Lines Matching full:average
334 average = numpy.average(data)
348 'low': average + t_bounds[0] * stddev / sqrt(N),
349 'high': average + t_bounds[1] * stddev / sqrt(N)
353 ci = { 'abs': 0, 'low': average, 'high': average }
354 if abs(stddev) > 0.0001 and abs(average) > 0.0001:
355 ci['perc'] = t_bounds[1] * stddev / sqrt(N) / average * 100
358 return { 'samples': N, 'average': average, 'median': median,
440 # Sort by ascending/descending time average, then by ascending/descending
441 # count average, then by ascending name.
443 return (item[1]['time_stat']['average'],
444 item[1]['count_stat']['average'],
447 return (-item[1]['time_stat']['average'],
448 -item[1]['count_stat']['average'],
466 return "{:8.1f}{} +/- {:15s}".format(s['average'], units, conf)
612 entry.append(round(s['average'], 1))