1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <asm/page.h>
26
27 /* Free memory management - zoned buddy allocator. */
28 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
29 #define MAX_ORDER 10
30 #else
31 #define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
32 #endif
33 #define MAX_ORDER_NR_PAGES (1 << MAX_ORDER)
34
35 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
36
37 /*
38 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
39 * costly to service. That is between allocation orders which should
40 * coalesce naturally under reasonable reclaim pressure and those which
41 * will not.
42 */
43 #define PAGE_ALLOC_COSTLY_ORDER 3
44
45 enum migratetype {
46 MIGRATE_UNMOVABLE,
47 MIGRATE_MOVABLE,
48 MIGRATE_RECLAIMABLE,
49 #ifdef CONFIG_CMA_REUSE
50 MIGRATE_CMA,
51 #endif
52 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
53 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
54 #if defined(CONFIG_CMA) && !defined(CONFIG_CMA_REUSE)
55 /*
56 * MIGRATE_CMA migration type is designed to mimic the way
57 * ZONE_MOVABLE works. Only movable pages can be allocated
58 * from MIGRATE_CMA pageblocks and page allocator never
59 * implicitly change migration type of MIGRATE_CMA pageblock.
60 *
61 * The way to use it is to change migratetype of a range of
62 * pageblocks to MIGRATE_CMA which can be done by
63 * __free_pageblock_cma() function.
64 */
65 MIGRATE_CMA,
66 #endif
67 #ifdef CONFIG_MEMORY_ISOLATION
68 MIGRATE_ISOLATE, /* can't allocate from here */
69 #endif
70 MIGRATE_TYPES
71 };
72
73 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
74 extern const char * const migratetype_names[MIGRATE_TYPES];
75
76 #ifdef CONFIG_CMA
77 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
78 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
79 #else
80 # define is_migrate_cma(migratetype) false
81 # define is_migrate_cma_page(_page) false
82 #endif
83
84 #ifdef CONFIG_CMA_REUSE
85 # define get_cma_migratetype() MIGRATE_CMA
86 #else
87 # define get_cma_migratetype() MIGRATE_MOVABLE
88 #endif
89
is_migrate_movable(int mt)90 static inline bool is_migrate_movable(int mt)
91 {
92 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
93 }
94
95 /*
96 * Check whether a migratetype can be merged with another migratetype.
97 *
98 * It is only mergeable when it can fall back to other migratetypes for
99 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
100 */
migratetype_is_mergeable(int mt)101 static inline bool migratetype_is_mergeable(int mt)
102 {
103 return mt < MIGRATE_PCPTYPES;
104 }
105
106 #define for_each_migratetype_order(order, type) \
107 for (order = 0; order <= MAX_ORDER; order++) \
108 for (type = 0; type < MIGRATE_TYPES; type++)
109
110 extern int page_group_by_mobility_disabled;
111
112 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
113
114 #define get_pageblock_migratetype(page) \
115 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
116
117 #define folio_migratetype(folio) \
118 get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \
119 MIGRATETYPE_MASK)
120 struct free_area {
121 struct list_head free_list[MIGRATE_TYPES];
122 unsigned long nr_free;
123 };
124
125 struct pglist_data;
126
127 #ifdef CONFIG_NUMA
128 enum numa_stat_item {
129 NUMA_HIT, /* allocated in intended node */
130 NUMA_MISS, /* allocated in non intended node */
131 NUMA_FOREIGN, /* was intended here, hit elsewhere */
132 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
133 NUMA_LOCAL, /* allocation from local node */
134 NUMA_OTHER, /* allocation from other node */
135 NR_VM_NUMA_EVENT_ITEMS
136 };
137 #else
138 #define NR_VM_NUMA_EVENT_ITEMS 0
139 #endif
140
141 enum zone_stat_item {
142 /* First 128 byte cacheline (assuming 64 bit words) */
143 NR_FREE_PAGES,
144 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
145 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
146 NR_ZONE_ACTIVE_ANON,
147 NR_ZONE_INACTIVE_FILE,
148 NR_ZONE_ACTIVE_FILE,
149 NR_ZONE_UNEVICTABLE,
150 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
151 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
152 /* Second 128 byte cacheline */
153 NR_BOUNCE,
154 #if IS_ENABLED(CONFIG_ZSMALLOC)
155 NR_ZSPAGES, /* allocated in zsmalloc */
156 #endif
157 NR_FREE_CMA_PAGES,
158 #ifdef CONFIG_UNACCEPTED_MEMORY
159 NR_UNACCEPTED,
160 #endif
161 NR_VM_ZONE_STAT_ITEMS };
162
163 enum node_stat_item {
164 NR_LRU_BASE,
165 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
166 NR_ACTIVE_ANON, /* " " " " " */
167 NR_INACTIVE_FILE, /* " " " " " */
168 NR_ACTIVE_FILE, /* " " " " " */
169 NR_UNEVICTABLE, /* " " " " " */
170 NR_SLAB_RECLAIMABLE_B,
171 NR_SLAB_UNRECLAIMABLE_B,
172 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
173 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
174 WORKINGSET_NODES,
175 WORKINGSET_REFAULT_BASE,
176 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
177 WORKINGSET_REFAULT_FILE,
178 WORKINGSET_ACTIVATE_BASE,
179 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
180 WORKINGSET_ACTIVATE_FILE,
181 WORKINGSET_RESTORE_BASE,
182 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
183 WORKINGSET_RESTORE_FILE,
184 WORKINGSET_NODERECLAIM,
185 NR_ANON_MAPPED, /* Mapped anonymous pages */
186 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
187 only modified from process context */
188 NR_FILE_PAGES,
189 NR_FILE_DIRTY,
190 NR_WRITEBACK,
191 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
192 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
193 NR_SHMEM_THPS,
194 NR_SHMEM_PMDMAPPED,
195 NR_FILE_THPS,
196 NR_FILE_PMDMAPPED,
197 NR_ANON_THPS,
198 NR_VMSCAN_WRITE,
199 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
200 NR_DIRTIED, /* page dirtyings since bootup */
201 NR_WRITTEN, /* page writings since bootup */
202 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */
203 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
204 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
205 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
206 NR_KERNEL_STACK_KB, /* measured in KiB */
207 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
208 NR_KERNEL_SCS_KB, /* measured in KiB */
209 #endif
210 NR_PAGETABLE, /* used for pagetables */
211 NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */
212 #ifdef CONFIG_SWAP
213 NR_SWAPCACHE,
214 #endif
215 #ifdef CONFIG_NUMA_BALANCING
216 PGPROMOTE_SUCCESS, /* promote successfully */
217 PGPROMOTE_CANDIDATE, /* candidate pages to promote */
218 #endif
219 NR_VM_NODE_STAT_ITEMS
220 };
221
222 /*
223 * Returns true if the item should be printed in THPs (/proc/vmstat
224 * currently prints number of anon, file and shmem THPs. But the item
225 * is charged in pages).
226 */
vmstat_item_print_in_thp(enum node_stat_item item)227 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
228 {
229 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
230 return false;
231
232 return item == NR_ANON_THPS ||
233 item == NR_FILE_THPS ||
234 item == NR_SHMEM_THPS ||
235 item == NR_SHMEM_PMDMAPPED ||
236 item == NR_FILE_PMDMAPPED;
237 }
238
239 /*
240 * Returns true if the value is measured in bytes (most vmstat values are
241 * measured in pages). This defines the API part, the internal representation
242 * might be different.
243 */
vmstat_item_in_bytes(int idx)244 static __always_inline bool vmstat_item_in_bytes(int idx)
245 {
246 /*
247 * Global and per-node slab counters track slab pages.
248 * It's expected that changes are multiples of PAGE_SIZE.
249 * Internally values are stored in pages.
250 *
251 * Per-memcg and per-lruvec counters track memory, consumed
252 * by individual slab objects. These counters are actually
253 * byte-precise.
254 */
255 return (idx == NR_SLAB_RECLAIMABLE_B ||
256 idx == NR_SLAB_UNRECLAIMABLE_B);
257 }
258
259 /*
260 * We do arithmetic on the LRU lists in various places in the code,
261 * so it is important to keep the active lists LRU_ACTIVE higher in
262 * the array than the corresponding inactive lists, and to keep
263 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
264 *
265 * This has to be kept in sync with the statistics in zone_stat_item
266 * above and the descriptions in vmstat_text in mm/vmstat.c
267 */
268 #define LRU_BASE 0
269 #define LRU_ACTIVE 1
270 #define LRU_FILE 2
271
272 enum lru_list {
273 LRU_INACTIVE_ANON = LRU_BASE,
274 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
275 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
276 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
277 LRU_UNEVICTABLE,
278 NR_LRU_LISTS
279 };
280
281 enum vmscan_throttle_state {
282 VMSCAN_THROTTLE_WRITEBACK,
283 VMSCAN_THROTTLE_ISOLATED,
284 VMSCAN_THROTTLE_NOPROGRESS,
285 VMSCAN_THROTTLE_CONGESTED,
286 NR_VMSCAN_THROTTLE,
287 };
288
289 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
290
291 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
292
is_file_lru(enum lru_list lru)293 static inline bool is_file_lru(enum lru_list lru)
294 {
295 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
296 }
297
is_active_lru(enum lru_list lru)298 static inline bool is_active_lru(enum lru_list lru)
299 {
300 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
301 }
302
303 #define WORKINGSET_ANON 0
304 #define WORKINGSET_FILE 1
305 #define ANON_AND_FILE 2
306
307 enum lruvec_flags {
308 /*
309 * An lruvec has many dirty pages backed by a congested BDI:
310 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
311 * It can be cleared by cgroup reclaim or kswapd.
312 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
313 * It can only be cleared by kswapd.
314 *
315 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
316 * reclaim, but not vice versa. This only applies to the root cgroup.
317 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
318 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
319 * by kswapd).
320 */
321 LRUVEC_CGROUP_CONGESTED,
322 LRUVEC_NODE_CONGESTED,
323 };
324
325 #endif /* !__GENERATING_BOUNDS_H */
326
327 /*
328 * Evictable pages are divided into multiple generations. The youngest and the
329 * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
330 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
331 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
332 * corresponding generation. The gen counter in folio->flags stores gen+1 while
333 * a page is on one of lrugen->folios[]. Otherwise it stores 0.
334 *
335 * A page is added to the youngest generation on faulting. The aging needs to
336 * check the accessed bit at least twice before handing this page over to the
337 * eviction. The first check takes care of the accessed bit set on the initial
338 * fault; the second check makes sure this page hasn't been used since then.
339 * This process, AKA second chance, requires a minimum of two generations,
340 * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
341 * LRU, e.g., /proc/vmstat, these two generations are considered active; the
342 * rest of generations, if they exist, are considered inactive. See
343 * lru_gen_is_active().
344 *
345 * PG_active is always cleared while a page is on one of lrugen->folios[] so
346 * that the aging needs not to worry about it. And it's set again when a page
347 * considered active is isolated for non-reclaiming purposes, e.g., migration.
348 * See lru_gen_add_folio() and lru_gen_del_folio().
349 *
350 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
351 * number of categories of the active/inactive LRU when keeping track of
352 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
353 * in folio->flags.
354 */
355 #define MIN_NR_GENS 2U
356 #define MAX_NR_GENS 4U
357
358 /*
359 * Each generation is divided into multiple tiers. A page accessed N times
360 * through file descriptors is in tier order_base_2(N). A page in the first tier
361 * (N=0,1) is marked by PG_referenced unless it was faulted in through page
362 * tables or read ahead. A page in any other tier (N>1) is marked by
363 * PG_referenced and PG_workingset. This implies a minimum of two tiers is
364 * supported without using additional bits in folio->flags.
365 *
366 * In contrast to moving across generations which requires the LRU lock, moving
367 * across tiers only involves atomic operations on folio->flags and therefore
368 * has a negligible cost in the buffered access path. In the eviction path,
369 * comparisons of refaulted/(evicted+protected) from the first tier and the
370 * rest infer whether pages accessed multiple times through file descriptors
371 * are statistically hot and thus worth protecting.
372 *
373 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
374 * number of categories of the active/inactive LRU when keeping track of
375 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
376 * folio->flags.
377 */
378 #define MAX_NR_TIERS 4U
379
380 #ifndef __GENERATING_BOUNDS_H
381
382 struct lruvec;
383 struct page_vma_mapped_walk;
384
385 #define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
386 #define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
387
388 #ifdef CONFIG_LRU_GEN
389
390 enum {
391 LRU_GEN_ANON,
392 LRU_GEN_FILE,
393 };
394
395 enum {
396 LRU_GEN_CORE,
397 LRU_GEN_MM_WALK,
398 LRU_GEN_NONLEAF_YOUNG,
399 NR_LRU_GEN_CAPS
400 };
401
402 #define MIN_LRU_BATCH BITS_PER_LONG
403 #define MAX_LRU_BATCH (MIN_LRU_BATCH * 64)
404
405 /* whether to keep historical stats from evicted generations */
406 #ifdef CONFIG_LRU_GEN_STATS
407 #define NR_HIST_GENS MAX_NR_GENS
408 #else
409 #define NR_HIST_GENS 1U
410 #endif
411
412 /*
413 * The youngest generation number is stored in max_seq for both anon and file
414 * types as they are aged on an equal footing. The oldest generation numbers are
415 * stored in min_seq[] separately for anon and file types as clean file pages
416 * can be evicted regardless of swap constraints.
417 *
418 * Normally anon and file min_seq are in sync. But if swapping is constrained,
419 * e.g., out of swap space, file min_seq is allowed to advance and leave anon
420 * min_seq behind.
421 *
422 * The number of pages in each generation is eventually consistent and therefore
423 * can be transiently negative when reset_batch_size() is pending.
424 */
425 struct lru_gen_folio {
426 /* the aging increments the youngest generation number */
427 unsigned long max_seq;
428 /* the eviction increments the oldest generation numbers */
429 unsigned long min_seq[ANON_AND_FILE];
430 /* the birth time of each generation in jiffies */
431 unsigned long timestamps[MAX_NR_GENS];
432 /* the multi-gen LRU lists, lazily sorted on eviction */
433 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
434 /* the multi-gen LRU sizes, eventually consistent */
435 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
436 /* the exponential moving average of refaulted */
437 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
438 /* the exponential moving average of evicted+protected */
439 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
440 /* the first tier doesn't need protection, hence the minus one */
441 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
442 /* can be modified without holding the LRU lock */
443 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
444 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
445 /* whether the multi-gen LRU is enabled */
446 bool enabled;
447 #ifdef CONFIG_MEMCG
448 /* the memcg generation this lru_gen_folio belongs to */
449 u8 gen;
450 /* the list segment this lru_gen_folio belongs to */
451 u8 seg;
452 /* per-node lru_gen_folio list for global reclaim */
453 struct hlist_nulls_node list;
454 #endif
455 };
456
457 enum {
458 MM_LEAF_TOTAL, /* total leaf entries */
459 MM_LEAF_OLD, /* old leaf entries */
460 MM_LEAF_YOUNG, /* young leaf entries */
461 MM_NONLEAF_TOTAL, /* total non-leaf entries */
462 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */
463 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */
464 NR_MM_STATS
465 };
466
467 /* double-buffering Bloom filters */
468 #define NR_BLOOM_FILTERS 2
469
470 struct lru_gen_mm_state {
471 /* set to max_seq after each iteration */
472 unsigned long seq;
473 /* where the current iteration continues after */
474 struct list_head *head;
475 /* where the last iteration ended before */
476 struct list_head *tail;
477 /* Bloom filters flip after each iteration */
478 unsigned long *filters[NR_BLOOM_FILTERS];
479 /* the mm stats for debugging */
480 unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
481 };
482
483 struct lru_gen_mm_walk {
484 /* the lruvec under reclaim */
485 struct lruvec *lruvec;
486 /* unstable max_seq from lru_gen_folio */
487 unsigned long max_seq;
488 /* the next address within an mm to scan */
489 unsigned long next_addr;
490 /* to batch promoted pages */
491 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
492 /* to batch the mm stats */
493 int mm_stats[NR_MM_STATS];
494 /* total batched items */
495 int batched;
496 bool can_swap;
497 bool force_scan;
498 };
499
500 void lru_gen_init_lruvec(struct lruvec *lruvec);
501 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
502
503 #ifdef CONFIG_MEMCG
504
505 /*
506 * For each node, memcgs are divided into two generations: the old and the
507 * young. For each generation, memcgs are randomly sharded into multiple bins
508 * to improve scalability. For each bin, the hlist_nulls is virtually divided
509 * into three segments: the head, the tail and the default.
510 *
511 * An onlining memcg is added to the tail of a random bin in the old generation.
512 * The eviction starts at the head of a random bin in the old generation. The
513 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
514 * the old generation, is incremented when all its bins become empty.
515 *
516 * There are four operations:
517 * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its
518 * current generation (old or young) and updates its "seg" to "head";
519 * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its
520 * current generation (old or young) and updates its "seg" to "tail";
521 * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old
522 * generation, updates its "gen" to "old" and resets its "seg" to "default";
523 * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the
524 * young generation, updates its "gen" to "young" and resets its "seg" to
525 * "default".
526 *
527 * The events that trigger the above operations are:
528 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
529 * 2. The first attempt to reclaim a memcg below low, which triggers
530 * MEMCG_LRU_TAIL;
531 * 3. The first attempt to reclaim a memcg offlined or below reclaimable size
532 * threshold, which triggers MEMCG_LRU_TAIL;
533 * 4. The second attempt to reclaim a memcg offlined or below reclaimable size
534 * threshold, which triggers MEMCG_LRU_YOUNG;
535 * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG;
536 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
537 * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD.
538 *
539 * Notes:
540 * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing
541 * of their max_seq counters ensures the eventual fairness to all eligible
542 * memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
543 * 2. There are only two valid generations: old (seq) and young (seq+1).
544 * MEMCG_NR_GENS is set to three so that when reading the generation counter
545 * locklessly, a stale value (seq-1) does not wraparound to young.
546 */
547 #define MEMCG_NR_GENS 3
548 #define MEMCG_NR_BINS 8
549
550 struct lru_gen_memcg {
551 /* the per-node memcg generation counter */
552 unsigned long seq;
553 /* each memcg has one lru_gen_folio per node */
554 unsigned long nr_memcgs[MEMCG_NR_GENS];
555 /* per-node lru_gen_folio list for global reclaim */
556 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
557 /* protects the above */
558 spinlock_t lock;
559 };
560
561 void lru_gen_init_pgdat(struct pglist_data *pgdat);
562
563 void lru_gen_init_memcg(struct mem_cgroup *memcg);
564 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
565 void lru_gen_online_memcg(struct mem_cgroup *memcg);
566 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
567 void lru_gen_release_memcg(struct mem_cgroup *memcg);
568 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
569
570 #else /* !CONFIG_MEMCG */
571
572 #define MEMCG_NR_GENS 1
573
574 struct lru_gen_memcg {
575 };
576
lru_gen_init_pgdat(struct pglist_data * pgdat)577 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
578 {
579 }
580
581 #endif /* CONFIG_MEMCG */
582
583 #else /* !CONFIG_LRU_GEN */
584
lru_gen_init_pgdat(struct pglist_data * pgdat)585 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
586 {
587 }
588
lru_gen_init_lruvec(struct lruvec * lruvec)589 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
590 {
591 }
592
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)593 static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
594 {
595 }
596
597 #ifdef CONFIG_MEMCG
598
lru_gen_init_memcg(struct mem_cgroup * memcg)599 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
600 {
601 }
602
lru_gen_exit_memcg(struct mem_cgroup * memcg)603 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
604 {
605 }
606
lru_gen_online_memcg(struct mem_cgroup * memcg)607 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
608 {
609 }
610
lru_gen_offline_memcg(struct mem_cgroup * memcg)611 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
612 {
613 }
614
lru_gen_release_memcg(struct mem_cgroup * memcg)615 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
616 {
617 }
618
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)619 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
620 {
621 }
622
623 #endif /* CONFIG_MEMCG */
624
625 #endif /* CONFIG_LRU_GEN */
626
627 struct lruvec {
628 struct list_head lists[NR_LRU_LISTS];
629 /* per lruvec lru_lock for memcg */
630 spinlock_t lru_lock;
631 /*
632 * These track the cost of reclaiming one LRU - file or anon -
633 * over the other. As the observed cost of reclaiming one LRU
634 * increases, the reclaim scan balance tips toward the other.
635 */
636 unsigned long anon_cost;
637 unsigned long file_cost;
638 /* Non-resident age, driven by LRU movement */
639 atomic_long_t nonresident_age;
640 /* Refaults at the time of last reclaim cycle */
641 unsigned long refaults[ANON_AND_FILE];
642 /* Various lruvec state flags (enum lruvec_flags) */
643 unsigned long flags;
644 #ifdef CONFIG_LRU_GEN
645 /* evictable pages divided into generations */
646 struct lru_gen_folio lrugen;
647 /* to concurrently iterate lru_gen_mm_list */
648 struct lru_gen_mm_state mm_state;
649 #endif
650 #ifdef CONFIG_MEMCG
651 struct pglist_data *pgdat;
652 #endif
653 };
654
655 /* Isolate unmapped pages */
656 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
657 /* Isolate for asynchronous migration */
658 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
659 /* Isolate unevictable pages */
660 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
661
662 /* LRU Isolation modes. */
663 typedef unsigned __bitwise isolate_mode_t;
664
665 enum zone_watermarks {
666 WMARK_MIN,
667 WMARK_LOW,
668 WMARK_HIGH,
669 WMARK_PROMO,
670 NR_WMARK
671 };
672
673 /*
674 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list
675 * for THP which will usually be GFP_MOVABLE. Even if it is another type,
676 * it should not contribute to serious fragmentation causing THP allocation
677 * failures.
678 */
679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
680 #define NR_PCP_THP 1
681 #else
682 #define NR_PCP_THP 0
683 #endif
684 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
685 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
686
687 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
688 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
689 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
690 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
691
692 struct per_cpu_pages {
693 spinlock_t lock; /* Protects lists field */
694 int count; /* number of pages in the list */
695 int high; /* high watermark, emptying needed */
696 int batch; /* chunk size for buddy add/remove */
697 short free_factor; /* batch scaling factor during free */
698 #ifdef CONFIG_NUMA
699 short expire; /* When 0, remote pagesets are drained */
700 #endif
701
702 /* Lists of pages, one per migrate type stored on the pcp-lists */
703 struct list_head lists[NR_PCP_LISTS];
704 } ____cacheline_aligned_in_smp;
705
706 struct per_cpu_zonestat {
707 #ifdef CONFIG_SMP
708 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
709 s8 stat_threshold;
710 #endif
711 #ifdef CONFIG_NUMA
712 /*
713 * Low priority inaccurate counters that are only folded
714 * on demand. Use a large type to avoid the overhead of
715 * folding during refresh_cpu_vm_stats.
716 */
717 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
718 #endif
719 };
720
721 struct per_cpu_nodestat {
722 s8 stat_threshold;
723 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
724 };
725
726 #endif /* !__GENERATING_BOUNDS.H */
727
728 enum zone_type {
729 /*
730 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
731 * to DMA to all of the addressable memory (ZONE_NORMAL).
732 * On architectures where this area covers the whole 32 bit address
733 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
734 * DMA addressing constraints. This distinction is important as a 32bit
735 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
736 * platforms may need both zones as they support peripherals with
737 * different DMA addressing limitations.
738 */
739 #ifdef CONFIG_ZONE_DMA
740 ZONE_DMA,
741 #endif
742 #ifdef CONFIG_ZONE_DMA32
743 ZONE_DMA32,
744 #endif
745 /*
746 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
747 * performed on pages in ZONE_NORMAL if the DMA devices support
748 * transfers to all addressable memory.
749 */
750 ZONE_NORMAL,
751 #ifdef CONFIG_HIGHMEM
752 /*
753 * A memory area that is only addressable by the kernel through
754 * mapping portions into its own address space. This is for example
755 * used by i386 to allow the kernel to address the memory beyond
756 * 900MB. The kernel will set up special mappings (page
757 * table entries on i386) for each page that the kernel needs to
758 * access.
759 */
760 ZONE_HIGHMEM,
761 #endif
762 /*
763 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
764 * movable pages with few exceptional cases described below. Main use
765 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
766 * likely to succeed, and to locally limit unmovable allocations - e.g.,
767 * to increase the number of THP/huge pages. Notable special cases are:
768 *
769 * 1. Pinned pages: (long-term) pinning of movable pages might
770 * essentially turn such pages unmovable. Therefore, we do not allow
771 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
772 * faulted, they come from the right zone right away. However, it is
773 * still possible that address space already has pages in
774 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has
775 * touches that memory before pinning). In such case we migrate them
776 * to a different zone. When migration fails - pinning fails.
777 * 2. memblock allocations: kernelcore/movablecore setups might create
778 * situations where ZONE_MOVABLE contains unmovable allocations
779 * after boot. Memory offlining and allocations fail early.
780 * 3. Memory holes: kernelcore/movablecore setups might create very rare
781 * situations where ZONE_MOVABLE contains memory holes after boot,
782 * for example, if we have sections that are only partially
783 * populated. Memory offlining and allocations fail early.
784 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
785 * memory offlining, such pages cannot be allocated.
786 * 5. Unmovable PG_offline pages: in paravirtualized environments,
787 * hotplugged memory blocks might only partially be managed by the
788 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
789 * parts not manged by the buddy are unmovable PG_offline pages. In
790 * some cases (virtio-mem), such pages can be skipped during
791 * memory offlining, however, cannot be moved/allocated. These
792 * techniques might use alloc_contig_range() to hide previously
793 * exposed pages from the buddy again (e.g., to implement some sort
794 * of memory unplug in virtio-mem).
795 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
796 * situations where ZERO_PAGE(0) which is allocated differently
797 * on different platforms may end up in a movable zone. ZERO_PAGE(0)
798 * cannot be migrated.
799 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
800 * memory to the MOVABLE zone, the vmemmap pages are also placed in
801 * such zone. Such pages cannot be really moved around as they are
802 * self-stored in the range, but they are treated as movable when
803 * the range they describe is about to be offlined.
804 *
805 * In general, no unmovable allocations that degrade memory offlining
806 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
807 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
808 * if has_unmovable_pages() states that there are no unmovable pages,
809 * there can be false negatives).
810 */
811 ZONE_MOVABLE,
812 #ifdef CONFIG_ZONE_DEVICE
813 ZONE_DEVICE,
814 #endif
815 __MAX_NR_ZONES
816
817 };
818
819 #ifndef __GENERATING_BOUNDS_H
820
821 #define ASYNC_AND_SYNC 2
822
823 struct zone {
824 /* Read-mostly fields */
825
826 /* zone watermarks, access with *_wmark_pages(zone) macros */
827 unsigned long _watermark[NR_WMARK];
828 unsigned long watermark_boost;
829
830 unsigned long nr_reserved_highatomic;
831
832 /*
833 * We don't know if the memory that we're going to allocate will be
834 * freeable or/and it will be released eventually, so to avoid totally
835 * wasting several GB of ram we must reserve some of the lower zone
836 * memory (otherwise we risk to run OOM on the lower zones despite
837 * there being tons of freeable ram on the higher zones). This array is
838 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
839 * changes.
840 */
841 long lowmem_reserve[MAX_NR_ZONES];
842
843 #ifdef CONFIG_NUMA
844 int node;
845 #endif
846 struct pglist_data *zone_pgdat;
847 struct per_cpu_pages __percpu *per_cpu_pageset;
848 struct per_cpu_zonestat __percpu *per_cpu_zonestats;
849 /*
850 * the high and batch values are copied to individual pagesets for
851 * faster access
852 */
853 int pageset_high;
854 int pageset_batch;
855
856 #ifndef CONFIG_SPARSEMEM
857 /*
858 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
859 * In SPARSEMEM, this map is stored in struct mem_section
860 */
861 unsigned long *pageblock_flags;
862 #endif /* CONFIG_SPARSEMEM */
863
864 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
865 unsigned long zone_start_pfn;
866
867 /*
868 * spanned_pages is the total pages spanned by the zone, including
869 * holes, which is calculated as:
870 * spanned_pages = zone_end_pfn - zone_start_pfn;
871 *
872 * present_pages is physical pages existing within the zone, which
873 * is calculated as:
874 * present_pages = spanned_pages - absent_pages(pages in holes);
875 *
876 * present_early_pages is present pages existing within the zone
877 * located on memory available since early boot, excluding hotplugged
878 * memory.
879 *
880 * managed_pages is present pages managed by the buddy system, which
881 * is calculated as (reserved_pages includes pages allocated by the
882 * bootmem allocator):
883 * managed_pages = present_pages - reserved_pages;
884 *
885 * cma pages is present pages that are assigned for CMA use
886 * (MIGRATE_CMA).
887 *
888 * So present_pages may be used by memory hotplug or memory power
889 * management logic to figure out unmanaged pages by checking
890 * (present_pages - managed_pages). And managed_pages should be used
891 * by page allocator and vm scanner to calculate all kinds of watermarks
892 * and thresholds.
893 *
894 * Locking rules:
895 *
896 * zone_start_pfn and spanned_pages are protected by span_seqlock.
897 * It is a seqlock because it has to be read outside of zone->lock,
898 * and it is done in the main allocator path. But, it is written
899 * quite infrequently.
900 *
901 * The span_seq lock is declared along with zone->lock because it is
902 * frequently read in proximity to zone->lock. It's good to
903 * give them a chance of being in the same cacheline.
904 *
905 * Write access to present_pages at runtime should be protected by
906 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
907 * present_pages should use get_online_mems() to get a stable value.
908 */
909 atomic_long_t managed_pages;
910 unsigned long spanned_pages;
911 unsigned long present_pages;
912 #if defined(CONFIG_MEMORY_HOTPLUG)
913 unsigned long present_early_pages;
914 #endif
915 #ifdef CONFIG_CMA
916 unsigned long cma_pages;
917 #endif
918
919 const char *name;
920
921 #ifdef CONFIG_MEMORY_ISOLATION
922 /*
923 * Number of isolated pageblock. It is used to solve incorrect
924 * freepage counting problem due to racy retrieving migratetype
925 * of pageblock. Protected by zone->lock.
926 */
927 unsigned long nr_isolate_pageblock;
928 #endif
929
930 #ifdef CONFIG_MEMORY_HOTPLUG
931 /* see spanned/present_pages for more description */
932 seqlock_t span_seqlock;
933 #endif
934
935 int initialized;
936
937 /* Write-intensive fields used from the page allocator */
938 CACHELINE_PADDING(_pad1_);
939
940 /* free areas of different sizes */
941 struct free_area free_area[MAX_ORDER + 1];
942
943 #ifdef CONFIG_UNACCEPTED_MEMORY
944 /* Pages to be accepted. All pages on the list are MAX_ORDER */
945 struct list_head unaccepted_pages;
946 #endif
947
948 /* zone flags, see below */
949 unsigned long flags;
950
951 /* Primarily protects free_area */
952 spinlock_t lock;
953
954 /* Write-intensive fields used by compaction and vmstats. */
955 CACHELINE_PADDING(_pad2_);
956
957 /*
958 * When free pages are below this point, additional steps are taken
959 * when reading the number of free pages to avoid per-cpu counter
960 * drift allowing watermarks to be breached
961 */
962 unsigned long percpu_drift_mark;
963
964 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
965 /* pfn where compaction free scanner should start */
966 unsigned long compact_cached_free_pfn;
967 /* pfn where compaction migration scanner should start */
968 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC];
969 unsigned long compact_init_migrate_pfn;
970 unsigned long compact_init_free_pfn;
971 #endif
972
973 #ifdef CONFIG_COMPACTION
974 /*
975 * On compaction failure, 1<<compact_defer_shift compactions
976 * are skipped before trying again. The number attempted since
977 * last failure is tracked with compact_considered.
978 * compact_order_failed is the minimum compaction failed order.
979 */
980 unsigned int compact_considered;
981 unsigned int compact_defer_shift;
982 int compact_order_failed;
983 #endif
984
985 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
986 /* Set to true when the PG_migrate_skip bits should be cleared */
987 bool compact_blockskip_flush;
988 #endif
989
990 bool contiguous;
991
992 CACHELINE_PADDING(_pad3_);
993 /* Zone statistics */
994 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
995 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
996 } ____cacheline_internodealigned_in_smp;
997
998 enum pgdat_flags {
999 PGDAT_DIRTY, /* reclaim scanning has recently found
1000 * many dirty file pages at the tail
1001 * of the LRU.
1002 */
1003 PGDAT_WRITEBACK, /* reclaim scanning has recently found
1004 * many pages under writeback
1005 */
1006 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
1007 };
1008
1009 enum zone_flags {
1010 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
1011 * Cleared when kswapd is woken.
1012 */
1013 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */
1014 };
1015
zone_managed_pages(struct zone * zone)1016 static inline unsigned long zone_managed_pages(struct zone *zone)
1017 {
1018 return (unsigned long)atomic_long_read(&zone->managed_pages);
1019 }
1020
zone_cma_pages(struct zone * zone)1021 static inline unsigned long zone_cma_pages(struct zone *zone)
1022 {
1023 #ifdef CONFIG_CMA
1024 return zone->cma_pages;
1025 #else
1026 return 0;
1027 #endif
1028 }
1029
zone_end_pfn(const struct zone * zone)1030 static inline unsigned long zone_end_pfn(const struct zone *zone)
1031 {
1032 return zone->zone_start_pfn + zone->spanned_pages;
1033 }
1034
zone_spans_pfn(const struct zone * zone,unsigned long pfn)1035 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1036 {
1037 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1038 }
1039
zone_is_initialized(struct zone * zone)1040 static inline bool zone_is_initialized(struct zone *zone)
1041 {
1042 return zone->initialized;
1043 }
1044
zone_is_empty(struct zone * zone)1045 static inline bool zone_is_empty(struct zone *zone)
1046 {
1047 return zone->spanned_pages == 0;
1048 }
1049
1050 #ifndef BUILD_VDSO32_64
1051 /*
1052 * The zone field is never updated after free_area_init_core()
1053 * sets it, so none of the operations on it need to be atomic.
1054 */
1055
1056 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1057 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1058 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1059 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1060 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1061 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1062 #define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1063 #define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1064
1065 /*
1066 * Define the bit shifts to access each section. For non-existent
1067 * sections we define the shift as 0; that plus a 0 mask ensures
1068 * the compiler will optimise away reference to them.
1069 */
1070 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1071 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1072 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1073 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1074 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1075
1076 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1077 #ifdef NODE_NOT_IN_PAGE_FLAGS
1078 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1079 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1080 SECTIONS_PGOFF : ZONES_PGOFF)
1081 #else
1082 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1083 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \
1084 NODES_PGOFF : ZONES_PGOFF)
1085 #endif
1086
1087 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1088
1089 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1090 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1091 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1092 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1093 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1094 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1095
page_zonenum(const struct page * page)1096 static inline enum zone_type page_zonenum(const struct page *page)
1097 {
1098 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1099 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1100 }
1101
folio_zonenum(const struct folio * folio)1102 static inline enum zone_type folio_zonenum(const struct folio *folio)
1103 {
1104 return page_zonenum(&folio->page);
1105 }
1106
1107 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1108 static inline bool is_zone_device_page(const struct page *page)
1109 {
1110 return page_zonenum(page) == ZONE_DEVICE;
1111 }
1112
1113 /*
1114 * Consecutive zone device pages should not be merged into the same sgl
1115 * or bvec segment with other types of pages or if they belong to different
1116 * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1117 * without scanning the entire segment. This helper returns true either if
1118 * both pages are not zone device pages or both pages are zone device pages
1119 * with the same pgmap.
1120 */
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1121 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1122 const struct page *b)
1123 {
1124 if (is_zone_device_page(a) != is_zone_device_page(b))
1125 return false;
1126 if (!is_zone_device_page(a))
1127 return true;
1128 return a->pgmap == b->pgmap;
1129 }
1130
1131 extern void memmap_init_zone_device(struct zone *, unsigned long,
1132 unsigned long, struct dev_pagemap *);
1133 #else
is_zone_device_page(const struct page * page)1134 static inline bool is_zone_device_page(const struct page *page)
1135 {
1136 return false;
1137 }
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1138 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1139 const struct page *b)
1140 {
1141 return true;
1142 }
1143 #endif
1144
folio_is_zone_device(const struct folio * folio)1145 static inline bool folio_is_zone_device(const struct folio *folio)
1146 {
1147 return is_zone_device_page(&folio->page);
1148 }
1149
is_zone_movable_page(const struct page * page)1150 static inline bool is_zone_movable_page(const struct page *page)
1151 {
1152 return page_zonenum(page) == ZONE_MOVABLE;
1153 }
1154
folio_is_zone_movable(const struct folio * folio)1155 static inline bool folio_is_zone_movable(const struct folio *folio)
1156 {
1157 return folio_zonenum(folio) == ZONE_MOVABLE;
1158 }
1159 #endif
1160
1161 /*
1162 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1163 * intersection with the given zone
1164 */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)1165 static inline bool zone_intersects(struct zone *zone,
1166 unsigned long start_pfn, unsigned long nr_pages)
1167 {
1168 if (zone_is_empty(zone))
1169 return false;
1170 if (start_pfn >= zone_end_pfn(zone) ||
1171 start_pfn + nr_pages <= zone->zone_start_pfn)
1172 return false;
1173
1174 return true;
1175 }
1176
1177 /*
1178 * The "priority" of VM scanning is how much of the queues we will scan in one
1179 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1180 * queues ("queue_length >> 12") during an aging round.
1181 */
1182 #define DEF_PRIORITY 12
1183
1184 /* Maximum number of zones on a zonelist */
1185 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1186
1187 enum {
1188 ZONELIST_FALLBACK, /* zonelist with fallback */
1189 #ifdef CONFIG_NUMA
1190 /*
1191 * The NUMA zonelists are doubled because we need zonelists that
1192 * restrict the allocations to a single node for __GFP_THISNODE.
1193 */
1194 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
1195 #endif
1196 MAX_ZONELISTS
1197 };
1198
1199 /*
1200 * This struct contains information about a zone in a zonelist. It is stored
1201 * here to avoid dereferences into large structures and lookups of tables
1202 */
1203 struct zoneref {
1204 struct zone *zone; /* Pointer to actual zone */
1205 int zone_idx; /* zone_idx(zoneref->zone) */
1206 };
1207
1208 /*
1209 * One allocation request operates on a zonelist. A zonelist
1210 * is a list of zones, the first one is the 'goal' of the
1211 * allocation, the other zones are fallback zones, in decreasing
1212 * priority.
1213 *
1214 * To speed the reading of the zonelist, the zonerefs contain the zone index
1215 * of the entry being read. Helper functions to access information given
1216 * a struct zoneref are
1217 *
1218 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
1219 * zonelist_zone_idx() - Return the index of the zone for an entry
1220 * zonelist_node_idx() - Return the index of the node for an entry
1221 */
1222 struct zonelist {
1223 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1224 };
1225
1226 /*
1227 * The array of struct pages for flatmem.
1228 * It must be declared for SPARSEMEM as well because there are configurations
1229 * that rely on that.
1230 */
1231 extern struct page *mem_map;
1232
1233 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1234 struct deferred_split {
1235 spinlock_t split_queue_lock;
1236 struct list_head split_queue;
1237 unsigned long split_queue_len;
1238 };
1239 #endif
1240
1241 #ifdef CONFIG_MEMORY_FAILURE
1242 /*
1243 * Per NUMA node memory failure handling statistics.
1244 */
1245 struct memory_failure_stats {
1246 /*
1247 * Number of raw pages poisoned.
1248 * Cases not accounted: memory outside kernel control, offline page,
1249 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1250 * error events, and unpoison actions from hwpoison_unpoison.
1251 */
1252 unsigned long total;
1253 /*
1254 * Recovery results of poisoned raw pages handled by memory_failure,
1255 * in sync with mf_result.
1256 * total = ignored + failed + delayed + recovered.
1257 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1258 */
1259 unsigned long ignored;
1260 unsigned long failed;
1261 unsigned long delayed;
1262 unsigned long recovered;
1263 };
1264 #endif
1265
1266 /*
1267 * On NUMA machines, each NUMA node would have a pg_data_t to describe
1268 * it's memory layout. On UMA machines there is a single pglist_data which
1269 * describes the whole memory.
1270 *
1271 * Memory statistics and page replacement data structures are maintained on a
1272 * per-zone basis.
1273 */
1274 typedef struct pglist_data {
1275 /*
1276 * node_zones contains just the zones for THIS node. Not all of the
1277 * zones may be populated, but it is the full list. It is referenced by
1278 * this node's node_zonelists as well as other node's node_zonelists.
1279 */
1280 struct zone node_zones[MAX_NR_ZONES];
1281
1282 /*
1283 * node_zonelists contains references to all zones in all nodes.
1284 * Generally the first zones will be references to this node's
1285 * node_zones.
1286 */
1287 struct zonelist node_zonelists[MAX_ZONELISTS];
1288
1289 int nr_zones; /* number of populated zones in this node */
1290 #ifdef CONFIG_FLATMEM /* means !SPARSEMEM */
1291 struct page *node_mem_map;
1292 #ifdef CONFIG_PAGE_EXTENSION
1293 struct page_ext *node_page_ext;
1294 #endif
1295 #endif
1296 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1297 /*
1298 * Must be held any time you expect node_start_pfn,
1299 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1300 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1301 * init.
1302 *
1303 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1304 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1305 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1306 *
1307 * Nests above zone->lock and zone->span_seqlock
1308 */
1309 spinlock_t node_size_lock;
1310 #endif
1311 unsigned long node_start_pfn;
1312 unsigned long node_present_pages; /* total number of physical pages */
1313 unsigned long node_spanned_pages; /* total size of physical page
1314 range, including holes */
1315 int node_id;
1316 wait_queue_head_t kswapd_wait;
1317 wait_queue_head_t pfmemalloc_wait;
1318
1319 /* workqueues for throttling reclaim for different reasons. */
1320 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1321
1322 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1323 unsigned long nr_reclaim_start; /* nr pages written while throttled
1324 * when throttling started. */
1325 #ifdef CONFIG_MEMORY_HOTPLUG
1326 struct mutex kswapd_lock;
1327 #endif
1328 struct task_struct *kswapd; /* Protected by kswapd_lock */
1329 int kswapd_order;
1330 enum zone_type kswapd_highest_zoneidx;
1331
1332 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
1333
1334 #ifdef CONFIG_COMPACTION
1335 int kcompactd_max_order;
1336 enum zone_type kcompactd_highest_zoneidx;
1337 wait_queue_head_t kcompactd_wait;
1338 struct task_struct *kcompactd;
1339 bool proactive_compact_trigger;
1340 #endif
1341 /*
1342 * This is a per-node reserve of pages that are not available
1343 * to userspace allocations.
1344 */
1345 unsigned long totalreserve_pages;
1346
1347 #ifdef CONFIG_NUMA
1348 /*
1349 * node reclaim becomes active if more unmapped pages exist.
1350 */
1351 unsigned long min_unmapped_pages;
1352 unsigned long min_slab_pages;
1353 #endif /* CONFIG_NUMA */
1354
1355 /* Write-intensive fields used by page reclaim */
1356 CACHELINE_PADDING(_pad1_);
1357
1358 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1359 /*
1360 * If memory initialisation on large machines is deferred then this
1361 * is the first PFN that needs to be initialised.
1362 */
1363 unsigned long first_deferred_pfn;
1364 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1365
1366 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1367 struct deferred_split deferred_split_queue;
1368 #endif
1369
1370 #ifdef CONFIG_NUMA_BALANCING
1371 /* start time in ms of current promote rate limit period */
1372 unsigned int nbp_rl_start;
1373 /* number of promote candidate pages at start time of current rate limit period */
1374 unsigned long nbp_rl_nr_cand;
1375 /* promote threshold in ms */
1376 unsigned int nbp_threshold;
1377 /* start time in ms of current promote threshold adjustment period */
1378 unsigned int nbp_th_start;
1379 /*
1380 * number of promote candidate pages at start time of current promote
1381 * threshold adjustment period
1382 */
1383 unsigned long nbp_th_nr_cand;
1384 #endif
1385 /* Fields commonly accessed by the page reclaim scanner */
1386
1387 /*
1388 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1389 *
1390 * Use mem_cgroup_lruvec() to look up lruvecs.
1391 */
1392 struct lruvec __lruvec;
1393
1394 unsigned long flags;
1395
1396 #ifdef CONFIG_LRU_GEN
1397 /* kswap mm walk data */
1398 struct lru_gen_mm_walk mm_walk;
1399 /* lru_gen_folio list */
1400 struct lru_gen_memcg memcg_lru;
1401 #endif
1402
1403 CACHELINE_PADDING(_pad2_);
1404
1405 /* Per-node vmstats */
1406 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1407 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
1408 #ifdef CONFIG_NUMA
1409 struct memory_tier __rcu *memtier;
1410 #endif
1411 #ifdef CONFIG_MEMORY_FAILURE
1412 struct memory_failure_stats mf_stats;
1413 #endif
1414 } pg_data_t;
1415
1416 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
1417 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
1418
1419 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
1420 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1421
pgdat_end_pfn(pg_data_t * pgdat)1422 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1423 {
1424 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1425 }
1426
1427 #include <linux/memory_hotplug.h>
1428
1429 void build_all_zonelists(pg_data_t *pgdat);
1430 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1431 enum zone_type highest_zoneidx);
1432 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1433 int highest_zoneidx, unsigned int alloc_flags,
1434 long free_pages);
1435 bool zone_watermark_ok(struct zone *z, unsigned int order,
1436 unsigned long mark, int highest_zoneidx,
1437 unsigned int alloc_flags);
1438 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1439 unsigned long mark, int highest_zoneidx);
1440 /*
1441 * Memory initialization context, use to differentiate memory added by
1442 * the platform statically or via memory hotplug interface.
1443 */
1444 enum meminit_context {
1445 MEMINIT_EARLY,
1446 MEMINIT_HOTPLUG,
1447 };
1448
1449 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1450 unsigned long size);
1451
1452 extern void lruvec_init(struct lruvec *lruvec);
1453
lruvec_pgdat(struct lruvec * lruvec)1454 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1455 {
1456 #ifdef CONFIG_MEMCG
1457 return lruvec->pgdat;
1458 #else
1459 return container_of(lruvec, struct pglist_data, __lruvec);
1460 #endif
1461 }
1462
1463 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1464 int local_memory_node(int node_id);
1465 #else
local_memory_node(int node_id)1466 static inline int local_memory_node(int node_id) { return node_id; };
1467 #endif
1468
1469 /*
1470 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1471 */
1472 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
1473
1474 #ifdef CONFIG_ZONE_DEVICE
zone_is_zone_device(struct zone * zone)1475 static inline bool zone_is_zone_device(struct zone *zone)
1476 {
1477 return zone_idx(zone) == ZONE_DEVICE;
1478 }
1479 #else
zone_is_zone_device(struct zone * zone)1480 static inline bool zone_is_zone_device(struct zone *zone)
1481 {
1482 return false;
1483 }
1484 #endif
1485
1486 /*
1487 * Returns true if a zone has pages managed by the buddy allocator.
1488 * All the reclaim decisions have to use this function rather than
1489 * populated_zone(). If the whole zone is reserved then we can easily
1490 * end up with populated_zone() && !managed_zone().
1491 */
managed_zone(struct zone * zone)1492 static inline bool managed_zone(struct zone *zone)
1493 {
1494 return zone_managed_pages(zone);
1495 }
1496
1497 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)1498 static inline bool populated_zone(struct zone *zone)
1499 {
1500 return zone->present_pages;
1501 }
1502
1503 #ifdef CONFIG_NUMA
zone_to_nid(struct zone * zone)1504 static inline int zone_to_nid(struct zone *zone)
1505 {
1506 return zone->node;
1507 }
1508
zone_set_nid(struct zone * zone,int nid)1509 static inline void zone_set_nid(struct zone *zone, int nid)
1510 {
1511 zone->node = nid;
1512 }
1513 #else
zone_to_nid(struct zone * zone)1514 static inline int zone_to_nid(struct zone *zone)
1515 {
1516 return 0;
1517 }
1518
zone_set_nid(struct zone * zone,int nid)1519 static inline void zone_set_nid(struct zone *zone, int nid) {}
1520 #endif
1521
1522 extern int movable_zone;
1523
is_highmem_idx(enum zone_type idx)1524 static inline int is_highmem_idx(enum zone_type idx)
1525 {
1526 #ifdef CONFIG_HIGHMEM
1527 return (idx == ZONE_HIGHMEM ||
1528 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1529 #else
1530 return 0;
1531 #endif
1532 }
1533
1534 /**
1535 * is_highmem - helper function to quickly check if a struct zone is a
1536 * highmem zone or not. This is an attempt to keep references
1537 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1538 * @zone: pointer to struct zone variable
1539 * Return: 1 for a highmem zone, 0 otherwise
1540 */
is_highmem(struct zone * zone)1541 static inline int is_highmem(struct zone *zone)
1542 {
1543 return is_highmem_idx(zone_idx(zone));
1544 }
1545
1546 #ifdef CONFIG_ZONE_DMA
1547 bool has_managed_dma(void);
1548 #else
has_managed_dma(void)1549 static inline bool has_managed_dma(void)
1550 {
1551 return false;
1552 }
1553 #endif
1554
1555
1556 #ifndef CONFIG_NUMA
1557
1558 extern struct pglist_data contig_page_data;
NODE_DATA(int nid)1559 static inline struct pglist_data *NODE_DATA(int nid)
1560 {
1561 return &contig_page_data;
1562 }
1563
1564 #else /* CONFIG_NUMA */
1565
1566 #include <asm/mmzone.h>
1567
1568 #endif /* !CONFIG_NUMA */
1569
1570 extern struct pglist_data *first_online_pgdat(void);
1571 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1572 extern struct zone *next_zone(struct zone *zone);
1573
1574 /**
1575 * for_each_online_pgdat - helper macro to iterate over all online nodes
1576 * @pgdat: pointer to a pg_data_t variable
1577 */
1578 #define for_each_online_pgdat(pgdat) \
1579 for (pgdat = first_online_pgdat(); \
1580 pgdat; \
1581 pgdat = next_online_pgdat(pgdat))
1582 /**
1583 * for_each_zone - helper macro to iterate over all memory zones
1584 * @zone: pointer to struct zone variable
1585 *
1586 * The user only needs to declare the zone variable, for_each_zone
1587 * fills it in.
1588 */
1589 #define for_each_zone(zone) \
1590 for (zone = (first_online_pgdat())->node_zones; \
1591 zone; \
1592 zone = next_zone(zone))
1593
1594 #define for_each_populated_zone(zone) \
1595 for (zone = (first_online_pgdat())->node_zones; \
1596 zone; \
1597 zone = next_zone(zone)) \
1598 if (!populated_zone(zone)) \
1599 ; /* do nothing */ \
1600 else
1601
zonelist_zone(struct zoneref * zoneref)1602 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1603 {
1604 return zoneref->zone;
1605 }
1606
zonelist_zone_idx(struct zoneref * zoneref)1607 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1608 {
1609 return zoneref->zone_idx;
1610 }
1611
zonelist_node_idx(struct zoneref * zoneref)1612 static inline int zonelist_node_idx(struct zoneref *zoneref)
1613 {
1614 return zone_to_nid(zoneref->zone);
1615 }
1616
1617 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1618 enum zone_type highest_zoneidx,
1619 nodemask_t *nodes);
1620
1621 /**
1622 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1623 * @z: The cursor used as a starting point for the search
1624 * @highest_zoneidx: The zone index of the highest zone to return
1625 * @nodes: An optional nodemask to filter the zonelist with
1626 *
1627 * This function returns the next zone at or below a given zone index that is
1628 * within the allowed nodemask using a cursor as the starting point for the
1629 * search. The zoneref returned is a cursor that represents the current zone
1630 * being examined. It should be advanced by one before calling
1631 * next_zones_zonelist again.
1632 *
1633 * Return: the next zone at or below highest_zoneidx within the allowed
1634 * nodemask using a cursor within a zonelist as a starting point
1635 */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1636 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1637 enum zone_type highest_zoneidx,
1638 nodemask_t *nodes)
1639 {
1640 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1641 return z;
1642 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1643 }
1644
1645 /**
1646 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1647 * @zonelist: The zonelist to search for a suitable zone
1648 * @highest_zoneidx: The zone index of the highest zone to return
1649 * @nodes: An optional nodemask to filter the zonelist with
1650 *
1651 * This function returns the first zone at or below a given zone index that is
1652 * within the allowed nodemask. The zoneref returned is a cursor that can be
1653 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1654 * one before calling.
1655 *
1656 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1657 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1658 * update due to cpuset modification.
1659 *
1660 * Return: Zoneref pointer for the first suitable zone found
1661 */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1662 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1663 enum zone_type highest_zoneidx,
1664 nodemask_t *nodes)
1665 {
1666 return next_zones_zonelist(zonelist->_zonerefs,
1667 highest_zoneidx, nodes);
1668 }
1669
1670 /**
1671 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1672 * @zone: The current zone in the iterator
1673 * @z: The current pointer within zonelist->_zonerefs being iterated
1674 * @zlist: The zonelist being iterated
1675 * @highidx: The zone index of the highest zone to return
1676 * @nodemask: Nodemask allowed by the allocator
1677 *
1678 * This iterator iterates though all zones at or below a given zone index and
1679 * within a given nodemask
1680 */
1681 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1682 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1683 zone; \
1684 z = next_zones_zonelist(++z, highidx, nodemask), \
1685 zone = zonelist_zone(z))
1686
1687 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1688 for (zone = z->zone; \
1689 zone; \
1690 z = next_zones_zonelist(++z, highidx, nodemask), \
1691 zone = zonelist_zone(z))
1692
1693
1694 /**
1695 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1696 * @zone: The current zone in the iterator
1697 * @z: The current pointer within zonelist->zones being iterated
1698 * @zlist: The zonelist being iterated
1699 * @highidx: The zone index of the highest zone to return
1700 *
1701 * This iterator iterates though all zones at or below a given zone index.
1702 */
1703 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1704 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1705
1706 /* Whether the 'nodes' are all movable nodes */
movable_only_nodes(nodemask_t * nodes)1707 static inline bool movable_only_nodes(nodemask_t *nodes)
1708 {
1709 struct zonelist *zonelist;
1710 struct zoneref *z;
1711 int nid;
1712
1713 if (nodes_empty(*nodes))
1714 return false;
1715
1716 /*
1717 * We can chose arbitrary node from the nodemask to get a
1718 * zonelist as they are interlinked. We just need to find
1719 * at least one zone that can satisfy kernel allocations.
1720 */
1721 nid = first_node(*nodes);
1722 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1723 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes);
1724 return (!z->zone) ? true : false;
1725 }
1726
1727
1728 #ifdef CONFIG_SPARSEMEM
1729 #include <asm/sparsemem.h>
1730 #endif
1731
1732 #ifdef CONFIG_FLATMEM
1733 #define pfn_to_nid(pfn) (0)
1734 #endif
1735
1736 #ifdef CONFIG_SPARSEMEM
1737
1738 /*
1739 * PA_SECTION_SHIFT physical address to/from section number
1740 * PFN_SECTION_SHIFT pfn to/from section number
1741 */
1742 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1743 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1744
1745 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1746
1747 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1748 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1749
1750 #define SECTION_BLOCKFLAGS_BITS \
1751 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1752
1753 #if (MAX_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1754 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1755 #endif
1756
pfn_to_section_nr(unsigned long pfn)1757 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1758 {
1759 return pfn >> PFN_SECTION_SHIFT;
1760 }
section_nr_to_pfn(unsigned long sec)1761 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1762 {
1763 return sec << PFN_SECTION_SHIFT;
1764 }
1765
1766 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1767 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1768
1769 #define SUBSECTION_SHIFT 21
1770 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1771
1772 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1773 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1774 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1775
1776 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1777 #error Subsection size exceeds section size
1778 #else
1779 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1780 #endif
1781
1782 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1783 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1784
1785 struct mem_section_usage {
1786 struct rcu_head rcu;
1787 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1788 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1789 #endif
1790 /* See declaration of similar field in struct zone */
1791 unsigned long pageblock_flags[0];
1792 };
1793
1794 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1795
1796 struct page;
1797 struct page_ext;
1798 struct mem_section {
1799 /*
1800 * This is, logically, a pointer to an array of struct
1801 * pages. However, it is stored with some other magic.
1802 * (see sparse.c::sparse_init_one_section())
1803 *
1804 * Additionally during early boot we encode node id of
1805 * the location of the section here to guide allocation.
1806 * (see sparse.c::memory_present())
1807 *
1808 * Making it a UL at least makes someone do a cast
1809 * before using it wrong.
1810 */
1811 unsigned long section_mem_map;
1812
1813 struct mem_section_usage *usage;
1814 #ifdef CONFIG_PAGE_EXTENSION
1815 /*
1816 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1817 * section. (see page_ext.h about this.)
1818 */
1819 struct page_ext *page_ext;
1820 unsigned long pad;
1821 #endif
1822 /*
1823 * WARNING: mem_section must be a power-of-2 in size for the
1824 * calculation and use of SECTION_ROOT_MASK to make sense.
1825 */
1826 };
1827
1828 #ifdef CONFIG_SPARSEMEM_EXTREME
1829 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1830 #else
1831 #define SECTIONS_PER_ROOT 1
1832 #endif
1833
1834 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1835 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1836 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1837
1838 #ifdef CONFIG_SPARSEMEM_EXTREME
1839 extern struct mem_section **mem_section;
1840 #else
1841 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1842 #endif
1843
section_to_usemap(struct mem_section * ms)1844 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1845 {
1846 return ms->usage->pageblock_flags;
1847 }
1848
__nr_to_section(unsigned long nr)1849 static inline struct mem_section *__nr_to_section(unsigned long nr)
1850 {
1851 unsigned long root = SECTION_NR_TO_ROOT(nr);
1852
1853 if (unlikely(root >= NR_SECTION_ROOTS))
1854 return NULL;
1855
1856 #ifdef CONFIG_SPARSEMEM_EXTREME
1857 if (!mem_section || !mem_section[root])
1858 return NULL;
1859 #endif
1860 return &mem_section[root][nr & SECTION_ROOT_MASK];
1861 }
1862 extern size_t mem_section_usage_size(void);
1863
1864 /*
1865 * We use the lower bits of the mem_map pointer to store
1866 * a little bit of information. The pointer is calculated
1867 * as mem_map - section_nr_to_pfn(pnum). The result is
1868 * aligned to the minimum alignment of the two values:
1869 * 1. All mem_map arrays are page-aligned.
1870 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1871 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1872 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1873 * worst combination is powerpc with 256k pages,
1874 * which results in PFN_SECTION_SHIFT equal 6.
1875 * To sum it up, at least 6 bits are available on all architectures.
1876 * However, we can exceed 6 bits on some other architectures except
1877 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1878 * with the worst case of 64K pages on arm64) if we make sure the
1879 * exceeded bit is not applicable to powerpc.
1880 */
1881 enum {
1882 SECTION_MARKED_PRESENT_BIT,
1883 SECTION_HAS_MEM_MAP_BIT,
1884 SECTION_IS_ONLINE_BIT,
1885 SECTION_IS_EARLY_BIT,
1886 #ifdef CONFIG_ZONE_DEVICE
1887 SECTION_TAINT_ZONE_DEVICE_BIT,
1888 #endif
1889 SECTION_MAP_LAST_BIT,
1890 };
1891
1892 #define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT)
1893 #define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT)
1894 #define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT)
1895 #define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT)
1896 #ifdef CONFIG_ZONE_DEVICE
1897 #define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1898 #endif
1899 #define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1))
1900 #define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT
1901
__section_mem_map_addr(struct mem_section * section)1902 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1903 {
1904 unsigned long map = section->section_mem_map;
1905 map &= SECTION_MAP_MASK;
1906 return (struct page *)map;
1907 }
1908
present_section(struct mem_section * section)1909 static inline int present_section(struct mem_section *section)
1910 {
1911 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1912 }
1913
present_section_nr(unsigned long nr)1914 static inline int present_section_nr(unsigned long nr)
1915 {
1916 return present_section(__nr_to_section(nr));
1917 }
1918
valid_section(struct mem_section * section)1919 static inline int valid_section(struct mem_section *section)
1920 {
1921 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1922 }
1923
early_section(struct mem_section * section)1924 static inline int early_section(struct mem_section *section)
1925 {
1926 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1927 }
1928
valid_section_nr(unsigned long nr)1929 static inline int valid_section_nr(unsigned long nr)
1930 {
1931 return valid_section(__nr_to_section(nr));
1932 }
1933
online_section(struct mem_section * section)1934 static inline int online_section(struct mem_section *section)
1935 {
1936 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1937 }
1938
1939 #ifdef CONFIG_ZONE_DEVICE
online_device_section(struct mem_section * section)1940 static inline int online_device_section(struct mem_section *section)
1941 {
1942 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1943
1944 return section && ((section->section_mem_map & flags) == flags);
1945 }
1946 #else
online_device_section(struct mem_section * section)1947 static inline int online_device_section(struct mem_section *section)
1948 {
1949 return 0;
1950 }
1951 #endif
1952
online_section_nr(unsigned long nr)1953 static inline int online_section_nr(unsigned long nr)
1954 {
1955 return online_section(__nr_to_section(nr));
1956 }
1957
1958 #ifdef CONFIG_MEMORY_HOTPLUG
1959 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1960 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1961 #endif
1962
__pfn_to_section(unsigned long pfn)1963 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1964 {
1965 return __nr_to_section(pfn_to_section_nr(pfn));
1966 }
1967
1968 extern unsigned long __highest_present_section_nr;
1969
subsection_map_index(unsigned long pfn)1970 static inline int subsection_map_index(unsigned long pfn)
1971 {
1972 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1973 }
1974
1975 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1976 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1977 {
1978 int idx = subsection_map_index(pfn);
1979
1980 return test_bit(idx, READ_ONCE(ms->usage)->subsection_map);
1981 }
1982 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1983 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1984 {
1985 return 1;
1986 }
1987 #endif
1988
1989 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1990 /**
1991 * pfn_valid - check if there is a valid memory map entry for a PFN
1992 * @pfn: the page frame number to check
1993 *
1994 * Check if there is a valid memory map entry aka struct page for the @pfn.
1995 * Note, that availability of the memory map entry does not imply that
1996 * there is actual usable memory at that @pfn. The struct page may
1997 * represent a hole or an unusable page frame.
1998 *
1999 * Return: 1 for PFNs that have memory map entries and 0 otherwise
2000 */
pfn_valid(unsigned long pfn)2001 static inline int pfn_valid(unsigned long pfn)
2002 {
2003 struct mem_section *ms;
2004 int ret;
2005
2006 /*
2007 * Ensure the upper PAGE_SHIFT bits are clear in the
2008 * pfn. Else it might lead to false positives when
2009 * some of the upper bits are set, but the lower bits
2010 * match a valid pfn.
2011 */
2012 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2013 return 0;
2014
2015 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2016 return 0;
2017 ms = __pfn_to_section(pfn);
2018 rcu_read_lock_sched();
2019 if (!valid_section(ms)) {
2020 rcu_read_unlock_sched();
2021 return 0;
2022 }
2023 /*
2024 * Traditionally early sections always returned pfn_valid() for
2025 * the entire section-sized span.
2026 */
2027 ret = early_section(ms) || pfn_section_valid(ms, pfn);
2028 rcu_read_unlock_sched();
2029
2030 return ret;
2031 }
2032 #endif
2033
pfn_in_present_section(unsigned long pfn)2034 static inline int pfn_in_present_section(unsigned long pfn)
2035 {
2036 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2037 return 0;
2038 return present_section(__pfn_to_section(pfn));
2039 }
2040
next_present_section_nr(unsigned long section_nr)2041 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2042 {
2043 while (++section_nr <= __highest_present_section_nr) {
2044 if (present_section_nr(section_nr))
2045 return section_nr;
2046 }
2047
2048 return -1;
2049 }
2050
2051 /*
2052 * These are _only_ used during initialisation, therefore they
2053 * can use __initdata ... They could have names to indicate
2054 * this restriction.
2055 */
2056 #ifdef CONFIG_NUMA
2057 #define pfn_to_nid(pfn) \
2058 ({ \
2059 unsigned long __pfn_to_nid_pfn = (pfn); \
2060 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
2061 })
2062 #else
2063 #define pfn_to_nid(pfn) (0)
2064 #endif
2065
2066 void sparse_init(void);
2067 #else
2068 #define sparse_init() do {} while (0)
2069 #define sparse_index_init(_sec, _nid) do {} while (0)
2070 #define pfn_in_present_section pfn_valid
2071 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2072 #endif /* CONFIG_SPARSEMEM */
2073
2074 #endif /* !__GENERATING_BOUNDS.H */
2075 #endif /* !__ASSEMBLY__ */
2076 #endif /* _LINUX_MMZONE_H */
2077