• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <asm/page.h>
26 
27 /* Free memory management - zoned buddy allocator.  */
28 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
29 #define MAX_ORDER 10
30 #else
31 #define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
32 #endif
33 #define MAX_ORDER_NR_PAGES (1 << MAX_ORDER)
34 
35 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
36 
37 /*
38  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
39  * costly to service.  That is between allocation orders which should
40  * coalesce naturally under reasonable reclaim pressure and those which
41  * will not.
42  */
43 #define PAGE_ALLOC_COSTLY_ORDER 3
44 
45 enum migratetype {
46 	MIGRATE_UNMOVABLE,
47 	MIGRATE_MOVABLE,
48 	MIGRATE_RECLAIMABLE,
49 #ifdef CONFIG_CMA_REUSE
50 	MIGRATE_CMA,
51 #endif
52 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
53 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
54 #if defined(CONFIG_CMA) && !defined(CONFIG_CMA_REUSE)
55 	/*
56 	 * MIGRATE_CMA migration type is designed to mimic the way
57 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
58 	 * from MIGRATE_CMA pageblocks and page allocator never
59 	 * implicitly change migration type of MIGRATE_CMA pageblock.
60 	 *
61 	 * The way to use it is to change migratetype of a range of
62 	 * pageblocks to MIGRATE_CMA which can be done by
63 	 * __free_pageblock_cma() function.
64 	 */
65 	MIGRATE_CMA,
66 #endif
67 #ifdef CONFIG_MEMORY_ISOLATION
68 	MIGRATE_ISOLATE,	/* can't allocate from here */
69 #endif
70 	MIGRATE_TYPES
71 };
72 
73 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
74 extern const char * const migratetype_names[MIGRATE_TYPES];
75 
76 #ifdef CONFIG_CMA
77 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
78 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
79 #else
80 #  define is_migrate_cma(migratetype) false
81 #  define is_migrate_cma_page(_page) false
82 #endif
83 
84 #ifdef CONFIG_CMA_REUSE
85 #  define get_cma_migratetype() MIGRATE_CMA
86 #else
87 #  define get_cma_migratetype() MIGRATE_MOVABLE
88 #endif
89 
is_migrate_movable(int mt)90 static inline bool is_migrate_movable(int mt)
91 {
92 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
93 }
94 
95 /*
96  * Check whether a migratetype can be merged with another migratetype.
97  *
98  * It is only mergeable when it can fall back to other migratetypes for
99  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
100  */
migratetype_is_mergeable(int mt)101 static inline bool migratetype_is_mergeable(int mt)
102 {
103 	return mt < MIGRATE_PCPTYPES;
104 }
105 
106 #define for_each_migratetype_order(order, type) \
107 	for (order = 0; order <= MAX_ORDER; order++) \
108 		for (type = 0; type < MIGRATE_TYPES; type++)
109 
110 extern int page_group_by_mobility_disabled;
111 
112 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
113 
114 #define get_pageblock_migratetype(page)					\
115 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
116 
117 #define folio_migratetype(folio)				\
118 	get_pfnblock_flags_mask(&folio->page, folio_pfn(folio),		\
119 			MIGRATETYPE_MASK)
120 struct free_area {
121 	struct list_head	free_list[MIGRATE_TYPES];
122 	unsigned long		nr_free;
123 };
124 
125 struct pglist_data;
126 
127 #ifdef CONFIG_NUMA
128 enum numa_stat_item {
129 	NUMA_HIT,		/* allocated in intended node */
130 	NUMA_MISS,		/* allocated in non intended node */
131 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
132 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
133 	NUMA_LOCAL,		/* allocation from local node */
134 	NUMA_OTHER,		/* allocation from other node */
135 	NR_VM_NUMA_EVENT_ITEMS
136 };
137 #else
138 #define NR_VM_NUMA_EVENT_ITEMS 0
139 #endif
140 
141 enum zone_stat_item {
142 	/* First 128 byte cacheline (assuming 64 bit words) */
143 	NR_FREE_PAGES,
144 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
145 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
146 	NR_ZONE_ACTIVE_ANON,
147 	NR_ZONE_INACTIVE_FILE,
148 	NR_ZONE_ACTIVE_FILE,
149 	NR_ZONE_UNEVICTABLE,
150 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
151 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
152 	/* Second 128 byte cacheline */
153 	NR_BOUNCE,
154 #if IS_ENABLED(CONFIG_ZSMALLOC)
155 	NR_ZSPAGES,		/* allocated in zsmalloc */
156 #endif
157 	NR_FREE_CMA_PAGES,
158 #ifdef CONFIG_UNACCEPTED_MEMORY
159 	NR_UNACCEPTED,
160 #endif
161 	NR_VM_ZONE_STAT_ITEMS };
162 
163 enum node_stat_item {
164 	NR_LRU_BASE,
165 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
166 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
167 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
168 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
169 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
170 	NR_SLAB_RECLAIMABLE_B,
171 	NR_SLAB_UNRECLAIMABLE_B,
172 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
173 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
174 	WORKINGSET_NODES,
175 	WORKINGSET_REFAULT_BASE,
176 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
177 	WORKINGSET_REFAULT_FILE,
178 	WORKINGSET_ACTIVATE_BASE,
179 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
180 	WORKINGSET_ACTIVATE_FILE,
181 	WORKINGSET_RESTORE_BASE,
182 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
183 	WORKINGSET_RESTORE_FILE,
184 	WORKINGSET_NODERECLAIM,
185 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
186 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
187 			   only modified from process context */
188 	NR_FILE_PAGES,
189 	NR_FILE_DIRTY,
190 	NR_WRITEBACK,
191 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
192 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
193 	NR_SHMEM_THPS,
194 	NR_SHMEM_PMDMAPPED,
195 	NR_FILE_THPS,
196 	NR_FILE_PMDMAPPED,
197 	NR_ANON_THPS,
198 	NR_VMSCAN_WRITE,
199 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
200 	NR_DIRTIED,		/* page dirtyings since bootup */
201 	NR_WRITTEN,		/* page writings since bootup */
202 	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
203 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
204 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
205 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
206 	NR_KERNEL_STACK_KB,	/* measured in KiB */
207 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
208 	NR_KERNEL_SCS_KB,	/* measured in KiB */
209 #endif
210 	NR_PAGETABLE,		/* used for pagetables */
211 	NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */
212 #ifdef CONFIG_SWAP
213 	NR_SWAPCACHE,
214 #endif
215 #ifdef CONFIG_NUMA_BALANCING
216 	PGPROMOTE_SUCCESS,	/* promote successfully */
217 	PGPROMOTE_CANDIDATE,	/* candidate pages to promote */
218 #endif
219 	NR_VM_NODE_STAT_ITEMS
220 };
221 
222 /*
223  * Returns true if the item should be printed in THPs (/proc/vmstat
224  * currently prints number of anon, file and shmem THPs. But the item
225  * is charged in pages).
226  */
vmstat_item_print_in_thp(enum node_stat_item item)227 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
228 {
229 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
230 		return false;
231 
232 	return item == NR_ANON_THPS ||
233 	       item == NR_FILE_THPS ||
234 	       item == NR_SHMEM_THPS ||
235 	       item == NR_SHMEM_PMDMAPPED ||
236 	       item == NR_FILE_PMDMAPPED;
237 }
238 
239 /*
240  * Returns true if the value is measured in bytes (most vmstat values are
241  * measured in pages). This defines the API part, the internal representation
242  * might be different.
243  */
vmstat_item_in_bytes(int idx)244 static __always_inline bool vmstat_item_in_bytes(int idx)
245 {
246 	/*
247 	 * Global and per-node slab counters track slab pages.
248 	 * It's expected that changes are multiples of PAGE_SIZE.
249 	 * Internally values are stored in pages.
250 	 *
251 	 * Per-memcg and per-lruvec counters track memory, consumed
252 	 * by individual slab objects. These counters are actually
253 	 * byte-precise.
254 	 */
255 	return (idx == NR_SLAB_RECLAIMABLE_B ||
256 		idx == NR_SLAB_UNRECLAIMABLE_B);
257 }
258 
259 /*
260  * We do arithmetic on the LRU lists in various places in the code,
261  * so it is important to keep the active lists LRU_ACTIVE higher in
262  * the array than the corresponding inactive lists, and to keep
263  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
264  *
265  * This has to be kept in sync with the statistics in zone_stat_item
266  * above and the descriptions in vmstat_text in mm/vmstat.c
267  */
268 #define LRU_BASE 0
269 #define LRU_ACTIVE 1
270 #define LRU_FILE 2
271 
272 enum lru_list {
273 	LRU_INACTIVE_ANON = LRU_BASE,
274 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
275 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
276 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
277 	LRU_UNEVICTABLE,
278 	NR_LRU_LISTS
279 };
280 
281 enum vmscan_throttle_state {
282 	VMSCAN_THROTTLE_WRITEBACK,
283 	VMSCAN_THROTTLE_ISOLATED,
284 	VMSCAN_THROTTLE_NOPROGRESS,
285 	VMSCAN_THROTTLE_CONGESTED,
286 	NR_VMSCAN_THROTTLE,
287 };
288 
289 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
290 
291 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
292 
is_file_lru(enum lru_list lru)293 static inline bool is_file_lru(enum lru_list lru)
294 {
295 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
296 }
297 
is_active_lru(enum lru_list lru)298 static inline bool is_active_lru(enum lru_list lru)
299 {
300 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
301 }
302 
303 #define WORKINGSET_ANON 0
304 #define WORKINGSET_FILE 1
305 #define ANON_AND_FILE 2
306 
307 enum lruvec_flags {
308 	/*
309 	 * An lruvec has many dirty pages backed by a congested BDI:
310 	 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
311 	 *    It can be cleared by cgroup reclaim or kswapd.
312 	 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
313 	 *    It can only be cleared by kswapd.
314 	 *
315 	 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
316 	 * reclaim, but not vice versa. This only applies to the root cgroup.
317 	 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
318 	 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
319 	 * by kswapd).
320 	 */
321 	LRUVEC_CGROUP_CONGESTED,
322 	LRUVEC_NODE_CONGESTED,
323 };
324 
325 #endif /* !__GENERATING_BOUNDS_H */
326 
327 /*
328  * Evictable pages are divided into multiple generations. The youngest and the
329  * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
330  * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
331  * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
332  * corresponding generation. The gen counter in folio->flags stores gen+1 while
333  * a page is on one of lrugen->folios[]. Otherwise it stores 0.
334  *
335  * A page is added to the youngest generation on faulting. The aging needs to
336  * check the accessed bit at least twice before handing this page over to the
337  * eviction. The first check takes care of the accessed bit set on the initial
338  * fault; the second check makes sure this page hasn't been used since then.
339  * This process, AKA second chance, requires a minimum of two generations,
340  * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
341  * LRU, e.g., /proc/vmstat, these two generations are considered active; the
342  * rest of generations, if they exist, are considered inactive. See
343  * lru_gen_is_active().
344  *
345  * PG_active is always cleared while a page is on one of lrugen->folios[] so
346  * that the aging needs not to worry about it. And it's set again when a page
347  * considered active is isolated for non-reclaiming purposes, e.g., migration.
348  * See lru_gen_add_folio() and lru_gen_del_folio().
349  *
350  * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
351  * number of categories of the active/inactive LRU when keeping track of
352  * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
353  * in folio->flags.
354  */
355 #define MIN_NR_GENS		2U
356 #define MAX_NR_GENS		4U
357 
358 /*
359  * Each generation is divided into multiple tiers. A page accessed N times
360  * through file descriptors is in tier order_base_2(N). A page in the first tier
361  * (N=0,1) is marked by PG_referenced unless it was faulted in through page
362  * tables or read ahead. A page in any other tier (N>1) is marked by
363  * PG_referenced and PG_workingset. This implies a minimum of two tiers is
364  * supported without using additional bits in folio->flags.
365  *
366  * In contrast to moving across generations which requires the LRU lock, moving
367  * across tiers only involves atomic operations on folio->flags and therefore
368  * has a negligible cost in the buffered access path. In the eviction path,
369  * comparisons of refaulted/(evicted+protected) from the first tier and the
370  * rest infer whether pages accessed multiple times through file descriptors
371  * are statistically hot and thus worth protecting.
372  *
373  * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
374  * number of categories of the active/inactive LRU when keeping track of
375  * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
376  * folio->flags.
377  */
378 #define MAX_NR_TIERS		4U
379 
380 #ifndef __GENERATING_BOUNDS_H
381 
382 struct lruvec;
383 struct page_vma_mapped_walk;
384 
385 #define LRU_GEN_MASK		((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
386 #define LRU_REFS_MASK		((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
387 
388 #ifdef CONFIG_LRU_GEN
389 
390 enum {
391 	LRU_GEN_ANON,
392 	LRU_GEN_FILE,
393 };
394 
395 enum {
396 	LRU_GEN_CORE,
397 	LRU_GEN_MM_WALK,
398 	LRU_GEN_NONLEAF_YOUNG,
399 	NR_LRU_GEN_CAPS
400 };
401 
402 #define MIN_LRU_BATCH		BITS_PER_LONG
403 #define MAX_LRU_BATCH		(MIN_LRU_BATCH * 64)
404 
405 /* whether to keep historical stats from evicted generations */
406 #ifdef CONFIG_LRU_GEN_STATS
407 #define NR_HIST_GENS		MAX_NR_GENS
408 #else
409 #define NR_HIST_GENS		1U
410 #endif
411 
412 /*
413  * The youngest generation number is stored in max_seq for both anon and file
414  * types as they are aged on an equal footing. The oldest generation numbers are
415  * stored in min_seq[] separately for anon and file types as clean file pages
416  * can be evicted regardless of swap constraints.
417  *
418  * Normally anon and file min_seq are in sync. But if swapping is constrained,
419  * e.g., out of swap space, file min_seq is allowed to advance and leave anon
420  * min_seq behind.
421  *
422  * The number of pages in each generation is eventually consistent and therefore
423  * can be transiently negative when reset_batch_size() is pending.
424  */
425 struct lru_gen_folio {
426 	/* the aging increments the youngest generation number */
427 	unsigned long max_seq;
428 	/* the eviction increments the oldest generation numbers */
429 	unsigned long min_seq[ANON_AND_FILE];
430 	/* the birth time of each generation in jiffies */
431 	unsigned long timestamps[MAX_NR_GENS];
432 	/* the multi-gen LRU lists, lazily sorted on eviction */
433 	struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
434 	/* the multi-gen LRU sizes, eventually consistent */
435 	long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
436 	/* the exponential moving average of refaulted */
437 	unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
438 	/* the exponential moving average of evicted+protected */
439 	unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
440 	/* the first tier doesn't need protection, hence the minus one */
441 	unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
442 	/* can be modified without holding the LRU lock */
443 	atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
444 	atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
445 	/* whether the multi-gen LRU is enabled */
446 	bool enabled;
447 #ifdef CONFIG_MEMCG
448 	/* the memcg generation this lru_gen_folio belongs to */
449 	u8 gen;
450 	/* the list segment this lru_gen_folio belongs to */
451 	u8 seg;
452 	/* per-node lru_gen_folio list for global reclaim */
453 	struct hlist_nulls_node list;
454 #endif
455 };
456 
457 enum {
458 	MM_LEAF_TOTAL,		/* total leaf entries */
459 	MM_LEAF_OLD,		/* old leaf entries */
460 	MM_LEAF_YOUNG,		/* young leaf entries */
461 	MM_NONLEAF_TOTAL,	/* total non-leaf entries */
462 	MM_NONLEAF_FOUND,	/* non-leaf entries found in Bloom filters */
463 	MM_NONLEAF_ADDED,	/* non-leaf entries added to Bloom filters */
464 	NR_MM_STATS
465 };
466 
467 /* double-buffering Bloom filters */
468 #define NR_BLOOM_FILTERS	2
469 
470 struct lru_gen_mm_state {
471 	/* set to max_seq after each iteration */
472 	unsigned long seq;
473 	/* where the current iteration continues after */
474 	struct list_head *head;
475 	/* where the last iteration ended before */
476 	struct list_head *tail;
477 	/* Bloom filters flip after each iteration */
478 	unsigned long *filters[NR_BLOOM_FILTERS];
479 	/* the mm stats for debugging */
480 	unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
481 };
482 
483 struct lru_gen_mm_walk {
484 	/* the lruvec under reclaim */
485 	struct lruvec *lruvec;
486 	/* unstable max_seq from lru_gen_folio */
487 	unsigned long max_seq;
488 	/* the next address within an mm to scan */
489 	unsigned long next_addr;
490 	/* to batch promoted pages */
491 	int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
492 	/* to batch the mm stats */
493 	int mm_stats[NR_MM_STATS];
494 	/* total batched items */
495 	int batched;
496 	bool can_swap;
497 	bool force_scan;
498 };
499 
500 void lru_gen_init_lruvec(struct lruvec *lruvec);
501 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
502 
503 #ifdef CONFIG_MEMCG
504 
505 /*
506  * For each node, memcgs are divided into two generations: the old and the
507  * young. For each generation, memcgs are randomly sharded into multiple bins
508  * to improve scalability. For each bin, the hlist_nulls is virtually divided
509  * into three segments: the head, the tail and the default.
510  *
511  * An onlining memcg is added to the tail of a random bin in the old generation.
512  * The eviction starts at the head of a random bin in the old generation. The
513  * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
514  * the old generation, is incremented when all its bins become empty.
515  *
516  * There are four operations:
517  * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its
518  *    current generation (old or young) and updates its "seg" to "head";
519  * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its
520  *    current generation (old or young) and updates its "seg" to "tail";
521  * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old
522  *    generation, updates its "gen" to "old" and resets its "seg" to "default";
523  * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the
524  *    young generation, updates its "gen" to "young" and resets its "seg" to
525  *    "default".
526  *
527  * The events that trigger the above operations are:
528  * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
529  * 2. The first attempt to reclaim a memcg below low, which triggers
530  *    MEMCG_LRU_TAIL;
531  * 3. The first attempt to reclaim a memcg offlined or below reclaimable size
532  *    threshold, which triggers MEMCG_LRU_TAIL;
533  * 4. The second attempt to reclaim a memcg offlined or below reclaimable size
534  *    threshold, which triggers MEMCG_LRU_YOUNG;
535  * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG;
536  * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
537  * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD.
538  *
539  * Notes:
540  * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing
541  *    of their max_seq counters ensures the eventual fairness to all eligible
542  *    memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
543  * 2. There are only two valid generations: old (seq) and young (seq+1).
544  *    MEMCG_NR_GENS is set to three so that when reading the generation counter
545  *    locklessly, a stale value (seq-1) does not wraparound to young.
546  */
547 #define MEMCG_NR_GENS	3
548 #define MEMCG_NR_BINS	8
549 
550 struct lru_gen_memcg {
551 	/* the per-node memcg generation counter */
552 	unsigned long seq;
553 	/* each memcg has one lru_gen_folio per node */
554 	unsigned long nr_memcgs[MEMCG_NR_GENS];
555 	/* per-node lru_gen_folio list for global reclaim */
556 	struct hlist_nulls_head	fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
557 	/* protects the above */
558 	spinlock_t lock;
559 };
560 
561 void lru_gen_init_pgdat(struct pglist_data *pgdat);
562 
563 void lru_gen_init_memcg(struct mem_cgroup *memcg);
564 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
565 void lru_gen_online_memcg(struct mem_cgroup *memcg);
566 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
567 void lru_gen_release_memcg(struct mem_cgroup *memcg);
568 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
569 
570 #else /* !CONFIG_MEMCG */
571 
572 #define MEMCG_NR_GENS	1
573 
574 struct lru_gen_memcg {
575 };
576 
lru_gen_init_pgdat(struct pglist_data * pgdat)577 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
578 {
579 }
580 
581 #endif /* CONFIG_MEMCG */
582 
583 #else /* !CONFIG_LRU_GEN */
584 
lru_gen_init_pgdat(struct pglist_data * pgdat)585 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
586 {
587 }
588 
lru_gen_init_lruvec(struct lruvec * lruvec)589 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
590 {
591 }
592 
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)593 static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
594 {
595 }
596 
597 #ifdef CONFIG_MEMCG
598 
lru_gen_init_memcg(struct mem_cgroup * memcg)599 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
600 {
601 }
602 
lru_gen_exit_memcg(struct mem_cgroup * memcg)603 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
604 {
605 }
606 
lru_gen_online_memcg(struct mem_cgroup * memcg)607 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
608 {
609 }
610 
lru_gen_offline_memcg(struct mem_cgroup * memcg)611 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
612 {
613 }
614 
lru_gen_release_memcg(struct mem_cgroup * memcg)615 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
616 {
617 }
618 
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)619 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
620 {
621 }
622 
623 #endif /* CONFIG_MEMCG */
624 
625 #endif /* CONFIG_LRU_GEN */
626 
627 struct lruvec {
628 	struct list_head		lists[NR_LRU_LISTS];
629 	/* per lruvec lru_lock for memcg */
630 	spinlock_t			lru_lock;
631 	/*
632 	 * These track the cost of reclaiming one LRU - file or anon -
633 	 * over the other. As the observed cost of reclaiming one LRU
634 	 * increases, the reclaim scan balance tips toward the other.
635 	 */
636 	unsigned long			anon_cost;
637 	unsigned long			file_cost;
638 	/* Non-resident age, driven by LRU movement */
639 	atomic_long_t			nonresident_age;
640 	/* Refaults at the time of last reclaim cycle */
641 	unsigned long			refaults[ANON_AND_FILE];
642 	/* Various lruvec state flags (enum lruvec_flags) */
643 	unsigned long			flags;
644 #ifdef CONFIG_LRU_GEN
645 	/* evictable pages divided into generations */
646 	struct lru_gen_folio		lrugen;
647 	/* to concurrently iterate lru_gen_mm_list */
648 	struct lru_gen_mm_state		mm_state;
649 #endif
650 #ifdef CONFIG_MEMCG
651 	struct pglist_data *pgdat;
652 #endif
653 };
654 
655 /* Isolate unmapped pages */
656 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
657 /* Isolate for asynchronous migration */
658 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
659 /* Isolate unevictable pages */
660 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
661 
662 /* LRU Isolation modes. */
663 typedef unsigned __bitwise isolate_mode_t;
664 
665 enum zone_watermarks {
666 	WMARK_MIN,
667 	WMARK_LOW,
668 	WMARK_HIGH,
669 	WMARK_PROMO,
670 	NR_WMARK
671 };
672 
673 /*
674  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list
675  * for THP which will usually be GFP_MOVABLE. Even if it is another type,
676  * it should not contribute to serious fragmentation causing THP allocation
677  * failures.
678  */
679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
680 #define NR_PCP_THP 1
681 #else
682 #define NR_PCP_THP 0
683 #endif
684 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
685 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
686 
687 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
688 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
689 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
690 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
691 
692 struct per_cpu_pages {
693 	spinlock_t lock;	/* Protects lists field */
694 	int count;		/* number of pages in the list */
695 	int high;		/* high watermark, emptying needed */
696 	int batch;		/* chunk size for buddy add/remove */
697 	short free_factor;	/* batch scaling factor during free */
698 #ifdef CONFIG_NUMA
699 	short expire;		/* When 0, remote pagesets are drained */
700 #endif
701 
702 	/* Lists of pages, one per migrate type stored on the pcp-lists */
703 	struct list_head lists[NR_PCP_LISTS];
704 } ____cacheline_aligned_in_smp;
705 
706 struct per_cpu_zonestat {
707 #ifdef CONFIG_SMP
708 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
709 	s8 stat_threshold;
710 #endif
711 #ifdef CONFIG_NUMA
712 	/*
713 	 * Low priority inaccurate counters that are only folded
714 	 * on demand. Use a large type to avoid the overhead of
715 	 * folding during refresh_cpu_vm_stats.
716 	 */
717 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
718 #endif
719 };
720 
721 struct per_cpu_nodestat {
722 	s8 stat_threshold;
723 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
724 };
725 
726 #endif /* !__GENERATING_BOUNDS.H */
727 
728 enum zone_type {
729 	/*
730 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
731 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
732 	 * On architectures where this area covers the whole 32 bit address
733 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
734 	 * DMA addressing constraints. This distinction is important as a 32bit
735 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
736 	 * platforms may need both zones as they support peripherals with
737 	 * different DMA addressing limitations.
738 	 */
739 #ifdef CONFIG_ZONE_DMA
740 	ZONE_DMA,
741 #endif
742 #ifdef CONFIG_ZONE_DMA32
743 	ZONE_DMA32,
744 #endif
745 	/*
746 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
747 	 * performed on pages in ZONE_NORMAL if the DMA devices support
748 	 * transfers to all addressable memory.
749 	 */
750 	ZONE_NORMAL,
751 #ifdef CONFIG_HIGHMEM
752 	/*
753 	 * A memory area that is only addressable by the kernel through
754 	 * mapping portions into its own address space. This is for example
755 	 * used by i386 to allow the kernel to address the memory beyond
756 	 * 900MB. The kernel will set up special mappings (page
757 	 * table entries on i386) for each page that the kernel needs to
758 	 * access.
759 	 */
760 	ZONE_HIGHMEM,
761 #endif
762 	/*
763 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
764 	 * movable pages with few exceptional cases described below. Main use
765 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
766 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
767 	 * to increase the number of THP/huge pages. Notable special cases are:
768 	 *
769 	 * 1. Pinned pages: (long-term) pinning of movable pages might
770 	 *    essentially turn such pages unmovable. Therefore, we do not allow
771 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
772 	 *    faulted, they come from the right zone right away. However, it is
773 	 *    still possible that address space already has pages in
774 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
775 	 *    touches that memory before pinning). In such case we migrate them
776 	 *    to a different zone. When migration fails - pinning fails.
777 	 * 2. memblock allocations: kernelcore/movablecore setups might create
778 	 *    situations where ZONE_MOVABLE contains unmovable allocations
779 	 *    after boot. Memory offlining and allocations fail early.
780 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
781 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
782 	 *    for example, if we have sections that are only partially
783 	 *    populated. Memory offlining and allocations fail early.
784 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
785 	 *    memory offlining, such pages cannot be allocated.
786 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
787 	 *    hotplugged memory blocks might only partially be managed by the
788 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
789 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
790 	 *    some cases (virtio-mem), such pages can be skipped during
791 	 *    memory offlining, however, cannot be moved/allocated. These
792 	 *    techniques might use alloc_contig_range() to hide previously
793 	 *    exposed pages from the buddy again (e.g., to implement some sort
794 	 *    of memory unplug in virtio-mem).
795 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
796 	 *    situations where ZERO_PAGE(0) which is allocated differently
797 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
798 	 *    cannot be migrated.
799 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
800 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
801 	 *    such zone. Such pages cannot be really moved around as they are
802 	 *    self-stored in the range, but they are treated as movable when
803 	 *    the range they describe is about to be offlined.
804 	 *
805 	 * In general, no unmovable allocations that degrade memory offlining
806 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
807 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
808 	 * if has_unmovable_pages() states that there are no unmovable pages,
809 	 * there can be false negatives).
810 	 */
811 	ZONE_MOVABLE,
812 #ifdef CONFIG_ZONE_DEVICE
813 	ZONE_DEVICE,
814 #endif
815 	__MAX_NR_ZONES
816 
817 };
818 
819 #ifndef __GENERATING_BOUNDS_H
820 
821 #define ASYNC_AND_SYNC 2
822 
823 struct zone {
824 	/* Read-mostly fields */
825 
826 	/* zone watermarks, access with *_wmark_pages(zone) macros */
827 	unsigned long _watermark[NR_WMARK];
828 	unsigned long watermark_boost;
829 
830 	unsigned long nr_reserved_highatomic;
831 
832 	/*
833 	 * We don't know if the memory that we're going to allocate will be
834 	 * freeable or/and it will be released eventually, so to avoid totally
835 	 * wasting several GB of ram we must reserve some of the lower zone
836 	 * memory (otherwise we risk to run OOM on the lower zones despite
837 	 * there being tons of freeable ram on the higher zones).  This array is
838 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
839 	 * changes.
840 	 */
841 	long lowmem_reserve[MAX_NR_ZONES];
842 
843 #ifdef CONFIG_NUMA
844 	int node;
845 #endif
846 	struct pglist_data	*zone_pgdat;
847 	struct per_cpu_pages	__percpu *per_cpu_pageset;
848 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
849 	/*
850 	 * the high and batch values are copied to individual pagesets for
851 	 * faster access
852 	 */
853 	int pageset_high;
854 	int pageset_batch;
855 
856 #ifndef CONFIG_SPARSEMEM
857 	/*
858 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
859 	 * In SPARSEMEM, this map is stored in struct mem_section
860 	 */
861 	unsigned long		*pageblock_flags;
862 #endif /* CONFIG_SPARSEMEM */
863 
864 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
865 	unsigned long		zone_start_pfn;
866 
867 	/*
868 	 * spanned_pages is the total pages spanned by the zone, including
869 	 * holes, which is calculated as:
870 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
871 	 *
872 	 * present_pages is physical pages existing within the zone, which
873 	 * is calculated as:
874 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
875 	 *
876 	 * present_early_pages is present pages existing within the zone
877 	 * located on memory available since early boot, excluding hotplugged
878 	 * memory.
879 	 *
880 	 * managed_pages is present pages managed by the buddy system, which
881 	 * is calculated as (reserved_pages includes pages allocated by the
882 	 * bootmem allocator):
883 	 *	managed_pages = present_pages - reserved_pages;
884 	 *
885 	 * cma pages is present pages that are assigned for CMA use
886 	 * (MIGRATE_CMA).
887 	 *
888 	 * So present_pages may be used by memory hotplug or memory power
889 	 * management logic to figure out unmanaged pages by checking
890 	 * (present_pages - managed_pages). And managed_pages should be used
891 	 * by page allocator and vm scanner to calculate all kinds of watermarks
892 	 * and thresholds.
893 	 *
894 	 * Locking rules:
895 	 *
896 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
897 	 * It is a seqlock because it has to be read outside of zone->lock,
898 	 * and it is done in the main allocator path.  But, it is written
899 	 * quite infrequently.
900 	 *
901 	 * The span_seq lock is declared along with zone->lock because it is
902 	 * frequently read in proximity to zone->lock.  It's good to
903 	 * give them a chance of being in the same cacheline.
904 	 *
905 	 * Write access to present_pages at runtime should be protected by
906 	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
907 	 * present_pages should use get_online_mems() to get a stable value.
908 	 */
909 	atomic_long_t		managed_pages;
910 	unsigned long		spanned_pages;
911 	unsigned long		present_pages;
912 #if defined(CONFIG_MEMORY_HOTPLUG)
913 	unsigned long		present_early_pages;
914 #endif
915 #ifdef CONFIG_CMA
916 	unsigned long		cma_pages;
917 #endif
918 
919 	const char		*name;
920 
921 #ifdef CONFIG_MEMORY_ISOLATION
922 	/*
923 	 * Number of isolated pageblock. It is used to solve incorrect
924 	 * freepage counting problem due to racy retrieving migratetype
925 	 * of pageblock. Protected by zone->lock.
926 	 */
927 	unsigned long		nr_isolate_pageblock;
928 #endif
929 
930 #ifdef CONFIG_MEMORY_HOTPLUG
931 	/* see spanned/present_pages for more description */
932 	seqlock_t		span_seqlock;
933 #endif
934 
935 	int initialized;
936 
937 	/* Write-intensive fields used from the page allocator */
938 	CACHELINE_PADDING(_pad1_);
939 
940 	/* free areas of different sizes */
941 	struct free_area	free_area[MAX_ORDER + 1];
942 
943 #ifdef CONFIG_UNACCEPTED_MEMORY
944 	/* Pages to be accepted. All pages on the list are MAX_ORDER */
945 	struct list_head	unaccepted_pages;
946 #endif
947 
948 	/* zone flags, see below */
949 	unsigned long		flags;
950 
951 	/* Primarily protects free_area */
952 	spinlock_t		lock;
953 
954 	/* Write-intensive fields used by compaction and vmstats. */
955 	CACHELINE_PADDING(_pad2_);
956 
957 	/*
958 	 * When free pages are below this point, additional steps are taken
959 	 * when reading the number of free pages to avoid per-cpu counter
960 	 * drift allowing watermarks to be breached
961 	 */
962 	unsigned long percpu_drift_mark;
963 
964 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
965 	/* pfn where compaction free scanner should start */
966 	unsigned long		compact_cached_free_pfn;
967 	/* pfn where compaction migration scanner should start */
968 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
969 	unsigned long		compact_init_migrate_pfn;
970 	unsigned long		compact_init_free_pfn;
971 #endif
972 
973 #ifdef CONFIG_COMPACTION
974 	/*
975 	 * On compaction failure, 1<<compact_defer_shift compactions
976 	 * are skipped before trying again. The number attempted since
977 	 * last failure is tracked with compact_considered.
978 	 * compact_order_failed is the minimum compaction failed order.
979 	 */
980 	unsigned int		compact_considered;
981 	unsigned int		compact_defer_shift;
982 	int			compact_order_failed;
983 #endif
984 
985 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
986 	/* Set to true when the PG_migrate_skip bits should be cleared */
987 	bool			compact_blockskip_flush;
988 #endif
989 
990 	bool			contiguous;
991 
992 	CACHELINE_PADDING(_pad3_);
993 	/* Zone statistics */
994 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
995 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
996 } ____cacheline_internodealigned_in_smp;
997 
998 enum pgdat_flags {
999 	PGDAT_DIRTY,			/* reclaim scanning has recently found
1000 					 * many dirty file pages at the tail
1001 					 * of the LRU.
1002 					 */
1003 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
1004 					 * many pages under writeback
1005 					 */
1006 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
1007 };
1008 
1009 enum zone_flags {
1010 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
1011 					 * Cleared when kswapd is woken.
1012 					 */
1013 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
1014 };
1015 
zone_managed_pages(struct zone * zone)1016 static inline unsigned long zone_managed_pages(struct zone *zone)
1017 {
1018 	return (unsigned long)atomic_long_read(&zone->managed_pages);
1019 }
1020 
zone_cma_pages(struct zone * zone)1021 static inline unsigned long zone_cma_pages(struct zone *zone)
1022 {
1023 #ifdef CONFIG_CMA
1024 	return zone->cma_pages;
1025 #else
1026 	return 0;
1027 #endif
1028 }
1029 
zone_end_pfn(const struct zone * zone)1030 static inline unsigned long zone_end_pfn(const struct zone *zone)
1031 {
1032 	return zone->zone_start_pfn + zone->spanned_pages;
1033 }
1034 
zone_spans_pfn(const struct zone * zone,unsigned long pfn)1035 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1036 {
1037 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1038 }
1039 
zone_is_initialized(struct zone * zone)1040 static inline bool zone_is_initialized(struct zone *zone)
1041 {
1042 	return zone->initialized;
1043 }
1044 
zone_is_empty(struct zone * zone)1045 static inline bool zone_is_empty(struct zone *zone)
1046 {
1047 	return zone->spanned_pages == 0;
1048 }
1049 
1050 #ifndef BUILD_VDSO32_64
1051 /*
1052  * The zone field is never updated after free_area_init_core()
1053  * sets it, so none of the operations on it need to be atomic.
1054  */
1055 
1056 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1057 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1058 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1059 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1060 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1061 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1062 #define LRU_GEN_PGOFF		(KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1063 #define LRU_REFS_PGOFF		(LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1064 
1065 /*
1066  * Define the bit shifts to access each section.  For non-existent
1067  * sections we define the shift as 0; that plus a 0 mask ensures
1068  * the compiler will optimise away reference to them.
1069  */
1070 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1071 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1072 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1073 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1074 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1075 
1076 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1077 #ifdef NODE_NOT_IN_PAGE_FLAGS
1078 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1079 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1080 						SECTIONS_PGOFF : ZONES_PGOFF)
1081 #else
1082 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1083 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \
1084 						NODES_PGOFF : ZONES_PGOFF)
1085 #endif
1086 
1087 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1088 
1089 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1090 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1091 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1092 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1093 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1094 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1095 
page_zonenum(const struct page * page)1096 static inline enum zone_type page_zonenum(const struct page *page)
1097 {
1098 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1099 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1100 }
1101 
folio_zonenum(const struct folio * folio)1102 static inline enum zone_type folio_zonenum(const struct folio *folio)
1103 {
1104 	return page_zonenum(&folio->page);
1105 }
1106 
1107 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1108 static inline bool is_zone_device_page(const struct page *page)
1109 {
1110 	return page_zonenum(page) == ZONE_DEVICE;
1111 }
1112 
1113 /*
1114  * Consecutive zone device pages should not be merged into the same sgl
1115  * or bvec segment with other types of pages or if they belong to different
1116  * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1117  * without scanning the entire segment. This helper returns true either if
1118  * both pages are not zone device pages or both pages are zone device pages
1119  * with the same pgmap.
1120  */
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1121 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1122 						     const struct page *b)
1123 {
1124 	if (is_zone_device_page(a) != is_zone_device_page(b))
1125 		return false;
1126 	if (!is_zone_device_page(a))
1127 		return true;
1128 	return a->pgmap == b->pgmap;
1129 }
1130 
1131 extern void memmap_init_zone_device(struct zone *, unsigned long,
1132 				    unsigned long, struct dev_pagemap *);
1133 #else
is_zone_device_page(const struct page * page)1134 static inline bool is_zone_device_page(const struct page *page)
1135 {
1136 	return false;
1137 }
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1138 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1139 						     const struct page *b)
1140 {
1141 	return true;
1142 }
1143 #endif
1144 
folio_is_zone_device(const struct folio * folio)1145 static inline bool folio_is_zone_device(const struct folio *folio)
1146 {
1147 	return is_zone_device_page(&folio->page);
1148 }
1149 
is_zone_movable_page(const struct page * page)1150 static inline bool is_zone_movable_page(const struct page *page)
1151 {
1152 	return page_zonenum(page) == ZONE_MOVABLE;
1153 }
1154 
folio_is_zone_movable(const struct folio * folio)1155 static inline bool folio_is_zone_movable(const struct folio *folio)
1156 {
1157 	return folio_zonenum(folio) == ZONE_MOVABLE;
1158 }
1159 #endif
1160 
1161 /*
1162  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1163  * intersection with the given zone
1164  */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)1165 static inline bool zone_intersects(struct zone *zone,
1166 		unsigned long start_pfn, unsigned long nr_pages)
1167 {
1168 	if (zone_is_empty(zone))
1169 		return false;
1170 	if (start_pfn >= zone_end_pfn(zone) ||
1171 	    start_pfn + nr_pages <= zone->zone_start_pfn)
1172 		return false;
1173 
1174 	return true;
1175 }
1176 
1177 /*
1178  * The "priority" of VM scanning is how much of the queues we will scan in one
1179  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1180  * queues ("queue_length >> 12") during an aging round.
1181  */
1182 #define DEF_PRIORITY 12
1183 
1184 /* Maximum number of zones on a zonelist */
1185 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1186 
1187 enum {
1188 	ZONELIST_FALLBACK,	/* zonelist with fallback */
1189 #ifdef CONFIG_NUMA
1190 	/*
1191 	 * The NUMA zonelists are doubled because we need zonelists that
1192 	 * restrict the allocations to a single node for __GFP_THISNODE.
1193 	 */
1194 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
1195 #endif
1196 	MAX_ZONELISTS
1197 };
1198 
1199 /*
1200  * This struct contains information about a zone in a zonelist. It is stored
1201  * here to avoid dereferences into large structures and lookups of tables
1202  */
1203 struct zoneref {
1204 	struct zone *zone;	/* Pointer to actual zone */
1205 	int zone_idx;		/* zone_idx(zoneref->zone) */
1206 };
1207 
1208 /*
1209  * One allocation request operates on a zonelist. A zonelist
1210  * is a list of zones, the first one is the 'goal' of the
1211  * allocation, the other zones are fallback zones, in decreasing
1212  * priority.
1213  *
1214  * To speed the reading of the zonelist, the zonerefs contain the zone index
1215  * of the entry being read. Helper functions to access information given
1216  * a struct zoneref are
1217  *
1218  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
1219  * zonelist_zone_idx()	- Return the index of the zone for an entry
1220  * zonelist_node_idx()	- Return the index of the node for an entry
1221  */
1222 struct zonelist {
1223 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1224 };
1225 
1226 /*
1227  * The array of struct pages for flatmem.
1228  * It must be declared for SPARSEMEM as well because there are configurations
1229  * that rely on that.
1230  */
1231 extern struct page *mem_map;
1232 
1233 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1234 struct deferred_split {
1235 	spinlock_t split_queue_lock;
1236 	struct list_head split_queue;
1237 	unsigned long split_queue_len;
1238 };
1239 #endif
1240 
1241 #ifdef CONFIG_MEMORY_FAILURE
1242 /*
1243  * Per NUMA node memory failure handling statistics.
1244  */
1245 struct memory_failure_stats {
1246 	/*
1247 	 * Number of raw pages poisoned.
1248 	 * Cases not accounted: memory outside kernel control, offline page,
1249 	 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1250 	 * error events, and unpoison actions from hwpoison_unpoison.
1251 	 */
1252 	unsigned long total;
1253 	/*
1254 	 * Recovery results of poisoned raw pages handled by memory_failure,
1255 	 * in sync with mf_result.
1256 	 * total = ignored + failed + delayed + recovered.
1257 	 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1258 	 */
1259 	unsigned long ignored;
1260 	unsigned long failed;
1261 	unsigned long delayed;
1262 	unsigned long recovered;
1263 };
1264 #endif
1265 
1266 /*
1267  * On NUMA machines, each NUMA node would have a pg_data_t to describe
1268  * it's memory layout. On UMA machines there is a single pglist_data which
1269  * describes the whole memory.
1270  *
1271  * Memory statistics and page replacement data structures are maintained on a
1272  * per-zone basis.
1273  */
1274 typedef struct pglist_data {
1275 	/*
1276 	 * node_zones contains just the zones for THIS node. Not all of the
1277 	 * zones may be populated, but it is the full list. It is referenced by
1278 	 * this node's node_zonelists as well as other node's node_zonelists.
1279 	 */
1280 	struct zone node_zones[MAX_NR_ZONES];
1281 
1282 	/*
1283 	 * node_zonelists contains references to all zones in all nodes.
1284 	 * Generally the first zones will be references to this node's
1285 	 * node_zones.
1286 	 */
1287 	struct zonelist node_zonelists[MAX_ZONELISTS];
1288 
1289 	int nr_zones; /* number of populated zones in this node */
1290 #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
1291 	struct page *node_mem_map;
1292 #ifdef CONFIG_PAGE_EXTENSION
1293 	struct page_ext *node_page_ext;
1294 #endif
1295 #endif
1296 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1297 	/*
1298 	 * Must be held any time you expect node_start_pfn,
1299 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1300 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1301 	 * init.
1302 	 *
1303 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1304 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1305 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1306 	 *
1307 	 * Nests above zone->lock and zone->span_seqlock
1308 	 */
1309 	spinlock_t node_size_lock;
1310 #endif
1311 	unsigned long node_start_pfn;
1312 	unsigned long node_present_pages; /* total number of physical pages */
1313 	unsigned long node_spanned_pages; /* total size of physical page
1314 					     range, including holes */
1315 	int node_id;
1316 	wait_queue_head_t kswapd_wait;
1317 	wait_queue_head_t pfmemalloc_wait;
1318 
1319 	/* workqueues for throttling reclaim for different reasons. */
1320 	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1321 
1322 	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1323 	unsigned long nr_reclaim_start;	/* nr pages written while throttled
1324 					 * when throttling started. */
1325 #ifdef CONFIG_MEMORY_HOTPLUG
1326 	struct mutex kswapd_lock;
1327 #endif
1328 	struct task_struct *kswapd;	/* Protected by kswapd_lock */
1329 	int kswapd_order;
1330 	enum zone_type kswapd_highest_zoneidx;
1331 
1332 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
1333 
1334 #ifdef CONFIG_COMPACTION
1335 	int kcompactd_max_order;
1336 	enum zone_type kcompactd_highest_zoneidx;
1337 	wait_queue_head_t kcompactd_wait;
1338 	struct task_struct *kcompactd;
1339 	bool proactive_compact_trigger;
1340 #endif
1341 	/*
1342 	 * This is a per-node reserve of pages that are not available
1343 	 * to userspace allocations.
1344 	 */
1345 	unsigned long		totalreserve_pages;
1346 
1347 #ifdef CONFIG_NUMA
1348 	/*
1349 	 * node reclaim becomes active if more unmapped pages exist.
1350 	 */
1351 	unsigned long		min_unmapped_pages;
1352 	unsigned long		min_slab_pages;
1353 #endif /* CONFIG_NUMA */
1354 
1355 	/* Write-intensive fields used by page reclaim */
1356 	CACHELINE_PADDING(_pad1_);
1357 
1358 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1359 	/*
1360 	 * If memory initialisation on large machines is deferred then this
1361 	 * is the first PFN that needs to be initialised.
1362 	 */
1363 	unsigned long first_deferred_pfn;
1364 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1365 
1366 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1367 	struct deferred_split deferred_split_queue;
1368 #endif
1369 
1370 #ifdef CONFIG_NUMA_BALANCING
1371 	/* start time in ms of current promote rate limit period */
1372 	unsigned int nbp_rl_start;
1373 	/* number of promote candidate pages at start time of current rate limit period */
1374 	unsigned long nbp_rl_nr_cand;
1375 	/* promote threshold in ms */
1376 	unsigned int nbp_threshold;
1377 	/* start time in ms of current promote threshold adjustment period */
1378 	unsigned int nbp_th_start;
1379 	/*
1380 	 * number of promote candidate pages at start time of current promote
1381 	 * threshold adjustment period
1382 	 */
1383 	unsigned long nbp_th_nr_cand;
1384 #endif
1385 	/* Fields commonly accessed by the page reclaim scanner */
1386 
1387 	/*
1388 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1389 	 *
1390 	 * Use mem_cgroup_lruvec() to look up lruvecs.
1391 	 */
1392 	struct lruvec		__lruvec;
1393 
1394 	unsigned long		flags;
1395 
1396 #ifdef CONFIG_LRU_GEN
1397 	/* kswap mm walk data */
1398 	struct lru_gen_mm_walk mm_walk;
1399 	/* lru_gen_folio list */
1400 	struct lru_gen_memcg memcg_lru;
1401 #endif
1402 
1403 	CACHELINE_PADDING(_pad2_);
1404 
1405 	/* Per-node vmstats */
1406 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1407 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
1408 #ifdef CONFIG_NUMA
1409 	struct memory_tier __rcu *memtier;
1410 #endif
1411 #ifdef CONFIG_MEMORY_FAILURE
1412 	struct memory_failure_stats mf_stats;
1413 #endif
1414 } pg_data_t;
1415 
1416 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
1417 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
1418 
1419 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
1420 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1421 
pgdat_end_pfn(pg_data_t * pgdat)1422 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1423 {
1424 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1425 }
1426 
1427 #include <linux/memory_hotplug.h>
1428 
1429 void build_all_zonelists(pg_data_t *pgdat);
1430 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1431 		   enum zone_type highest_zoneidx);
1432 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1433 			 int highest_zoneidx, unsigned int alloc_flags,
1434 			 long free_pages);
1435 bool zone_watermark_ok(struct zone *z, unsigned int order,
1436 		unsigned long mark, int highest_zoneidx,
1437 		unsigned int alloc_flags);
1438 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1439 		unsigned long mark, int highest_zoneidx);
1440 /*
1441  * Memory initialization context, use to differentiate memory added by
1442  * the platform statically or via memory hotplug interface.
1443  */
1444 enum meminit_context {
1445 	MEMINIT_EARLY,
1446 	MEMINIT_HOTPLUG,
1447 };
1448 
1449 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1450 				     unsigned long size);
1451 
1452 extern void lruvec_init(struct lruvec *lruvec);
1453 
lruvec_pgdat(struct lruvec * lruvec)1454 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1455 {
1456 #ifdef CONFIG_MEMCG
1457 	return lruvec->pgdat;
1458 #else
1459 	return container_of(lruvec, struct pglist_data, __lruvec);
1460 #endif
1461 }
1462 
1463 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1464 int local_memory_node(int node_id);
1465 #else
local_memory_node(int node_id)1466 static inline int local_memory_node(int node_id) { return node_id; };
1467 #endif
1468 
1469 /*
1470  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1471  */
1472 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
1473 
1474 #ifdef CONFIG_ZONE_DEVICE
zone_is_zone_device(struct zone * zone)1475 static inline bool zone_is_zone_device(struct zone *zone)
1476 {
1477 	return zone_idx(zone) == ZONE_DEVICE;
1478 }
1479 #else
zone_is_zone_device(struct zone * zone)1480 static inline bool zone_is_zone_device(struct zone *zone)
1481 {
1482 	return false;
1483 }
1484 #endif
1485 
1486 /*
1487  * Returns true if a zone has pages managed by the buddy allocator.
1488  * All the reclaim decisions have to use this function rather than
1489  * populated_zone(). If the whole zone is reserved then we can easily
1490  * end up with populated_zone() && !managed_zone().
1491  */
managed_zone(struct zone * zone)1492 static inline bool managed_zone(struct zone *zone)
1493 {
1494 	return zone_managed_pages(zone);
1495 }
1496 
1497 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)1498 static inline bool populated_zone(struct zone *zone)
1499 {
1500 	return zone->present_pages;
1501 }
1502 
1503 #ifdef CONFIG_NUMA
zone_to_nid(struct zone * zone)1504 static inline int zone_to_nid(struct zone *zone)
1505 {
1506 	return zone->node;
1507 }
1508 
zone_set_nid(struct zone * zone,int nid)1509 static inline void zone_set_nid(struct zone *zone, int nid)
1510 {
1511 	zone->node = nid;
1512 }
1513 #else
zone_to_nid(struct zone * zone)1514 static inline int zone_to_nid(struct zone *zone)
1515 {
1516 	return 0;
1517 }
1518 
zone_set_nid(struct zone * zone,int nid)1519 static inline void zone_set_nid(struct zone *zone, int nid) {}
1520 #endif
1521 
1522 extern int movable_zone;
1523 
is_highmem_idx(enum zone_type idx)1524 static inline int is_highmem_idx(enum zone_type idx)
1525 {
1526 #ifdef CONFIG_HIGHMEM
1527 	return (idx == ZONE_HIGHMEM ||
1528 		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1529 #else
1530 	return 0;
1531 #endif
1532 }
1533 
1534 /**
1535  * is_highmem - helper function to quickly check if a struct zone is a
1536  *              highmem zone or not.  This is an attempt to keep references
1537  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1538  * @zone: pointer to struct zone variable
1539  * Return: 1 for a highmem zone, 0 otherwise
1540  */
is_highmem(struct zone * zone)1541 static inline int is_highmem(struct zone *zone)
1542 {
1543 	return is_highmem_idx(zone_idx(zone));
1544 }
1545 
1546 #ifdef CONFIG_ZONE_DMA
1547 bool has_managed_dma(void);
1548 #else
has_managed_dma(void)1549 static inline bool has_managed_dma(void)
1550 {
1551 	return false;
1552 }
1553 #endif
1554 
1555 
1556 #ifndef CONFIG_NUMA
1557 
1558 extern struct pglist_data contig_page_data;
NODE_DATA(int nid)1559 static inline struct pglist_data *NODE_DATA(int nid)
1560 {
1561 	return &contig_page_data;
1562 }
1563 
1564 #else /* CONFIG_NUMA */
1565 
1566 #include <asm/mmzone.h>
1567 
1568 #endif /* !CONFIG_NUMA */
1569 
1570 extern struct pglist_data *first_online_pgdat(void);
1571 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1572 extern struct zone *next_zone(struct zone *zone);
1573 
1574 /**
1575  * for_each_online_pgdat - helper macro to iterate over all online nodes
1576  * @pgdat: pointer to a pg_data_t variable
1577  */
1578 #define for_each_online_pgdat(pgdat)			\
1579 	for (pgdat = first_online_pgdat();		\
1580 	     pgdat;					\
1581 	     pgdat = next_online_pgdat(pgdat))
1582 /**
1583  * for_each_zone - helper macro to iterate over all memory zones
1584  * @zone: pointer to struct zone variable
1585  *
1586  * The user only needs to declare the zone variable, for_each_zone
1587  * fills it in.
1588  */
1589 #define for_each_zone(zone)			        \
1590 	for (zone = (first_online_pgdat())->node_zones; \
1591 	     zone;					\
1592 	     zone = next_zone(zone))
1593 
1594 #define for_each_populated_zone(zone)		        \
1595 	for (zone = (first_online_pgdat())->node_zones; \
1596 	     zone;					\
1597 	     zone = next_zone(zone))			\
1598 		if (!populated_zone(zone))		\
1599 			; /* do nothing */		\
1600 		else
1601 
zonelist_zone(struct zoneref * zoneref)1602 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1603 {
1604 	return zoneref->zone;
1605 }
1606 
zonelist_zone_idx(struct zoneref * zoneref)1607 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1608 {
1609 	return zoneref->zone_idx;
1610 }
1611 
zonelist_node_idx(struct zoneref * zoneref)1612 static inline int zonelist_node_idx(struct zoneref *zoneref)
1613 {
1614 	return zone_to_nid(zoneref->zone);
1615 }
1616 
1617 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1618 					enum zone_type highest_zoneidx,
1619 					nodemask_t *nodes);
1620 
1621 /**
1622  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1623  * @z: The cursor used as a starting point for the search
1624  * @highest_zoneidx: The zone index of the highest zone to return
1625  * @nodes: An optional nodemask to filter the zonelist with
1626  *
1627  * This function returns the next zone at or below a given zone index that is
1628  * within the allowed nodemask using a cursor as the starting point for the
1629  * search. The zoneref returned is a cursor that represents the current zone
1630  * being examined. It should be advanced by one before calling
1631  * next_zones_zonelist again.
1632  *
1633  * Return: the next zone at or below highest_zoneidx within the allowed
1634  * nodemask using a cursor within a zonelist as a starting point
1635  */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1636 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1637 					enum zone_type highest_zoneidx,
1638 					nodemask_t *nodes)
1639 {
1640 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1641 		return z;
1642 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1643 }
1644 
1645 /**
1646  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1647  * @zonelist: The zonelist to search for a suitable zone
1648  * @highest_zoneidx: The zone index of the highest zone to return
1649  * @nodes: An optional nodemask to filter the zonelist with
1650  *
1651  * This function returns the first zone at or below a given zone index that is
1652  * within the allowed nodemask. The zoneref returned is a cursor that can be
1653  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1654  * one before calling.
1655  *
1656  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1657  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1658  * update due to cpuset modification.
1659  *
1660  * Return: Zoneref pointer for the first suitable zone found
1661  */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1662 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1663 					enum zone_type highest_zoneidx,
1664 					nodemask_t *nodes)
1665 {
1666 	return next_zones_zonelist(zonelist->_zonerefs,
1667 							highest_zoneidx, nodes);
1668 }
1669 
1670 /**
1671  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1672  * @zone: The current zone in the iterator
1673  * @z: The current pointer within zonelist->_zonerefs being iterated
1674  * @zlist: The zonelist being iterated
1675  * @highidx: The zone index of the highest zone to return
1676  * @nodemask: Nodemask allowed by the allocator
1677  *
1678  * This iterator iterates though all zones at or below a given zone index and
1679  * within a given nodemask
1680  */
1681 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1682 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1683 		zone;							\
1684 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1685 			zone = zonelist_zone(z))
1686 
1687 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1688 	for (zone = z->zone;	\
1689 		zone;							\
1690 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1691 			zone = zonelist_zone(z))
1692 
1693 
1694 /**
1695  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1696  * @zone: The current zone in the iterator
1697  * @z: The current pointer within zonelist->zones being iterated
1698  * @zlist: The zonelist being iterated
1699  * @highidx: The zone index of the highest zone to return
1700  *
1701  * This iterator iterates though all zones at or below a given zone index.
1702  */
1703 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1704 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1705 
1706 /* Whether the 'nodes' are all movable nodes */
movable_only_nodes(nodemask_t * nodes)1707 static inline bool movable_only_nodes(nodemask_t *nodes)
1708 {
1709 	struct zonelist *zonelist;
1710 	struct zoneref *z;
1711 	int nid;
1712 
1713 	if (nodes_empty(*nodes))
1714 		return false;
1715 
1716 	/*
1717 	 * We can chose arbitrary node from the nodemask to get a
1718 	 * zonelist as they are interlinked. We just need to find
1719 	 * at least one zone that can satisfy kernel allocations.
1720 	 */
1721 	nid = first_node(*nodes);
1722 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1723 	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
1724 	return (!z->zone) ? true : false;
1725 }
1726 
1727 
1728 #ifdef CONFIG_SPARSEMEM
1729 #include <asm/sparsemem.h>
1730 #endif
1731 
1732 #ifdef CONFIG_FLATMEM
1733 #define pfn_to_nid(pfn)		(0)
1734 #endif
1735 
1736 #ifdef CONFIG_SPARSEMEM
1737 
1738 /*
1739  * PA_SECTION_SHIFT		physical address to/from section number
1740  * PFN_SECTION_SHIFT		pfn to/from section number
1741  */
1742 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1743 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1744 
1745 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1746 
1747 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1748 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1749 
1750 #define SECTION_BLOCKFLAGS_BITS \
1751 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1752 
1753 #if (MAX_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1754 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1755 #endif
1756 
pfn_to_section_nr(unsigned long pfn)1757 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1758 {
1759 	return pfn >> PFN_SECTION_SHIFT;
1760 }
section_nr_to_pfn(unsigned long sec)1761 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1762 {
1763 	return sec << PFN_SECTION_SHIFT;
1764 }
1765 
1766 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1767 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1768 
1769 #define SUBSECTION_SHIFT 21
1770 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1771 
1772 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1773 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1774 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1775 
1776 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1777 #error Subsection size exceeds section size
1778 #else
1779 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1780 #endif
1781 
1782 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1783 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1784 
1785 struct mem_section_usage {
1786 	struct rcu_head rcu;
1787 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1788 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1789 #endif
1790 	/* See declaration of similar field in struct zone */
1791 	unsigned long pageblock_flags[0];
1792 };
1793 
1794 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1795 
1796 struct page;
1797 struct page_ext;
1798 struct mem_section {
1799 	/*
1800 	 * This is, logically, a pointer to an array of struct
1801 	 * pages.  However, it is stored with some other magic.
1802 	 * (see sparse.c::sparse_init_one_section())
1803 	 *
1804 	 * Additionally during early boot we encode node id of
1805 	 * the location of the section here to guide allocation.
1806 	 * (see sparse.c::memory_present())
1807 	 *
1808 	 * Making it a UL at least makes someone do a cast
1809 	 * before using it wrong.
1810 	 */
1811 	unsigned long section_mem_map;
1812 
1813 	struct mem_section_usage *usage;
1814 #ifdef CONFIG_PAGE_EXTENSION
1815 	/*
1816 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1817 	 * section. (see page_ext.h about this.)
1818 	 */
1819 	struct page_ext *page_ext;
1820 	unsigned long pad;
1821 #endif
1822 	/*
1823 	 * WARNING: mem_section must be a power-of-2 in size for the
1824 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1825 	 */
1826 };
1827 
1828 #ifdef CONFIG_SPARSEMEM_EXTREME
1829 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1830 #else
1831 #define SECTIONS_PER_ROOT	1
1832 #endif
1833 
1834 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1835 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1836 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1837 
1838 #ifdef CONFIG_SPARSEMEM_EXTREME
1839 extern struct mem_section **mem_section;
1840 #else
1841 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1842 #endif
1843 
section_to_usemap(struct mem_section * ms)1844 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1845 {
1846 	return ms->usage->pageblock_flags;
1847 }
1848 
__nr_to_section(unsigned long nr)1849 static inline struct mem_section *__nr_to_section(unsigned long nr)
1850 {
1851 	unsigned long root = SECTION_NR_TO_ROOT(nr);
1852 
1853 	if (unlikely(root >= NR_SECTION_ROOTS))
1854 		return NULL;
1855 
1856 #ifdef CONFIG_SPARSEMEM_EXTREME
1857 	if (!mem_section || !mem_section[root])
1858 		return NULL;
1859 #endif
1860 	return &mem_section[root][nr & SECTION_ROOT_MASK];
1861 }
1862 extern size_t mem_section_usage_size(void);
1863 
1864 /*
1865  * We use the lower bits of the mem_map pointer to store
1866  * a little bit of information.  The pointer is calculated
1867  * as mem_map - section_nr_to_pfn(pnum).  The result is
1868  * aligned to the minimum alignment of the two values:
1869  *   1. All mem_map arrays are page-aligned.
1870  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1871  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1872  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1873  *      worst combination is powerpc with 256k pages,
1874  *      which results in PFN_SECTION_SHIFT equal 6.
1875  * To sum it up, at least 6 bits are available on all architectures.
1876  * However, we can exceed 6 bits on some other architectures except
1877  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1878  * with the worst case of 64K pages on arm64) if we make sure the
1879  * exceeded bit is not applicable to powerpc.
1880  */
1881 enum {
1882 	SECTION_MARKED_PRESENT_BIT,
1883 	SECTION_HAS_MEM_MAP_BIT,
1884 	SECTION_IS_ONLINE_BIT,
1885 	SECTION_IS_EARLY_BIT,
1886 #ifdef CONFIG_ZONE_DEVICE
1887 	SECTION_TAINT_ZONE_DEVICE_BIT,
1888 #endif
1889 	SECTION_MAP_LAST_BIT,
1890 };
1891 
1892 #define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT)
1893 #define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT)
1894 #define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT)
1895 #define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT)
1896 #ifdef CONFIG_ZONE_DEVICE
1897 #define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1898 #endif
1899 #define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1))
1900 #define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT
1901 
__section_mem_map_addr(struct mem_section * section)1902 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1903 {
1904 	unsigned long map = section->section_mem_map;
1905 	map &= SECTION_MAP_MASK;
1906 	return (struct page *)map;
1907 }
1908 
present_section(struct mem_section * section)1909 static inline int present_section(struct mem_section *section)
1910 {
1911 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1912 }
1913 
present_section_nr(unsigned long nr)1914 static inline int present_section_nr(unsigned long nr)
1915 {
1916 	return present_section(__nr_to_section(nr));
1917 }
1918 
valid_section(struct mem_section * section)1919 static inline int valid_section(struct mem_section *section)
1920 {
1921 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1922 }
1923 
early_section(struct mem_section * section)1924 static inline int early_section(struct mem_section *section)
1925 {
1926 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1927 }
1928 
valid_section_nr(unsigned long nr)1929 static inline int valid_section_nr(unsigned long nr)
1930 {
1931 	return valid_section(__nr_to_section(nr));
1932 }
1933 
online_section(struct mem_section * section)1934 static inline int online_section(struct mem_section *section)
1935 {
1936 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1937 }
1938 
1939 #ifdef CONFIG_ZONE_DEVICE
online_device_section(struct mem_section * section)1940 static inline int online_device_section(struct mem_section *section)
1941 {
1942 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1943 
1944 	return section && ((section->section_mem_map & flags) == flags);
1945 }
1946 #else
online_device_section(struct mem_section * section)1947 static inline int online_device_section(struct mem_section *section)
1948 {
1949 	return 0;
1950 }
1951 #endif
1952 
online_section_nr(unsigned long nr)1953 static inline int online_section_nr(unsigned long nr)
1954 {
1955 	return online_section(__nr_to_section(nr));
1956 }
1957 
1958 #ifdef CONFIG_MEMORY_HOTPLUG
1959 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1960 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1961 #endif
1962 
__pfn_to_section(unsigned long pfn)1963 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1964 {
1965 	return __nr_to_section(pfn_to_section_nr(pfn));
1966 }
1967 
1968 extern unsigned long __highest_present_section_nr;
1969 
subsection_map_index(unsigned long pfn)1970 static inline int subsection_map_index(unsigned long pfn)
1971 {
1972 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1973 }
1974 
1975 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1976 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1977 {
1978 	int idx = subsection_map_index(pfn);
1979 
1980 	return test_bit(idx, READ_ONCE(ms->usage)->subsection_map);
1981 }
1982 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1983 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1984 {
1985 	return 1;
1986 }
1987 #endif
1988 
1989 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1990 /**
1991  * pfn_valid - check if there is a valid memory map entry for a PFN
1992  * @pfn: the page frame number to check
1993  *
1994  * Check if there is a valid memory map entry aka struct page for the @pfn.
1995  * Note, that availability of the memory map entry does not imply that
1996  * there is actual usable memory at that @pfn. The struct page may
1997  * represent a hole or an unusable page frame.
1998  *
1999  * Return: 1 for PFNs that have memory map entries and 0 otherwise
2000  */
pfn_valid(unsigned long pfn)2001 static inline int pfn_valid(unsigned long pfn)
2002 {
2003 	struct mem_section *ms;
2004 	int ret;
2005 
2006 	/*
2007 	 * Ensure the upper PAGE_SHIFT bits are clear in the
2008 	 * pfn. Else it might lead to false positives when
2009 	 * some of the upper bits are set, but the lower bits
2010 	 * match a valid pfn.
2011 	 */
2012 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2013 		return 0;
2014 
2015 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2016 		return 0;
2017 	ms = __pfn_to_section(pfn);
2018 	rcu_read_lock_sched();
2019 	if (!valid_section(ms)) {
2020 		rcu_read_unlock_sched();
2021 		return 0;
2022 	}
2023 	/*
2024 	 * Traditionally early sections always returned pfn_valid() for
2025 	 * the entire section-sized span.
2026 	 */
2027 	ret = early_section(ms) || pfn_section_valid(ms, pfn);
2028 	rcu_read_unlock_sched();
2029 
2030 	return ret;
2031 }
2032 #endif
2033 
pfn_in_present_section(unsigned long pfn)2034 static inline int pfn_in_present_section(unsigned long pfn)
2035 {
2036 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2037 		return 0;
2038 	return present_section(__pfn_to_section(pfn));
2039 }
2040 
next_present_section_nr(unsigned long section_nr)2041 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2042 {
2043 	while (++section_nr <= __highest_present_section_nr) {
2044 		if (present_section_nr(section_nr))
2045 			return section_nr;
2046 	}
2047 
2048 	return -1;
2049 }
2050 
2051 /*
2052  * These are _only_ used during initialisation, therefore they
2053  * can use __initdata ...  They could have names to indicate
2054  * this restriction.
2055  */
2056 #ifdef CONFIG_NUMA
2057 #define pfn_to_nid(pfn)							\
2058 ({									\
2059 	unsigned long __pfn_to_nid_pfn = (pfn);				\
2060 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
2061 })
2062 #else
2063 #define pfn_to_nid(pfn)		(0)
2064 #endif
2065 
2066 void sparse_init(void);
2067 #else
2068 #define sparse_init()	do {} while (0)
2069 #define sparse_index_init(_sec, _nid)  do {} while (0)
2070 #define pfn_in_present_section pfn_valid
2071 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2072 #endif /* CONFIG_SPARSEMEM */
2073 
2074 #endif /* !__GENERATING_BOUNDS.H */
2075 #endif /* !__ASSEMBLY__ */
2076 #endif /* _LINUX_MMZONE_H */
2077