORDER; in __rmqueue_fallback()
2077 trace_mm_page_alloc_extfrag(page, order, current_order, in __rmqueue_fallback()
2085 __rmqueue_with_cma_reuse(struct zone *zone, unsigned int order, in __rmqueue_with_cma_reuse() argument
2090 page = __rmqueue_smallest(zone, order, migratetype); in __rmqueue_with_cma_reuse()
2095 page = __rmqueue_smallest(zone, order, migratetype); in __rmqueue_with_cma_reuse()
2099 __rmqueue_fallback(zone, order, migratetype, alloc_flags)) in __rmqueue_with_cma_reuse()
2110 __rmqueue(struct zone *zone, unsigned int order, int migratetype, in __rmqueue() argument
2116 page = __rmqueue_with_cma_reuse(zone, order, migratetype, alloc_flags); in __rmqueue()
2130 page = __rmqueue_cma_fallback(zone, order); in __rmqueue()
2136 page = __rmqueue_smallest(zone, order, migratetype); in __rmqueue()
2139 page = __rmqueue_cma_fallback(zone, order); in __rmqueue()
2141 if (!page && __rmqueue_fallback(zone, order, migratetype, in __rmqueue()
2153 static int rmqueue_bulk(struct zone *zone, unsigned int order, in rmqueue_bulk() argument
2162 struct page *page = __rmqueue(zone, order, migratetype, in rmqueue_bulk()
2169 * physical page order. The page is added to the tail of in rmqueue_bulk()
2173 * head, thus also in the physical page order. This is useful in rmqueue_bulk()
2180 -(1 << order)); in rmqueue_bulk()
2183 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); in rmqueue_bulk()
2338 unsigned int order) in free_unref_page_prepare() argument
2342 if (!free_pages_prepare(page, order, FPI_NONE)) in free_unref_page_prepare()
2355 /* Free everything if batch freeing high-order pages. */ in nr_pcp_free()
2399 unsigned int order) in free_unref_page_commit() argument
2405 __count_vm_events(PGFREE, 1 << order); in free_unref_page_commit()
2406 pindex = order_to_pindex(migratetype, order); in free_unref_page_commit()
2408 pcp->count += 1 << order; in free_unref_page_commit()
2411 * As high-order pages other than THP's stored on PCP can contribute in free_unref_page_commit()
2416 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER); in free_unref_page_commit()
2427 void free_unref_page(struct page *page, unsigned int order) in free_unref_page() argument
2435 if (!free_unref_page_prepare(page, pfn, order)) in free_unref_page()
2448 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); in free_unref_page()
2458 free_unref_page_commit(zone, pcp, page, pcpmigratetype, order); in free_unref_page()
2461 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE); in free_unref_page()
2467 * Free a list of 0-order pages
2552 * split_page takes a non-compound higher-order page, and splits it into
2553 * n (1<<order) sub-pages: page[0..n]
2559 void split_page(struct page *page, unsigned int order) in split_page() argument
2566 for (i = 1; i < (1 << order); i++) in split_page()
2568 split_page_owner(page, 1 << order); in split_page()
2569 split_page_memcg(page, 1 << order); in split_page()
2573 int __isolate_free_page(struct page *page, unsigned int order) in __isolate_free_page() argument
2582 * emulate a high-order watermark check with a raised order-0 in __isolate_free_page()
2583 * watermark, because we already know our high-order page in __isolate_free_page()
2586 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); in __isolate_free_page()
2590 __mod_zone_freepage_state(zone, -(1UL << order), mt); in __isolate_free_page()
2593 del_page_from_free_list(page, zone, order); in __isolate_free_page()
2599 if (order >= pageblock_order - 1) { in __isolate_free_page()
2600 struct page *endpage = page + (1 << order) - 1; in __isolate_free_page()
2613 return 1UL << order; in __isolate_free_page()
2619 * @order: Order of the isolated page
2625 void __putback_isolated_page(struct page *page, unsigned int order, int mt) in __putback_isolated_page() argument
2633 __free_one_page(page, page_to_pfn(page), zone, order, mt, in __putback_isolated_page()
2665 unsigned int order, unsigned int alloc_flags, in rmqueue_buddy() argument
2675 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); in rmqueue_buddy()
2677 page = __rmqueue(zone, order, migratetype, alloc_flags); in rmqueue_buddy()
2682 * failing a high-order atomic allocation in the in rmqueue_buddy()
2686 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); in rmqueue_buddy()
2693 __mod_zone_freepage_state(zone, -(1 << order), in rmqueue_buddy()
2696 } while (check_new_pages(page, order)); in rmqueue_buddy()
2698 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); in rmqueue_buddy()
2706 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, in __rmqueue_pcplist() argument
2720 * Scale batch relative to order if batch implies in __rmqueue_pcplist()
2727 batch = max(batch >> order, 2); in __rmqueue_pcplist()
2728 alloced = rmqueue_bulk(zone, order, in __rmqueue_pcplist()
2732 pcp->count += alloced << order; in __rmqueue_pcplist()
2739 pcp->count -= 1 << order; in __rmqueue_pcplist()
2740 } while (check_new_pages(page, order)); in __rmqueue_pcplist()
2747 struct zone *zone, unsigned int order, in rmqueue_pcplist() argument
2769 list = &pcp->lists[order_to_pindex(migratetype, order)]; in rmqueue_pcplist()
2770 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); in rmqueue_pcplist()
2774 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); in rmqueue_pcplist()
2782 * Use pcplists for THP or "cheap" high-order allocations.
2794 struct zone *zone, unsigned int order, in rmqueue() argument
2802 * allocate greater than order-1 page units with __GFP_NOFAIL. in rmqueue()
2804 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); in rmqueue()
2806 if (likely(pcp_allowed_order(order))) { in rmqueue()
2807 page = rmqueue_pcplist(preferred_zone, zone, order, in rmqueue()
2813 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, in rmqueue()
2828 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) in should_fail_alloc_page() argument
2830 return __should_fail_alloc_page(gfp_mask, order); in should_fail_alloc_page()
2835 unsigned int order, unsigned int alloc_flags) in __zone_watermark_unusable_free() argument
2837 long unusable_free = (1 << order) - 1; in __zone_watermark_unusable_free()
2860 * Return true if free base pages are above 'mark'. For high-order checks it
2861 * will return true of the order-0 watermark is reached and there is at least
2865 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, in __zone_watermark_ok() argument
2873 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); in __zone_watermark_ok()
2905 * Check watermarks for an order-0 allocation request. If these in __zone_watermark_ok()
2906 * are not met, then a high-order request also cannot go ahead in __zone_watermark_ok()
2912 /* If this is an order-0 request then the watermark is fine */ in __zone_watermark_ok()
2913 if (!order) in __zone_watermark_ok()
2916 /* For a high-order request, check at least one suitable page is free */ in __zone_watermark_ok()
2917 for (o = order; o <= MAX_ORDER; o++) { in __zone_watermark_ok()
2943 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, in zone_watermark_ok() argument
2946 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, in zone_watermark_ok()
2950 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, in zone_watermark_fast() argument
2959 * Fast check for order-0 only. If this fails then the reserves in zone_watermark_fast()
2962 if (!order) { in zone_watermark_fast()
2975 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, in zone_watermark_fast()
2980 * Ignore watermark boosting for __GFP_HIGH order-0 allocations in zone_watermark_fast()
2985 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost in zone_watermark_fast()
2988 return __zone_watermark_ok(z, order, mark, highest_zoneidx, in zone_watermark_fast()
2995 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, in zone_watermark_ok_safe() argument
3003 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, in zone_watermark_ok_safe()
3078 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, in get_page_from_freelist() argument
3149 if (!zone_watermark_fast(zone, order, mark, in get_page_from_freelist()
3155 if (try_to_accept_memory(zone, order)) in get_page_from_freelist()
3165 if (_deferred_grow_zone(zone, order)) in get_page_from_freelist()
3178 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); in get_page_from_freelist()
3188 if (zone_watermark_ok(zone, order, mark, in get_page_from_freelist()
3197 page = rmqueue(ac->preferred_zoneref->zone, zone, order, in get_page_from_freelist()
3200 prep_new_page(page, order, gfp_mask, alloc_flags); in get_page_from_freelist()
3203 * If this is a high-order atomic allocation then check in get_page_from_freelist()
3212 if (try_to_accept_memory(zone, order)) in get_page_from_freelist()
3219 if (_deferred_grow_zone(zone, order)) in get_page_from_freelist()
3283 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, in __alloc_pages_cpuset_fallback() argument
3289 page = get_page_from_freelist(gfp_mask, order, in __alloc_pages_cpuset_fallback()
3296 page = get_page_from_freelist(gfp_mask, order, in __alloc_pages_cpuset_fallback()
3303 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, in __alloc_pages_may_oom() argument
3311 .order = order, in __alloc_pages_may_oom()
3335 ~__GFP_DIRECT_RECLAIM, order, in __alloc_pages_may_oom()
3343 /* The OOM killer will not help higher order allocs */ in __alloc_pages_may_oom()
3344 if (order > PAGE_ALLOC_COSTLY_ORDER) in __alloc_pages_may_oom()
3381 page = __alloc_pages_cpuset_fallback(gfp_mask, order, in __alloc_pages_may_oom()
3396 /* Try memory compaction for high-order allocations before reclaim */
3398 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, in __alloc_pages_direct_compact() argument
3406 if (!order) in __alloc_pages_direct_compact()
3413 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, in __alloc_pages_direct_compact()
3430 prep_new_page(page, order, gfp_mask, alloc_flags); in __alloc_pages_direct_compact()
3434 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); in __alloc_pages_direct_compact()
3440 compaction_defer_reset(zone, order, true); in __alloc_pages_direct_compact()
3457 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, in should_compact_retry() argument
3468 if (!order) in should_compact_retry()
3475 * Compaction was skipped due to a lack of free order-0 in should_compact_retry()
3479 ret = compaction_zonelist_suitable(ac, order, alloc_flags); in should_compact_retry()
3497 if (order > PAGE_ALLOC_COSTLY_ORDER) in should_compact_retry()
3509 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? in should_compact_retry()
3518 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); in should_compact_retry()
3523 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, in __alloc_pages_direct_compact() argument
3532 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, in should_compact_retry() argument
3540 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) in should_compact_retry()
3546 * Let's give them a good hope and keep retrying while the order-0 in should_compact_retry()
3644 __perform_reclaim(gfp_t gfp_mask, unsigned int order, in __perform_reclaim() argument
3657 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, in __perform_reclaim()
3670 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, in __alloc_pages_direct_reclaim() argument
3679 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); in __alloc_pages_direct_reclaim()
3684 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); in __alloc_pages_direct_reclaim()
3703 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, in wake_all_kswapds() argument
3716 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); in wake_all_kswapds()
3723 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) in gfp_to_alloc_flags() argument
3752 if (order > 0) in gfp_to_alloc_flags()
3824 should_reclaim_retry(gfp_t gfp_mask, unsigned order, in should_reclaim_retry() argument
3834 * their order will become available due to high fragmentation so in should_reclaim_retry()
3837 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) in should_reclaim_retry()
3866 wmark = __zone_watermark_ok(zone, order, min_wmark, in should_reclaim_retry()
3868 trace_reclaim_retry_zone(z, order, reclaimable, in should_reclaim_retry()
3929 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, in __alloc_pages_slowpath() argument
3933 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; in __alloc_pages_slowpath()
3957 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); in __alloc_pages_slowpath()
3984 wake_all_kswapds(order, gfp_mask, ac); in __alloc_pages_slowpath()
3990 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); in __alloc_pages_slowpath()
3997 * movable high-order allocations, do that as well, as compaction will in __alloc_pages_slowpath()
4005 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) in __alloc_pages_slowpath()
4007 page = __alloc_pages_direct_compact(gfp_mask, order, in __alloc_pages_slowpath()
4023 * order, fail immediately unless the allocator has in __alloc_pages_slowpath()
4029 * bursty high order allocations, in __alloc_pages_slowpath()
4052 wake_all_kswapds(order, gfp_mask, ac); in __alloc_pages_slowpath()
4071 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); in __alloc_pages_slowpath()
4084 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, in __alloc_pages_slowpath()
4090 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, in __alloc_pages_slowpath()
4100 * Do not retry costly high order allocations unless they are in __alloc_pages_slowpath()
4106 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, in __alloc_pages_slowpath()
4111 * It doesn't make any sense to retry for the compaction if the order-0 in __alloc_pages_slowpath()
4117 should_compact_retry(ac, order, alloc_flags, in __alloc_pages_slowpath()
4132 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); in __alloc_pages_slowpath()
4191 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); in __alloc_pages_slowpath()
4200 "page allocation failure: order:%u", order); in __alloc_pages_slowpath()
4205 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, in prepare_alloc_pages() argument
4229 if (should_fail_alloc_page(gfp_mask, order)) in prepare_alloc_pages()
4249 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4420 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, in __alloc_pages() argument
4429 * There are several places where we assume that the order value is sane in __alloc_pages()
4432 if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp)) in __alloc_pages()
4445 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, in __alloc_pages()
4456 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); in __alloc_pages()
4469 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); in __alloc_pages()
4473 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { in __alloc_pages()
4474 __free_pages(page, order); in __alloc_pages()
4478 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); in __alloc_pages()
4479 kmsan_alloc_page(page, order, alloc_gfp); in __alloc_pages()
4485 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, in __folio_alloc() argument
4488 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, in __folio_alloc()
4492 if (folio && order > 1) in __folio_alloc()
4503 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) in __get_free_pages() argument
4507 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); in __get_free_pages()
4523 * @order: The order of the allocation.
4526 * pages. It does not check that the @order passed in matches that of
4540 void __free_pages(struct page *page, unsigned int order) in __free_pages() argument
4546 free_the_page(page, order); in __free_pages()
4548 while (order-- > 0) in __free_pages()
4549 free_the_page(page + (1 << order), order); in __free_pages()
4553 void free_pages(unsigned long addr, unsigned int order) in free_pages() argument
4557 __free_pages(virt_to_page((void *)addr), order); in free_pages()
4566 * within a 0 or higher order page. Multiple fragments within that page
4678 * Frees a page fragment allocated out of either a compound or order 0 page.
4689 static void *make_alloc_exact(unsigned long addr, unsigned int order, in make_alloc_exact() argument
4697 split_page_owner(page, 1 << order); in make_alloc_exact()
4698 split_page_memcg(page, 1 << order); in make_alloc_exact()
4702 last = page + (1UL << order); in make_alloc_exact()
4726 unsigned int order = get_order(size); in alloc_pages_exact() local
4732 addr = __get_free_pages(gfp_mask, order); in alloc_pages_exact()
4733 return make_alloc_exact(addr, order, size); in alloc_pages_exact()
4751 unsigned int order = get_order(size); in alloc_pages_exact_nid() local
4757 p = alloc_pages_node(nid, gfp_mask, order); in alloc_pages_exact_nid()
4760 return make_alloc_exact((unsigned long)page_address(p), order, size); in alloc_pages_exact_nid()
5025 pr_info("Fallback order for Node %d: ", local_node); in build_zonelists()
5190 * needs the percpu allocator in order to allocate its pagesets in build_all_zonelists_init()
5281 * fragmented and becoming unavailable for high-order allocations. in zone_batchsize()
6143 int order; in alloc_contig_range() local
6148 .order = -1, in alloc_contig_range()
6160 * MIGRATE_ISOLATE. Because pageblock and max order pages may in alloc_contig_range()
6209 * page allocator holds, ie. they can be part of higher order in alloc_contig_range()
6217 order = 0; in alloc_contig_range()
6220 if (++order > MAX_ORDER) { in alloc_contig_range()
6224 outer_start &= ~0UL << order; in alloc_contig_range()
6228 order = buddy_order(pfn_to_page(outer_start)); in alloc_contig_range()
6231 * outer_start page could be small order buddy page and in alloc_contig_range()
6236 if (outer_start + (1UL << order) <= start) in alloc_contig_range()
6428 unsigned int order; in __offline_isolated_pages() local
6457 order = buddy_order(page); in __offline_isolated_pages()
6458 del_page_from_free_list(page, zone, order); in __offline_isolated_pages()
6459 pfn += (1 << order); in __offline_isolated_pages()
6471 unsigned int order; in is_free_buddy_page() local
6473 for (order = 0; order <= MAX_ORDER; order++) { in is_free_buddy_page()
6474 struct page *page_head = page - (pfn & ((1 << order) - 1)); in is_free_buddy_page()
6477 buddy_order_unsafe(page_head) >= order) in is_free_buddy_page()
6481 return order <= MAX_ORDER; in is_free_buddy_page()
6487 * Break down a higher-order page in sub-pages, and keep our target out of
6528 unsigned int order; in take_page_off_buddy() local
6532 for (order = 0; order <= MAX_ORDER; order++) { in take_page_off_buddy()
6533 struct page *page_head = page - (pfn & ((1 << order) - 1)); in take_page_off_buddy()
6536 if (PageBuddy(page_head) && page_order >= order) { in take_page_off_buddy()
6618 static bool page_contains_unaccepted(struct page *page, unsigned int order) in page_contains_unaccepted() argument
6621 phys_addr_t end = start + (PAGE_SIZE << order); in page_contains_unaccepted()
6626 static void accept_page(struct page *page, unsigned int order) in accept_page() argument
6630 accept_memory(start, start + (PAGE_SIZE << order)); in accept_page()
6667 static bool try_to_accept_memory(struct zone *zone, unsigned int order) in try_to_accept_memory() argument
6675 __zone_watermark_unusable_free(zone, order, 0)); in try_to_accept_memory()
6717 static bool page_contains_unaccepted(struct page *page, unsigned int order) in page_contains_unaccepted() argument
6722 static void accept_page(struct page *page, unsigned int order) in accept_page() argument
6726 static bool try_to_accept_memory(struct zone *zone, unsigned int order) in try_to_accept_memory() argument