1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 md.c : Multiple Devices driver for Linux
4 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5
6 completely rewritten, based on the MD driver code from Marc Zyngier
7
8 Changes:
9
10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
14 - kmod support by: Cyrus Durgin
15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17
18 - lots of fixes and improvements to the RAID1/RAID5 and generic
19 RAID code (such as request based resynchronization):
20
21 Neil Brown <neilb@cse.unsw.edu.au>.
22
23 - persistent bitmap code
24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25
26
27 Errors, Warnings, etc.
28 Please use:
29 pr_crit() for error conditions that risk data loss
30 pr_err() for error conditions that are unexpected, like an IO error
31 or internal inconsistency
32 pr_warn() for error conditions that could have been predicated, like
33 adding a device to an array when it has incompatible metadata
34 pr_info() for every interesting, very rare events, like an array starting
35 or stopping, or resync starting or stopping
36 pr_debug() for everything else.
37
38 */
39
40 #include <linux/sched/mm.h>
41 #include <linux/sched/signal.h>
42 #include <linux/kthread.h>
43 #include <linux/blkdev.h>
44 #include <linux/badblocks.h>
45 #include <linux/sysctl.h>
46 #include <linux/seq_file.h>
47 #include <linux/fs.h>
48 #include <linux/poll.h>
49 #include <linux/ctype.h>
50 #include <linux/string.h>
51 #include <linux/hdreg.h>
52 #include <linux/proc_fs.h>
53 #include <linux/random.h>
54 #include <linux/module.h>
55 #include <linux/reboot.h>
56 #include <linux/file.h>
57 #include <linux/compat.h>
58 #include <linux/delay.h>
59 #include <linux/raid/md_p.h>
60 #include <linux/raid/md_u.h>
61 #include <linux/raid/detect.h>
62 #include <linux/slab.h>
63 #include <linux/percpu-refcount.h>
64 #include <linux/part_stat.h>
65
66 #include <trace/events/block.h>
67 #include "md.h"
68 #include "md-bitmap.h"
69 #include "md-cluster.h"
70
71 /* pers_list is a list of registered personalities protected
72 * by pers_lock.
73 * pers_lock does extra service to protect accesses to
74 * mddev->thread when the mutex cannot be held.
75 */
76 static LIST_HEAD(pers_list);
77 static DEFINE_SPINLOCK(pers_lock);
78
79 static struct kobj_type md_ktype;
80
81 struct md_cluster_operations *md_cluster_ops;
82 EXPORT_SYMBOL(md_cluster_ops);
83 static struct module *md_cluster_mod;
84
85 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
86 static struct workqueue_struct *md_wq;
87 static struct workqueue_struct *md_misc_wq;
88 static struct workqueue_struct *md_rdev_misc_wq;
89
90 static int remove_and_add_spares(struct mddev *mddev,
91 struct md_rdev *this);
92 static void mddev_detach(struct mddev *mddev);
93
94 /*
95 * Default number of read corrections we'll attempt on an rdev
96 * before ejecting it from the array. We divide the read error
97 * count by 2 for every hour elapsed between read errors.
98 */
99 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
100 /* Default safemode delay: 200 msec */
101 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1)
102 /*
103 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
104 * is 1000 KB/sec, so the extra system load does not show up that much.
105 * Increase it if you want to have more _guaranteed_ speed. Note that
106 * the RAID driver will use the maximum available bandwidth if the IO
107 * subsystem is idle. There is also an 'absolute maximum' reconstruction
108 * speed limit - in case reconstruction slows down your system despite
109 * idle IO detection.
110 *
111 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
112 * or /sys/block/mdX/md/sync_speed_{min,max}
113 */
114
115 static int sysctl_speed_limit_min = 1000;
116 static int sysctl_speed_limit_max = 200000;
speed_min(struct mddev * mddev)117 static inline int speed_min(struct mddev *mddev)
118 {
119 return mddev->sync_speed_min ?
120 mddev->sync_speed_min : sysctl_speed_limit_min;
121 }
122
speed_max(struct mddev * mddev)123 static inline int speed_max(struct mddev *mddev)
124 {
125 return mddev->sync_speed_max ?
126 mddev->sync_speed_max : sysctl_speed_limit_max;
127 }
128
rdev_uninit_serial(struct md_rdev * rdev)129 static void rdev_uninit_serial(struct md_rdev *rdev)
130 {
131 if (!test_and_clear_bit(CollisionCheck, &rdev->flags))
132 return;
133
134 kvfree(rdev->serial);
135 rdev->serial = NULL;
136 }
137
rdevs_uninit_serial(struct mddev * mddev)138 static void rdevs_uninit_serial(struct mddev *mddev)
139 {
140 struct md_rdev *rdev;
141
142 rdev_for_each(rdev, mddev)
143 rdev_uninit_serial(rdev);
144 }
145
rdev_init_serial(struct md_rdev * rdev)146 static int rdev_init_serial(struct md_rdev *rdev)
147 {
148 /* serial_nums equals with BARRIER_BUCKETS_NR */
149 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t))));
150 struct serial_in_rdev *serial = NULL;
151
152 if (test_bit(CollisionCheck, &rdev->flags))
153 return 0;
154
155 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums,
156 GFP_KERNEL);
157 if (!serial)
158 return -ENOMEM;
159
160 for (i = 0; i < serial_nums; i++) {
161 struct serial_in_rdev *serial_tmp = &serial[i];
162
163 spin_lock_init(&serial_tmp->serial_lock);
164 serial_tmp->serial_rb = RB_ROOT_CACHED;
165 init_waitqueue_head(&serial_tmp->serial_io_wait);
166 }
167
168 rdev->serial = serial;
169 set_bit(CollisionCheck, &rdev->flags);
170
171 return 0;
172 }
173
rdevs_init_serial(struct mddev * mddev)174 static int rdevs_init_serial(struct mddev *mddev)
175 {
176 struct md_rdev *rdev;
177 int ret = 0;
178
179 rdev_for_each(rdev, mddev) {
180 ret = rdev_init_serial(rdev);
181 if (ret)
182 break;
183 }
184
185 /* Free all resources if pool is not existed */
186 if (ret && !mddev->serial_info_pool)
187 rdevs_uninit_serial(mddev);
188
189 return ret;
190 }
191
192 /*
193 * rdev needs to enable serial stuffs if it meets the conditions:
194 * 1. it is multi-queue device flaged with writemostly.
195 * 2. the write-behind mode is enabled.
196 */
rdev_need_serial(struct md_rdev * rdev)197 static int rdev_need_serial(struct md_rdev *rdev)
198 {
199 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 &&
200 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 &&
201 test_bit(WriteMostly, &rdev->flags));
202 }
203
204 /*
205 * Init resource for rdev(s), then create serial_info_pool if:
206 * 1. rdev is the first device which return true from rdev_enable_serial.
207 * 2. rdev is NULL, means we want to enable serialization for all rdevs.
208 */
mddev_create_serial_pool(struct mddev * mddev,struct md_rdev * rdev,bool is_suspend)209 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
210 bool is_suspend)
211 {
212 int ret = 0;
213
214 if (rdev && !rdev_need_serial(rdev) &&
215 !test_bit(CollisionCheck, &rdev->flags))
216 return;
217
218 if (!is_suspend)
219 mddev_suspend(mddev);
220
221 if (!rdev)
222 ret = rdevs_init_serial(mddev);
223 else
224 ret = rdev_init_serial(rdev);
225 if (ret)
226 goto abort;
227
228 if (mddev->serial_info_pool == NULL) {
229 /*
230 * already in memalloc noio context by
231 * mddev_suspend()
232 */
233 mddev->serial_info_pool =
234 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
235 sizeof(struct serial_info));
236 if (!mddev->serial_info_pool) {
237 rdevs_uninit_serial(mddev);
238 pr_err("can't alloc memory pool for serialization\n");
239 }
240 }
241
242 abort:
243 if (!is_suspend)
244 mddev_resume(mddev);
245 }
246
247 /*
248 * Free resource from rdev(s), and destroy serial_info_pool under conditions:
249 * 1. rdev is the last device flaged with CollisionCheck.
250 * 2. when bitmap is destroyed while policy is not enabled.
251 * 3. for disable policy, the pool is destroyed only when no rdev needs it.
252 */
mddev_destroy_serial_pool(struct mddev * mddev,struct md_rdev * rdev,bool is_suspend)253 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
254 bool is_suspend)
255 {
256 if (rdev && !test_bit(CollisionCheck, &rdev->flags))
257 return;
258
259 if (mddev->serial_info_pool) {
260 struct md_rdev *temp;
261 int num = 0; /* used to track if other rdevs need the pool */
262
263 if (!is_suspend)
264 mddev_suspend(mddev);
265 rdev_for_each(temp, mddev) {
266 if (!rdev) {
267 if (!mddev->serialize_policy ||
268 !rdev_need_serial(temp))
269 rdev_uninit_serial(temp);
270 else
271 num++;
272 } else if (temp != rdev &&
273 test_bit(CollisionCheck, &temp->flags))
274 num++;
275 }
276
277 if (rdev)
278 rdev_uninit_serial(rdev);
279
280 if (num)
281 pr_info("The mempool could be used by other devices\n");
282 else {
283 mempool_destroy(mddev->serial_info_pool);
284 mddev->serial_info_pool = NULL;
285 }
286 if (!is_suspend)
287 mddev_resume(mddev);
288 }
289 }
290
291 static struct ctl_table_header *raid_table_header;
292
293 static struct ctl_table raid_table[] = {
294 {
295 .procname = "speed_limit_min",
296 .data = &sysctl_speed_limit_min,
297 .maxlen = sizeof(int),
298 .mode = S_IRUGO|S_IWUSR,
299 .proc_handler = proc_dointvec,
300 },
301 {
302 .procname = "speed_limit_max",
303 .data = &sysctl_speed_limit_max,
304 .maxlen = sizeof(int),
305 .mode = S_IRUGO|S_IWUSR,
306 .proc_handler = proc_dointvec,
307 },
308 { }
309 };
310
311 static struct ctl_table raid_dir_table[] = {
312 {
313 .procname = "raid",
314 .maxlen = 0,
315 .mode = S_IRUGO|S_IXUGO,
316 .child = raid_table,
317 },
318 { }
319 };
320
321 static struct ctl_table raid_root_table[] = {
322 {
323 .procname = "dev",
324 .maxlen = 0,
325 .mode = 0555,
326 .child = raid_dir_table,
327 },
328 { }
329 };
330
331 static int start_readonly;
332
333 /*
334 * The original mechanism for creating an md device is to create
335 * a device node in /dev and to open it. This causes races with device-close.
336 * The preferred method is to write to the "new_array" module parameter.
337 * This can avoid races.
338 * Setting create_on_open to false disables the original mechanism
339 * so all the races disappear.
340 */
341 static bool create_on_open = true;
342
bio_alloc_mddev(gfp_t gfp_mask,int nr_iovecs,struct mddev * mddev)343 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
344 struct mddev *mddev)
345 {
346 if (!mddev || !bioset_initialized(&mddev->bio_set))
347 return bio_alloc(gfp_mask, nr_iovecs);
348
349 return bio_alloc_bioset(gfp_mask, nr_iovecs, &mddev->bio_set);
350 }
351 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
352
md_bio_alloc_sync(struct mddev * mddev)353 static struct bio *md_bio_alloc_sync(struct mddev *mddev)
354 {
355 if (!mddev || !bioset_initialized(&mddev->sync_set))
356 return bio_alloc(GFP_NOIO, 1);
357
358 return bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set);
359 }
360
361 /*
362 * We have a system wide 'event count' that is incremented
363 * on any 'interesting' event, and readers of /proc/mdstat
364 * can use 'poll' or 'select' to find out when the event
365 * count increases.
366 *
367 * Events are:
368 * start array, stop array, error, add device, remove device,
369 * start build, activate spare
370 */
371 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
372 static atomic_t md_event_count;
md_new_event(struct mddev * mddev)373 void md_new_event(struct mddev *mddev)
374 {
375 atomic_inc(&md_event_count);
376 wake_up(&md_event_waiters);
377 }
378 EXPORT_SYMBOL_GPL(md_new_event);
379
380 /*
381 * Enables to iterate over all existing md arrays
382 * all_mddevs_lock protects this list.
383 */
384 static LIST_HEAD(all_mddevs);
385 static DEFINE_SPINLOCK(all_mddevs_lock);
386
387 /*
388 * iterates through all used mddevs in the system.
389 * We take care to grab the all_mddevs_lock whenever navigating
390 * the list, and to always hold a refcount when unlocked.
391 * Any code which breaks out of this loop while own
392 * a reference to the current mddev and must mddev_put it.
393 */
394 #define for_each_mddev(_mddev,_tmp) \
395 \
396 for (({ spin_lock(&all_mddevs_lock); \
397 _tmp = all_mddevs.next; \
398 _mddev = NULL;}); \
399 ({ if (_tmp != &all_mddevs) \
400 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
401 spin_unlock(&all_mddevs_lock); \
402 if (_mddev) mddev_put(_mddev); \
403 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
404 _tmp != &all_mddevs;}); \
405 ({ spin_lock(&all_mddevs_lock); \
406 _tmp = _tmp->next;}) \
407 )
408
409 /* Rather than calling directly into the personality make_request function,
410 * IO requests come here first so that we can check if the device is
411 * being suspended pending a reconfiguration.
412 * We hold a refcount over the call to ->make_request. By the time that
413 * call has finished, the bio has been linked into some internal structure
414 * and so is visible to ->quiesce(), so we don't need the refcount any more.
415 */
is_suspended(struct mddev * mddev,struct bio * bio)416 static bool is_suspended(struct mddev *mddev, struct bio *bio)
417 {
418 if (mddev->suspended)
419 return true;
420 if (bio_data_dir(bio) != WRITE)
421 return false;
422 if (mddev->suspend_lo >= mddev->suspend_hi)
423 return false;
424 if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
425 return false;
426 if (bio_end_sector(bio) < mddev->suspend_lo)
427 return false;
428 return true;
429 }
430
md_handle_request(struct mddev * mddev,struct bio * bio)431 void md_handle_request(struct mddev *mddev, struct bio *bio)
432 {
433 check_suspended:
434 rcu_read_lock();
435 if (is_suspended(mddev, bio)) {
436 DEFINE_WAIT(__wait);
437 for (;;) {
438 prepare_to_wait(&mddev->sb_wait, &__wait,
439 TASK_UNINTERRUPTIBLE);
440 if (!is_suspended(mddev, bio))
441 break;
442 rcu_read_unlock();
443 schedule();
444 rcu_read_lock();
445 }
446 finish_wait(&mddev->sb_wait, &__wait);
447 }
448 atomic_inc(&mddev->active_io);
449 rcu_read_unlock();
450
451 if (!mddev->pers->make_request(mddev, bio)) {
452 atomic_dec(&mddev->active_io);
453 wake_up(&mddev->sb_wait);
454 goto check_suspended;
455 }
456
457 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
458 wake_up(&mddev->sb_wait);
459 }
460 EXPORT_SYMBOL(md_handle_request);
461
md_submit_bio(struct bio * bio)462 static blk_qc_t md_submit_bio(struct bio *bio)
463 {
464 const int rw = bio_data_dir(bio);
465 struct mddev *mddev = bio->bi_disk->private_data;
466
467 if (mddev == NULL || mddev->pers == NULL) {
468 bio_io_error(bio);
469 return BLK_QC_T_NONE;
470 }
471
472 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) {
473 bio_io_error(bio);
474 return BLK_QC_T_NONE;
475 }
476
477 blk_queue_split(&bio);
478
479 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
480 if (bio_sectors(bio) != 0)
481 bio->bi_status = BLK_STS_IOERR;
482 bio_endio(bio);
483 return BLK_QC_T_NONE;
484 }
485
486 /* bio could be mergeable after passing to underlayer */
487 bio->bi_opf &= ~REQ_NOMERGE;
488
489 md_handle_request(mddev, bio);
490
491 return BLK_QC_T_NONE;
492 }
493
494 /* mddev_suspend makes sure no new requests are submitted
495 * to the device, and that any requests that have been submitted
496 * are completely handled.
497 * Once mddev_detach() is called and completes, the module will be
498 * completely unused.
499 */
mddev_suspend(struct mddev * mddev)500 void mddev_suspend(struct mddev *mddev)
501 {
502 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
503 lockdep_assert_held(&mddev->reconfig_mutex);
504 if (mddev->suspended++)
505 return;
506 synchronize_rcu();
507 wake_up(&mddev->sb_wait);
508 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
509 smp_mb__after_atomic();
510 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
511 mddev->pers->quiesce(mddev, 1);
512 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
513 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
514
515 del_timer_sync(&mddev->safemode_timer);
516 /* restrict memory reclaim I/O during raid array is suspend */
517 mddev->noio_flag = memalloc_noio_save();
518 }
519 EXPORT_SYMBOL_GPL(mddev_suspend);
520
mddev_resume(struct mddev * mddev)521 void mddev_resume(struct mddev *mddev)
522 {
523 /* entred the memalloc scope from mddev_suspend() */
524 memalloc_noio_restore(mddev->noio_flag);
525 lockdep_assert_held(&mddev->reconfig_mutex);
526 if (--mddev->suspended)
527 return;
528 wake_up(&mddev->sb_wait);
529 mddev->pers->quiesce(mddev, 0);
530
531 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
532 md_wakeup_thread(mddev->thread);
533 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
534 }
535 EXPORT_SYMBOL_GPL(mddev_resume);
536
537 /*
538 * Generic flush handling for md
539 */
540
md_end_flush(struct bio * bio)541 static void md_end_flush(struct bio *bio)
542 {
543 struct md_rdev *rdev = bio->bi_private;
544 struct mddev *mddev = rdev->mddev;
545
546 bio_put(bio);
547
548 rdev_dec_pending(rdev, mddev);
549
550 if (atomic_dec_and_test(&mddev->flush_pending)) {
551 /* The pre-request flush has finished */
552 queue_work(md_wq, &mddev->flush_work);
553 }
554 }
555
556 static void md_submit_flush_data(struct work_struct *ws);
557
submit_flushes(struct work_struct * ws)558 static void submit_flushes(struct work_struct *ws)
559 {
560 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
561 struct md_rdev *rdev;
562
563 mddev->start_flush = ktime_get_boottime();
564 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
565 atomic_set(&mddev->flush_pending, 1);
566 rcu_read_lock();
567 rdev_for_each_rcu(rdev, mddev)
568 if (rdev->raid_disk >= 0 &&
569 !test_bit(Faulty, &rdev->flags)) {
570 /* Take two references, one is dropped
571 * when request finishes, one after
572 * we reclaim rcu_read_lock
573 */
574 struct bio *bi;
575 atomic_inc(&rdev->nr_pending);
576 atomic_inc(&rdev->nr_pending);
577 rcu_read_unlock();
578 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
579 bi->bi_end_io = md_end_flush;
580 bi->bi_private = rdev;
581 bio_set_dev(bi, rdev->bdev);
582 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
583 atomic_inc(&mddev->flush_pending);
584 submit_bio(bi);
585 rcu_read_lock();
586 rdev_dec_pending(rdev, mddev);
587 }
588 rcu_read_unlock();
589 if (atomic_dec_and_test(&mddev->flush_pending))
590 queue_work(md_wq, &mddev->flush_work);
591 }
592
md_submit_flush_data(struct work_struct * ws)593 static void md_submit_flush_data(struct work_struct *ws)
594 {
595 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
596 struct bio *bio = mddev->flush_bio;
597
598 /*
599 * must reset flush_bio before calling into md_handle_request to avoid a
600 * deadlock, because other bios passed md_handle_request suspend check
601 * could wait for this and below md_handle_request could wait for those
602 * bios because of suspend check
603 */
604 spin_lock_irq(&mddev->lock);
605 mddev->last_flush = mddev->start_flush;
606 mddev->flush_bio = NULL;
607 spin_unlock_irq(&mddev->lock);
608 wake_up(&mddev->sb_wait);
609
610 if (bio->bi_iter.bi_size == 0) {
611 /* an empty barrier - all done */
612 bio_endio(bio);
613 } else {
614 bio->bi_opf &= ~REQ_PREFLUSH;
615 md_handle_request(mddev, bio);
616 }
617 }
618
619 /*
620 * Manages consolidation of flushes and submitting any flushes needed for
621 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is
622 * being finished in another context. Returns false if the flushing is
623 * complete but still needs the I/O portion of the bio to be processed.
624 */
md_flush_request(struct mddev * mddev,struct bio * bio)625 bool md_flush_request(struct mddev *mddev, struct bio *bio)
626 {
627 ktime_t start = ktime_get_boottime();
628 spin_lock_irq(&mddev->lock);
629 wait_event_lock_irq(mddev->sb_wait,
630 !mddev->flush_bio ||
631 ktime_after(mddev->last_flush, start),
632 mddev->lock);
633 if (!ktime_after(mddev->last_flush, start)) {
634 WARN_ON(mddev->flush_bio);
635 mddev->flush_bio = bio;
636 bio = NULL;
637 }
638 spin_unlock_irq(&mddev->lock);
639
640 if (!bio) {
641 INIT_WORK(&mddev->flush_work, submit_flushes);
642 queue_work(md_wq, &mddev->flush_work);
643 } else {
644 /* flush was performed for some other bio while we waited. */
645 if (bio->bi_iter.bi_size == 0)
646 /* an empty barrier - all done */
647 bio_endio(bio);
648 else {
649 bio->bi_opf &= ~REQ_PREFLUSH;
650 return false;
651 }
652 }
653 return true;
654 }
655 EXPORT_SYMBOL(md_flush_request);
656
mddev_get(struct mddev * mddev)657 static inline struct mddev *mddev_get(struct mddev *mddev)
658 {
659 atomic_inc(&mddev->active);
660 return mddev;
661 }
662
663 static void mddev_delayed_delete(struct work_struct *ws);
664
mddev_put(struct mddev * mddev)665 static void mddev_put(struct mddev *mddev)
666 {
667 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
668 return;
669 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
670 mddev->ctime == 0 && !mddev->hold_active) {
671 /* Array is not configured at all, and not held active,
672 * so destroy it */
673 list_del_init(&mddev->all_mddevs);
674
675 /*
676 * Call queue_work inside the spinlock so that
677 * flush_workqueue() after mddev_find will succeed in waiting
678 * for the work to be done.
679 */
680 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
681 queue_work(md_misc_wq, &mddev->del_work);
682 }
683 spin_unlock(&all_mddevs_lock);
684 }
685
686 static void md_safemode_timeout(struct timer_list *t);
687
mddev_init(struct mddev * mddev)688 void mddev_init(struct mddev *mddev)
689 {
690 kobject_init(&mddev->kobj, &md_ktype);
691 mutex_init(&mddev->open_mutex);
692 mutex_init(&mddev->reconfig_mutex);
693 mutex_init(&mddev->bitmap_info.mutex);
694 INIT_LIST_HEAD(&mddev->disks);
695 INIT_LIST_HEAD(&mddev->all_mddevs);
696 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
697 atomic_set(&mddev->active, 1);
698 atomic_set(&mddev->openers, 0);
699 atomic_set(&mddev->active_io, 0);
700 spin_lock_init(&mddev->lock);
701 atomic_set(&mddev->flush_pending, 0);
702 init_waitqueue_head(&mddev->sb_wait);
703 init_waitqueue_head(&mddev->recovery_wait);
704 mddev->reshape_position = MaxSector;
705 mddev->reshape_backwards = 0;
706 mddev->last_sync_action = "none";
707 mddev->resync_min = 0;
708 mddev->resync_max = MaxSector;
709 mddev->level = LEVEL_NONE;
710 }
711 EXPORT_SYMBOL_GPL(mddev_init);
712
mddev_find_locked(dev_t unit)713 static struct mddev *mddev_find_locked(dev_t unit)
714 {
715 struct mddev *mddev;
716
717 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
718 if (mddev->unit == unit)
719 return mddev;
720
721 return NULL;
722 }
723
mddev_find(dev_t unit)724 static struct mddev *mddev_find(dev_t unit)
725 {
726 struct mddev *mddev;
727
728 if (MAJOR(unit) != MD_MAJOR)
729 unit &= ~((1 << MdpMinorShift) - 1);
730
731 spin_lock(&all_mddevs_lock);
732 mddev = mddev_find_locked(unit);
733 if (mddev)
734 mddev_get(mddev);
735 spin_unlock(&all_mddevs_lock);
736
737 return mddev;
738 }
739
mddev_find_or_alloc(dev_t unit)740 static struct mddev *mddev_find_or_alloc(dev_t unit)
741 {
742 struct mddev *mddev, *new = NULL;
743
744 if (unit && MAJOR(unit) != MD_MAJOR)
745 unit &= ~((1<<MdpMinorShift)-1);
746
747 retry:
748 spin_lock(&all_mddevs_lock);
749
750 if (unit) {
751 mddev = mddev_find_locked(unit);
752 if (mddev) {
753 mddev_get(mddev);
754 spin_unlock(&all_mddevs_lock);
755 kfree(new);
756 return mddev;
757 }
758
759 if (new) {
760 list_add(&new->all_mddevs, &all_mddevs);
761 spin_unlock(&all_mddevs_lock);
762 new->hold_active = UNTIL_IOCTL;
763 return new;
764 }
765 } else if (new) {
766 /* find an unused unit number */
767 static int next_minor = 512;
768 int start = next_minor;
769 int is_free = 0;
770 int dev = 0;
771 while (!is_free) {
772 dev = MKDEV(MD_MAJOR, next_minor);
773 next_minor++;
774 if (next_minor > MINORMASK)
775 next_minor = 0;
776 if (next_minor == start) {
777 /* Oh dear, all in use. */
778 spin_unlock(&all_mddevs_lock);
779 kfree(new);
780 return NULL;
781 }
782
783 is_free = !mddev_find_locked(dev);
784 }
785 new->unit = dev;
786 new->md_minor = MINOR(dev);
787 new->hold_active = UNTIL_STOP;
788 list_add(&new->all_mddevs, &all_mddevs);
789 spin_unlock(&all_mddevs_lock);
790 return new;
791 }
792 spin_unlock(&all_mddevs_lock);
793
794 new = kzalloc(sizeof(*new), GFP_KERNEL);
795 if (!new)
796 return NULL;
797
798 new->unit = unit;
799 if (MAJOR(unit) == MD_MAJOR)
800 new->md_minor = MINOR(unit);
801 else
802 new->md_minor = MINOR(unit) >> MdpMinorShift;
803
804 mddev_init(new);
805
806 goto retry;
807 }
808
809 static struct attribute_group md_redundancy_group;
810
mddev_unlock(struct mddev * mddev)811 void mddev_unlock(struct mddev *mddev)
812 {
813 if (mddev->to_remove) {
814 /* These cannot be removed under reconfig_mutex as
815 * an access to the files will try to take reconfig_mutex
816 * while holding the file unremovable, which leads to
817 * a deadlock.
818 * So hold set sysfs_active while the remove in happeing,
819 * and anything else which might set ->to_remove or my
820 * otherwise change the sysfs namespace will fail with
821 * -EBUSY if sysfs_active is still set.
822 * We set sysfs_active under reconfig_mutex and elsewhere
823 * test it under the same mutex to ensure its correct value
824 * is seen.
825 */
826 struct attribute_group *to_remove = mddev->to_remove;
827 mddev->to_remove = NULL;
828 mddev->sysfs_active = 1;
829 mutex_unlock(&mddev->reconfig_mutex);
830
831 if (mddev->kobj.sd) {
832 if (to_remove != &md_redundancy_group)
833 sysfs_remove_group(&mddev->kobj, to_remove);
834 if (mddev->pers == NULL ||
835 mddev->pers->sync_request == NULL) {
836 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
837 if (mddev->sysfs_action)
838 sysfs_put(mddev->sysfs_action);
839 if (mddev->sysfs_completed)
840 sysfs_put(mddev->sysfs_completed);
841 if (mddev->sysfs_degraded)
842 sysfs_put(mddev->sysfs_degraded);
843 mddev->sysfs_action = NULL;
844 mddev->sysfs_completed = NULL;
845 mddev->sysfs_degraded = NULL;
846 }
847 }
848 mddev->sysfs_active = 0;
849 } else
850 mutex_unlock(&mddev->reconfig_mutex);
851
852 /* As we've dropped the mutex we need a spinlock to
853 * make sure the thread doesn't disappear
854 */
855 spin_lock(&pers_lock);
856 md_wakeup_thread(mddev->thread);
857 wake_up(&mddev->sb_wait);
858 spin_unlock(&pers_lock);
859 }
860 EXPORT_SYMBOL_GPL(mddev_unlock);
861
md_find_rdev_nr_rcu(struct mddev * mddev,int nr)862 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
863 {
864 struct md_rdev *rdev;
865
866 rdev_for_each_rcu(rdev, mddev)
867 if (rdev->desc_nr == nr)
868 return rdev;
869
870 return NULL;
871 }
872 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
873
find_rdev(struct mddev * mddev,dev_t dev)874 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
875 {
876 struct md_rdev *rdev;
877
878 rdev_for_each(rdev, mddev)
879 if (rdev->bdev->bd_dev == dev)
880 return rdev;
881
882 return NULL;
883 }
884
md_find_rdev_rcu(struct mddev * mddev,dev_t dev)885 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
886 {
887 struct md_rdev *rdev;
888
889 rdev_for_each_rcu(rdev, mddev)
890 if (rdev->bdev->bd_dev == dev)
891 return rdev;
892
893 return NULL;
894 }
895 EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
896
find_pers(int level,char * clevel)897 static struct md_personality *find_pers(int level, char *clevel)
898 {
899 struct md_personality *pers;
900 list_for_each_entry(pers, &pers_list, list) {
901 if (level != LEVEL_NONE && pers->level == level)
902 return pers;
903 if (strcmp(pers->name, clevel)==0)
904 return pers;
905 }
906 return NULL;
907 }
908
909 /* return the offset of the super block in 512byte sectors */
calc_dev_sboffset(struct md_rdev * rdev)910 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
911 {
912 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
913 return MD_NEW_SIZE_SECTORS(num_sectors);
914 }
915
alloc_disk_sb(struct md_rdev * rdev)916 static int alloc_disk_sb(struct md_rdev *rdev)
917 {
918 rdev->sb_page = alloc_page(GFP_KERNEL);
919 if (!rdev->sb_page)
920 return -ENOMEM;
921 return 0;
922 }
923
md_rdev_clear(struct md_rdev * rdev)924 void md_rdev_clear(struct md_rdev *rdev)
925 {
926 if (rdev->sb_page) {
927 put_page(rdev->sb_page);
928 rdev->sb_loaded = 0;
929 rdev->sb_page = NULL;
930 rdev->sb_start = 0;
931 rdev->sectors = 0;
932 }
933 if (rdev->bb_page) {
934 put_page(rdev->bb_page);
935 rdev->bb_page = NULL;
936 }
937 badblocks_exit(&rdev->badblocks);
938 }
939 EXPORT_SYMBOL_GPL(md_rdev_clear);
940
super_written(struct bio * bio)941 static void super_written(struct bio *bio)
942 {
943 struct md_rdev *rdev = bio->bi_private;
944 struct mddev *mddev = rdev->mddev;
945
946 if (bio->bi_status) {
947 pr_err("md: %s gets error=%d\n", __func__,
948 blk_status_to_errno(bio->bi_status));
949 md_error(mddev, rdev);
950 if (!test_bit(Faulty, &rdev->flags)
951 && (bio->bi_opf & MD_FAILFAST)) {
952 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
953 set_bit(LastDev, &rdev->flags);
954 }
955 } else
956 clear_bit(LastDev, &rdev->flags);
957
958 bio_put(bio);
959
960 rdev_dec_pending(rdev, mddev);
961
962 if (atomic_dec_and_test(&mddev->pending_writes))
963 wake_up(&mddev->sb_wait);
964 }
965
md_super_write(struct mddev * mddev,struct md_rdev * rdev,sector_t sector,int size,struct page * page)966 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
967 sector_t sector, int size, struct page *page)
968 {
969 /* write first size bytes of page to sector of rdev
970 * Increment mddev->pending_writes before returning
971 * and decrement it on completion, waking up sb_wait
972 * if zero is reached.
973 * If an error occurred, call md_error
974 */
975 struct bio *bio;
976 int ff = 0;
977
978 if (!page)
979 return;
980
981 if (test_bit(Faulty, &rdev->flags))
982 return;
983
984 bio = md_bio_alloc_sync(mddev);
985
986 atomic_inc(&rdev->nr_pending);
987
988 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev);
989 bio->bi_iter.bi_sector = sector;
990 bio_add_page(bio, page, size, 0);
991 bio->bi_private = rdev;
992 bio->bi_end_io = super_written;
993
994 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
995 test_bit(FailFast, &rdev->flags) &&
996 !test_bit(LastDev, &rdev->flags))
997 ff = MD_FAILFAST;
998 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff;
999
1000 atomic_inc(&mddev->pending_writes);
1001 submit_bio(bio);
1002 }
1003
md_super_wait(struct mddev * mddev)1004 int md_super_wait(struct mddev *mddev)
1005 {
1006 /* wait for all superblock writes that were scheduled to complete */
1007 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1008 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
1009 return -EAGAIN;
1010 return 0;
1011 }
1012
sync_page_io(struct md_rdev * rdev,sector_t sector,int size,struct page * page,int op,int op_flags,bool metadata_op)1013 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
1014 struct page *page, int op, int op_flags, bool metadata_op)
1015 {
1016 struct bio *bio = md_bio_alloc_sync(rdev->mddev);
1017 int ret;
1018
1019 if (metadata_op && rdev->meta_bdev)
1020 bio_set_dev(bio, rdev->meta_bdev);
1021 else
1022 bio_set_dev(bio, rdev->bdev);
1023 bio_set_op_attrs(bio, op, op_flags);
1024 if (metadata_op)
1025 bio->bi_iter.bi_sector = sector + rdev->sb_start;
1026 else if (rdev->mddev->reshape_position != MaxSector &&
1027 (rdev->mddev->reshape_backwards ==
1028 (sector >= rdev->mddev->reshape_position)))
1029 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
1030 else
1031 bio->bi_iter.bi_sector = sector + rdev->data_offset;
1032 bio_add_page(bio, page, size, 0);
1033
1034 submit_bio_wait(bio);
1035
1036 ret = !bio->bi_status;
1037 bio_put(bio);
1038 return ret;
1039 }
1040 EXPORT_SYMBOL_GPL(sync_page_io);
1041
read_disk_sb(struct md_rdev * rdev,int size)1042 static int read_disk_sb(struct md_rdev *rdev, int size)
1043 {
1044 char b[BDEVNAME_SIZE];
1045
1046 if (rdev->sb_loaded)
1047 return 0;
1048
1049 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
1050 goto fail;
1051 rdev->sb_loaded = 1;
1052 return 0;
1053
1054 fail:
1055 pr_err("md: disabled device %s, could not read superblock.\n",
1056 bdevname(rdev->bdev,b));
1057 return -EINVAL;
1058 }
1059
md_uuid_equal(mdp_super_t * sb1,mdp_super_t * sb2)1060 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1061 {
1062 return sb1->set_uuid0 == sb2->set_uuid0 &&
1063 sb1->set_uuid1 == sb2->set_uuid1 &&
1064 sb1->set_uuid2 == sb2->set_uuid2 &&
1065 sb1->set_uuid3 == sb2->set_uuid3;
1066 }
1067
md_sb_equal(mdp_super_t * sb1,mdp_super_t * sb2)1068 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1069 {
1070 int ret;
1071 mdp_super_t *tmp1, *tmp2;
1072
1073 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
1074 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
1075
1076 if (!tmp1 || !tmp2) {
1077 ret = 0;
1078 goto abort;
1079 }
1080
1081 *tmp1 = *sb1;
1082 *tmp2 = *sb2;
1083
1084 /*
1085 * nr_disks is not constant
1086 */
1087 tmp1->nr_disks = 0;
1088 tmp2->nr_disks = 0;
1089
1090 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
1091 abort:
1092 kfree(tmp1);
1093 kfree(tmp2);
1094 return ret;
1095 }
1096
md_csum_fold(u32 csum)1097 static u32 md_csum_fold(u32 csum)
1098 {
1099 csum = (csum & 0xffff) + (csum >> 16);
1100 return (csum & 0xffff) + (csum >> 16);
1101 }
1102
calc_sb_csum(mdp_super_t * sb)1103 static unsigned int calc_sb_csum(mdp_super_t *sb)
1104 {
1105 u64 newcsum = 0;
1106 u32 *sb32 = (u32*)sb;
1107 int i;
1108 unsigned int disk_csum, csum;
1109
1110 disk_csum = sb->sb_csum;
1111 sb->sb_csum = 0;
1112
1113 for (i = 0; i < MD_SB_BYTES/4 ; i++)
1114 newcsum += sb32[i];
1115 csum = (newcsum & 0xffffffff) + (newcsum>>32);
1116
1117 #ifdef CONFIG_ALPHA
1118 /* This used to use csum_partial, which was wrong for several
1119 * reasons including that different results are returned on
1120 * different architectures. It isn't critical that we get exactly
1121 * the same return value as before (we always csum_fold before
1122 * testing, and that removes any differences). However as we
1123 * know that csum_partial always returned a 16bit value on
1124 * alphas, do a fold to maximise conformity to previous behaviour.
1125 */
1126 sb->sb_csum = md_csum_fold(disk_csum);
1127 #else
1128 sb->sb_csum = disk_csum;
1129 #endif
1130 return csum;
1131 }
1132
1133 /*
1134 * Handle superblock details.
1135 * We want to be able to handle multiple superblock formats
1136 * so we have a common interface to them all, and an array of
1137 * different handlers.
1138 * We rely on user-space to write the initial superblock, and support
1139 * reading and updating of superblocks.
1140 * Interface methods are:
1141 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1142 * loads and validates a superblock on dev.
1143 * if refdev != NULL, compare superblocks on both devices
1144 * Return:
1145 * 0 - dev has a superblock that is compatible with refdev
1146 * 1 - dev has a superblock that is compatible and newer than refdev
1147 * so dev should be used as the refdev in future
1148 * -EINVAL superblock incompatible or invalid
1149 * -othererror e.g. -EIO
1150 *
1151 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1152 * Verify that dev is acceptable into mddev.
1153 * The first time, mddev->raid_disks will be 0, and data from
1154 * dev should be merged in. Subsequent calls check that dev
1155 * is new enough. Return 0 or -EINVAL
1156 *
1157 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1158 * Update the superblock for rdev with data in mddev
1159 * This does not write to disc.
1160 *
1161 */
1162
1163 struct super_type {
1164 char *name;
1165 struct module *owner;
1166 int (*load_super)(struct md_rdev *rdev,
1167 struct md_rdev *refdev,
1168 int minor_version);
1169 int (*validate_super)(struct mddev *mddev,
1170 struct md_rdev *rdev);
1171 void (*sync_super)(struct mddev *mddev,
1172 struct md_rdev *rdev);
1173 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1174 sector_t num_sectors);
1175 int (*allow_new_offset)(struct md_rdev *rdev,
1176 unsigned long long new_offset);
1177 };
1178
1179 /*
1180 * Check that the given mddev has no bitmap.
1181 *
1182 * This function is called from the run method of all personalities that do not
1183 * support bitmaps. It prints an error message and returns non-zero if mddev
1184 * has a bitmap. Otherwise, it returns 0.
1185 *
1186 */
md_check_no_bitmap(struct mddev * mddev)1187 int md_check_no_bitmap(struct mddev *mddev)
1188 {
1189 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1190 return 0;
1191 pr_warn("%s: bitmaps are not supported for %s\n",
1192 mdname(mddev), mddev->pers->name);
1193 return 1;
1194 }
1195 EXPORT_SYMBOL(md_check_no_bitmap);
1196
1197 /*
1198 * load_super for 0.90.0
1199 */
super_90_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1200 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1201 {
1202 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1203 mdp_super_t *sb;
1204 int ret;
1205 bool spare_disk = true;
1206
1207 /*
1208 * Calculate the position of the superblock (512byte sectors),
1209 * it's at the end of the disk.
1210 *
1211 * It also happens to be a multiple of 4Kb.
1212 */
1213 rdev->sb_start = calc_dev_sboffset(rdev);
1214
1215 ret = read_disk_sb(rdev, MD_SB_BYTES);
1216 if (ret)
1217 return ret;
1218
1219 ret = -EINVAL;
1220
1221 bdevname(rdev->bdev, b);
1222 sb = page_address(rdev->sb_page);
1223
1224 if (sb->md_magic != MD_SB_MAGIC) {
1225 pr_warn("md: invalid raid superblock magic on %s\n", b);
1226 goto abort;
1227 }
1228
1229 if (sb->major_version != 0 ||
1230 sb->minor_version < 90 ||
1231 sb->minor_version > 91) {
1232 pr_warn("Bad version number %d.%d on %s\n",
1233 sb->major_version, sb->minor_version, b);
1234 goto abort;
1235 }
1236
1237 if (sb->raid_disks <= 0)
1238 goto abort;
1239
1240 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1241 pr_warn("md: invalid superblock checksum on %s\n", b);
1242 goto abort;
1243 }
1244
1245 rdev->preferred_minor = sb->md_minor;
1246 rdev->data_offset = 0;
1247 rdev->new_data_offset = 0;
1248 rdev->sb_size = MD_SB_BYTES;
1249 rdev->badblocks.shift = -1;
1250
1251 if (sb->level == LEVEL_MULTIPATH)
1252 rdev->desc_nr = -1;
1253 else
1254 rdev->desc_nr = sb->this_disk.number;
1255
1256 /* not spare disk, or LEVEL_MULTIPATH */
1257 if (sb->level == LEVEL_MULTIPATH ||
1258 (rdev->desc_nr >= 0 &&
1259 rdev->desc_nr < MD_SB_DISKS &&
1260 sb->disks[rdev->desc_nr].state &
1261 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))))
1262 spare_disk = false;
1263
1264 if (!refdev) {
1265 if (!spare_disk)
1266 ret = 1;
1267 else
1268 ret = 0;
1269 } else {
1270 __u64 ev1, ev2;
1271 mdp_super_t *refsb = page_address(refdev->sb_page);
1272 if (!md_uuid_equal(refsb, sb)) {
1273 pr_warn("md: %s has different UUID to %s\n",
1274 b, bdevname(refdev->bdev,b2));
1275 goto abort;
1276 }
1277 if (!md_sb_equal(refsb, sb)) {
1278 pr_warn("md: %s has same UUID but different superblock to %s\n",
1279 b, bdevname(refdev->bdev, b2));
1280 goto abort;
1281 }
1282 ev1 = md_event(sb);
1283 ev2 = md_event(refsb);
1284
1285 if (!spare_disk && ev1 > ev2)
1286 ret = 1;
1287 else
1288 ret = 0;
1289 }
1290 rdev->sectors = rdev->sb_start;
1291 /* Limit to 4TB as metadata cannot record more than that.
1292 * (not needed for Linear and RAID0 as metadata doesn't
1293 * record this size)
1294 */
1295 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1296 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1297
1298 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1299 /* "this cannot possibly happen" ... */
1300 ret = -EINVAL;
1301
1302 abort:
1303 return ret;
1304 }
1305
1306 /*
1307 * validate_super for 0.90.0
1308 */
super_90_validate(struct mddev * mddev,struct md_rdev * rdev)1309 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1310 {
1311 mdp_disk_t *desc;
1312 mdp_super_t *sb = page_address(rdev->sb_page);
1313 __u64 ev1 = md_event(sb);
1314
1315 rdev->raid_disk = -1;
1316 clear_bit(Faulty, &rdev->flags);
1317 clear_bit(In_sync, &rdev->flags);
1318 clear_bit(Bitmap_sync, &rdev->flags);
1319 clear_bit(WriteMostly, &rdev->flags);
1320
1321 if (mddev->raid_disks == 0) {
1322 mddev->major_version = 0;
1323 mddev->minor_version = sb->minor_version;
1324 mddev->patch_version = sb->patch_version;
1325 mddev->external = 0;
1326 mddev->chunk_sectors = sb->chunk_size >> 9;
1327 mddev->ctime = sb->ctime;
1328 mddev->utime = sb->utime;
1329 mddev->level = sb->level;
1330 mddev->clevel[0] = 0;
1331 mddev->layout = sb->layout;
1332 mddev->raid_disks = sb->raid_disks;
1333 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1334 mddev->events = ev1;
1335 mddev->bitmap_info.offset = 0;
1336 mddev->bitmap_info.space = 0;
1337 /* bitmap can use 60 K after the 4K superblocks */
1338 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1339 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1340 mddev->reshape_backwards = 0;
1341
1342 if (mddev->minor_version >= 91) {
1343 mddev->reshape_position = sb->reshape_position;
1344 mddev->delta_disks = sb->delta_disks;
1345 mddev->new_level = sb->new_level;
1346 mddev->new_layout = sb->new_layout;
1347 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1348 if (mddev->delta_disks < 0)
1349 mddev->reshape_backwards = 1;
1350 } else {
1351 mddev->reshape_position = MaxSector;
1352 mddev->delta_disks = 0;
1353 mddev->new_level = mddev->level;
1354 mddev->new_layout = mddev->layout;
1355 mddev->new_chunk_sectors = mddev->chunk_sectors;
1356 }
1357 if (mddev->level == 0)
1358 mddev->layout = -1;
1359
1360 if (sb->state & (1<<MD_SB_CLEAN))
1361 mddev->recovery_cp = MaxSector;
1362 else {
1363 if (sb->events_hi == sb->cp_events_hi &&
1364 sb->events_lo == sb->cp_events_lo) {
1365 mddev->recovery_cp = sb->recovery_cp;
1366 } else
1367 mddev->recovery_cp = 0;
1368 }
1369
1370 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1371 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1372 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1373 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1374
1375 mddev->max_disks = MD_SB_DISKS;
1376
1377 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1378 mddev->bitmap_info.file == NULL) {
1379 mddev->bitmap_info.offset =
1380 mddev->bitmap_info.default_offset;
1381 mddev->bitmap_info.space =
1382 mddev->bitmap_info.default_space;
1383 }
1384
1385 } else if (mddev->pers == NULL) {
1386 /* Insist on good event counter while assembling, except
1387 * for spares (which don't need an event count) */
1388 ++ev1;
1389 if (sb->disks[rdev->desc_nr].state & (
1390 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1391 if (ev1 < mddev->events)
1392 return -EINVAL;
1393 } else if (mddev->bitmap) {
1394 /* if adding to array with a bitmap, then we can accept an
1395 * older device ... but not too old.
1396 */
1397 if (ev1 < mddev->bitmap->events_cleared)
1398 return 0;
1399 if (ev1 < mddev->events)
1400 set_bit(Bitmap_sync, &rdev->flags);
1401 } else {
1402 if (ev1 < mddev->events)
1403 /* just a hot-add of a new device, leave raid_disk at -1 */
1404 return 0;
1405 }
1406
1407 if (mddev->level != LEVEL_MULTIPATH) {
1408 desc = sb->disks + rdev->desc_nr;
1409
1410 if (desc->state & (1<<MD_DISK_FAULTY))
1411 set_bit(Faulty, &rdev->flags);
1412 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1413 desc->raid_disk < mddev->raid_disks */) {
1414 set_bit(In_sync, &rdev->flags);
1415 rdev->raid_disk = desc->raid_disk;
1416 rdev->saved_raid_disk = desc->raid_disk;
1417 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1418 /* active but not in sync implies recovery up to
1419 * reshape position. We don't know exactly where
1420 * that is, so set to zero for now */
1421 if (mddev->minor_version >= 91) {
1422 rdev->recovery_offset = 0;
1423 rdev->raid_disk = desc->raid_disk;
1424 }
1425 }
1426 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1427 set_bit(WriteMostly, &rdev->flags);
1428 if (desc->state & (1<<MD_DISK_FAILFAST))
1429 set_bit(FailFast, &rdev->flags);
1430 } else /* MULTIPATH are always insync */
1431 set_bit(In_sync, &rdev->flags);
1432 return 0;
1433 }
1434
1435 /*
1436 * sync_super for 0.90.0
1437 */
super_90_sync(struct mddev * mddev,struct md_rdev * rdev)1438 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1439 {
1440 mdp_super_t *sb;
1441 struct md_rdev *rdev2;
1442 int next_spare = mddev->raid_disks;
1443
1444 /* make rdev->sb match mddev data..
1445 *
1446 * 1/ zero out disks
1447 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1448 * 3/ any empty disks < next_spare become removed
1449 *
1450 * disks[0] gets initialised to REMOVED because
1451 * we cannot be sure from other fields if it has
1452 * been initialised or not.
1453 */
1454 int i;
1455 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1456
1457 rdev->sb_size = MD_SB_BYTES;
1458
1459 sb = page_address(rdev->sb_page);
1460
1461 memset(sb, 0, sizeof(*sb));
1462
1463 sb->md_magic = MD_SB_MAGIC;
1464 sb->major_version = mddev->major_version;
1465 sb->patch_version = mddev->patch_version;
1466 sb->gvalid_words = 0; /* ignored */
1467 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1468 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1469 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1470 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1471
1472 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1473 sb->level = mddev->level;
1474 sb->size = mddev->dev_sectors / 2;
1475 sb->raid_disks = mddev->raid_disks;
1476 sb->md_minor = mddev->md_minor;
1477 sb->not_persistent = 0;
1478 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1479 sb->state = 0;
1480 sb->events_hi = (mddev->events>>32);
1481 sb->events_lo = (u32)mddev->events;
1482
1483 if (mddev->reshape_position == MaxSector)
1484 sb->minor_version = 90;
1485 else {
1486 sb->minor_version = 91;
1487 sb->reshape_position = mddev->reshape_position;
1488 sb->new_level = mddev->new_level;
1489 sb->delta_disks = mddev->delta_disks;
1490 sb->new_layout = mddev->new_layout;
1491 sb->new_chunk = mddev->new_chunk_sectors << 9;
1492 }
1493 mddev->minor_version = sb->minor_version;
1494 if (mddev->in_sync)
1495 {
1496 sb->recovery_cp = mddev->recovery_cp;
1497 sb->cp_events_hi = (mddev->events>>32);
1498 sb->cp_events_lo = (u32)mddev->events;
1499 if (mddev->recovery_cp == MaxSector)
1500 sb->state = (1<< MD_SB_CLEAN);
1501 } else
1502 sb->recovery_cp = 0;
1503
1504 sb->layout = mddev->layout;
1505 sb->chunk_size = mddev->chunk_sectors << 9;
1506
1507 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1508 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1509
1510 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1511 rdev_for_each(rdev2, mddev) {
1512 mdp_disk_t *d;
1513 int desc_nr;
1514 int is_active = test_bit(In_sync, &rdev2->flags);
1515
1516 if (rdev2->raid_disk >= 0 &&
1517 sb->minor_version >= 91)
1518 /* we have nowhere to store the recovery_offset,
1519 * but if it is not below the reshape_position,
1520 * we can piggy-back on that.
1521 */
1522 is_active = 1;
1523 if (rdev2->raid_disk < 0 ||
1524 test_bit(Faulty, &rdev2->flags))
1525 is_active = 0;
1526 if (is_active)
1527 desc_nr = rdev2->raid_disk;
1528 else
1529 desc_nr = next_spare++;
1530 rdev2->desc_nr = desc_nr;
1531 d = &sb->disks[rdev2->desc_nr];
1532 nr_disks++;
1533 d->number = rdev2->desc_nr;
1534 d->major = MAJOR(rdev2->bdev->bd_dev);
1535 d->minor = MINOR(rdev2->bdev->bd_dev);
1536 if (is_active)
1537 d->raid_disk = rdev2->raid_disk;
1538 else
1539 d->raid_disk = rdev2->desc_nr; /* compatibility */
1540 if (test_bit(Faulty, &rdev2->flags))
1541 d->state = (1<<MD_DISK_FAULTY);
1542 else if (is_active) {
1543 d->state = (1<<MD_DISK_ACTIVE);
1544 if (test_bit(In_sync, &rdev2->flags))
1545 d->state |= (1<<MD_DISK_SYNC);
1546 active++;
1547 working++;
1548 } else {
1549 d->state = 0;
1550 spare++;
1551 working++;
1552 }
1553 if (test_bit(WriteMostly, &rdev2->flags))
1554 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1555 if (test_bit(FailFast, &rdev2->flags))
1556 d->state |= (1<<MD_DISK_FAILFAST);
1557 }
1558 /* now set the "removed" and "faulty" bits on any missing devices */
1559 for (i=0 ; i < mddev->raid_disks ; i++) {
1560 mdp_disk_t *d = &sb->disks[i];
1561 if (d->state == 0 && d->number == 0) {
1562 d->number = i;
1563 d->raid_disk = i;
1564 d->state = (1<<MD_DISK_REMOVED);
1565 d->state |= (1<<MD_DISK_FAULTY);
1566 failed++;
1567 }
1568 }
1569 sb->nr_disks = nr_disks;
1570 sb->active_disks = active;
1571 sb->working_disks = working;
1572 sb->failed_disks = failed;
1573 sb->spare_disks = spare;
1574
1575 sb->this_disk = sb->disks[rdev->desc_nr];
1576 sb->sb_csum = calc_sb_csum(sb);
1577 }
1578
1579 /*
1580 * rdev_size_change for 0.90.0
1581 */
1582 static unsigned long long
super_90_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1583 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1584 {
1585 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1586 return 0; /* component must fit device */
1587 if (rdev->mddev->bitmap_info.offset)
1588 return 0; /* can't move bitmap */
1589 rdev->sb_start = calc_dev_sboffset(rdev);
1590 if (!num_sectors || num_sectors > rdev->sb_start)
1591 num_sectors = rdev->sb_start;
1592 /* Limit to 4TB as metadata cannot record more than that.
1593 * 4TB == 2^32 KB, or 2*2^32 sectors.
1594 */
1595 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1596 num_sectors = (sector_t)(2ULL << 32) - 2;
1597 do {
1598 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1599 rdev->sb_page);
1600 } while (md_super_wait(rdev->mddev) < 0);
1601 return num_sectors;
1602 }
1603
1604 static int
super_90_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1605 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1606 {
1607 /* non-zero offset changes not possible with v0.90 */
1608 return new_offset == 0;
1609 }
1610
1611 /*
1612 * version 1 superblock
1613 */
1614
calc_sb_1_csum(struct mdp_superblock_1 * sb)1615 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1616 {
1617 __le32 disk_csum;
1618 u32 csum;
1619 unsigned long long newcsum;
1620 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1621 __le32 *isuper = (__le32*)sb;
1622
1623 disk_csum = sb->sb_csum;
1624 sb->sb_csum = 0;
1625 newcsum = 0;
1626 for (; size >= 4; size -= 4)
1627 newcsum += le32_to_cpu(*isuper++);
1628
1629 if (size == 2)
1630 newcsum += le16_to_cpu(*(__le16*) isuper);
1631
1632 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1633 sb->sb_csum = disk_csum;
1634 return cpu_to_le32(csum);
1635 }
1636
super_1_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1637 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1638 {
1639 struct mdp_superblock_1 *sb;
1640 int ret;
1641 sector_t sb_start;
1642 sector_t sectors;
1643 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1644 int bmask;
1645 bool spare_disk = true;
1646
1647 /*
1648 * Calculate the position of the superblock in 512byte sectors.
1649 * It is always aligned to a 4K boundary and
1650 * depeding on minor_version, it can be:
1651 * 0: At least 8K, but less than 12K, from end of device
1652 * 1: At start of device
1653 * 2: 4K from start of device.
1654 */
1655 switch(minor_version) {
1656 case 0:
1657 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1658 sb_start -= 8*2;
1659 sb_start &= ~(sector_t)(4*2-1);
1660 break;
1661 case 1:
1662 sb_start = 0;
1663 break;
1664 case 2:
1665 sb_start = 8;
1666 break;
1667 default:
1668 return -EINVAL;
1669 }
1670 rdev->sb_start = sb_start;
1671
1672 /* superblock is rarely larger than 1K, but it can be larger,
1673 * and it is safe to read 4k, so we do that
1674 */
1675 ret = read_disk_sb(rdev, 4096);
1676 if (ret) return ret;
1677
1678 sb = page_address(rdev->sb_page);
1679
1680 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1681 sb->major_version != cpu_to_le32(1) ||
1682 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1683 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1684 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1685 return -EINVAL;
1686
1687 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1688 pr_warn("md: invalid superblock checksum on %s\n",
1689 bdevname(rdev->bdev,b));
1690 return -EINVAL;
1691 }
1692 if (le64_to_cpu(sb->data_size) < 10) {
1693 pr_warn("md: data_size too small on %s\n",
1694 bdevname(rdev->bdev,b));
1695 return -EINVAL;
1696 }
1697 if (sb->pad0 ||
1698 sb->pad3[0] ||
1699 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1700 /* Some padding is non-zero, might be a new feature */
1701 return -EINVAL;
1702
1703 rdev->preferred_minor = 0xffff;
1704 rdev->data_offset = le64_to_cpu(sb->data_offset);
1705 rdev->new_data_offset = rdev->data_offset;
1706 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1707 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1708 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1709 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1710
1711 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1712 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1713 if (rdev->sb_size & bmask)
1714 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1715
1716 if (minor_version
1717 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1718 return -EINVAL;
1719 if (minor_version
1720 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1721 return -EINVAL;
1722
1723 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1724 rdev->desc_nr = -1;
1725 else
1726 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1727
1728 if (!rdev->bb_page) {
1729 rdev->bb_page = alloc_page(GFP_KERNEL);
1730 if (!rdev->bb_page)
1731 return -ENOMEM;
1732 }
1733 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1734 rdev->badblocks.count == 0) {
1735 /* need to load the bad block list.
1736 * Currently we limit it to one page.
1737 */
1738 s32 offset;
1739 sector_t bb_sector;
1740 __le64 *bbp;
1741 int i;
1742 int sectors = le16_to_cpu(sb->bblog_size);
1743 if (sectors > (PAGE_SIZE / 512))
1744 return -EINVAL;
1745 offset = le32_to_cpu(sb->bblog_offset);
1746 if (offset == 0)
1747 return -EINVAL;
1748 bb_sector = (long long)offset;
1749 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1750 rdev->bb_page, REQ_OP_READ, 0, true))
1751 return -EIO;
1752 bbp = (__le64 *)page_address(rdev->bb_page);
1753 rdev->badblocks.shift = sb->bblog_shift;
1754 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1755 u64 bb = le64_to_cpu(*bbp);
1756 int count = bb & (0x3ff);
1757 u64 sector = bb >> 10;
1758 sector <<= sb->bblog_shift;
1759 count <<= sb->bblog_shift;
1760 if (bb + 1 == 0)
1761 break;
1762 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1763 return -EINVAL;
1764 }
1765 } else if (sb->bblog_offset != 0)
1766 rdev->badblocks.shift = 0;
1767
1768 if ((le32_to_cpu(sb->feature_map) &
1769 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1770 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1771 rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1772 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1773 }
1774
1775 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) &&
1776 sb->level != 0)
1777 return -EINVAL;
1778
1779 /* not spare disk, or LEVEL_MULTIPATH */
1780 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) ||
1781 (rdev->desc_nr >= 0 &&
1782 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1783 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1784 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)))
1785 spare_disk = false;
1786
1787 if (!refdev) {
1788 if (!spare_disk)
1789 ret = 1;
1790 else
1791 ret = 0;
1792 } else {
1793 __u64 ev1, ev2;
1794 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1795
1796 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1797 sb->level != refsb->level ||
1798 sb->layout != refsb->layout ||
1799 sb->chunksize != refsb->chunksize) {
1800 pr_warn("md: %s has strangely different superblock to %s\n",
1801 bdevname(rdev->bdev,b),
1802 bdevname(refdev->bdev,b2));
1803 return -EINVAL;
1804 }
1805 ev1 = le64_to_cpu(sb->events);
1806 ev2 = le64_to_cpu(refsb->events);
1807
1808 if (!spare_disk && ev1 > ev2)
1809 ret = 1;
1810 else
1811 ret = 0;
1812 }
1813 if (minor_version) {
1814 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1815 sectors -= rdev->data_offset;
1816 } else
1817 sectors = rdev->sb_start;
1818 if (sectors < le64_to_cpu(sb->data_size))
1819 return -EINVAL;
1820 rdev->sectors = le64_to_cpu(sb->data_size);
1821 return ret;
1822 }
1823
super_1_validate(struct mddev * mddev,struct md_rdev * rdev)1824 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1825 {
1826 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1827 __u64 ev1 = le64_to_cpu(sb->events);
1828
1829 rdev->raid_disk = -1;
1830 clear_bit(Faulty, &rdev->flags);
1831 clear_bit(In_sync, &rdev->flags);
1832 clear_bit(Bitmap_sync, &rdev->flags);
1833 clear_bit(WriteMostly, &rdev->flags);
1834
1835 if (mddev->raid_disks == 0) {
1836 mddev->major_version = 1;
1837 mddev->patch_version = 0;
1838 mddev->external = 0;
1839 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1840 mddev->ctime = le64_to_cpu(sb->ctime);
1841 mddev->utime = le64_to_cpu(sb->utime);
1842 mddev->level = le32_to_cpu(sb->level);
1843 mddev->clevel[0] = 0;
1844 mddev->layout = le32_to_cpu(sb->layout);
1845 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1846 mddev->dev_sectors = le64_to_cpu(sb->size);
1847 mddev->events = ev1;
1848 mddev->bitmap_info.offset = 0;
1849 mddev->bitmap_info.space = 0;
1850 /* Default location for bitmap is 1K after superblock
1851 * using 3K - total of 4K
1852 */
1853 mddev->bitmap_info.default_offset = 1024 >> 9;
1854 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1855 mddev->reshape_backwards = 0;
1856
1857 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1858 memcpy(mddev->uuid, sb->set_uuid, 16);
1859
1860 mddev->max_disks = (4096-256)/2;
1861
1862 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1863 mddev->bitmap_info.file == NULL) {
1864 mddev->bitmap_info.offset =
1865 (__s32)le32_to_cpu(sb->bitmap_offset);
1866 /* Metadata doesn't record how much space is available.
1867 * For 1.0, we assume we can use up to the superblock
1868 * if before, else to 4K beyond superblock.
1869 * For others, assume no change is possible.
1870 */
1871 if (mddev->minor_version > 0)
1872 mddev->bitmap_info.space = 0;
1873 else if (mddev->bitmap_info.offset > 0)
1874 mddev->bitmap_info.space =
1875 8 - mddev->bitmap_info.offset;
1876 else
1877 mddev->bitmap_info.space =
1878 -mddev->bitmap_info.offset;
1879 }
1880
1881 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1882 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1883 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1884 mddev->new_level = le32_to_cpu(sb->new_level);
1885 mddev->new_layout = le32_to_cpu(sb->new_layout);
1886 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1887 if (mddev->delta_disks < 0 ||
1888 (mddev->delta_disks == 0 &&
1889 (le32_to_cpu(sb->feature_map)
1890 & MD_FEATURE_RESHAPE_BACKWARDS)))
1891 mddev->reshape_backwards = 1;
1892 } else {
1893 mddev->reshape_position = MaxSector;
1894 mddev->delta_disks = 0;
1895 mddev->new_level = mddev->level;
1896 mddev->new_layout = mddev->layout;
1897 mddev->new_chunk_sectors = mddev->chunk_sectors;
1898 }
1899
1900 if (mddev->level == 0 &&
1901 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT))
1902 mddev->layout = -1;
1903
1904 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1905 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1906
1907 if (le32_to_cpu(sb->feature_map) &
1908 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1909 if (le32_to_cpu(sb->feature_map) &
1910 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1911 return -EINVAL;
1912 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1913 (le32_to_cpu(sb->feature_map) &
1914 MD_FEATURE_MULTIPLE_PPLS))
1915 return -EINVAL;
1916 set_bit(MD_HAS_PPL, &mddev->flags);
1917 }
1918 } else if (mddev->pers == NULL) {
1919 /* Insist of good event counter while assembling, except for
1920 * spares (which don't need an event count) */
1921 ++ev1;
1922 if (rdev->desc_nr >= 0 &&
1923 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1924 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1925 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1926 if (ev1 < mddev->events)
1927 return -EINVAL;
1928 } else if (mddev->bitmap) {
1929 /* If adding to array with a bitmap, then we can accept an
1930 * older device, but not too old.
1931 */
1932 if (ev1 < mddev->bitmap->events_cleared)
1933 return 0;
1934 if (ev1 < mddev->events)
1935 set_bit(Bitmap_sync, &rdev->flags);
1936 } else {
1937 if (ev1 < mddev->events)
1938 /* just a hot-add of a new device, leave raid_disk at -1 */
1939 return 0;
1940 }
1941 if (mddev->level != LEVEL_MULTIPATH) {
1942 int role;
1943 if (rdev->desc_nr < 0 ||
1944 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1945 role = MD_DISK_ROLE_SPARE;
1946 rdev->desc_nr = -1;
1947 } else
1948 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1949 switch(role) {
1950 case MD_DISK_ROLE_SPARE: /* spare */
1951 break;
1952 case MD_DISK_ROLE_FAULTY: /* faulty */
1953 set_bit(Faulty, &rdev->flags);
1954 break;
1955 case MD_DISK_ROLE_JOURNAL: /* journal device */
1956 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1957 /* journal device without journal feature */
1958 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1959 return -EINVAL;
1960 }
1961 set_bit(Journal, &rdev->flags);
1962 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1963 rdev->raid_disk = 0;
1964 break;
1965 default:
1966 rdev->saved_raid_disk = role;
1967 if ((le32_to_cpu(sb->feature_map) &
1968 MD_FEATURE_RECOVERY_OFFSET)) {
1969 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1970 if (!(le32_to_cpu(sb->feature_map) &
1971 MD_FEATURE_RECOVERY_BITMAP))
1972 rdev->saved_raid_disk = -1;
1973 } else {
1974 /*
1975 * If the array is FROZEN, then the device can't
1976 * be in_sync with rest of array.
1977 */
1978 if (!test_bit(MD_RECOVERY_FROZEN,
1979 &mddev->recovery))
1980 set_bit(In_sync, &rdev->flags);
1981 }
1982 rdev->raid_disk = role;
1983 break;
1984 }
1985 if (sb->devflags & WriteMostly1)
1986 set_bit(WriteMostly, &rdev->flags);
1987 if (sb->devflags & FailFast1)
1988 set_bit(FailFast, &rdev->flags);
1989 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1990 set_bit(Replacement, &rdev->flags);
1991 } else /* MULTIPATH are always insync */
1992 set_bit(In_sync, &rdev->flags);
1993
1994 return 0;
1995 }
1996
super_1_sync(struct mddev * mddev,struct md_rdev * rdev)1997 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1998 {
1999 struct mdp_superblock_1 *sb;
2000 struct md_rdev *rdev2;
2001 int max_dev, i;
2002 /* make rdev->sb match mddev and rdev data. */
2003
2004 sb = page_address(rdev->sb_page);
2005
2006 sb->feature_map = 0;
2007 sb->pad0 = 0;
2008 sb->recovery_offset = cpu_to_le64(0);
2009 memset(sb->pad3, 0, sizeof(sb->pad3));
2010
2011 sb->utime = cpu_to_le64((__u64)mddev->utime);
2012 sb->events = cpu_to_le64(mddev->events);
2013 if (mddev->in_sync)
2014 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
2015 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
2016 sb->resync_offset = cpu_to_le64(MaxSector);
2017 else
2018 sb->resync_offset = cpu_to_le64(0);
2019
2020 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
2021
2022 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
2023 sb->size = cpu_to_le64(mddev->dev_sectors);
2024 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
2025 sb->level = cpu_to_le32(mddev->level);
2026 sb->layout = cpu_to_le32(mddev->layout);
2027 if (test_bit(FailFast, &rdev->flags))
2028 sb->devflags |= FailFast1;
2029 else
2030 sb->devflags &= ~FailFast1;
2031
2032 if (test_bit(WriteMostly, &rdev->flags))
2033 sb->devflags |= WriteMostly1;
2034 else
2035 sb->devflags &= ~WriteMostly1;
2036 sb->data_offset = cpu_to_le64(rdev->data_offset);
2037 sb->data_size = cpu_to_le64(rdev->sectors);
2038
2039 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
2040 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
2041 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
2042 }
2043
2044 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
2045 !test_bit(In_sync, &rdev->flags)) {
2046 sb->feature_map |=
2047 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
2048 sb->recovery_offset =
2049 cpu_to_le64(rdev->recovery_offset);
2050 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
2051 sb->feature_map |=
2052 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
2053 }
2054 /* Note: recovery_offset and journal_tail share space */
2055 if (test_bit(Journal, &rdev->flags))
2056 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
2057 if (test_bit(Replacement, &rdev->flags))
2058 sb->feature_map |=
2059 cpu_to_le32(MD_FEATURE_REPLACEMENT);
2060
2061 if (mddev->reshape_position != MaxSector) {
2062 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
2063 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2064 sb->new_layout = cpu_to_le32(mddev->new_layout);
2065 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2066 sb->new_level = cpu_to_le32(mddev->new_level);
2067 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
2068 if (mddev->delta_disks == 0 &&
2069 mddev->reshape_backwards)
2070 sb->feature_map
2071 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
2072 if (rdev->new_data_offset != rdev->data_offset) {
2073 sb->feature_map
2074 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
2075 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
2076 - rdev->data_offset));
2077 }
2078 }
2079
2080 if (mddev_is_clustered(mddev))
2081 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
2082
2083 if (rdev->badblocks.count == 0)
2084 /* Nothing to do for bad blocks*/ ;
2085 else if (sb->bblog_offset == 0)
2086 /* Cannot record bad blocks on this device */
2087 md_error(mddev, rdev);
2088 else {
2089 struct badblocks *bb = &rdev->badblocks;
2090 __le64 *bbp = (__le64 *)page_address(rdev->bb_page);
2091 u64 *p = bb->page;
2092 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
2093 if (bb->changed) {
2094 unsigned seq;
2095
2096 retry:
2097 seq = read_seqbegin(&bb->lock);
2098
2099 memset(bbp, 0xff, PAGE_SIZE);
2100
2101 for (i = 0 ; i < bb->count ; i++) {
2102 u64 internal_bb = p[i];
2103 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
2104 | BB_LEN(internal_bb));
2105 bbp[i] = cpu_to_le64(store_bb);
2106 }
2107 bb->changed = 0;
2108 if (read_seqretry(&bb->lock, seq))
2109 goto retry;
2110
2111 bb->sector = (rdev->sb_start +
2112 (int)le32_to_cpu(sb->bblog_offset));
2113 bb->size = le16_to_cpu(sb->bblog_size);
2114 }
2115 }
2116
2117 max_dev = 0;
2118 rdev_for_each(rdev2, mddev)
2119 if (rdev2->desc_nr+1 > max_dev)
2120 max_dev = rdev2->desc_nr+1;
2121
2122 if (max_dev > le32_to_cpu(sb->max_dev)) {
2123 int bmask;
2124 sb->max_dev = cpu_to_le32(max_dev);
2125 rdev->sb_size = max_dev * 2 + 256;
2126 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
2127 if (rdev->sb_size & bmask)
2128 rdev->sb_size = (rdev->sb_size | bmask) + 1;
2129 } else
2130 max_dev = le32_to_cpu(sb->max_dev);
2131
2132 for (i=0; i<max_dev;i++)
2133 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2134
2135 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
2136 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
2137
2138 if (test_bit(MD_HAS_PPL, &mddev->flags)) {
2139 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
2140 sb->feature_map |=
2141 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
2142 else
2143 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
2144 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
2145 sb->ppl.size = cpu_to_le16(rdev->ppl.size);
2146 }
2147
2148 rdev_for_each(rdev2, mddev) {
2149 i = rdev2->desc_nr;
2150 if (test_bit(Faulty, &rdev2->flags))
2151 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
2152 else if (test_bit(In_sync, &rdev2->flags))
2153 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2154 else if (test_bit(Journal, &rdev2->flags))
2155 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
2156 else if (rdev2->raid_disk >= 0)
2157 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2158 else
2159 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2160 }
2161
2162 sb->sb_csum = calc_sb_1_csum(sb);
2163 }
2164
super_1_choose_bm_space(sector_t dev_size)2165 static sector_t super_1_choose_bm_space(sector_t dev_size)
2166 {
2167 sector_t bm_space;
2168
2169 /* if the device is bigger than 8Gig, save 64k for bitmap
2170 * usage, if bigger than 200Gig, save 128k
2171 */
2172 if (dev_size < 64*2)
2173 bm_space = 0;
2174 else if (dev_size - 64*2 >= 200*1024*1024*2)
2175 bm_space = 128*2;
2176 else if (dev_size - 4*2 > 8*1024*1024*2)
2177 bm_space = 64*2;
2178 else
2179 bm_space = 4*2;
2180 return bm_space;
2181 }
2182
2183 static unsigned long long
super_1_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)2184 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
2185 {
2186 struct mdp_superblock_1 *sb;
2187 sector_t max_sectors;
2188 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
2189 return 0; /* component must fit device */
2190 if (rdev->data_offset != rdev->new_data_offset)
2191 return 0; /* too confusing */
2192 if (rdev->sb_start < rdev->data_offset) {
2193 /* minor versions 1 and 2; superblock before data */
2194 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
2195 max_sectors -= rdev->data_offset;
2196 if (!num_sectors || num_sectors > max_sectors)
2197 num_sectors = max_sectors;
2198 } else if (rdev->mddev->bitmap_info.offset) {
2199 /* minor version 0 with bitmap we can't move */
2200 return 0;
2201 } else {
2202 /* minor version 0; superblock after data */
2203 sector_t sb_start, bm_space;
2204 sector_t dev_size = i_size_read(rdev->bdev->bd_inode) >> 9;
2205
2206 /* 8K is for superblock */
2207 sb_start = dev_size - 8*2;
2208 sb_start &= ~(sector_t)(4*2 - 1);
2209
2210 bm_space = super_1_choose_bm_space(dev_size);
2211
2212 /* Space that can be used to store date needs to decrease
2213 * superblock bitmap space and bad block space(4K)
2214 */
2215 max_sectors = sb_start - bm_space - 4*2;
2216
2217 if (!num_sectors || num_sectors > max_sectors)
2218 num_sectors = max_sectors;
2219 rdev->sb_start = sb_start;
2220 }
2221 sb = page_address(rdev->sb_page);
2222 sb->data_size = cpu_to_le64(num_sectors);
2223 sb->super_offset = cpu_to_le64(rdev->sb_start);
2224 sb->sb_csum = calc_sb_1_csum(sb);
2225 do {
2226 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
2227 rdev->sb_page);
2228 } while (md_super_wait(rdev->mddev) < 0);
2229 return num_sectors;
2230
2231 }
2232
2233 static int
super_1_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)2234 super_1_allow_new_offset(struct md_rdev *rdev,
2235 unsigned long long new_offset)
2236 {
2237 /* All necessary checks on new >= old have been done */
2238 struct bitmap *bitmap;
2239 if (new_offset >= rdev->data_offset)
2240 return 1;
2241
2242 /* with 1.0 metadata, there is no metadata to tread on
2243 * so we can always move back */
2244 if (rdev->mddev->minor_version == 0)
2245 return 1;
2246
2247 /* otherwise we must be sure not to step on
2248 * any metadata, so stay:
2249 * 36K beyond start of superblock
2250 * beyond end of badblocks
2251 * beyond write-intent bitmap
2252 */
2253 if (rdev->sb_start + (32+4)*2 > new_offset)
2254 return 0;
2255 bitmap = rdev->mddev->bitmap;
2256 if (bitmap && !rdev->mddev->bitmap_info.file &&
2257 rdev->sb_start + rdev->mddev->bitmap_info.offset +
2258 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2259 return 0;
2260 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2261 return 0;
2262
2263 return 1;
2264 }
2265
2266 static struct super_type super_types[] = {
2267 [0] = {
2268 .name = "0.90.0",
2269 .owner = THIS_MODULE,
2270 .load_super = super_90_load,
2271 .validate_super = super_90_validate,
2272 .sync_super = super_90_sync,
2273 .rdev_size_change = super_90_rdev_size_change,
2274 .allow_new_offset = super_90_allow_new_offset,
2275 },
2276 [1] = {
2277 .name = "md-1",
2278 .owner = THIS_MODULE,
2279 .load_super = super_1_load,
2280 .validate_super = super_1_validate,
2281 .sync_super = super_1_sync,
2282 .rdev_size_change = super_1_rdev_size_change,
2283 .allow_new_offset = super_1_allow_new_offset,
2284 },
2285 };
2286
sync_super(struct mddev * mddev,struct md_rdev * rdev)2287 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2288 {
2289 if (mddev->sync_super) {
2290 mddev->sync_super(mddev, rdev);
2291 return;
2292 }
2293
2294 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2295
2296 super_types[mddev->major_version].sync_super(mddev, rdev);
2297 }
2298
match_mddev_units(struct mddev * mddev1,struct mddev * mddev2)2299 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2300 {
2301 struct md_rdev *rdev, *rdev2;
2302
2303 rcu_read_lock();
2304 rdev_for_each_rcu(rdev, mddev1) {
2305 if (test_bit(Faulty, &rdev->flags) ||
2306 test_bit(Journal, &rdev->flags) ||
2307 rdev->raid_disk == -1)
2308 continue;
2309 rdev_for_each_rcu(rdev2, mddev2) {
2310 if (test_bit(Faulty, &rdev2->flags) ||
2311 test_bit(Journal, &rdev2->flags) ||
2312 rdev2->raid_disk == -1)
2313 continue;
2314 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) {
2315 rcu_read_unlock();
2316 return 1;
2317 }
2318 }
2319 }
2320 rcu_read_unlock();
2321 return 0;
2322 }
2323
2324 static LIST_HEAD(pending_raid_disks);
2325
2326 /*
2327 * Try to register data integrity profile for an mddev
2328 *
2329 * This is called when an array is started and after a disk has been kicked
2330 * from the array. It only succeeds if all working and active component devices
2331 * are integrity capable with matching profiles.
2332 */
md_integrity_register(struct mddev * mddev)2333 int md_integrity_register(struct mddev *mddev)
2334 {
2335 struct md_rdev *rdev, *reference = NULL;
2336
2337 if (list_empty(&mddev->disks))
2338 return 0; /* nothing to do */
2339 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2340 return 0; /* shouldn't register, or already is */
2341 rdev_for_each(rdev, mddev) {
2342 /* skip spares and non-functional disks */
2343 if (test_bit(Faulty, &rdev->flags))
2344 continue;
2345 if (rdev->raid_disk < 0)
2346 continue;
2347 if (!reference) {
2348 /* Use the first rdev as the reference */
2349 reference = rdev;
2350 continue;
2351 }
2352 /* does this rdev's profile match the reference profile? */
2353 if (blk_integrity_compare(reference->bdev->bd_disk,
2354 rdev->bdev->bd_disk) < 0)
2355 return -EINVAL;
2356 }
2357 if (!reference || !bdev_get_integrity(reference->bdev))
2358 return 0;
2359 /*
2360 * All component devices are integrity capable and have matching
2361 * profiles, register the common profile for the md device.
2362 */
2363 blk_integrity_register(mddev->gendisk,
2364 bdev_get_integrity(reference->bdev));
2365
2366 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2367 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) {
2368 pr_err("md: failed to create integrity pool for %s\n",
2369 mdname(mddev));
2370 return -EINVAL;
2371 }
2372 return 0;
2373 }
2374 EXPORT_SYMBOL(md_integrity_register);
2375
2376 /*
2377 * Attempt to add an rdev, but only if it is consistent with the current
2378 * integrity profile
2379 */
md_integrity_add_rdev(struct md_rdev * rdev,struct mddev * mddev)2380 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2381 {
2382 struct blk_integrity *bi_mddev;
2383 char name[BDEVNAME_SIZE];
2384
2385 if (!mddev->gendisk)
2386 return 0;
2387
2388 bi_mddev = blk_get_integrity(mddev->gendisk);
2389
2390 if (!bi_mddev) /* nothing to do */
2391 return 0;
2392
2393 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2394 pr_err("%s: incompatible integrity profile for %s\n",
2395 mdname(mddev), bdevname(rdev->bdev, name));
2396 return -ENXIO;
2397 }
2398
2399 return 0;
2400 }
2401 EXPORT_SYMBOL(md_integrity_add_rdev);
2402
bind_rdev_to_array(struct md_rdev * rdev,struct mddev * mddev)2403 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2404 {
2405 char b[BDEVNAME_SIZE];
2406 struct kobject *ko;
2407 int err;
2408
2409 /* prevent duplicates */
2410 if (find_rdev(mddev, rdev->bdev->bd_dev))
2411 return -EEXIST;
2412
2413 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) &&
2414 mddev->pers)
2415 return -EROFS;
2416
2417 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2418 if (!test_bit(Journal, &rdev->flags) &&
2419 rdev->sectors &&
2420 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2421 if (mddev->pers) {
2422 /* Cannot change size, so fail
2423 * If mddev->level <= 0, then we don't care
2424 * about aligning sizes (e.g. linear)
2425 */
2426 if (mddev->level > 0)
2427 return -ENOSPC;
2428 } else
2429 mddev->dev_sectors = rdev->sectors;
2430 }
2431
2432 /* Verify rdev->desc_nr is unique.
2433 * If it is -1, assign a free number, else
2434 * check number is not in use
2435 */
2436 rcu_read_lock();
2437 if (rdev->desc_nr < 0) {
2438 int choice = 0;
2439 if (mddev->pers)
2440 choice = mddev->raid_disks;
2441 while (md_find_rdev_nr_rcu(mddev, choice))
2442 choice++;
2443 rdev->desc_nr = choice;
2444 } else {
2445 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2446 rcu_read_unlock();
2447 return -EBUSY;
2448 }
2449 }
2450 rcu_read_unlock();
2451 if (!test_bit(Journal, &rdev->flags) &&
2452 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2453 pr_warn("md: %s: array is limited to %d devices\n",
2454 mdname(mddev), mddev->max_disks);
2455 return -EBUSY;
2456 }
2457 bdevname(rdev->bdev,b);
2458 strreplace(b, '/', '!');
2459
2460 rdev->mddev = mddev;
2461 pr_debug("md: bind<%s>\n", b);
2462
2463 if (mddev->raid_disks)
2464 mddev_create_serial_pool(mddev, rdev, false);
2465
2466 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2467 goto fail;
2468
2469 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2470 /* failure here is OK */
2471 err = sysfs_create_link(&rdev->kobj, ko, "block");
2472 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2473 rdev->sysfs_unack_badblocks =
2474 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks");
2475 rdev->sysfs_badblocks =
2476 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks");
2477
2478 list_add_rcu(&rdev->same_set, &mddev->disks);
2479 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2480
2481 /* May as well allow recovery to be retried once */
2482 mddev->recovery_disabled++;
2483
2484 return 0;
2485
2486 fail:
2487 pr_warn("md: failed to register dev-%s for %s\n",
2488 b, mdname(mddev));
2489 mddev_destroy_serial_pool(mddev, rdev, false);
2490 return err;
2491 }
2492
rdev_delayed_delete(struct work_struct * ws)2493 static void rdev_delayed_delete(struct work_struct *ws)
2494 {
2495 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2496 kobject_del(&rdev->kobj);
2497 kobject_put(&rdev->kobj);
2498 }
2499
unbind_rdev_from_array(struct md_rdev * rdev)2500 static void unbind_rdev_from_array(struct md_rdev *rdev)
2501 {
2502 char b[BDEVNAME_SIZE];
2503
2504 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2505 list_del_rcu(&rdev->same_set);
2506 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
2507 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2508 rdev->mddev = NULL;
2509 sysfs_remove_link(&rdev->kobj, "block");
2510 sysfs_put(rdev->sysfs_state);
2511 sysfs_put(rdev->sysfs_unack_badblocks);
2512 sysfs_put(rdev->sysfs_badblocks);
2513 rdev->sysfs_state = NULL;
2514 rdev->sysfs_unack_badblocks = NULL;
2515 rdev->sysfs_badblocks = NULL;
2516 rdev->badblocks.count = 0;
2517 /* We need to delay this, otherwise we can deadlock when
2518 * writing to 'remove' to "dev/state". We also need
2519 * to delay it due to rcu usage.
2520 */
2521 synchronize_rcu();
2522 INIT_WORK(&rdev->del_work, rdev_delayed_delete);
2523 kobject_get(&rdev->kobj);
2524 queue_work(md_rdev_misc_wq, &rdev->del_work);
2525 }
2526
2527 /*
2528 * prevent the device from being mounted, repartitioned or
2529 * otherwise reused by a RAID array (or any other kernel
2530 * subsystem), by bd_claiming the device.
2531 */
lock_rdev(struct md_rdev * rdev,dev_t dev,int shared)2532 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2533 {
2534 int err = 0;
2535 struct block_device *bdev;
2536
2537 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2538 shared ? (struct md_rdev *)lock_rdev : rdev);
2539 if (IS_ERR(bdev)) {
2540 pr_warn("md: could not open device unknown-block(%u,%u).\n",
2541 MAJOR(dev), MINOR(dev));
2542 return PTR_ERR(bdev);
2543 }
2544 rdev->bdev = bdev;
2545 return err;
2546 }
2547
unlock_rdev(struct md_rdev * rdev)2548 static void unlock_rdev(struct md_rdev *rdev)
2549 {
2550 struct block_device *bdev = rdev->bdev;
2551 rdev->bdev = NULL;
2552 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2553 }
2554
2555 void md_autodetect_dev(dev_t dev);
2556
export_rdev(struct md_rdev * rdev)2557 static void export_rdev(struct md_rdev *rdev)
2558 {
2559 char b[BDEVNAME_SIZE];
2560
2561 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
2562 md_rdev_clear(rdev);
2563 #ifndef MODULE
2564 if (test_bit(AutoDetected, &rdev->flags))
2565 md_autodetect_dev(rdev->bdev->bd_dev);
2566 #endif
2567 unlock_rdev(rdev);
2568 kobject_put(&rdev->kobj);
2569 }
2570
md_kick_rdev_from_array(struct md_rdev * rdev)2571 void md_kick_rdev_from_array(struct md_rdev *rdev)
2572 {
2573 unbind_rdev_from_array(rdev);
2574 export_rdev(rdev);
2575 }
2576 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2577
export_array(struct mddev * mddev)2578 static void export_array(struct mddev *mddev)
2579 {
2580 struct md_rdev *rdev;
2581
2582 while (!list_empty(&mddev->disks)) {
2583 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2584 same_set);
2585 md_kick_rdev_from_array(rdev);
2586 }
2587 mddev->raid_disks = 0;
2588 mddev->major_version = 0;
2589 }
2590
set_in_sync(struct mddev * mddev)2591 static bool set_in_sync(struct mddev *mddev)
2592 {
2593 lockdep_assert_held(&mddev->lock);
2594 if (!mddev->in_sync) {
2595 mddev->sync_checkers++;
2596 spin_unlock(&mddev->lock);
2597 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2598 spin_lock(&mddev->lock);
2599 if (!mddev->in_sync &&
2600 percpu_ref_is_zero(&mddev->writes_pending)) {
2601 mddev->in_sync = 1;
2602 /*
2603 * Ensure ->in_sync is visible before we clear
2604 * ->sync_checkers.
2605 */
2606 smp_mb();
2607 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2608 sysfs_notify_dirent_safe(mddev->sysfs_state);
2609 }
2610 if (--mddev->sync_checkers == 0)
2611 percpu_ref_switch_to_percpu(&mddev->writes_pending);
2612 }
2613 if (mddev->safemode == 1)
2614 mddev->safemode = 0;
2615 return mddev->in_sync;
2616 }
2617
sync_sbs(struct mddev * mddev,int nospares)2618 static void sync_sbs(struct mddev *mddev, int nospares)
2619 {
2620 /* Update each superblock (in-memory image), but
2621 * if we are allowed to, skip spares which already
2622 * have the right event counter, or have one earlier
2623 * (which would mean they aren't being marked as dirty
2624 * with the rest of the array)
2625 */
2626 struct md_rdev *rdev;
2627 rdev_for_each(rdev, mddev) {
2628 if (rdev->sb_events == mddev->events ||
2629 (nospares &&
2630 rdev->raid_disk < 0 &&
2631 rdev->sb_events+1 == mddev->events)) {
2632 /* Don't update this superblock */
2633 rdev->sb_loaded = 2;
2634 } else {
2635 sync_super(mddev, rdev);
2636 rdev->sb_loaded = 1;
2637 }
2638 }
2639 }
2640
does_sb_need_changing(struct mddev * mddev)2641 static bool does_sb_need_changing(struct mddev *mddev)
2642 {
2643 struct md_rdev *rdev = NULL, *iter;
2644 struct mdp_superblock_1 *sb;
2645 int role;
2646
2647 /* Find a good rdev */
2648 rdev_for_each(iter, mddev)
2649 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) {
2650 rdev = iter;
2651 break;
2652 }
2653
2654 /* No good device found. */
2655 if (!rdev)
2656 return false;
2657
2658 sb = page_address(rdev->sb_page);
2659 /* Check if a device has become faulty or a spare become active */
2660 rdev_for_each(rdev, mddev) {
2661 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2662 /* Device activated? */
2663 if (role == 0xffff && rdev->raid_disk >=0 &&
2664 !test_bit(Faulty, &rdev->flags))
2665 return true;
2666 /* Device turned faulty? */
2667 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2668 return true;
2669 }
2670
2671 /* Check if any mddev parameters have changed */
2672 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2673 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2674 (mddev->layout != le32_to_cpu(sb->layout)) ||
2675 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2676 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2677 return true;
2678
2679 return false;
2680 }
2681
md_update_sb(struct mddev * mddev,int force_change)2682 void md_update_sb(struct mddev *mddev, int force_change)
2683 {
2684 struct md_rdev *rdev;
2685 int sync_req;
2686 int nospares = 0;
2687 int any_badblocks_changed = 0;
2688 int ret = -1;
2689
2690 if (mddev->ro) {
2691 if (force_change)
2692 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2693 return;
2694 }
2695
2696 repeat:
2697 if (mddev_is_clustered(mddev)) {
2698 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2699 force_change = 1;
2700 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2701 nospares = 1;
2702 ret = md_cluster_ops->metadata_update_start(mddev);
2703 /* Has someone else has updated the sb */
2704 if (!does_sb_need_changing(mddev)) {
2705 if (ret == 0)
2706 md_cluster_ops->metadata_update_cancel(mddev);
2707 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2708 BIT(MD_SB_CHANGE_DEVS) |
2709 BIT(MD_SB_CHANGE_CLEAN));
2710 return;
2711 }
2712 }
2713
2714 /*
2715 * First make sure individual recovery_offsets are correct
2716 * curr_resync_completed can only be used during recovery.
2717 * During reshape/resync it might use array-addresses rather
2718 * that device addresses.
2719 */
2720 rdev_for_each(rdev, mddev) {
2721 if (rdev->raid_disk >= 0 &&
2722 mddev->delta_disks >= 0 &&
2723 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2724 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2725 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2726 !test_bit(Journal, &rdev->flags) &&
2727 !test_bit(In_sync, &rdev->flags) &&
2728 mddev->curr_resync_completed > rdev->recovery_offset)
2729 rdev->recovery_offset = mddev->curr_resync_completed;
2730
2731 }
2732 if (!mddev->persistent) {
2733 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2734 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2735 if (!mddev->external) {
2736 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2737 rdev_for_each(rdev, mddev) {
2738 if (rdev->badblocks.changed) {
2739 rdev->badblocks.changed = 0;
2740 ack_all_badblocks(&rdev->badblocks);
2741 md_error(mddev, rdev);
2742 }
2743 clear_bit(Blocked, &rdev->flags);
2744 clear_bit(BlockedBadBlocks, &rdev->flags);
2745 wake_up(&rdev->blocked_wait);
2746 }
2747 }
2748 wake_up(&mddev->sb_wait);
2749 return;
2750 }
2751
2752 spin_lock(&mddev->lock);
2753
2754 mddev->utime = ktime_get_real_seconds();
2755
2756 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2757 force_change = 1;
2758 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2759 /* just a clean<-> dirty transition, possibly leave spares alone,
2760 * though if events isn't the right even/odd, we will have to do
2761 * spares after all
2762 */
2763 nospares = 1;
2764 if (force_change)
2765 nospares = 0;
2766 if (mddev->degraded)
2767 /* If the array is degraded, then skipping spares is both
2768 * dangerous and fairly pointless.
2769 * Dangerous because a device that was removed from the array
2770 * might have a event_count that still looks up-to-date,
2771 * so it can be re-added without a resync.
2772 * Pointless because if there are any spares to skip,
2773 * then a recovery will happen and soon that array won't
2774 * be degraded any more and the spare can go back to sleep then.
2775 */
2776 nospares = 0;
2777
2778 sync_req = mddev->in_sync;
2779
2780 /* If this is just a dirty<->clean transition, and the array is clean
2781 * and 'events' is odd, we can roll back to the previous clean state */
2782 if (nospares
2783 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2784 && mddev->can_decrease_events
2785 && mddev->events != 1) {
2786 mddev->events--;
2787 mddev->can_decrease_events = 0;
2788 } else {
2789 /* otherwise we have to go forward and ... */
2790 mddev->events ++;
2791 mddev->can_decrease_events = nospares;
2792 }
2793
2794 /*
2795 * This 64-bit counter should never wrap.
2796 * Either we are in around ~1 trillion A.C., assuming
2797 * 1 reboot per second, or we have a bug...
2798 */
2799 WARN_ON(mddev->events == 0);
2800
2801 rdev_for_each(rdev, mddev) {
2802 if (rdev->badblocks.changed)
2803 any_badblocks_changed++;
2804 if (test_bit(Faulty, &rdev->flags))
2805 set_bit(FaultRecorded, &rdev->flags);
2806 }
2807
2808 sync_sbs(mddev, nospares);
2809 spin_unlock(&mddev->lock);
2810
2811 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2812 mdname(mddev), mddev->in_sync);
2813
2814 if (mddev->queue)
2815 blk_add_trace_msg(mddev->queue, "md md_update_sb");
2816 rewrite:
2817 md_bitmap_update_sb(mddev->bitmap);
2818 rdev_for_each(rdev, mddev) {
2819 char b[BDEVNAME_SIZE];
2820
2821 if (rdev->sb_loaded != 1)
2822 continue; /* no noise on spare devices */
2823
2824 if (!test_bit(Faulty, &rdev->flags)) {
2825 md_super_write(mddev,rdev,
2826 rdev->sb_start, rdev->sb_size,
2827 rdev->sb_page);
2828 pr_debug("md: (write) %s's sb offset: %llu\n",
2829 bdevname(rdev->bdev, b),
2830 (unsigned long long)rdev->sb_start);
2831 rdev->sb_events = mddev->events;
2832 if (rdev->badblocks.size) {
2833 md_super_write(mddev, rdev,
2834 rdev->badblocks.sector,
2835 rdev->badblocks.size << 9,
2836 rdev->bb_page);
2837 rdev->badblocks.size = 0;
2838 }
2839
2840 } else
2841 pr_debug("md: %s (skipping faulty)\n",
2842 bdevname(rdev->bdev, b));
2843
2844 if (mddev->level == LEVEL_MULTIPATH)
2845 /* only need to write one superblock... */
2846 break;
2847 }
2848 if (md_super_wait(mddev) < 0)
2849 goto rewrite;
2850 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2851
2852 if (mddev_is_clustered(mddev) && ret == 0)
2853 md_cluster_ops->metadata_update_finish(mddev);
2854
2855 if (mddev->in_sync != sync_req ||
2856 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2857 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2858 /* have to write it out again */
2859 goto repeat;
2860 wake_up(&mddev->sb_wait);
2861 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2862 sysfs_notify_dirent_safe(mddev->sysfs_completed);
2863
2864 rdev_for_each(rdev, mddev) {
2865 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2866 clear_bit(Blocked, &rdev->flags);
2867
2868 if (any_badblocks_changed)
2869 ack_all_badblocks(&rdev->badblocks);
2870 clear_bit(BlockedBadBlocks, &rdev->flags);
2871 wake_up(&rdev->blocked_wait);
2872 }
2873 }
2874 EXPORT_SYMBOL(md_update_sb);
2875
add_bound_rdev(struct md_rdev * rdev)2876 static int add_bound_rdev(struct md_rdev *rdev)
2877 {
2878 struct mddev *mddev = rdev->mddev;
2879 int err = 0;
2880 bool add_journal = test_bit(Journal, &rdev->flags);
2881
2882 if (!mddev->pers->hot_remove_disk || add_journal) {
2883 /* If there is hot_add_disk but no hot_remove_disk
2884 * then added disks for geometry changes,
2885 * and should be added immediately.
2886 */
2887 super_types[mddev->major_version].
2888 validate_super(mddev, rdev);
2889 if (add_journal)
2890 mddev_suspend(mddev);
2891 err = mddev->pers->hot_add_disk(mddev, rdev);
2892 if (add_journal)
2893 mddev_resume(mddev);
2894 if (err) {
2895 md_kick_rdev_from_array(rdev);
2896 return err;
2897 }
2898 }
2899 sysfs_notify_dirent_safe(rdev->sysfs_state);
2900
2901 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2902 if (mddev->degraded)
2903 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2904 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2905 md_new_event(mddev);
2906 md_wakeup_thread(mddev->thread);
2907 return 0;
2908 }
2909
2910 /* words written to sysfs files may, or may not, be \n terminated.
2911 * We want to accept with case. For this we use cmd_match.
2912 */
cmd_match(const char * cmd,const char * str)2913 static int cmd_match(const char *cmd, const char *str)
2914 {
2915 /* See if cmd, written into a sysfs file, matches
2916 * str. They must either be the same, or cmd can
2917 * have a trailing newline
2918 */
2919 while (*cmd && *str && *cmd == *str) {
2920 cmd++;
2921 str++;
2922 }
2923 if (*cmd == '\n')
2924 cmd++;
2925 if (*str || *cmd)
2926 return 0;
2927 return 1;
2928 }
2929
2930 struct rdev_sysfs_entry {
2931 struct attribute attr;
2932 ssize_t (*show)(struct md_rdev *, char *);
2933 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2934 };
2935
2936 static ssize_t
state_show(struct md_rdev * rdev,char * page)2937 state_show(struct md_rdev *rdev, char *page)
2938 {
2939 char *sep = ",";
2940 size_t len = 0;
2941 unsigned long flags = READ_ONCE(rdev->flags);
2942
2943 if (test_bit(Faulty, &flags) ||
2944 (!test_bit(ExternalBbl, &flags) &&
2945 rdev->badblocks.unacked_exist))
2946 len += sprintf(page+len, "faulty%s", sep);
2947 if (test_bit(In_sync, &flags))
2948 len += sprintf(page+len, "in_sync%s", sep);
2949 if (test_bit(Journal, &flags))
2950 len += sprintf(page+len, "journal%s", sep);
2951 if (test_bit(WriteMostly, &flags))
2952 len += sprintf(page+len, "write_mostly%s", sep);
2953 if (test_bit(Blocked, &flags) ||
2954 (rdev->badblocks.unacked_exist
2955 && !test_bit(Faulty, &flags)))
2956 len += sprintf(page+len, "blocked%s", sep);
2957 if (!test_bit(Faulty, &flags) &&
2958 !test_bit(Journal, &flags) &&
2959 !test_bit(In_sync, &flags))
2960 len += sprintf(page+len, "spare%s", sep);
2961 if (test_bit(WriteErrorSeen, &flags))
2962 len += sprintf(page+len, "write_error%s", sep);
2963 if (test_bit(WantReplacement, &flags))
2964 len += sprintf(page+len, "want_replacement%s", sep);
2965 if (test_bit(Replacement, &flags))
2966 len += sprintf(page+len, "replacement%s", sep);
2967 if (test_bit(ExternalBbl, &flags))
2968 len += sprintf(page+len, "external_bbl%s", sep);
2969 if (test_bit(FailFast, &flags))
2970 len += sprintf(page+len, "failfast%s", sep);
2971
2972 if (len)
2973 len -= strlen(sep);
2974
2975 return len+sprintf(page+len, "\n");
2976 }
2977
2978 static ssize_t
state_store(struct md_rdev * rdev,const char * buf,size_t len)2979 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2980 {
2981 /* can write
2982 * faulty - simulates an error
2983 * remove - disconnects the device
2984 * writemostly - sets write_mostly
2985 * -writemostly - clears write_mostly
2986 * blocked - sets the Blocked flags
2987 * -blocked - clears the Blocked and possibly simulates an error
2988 * insync - sets Insync providing device isn't active
2989 * -insync - clear Insync for a device with a slot assigned,
2990 * so that it gets rebuilt based on bitmap
2991 * write_error - sets WriteErrorSeen
2992 * -write_error - clears WriteErrorSeen
2993 * {,-}failfast - set/clear FailFast
2994 */
2995
2996 struct mddev *mddev = rdev->mddev;
2997 int err = -EINVAL;
2998 bool need_update_sb = false;
2999
3000 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
3001 md_error(rdev->mddev, rdev);
3002 if (test_bit(Faulty, &rdev->flags))
3003 err = 0;
3004 else
3005 err = -EBUSY;
3006 } else if (cmd_match(buf, "remove")) {
3007 if (rdev->mddev->pers) {
3008 clear_bit(Blocked, &rdev->flags);
3009 remove_and_add_spares(rdev->mddev, rdev);
3010 }
3011 if (rdev->raid_disk >= 0)
3012 err = -EBUSY;
3013 else {
3014 err = 0;
3015 if (mddev_is_clustered(mddev))
3016 err = md_cluster_ops->remove_disk(mddev, rdev);
3017
3018 if (err == 0) {
3019 md_kick_rdev_from_array(rdev);
3020 if (mddev->pers) {
3021 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3022 md_wakeup_thread(mddev->thread);
3023 }
3024 md_new_event(mddev);
3025 }
3026 }
3027 } else if (cmd_match(buf, "writemostly")) {
3028 set_bit(WriteMostly, &rdev->flags);
3029 mddev_create_serial_pool(rdev->mddev, rdev, false);
3030 need_update_sb = true;
3031 err = 0;
3032 } else if (cmd_match(buf, "-writemostly")) {
3033 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
3034 clear_bit(WriteMostly, &rdev->flags);
3035 need_update_sb = true;
3036 err = 0;
3037 } else if (cmd_match(buf, "blocked")) {
3038 set_bit(Blocked, &rdev->flags);
3039 err = 0;
3040 } else if (cmd_match(buf, "-blocked")) {
3041 if (!test_bit(Faulty, &rdev->flags) &&
3042 !test_bit(ExternalBbl, &rdev->flags) &&
3043 rdev->badblocks.unacked_exist) {
3044 /* metadata handler doesn't understand badblocks,
3045 * so we need to fail the device
3046 */
3047 md_error(rdev->mddev, rdev);
3048 }
3049 clear_bit(Blocked, &rdev->flags);
3050 clear_bit(BlockedBadBlocks, &rdev->flags);
3051 wake_up(&rdev->blocked_wait);
3052 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3053 md_wakeup_thread(rdev->mddev->thread);
3054
3055 err = 0;
3056 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
3057 set_bit(In_sync, &rdev->flags);
3058 err = 0;
3059 } else if (cmd_match(buf, "failfast")) {
3060 set_bit(FailFast, &rdev->flags);
3061 need_update_sb = true;
3062 err = 0;
3063 } else if (cmd_match(buf, "-failfast")) {
3064 clear_bit(FailFast, &rdev->flags);
3065 need_update_sb = true;
3066 err = 0;
3067 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
3068 !test_bit(Journal, &rdev->flags)) {
3069 if (rdev->mddev->pers == NULL) {
3070 clear_bit(In_sync, &rdev->flags);
3071 rdev->saved_raid_disk = rdev->raid_disk;
3072 rdev->raid_disk = -1;
3073 err = 0;
3074 }
3075 } else if (cmd_match(buf, "write_error")) {
3076 set_bit(WriteErrorSeen, &rdev->flags);
3077 err = 0;
3078 } else if (cmd_match(buf, "-write_error")) {
3079 clear_bit(WriteErrorSeen, &rdev->flags);
3080 err = 0;
3081 } else if (cmd_match(buf, "want_replacement")) {
3082 /* Any non-spare device that is not a replacement can
3083 * become want_replacement at any time, but we then need to
3084 * check if recovery is needed.
3085 */
3086 if (rdev->raid_disk >= 0 &&
3087 !test_bit(Journal, &rdev->flags) &&
3088 !test_bit(Replacement, &rdev->flags))
3089 set_bit(WantReplacement, &rdev->flags);
3090 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3091 md_wakeup_thread(rdev->mddev->thread);
3092 err = 0;
3093 } else if (cmd_match(buf, "-want_replacement")) {
3094 /* Clearing 'want_replacement' is always allowed.
3095 * Once replacements starts it is too late though.
3096 */
3097 err = 0;
3098 clear_bit(WantReplacement, &rdev->flags);
3099 } else if (cmd_match(buf, "replacement")) {
3100 /* Can only set a device as a replacement when array has not
3101 * yet been started. Once running, replacement is automatic
3102 * from spares, or by assigning 'slot'.
3103 */
3104 if (rdev->mddev->pers)
3105 err = -EBUSY;
3106 else {
3107 set_bit(Replacement, &rdev->flags);
3108 err = 0;
3109 }
3110 } else if (cmd_match(buf, "-replacement")) {
3111 /* Similarly, can only clear Replacement before start */
3112 if (rdev->mddev->pers)
3113 err = -EBUSY;
3114 else {
3115 clear_bit(Replacement, &rdev->flags);
3116 err = 0;
3117 }
3118 } else if (cmd_match(buf, "re-add")) {
3119 if (!rdev->mddev->pers)
3120 err = -EINVAL;
3121 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
3122 rdev->saved_raid_disk >= 0) {
3123 /* clear_bit is performed _after_ all the devices
3124 * have their local Faulty bit cleared. If any writes
3125 * happen in the meantime in the local node, they
3126 * will land in the local bitmap, which will be synced
3127 * by this node eventually
3128 */
3129 if (!mddev_is_clustered(rdev->mddev) ||
3130 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
3131 clear_bit(Faulty, &rdev->flags);
3132 err = add_bound_rdev(rdev);
3133 }
3134 } else
3135 err = -EBUSY;
3136 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
3137 set_bit(ExternalBbl, &rdev->flags);
3138 rdev->badblocks.shift = 0;
3139 err = 0;
3140 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
3141 clear_bit(ExternalBbl, &rdev->flags);
3142 err = 0;
3143 }
3144 if (need_update_sb)
3145 md_update_sb(mddev, 1);
3146 if (!err)
3147 sysfs_notify_dirent_safe(rdev->sysfs_state);
3148 return err ? err : len;
3149 }
3150 static struct rdev_sysfs_entry rdev_state =
3151 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
3152
3153 static ssize_t
errors_show(struct md_rdev * rdev,char * page)3154 errors_show(struct md_rdev *rdev, char *page)
3155 {
3156 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
3157 }
3158
3159 static ssize_t
errors_store(struct md_rdev * rdev,const char * buf,size_t len)3160 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
3161 {
3162 unsigned int n;
3163 int rv;
3164
3165 rv = kstrtouint(buf, 10, &n);
3166 if (rv < 0)
3167 return rv;
3168 atomic_set(&rdev->corrected_errors, n);
3169 return len;
3170 }
3171 static struct rdev_sysfs_entry rdev_errors =
3172 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
3173
3174 static ssize_t
slot_show(struct md_rdev * rdev,char * page)3175 slot_show(struct md_rdev *rdev, char *page)
3176 {
3177 if (test_bit(Journal, &rdev->flags))
3178 return sprintf(page, "journal\n");
3179 else if (rdev->raid_disk < 0)
3180 return sprintf(page, "none\n");
3181 else
3182 return sprintf(page, "%d\n", rdev->raid_disk);
3183 }
3184
3185 static ssize_t
slot_store(struct md_rdev * rdev,const char * buf,size_t len)3186 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
3187 {
3188 int slot;
3189 int err;
3190
3191 if (test_bit(Journal, &rdev->flags))
3192 return -EBUSY;
3193 if (strncmp(buf, "none", 4)==0)
3194 slot = -1;
3195 else {
3196 err = kstrtouint(buf, 10, (unsigned int *)&slot);
3197 if (err < 0)
3198 return err;
3199 if (slot < 0)
3200 /* overflow */
3201 return -ENOSPC;
3202 }
3203 if (rdev->mddev->pers && slot == -1) {
3204 /* Setting 'slot' on an active array requires also
3205 * updating the 'rd%d' link, and communicating
3206 * with the personality with ->hot_*_disk.
3207 * For now we only support removing
3208 * failed/spare devices. This normally happens automatically,
3209 * but not when the metadata is externally managed.
3210 */
3211 if (rdev->raid_disk == -1)
3212 return -EEXIST;
3213 /* personality does all needed checks */
3214 if (rdev->mddev->pers->hot_remove_disk == NULL)
3215 return -EINVAL;
3216 clear_bit(Blocked, &rdev->flags);
3217 remove_and_add_spares(rdev->mddev, rdev);
3218 if (rdev->raid_disk >= 0)
3219 return -EBUSY;
3220 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3221 md_wakeup_thread(rdev->mddev->thread);
3222 } else if (rdev->mddev->pers) {
3223 /* Activating a spare .. or possibly reactivating
3224 * if we ever get bitmaps working here.
3225 */
3226 int err;
3227
3228 if (rdev->raid_disk != -1)
3229 return -EBUSY;
3230
3231 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
3232 return -EBUSY;
3233
3234 if (rdev->mddev->pers->hot_add_disk == NULL)
3235 return -EINVAL;
3236
3237 if (slot >= rdev->mddev->raid_disks &&
3238 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3239 return -ENOSPC;
3240
3241 rdev->raid_disk = slot;
3242 if (test_bit(In_sync, &rdev->flags))
3243 rdev->saved_raid_disk = slot;
3244 else
3245 rdev->saved_raid_disk = -1;
3246 clear_bit(In_sync, &rdev->flags);
3247 clear_bit(Bitmap_sync, &rdev->flags);
3248 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev);
3249 if (err) {
3250 rdev->raid_disk = -1;
3251 return err;
3252 } else
3253 sysfs_notify_dirent_safe(rdev->sysfs_state);
3254 /* failure here is OK */;
3255 sysfs_link_rdev(rdev->mddev, rdev);
3256 /* don't wakeup anyone, leave that to userspace. */
3257 } else {
3258 if (slot >= rdev->mddev->raid_disks &&
3259 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3260 return -ENOSPC;
3261 rdev->raid_disk = slot;
3262 /* assume it is working */
3263 clear_bit(Faulty, &rdev->flags);
3264 clear_bit(WriteMostly, &rdev->flags);
3265 set_bit(In_sync, &rdev->flags);
3266 sysfs_notify_dirent_safe(rdev->sysfs_state);
3267 }
3268 return len;
3269 }
3270
3271 static struct rdev_sysfs_entry rdev_slot =
3272 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3273
3274 static ssize_t
offset_show(struct md_rdev * rdev,char * page)3275 offset_show(struct md_rdev *rdev, char *page)
3276 {
3277 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3278 }
3279
3280 static ssize_t
offset_store(struct md_rdev * rdev,const char * buf,size_t len)3281 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3282 {
3283 unsigned long long offset;
3284 if (kstrtoull(buf, 10, &offset) < 0)
3285 return -EINVAL;
3286 if (rdev->mddev->pers && rdev->raid_disk >= 0)
3287 return -EBUSY;
3288 if (rdev->sectors && rdev->mddev->external)
3289 /* Must set offset before size, so overlap checks
3290 * can be sane */
3291 return -EBUSY;
3292 rdev->data_offset = offset;
3293 rdev->new_data_offset = offset;
3294 return len;
3295 }
3296
3297 static struct rdev_sysfs_entry rdev_offset =
3298 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3299
new_offset_show(struct md_rdev * rdev,char * page)3300 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3301 {
3302 return sprintf(page, "%llu\n",
3303 (unsigned long long)rdev->new_data_offset);
3304 }
3305
new_offset_store(struct md_rdev * rdev,const char * buf,size_t len)3306 static ssize_t new_offset_store(struct md_rdev *rdev,
3307 const char *buf, size_t len)
3308 {
3309 unsigned long long new_offset;
3310 struct mddev *mddev = rdev->mddev;
3311
3312 if (kstrtoull(buf, 10, &new_offset) < 0)
3313 return -EINVAL;
3314
3315 if (mddev->sync_thread ||
3316 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3317 return -EBUSY;
3318 if (new_offset == rdev->data_offset)
3319 /* reset is always permitted */
3320 ;
3321 else if (new_offset > rdev->data_offset) {
3322 /* must not push array size beyond rdev_sectors */
3323 if (new_offset - rdev->data_offset
3324 + mddev->dev_sectors > rdev->sectors)
3325 return -E2BIG;
3326 }
3327 /* Metadata worries about other space details. */
3328
3329 /* decreasing the offset is inconsistent with a backwards
3330 * reshape.
3331 */
3332 if (new_offset < rdev->data_offset &&
3333 mddev->reshape_backwards)
3334 return -EINVAL;
3335 /* Increasing offset is inconsistent with forwards
3336 * reshape. reshape_direction should be set to
3337 * 'backwards' first.
3338 */
3339 if (new_offset > rdev->data_offset &&
3340 !mddev->reshape_backwards)
3341 return -EINVAL;
3342
3343 if (mddev->pers && mddev->persistent &&
3344 !super_types[mddev->major_version]
3345 .allow_new_offset(rdev, new_offset))
3346 return -E2BIG;
3347 rdev->new_data_offset = new_offset;
3348 if (new_offset > rdev->data_offset)
3349 mddev->reshape_backwards = 1;
3350 else if (new_offset < rdev->data_offset)
3351 mddev->reshape_backwards = 0;
3352
3353 return len;
3354 }
3355 static struct rdev_sysfs_entry rdev_new_offset =
3356 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3357
3358 static ssize_t
rdev_size_show(struct md_rdev * rdev,char * page)3359 rdev_size_show(struct md_rdev *rdev, char *page)
3360 {
3361 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3362 }
3363
overlaps(sector_t s1,sector_t l1,sector_t s2,sector_t l2)3364 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3365 {
3366 /* check if two start/length pairs overlap */
3367 if (s1+l1 <= s2)
3368 return 0;
3369 if (s2+l2 <= s1)
3370 return 0;
3371 return 1;
3372 }
3373
strict_blocks_to_sectors(const char * buf,sector_t * sectors)3374 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3375 {
3376 unsigned long long blocks;
3377 sector_t new;
3378
3379 if (kstrtoull(buf, 10, &blocks) < 0)
3380 return -EINVAL;
3381
3382 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3383 return -EINVAL; /* sector conversion overflow */
3384
3385 new = blocks * 2;
3386 if (new != blocks * 2)
3387 return -EINVAL; /* unsigned long long to sector_t overflow */
3388
3389 *sectors = new;
3390 return 0;
3391 }
3392
3393 static ssize_t
rdev_size_store(struct md_rdev * rdev,const char * buf,size_t len)3394 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3395 {
3396 struct mddev *my_mddev = rdev->mddev;
3397 sector_t oldsectors = rdev->sectors;
3398 sector_t sectors;
3399
3400 if (test_bit(Journal, &rdev->flags))
3401 return -EBUSY;
3402 if (strict_blocks_to_sectors(buf, §ors) < 0)
3403 return -EINVAL;
3404 if (rdev->data_offset != rdev->new_data_offset)
3405 return -EINVAL; /* too confusing */
3406 if (my_mddev->pers && rdev->raid_disk >= 0) {
3407 if (my_mddev->persistent) {
3408 sectors = super_types[my_mddev->major_version].
3409 rdev_size_change(rdev, sectors);
3410 if (!sectors)
3411 return -EBUSY;
3412 } else if (!sectors)
3413 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3414 rdev->data_offset;
3415 if (!my_mddev->pers->resize)
3416 /* Cannot change size for RAID0 or Linear etc */
3417 return -EINVAL;
3418 }
3419 if (sectors < my_mddev->dev_sectors)
3420 return -EINVAL; /* component must fit device */
3421
3422 rdev->sectors = sectors;
3423 if (sectors > oldsectors && my_mddev->external) {
3424 /* Need to check that all other rdevs with the same
3425 * ->bdev do not overlap. 'rcu' is sufficient to walk
3426 * the rdev lists safely.
3427 * This check does not provide a hard guarantee, it
3428 * just helps avoid dangerous mistakes.
3429 */
3430 struct mddev *mddev;
3431 int overlap = 0;
3432 struct list_head *tmp;
3433
3434 rcu_read_lock();
3435 for_each_mddev(mddev, tmp) {
3436 struct md_rdev *rdev2;
3437
3438 rdev_for_each(rdev2, mddev)
3439 if (rdev->bdev == rdev2->bdev &&
3440 rdev != rdev2 &&
3441 overlaps(rdev->data_offset, rdev->sectors,
3442 rdev2->data_offset,
3443 rdev2->sectors)) {
3444 overlap = 1;
3445 break;
3446 }
3447 if (overlap) {
3448 mddev_put(mddev);
3449 break;
3450 }
3451 }
3452 rcu_read_unlock();
3453 if (overlap) {
3454 /* Someone else could have slipped in a size
3455 * change here, but doing so is just silly.
3456 * We put oldsectors back because we *know* it is
3457 * safe, and trust userspace not to race with
3458 * itself
3459 */
3460 rdev->sectors = oldsectors;
3461 return -EBUSY;
3462 }
3463 }
3464 return len;
3465 }
3466
3467 static struct rdev_sysfs_entry rdev_size =
3468 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3469
recovery_start_show(struct md_rdev * rdev,char * page)3470 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3471 {
3472 unsigned long long recovery_start = rdev->recovery_offset;
3473
3474 if (test_bit(In_sync, &rdev->flags) ||
3475 recovery_start == MaxSector)
3476 return sprintf(page, "none\n");
3477
3478 return sprintf(page, "%llu\n", recovery_start);
3479 }
3480
recovery_start_store(struct md_rdev * rdev,const char * buf,size_t len)3481 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3482 {
3483 unsigned long long recovery_start;
3484
3485 if (cmd_match(buf, "none"))
3486 recovery_start = MaxSector;
3487 else if (kstrtoull(buf, 10, &recovery_start))
3488 return -EINVAL;
3489
3490 if (rdev->mddev->pers &&
3491 rdev->raid_disk >= 0)
3492 return -EBUSY;
3493
3494 rdev->recovery_offset = recovery_start;
3495 if (recovery_start == MaxSector)
3496 set_bit(In_sync, &rdev->flags);
3497 else
3498 clear_bit(In_sync, &rdev->flags);
3499 return len;
3500 }
3501
3502 static struct rdev_sysfs_entry rdev_recovery_start =
3503 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3504
3505 /* sysfs access to bad-blocks list.
3506 * We present two files.
3507 * 'bad-blocks' lists sector numbers and lengths of ranges that
3508 * are recorded as bad. The list is truncated to fit within
3509 * the one-page limit of sysfs.
3510 * Writing "sector length" to this file adds an acknowledged
3511 * bad block list.
3512 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3513 * been acknowledged. Writing to this file adds bad blocks
3514 * without acknowledging them. This is largely for testing.
3515 */
bb_show(struct md_rdev * rdev,char * page)3516 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3517 {
3518 return badblocks_show(&rdev->badblocks, page, 0);
3519 }
bb_store(struct md_rdev * rdev,const char * page,size_t len)3520 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3521 {
3522 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3523 /* Maybe that ack was all we needed */
3524 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3525 wake_up(&rdev->blocked_wait);
3526 return rv;
3527 }
3528 static struct rdev_sysfs_entry rdev_bad_blocks =
3529 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3530
ubb_show(struct md_rdev * rdev,char * page)3531 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3532 {
3533 return badblocks_show(&rdev->badblocks, page, 1);
3534 }
ubb_store(struct md_rdev * rdev,const char * page,size_t len)3535 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3536 {
3537 return badblocks_store(&rdev->badblocks, page, len, 1);
3538 }
3539 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3540 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3541
3542 static ssize_t
ppl_sector_show(struct md_rdev * rdev,char * page)3543 ppl_sector_show(struct md_rdev *rdev, char *page)
3544 {
3545 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3546 }
3547
3548 static ssize_t
ppl_sector_store(struct md_rdev * rdev,const char * buf,size_t len)3549 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3550 {
3551 unsigned long long sector;
3552
3553 if (kstrtoull(buf, 10, §or) < 0)
3554 return -EINVAL;
3555 if (sector != (sector_t)sector)
3556 return -EINVAL;
3557
3558 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3559 rdev->raid_disk >= 0)
3560 return -EBUSY;
3561
3562 if (rdev->mddev->persistent) {
3563 if (rdev->mddev->major_version == 0)
3564 return -EINVAL;
3565 if ((sector > rdev->sb_start &&
3566 sector - rdev->sb_start > S16_MAX) ||
3567 (sector < rdev->sb_start &&
3568 rdev->sb_start - sector > -S16_MIN))
3569 return -EINVAL;
3570 rdev->ppl.offset = sector - rdev->sb_start;
3571 } else if (!rdev->mddev->external) {
3572 return -EBUSY;
3573 }
3574 rdev->ppl.sector = sector;
3575 return len;
3576 }
3577
3578 static struct rdev_sysfs_entry rdev_ppl_sector =
3579 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3580
3581 static ssize_t
ppl_size_show(struct md_rdev * rdev,char * page)3582 ppl_size_show(struct md_rdev *rdev, char *page)
3583 {
3584 return sprintf(page, "%u\n", rdev->ppl.size);
3585 }
3586
3587 static ssize_t
ppl_size_store(struct md_rdev * rdev,const char * buf,size_t len)3588 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3589 {
3590 unsigned int size;
3591
3592 if (kstrtouint(buf, 10, &size) < 0)
3593 return -EINVAL;
3594
3595 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3596 rdev->raid_disk >= 0)
3597 return -EBUSY;
3598
3599 if (rdev->mddev->persistent) {
3600 if (rdev->mddev->major_version == 0)
3601 return -EINVAL;
3602 if (size > U16_MAX)
3603 return -EINVAL;
3604 } else if (!rdev->mddev->external) {
3605 return -EBUSY;
3606 }
3607 rdev->ppl.size = size;
3608 return len;
3609 }
3610
3611 static struct rdev_sysfs_entry rdev_ppl_size =
3612 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3613
3614 static struct attribute *rdev_default_attrs[] = {
3615 &rdev_state.attr,
3616 &rdev_errors.attr,
3617 &rdev_slot.attr,
3618 &rdev_offset.attr,
3619 &rdev_new_offset.attr,
3620 &rdev_size.attr,
3621 &rdev_recovery_start.attr,
3622 &rdev_bad_blocks.attr,
3623 &rdev_unack_bad_blocks.attr,
3624 &rdev_ppl_sector.attr,
3625 &rdev_ppl_size.attr,
3626 NULL,
3627 };
3628 static ssize_t
rdev_attr_show(struct kobject * kobj,struct attribute * attr,char * page)3629 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3630 {
3631 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3632 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3633
3634 if (!entry->show)
3635 return -EIO;
3636 if (!rdev->mddev)
3637 return -ENODEV;
3638 return entry->show(rdev, page);
3639 }
3640
3641 static ssize_t
rdev_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)3642 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3643 const char *page, size_t length)
3644 {
3645 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3646 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3647 ssize_t rv;
3648 struct mddev *mddev = rdev->mddev;
3649
3650 if (!entry->store)
3651 return -EIO;
3652 if (!capable(CAP_SYS_ADMIN))
3653 return -EACCES;
3654 rv = mddev ? mddev_lock(mddev) : -ENODEV;
3655 if (!rv) {
3656 if (rdev->mddev == NULL)
3657 rv = -ENODEV;
3658 else
3659 rv = entry->store(rdev, page, length);
3660 mddev_unlock(mddev);
3661 }
3662 return rv;
3663 }
3664
rdev_free(struct kobject * ko)3665 static void rdev_free(struct kobject *ko)
3666 {
3667 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3668 kfree(rdev);
3669 }
3670 static const struct sysfs_ops rdev_sysfs_ops = {
3671 .show = rdev_attr_show,
3672 .store = rdev_attr_store,
3673 };
3674 static struct kobj_type rdev_ktype = {
3675 .release = rdev_free,
3676 .sysfs_ops = &rdev_sysfs_ops,
3677 .default_attrs = rdev_default_attrs,
3678 };
3679
md_rdev_init(struct md_rdev * rdev)3680 int md_rdev_init(struct md_rdev *rdev)
3681 {
3682 rdev->desc_nr = -1;
3683 rdev->saved_raid_disk = -1;
3684 rdev->raid_disk = -1;
3685 rdev->flags = 0;
3686 rdev->data_offset = 0;
3687 rdev->new_data_offset = 0;
3688 rdev->sb_events = 0;
3689 rdev->last_read_error = 0;
3690 rdev->sb_loaded = 0;
3691 rdev->bb_page = NULL;
3692 atomic_set(&rdev->nr_pending, 0);
3693 atomic_set(&rdev->read_errors, 0);
3694 atomic_set(&rdev->corrected_errors, 0);
3695
3696 INIT_LIST_HEAD(&rdev->same_set);
3697 init_waitqueue_head(&rdev->blocked_wait);
3698
3699 /* Add space to store bad block list.
3700 * This reserves the space even on arrays where it cannot
3701 * be used - I wonder if that matters
3702 */
3703 return badblocks_init(&rdev->badblocks, 0);
3704 }
3705 EXPORT_SYMBOL_GPL(md_rdev_init);
3706 /*
3707 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3708 *
3709 * mark the device faulty if:
3710 *
3711 * - the device is nonexistent (zero size)
3712 * - the device has no valid superblock
3713 *
3714 * a faulty rdev _never_ has rdev->sb set.
3715 */
md_import_device(dev_t newdev,int super_format,int super_minor)3716 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3717 {
3718 char b[BDEVNAME_SIZE];
3719 int err;
3720 struct md_rdev *rdev;
3721 sector_t size;
3722
3723 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3724 if (!rdev)
3725 return ERR_PTR(-ENOMEM);
3726
3727 err = md_rdev_init(rdev);
3728 if (err)
3729 goto abort_free;
3730 err = alloc_disk_sb(rdev);
3731 if (err)
3732 goto abort_free;
3733
3734 err = lock_rdev(rdev, newdev, super_format == -2);
3735 if (err)
3736 goto abort_free;
3737
3738 kobject_init(&rdev->kobj, &rdev_ktype);
3739
3740 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3741 if (!size) {
3742 pr_warn("md: %s has zero or unknown size, marking faulty!\n",
3743 bdevname(rdev->bdev,b));
3744 err = -EINVAL;
3745 goto abort_free;
3746 }
3747
3748 if (super_format >= 0) {
3749 err = super_types[super_format].
3750 load_super(rdev, NULL, super_minor);
3751 if (err == -EINVAL) {
3752 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
3753 bdevname(rdev->bdev,b),
3754 super_format, super_minor);
3755 goto abort_free;
3756 }
3757 if (err < 0) {
3758 pr_warn("md: could not read %s's sb, not importing!\n",
3759 bdevname(rdev->bdev,b));
3760 goto abort_free;
3761 }
3762 }
3763
3764 return rdev;
3765
3766 abort_free:
3767 if (rdev->bdev)
3768 unlock_rdev(rdev);
3769 md_rdev_clear(rdev);
3770 kfree(rdev);
3771 return ERR_PTR(err);
3772 }
3773
3774 /*
3775 * Check a full RAID array for plausibility
3776 */
3777
analyze_sbs(struct mddev * mddev)3778 static int analyze_sbs(struct mddev *mddev)
3779 {
3780 int i;
3781 struct md_rdev *rdev, *freshest, *tmp;
3782 char b[BDEVNAME_SIZE];
3783
3784 freshest = NULL;
3785 rdev_for_each_safe(rdev, tmp, mddev)
3786 switch (super_types[mddev->major_version].
3787 load_super(rdev, freshest, mddev->minor_version)) {
3788 case 1:
3789 freshest = rdev;
3790 break;
3791 case 0:
3792 break;
3793 default:
3794 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
3795 bdevname(rdev->bdev,b));
3796 md_kick_rdev_from_array(rdev);
3797 }
3798
3799 /* Cannot find a valid fresh disk */
3800 if (!freshest) {
3801 pr_warn("md: cannot find a valid disk\n");
3802 return -EINVAL;
3803 }
3804
3805 super_types[mddev->major_version].
3806 validate_super(mddev, freshest);
3807
3808 i = 0;
3809 rdev_for_each_safe(rdev, tmp, mddev) {
3810 if (mddev->max_disks &&
3811 (rdev->desc_nr >= mddev->max_disks ||
3812 i > mddev->max_disks)) {
3813 pr_warn("md: %s: %s: only %d devices permitted\n",
3814 mdname(mddev), bdevname(rdev->bdev, b),
3815 mddev->max_disks);
3816 md_kick_rdev_from_array(rdev);
3817 continue;
3818 }
3819 if (rdev != freshest) {
3820 if (super_types[mddev->major_version].
3821 validate_super(mddev, rdev)) {
3822 pr_warn("md: kicking non-fresh %s from array!\n",
3823 bdevname(rdev->bdev,b));
3824 md_kick_rdev_from_array(rdev);
3825 continue;
3826 }
3827 }
3828 if (mddev->level == LEVEL_MULTIPATH) {
3829 rdev->desc_nr = i++;
3830 rdev->raid_disk = rdev->desc_nr;
3831 set_bit(In_sync, &rdev->flags);
3832 } else if (rdev->raid_disk >=
3833 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3834 !test_bit(Journal, &rdev->flags)) {
3835 rdev->raid_disk = -1;
3836 clear_bit(In_sync, &rdev->flags);
3837 }
3838 }
3839
3840 return 0;
3841 }
3842
3843 /* Read a fixed-point number.
3844 * Numbers in sysfs attributes should be in "standard" units where
3845 * possible, so time should be in seconds.
3846 * However we internally use a a much smaller unit such as
3847 * milliseconds or jiffies.
3848 * This function takes a decimal number with a possible fractional
3849 * component, and produces an integer which is the result of
3850 * multiplying that number by 10^'scale'.
3851 * all without any floating-point arithmetic.
3852 */
strict_strtoul_scaled(const char * cp,unsigned long * res,int scale)3853 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3854 {
3855 unsigned long result = 0;
3856 long decimals = -1;
3857 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3858 if (*cp == '.')
3859 decimals = 0;
3860 else if (decimals < scale) {
3861 unsigned int value;
3862 value = *cp - '0';
3863 result = result * 10 + value;
3864 if (decimals >= 0)
3865 decimals++;
3866 }
3867 cp++;
3868 }
3869 if (*cp == '\n')
3870 cp++;
3871 if (*cp)
3872 return -EINVAL;
3873 if (decimals < 0)
3874 decimals = 0;
3875 *res = result * int_pow(10, scale - decimals);
3876 return 0;
3877 }
3878
3879 static ssize_t
safe_delay_show(struct mddev * mddev,char * page)3880 safe_delay_show(struct mddev *mddev, char *page)
3881 {
3882 unsigned int msec = ((unsigned long)mddev->safemode_delay*1000)/HZ;
3883
3884 return sprintf(page, "%u.%03u\n", msec/1000, msec%1000);
3885 }
3886 static ssize_t
safe_delay_store(struct mddev * mddev,const char * cbuf,size_t len)3887 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3888 {
3889 unsigned long msec;
3890
3891 if (mddev_is_clustered(mddev)) {
3892 pr_warn("md: Safemode is disabled for clustered mode\n");
3893 return -EINVAL;
3894 }
3895
3896 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0 || msec > UINT_MAX / HZ)
3897 return -EINVAL;
3898 if (msec == 0)
3899 mddev->safemode_delay = 0;
3900 else {
3901 unsigned long old_delay = mddev->safemode_delay;
3902 unsigned long new_delay = (msec*HZ)/1000;
3903
3904 if (new_delay == 0)
3905 new_delay = 1;
3906 mddev->safemode_delay = new_delay;
3907 if (new_delay < old_delay || old_delay == 0)
3908 mod_timer(&mddev->safemode_timer, jiffies+1);
3909 }
3910 return len;
3911 }
3912 static struct md_sysfs_entry md_safe_delay =
3913 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3914
3915 static ssize_t
level_show(struct mddev * mddev,char * page)3916 level_show(struct mddev *mddev, char *page)
3917 {
3918 struct md_personality *p;
3919 int ret;
3920 spin_lock(&mddev->lock);
3921 p = mddev->pers;
3922 if (p)
3923 ret = sprintf(page, "%s\n", p->name);
3924 else if (mddev->clevel[0])
3925 ret = sprintf(page, "%s\n", mddev->clevel);
3926 else if (mddev->level != LEVEL_NONE)
3927 ret = sprintf(page, "%d\n", mddev->level);
3928 else
3929 ret = 0;
3930 spin_unlock(&mddev->lock);
3931 return ret;
3932 }
3933
3934 static ssize_t
level_store(struct mddev * mddev,const char * buf,size_t len)3935 level_store(struct mddev *mddev, const char *buf, size_t len)
3936 {
3937 char clevel[16];
3938 ssize_t rv;
3939 size_t slen = len;
3940 struct md_personality *pers, *oldpers;
3941 long level;
3942 void *priv, *oldpriv;
3943 struct md_rdev *rdev;
3944
3945 if (slen == 0 || slen >= sizeof(clevel))
3946 return -EINVAL;
3947
3948 rv = mddev_lock(mddev);
3949 if (rv)
3950 return rv;
3951
3952 if (mddev->pers == NULL) {
3953 strncpy(mddev->clevel, buf, slen);
3954 if (mddev->clevel[slen-1] == '\n')
3955 slen--;
3956 mddev->clevel[slen] = 0;
3957 mddev->level = LEVEL_NONE;
3958 rv = len;
3959 goto out_unlock;
3960 }
3961 rv = -EROFS;
3962 if (mddev->ro)
3963 goto out_unlock;
3964
3965 /* request to change the personality. Need to ensure:
3966 * - array is not engaged in resync/recovery/reshape
3967 * - old personality can be suspended
3968 * - new personality will access other array.
3969 */
3970
3971 rv = -EBUSY;
3972 if (mddev->sync_thread ||
3973 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3974 mddev->reshape_position != MaxSector ||
3975 mddev->sysfs_active)
3976 goto out_unlock;
3977
3978 rv = -EINVAL;
3979 if (!mddev->pers->quiesce) {
3980 pr_warn("md: %s: %s does not support online personality change\n",
3981 mdname(mddev), mddev->pers->name);
3982 goto out_unlock;
3983 }
3984
3985 /* Now find the new personality */
3986 strncpy(clevel, buf, slen);
3987 if (clevel[slen-1] == '\n')
3988 slen--;
3989 clevel[slen] = 0;
3990 if (kstrtol(clevel, 10, &level))
3991 level = LEVEL_NONE;
3992
3993 if (request_module("md-%s", clevel) != 0)
3994 request_module("md-level-%s", clevel);
3995 spin_lock(&pers_lock);
3996 pers = find_pers(level, clevel);
3997 if (!pers || !try_module_get(pers->owner)) {
3998 spin_unlock(&pers_lock);
3999 pr_warn("md: personality %s not loaded\n", clevel);
4000 rv = -EINVAL;
4001 goto out_unlock;
4002 }
4003 spin_unlock(&pers_lock);
4004
4005 if (pers == mddev->pers) {
4006 /* Nothing to do! */
4007 module_put(pers->owner);
4008 rv = len;
4009 goto out_unlock;
4010 }
4011 if (!pers->takeover) {
4012 module_put(pers->owner);
4013 pr_warn("md: %s: %s does not support personality takeover\n",
4014 mdname(mddev), clevel);
4015 rv = -EINVAL;
4016 goto out_unlock;
4017 }
4018
4019 rdev_for_each(rdev, mddev)
4020 rdev->new_raid_disk = rdev->raid_disk;
4021
4022 /* ->takeover must set new_* and/or delta_disks
4023 * if it succeeds, and may set them when it fails.
4024 */
4025 priv = pers->takeover(mddev);
4026 if (IS_ERR(priv)) {
4027 mddev->new_level = mddev->level;
4028 mddev->new_layout = mddev->layout;
4029 mddev->new_chunk_sectors = mddev->chunk_sectors;
4030 mddev->raid_disks -= mddev->delta_disks;
4031 mddev->delta_disks = 0;
4032 mddev->reshape_backwards = 0;
4033 module_put(pers->owner);
4034 pr_warn("md: %s: %s would not accept array\n",
4035 mdname(mddev), clevel);
4036 rv = PTR_ERR(priv);
4037 goto out_unlock;
4038 }
4039
4040 /* Looks like we have a winner */
4041 mddev_suspend(mddev);
4042 mddev_detach(mddev);
4043
4044 spin_lock(&mddev->lock);
4045 oldpers = mddev->pers;
4046 oldpriv = mddev->private;
4047 mddev->pers = pers;
4048 mddev->private = priv;
4049 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4050 mddev->level = mddev->new_level;
4051 mddev->layout = mddev->new_layout;
4052 mddev->chunk_sectors = mddev->new_chunk_sectors;
4053 mddev->delta_disks = 0;
4054 mddev->reshape_backwards = 0;
4055 mddev->degraded = 0;
4056 spin_unlock(&mddev->lock);
4057
4058 if (oldpers->sync_request == NULL &&
4059 mddev->external) {
4060 /* We are converting from a no-redundancy array
4061 * to a redundancy array and metadata is managed
4062 * externally so we need to be sure that writes
4063 * won't block due to a need to transition
4064 * clean->dirty
4065 * until external management is started.
4066 */
4067 mddev->in_sync = 0;
4068 mddev->safemode_delay = 0;
4069 mddev->safemode = 0;
4070 }
4071
4072 oldpers->free(mddev, oldpriv);
4073
4074 if (oldpers->sync_request == NULL &&
4075 pers->sync_request != NULL) {
4076 /* need to add the md_redundancy_group */
4077 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4078 pr_warn("md: cannot register extra attributes for %s\n",
4079 mdname(mddev));
4080 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4081 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
4082 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
4083 }
4084 if (oldpers->sync_request != NULL &&
4085 pers->sync_request == NULL) {
4086 /* need to remove the md_redundancy_group */
4087 if (mddev->to_remove == NULL)
4088 mddev->to_remove = &md_redundancy_group;
4089 }
4090
4091 module_put(oldpers->owner);
4092
4093 rdev_for_each(rdev, mddev) {
4094 if (rdev->raid_disk < 0)
4095 continue;
4096 if (rdev->new_raid_disk >= mddev->raid_disks)
4097 rdev->new_raid_disk = -1;
4098 if (rdev->new_raid_disk == rdev->raid_disk)
4099 continue;
4100 sysfs_unlink_rdev(mddev, rdev);
4101 }
4102 rdev_for_each(rdev, mddev) {
4103 if (rdev->raid_disk < 0)
4104 continue;
4105 if (rdev->new_raid_disk == rdev->raid_disk)
4106 continue;
4107 rdev->raid_disk = rdev->new_raid_disk;
4108 if (rdev->raid_disk < 0)
4109 clear_bit(In_sync, &rdev->flags);
4110 else {
4111 if (sysfs_link_rdev(mddev, rdev))
4112 pr_warn("md: cannot register rd%d for %s after level change\n",
4113 rdev->raid_disk, mdname(mddev));
4114 }
4115 }
4116
4117 if (pers->sync_request == NULL) {
4118 /* this is now an array without redundancy, so
4119 * it must always be in_sync
4120 */
4121 mddev->in_sync = 1;
4122 del_timer_sync(&mddev->safemode_timer);
4123 }
4124 blk_set_stacking_limits(&mddev->queue->limits);
4125 pers->run(mddev);
4126 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4127 mddev_resume(mddev);
4128 if (!mddev->thread)
4129 md_update_sb(mddev, 1);
4130 sysfs_notify_dirent_safe(mddev->sysfs_level);
4131 md_new_event(mddev);
4132 rv = len;
4133 out_unlock:
4134 mddev_unlock(mddev);
4135 return rv;
4136 }
4137
4138 static struct md_sysfs_entry md_level =
4139 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
4140
4141 static ssize_t
layout_show(struct mddev * mddev,char * page)4142 layout_show(struct mddev *mddev, char *page)
4143 {
4144 /* just a number, not meaningful for all levels */
4145 if (mddev->reshape_position != MaxSector &&
4146 mddev->layout != mddev->new_layout)
4147 return sprintf(page, "%d (%d)\n",
4148 mddev->new_layout, mddev->layout);
4149 return sprintf(page, "%d\n", mddev->layout);
4150 }
4151
4152 static ssize_t
layout_store(struct mddev * mddev,const char * buf,size_t len)4153 layout_store(struct mddev *mddev, const char *buf, size_t len)
4154 {
4155 unsigned int n;
4156 int err;
4157
4158 err = kstrtouint(buf, 10, &n);
4159 if (err < 0)
4160 return err;
4161 err = mddev_lock(mddev);
4162 if (err)
4163 return err;
4164
4165 if (mddev->pers) {
4166 if (mddev->pers->check_reshape == NULL)
4167 err = -EBUSY;
4168 else if (mddev->ro)
4169 err = -EROFS;
4170 else {
4171 mddev->new_layout = n;
4172 err = mddev->pers->check_reshape(mddev);
4173 if (err)
4174 mddev->new_layout = mddev->layout;
4175 }
4176 } else {
4177 mddev->new_layout = n;
4178 if (mddev->reshape_position == MaxSector)
4179 mddev->layout = n;
4180 }
4181 mddev_unlock(mddev);
4182 return err ?: len;
4183 }
4184 static struct md_sysfs_entry md_layout =
4185 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
4186
4187 static ssize_t
raid_disks_show(struct mddev * mddev,char * page)4188 raid_disks_show(struct mddev *mddev, char *page)
4189 {
4190 if (mddev->raid_disks == 0)
4191 return 0;
4192 if (mddev->reshape_position != MaxSector &&
4193 mddev->delta_disks != 0)
4194 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
4195 mddev->raid_disks - mddev->delta_disks);
4196 return sprintf(page, "%d\n", mddev->raid_disks);
4197 }
4198
4199 static int update_raid_disks(struct mddev *mddev, int raid_disks);
4200
4201 static ssize_t
raid_disks_store(struct mddev * mddev,const char * buf,size_t len)4202 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
4203 {
4204 unsigned int n;
4205 int err;
4206
4207 err = kstrtouint(buf, 10, &n);
4208 if (err < 0)
4209 return err;
4210
4211 err = mddev_lock(mddev);
4212 if (err)
4213 return err;
4214 if (mddev->pers)
4215 err = update_raid_disks(mddev, n);
4216 else if (mddev->reshape_position != MaxSector) {
4217 struct md_rdev *rdev;
4218 int olddisks = mddev->raid_disks - mddev->delta_disks;
4219
4220 err = -EINVAL;
4221 rdev_for_each(rdev, mddev) {
4222 if (olddisks < n &&
4223 rdev->data_offset < rdev->new_data_offset)
4224 goto out_unlock;
4225 if (olddisks > n &&
4226 rdev->data_offset > rdev->new_data_offset)
4227 goto out_unlock;
4228 }
4229 err = 0;
4230 mddev->delta_disks = n - olddisks;
4231 mddev->raid_disks = n;
4232 mddev->reshape_backwards = (mddev->delta_disks < 0);
4233 } else
4234 mddev->raid_disks = n;
4235 out_unlock:
4236 mddev_unlock(mddev);
4237 return err ? err : len;
4238 }
4239 static struct md_sysfs_entry md_raid_disks =
4240 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
4241
4242 static ssize_t
uuid_show(struct mddev * mddev,char * page)4243 uuid_show(struct mddev *mddev, char *page)
4244 {
4245 return sprintf(page, "%pU\n", mddev->uuid);
4246 }
4247 static struct md_sysfs_entry md_uuid =
4248 __ATTR(uuid, S_IRUGO, uuid_show, NULL);
4249
4250 static ssize_t
chunk_size_show(struct mddev * mddev,char * page)4251 chunk_size_show(struct mddev *mddev, char *page)
4252 {
4253 if (mddev->reshape_position != MaxSector &&
4254 mddev->chunk_sectors != mddev->new_chunk_sectors)
4255 return sprintf(page, "%d (%d)\n",
4256 mddev->new_chunk_sectors << 9,
4257 mddev->chunk_sectors << 9);
4258 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
4259 }
4260
4261 static ssize_t
chunk_size_store(struct mddev * mddev,const char * buf,size_t len)4262 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
4263 {
4264 unsigned long n;
4265 int err;
4266
4267 err = kstrtoul(buf, 10, &n);
4268 if (err < 0)
4269 return err;
4270
4271 err = mddev_lock(mddev);
4272 if (err)
4273 return err;
4274 if (mddev->pers) {
4275 if (mddev->pers->check_reshape == NULL)
4276 err = -EBUSY;
4277 else if (mddev->ro)
4278 err = -EROFS;
4279 else {
4280 mddev->new_chunk_sectors = n >> 9;
4281 err = mddev->pers->check_reshape(mddev);
4282 if (err)
4283 mddev->new_chunk_sectors = mddev->chunk_sectors;
4284 }
4285 } else {
4286 mddev->new_chunk_sectors = n >> 9;
4287 if (mddev->reshape_position == MaxSector)
4288 mddev->chunk_sectors = n >> 9;
4289 }
4290 mddev_unlock(mddev);
4291 return err ?: len;
4292 }
4293 static struct md_sysfs_entry md_chunk_size =
4294 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4295
4296 static ssize_t
resync_start_show(struct mddev * mddev,char * page)4297 resync_start_show(struct mddev *mddev, char *page)
4298 {
4299 if (mddev->recovery_cp == MaxSector)
4300 return sprintf(page, "none\n");
4301 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4302 }
4303
4304 static ssize_t
resync_start_store(struct mddev * mddev,const char * buf,size_t len)4305 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4306 {
4307 unsigned long long n;
4308 int err;
4309
4310 if (cmd_match(buf, "none"))
4311 n = MaxSector;
4312 else {
4313 err = kstrtoull(buf, 10, &n);
4314 if (err < 0)
4315 return err;
4316 if (n != (sector_t)n)
4317 return -EINVAL;
4318 }
4319
4320 err = mddev_lock(mddev);
4321 if (err)
4322 return err;
4323 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4324 err = -EBUSY;
4325
4326 if (!err) {
4327 mddev->recovery_cp = n;
4328 if (mddev->pers)
4329 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4330 }
4331 mddev_unlock(mddev);
4332 return err ?: len;
4333 }
4334 static struct md_sysfs_entry md_resync_start =
4335 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4336 resync_start_show, resync_start_store);
4337
4338 /*
4339 * The array state can be:
4340 *
4341 * clear
4342 * No devices, no size, no level
4343 * Equivalent to STOP_ARRAY ioctl
4344 * inactive
4345 * May have some settings, but array is not active
4346 * all IO results in error
4347 * When written, doesn't tear down array, but just stops it
4348 * suspended (not supported yet)
4349 * All IO requests will block. The array can be reconfigured.
4350 * Writing this, if accepted, will block until array is quiescent
4351 * readonly
4352 * no resync can happen. no superblocks get written.
4353 * write requests fail
4354 * read-auto
4355 * like readonly, but behaves like 'clean' on a write request.
4356 *
4357 * clean - no pending writes, but otherwise active.
4358 * When written to inactive array, starts without resync
4359 * If a write request arrives then
4360 * if metadata is known, mark 'dirty' and switch to 'active'.
4361 * if not known, block and switch to write-pending
4362 * If written to an active array that has pending writes, then fails.
4363 * active
4364 * fully active: IO and resync can be happening.
4365 * When written to inactive array, starts with resync
4366 *
4367 * write-pending
4368 * clean, but writes are blocked waiting for 'active' to be written.
4369 *
4370 * active-idle
4371 * like active, but no writes have been seen for a while (100msec).
4372 *
4373 * broken
4374 * RAID0/LINEAR-only: same as clean, but array is missing a member.
4375 * It's useful because RAID0/LINEAR mounted-arrays aren't stopped
4376 * when a member is gone, so this state will at least alert the
4377 * user that something is wrong.
4378 */
4379 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4380 write_pending, active_idle, broken, bad_word};
4381 static char *array_states[] = {
4382 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4383 "write-pending", "active-idle", "broken", NULL };
4384
match_word(const char * word,char ** list)4385 static int match_word(const char *word, char **list)
4386 {
4387 int n;
4388 for (n=0; list[n]; n++)
4389 if (cmd_match(word, list[n]))
4390 break;
4391 return n;
4392 }
4393
4394 static ssize_t
array_state_show(struct mddev * mddev,char * page)4395 array_state_show(struct mddev *mddev, char *page)
4396 {
4397 enum array_state st = inactive;
4398
4399 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) {
4400 switch(mddev->ro) {
4401 case 1:
4402 st = readonly;
4403 break;
4404 case 2:
4405 st = read_auto;
4406 break;
4407 case 0:
4408 spin_lock(&mddev->lock);
4409 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4410 st = write_pending;
4411 else if (mddev->in_sync)
4412 st = clean;
4413 else if (mddev->safemode)
4414 st = active_idle;
4415 else
4416 st = active;
4417 spin_unlock(&mddev->lock);
4418 }
4419
4420 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean)
4421 st = broken;
4422 } else {
4423 if (list_empty(&mddev->disks) &&
4424 mddev->raid_disks == 0 &&
4425 mddev->dev_sectors == 0)
4426 st = clear;
4427 else
4428 st = inactive;
4429 }
4430 return sprintf(page, "%s\n", array_states[st]);
4431 }
4432
4433 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4434 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4435 static int restart_array(struct mddev *mddev);
4436
4437 static ssize_t
array_state_store(struct mddev * mddev,const char * buf,size_t len)4438 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4439 {
4440 int err = 0;
4441 enum array_state st = match_word(buf, array_states);
4442
4443 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
4444 /* don't take reconfig_mutex when toggling between
4445 * clean and active
4446 */
4447 spin_lock(&mddev->lock);
4448 if (st == active) {
4449 restart_array(mddev);
4450 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4451 md_wakeup_thread(mddev->thread);
4452 wake_up(&mddev->sb_wait);
4453 } else /* st == clean */ {
4454 restart_array(mddev);
4455 if (!set_in_sync(mddev))
4456 err = -EBUSY;
4457 }
4458 if (!err)
4459 sysfs_notify_dirent_safe(mddev->sysfs_state);
4460 spin_unlock(&mddev->lock);
4461 return err ?: len;
4462 }
4463 err = mddev_lock(mddev);
4464 if (err)
4465 return err;
4466 err = -EINVAL;
4467 switch(st) {
4468 case bad_word:
4469 break;
4470 case clear:
4471 /* stopping an active array */
4472 err = do_md_stop(mddev, 0, NULL);
4473 break;
4474 case inactive:
4475 /* stopping an active array */
4476 if (mddev->pers)
4477 err = do_md_stop(mddev, 2, NULL);
4478 else
4479 err = 0; /* already inactive */
4480 break;
4481 case suspended:
4482 break; /* not supported yet */
4483 case readonly:
4484 if (mddev->pers)
4485 err = md_set_readonly(mddev, NULL);
4486 else {
4487 mddev->ro = 1;
4488 set_disk_ro(mddev->gendisk, 1);
4489 err = do_md_run(mddev);
4490 }
4491 break;
4492 case read_auto:
4493 if (mddev->pers) {
4494 if (mddev->ro == 0)
4495 err = md_set_readonly(mddev, NULL);
4496 else if (mddev->ro == 1)
4497 err = restart_array(mddev);
4498 if (err == 0) {
4499 mddev->ro = 2;
4500 set_disk_ro(mddev->gendisk, 0);
4501 }
4502 } else {
4503 mddev->ro = 2;
4504 err = do_md_run(mddev);
4505 }
4506 break;
4507 case clean:
4508 if (mddev->pers) {
4509 err = restart_array(mddev);
4510 if (err)
4511 break;
4512 spin_lock(&mddev->lock);
4513 if (!set_in_sync(mddev))
4514 err = -EBUSY;
4515 spin_unlock(&mddev->lock);
4516 } else
4517 err = -EINVAL;
4518 break;
4519 case active:
4520 if (mddev->pers) {
4521 err = restart_array(mddev);
4522 if (err)
4523 break;
4524 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4525 wake_up(&mddev->sb_wait);
4526 err = 0;
4527 } else {
4528 mddev->ro = 0;
4529 set_disk_ro(mddev->gendisk, 0);
4530 err = do_md_run(mddev);
4531 }
4532 break;
4533 case write_pending:
4534 case active_idle:
4535 case broken:
4536 /* these cannot be set */
4537 break;
4538 }
4539
4540 if (!err) {
4541 if (mddev->hold_active == UNTIL_IOCTL)
4542 mddev->hold_active = 0;
4543 sysfs_notify_dirent_safe(mddev->sysfs_state);
4544 }
4545 mddev_unlock(mddev);
4546 return err ?: len;
4547 }
4548 static struct md_sysfs_entry md_array_state =
4549 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4550
4551 static ssize_t
max_corrected_read_errors_show(struct mddev * mddev,char * page)4552 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4553 return sprintf(page, "%d\n",
4554 atomic_read(&mddev->max_corr_read_errors));
4555 }
4556
4557 static ssize_t
max_corrected_read_errors_store(struct mddev * mddev,const char * buf,size_t len)4558 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4559 {
4560 unsigned int n;
4561 int rv;
4562
4563 rv = kstrtouint(buf, 10, &n);
4564 if (rv < 0)
4565 return rv;
4566 if (n > INT_MAX)
4567 return -EINVAL;
4568 atomic_set(&mddev->max_corr_read_errors, n);
4569 return len;
4570 }
4571
4572 static struct md_sysfs_entry max_corr_read_errors =
4573 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4574 max_corrected_read_errors_store);
4575
4576 static ssize_t
null_show(struct mddev * mddev,char * page)4577 null_show(struct mddev *mddev, char *page)
4578 {
4579 return -EINVAL;
4580 }
4581
4582 /* need to ensure rdev_delayed_delete() has completed */
flush_rdev_wq(struct mddev * mddev)4583 static void flush_rdev_wq(struct mddev *mddev)
4584 {
4585 struct md_rdev *rdev;
4586
4587 rcu_read_lock();
4588 rdev_for_each_rcu(rdev, mddev)
4589 if (work_pending(&rdev->del_work)) {
4590 flush_workqueue(md_rdev_misc_wq);
4591 break;
4592 }
4593 rcu_read_unlock();
4594 }
4595
4596 static ssize_t
new_dev_store(struct mddev * mddev,const char * buf,size_t len)4597 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4598 {
4599 /* buf must be %d:%d\n? giving major and minor numbers */
4600 /* The new device is added to the array.
4601 * If the array has a persistent superblock, we read the
4602 * superblock to initialise info and check validity.
4603 * Otherwise, only checking done is that in bind_rdev_to_array,
4604 * which mainly checks size.
4605 */
4606 char *e;
4607 int major = simple_strtoul(buf, &e, 10);
4608 int minor;
4609 dev_t dev;
4610 struct md_rdev *rdev;
4611 int err;
4612
4613 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4614 return -EINVAL;
4615 minor = simple_strtoul(e+1, &e, 10);
4616 if (*e && *e != '\n')
4617 return -EINVAL;
4618 dev = MKDEV(major, minor);
4619 if (major != MAJOR(dev) ||
4620 minor != MINOR(dev))
4621 return -EOVERFLOW;
4622
4623 flush_rdev_wq(mddev);
4624 err = mddev_lock(mddev);
4625 if (err)
4626 return err;
4627 if (mddev->persistent) {
4628 rdev = md_import_device(dev, mddev->major_version,
4629 mddev->minor_version);
4630 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4631 struct md_rdev *rdev0
4632 = list_entry(mddev->disks.next,
4633 struct md_rdev, same_set);
4634 err = super_types[mddev->major_version]
4635 .load_super(rdev, rdev0, mddev->minor_version);
4636 if (err < 0)
4637 goto out;
4638 }
4639 } else if (mddev->external)
4640 rdev = md_import_device(dev, -2, -1);
4641 else
4642 rdev = md_import_device(dev, -1, -1);
4643
4644 if (IS_ERR(rdev)) {
4645 mddev_unlock(mddev);
4646 return PTR_ERR(rdev);
4647 }
4648 err = bind_rdev_to_array(rdev, mddev);
4649 out:
4650 if (err)
4651 export_rdev(rdev);
4652 mddev_unlock(mddev);
4653 if (!err)
4654 md_new_event(mddev);
4655 return err ? err : len;
4656 }
4657
4658 static struct md_sysfs_entry md_new_device =
4659 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4660
4661 static ssize_t
bitmap_store(struct mddev * mddev,const char * buf,size_t len)4662 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4663 {
4664 char *end;
4665 unsigned long chunk, end_chunk;
4666 int err;
4667
4668 err = mddev_lock(mddev);
4669 if (err)
4670 return err;
4671 if (!mddev->bitmap)
4672 goto out;
4673 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4674 while (*buf) {
4675 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4676 if (buf == end) break;
4677 if (*end == '-') { /* range */
4678 buf = end + 1;
4679 end_chunk = simple_strtoul(buf, &end, 0);
4680 if (buf == end) break;
4681 }
4682 if (*end && !isspace(*end)) break;
4683 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4684 buf = skip_spaces(end);
4685 }
4686 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4687 out:
4688 mddev_unlock(mddev);
4689 return len;
4690 }
4691
4692 static struct md_sysfs_entry md_bitmap =
4693 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4694
4695 static ssize_t
size_show(struct mddev * mddev,char * page)4696 size_show(struct mddev *mddev, char *page)
4697 {
4698 return sprintf(page, "%llu\n",
4699 (unsigned long long)mddev->dev_sectors / 2);
4700 }
4701
4702 static int update_size(struct mddev *mddev, sector_t num_sectors);
4703
4704 static ssize_t
size_store(struct mddev * mddev,const char * buf,size_t len)4705 size_store(struct mddev *mddev, const char *buf, size_t len)
4706 {
4707 /* If array is inactive, we can reduce the component size, but
4708 * not increase it (except from 0).
4709 * If array is active, we can try an on-line resize
4710 */
4711 sector_t sectors;
4712 int err = strict_blocks_to_sectors(buf, §ors);
4713
4714 if (err < 0)
4715 return err;
4716 err = mddev_lock(mddev);
4717 if (err)
4718 return err;
4719 if (mddev->pers) {
4720 err = update_size(mddev, sectors);
4721 if (err == 0)
4722 md_update_sb(mddev, 1);
4723 } else {
4724 if (mddev->dev_sectors == 0 ||
4725 mddev->dev_sectors > sectors)
4726 mddev->dev_sectors = sectors;
4727 else
4728 err = -ENOSPC;
4729 }
4730 mddev_unlock(mddev);
4731 return err ? err : len;
4732 }
4733
4734 static struct md_sysfs_entry md_size =
4735 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4736
4737 /* Metadata version.
4738 * This is one of
4739 * 'none' for arrays with no metadata (good luck...)
4740 * 'external' for arrays with externally managed metadata,
4741 * or N.M for internally known formats
4742 */
4743 static ssize_t
metadata_show(struct mddev * mddev,char * page)4744 metadata_show(struct mddev *mddev, char *page)
4745 {
4746 if (mddev->persistent)
4747 return sprintf(page, "%d.%d\n",
4748 mddev->major_version, mddev->minor_version);
4749 else if (mddev->external)
4750 return sprintf(page, "external:%s\n", mddev->metadata_type);
4751 else
4752 return sprintf(page, "none\n");
4753 }
4754
4755 static ssize_t
metadata_store(struct mddev * mddev,const char * buf,size_t len)4756 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4757 {
4758 int major, minor;
4759 char *e;
4760 int err;
4761 /* Changing the details of 'external' metadata is
4762 * always permitted. Otherwise there must be
4763 * no devices attached to the array.
4764 */
4765
4766 err = mddev_lock(mddev);
4767 if (err)
4768 return err;
4769 err = -EBUSY;
4770 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4771 ;
4772 else if (!list_empty(&mddev->disks))
4773 goto out_unlock;
4774
4775 err = 0;
4776 if (cmd_match(buf, "none")) {
4777 mddev->persistent = 0;
4778 mddev->external = 0;
4779 mddev->major_version = 0;
4780 mddev->minor_version = 90;
4781 goto out_unlock;
4782 }
4783 if (strncmp(buf, "external:", 9) == 0) {
4784 size_t namelen = len-9;
4785 if (namelen >= sizeof(mddev->metadata_type))
4786 namelen = sizeof(mddev->metadata_type)-1;
4787 strncpy(mddev->metadata_type, buf+9, namelen);
4788 mddev->metadata_type[namelen] = 0;
4789 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4790 mddev->metadata_type[--namelen] = 0;
4791 mddev->persistent = 0;
4792 mddev->external = 1;
4793 mddev->major_version = 0;
4794 mddev->minor_version = 90;
4795 goto out_unlock;
4796 }
4797 major = simple_strtoul(buf, &e, 10);
4798 err = -EINVAL;
4799 if (e==buf || *e != '.')
4800 goto out_unlock;
4801 buf = e+1;
4802 minor = simple_strtoul(buf, &e, 10);
4803 if (e==buf || (*e && *e != '\n') )
4804 goto out_unlock;
4805 err = -ENOENT;
4806 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4807 goto out_unlock;
4808 mddev->major_version = major;
4809 mddev->minor_version = minor;
4810 mddev->persistent = 1;
4811 mddev->external = 0;
4812 err = 0;
4813 out_unlock:
4814 mddev_unlock(mddev);
4815 return err ?: len;
4816 }
4817
4818 static struct md_sysfs_entry md_metadata =
4819 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4820
4821 static ssize_t
action_show(struct mddev * mddev,char * page)4822 action_show(struct mddev *mddev, char *page)
4823 {
4824 char *type = "idle";
4825 unsigned long recovery = mddev->recovery;
4826 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4827 type = "frozen";
4828 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4829 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4830 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4831 type = "reshape";
4832 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4833 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4834 type = "resync";
4835 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4836 type = "check";
4837 else
4838 type = "repair";
4839 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4840 type = "recover";
4841 else if (mddev->reshape_position != MaxSector)
4842 type = "reshape";
4843 }
4844 return sprintf(page, "%s\n", type);
4845 }
4846
4847 static ssize_t
action_store(struct mddev * mddev,const char * page,size_t len)4848 action_store(struct mddev *mddev, const char *page, size_t len)
4849 {
4850 if (!mddev->pers || !mddev->pers->sync_request)
4851 return -EINVAL;
4852
4853
4854 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4855 if (cmd_match(page, "frozen"))
4856 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4857 else
4858 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4859 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4860 mddev_lock(mddev) == 0) {
4861 if (work_pending(&mddev->del_work))
4862 flush_workqueue(md_misc_wq);
4863 if (mddev->sync_thread) {
4864 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4865 md_reap_sync_thread(mddev);
4866 }
4867 mddev_unlock(mddev);
4868 }
4869 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4870 return -EBUSY;
4871 else if (cmd_match(page, "resync"))
4872 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4873 else if (cmd_match(page, "recover")) {
4874 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4875 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4876 } else if (cmd_match(page, "reshape")) {
4877 int err;
4878 if (mddev->pers->start_reshape == NULL)
4879 return -EINVAL;
4880 err = mddev_lock(mddev);
4881 if (!err) {
4882 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
4883 err = -EBUSY;
4884 } else if (mddev->reshape_position == MaxSector ||
4885 mddev->pers->check_reshape == NULL ||
4886 mddev->pers->check_reshape(mddev)) {
4887 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4888 err = mddev->pers->start_reshape(mddev);
4889 } else {
4890 /*
4891 * If reshape is still in progress, and
4892 * md_check_recovery() can continue to reshape,
4893 * don't restart reshape because data can be
4894 * corrupted for raid456.
4895 */
4896 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4897 }
4898 mddev_unlock(mddev);
4899 }
4900 if (err)
4901 return err;
4902 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
4903 } else {
4904 if (cmd_match(page, "check"))
4905 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4906 else if (!cmd_match(page, "repair"))
4907 return -EINVAL;
4908 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4909 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4910 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4911 }
4912 if (mddev->ro == 2) {
4913 /* A write to sync_action is enough to justify
4914 * canceling read-auto mode
4915 */
4916 mddev->ro = 0;
4917 md_wakeup_thread(mddev->sync_thread);
4918 }
4919 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4920 md_wakeup_thread(mddev->thread);
4921 sysfs_notify_dirent_safe(mddev->sysfs_action);
4922 return len;
4923 }
4924
4925 static struct md_sysfs_entry md_scan_mode =
4926 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4927
4928 static ssize_t
last_sync_action_show(struct mddev * mddev,char * page)4929 last_sync_action_show(struct mddev *mddev, char *page)
4930 {
4931 return sprintf(page, "%s\n", mddev->last_sync_action);
4932 }
4933
4934 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4935
4936 static ssize_t
mismatch_cnt_show(struct mddev * mddev,char * page)4937 mismatch_cnt_show(struct mddev *mddev, char *page)
4938 {
4939 return sprintf(page, "%llu\n",
4940 (unsigned long long)
4941 atomic64_read(&mddev->resync_mismatches));
4942 }
4943
4944 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4945
4946 static ssize_t
sync_min_show(struct mddev * mddev,char * page)4947 sync_min_show(struct mddev *mddev, char *page)
4948 {
4949 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4950 mddev->sync_speed_min ? "local": "system");
4951 }
4952
4953 static ssize_t
sync_min_store(struct mddev * mddev,const char * buf,size_t len)4954 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4955 {
4956 unsigned int min;
4957 int rv;
4958
4959 if (strncmp(buf, "system", 6)==0) {
4960 min = 0;
4961 } else {
4962 rv = kstrtouint(buf, 10, &min);
4963 if (rv < 0)
4964 return rv;
4965 if (min == 0)
4966 return -EINVAL;
4967 }
4968 mddev->sync_speed_min = min;
4969 return len;
4970 }
4971
4972 static struct md_sysfs_entry md_sync_min =
4973 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4974
4975 static ssize_t
sync_max_show(struct mddev * mddev,char * page)4976 sync_max_show(struct mddev *mddev, char *page)
4977 {
4978 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4979 mddev->sync_speed_max ? "local": "system");
4980 }
4981
4982 static ssize_t
sync_max_store(struct mddev * mddev,const char * buf,size_t len)4983 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4984 {
4985 unsigned int max;
4986 int rv;
4987
4988 if (strncmp(buf, "system", 6)==0) {
4989 max = 0;
4990 } else {
4991 rv = kstrtouint(buf, 10, &max);
4992 if (rv < 0)
4993 return rv;
4994 if (max == 0)
4995 return -EINVAL;
4996 }
4997 mddev->sync_speed_max = max;
4998 return len;
4999 }
5000
5001 static struct md_sysfs_entry md_sync_max =
5002 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
5003
5004 static ssize_t
degraded_show(struct mddev * mddev,char * page)5005 degraded_show(struct mddev *mddev, char *page)
5006 {
5007 return sprintf(page, "%d\n", mddev->degraded);
5008 }
5009 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
5010
5011 static ssize_t
sync_force_parallel_show(struct mddev * mddev,char * page)5012 sync_force_parallel_show(struct mddev *mddev, char *page)
5013 {
5014 return sprintf(page, "%d\n", mddev->parallel_resync);
5015 }
5016
5017 static ssize_t
sync_force_parallel_store(struct mddev * mddev,const char * buf,size_t len)5018 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
5019 {
5020 long n;
5021
5022 if (kstrtol(buf, 10, &n))
5023 return -EINVAL;
5024
5025 if (n != 0 && n != 1)
5026 return -EINVAL;
5027
5028 mddev->parallel_resync = n;
5029
5030 if (mddev->sync_thread)
5031 wake_up(&resync_wait);
5032
5033 return len;
5034 }
5035
5036 /* force parallel resync, even with shared block devices */
5037 static struct md_sysfs_entry md_sync_force_parallel =
5038 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
5039 sync_force_parallel_show, sync_force_parallel_store);
5040
5041 static ssize_t
sync_speed_show(struct mddev * mddev,char * page)5042 sync_speed_show(struct mddev *mddev, char *page)
5043 {
5044 unsigned long resync, dt, db;
5045 if (mddev->curr_resync == 0)
5046 return sprintf(page, "none\n");
5047 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
5048 dt = (jiffies - mddev->resync_mark) / HZ;
5049 if (!dt) dt++;
5050 db = resync - mddev->resync_mark_cnt;
5051 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
5052 }
5053
5054 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
5055
5056 static ssize_t
sync_completed_show(struct mddev * mddev,char * page)5057 sync_completed_show(struct mddev *mddev, char *page)
5058 {
5059 unsigned long long max_sectors, resync;
5060
5061 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5062 return sprintf(page, "none\n");
5063
5064 if (mddev->curr_resync == 1 ||
5065 mddev->curr_resync == 2)
5066 return sprintf(page, "delayed\n");
5067
5068 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
5069 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5070 max_sectors = mddev->resync_max_sectors;
5071 else
5072 max_sectors = mddev->dev_sectors;
5073
5074 resync = mddev->curr_resync_completed;
5075 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
5076 }
5077
5078 static struct md_sysfs_entry md_sync_completed =
5079 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
5080
5081 static ssize_t
min_sync_show(struct mddev * mddev,char * page)5082 min_sync_show(struct mddev *mddev, char *page)
5083 {
5084 return sprintf(page, "%llu\n",
5085 (unsigned long long)mddev->resync_min);
5086 }
5087 static ssize_t
min_sync_store(struct mddev * mddev,const char * buf,size_t len)5088 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
5089 {
5090 unsigned long long min;
5091 int err;
5092
5093 if (kstrtoull(buf, 10, &min))
5094 return -EINVAL;
5095
5096 spin_lock(&mddev->lock);
5097 err = -EINVAL;
5098 if (min > mddev->resync_max)
5099 goto out_unlock;
5100
5101 err = -EBUSY;
5102 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5103 goto out_unlock;
5104
5105 /* Round down to multiple of 4K for safety */
5106 mddev->resync_min = round_down(min, 8);
5107 err = 0;
5108
5109 out_unlock:
5110 spin_unlock(&mddev->lock);
5111 return err ?: len;
5112 }
5113
5114 static struct md_sysfs_entry md_min_sync =
5115 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
5116
5117 static ssize_t
max_sync_show(struct mddev * mddev,char * page)5118 max_sync_show(struct mddev *mddev, char *page)
5119 {
5120 if (mddev->resync_max == MaxSector)
5121 return sprintf(page, "max\n");
5122 else
5123 return sprintf(page, "%llu\n",
5124 (unsigned long long)mddev->resync_max);
5125 }
5126 static ssize_t
max_sync_store(struct mddev * mddev,const char * buf,size_t len)5127 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
5128 {
5129 int err;
5130 spin_lock(&mddev->lock);
5131 if (strncmp(buf, "max", 3) == 0)
5132 mddev->resync_max = MaxSector;
5133 else {
5134 unsigned long long max;
5135 int chunk;
5136
5137 err = -EINVAL;
5138 if (kstrtoull(buf, 10, &max))
5139 goto out_unlock;
5140 if (max < mddev->resync_min)
5141 goto out_unlock;
5142
5143 err = -EBUSY;
5144 if (max < mddev->resync_max &&
5145 mddev->ro == 0 &&
5146 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5147 goto out_unlock;
5148
5149 /* Must be a multiple of chunk_size */
5150 chunk = mddev->chunk_sectors;
5151 if (chunk) {
5152 sector_t temp = max;
5153
5154 err = -EINVAL;
5155 if (sector_div(temp, chunk))
5156 goto out_unlock;
5157 }
5158 mddev->resync_max = max;
5159 }
5160 wake_up(&mddev->recovery_wait);
5161 err = 0;
5162 out_unlock:
5163 spin_unlock(&mddev->lock);
5164 return err ?: len;
5165 }
5166
5167 static struct md_sysfs_entry md_max_sync =
5168 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
5169
5170 static ssize_t
suspend_lo_show(struct mddev * mddev,char * page)5171 suspend_lo_show(struct mddev *mddev, char *page)
5172 {
5173 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
5174 }
5175
5176 static ssize_t
suspend_lo_store(struct mddev * mddev,const char * buf,size_t len)5177 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
5178 {
5179 unsigned long long new;
5180 int err;
5181
5182 err = kstrtoull(buf, 10, &new);
5183 if (err < 0)
5184 return err;
5185 if (new != (sector_t)new)
5186 return -EINVAL;
5187
5188 err = mddev_lock(mddev);
5189 if (err)
5190 return err;
5191 err = -EINVAL;
5192 if (mddev->pers == NULL ||
5193 mddev->pers->quiesce == NULL)
5194 goto unlock;
5195 mddev_suspend(mddev);
5196 mddev->suspend_lo = new;
5197 mddev_resume(mddev);
5198
5199 err = 0;
5200 unlock:
5201 mddev_unlock(mddev);
5202 return err ?: len;
5203 }
5204 static struct md_sysfs_entry md_suspend_lo =
5205 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
5206
5207 static ssize_t
suspend_hi_show(struct mddev * mddev,char * page)5208 suspend_hi_show(struct mddev *mddev, char *page)
5209 {
5210 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
5211 }
5212
5213 static ssize_t
suspend_hi_store(struct mddev * mddev,const char * buf,size_t len)5214 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
5215 {
5216 unsigned long long new;
5217 int err;
5218
5219 err = kstrtoull(buf, 10, &new);
5220 if (err < 0)
5221 return err;
5222 if (new != (sector_t)new)
5223 return -EINVAL;
5224
5225 err = mddev_lock(mddev);
5226 if (err)
5227 return err;
5228 err = -EINVAL;
5229 if (mddev->pers == NULL)
5230 goto unlock;
5231
5232 mddev_suspend(mddev);
5233 mddev->suspend_hi = new;
5234 mddev_resume(mddev);
5235
5236 err = 0;
5237 unlock:
5238 mddev_unlock(mddev);
5239 return err ?: len;
5240 }
5241 static struct md_sysfs_entry md_suspend_hi =
5242 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
5243
5244 static ssize_t
reshape_position_show(struct mddev * mddev,char * page)5245 reshape_position_show(struct mddev *mddev, char *page)
5246 {
5247 if (mddev->reshape_position != MaxSector)
5248 return sprintf(page, "%llu\n",
5249 (unsigned long long)mddev->reshape_position);
5250 strcpy(page, "none\n");
5251 return 5;
5252 }
5253
5254 static ssize_t
reshape_position_store(struct mddev * mddev,const char * buf,size_t len)5255 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
5256 {
5257 struct md_rdev *rdev;
5258 unsigned long long new;
5259 int err;
5260
5261 err = kstrtoull(buf, 10, &new);
5262 if (err < 0)
5263 return err;
5264 if (new != (sector_t)new)
5265 return -EINVAL;
5266 err = mddev_lock(mddev);
5267 if (err)
5268 return err;
5269 err = -EBUSY;
5270 if (mddev->pers)
5271 goto unlock;
5272 mddev->reshape_position = new;
5273 mddev->delta_disks = 0;
5274 mddev->reshape_backwards = 0;
5275 mddev->new_level = mddev->level;
5276 mddev->new_layout = mddev->layout;
5277 mddev->new_chunk_sectors = mddev->chunk_sectors;
5278 rdev_for_each(rdev, mddev)
5279 rdev->new_data_offset = rdev->data_offset;
5280 err = 0;
5281 unlock:
5282 mddev_unlock(mddev);
5283 return err ?: len;
5284 }
5285
5286 static struct md_sysfs_entry md_reshape_position =
5287 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
5288 reshape_position_store);
5289
5290 static ssize_t
reshape_direction_show(struct mddev * mddev,char * page)5291 reshape_direction_show(struct mddev *mddev, char *page)
5292 {
5293 return sprintf(page, "%s\n",
5294 mddev->reshape_backwards ? "backwards" : "forwards");
5295 }
5296
5297 static ssize_t
reshape_direction_store(struct mddev * mddev,const char * buf,size_t len)5298 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
5299 {
5300 int backwards = 0;
5301 int err;
5302
5303 if (cmd_match(buf, "forwards"))
5304 backwards = 0;
5305 else if (cmd_match(buf, "backwards"))
5306 backwards = 1;
5307 else
5308 return -EINVAL;
5309 if (mddev->reshape_backwards == backwards)
5310 return len;
5311
5312 err = mddev_lock(mddev);
5313 if (err)
5314 return err;
5315 /* check if we are allowed to change */
5316 if (mddev->delta_disks)
5317 err = -EBUSY;
5318 else if (mddev->persistent &&
5319 mddev->major_version == 0)
5320 err = -EINVAL;
5321 else
5322 mddev->reshape_backwards = backwards;
5323 mddev_unlock(mddev);
5324 return err ?: len;
5325 }
5326
5327 static struct md_sysfs_entry md_reshape_direction =
5328 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5329 reshape_direction_store);
5330
5331 static ssize_t
array_size_show(struct mddev * mddev,char * page)5332 array_size_show(struct mddev *mddev, char *page)
5333 {
5334 if (mddev->external_size)
5335 return sprintf(page, "%llu\n",
5336 (unsigned long long)mddev->array_sectors/2);
5337 else
5338 return sprintf(page, "default\n");
5339 }
5340
5341 static ssize_t
array_size_store(struct mddev * mddev,const char * buf,size_t len)5342 array_size_store(struct mddev *mddev, const char *buf, size_t len)
5343 {
5344 sector_t sectors;
5345 int err;
5346
5347 err = mddev_lock(mddev);
5348 if (err)
5349 return err;
5350
5351 /* cluster raid doesn't support change array_sectors */
5352 if (mddev_is_clustered(mddev)) {
5353 mddev_unlock(mddev);
5354 return -EINVAL;
5355 }
5356
5357 if (strncmp(buf, "default", 7) == 0) {
5358 if (mddev->pers)
5359 sectors = mddev->pers->size(mddev, 0, 0);
5360 else
5361 sectors = mddev->array_sectors;
5362
5363 mddev->external_size = 0;
5364 } else {
5365 if (strict_blocks_to_sectors(buf, §ors) < 0)
5366 err = -EINVAL;
5367 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5368 err = -E2BIG;
5369 else
5370 mddev->external_size = 1;
5371 }
5372
5373 if (!err) {
5374 mddev->array_sectors = sectors;
5375 if (mddev->pers) {
5376 set_capacity(mddev->gendisk, mddev->array_sectors);
5377 revalidate_disk_size(mddev->gendisk, true);
5378 }
5379 }
5380 mddev_unlock(mddev);
5381 return err ?: len;
5382 }
5383
5384 static struct md_sysfs_entry md_array_size =
5385 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5386 array_size_store);
5387
5388 static ssize_t
consistency_policy_show(struct mddev * mddev,char * page)5389 consistency_policy_show(struct mddev *mddev, char *page)
5390 {
5391 int ret;
5392
5393 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5394 ret = sprintf(page, "journal\n");
5395 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5396 ret = sprintf(page, "ppl\n");
5397 } else if (mddev->bitmap) {
5398 ret = sprintf(page, "bitmap\n");
5399 } else if (mddev->pers) {
5400 if (mddev->pers->sync_request)
5401 ret = sprintf(page, "resync\n");
5402 else
5403 ret = sprintf(page, "none\n");
5404 } else {
5405 ret = sprintf(page, "unknown\n");
5406 }
5407
5408 return ret;
5409 }
5410
5411 static ssize_t
consistency_policy_store(struct mddev * mddev,const char * buf,size_t len)5412 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5413 {
5414 int err = 0;
5415
5416 if (mddev->pers) {
5417 if (mddev->pers->change_consistency_policy)
5418 err = mddev->pers->change_consistency_policy(mddev, buf);
5419 else
5420 err = -EBUSY;
5421 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5422 set_bit(MD_HAS_PPL, &mddev->flags);
5423 } else {
5424 err = -EINVAL;
5425 }
5426
5427 return err ? err : len;
5428 }
5429
5430 static struct md_sysfs_entry md_consistency_policy =
5431 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5432 consistency_policy_store);
5433
fail_last_dev_show(struct mddev * mddev,char * page)5434 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page)
5435 {
5436 return sprintf(page, "%d\n", mddev->fail_last_dev);
5437 }
5438
5439 /*
5440 * Setting fail_last_dev to true to allow last device to be forcibly removed
5441 * from RAID1/RAID10.
5442 */
5443 static ssize_t
fail_last_dev_store(struct mddev * mddev,const char * buf,size_t len)5444 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len)
5445 {
5446 int ret;
5447 bool value;
5448
5449 ret = kstrtobool(buf, &value);
5450 if (ret)
5451 return ret;
5452
5453 if (value != mddev->fail_last_dev)
5454 mddev->fail_last_dev = value;
5455
5456 return len;
5457 }
5458 static struct md_sysfs_entry md_fail_last_dev =
5459 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show,
5460 fail_last_dev_store);
5461
serialize_policy_show(struct mddev * mddev,char * page)5462 static ssize_t serialize_policy_show(struct mddev *mddev, char *page)
5463 {
5464 if (mddev->pers == NULL || (mddev->pers->level != 1))
5465 return sprintf(page, "n/a\n");
5466 else
5467 return sprintf(page, "%d\n", mddev->serialize_policy);
5468 }
5469
5470 /*
5471 * Setting serialize_policy to true to enforce write IO is not reordered
5472 * for raid1.
5473 */
5474 static ssize_t
serialize_policy_store(struct mddev * mddev,const char * buf,size_t len)5475 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len)
5476 {
5477 int err;
5478 bool value;
5479
5480 err = kstrtobool(buf, &value);
5481 if (err)
5482 return err;
5483
5484 if (value == mddev->serialize_policy)
5485 return len;
5486
5487 err = mddev_lock(mddev);
5488 if (err)
5489 return err;
5490 if (mddev->pers == NULL || (mddev->pers->level != 1)) {
5491 pr_err("md: serialize_policy is only effective for raid1\n");
5492 err = -EINVAL;
5493 goto unlock;
5494 }
5495
5496 mddev_suspend(mddev);
5497 if (value)
5498 mddev_create_serial_pool(mddev, NULL, true);
5499 else
5500 mddev_destroy_serial_pool(mddev, NULL, true);
5501 mddev->serialize_policy = value;
5502 mddev_resume(mddev);
5503 unlock:
5504 mddev_unlock(mddev);
5505 return err ?: len;
5506 }
5507
5508 static struct md_sysfs_entry md_serialize_policy =
5509 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
5510 serialize_policy_store);
5511
5512
5513 static struct attribute *md_default_attrs[] = {
5514 &md_level.attr,
5515 &md_layout.attr,
5516 &md_raid_disks.attr,
5517 &md_uuid.attr,
5518 &md_chunk_size.attr,
5519 &md_size.attr,
5520 &md_resync_start.attr,
5521 &md_metadata.attr,
5522 &md_new_device.attr,
5523 &md_safe_delay.attr,
5524 &md_array_state.attr,
5525 &md_reshape_position.attr,
5526 &md_reshape_direction.attr,
5527 &md_array_size.attr,
5528 &max_corr_read_errors.attr,
5529 &md_consistency_policy.attr,
5530 &md_fail_last_dev.attr,
5531 &md_serialize_policy.attr,
5532 NULL,
5533 };
5534
5535 static struct attribute *md_redundancy_attrs[] = {
5536 &md_scan_mode.attr,
5537 &md_last_scan_mode.attr,
5538 &md_mismatches.attr,
5539 &md_sync_min.attr,
5540 &md_sync_max.attr,
5541 &md_sync_speed.attr,
5542 &md_sync_force_parallel.attr,
5543 &md_sync_completed.attr,
5544 &md_min_sync.attr,
5545 &md_max_sync.attr,
5546 &md_suspend_lo.attr,
5547 &md_suspend_hi.attr,
5548 &md_bitmap.attr,
5549 &md_degraded.attr,
5550 NULL,
5551 };
5552 static struct attribute_group md_redundancy_group = {
5553 .name = NULL,
5554 .attrs = md_redundancy_attrs,
5555 };
5556
5557 static ssize_t
md_attr_show(struct kobject * kobj,struct attribute * attr,char * page)5558 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5559 {
5560 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5561 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5562 ssize_t rv;
5563
5564 if (!entry->show)
5565 return -EIO;
5566 spin_lock(&all_mddevs_lock);
5567 if (list_empty(&mddev->all_mddevs)) {
5568 spin_unlock(&all_mddevs_lock);
5569 return -EBUSY;
5570 }
5571 mddev_get(mddev);
5572 spin_unlock(&all_mddevs_lock);
5573
5574 rv = entry->show(mddev, page);
5575 mddev_put(mddev);
5576 return rv;
5577 }
5578
5579 static ssize_t
md_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)5580 md_attr_store(struct kobject *kobj, struct attribute *attr,
5581 const char *page, size_t length)
5582 {
5583 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5584 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5585 ssize_t rv;
5586
5587 if (!entry->store)
5588 return -EIO;
5589 if (!capable(CAP_SYS_ADMIN))
5590 return -EACCES;
5591 spin_lock(&all_mddevs_lock);
5592 if (list_empty(&mddev->all_mddevs)) {
5593 spin_unlock(&all_mddevs_lock);
5594 return -EBUSY;
5595 }
5596 mddev_get(mddev);
5597 spin_unlock(&all_mddevs_lock);
5598 rv = entry->store(mddev, page, length);
5599 mddev_put(mddev);
5600 return rv;
5601 }
5602
md_free(struct kobject * ko)5603 static void md_free(struct kobject *ko)
5604 {
5605 struct mddev *mddev = container_of(ko, struct mddev, kobj);
5606
5607 if (mddev->sysfs_state)
5608 sysfs_put(mddev->sysfs_state);
5609 if (mddev->sysfs_level)
5610 sysfs_put(mddev->sysfs_level);
5611
5612 if (mddev->gendisk)
5613 del_gendisk(mddev->gendisk);
5614 if (mddev->queue)
5615 blk_cleanup_queue(mddev->queue);
5616 if (mddev->gendisk)
5617 put_disk(mddev->gendisk);
5618 percpu_ref_exit(&mddev->writes_pending);
5619
5620 bioset_exit(&mddev->bio_set);
5621 bioset_exit(&mddev->sync_set);
5622 kfree(mddev);
5623 }
5624
5625 static const struct sysfs_ops md_sysfs_ops = {
5626 .show = md_attr_show,
5627 .store = md_attr_store,
5628 };
5629 static struct kobj_type md_ktype = {
5630 .release = md_free,
5631 .sysfs_ops = &md_sysfs_ops,
5632 .default_attrs = md_default_attrs,
5633 };
5634
5635 int mdp_major = 0;
5636
mddev_delayed_delete(struct work_struct * ws)5637 static void mddev_delayed_delete(struct work_struct *ws)
5638 {
5639 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5640
5641 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
5642 kobject_del(&mddev->kobj);
5643 kobject_put(&mddev->kobj);
5644 }
5645
no_op(struct percpu_ref * r)5646 static void no_op(struct percpu_ref *r) {}
5647
mddev_init_writes_pending(struct mddev * mddev)5648 int mddev_init_writes_pending(struct mddev *mddev)
5649 {
5650 if (mddev->writes_pending.percpu_count_ptr)
5651 return 0;
5652 if (percpu_ref_init(&mddev->writes_pending, no_op,
5653 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0)
5654 return -ENOMEM;
5655 /* We want to start with the refcount at zero */
5656 percpu_ref_put(&mddev->writes_pending);
5657 return 0;
5658 }
5659 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5660
md_alloc(dev_t dev,char * name)5661 static int md_alloc(dev_t dev, char *name)
5662 {
5663 /*
5664 * If dev is zero, name is the name of a device to allocate with
5665 * an arbitrary minor number. It will be "md_???"
5666 * If dev is non-zero it must be a device number with a MAJOR of
5667 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
5668 * the device is being created by opening a node in /dev.
5669 * If "name" is not NULL, the device is being created by
5670 * writing to /sys/module/md_mod/parameters/new_array.
5671 */
5672 static DEFINE_MUTEX(disks_mutex);
5673 struct mddev *mddev = mddev_find_or_alloc(dev);
5674 struct gendisk *disk;
5675 int partitioned;
5676 int shift;
5677 int unit;
5678 int error;
5679
5680 if (!mddev)
5681 return -ENODEV;
5682
5683 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5684 shift = partitioned ? MdpMinorShift : 0;
5685 unit = MINOR(mddev->unit) >> shift;
5686
5687 /* wait for any previous instance of this device to be
5688 * completely removed (mddev_delayed_delete).
5689 */
5690 flush_workqueue(md_misc_wq);
5691 flush_workqueue(md_rdev_misc_wq);
5692
5693 mutex_lock(&disks_mutex);
5694 error = -EEXIST;
5695 if (mddev->gendisk)
5696 goto abort;
5697
5698 if (name && !dev) {
5699 /* Need to ensure that 'name' is not a duplicate.
5700 */
5701 struct mddev *mddev2;
5702 spin_lock(&all_mddevs_lock);
5703
5704 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5705 if (mddev2->gendisk &&
5706 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5707 spin_unlock(&all_mddevs_lock);
5708 goto abort;
5709 }
5710 spin_unlock(&all_mddevs_lock);
5711 }
5712 if (name && dev)
5713 /*
5714 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5715 */
5716 mddev->hold_active = UNTIL_STOP;
5717
5718 error = -ENOMEM;
5719 mddev->queue = blk_alloc_queue(NUMA_NO_NODE);
5720 if (!mddev->queue)
5721 goto abort;
5722
5723 blk_set_stacking_limits(&mddev->queue->limits);
5724
5725 disk = alloc_disk(1 << shift);
5726 if (!disk) {
5727 blk_cleanup_queue(mddev->queue);
5728 mddev->queue = NULL;
5729 goto abort;
5730 }
5731 disk->major = MAJOR(mddev->unit);
5732 disk->first_minor = unit << shift;
5733 if (name)
5734 strcpy(disk->disk_name, name);
5735 else if (partitioned)
5736 sprintf(disk->disk_name, "md_d%d", unit);
5737 else
5738 sprintf(disk->disk_name, "md%d", unit);
5739 disk->fops = &md_fops;
5740 disk->private_data = mddev;
5741 disk->queue = mddev->queue;
5742 blk_queue_write_cache(mddev->queue, true, true);
5743 /* Allow extended partitions. This makes the
5744 * 'mdp' device redundant, but we can't really
5745 * remove it now.
5746 */
5747 disk->flags |= GENHD_FL_EXT_DEVT;
5748 disk->events |= DISK_EVENT_MEDIA_CHANGE;
5749 mddev->gendisk = disk;
5750 add_disk(disk);
5751
5752 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
5753 if (error) {
5754 /* This isn't possible, but as kobject_init_and_add is marked
5755 * __must_check, we must do something with the result
5756 */
5757 pr_debug("md: cannot register %s/md - name in use\n",
5758 disk->disk_name);
5759 error = 0;
5760 }
5761 if (mddev->kobj.sd &&
5762 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5763 pr_debug("pointless warning\n");
5764 abort:
5765 mutex_unlock(&disks_mutex);
5766 if (!error && mddev->kobj.sd) {
5767 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5768 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5769 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level");
5770 }
5771 mddev_put(mddev);
5772 return error;
5773 }
5774
md_probe(dev_t dev,int * part,void * data)5775 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5776 {
5777 if (create_on_open)
5778 md_alloc(dev, NULL);
5779 return NULL;
5780 }
5781
add_named_array(const char * val,const struct kernel_param * kp)5782 static int add_named_array(const char *val, const struct kernel_param *kp)
5783 {
5784 /*
5785 * val must be "md_*" or "mdNNN".
5786 * For "md_*" we allocate an array with a large free minor number, and
5787 * set the name to val. val must not already be an active name.
5788 * For "mdNNN" we allocate an array with the minor number NNN
5789 * which must not already be in use.
5790 */
5791 int len = strlen(val);
5792 char buf[DISK_NAME_LEN];
5793 unsigned long devnum;
5794
5795 while (len && val[len-1] == '\n')
5796 len--;
5797 if (len >= DISK_NAME_LEN)
5798 return -E2BIG;
5799 strlcpy(buf, val, len+1);
5800 if (strncmp(buf, "md_", 3) == 0)
5801 return md_alloc(0, buf);
5802 if (strncmp(buf, "md", 2) == 0 &&
5803 isdigit(buf[2]) &&
5804 kstrtoul(buf+2, 10, &devnum) == 0 &&
5805 devnum <= MINORMASK)
5806 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
5807
5808 return -EINVAL;
5809 }
5810
md_safemode_timeout(struct timer_list * t)5811 static void md_safemode_timeout(struct timer_list *t)
5812 {
5813 struct mddev *mddev = from_timer(mddev, t, safemode_timer);
5814
5815 mddev->safemode = 1;
5816 if (mddev->external)
5817 sysfs_notify_dirent_safe(mddev->sysfs_state);
5818
5819 md_wakeup_thread(mddev->thread);
5820 }
5821
5822 static int start_dirty_degraded;
5823
md_run(struct mddev * mddev)5824 int md_run(struct mddev *mddev)
5825 {
5826 int err;
5827 struct md_rdev *rdev;
5828 struct md_personality *pers;
5829
5830 if (list_empty(&mddev->disks))
5831 /* cannot run an array with no devices.. */
5832 return -EINVAL;
5833
5834 if (mddev->pers)
5835 return -EBUSY;
5836 /* Cannot run until previous stop completes properly */
5837 if (mddev->sysfs_active)
5838 return -EBUSY;
5839
5840 /*
5841 * Analyze all RAID superblock(s)
5842 */
5843 if (!mddev->raid_disks) {
5844 if (!mddev->persistent)
5845 return -EINVAL;
5846 err = analyze_sbs(mddev);
5847 if (err)
5848 return -EINVAL;
5849 }
5850
5851 if (mddev->level != LEVEL_NONE)
5852 request_module("md-level-%d", mddev->level);
5853 else if (mddev->clevel[0])
5854 request_module("md-%s", mddev->clevel);
5855
5856 /*
5857 * Drop all container device buffers, from now on
5858 * the only valid external interface is through the md
5859 * device.
5860 */
5861 mddev->has_superblocks = false;
5862 rdev_for_each(rdev, mddev) {
5863 if (test_bit(Faulty, &rdev->flags))
5864 continue;
5865 sync_blockdev(rdev->bdev);
5866 invalidate_bdev(rdev->bdev);
5867 if (mddev->ro != 1 &&
5868 (bdev_read_only(rdev->bdev) ||
5869 bdev_read_only(rdev->meta_bdev))) {
5870 mddev->ro = 1;
5871 if (mddev->gendisk)
5872 set_disk_ro(mddev->gendisk, 1);
5873 }
5874
5875 if (rdev->sb_page)
5876 mddev->has_superblocks = true;
5877
5878 /* perform some consistency tests on the device.
5879 * We don't want the data to overlap the metadata,
5880 * Internal Bitmap issues have been handled elsewhere.
5881 */
5882 if (rdev->meta_bdev) {
5883 /* Nothing to check */;
5884 } else if (rdev->data_offset < rdev->sb_start) {
5885 if (mddev->dev_sectors &&
5886 rdev->data_offset + mddev->dev_sectors
5887 > rdev->sb_start) {
5888 pr_warn("md: %s: data overlaps metadata\n",
5889 mdname(mddev));
5890 return -EINVAL;
5891 }
5892 } else {
5893 if (rdev->sb_start + rdev->sb_size/512
5894 > rdev->data_offset) {
5895 pr_warn("md: %s: metadata overlaps data\n",
5896 mdname(mddev));
5897 return -EINVAL;
5898 }
5899 }
5900 sysfs_notify_dirent_safe(rdev->sysfs_state);
5901 }
5902
5903 if (!bioset_initialized(&mddev->bio_set)) {
5904 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5905 if (err)
5906 return err;
5907 }
5908 if (!bioset_initialized(&mddev->sync_set)) {
5909 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5910 if (err)
5911 return err;
5912 }
5913
5914 spin_lock(&pers_lock);
5915 pers = find_pers(mddev->level, mddev->clevel);
5916 if (!pers || !try_module_get(pers->owner)) {
5917 spin_unlock(&pers_lock);
5918 if (mddev->level != LEVEL_NONE)
5919 pr_warn("md: personality for level %d is not loaded!\n",
5920 mddev->level);
5921 else
5922 pr_warn("md: personality for level %s is not loaded!\n",
5923 mddev->clevel);
5924 err = -EINVAL;
5925 goto abort;
5926 }
5927 spin_unlock(&pers_lock);
5928 if (mddev->level != pers->level) {
5929 mddev->level = pers->level;
5930 mddev->new_level = pers->level;
5931 }
5932 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5933
5934 if (mddev->reshape_position != MaxSector &&
5935 pers->start_reshape == NULL) {
5936 /* This personality cannot handle reshaping... */
5937 module_put(pers->owner);
5938 err = -EINVAL;
5939 goto abort;
5940 }
5941
5942 if (pers->sync_request) {
5943 /* Warn if this is a potentially silly
5944 * configuration.
5945 */
5946 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5947 struct md_rdev *rdev2;
5948 int warned = 0;
5949
5950 rdev_for_each(rdev, mddev)
5951 rdev_for_each(rdev2, mddev) {
5952 if (rdev < rdev2 &&
5953 rdev->bdev->bd_disk ==
5954 rdev2->bdev->bd_disk) {
5955 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
5956 mdname(mddev),
5957 bdevname(rdev->bdev,b),
5958 bdevname(rdev2->bdev,b2));
5959 warned = 1;
5960 }
5961 }
5962
5963 if (warned)
5964 pr_warn("True protection against single-disk failure might be compromised.\n");
5965 }
5966
5967 mddev->recovery = 0;
5968 /* may be over-ridden by personality */
5969 mddev->resync_max_sectors = mddev->dev_sectors;
5970
5971 mddev->ok_start_degraded = start_dirty_degraded;
5972
5973 if (start_readonly && mddev->ro == 0)
5974 mddev->ro = 2; /* read-only, but switch on first write */
5975
5976 err = pers->run(mddev);
5977 if (err)
5978 pr_warn("md: pers->run() failed ...\n");
5979 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5980 WARN_ONCE(!mddev->external_size,
5981 "%s: default size too small, but 'external_size' not in effect?\n",
5982 __func__);
5983 pr_warn("md: invalid array_size %llu > default size %llu\n",
5984 (unsigned long long)mddev->array_sectors / 2,
5985 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5986 err = -EINVAL;
5987 }
5988 if (err == 0 && pers->sync_request &&
5989 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5990 struct bitmap *bitmap;
5991
5992 bitmap = md_bitmap_create(mddev, -1);
5993 if (IS_ERR(bitmap)) {
5994 err = PTR_ERR(bitmap);
5995 pr_warn("%s: failed to create bitmap (%d)\n",
5996 mdname(mddev), err);
5997 } else
5998 mddev->bitmap = bitmap;
5999
6000 }
6001 if (err)
6002 goto bitmap_abort;
6003
6004 if (mddev->bitmap_info.max_write_behind > 0) {
6005 bool create_pool = false;
6006
6007 rdev_for_each(rdev, mddev) {
6008 if (test_bit(WriteMostly, &rdev->flags) &&
6009 rdev_init_serial(rdev))
6010 create_pool = true;
6011 }
6012 if (create_pool && mddev->serial_info_pool == NULL) {
6013 mddev->serial_info_pool =
6014 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
6015 sizeof(struct serial_info));
6016 if (!mddev->serial_info_pool) {
6017 err = -ENOMEM;
6018 goto bitmap_abort;
6019 }
6020 }
6021 }
6022
6023 if (mddev->queue) {
6024 bool nonrot = true;
6025
6026 rdev_for_each(rdev, mddev) {
6027 if (rdev->raid_disk >= 0 &&
6028 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6029 nonrot = false;
6030 break;
6031 }
6032 }
6033 if (mddev->degraded)
6034 nonrot = false;
6035 if (nonrot)
6036 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
6037 else
6038 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
6039 }
6040 if (pers->sync_request) {
6041 if (mddev->kobj.sd &&
6042 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
6043 pr_warn("md: cannot register extra attributes for %s\n",
6044 mdname(mddev));
6045 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
6046 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
6047 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
6048 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
6049 mddev->ro = 0;
6050
6051 atomic_set(&mddev->max_corr_read_errors,
6052 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
6053 mddev->safemode = 0;
6054 if (mddev_is_clustered(mddev))
6055 mddev->safemode_delay = 0;
6056 else
6057 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
6058 mddev->in_sync = 1;
6059 smp_wmb();
6060 spin_lock(&mddev->lock);
6061 mddev->pers = pers;
6062 spin_unlock(&mddev->lock);
6063 rdev_for_each(rdev, mddev)
6064 if (rdev->raid_disk >= 0)
6065 sysfs_link_rdev(mddev, rdev); /* failure here is OK */
6066
6067 if (mddev->degraded && !mddev->ro)
6068 /* This ensures that recovering status is reported immediately
6069 * via sysfs - until a lack of spares is confirmed.
6070 */
6071 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6072 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6073
6074 if (mddev->sb_flags)
6075 md_update_sb(mddev, 0);
6076
6077 md_new_event(mddev);
6078 return 0;
6079
6080 bitmap_abort:
6081 mddev_detach(mddev);
6082 if (mddev->private)
6083 pers->free(mddev, mddev->private);
6084 mddev->private = NULL;
6085 module_put(pers->owner);
6086 md_bitmap_destroy(mddev);
6087 abort:
6088 bioset_exit(&mddev->bio_set);
6089 bioset_exit(&mddev->sync_set);
6090 return err;
6091 }
6092 EXPORT_SYMBOL_GPL(md_run);
6093
do_md_run(struct mddev * mddev)6094 int do_md_run(struct mddev *mddev)
6095 {
6096 int err;
6097
6098 set_bit(MD_NOT_READY, &mddev->flags);
6099 err = md_run(mddev);
6100 if (err)
6101 goto out;
6102 err = md_bitmap_load(mddev);
6103 if (err) {
6104 md_bitmap_destroy(mddev);
6105 goto out;
6106 }
6107
6108 if (mddev_is_clustered(mddev))
6109 md_allow_write(mddev);
6110
6111 /* run start up tasks that require md_thread */
6112 md_start(mddev);
6113
6114 md_wakeup_thread(mddev->thread);
6115 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
6116
6117 set_capacity(mddev->gendisk, mddev->array_sectors);
6118 revalidate_disk_size(mddev->gendisk, true);
6119 clear_bit(MD_NOT_READY, &mddev->flags);
6120 mddev->changed = 1;
6121 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
6122 sysfs_notify_dirent_safe(mddev->sysfs_state);
6123 sysfs_notify_dirent_safe(mddev->sysfs_action);
6124 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
6125 out:
6126 clear_bit(MD_NOT_READY, &mddev->flags);
6127 return err;
6128 }
6129
md_start(struct mddev * mddev)6130 int md_start(struct mddev *mddev)
6131 {
6132 int ret = 0;
6133
6134 if (mddev->pers->start) {
6135 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6136 md_wakeup_thread(mddev->thread);
6137 ret = mddev->pers->start(mddev);
6138 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6139 md_wakeup_thread(mddev->sync_thread);
6140 }
6141 return ret;
6142 }
6143 EXPORT_SYMBOL_GPL(md_start);
6144
restart_array(struct mddev * mddev)6145 static int restart_array(struct mddev *mddev)
6146 {
6147 struct gendisk *disk = mddev->gendisk;
6148 struct md_rdev *rdev;
6149 bool has_journal = false;
6150 bool has_readonly = false;
6151
6152 /* Complain if it has no devices */
6153 if (list_empty(&mddev->disks))
6154 return -ENXIO;
6155 if (!mddev->pers)
6156 return -EINVAL;
6157 if (!mddev->ro)
6158 return -EBUSY;
6159
6160 rcu_read_lock();
6161 rdev_for_each_rcu(rdev, mddev) {
6162 if (test_bit(Journal, &rdev->flags) &&
6163 !test_bit(Faulty, &rdev->flags))
6164 has_journal = true;
6165 if (bdev_read_only(rdev->bdev))
6166 has_readonly = true;
6167 }
6168 rcu_read_unlock();
6169 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
6170 /* Don't restart rw with journal missing/faulty */
6171 return -EINVAL;
6172 if (has_readonly)
6173 return -EROFS;
6174
6175 mddev->safemode = 0;
6176 mddev->ro = 0;
6177 set_disk_ro(disk, 0);
6178 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
6179 /* Kick recovery or resync if necessary */
6180 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6181 md_wakeup_thread(mddev->thread);
6182 md_wakeup_thread(mddev->sync_thread);
6183 sysfs_notify_dirent_safe(mddev->sysfs_state);
6184 return 0;
6185 }
6186
md_clean(struct mddev * mddev)6187 static void md_clean(struct mddev *mddev)
6188 {
6189 mddev->array_sectors = 0;
6190 mddev->external_size = 0;
6191 mddev->dev_sectors = 0;
6192 mddev->raid_disks = 0;
6193 mddev->recovery_cp = 0;
6194 mddev->resync_min = 0;
6195 mddev->resync_max = MaxSector;
6196 mddev->reshape_position = MaxSector;
6197 mddev->external = 0;
6198 mddev->persistent = 0;
6199 mddev->level = LEVEL_NONE;
6200 mddev->clevel[0] = 0;
6201 mddev->flags = 0;
6202 mddev->sb_flags = 0;
6203 mddev->ro = 0;
6204 mddev->metadata_type[0] = 0;
6205 mddev->chunk_sectors = 0;
6206 mddev->ctime = mddev->utime = 0;
6207 mddev->layout = 0;
6208 mddev->max_disks = 0;
6209 mddev->events = 0;
6210 mddev->can_decrease_events = 0;
6211 mddev->delta_disks = 0;
6212 mddev->reshape_backwards = 0;
6213 mddev->new_level = LEVEL_NONE;
6214 mddev->new_layout = 0;
6215 mddev->new_chunk_sectors = 0;
6216 mddev->curr_resync = 0;
6217 atomic64_set(&mddev->resync_mismatches, 0);
6218 mddev->suspend_lo = mddev->suspend_hi = 0;
6219 mddev->sync_speed_min = mddev->sync_speed_max = 0;
6220 mddev->recovery = 0;
6221 mddev->in_sync = 0;
6222 mddev->changed = 0;
6223 mddev->degraded = 0;
6224 mddev->safemode = 0;
6225 mddev->private = NULL;
6226 mddev->cluster_info = NULL;
6227 mddev->bitmap_info.offset = 0;
6228 mddev->bitmap_info.default_offset = 0;
6229 mddev->bitmap_info.default_space = 0;
6230 mddev->bitmap_info.chunksize = 0;
6231 mddev->bitmap_info.daemon_sleep = 0;
6232 mddev->bitmap_info.max_write_behind = 0;
6233 mddev->bitmap_info.nodes = 0;
6234 }
6235
__md_stop_writes(struct mddev * mddev)6236 static void __md_stop_writes(struct mddev *mddev)
6237 {
6238 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6239 if (work_pending(&mddev->del_work))
6240 flush_workqueue(md_misc_wq);
6241 if (mddev->sync_thread) {
6242 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6243 md_reap_sync_thread(mddev);
6244 }
6245
6246 del_timer_sync(&mddev->safemode_timer);
6247
6248 if (mddev->pers && mddev->pers->quiesce) {
6249 mddev->pers->quiesce(mddev, 1);
6250 mddev->pers->quiesce(mddev, 0);
6251 }
6252 md_bitmap_flush(mddev);
6253
6254 if (mddev->ro == 0 &&
6255 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
6256 mddev->sb_flags)) {
6257 /* mark array as shutdown cleanly */
6258 if (!mddev_is_clustered(mddev))
6259 mddev->in_sync = 1;
6260 md_update_sb(mddev, 1);
6261 }
6262 /* disable policy to guarantee rdevs free resources for serialization */
6263 mddev->serialize_policy = 0;
6264 mddev_destroy_serial_pool(mddev, NULL, true);
6265 }
6266
md_stop_writes(struct mddev * mddev)6267 void md_stop_writes(struct mddev *mddev)
6268 {
6269 mddev_lock_nointr(mddev);
6270 __md_stop_writes(mddev);
6271 mddev_unlock(mddev);
6272 }
6273 EXPORT_SYMBOL_GPL(md_stop_writes);
6274
mddev_detach(struct mddev * mddev)6275 static void mddev_detach(struct mddev *mddev)
6276 {
6277 md_bitmap_wait_behind_writes(mddev);
6278 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) {
6279 mddev->pers->quiesce(mddev, 1);
6280 mddev->pers->quiesce(mddev, 0);
6281 }
6282 md_unregister_thread(&mddev->thread);
6283 if (mddev->queue)
6284 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
6285 }
6286
__md_stop(struct mddev * mddev)6287 static void __md_stop(struct mddev *mddev)
6288 {
6289 struct md_personality *pers = mddev->pers;
6290 md_bitmap_destroy(mddev);
6291 mddev_detach(mddev);
6292 /* Ensure ->event_work is done */
6293 if (mddev->event_work.func)
6294 flush_workqueue(md_misc_wq);
6295 spin_lock(&mddev->lock);
6296 mddev->pers = NULL;
6297 spin_unlock(&mddev->lock);
6298 pers->free(mddev, mddev->private);
6299 mddev->private = NULL;
6300 if (pers->sync_request && mddev->to_remove == NULL)
6301 mddev->to_remove = &md_redundancy_group;
6302 module_put(pers->owner);
6303 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6304 }
6305
md_stop(struct mddev * mddev)6306 void md_stop(struct mddev *mddev)
6307 {
6308 lockdep_assert_held(&mddev->reconfig_mutex);
6309
6310 /* stop the array and free an attached data structures.
6311 * This is called from dm-raid
6312 */
6313 __md_stop_writes(mddev);
6314 __md_stop(mddev);
6315 bioset_exit(&mddev->bio_set);
6316 bioset_exit(&mddev->sync_set);
6317 }
6318
6319 EXPORT_SYMBOL_GPL(md_stop);
6320
md_set_readonly(struct mddev * mddev,struct block_device * bdev)6321 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
6322 {
6323 int err = 0;
6324 int did_freeze = 0;
6325
6326 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6327 did_freeze = 1;
6328 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6329 md_wakeup_thread(mddev->thread);
6330 }
6331 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6332 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6333 if (mddev->sync_thread)
6334 /* Thread might be blocked waiting for metadata update
6335 * which will now never happen */
6336 wake_up_process(mddev->sync_thread->tsk);
6337
6338 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6339 return -EBUSY;
6340 mddev_unlock(mddev);
6341 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
6342 &mddev->recovery));
6343 wait_event(mddev->sb_wait,
6344 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
6345 mddev_lock_nointr(mddev);
6346
6347 mutex_lock(&mddev->open_mutex);
6348 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6349 mddev->sync_thread ||
6350 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6351 pr_warn("md: %s still in use.\n",mdname(mddev));
6352 if (did_freeze) {
6353 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6354 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6355 md_wakeup_thread(mddev->thread);
6356 }
6357 err = -EBUSY;
6358 goto out;
6359 }
6360 if (mddev->pers) {
6361 __md_stop_writes(mddev);
6362
6363 err = -ENXIO;
6364 if (mddev->ro==1)
6365 goto out;
6366 mddev->ro = 1;
6367 set_disk_ro(mddev->gendisk, 1);
6368 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6369 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6370 md_wakeup_thread(mddev->thread);
6371 sysfs_notify_dirent_safe(mddev->sysfs_state);
6372 err = 0;
6373 }
6374 out:
6375 mutex_unlock(&mddev->open_mutex);
6376 return err;
6377 }
6378
6379 /* mode:
6380 * 0 - completely stop and dis-assemble array
6381 * 2 - stop but do not disassemble array
6382 */
do_md_stop(struct mddev * mddev,int mode,struct block_device * bdev)6383 static int do_md_stop(struct mddev *mddev, int mode,
6384 struct block_device *bdev)
6385 {
6386 struct gendisk *disk = mddev->gendisk;
6387 struct md_rdev *rdev;
6388 int did_freeze = 0;
6389
6390 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6391 did_freeze = 1;
6392 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6393 md_wakeup_thread(mddev->thread);
6394 }
6395 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6396 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6397 if (mddev->sync_thread)
6398 /* Thread might be blocked waiting for metadata update
6399 * which will now never happen */
6400 wake_up_process(mddev->sync_thread->tsk);
6401
6402 mddev_unlock(mddev);
6403 wait_event(resync_wait, (mddev->sync_thread == NULL &&
6404 !test_bit(MD_RECOVERY_RUNNING,
6405 &mddev->recovery)));
6406 mddev_lock_nointr(mddev);
6407
6408 mutex_lock(&mddev->open_mutex);
6409 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6410 mddev->sysfs_active ||
6411 mddev->sync_thread ||
6412 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6413 pr_warn("md: %s still in use.\n",mdname(mddev));
6414 mutex_unlock(&mddev->open_mutex);
6415 if (did_freeze) {
6416 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6417 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6418 md_wakeup_thread(mddev->thread);
6419 }
6420 return -EBUSY;
6421 }
6422 if (mddev->pers) {
6423 if (mddev->ro)
6424 set_disk_ro(disk, 0);
6425
6426 __md_stop_writes(mddev);
6427 __md_stop(mddev);
6428
6429 /* tell userspace to handle 'inactive' */
6430 sysfs_notify_dirent_safe(mddev->sysfs_state);
6431
6432 rdev_for_each(rdev, mddev)
6433 if (rdev->raid_disk >= 0)
6434 sysfs_unlink_rdev(mddev, rdev);
6435
6436 set_capacity(disk, 0);
6437 mutex_unlock(&mddev->open_mutex);
6438 mddev->changed = 1;
6439 revalidate_disk_size(disk, true);
6440
6441 if (mddev->ro)
6442 mddev->ro = 0;
6443 } else
6444 mutex_unlock(&mddev->open_mutex);
6445 /*
6446 * Free resources if final stop
6447 */
6448 if (mode == 0) {
6449 pr_info("md: %s stopped.\n", mdname(mddev));
6450
6451 if (mddev->bitmap_info.file) {
6452 struct file *f = mddev->bitmap_info.file;
6453 spin_lock(&mddev->lock);
6454 mddev->bitmap_info.file = NULL;
6455 spin_unlock(&mddev->lock);
6456 fput(f);
6457 }
6458 mddev->bitmap_info.offset = 0;
6459
6460 export_array(mddev);
6461
6462 md_clean(mddev);
6463 if (mddev->hold_active == UNTIL_STOP)
6464 mddev->hold_active = 0;
6465 }
6466 md_new_event(mddev);
6467 sysfs_notify_dirent_safe(mddev->sysfs_state);
6468 return 0;
6469 }
6470
6471 #ifndef MODULE
autorun_array(struct mddev * mddev)6472 static void autorun_array(struct mddev *mddev)
6473 {
6474 struct md_rdev *rdev;
6475 int err;
6476
6477 if (list_empty(&mddev->disks))
6478 return;
6479
6480 pr_info("md: running: ");
6481
6482 rdev_for_each(rdev, mddev) {
6483 char b[BDEVNAME_SIZE];
6484 pr_cont("<%s>", bdevname(rdev->bdev,b));
6485 }
6486 pr_cont("\n");
6487
6488 err = do_md_run(mddev);
6489 if (err) {
6490 pr_warn("md: do_md_run() returned %d\n", err);
6491 do_md_stop(mddev, 0, NULL);
6492 }
6493 }
6494
6495 /*
6496 * lets try to run arrays based on all disks that have arrived
6497 * until now. (those are in pending_raid_disks)
6498 *
6499 * the method: pick the first pending disk, collect all disks with
6500 * the same UUID, remove all from the pending list and put them into
6501 * the 'same_array' list. Then order this list based on superblock
6502 * update time (freshest comes first), kick out 'old' disks and
6503 * compare superblocks. If everything's fine then run it.
6504 *
6505 * If "unit" is allocated, then bump its reference count
6506 */
autorun_devices(int part)6507 static void autorun_devices(int part)
6508 {
6509 struct md_rdev *rdev0, *rdev, *tmp;
6510 struct mddev *mddev;
6511 char b[BDEVNAME_SIZE];
6512
6513 pr_info("md: autorun ...\n");
6514 while (!list_empty(&pending_raid_disks)) {
6515 int unit;
6516 dev_t dev;
6517 LIST_HEAD(candidates);
6518 rdev0 = list_entry(pending_raid_disks.next,
6519 struct md_rdev, same_set);
6520
6521 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
6522 INIT_LIST_HEAD(&candidates);
6523 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6524 if (super_90_load(rdev, rdev0, 0) >= 0) {
6525 pr_debug("md: adding %s ...\n",
6526 bdevname(rdev->bdev,b));
6527 list_move(&rdev->same_set, &candidates);
6528 }
6529 /*
6530 * now we have a set of devices, with all of them having
6531 * mostly sane superblocks. It's time to allocate the
6532 * mddev.
6533 */
6534 if (part) {
6535 dev = MKDEV(mdp_major,
6536 rdev0->preferred_minor << MdpMinorShift);
6537 unit = MINOR(dev) >> MdpMinorShift;
6538 } else {
6539 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6540 unit = MINOR(dev);
6541 }
6542 if (rdev0->preferred_minor != unit) {
6543 pr_warn("md: unit number in %s is bad: %d\n",
6544 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
6545 break;
6546 }
6547
6548 md_probe(dev, NULL, NULL);
6549 mddev = mddev_find(dev);
6550 if (!mddev)
6551 break;
6552
6553 if (mddev_lock(mddev))
6554 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6555 else if (mddev->raid_disks || mddev->major_version
6556 || !list_empty(&mddev->disks)) {
6557 pr_warn("md: %s already running, cannot run %s\n",
6558 mdname(mddev), bdevname(rdev0->bdev,b));
6559 mddev_unlock(mddev);
6560 } else {
6561 pr_debug("md: created %s\n", mdname(mddev));
6562 mddev->persistent = 1;
6563 rdev_for_each_list(rdev, tmp, &candidates) {
6564 list_del_init(&rdev->same_set);
6565 if (bind_rdev_to_array(rdev, mddev))
6566 export_rdev(rdev);
6567 }
6568 autorun_array(mddev);
6569 mddev_unlock(mddev);
6570 }
6571 /* on success, candidates will be empty, on error
6572 * it won't...
6573 */
6574 rdev_for_each_list(rdev, tmp, &candidates) {
6575 list_del_init(&rdev->same_set);
6576 export_rdev(rdev);
6577 }
6578 mddev_put(mddev);
6579 }
6580 pr_info("md: ... autorun DONE.\n");
6581 }
6582 #endif /* !MODULE */
6583
get_version(void __user * arg)6584 static int get_version(void __user *arg)
6585 {
6586 mdu_version_t ver;
6587
6588 ver.major = MD_MAJOR_VERSION;
6589 ver.minor = MD_MINOR_VERSION;
6590 ver.patchlevel = MD_PATCHLEVEL_VERSION;
6591
6592 if (copy_to_user(arg, &ver, sizeof(ver)))
6593 return -EFAULT;
6594
6595 return 0;
6596 }
6597
get_array_info(struct mddev * mddev,void __user * arg)6598 static int get_array_info(struct mddev *mddev, void __user *arg)
6599 {
6600 mdu_array_info_t info;
6601 int nr,working,insync,failed,spare;
6602 struct md_rdev *rdev;
6603
6604 nr = working = insync = failed = spare = 0;
6605 rcu_read_lock();
6606 rdev_for_each_rcu(rdev, mddev) {
6607 nr++;
6608 if (test_bit(Faulty, &rdev->flags))
6609 failed++;
6610 else {
6611 working++;
6612 if (test_bit(In_sync, &rdev->flags))
6613 insync++;
6614 else if (test_bit(Journal, &rdev->flags))
6615 /* TODO: add journal count to md_u.h */
6616 ;
6617 else
6618 spare++;
6619 }
6620 }
6621 rcu_read_unlock();
6622
6623 info.major_version = mddev->major_version;
6624 info.minor_version = mddev->minor_version;
6625 info.patch_version = MD_PATCHLEVEL_VERSION;
6626 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6627 info.level = mddev->level;
6628 info.size = mddev->dev_sectors / 2;
6629 if (info.size != mddev->dev_sectors / 2) /* overflow */
6630 info.size = -1;
6631 info.nr_disks = nr;
6632 info.raid_disks = mddev->raid_disks;
6633 info.md_minor = mddev->md_minor;
6634 info.not_persistent= !mddev->persistent;
6635
6636 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6637 info.state = 0;
6638 if (mddev->in_sync)
6639 info.state = (1<<MD_SB_CLEAN);
6640 if (mddev->bitmap && mddev->bitmap_info.offset)
6641 info.state |= (1<<MD_SB_BITMAP_PRESENT);
6642 if (mddev_is_clustered(mddev))
6643 info.state |= (1<<MD_SB_CLUSTERED);
6644 info.active_disks = insync;
6645 info.working_disks = working;
6646 info.failed_disks = failed;
6647 info.spare_disks = spare;
6648
6649 info.layout = mddev->layout;
6650 info.chunk_size = mddev->chunk_sectors << 9;
6651
6652 if (copy_to_user(arg, &info, sizeof(info)))
6653 return -EFAULT;
6654
6655 return 0;
6656 }
6657
get_bitmap_file(struct mddev * mddev,void __user * arg)6658 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6659 {
6660 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6661 char *ptr;
6662 int err;
6663
6664 file = kzalloc(sizeof(*file), GFP_NOIO);
6665 if (!file)
6666 return -ENOMEM;
6667
6668 err = 0;
6669 spin_lock(&mddev->lock);
6670 /* bitmap enabled */
6671 if (mddev->bitmap_info.file) {
6672 ptr = file_path(mddev->bitmap_info.file, file->pathname,
6673 sizeof(file->pathname));
6674 if (IS_ERR(ptr))
6675 err = PTR_ERR(ptr);
6676 else
6677 memmove(file->pathname, ptr,
6678 sizeof(file->pathname)-(ptr-file->pathname));
6679 }
6680 spin_unlock(&mddev->lock);
6681
6682 if (err == 0 &&
6683 copy_to_user(arg, file, sizeof(*file)))
6684 err = -EFAULT;
6685
6686 kfree(file);
6687 return err;
6688 }
6689
get_disk_info(struct mddev * mddev,void __user * arg)6690 static int get_disk_info(struct mddev *mddev, void __user * arg)
6691 {
6692 mdu_disk_info_t info;
6693 struct md_rdev *rdev;
6694
6695 if (copy_from_user(&info, arg, sizeof(info)))
6696 return -EFAULT;
6697
6698 rcu_read_lock();
6699 rdev = md_find_rdev_nr_rcu(mddev, info.number);
6700 if (rdev) {
6701 info.major = MAJOR(rdev->bdev->bd_dev);
6702 info.minor = MINOR(rdev->bdev->bd_dev);
6703 info.raid_disk = rdev->raid_disk;
6704 info.state = 0;
6705 if (test_bit(Faulty, &rdev->flags))
6706 info.state |= (1<<MD_DISK_FAULTY);
6707 else if (test_bit(In_sync, &rdev->flags)) {
6708 info.state |= (1<<MD_DISK_ACTIVE);
6709 info.state |= (1<<MD_DISK_SYNC);
6710 }
6711 if (test_bit(Journal, &rdev->flags))
6712 info.state |= (1<<MD_DISK_JOURNAL);
6713 if (test_bit(WriteMostly, &rdev->flags))
6714 info.state |= (1<<MD_DISK_WRITEMOSTLY);
6715 if (test_bit(FailFast, &rdev->flags))
6716 info.state |= (1<<MD_DISK_FAILFAST);
6717 } else {
6718 info.major = info.minor = 0;
6719 info.raid_disk = -1;
6720 info.state = (1<<MD_DISK_REMOVED);
6721 }
6722 rcu_read_unlock();
6723
6724 if (copy_to_user(arg, &info, sizeof(info)))
6725 return -EFAULT;
6726
6727 return 0;
6728 }
6729
md_add_new_disk(struct mddev * mddev,struct mdu_disk_info_s * info)6730 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info)
6731 {
6732 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
6733 struct md_rdev *rdev;
6734 dev_t dev = MKDEV(info->major,info->minor);
6735
6736 if (mddev_is_clustered(mddev) &&
6737 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6738 pr_warn("%s: Cannot add to clustered mddev.\n",
6739 mdname(mddev));
6740 return -EINVAL;
6741 }
6742
6743 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6744 return -EOVERFLOW;
6745
6746 if (!mddev->raid_disks) {
6747 int err;
6748 /* expecting a device which has a superblock */
6749 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6750 if (IS_ERR(rdev)) {
6751 pr_warn("md: md_import_device returned %ld\n",
6752 PTR_ERR(rdev));
6753 return PTR_ERR(rdev);
6754 }
6755 if (!list_empty(&mddev->disks)) {
6756 struct md_rdev *rdev0
6757 = list_entry(mddev->disks.next,
6758 struct md_rdev, same_set);
6759 err = super_types[mddev->major_version]
6760 .load_super(rdev, rdev0, mddev->minor_version);
6761 if (err < 0) {
6762 pr_warn("md: %s has different UUID to %s\n",
6763 bdevname(rdev->bdev,b),
6764 bdevname(rdev0->bdev,b2));
6765 export_rdev(rdev);
6766 return -EINVAL;
6767 }
6768 }
6769 err = bind_rdev_to_array(rdev, mddev);
6770 if (err)
6771 export_rdev(rdev);
6772 return err;
6773 }
6774
6775 /*
6776 * md_add_new_disk can be used once the array is assembled
6777 * to add "hot spares". They must already have a superblock
6778 * written
6779 */
6780 if (mddev->pers) {
6781 int err;
6782 if (!mddev->pers->hot_add_disk) {
6783 pr_warn("%s: personality does not support diskops!\n",
6784 mdname(mddev));
6785 return -EINVAL;
6786 }
6787 if (mddev->persistent)
6788 rdev = md_import_device(dev, mddev->major_version,
6789 mddev->minor_version);
6790 else
6791 rdev = md_import_device(dev, -1, -1);
6792 if (IS_ERR(rdev)) {
6793 pr_warn("md: md_import_device returned %ld\n",
6794 PTR_ERR(rdev));
6795 return PTR_ERR(rdev);
6796 }
6797 /* set saved_raid_disk if appropriate */
6798 if (!mddev->persistent) {
6799 if (info->state & (1<<MD_DISK_SYNC) &&
6800 info->raid_disk < mddev->raid_disks) {
6801 rdev->raid_disk = info->raid_disk;
6802 set_bit(In_sync, &rdev->flags);
6803 clear_bit(Bitmap_sync, &rdev->flags);
6804 } else
6805 rdev->raid_disk = -1;
6806 rdev->saved_raid_disk = rdev->raid_disk;
6807 } else
6808 super_types[mddev->major_version].
6809 validate_super(mddev, rdev);
6810 if ((info->state & (1<<MD_DISK_SYNC)) &&
6811 rdev->raid_disk != info->raid_disk) {
6812 /* This was a hot-add request, but events doesn't
6813 * match, so reject it.
6814 */
6815 export_rdev(rdev);
6816 return -EINVAL;
6817 }
6818
6819 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6820 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6821 set_bit(WriteMostly, &rdev->flags);
6822 else
6823 clear_bit(WriteMostly, &rdev->flags);
6824 if (info->state & (1<<MD_DISK_FAILFAST))
6825 set_bit(FailFast, &rdev->flags);
6826 else
6827 clear_bit(FailFast, &rdev->flags);
6828
6829 if (info->state & (1<<MD_DISK_JOURNAL)) {
6830 struct md_rdev *rdev2;
6831 bool has_journal = false;
6832
6833 /* make sure no existing journal disk */
6834 rdev_for_each(rdev2, mddev) {
6835 if (test_bit(Journal, &rdev2->flags)) {
6836 has_journal = true;
6837 break;
6838 }
6839 }
6840 if (has_journal || mddev->bitmap) {
6841 export_rdev(rdev);
6842 return -EBUSY;
6843 }
6844 set_bit(Journal, &rdev->flags);
6845 }
6846 /*
6847 * check whether the device shows up in other nodes
6848 */
6849 if (mddev_is_clustered(mddev)) {
6850 if (info->state & (1 << MD_DISK_CANDIDATE))
6851 set_bit(Candidate, &rdev->flags);
6852 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6853 /* --add initiated by this node */
6854 err = md_cluster_ops->add_new_disk(mddev, rdev);
6855 if (err) {
6856 export_rdev(rdev);
6857 return err;
6858 }
6859 }
6860 }
6861
6862 rdev->raid_disk = -1;
6863 err = bind_rdev_to_array(rdev, mddev);
6864
6865 if (err)
6866 export_rdev(rdev);
6867
6868 if (mddev_is_clustered(mddev)) {
6869 if (info->state & (1 << MD_DISK_CANDIDATE)) {
6870 if (!err) {
6871 err = md_cluster_ops->new_disk_ack(mddev,
6872 err == 0);
6873 if (err)
6874 md_kick_rdev_from_array(rdev);
6875 }
6876 } else {
6877 if (err)
6878 md_cluster_ops->add_new_disk_cancel(mddev);
6879 else
6880 err = add_bound_rdev(rdev);
6881 }
6882
6883 } else if (!err)
6884 err = add_bound_rdev(rdev);
6885
6886 return err;
6887 }
6888
6889 /* otherwise, md_add_new_disk is only allowed
6890 * for major_version==0 superblocks
6891 */
6892 if (mddev->major_version != 0) {
6893 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6894 return -EINVAL;
6895 }
6896
6897 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6898 int err;
6899 rdev = md_import_device(dev, -1, 0);
6900 if (IS_ERR(rdev)) {
6901 pr_warn("md: error, md_import_device() returned %ld\n",
6902 PTR_ERR(rdev));
6903 return PTR_ERR(rdev);
6904 }
6905 rdev->desc_nr = info->number;
6906 if (info->raid_disk < mddev->raid_disks)
6907 rdev->raid_disk = info->raid_disk;
6908 else
6909 rdev->raid_disk = -1;
6910
6911 if (rdev->raid_disk < mddev->raid_disks)
6912 if (info->state & (1<<MD_DISK_SYNC))
6913 set_bit(In_sync, &rdev->flags);
6914
6915 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6916 set_bit(WriteMostly, &rdev->flags);
6917 if (info->state & (1<<MD_DISK_FAILFAST))
6918 set_bit(FailFast, &rdev->flags);
6919
6920 if (!mddev->persistent) {
6921 pr_debug("md: nonpersistent superblock ...\n");
6922 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6923 } else
6924 rdev->sb_start = calc_dev_sboffset(rdev);
6925 rdev->sectors = rdev->sb_start;
6926
6927 err = bind_rdev_to_array(rdev, mddev);
6928 if (err) {
6929 export_rdev(rdev);
6930 return err;
6931 }
6932 }
6933
6934 return 0;
6935 }
6936
hot_remove_disk(struct mddev * mddev,dev_t dev)6937 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6938 {
6939 char b[BDEVNAME_SIZE];
6940 struct md_rdev *rdev;
6941
6942 if (!mddev->pers)
6943 return -ENODEV;
6944
6945 rdev = find_rdev(mddev, dev);
6946 if (!rdev)
6947 return -ENXIO;
6948
6949 if (rdev->raid_disk < 0)
6950 goto kick_rdev;
6951
6952 clear_bit(Blocked, &rdev->flags);
6953 remove_and_add_spares(mddev, rdev);
6954
6955 if (rdev->raid_disk >= 0)
6956 goto busy;
6957
6958 kick_rdev:
6959 if (mddev_is_clustered(mddev)) {
6960 if (md_cluster_ops->remove_disk(mddev, rdev))
6961 goto busy;
6962 }
6963
6964 md_kick_rdev_from_array(rdev);
6965 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6966 if (mddev->thread)
6967 md_wakeup_thread(mddev->thread);
6968 else
6969 md_update_sb(mddev, 1);
6970 md_new_event(mddev);
6971
6972 return 0;
6973 busy:
6974 pr_debug("md: cannot remove active disk %s from %s ...\n",
6975 bdevname(rdev->bdev,b), mdname(mddev));
6976 return -EBUSY;
6977 }
6978
hot_add_disk(struct mddev * mddev,dev_t dev)6979 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6980 {
6981 char b[BDEVNAME_SIZE];
6982 int err;
6983 struct md_rdev *rdev;
6984
6985 if (!mddev->pers)
6986 return -ENODEV;
6987
6988 if (mddev->major_version != 0) {
6989 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
6990 mdname(mddev));
6991 return -EINVAL;
6992 }
6993 if (!mddev->pers->hot_add_disk) {
6994 pr_warn("%s: personality does not support diskops!\n",
6995 mdname(mddev));
6996 return -EINVAL;
6997 }
6998
6999 rdev = md_import_device(dev, -1, 0);
7000 if (IS_ERR(rdev)) {
7001 pr_warn("md: error, md_import_device() returned %ld\n",
7002 PTR_ERR(rdev));
7003 return -EINVAL;
7004 }
7005
7006 if (mddev->persistent)
7007 rdev->sb_start = calc_dev_sboffset(rdev);
7008 else
7009 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
7010
7011 rdev->sectors = rdev->sb_start;
7012
7013 if (test_bit(Faulty, &rdev->flags)) {
7014 pr_warn("md: can not hot-add faulty %s disk to %s!\n",
7015 bdevname(rdev->bdev,b), mdname(mddev));
7016 err = -EINVAL;
7017 goto abort_export;
7018 }
7019
7020 clear_bit(In_sync, &rdev->flags);
7021 rdev->desc_nr = -1;
7022 rdev->saved_raid_disk = -1;
7023 err = bind_rdev_to_array(rdev, mddev);
7024 if (err)
7025 goto abort_export;
7026
7027 /*
7028 * The rest should better be atomic, we can have disk failures
7029 * noticed in interrupt contexts ...
7030 */
7031
7032 rdev->raid_disk = -1;
7033
7034 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7035 if (!mddev->thread)
7036 md_update_sb(mddev, 1);
7037 /*
7038 * Kick recovery, maybe this spare has to be added to the
7039 * array immediately.
7040 */
7041 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7042 md_wakeup_thread(mddev->thread);
7043 md_new_event(mddev);
7044 return 0;
7045
7046 abort_export:
7047 export_rdev(rdev);
7048 return err;
7049 }
7050
set_bitmap_file(struct mddev * mddev,int fd)7051 static int set_bitmap_file(struct mddev *mddev, int fd)
7052 {
7053 int err = 0;
7054
7055 if (mddev->pers) {
7056 if (!mddev->pers->quiesce || !mddev->thread)
7057 return -EBUSY;
7058 if (mddev->recovery || mddev->sync_thread)
7059 return -EBUSY;
7060 /* we should be able to change the bitmap.. */
7061 }
7062
7063 if (fd >= 0) {
7064 struct inode *inode;
7065 struct file *f;
7066
7067 if (mddev->bitmap || mddev->bitmap_info.file)
7068 return -EEXIST; /* cannot add when bitmap is present */
7069 f = fget(fd);
7070
7071 if (f == NULL) {
7072 pr_warn("%s: error: failed to get bitmap file\n",
7073 mdname(mddev));
7074 return -EBADF;
7075 }
7076
7077 inode = f->f_mapping->host;
7078 if (!S_ISREG(inode->i_mode)) {
7079 pr_warn("%s: error: bitmap file must be a regular file\n",
7080 mdname(mddev));
7081 err = -EBADF;
7082 } else if (!(f->f_mode & FMODE_WRITE)) {
7083 pr_warn("%s: error: bitmap file must open for write\n",
7084 mdname(mddev));
7085 err = -EBADF;
7086 } else if (atomic_read(&inode->i_writecount) != 1) {
7087 pr_warn("%s: error: bitmap file is already in use\n",
7088 mdname(mddev));
7089 err = -EBUSY;
7090 }
7091 if (err) {
7092 fput(f);
7093 return err;
7094 }
7095 mddev->bitmap_info.file = f;
7096 mddev->bitmap_info.offset = 0; /* file overrides offset */
7097 } else if (mddev->bitmap == NULL)
7098 return -ENOENT; /* cannot remove what isn't there */
7099 err = 0;
7100 if (mddev->pers) {
7101 if (fd >= 0) {
7102 struct bitmap *bitmap;
7103
7104 bitmap = md_bitmap_create(mddev, -1);
7105 mddev_suspend(mddev);
7106 if (!IS_ERR(bitmap)) {
7107 mddev->bitmap = bitmap;
7108 err = md_bitmap_load(mddev);
7109 } else
7110 err = PTR_ERR(bitmap);
7111 if (err) {
7112 md_bitmap_destroy(mddev);
7113 fd = -1;
7114 }
7115 mddev_resume(mddev);
7116 } else if (fd < 0) {
7117 mddev_suspend(mddev);
7118 md_bitmap_destroy(mddev);
7119 mddev_resume(mddev);
7120 }
7121 }
7122 if (fd < 0) {
7123 struct file *f = mddev->bitmap_info.file;
7124 if (f) {
7125 spin_lock(&mddev->lock);
7126 mddev->bitmap_info.file = NULL;
7127 spin_unlock(&mddev->lock);
7128 fput(f);
7129 }
7130 }
7131
7132 return err;
7133 }
7134
7135 /*
7136 * md_set_array_info is used two different ways
7137 * The original usage is when creating a new array.
7138 * In this usage, raid_disks is > 0 and it together with
7139 * level, size, not_persistent,layout,chunksize determine the
7140 * shape of the array.
7141 * This will always create an array with a type-0.90.0 superblock.
7142 * The newer usage is when assembling an array.
7143 * In this case raid_disks will be 0, and the major_version field is
7144 * use to determine which style super-blocks are to be found on the devices.
7145 * The minor and patch _version numbers are also kept incase the
7146 * super_block handler wishes to interpret them.
7147 */
md_set_array_info(struct mddev * mddev,struct mdu_array_info_s * info)7148 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info)
7149 {
7150 if (info->raid_disks == 0) {
7151 /* just setting version number for superblock loading */
7152 if (info->major_version < 0 ||
7153 info->major_version >= ARRAY_SIZE(super_types) ||
7154 super_types[info->major_version].name == NULL) {
7155 /* maybe try to auto-load a module? */
7156 pr_warn("md: superblock version %d not known\n",
7157 info->major_version);
7158 return -EINVAL;
7159 }
7160 mddev->major_version = info->major_version;
7161 mddev->minor_version = info->minor_version;
7162 mddev->patch_version = info->patch_version;
7163 mddev->persistent = !info->not_persistent;
7164 /* ensure mddev_put doesn't delete this now that there
7165 * is some minimal configuration.
7166 */
7167 mddev->ctime = ktime_get_real_seconds();
7168 return 0;
7169 }
7170 mddev->major_version = MD_MAJOR_VERSION;
7171 mddev->minor_version = MD_MINOR_VERSION;
7172 mddev->patch_version = MD_PATCHLEVEL_VERSION;
7173 mddev->ctime = ktime_get_real_seconds();
7174
7175 mddev->level = info->level;
7176 mddev->clevel[0] = 0;
7177 mddev->dev_sectors = 2 * (sector_t)info->size;
7178 mddev->raid_disks = info->raid_disks;
7179 /* don't set md_minor, it is determined by which /dev/md* was
7180 * openned
7181 */
7182 if (info->state & (1<<MD_SB_CLEAN))
7183 mddev->recovery_cp = MaxSector;
7184 else
7185 mddev->recovery_cp = 0;
7186 mddev->persistent = ! info->not_persistent;
7187 mddev->external = 0;
7188
7189 mddev->layout = info->layout;
7190 if (mddev->level == 0)
7191 /* Cannot trust RAID0 layout info here */
7192 mddev->layout = -1;
7193 mddev->chunk_sectors = info->chunk_size >> 9;
7194
7195 if (mddev->persistent) {
7196 mddev->max_disks = MD_SB_DISKS;
7197 mddev->flags = 0;
7198 mddev->sb_flags = 0;
7199 }
7200 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7201
7202 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
7203 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
7204 mddev->bitmap_info.offset = 0;
7205
7206 mddev->reshape_position = MaxSector;
7207
7208 /*
7209 * Generate a 128 bit UUID
7210 */
7211 get_random_bytes(mddev->uuid, 16);
7212
7213 mddev->new_level = mddev->level;
7214 mddev->new_chunk_sectors = mddev->chunk_sectors;
7215 mddev->new_layout = mddev->layout;
7216 mddev->delta_disks = 0;
7217 mddev->reshape_backwards = 0;
7218
7219 return 0;
7220 }
7221
md_set_array_sectors(struct mddev * mddev,sector_t array_sectors)7222 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
7223 {
7224 lockdep_assert_held(&mddev->reconfig_mutex);
7225
7226 if (mddev->external_size)
7227 return;
7228
7229 mddev->array_sectors = array_sectors;
7230 }
7231 EXPORT_SYMBOL(md_set_array_sectors);
7232
update_size(struct mddev * mddev,sector_t num_sectors)7233 static int update_size(struct mddev *mddev, sector_t num_sectors)
7234 {
7235 struct md_rdev *rdev;
7236 int rv;
7237 int fit = (num_sectors == 0);
7238 sector_t old_dev_sectors = mddev->dev_sectors;
7239
7240 if (mddev->pers->resize == NULL)
7241 return -EINVAL;
7242 /* The "num_sectors" is the number of sectors of each device that
7243 * is used. This can only make sense for arrays with redundancy.
7244 * linear and raid0 always use whatever space is available. We can only
7245 * consider changing this number if no resync or reconstruction is
7246 * happening, and if the new size is acceptable. It must fit before the
7247 * sb_start or, if that is <data_offset, it must fit before the size
7248 * of each device. If num_sectors is zero, we find the largest size
7249 * that fits.
7250 */
7251 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7252 mddev->sync_thread)
7253 return -EBUSY;
7254 if (mddev->ro)
7255 return -EROFS;
7256
7257 rdev_for_each(rdev, mddev) {
7258 sector_t avail = rdev->sectors;
7259
7260 if (fit && (num_sectors == 0 || num_sectors > avail))
7261 num_sectors = avail;
7262 if (avail < num_sectors)
7263 return -ENOSPC;
7264 }
7265 rv = mddev->pers->resize(mddev, num_sectors);
7266 if (!rv) {
7267 if (mddev_is_clustered(mddev))
7268 md_cluster_ops->update_size(mddev, old_dev_sectors);
7269 else if (mddev->queue) {
7270 set_capacity(mddev->gendisk, mddev->array_sectors);
7271 revalidate_disk_size(mddev->gendisk, true);
7272 }
7273 }
7274 return rv;
7275 }
7276
update_raid_disks(struct mddev * mddev,int raid_disks)7277 static int update_raid_disks(struct mddev *mddev, int raid_disks)
7278 {
7279 int rv;
7280 struct md_rdev *rdev;
7281 /* change the number of raid disks */
7282 if (mddev->pers->check_reshape == NULL)
7283 return -EINVAL;
7284 if (mddev->ro)
7285 return -EROFS;
7286 if (raid_disks <= 0 ||
7287 (mddev->max_disks && raid_disks >= mddev->max_disks))
7288 return -EINVAL;
7289 if (mddev->sync_thread ||
7290 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7291 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) ||
7292 mddev->reshape_position != MaxSector)
7293 return -EBUSY;
7294
7295 rdev_for_each(rdev, mddev) {
7296 if (mddev->raid_disks < raid_disks &&
7297 rdev->data_offset < rdev->new_data_offset)
7298 return -EINVAL;
7299 if (mddev->raid_disks > raid_disks &&
7300 rdev->data_offset > rdev->new_data_offset)
7301 return -EINVAL;
7302 }
7303
7304 mddev->delta_disks = raid_disks - mddev->raid_disks;
7305 if (mddev->delta_disks < 0)
7306 mddev->reshape_backwards = 1;
7307 else if (mddev->delta_disks > 0)
7308 mddev->reshape_backwards = 0;
7309
7310 rv = mddev->pers->check_reshape(mddev);
7311 if (rv < 0) {
7312 mddev->delta_disks = 0;
7313 mddev->reshape_backwards = 0;
7314 }
7315 return rv;
7316 }
7317
7318 /*
7319 * update_array_info is used to change the configuration of an
7320 * on-line array.
7321 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
7322 * fields in the info are checked against the array.
7323 * Any differences that cannot be handled will cause an error.
7324 * Normally, only one change can be managed at a time.
7325 */
update_array_info(struct mddev * mddev,mdu_array_info_t * info)7326 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
7327 {
7328 int rv = 0;
7329 int cnt = 0;
7330 int state = 0;
7331
7332 /* calculate expected state,ignoring low bits */
7333 if (mddev->bitmap && mddev->bitmap_info.offset)
7334 state |= (1 << MD_SB_BITMAP_PRESENT);
7335
7336 if (mddev->major_version != info->major_version ||
7337 mddev->minor_version != info->minor_version ||
7338 /* mddev->patch_version != info->patch_version || */
7339 mddev->ctime != info->ctime ||
7340 mddev->level != info->level ||
7341 /* mddev->layout != info->layout || */
7342 mddev->persistent != !info->not_persistent ||
7343 mddev->chunk_sectors != info->chunk_size >> 9 ||
7344 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
7345 ((state^info->state) & 0xfffffe00)
7346 )
7347 return -EINVAL;
7348 /* Check there is only one change */
7349 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7350 cnt++;
7351 if (mddev->raid_disks != info->raid_disks)
7352 cnt++;
7353 if (mddev->layout != info->layout)
7354 cnt++;
7355 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
7356 cnt++;
7357 if (cnt == 0)
7358 return 0;
7359 if (cnt > 1)
7360 return -EINVAL;
7361
7362 if (mddev->layout != info->layout) {
7363 /* Change layout
7364 * we don't need to do anything at the md level, the
7365 * personality will take care of it all.
7366 */
7367 if (mddev->pers->check_reshape == NULL)
7368 return -EINVAL;
7369 else {
7370 mddev->new_layout = info->layout;
7371 rv = mddev->pers->check_reshape(mddev);
7372 if (rv)
7373 mddev->new_layout = mddev->layout;
7374 return rv;
7375 }
7376 }
7377 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7378 rv = update_size(mddev, (sector_t)info->size * 2);
7379
7380 if (mddev->raid_disks != info->raid_disks)
7381 rv = update_raid_disks(mddev, info->raid_disks);
7382
7383 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
7384 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
7385 rv = -EINVAL;
7386 goto err;
7387 }
7388 if (mddev->recovery || mddev->sync_thread) {
7389 rv = -EBUSY;
7390 goto err;
7391 }
7392 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
7393 struct bitmap *bitmap;
7394 /* add the bitmap */
7395 if (mddev->bitmap) {
7396 rv = -EEXIST;
7397 goto err;
7398 }
7399 if (mddev->bitmap_info.default_offset == 0) {
7400 rv = -EINVAL;
7401 goto err;
7402 }
7403 mddev->bitmap_info.offset =
7404 mddev->bitmap_info.default_offset;
7405 mddev->bitmap_info.space =
7406 mddev->bitmap_info.default_space;
7407 bitmap = md_bitmap_create(mddev, -1);
7408 mddev_suspend(mddev);
7409 if (!IS_ERR(bitmap)) {
7410 mddev->bitmap = bitmap;
7411 rv = md_bitmap_load(mddev);
7412 } else
7413 rv = PTR_ERR(bitmap);
7414 if (rv)
7415 md_bitmap_destroy(mddev);
7416 mddev_resume(mddev);
7417 } else {
7418 /* remove the bitmap */
7419 if (!mddev->bitmap) {
7420 rv = -ENOENT;
7421 goto err;
7422 }
7423 if (mddev->bitmap->storage.file) {
7424 rv = -EINVAL;
7425 goto err;
7426 }
7427 if (mddev->bitmap_info.nodes) {
7428 /* hold PW on all the bitmap lock */
7429 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
7430 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
7431 rv = -EPERM;
7432 md_cluster_ops->unlock_all_bitmaps(mddev);
7433 goto err;
7434 }
7435
7436 mddev->bitmap_info.nodes = 0;
7437 md_cluster_ops->leave(mddev);
7438 module_put(md_cluster_mod);
7439 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
7440 }
7441 mddev_suspend(mddev);
7442 md_bitmap_destroy(mddev);
7443 mddev_resume(mddev);
7444 mddev->bitmap_info.offset = 0;
7445 }
7446 }
7447 md_update_sb(mddev, 1);
7448 return rv;
7449 err:
7450 return rv;
7451 }
7452
set_disk_faulty(struct mddev * mddev,dev_t dev)7453 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7454 {
7455 struct md_rdev *rdev;
7456 int err = 0;
7457
7458 if (mddev->pers == NULL)
7459 return -ENODEV;
7460
7461 rcu_read_lock();
7462 rdev = md_find_rdev_rcu(mddev, dev);
7463 if (!rdev)
7464 err = -ENODEV;
7465 else {
7466 md_error(mddev, rdev);
7467 if (!test_bit(Faulty, &rdev->flags))
7468 err = -EBUSY;
7469 }
7470 rcu_read_unlock();
7471 return err;
7472 }
7473
7474 /*
7475 * We have a problem here : there is no easy way to give a CHS
7476 * virtual geometry. We currently pretend that we have a 2 heads
7477 * 4 sectors (with a BIG number of cylinders...). This drives
7478 * dosfs just mad... ;-)
7479 */
md_getgeo(struct block_device * bdev,struct hd_geometry * geo)7480 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7481 {
7482 struct mddev *mddev = bdev->bd_disk->private_data;
7483
7484 geo->heads = 2;
7485 geo->sectors = 4;
7486 geo->cylinders = mddev->array_sectors / 8;
7487 return 0;
7488 }
7489
md_ioctl_valid(unsigned int cmd)7490 static inline bool md_ioctl_valid(unsigned int cmd)
7491 {
7492 switch (cmd) {
7493 case ADD_NEW_DISK:
7494 case BLKROSET:
7495 case GET_ARRAY_INFO:
7496 case GET_BITMAP_FILE:
7497 case GET_DISK_INFO:
7498 case HOT_ADD_DISK:
7499 case HOT_REMOVE_DISK:
7500 case RAID_VERSION:
7501 case RESTART_ARRAY_RW:
7502 case RUN_ARRAY:
7503 case SET_ARRAY_INFO:
7504 case SET_BITMAP_FILE:
7505 case SET_DISK_FAULTY:
7506 case STOP_ARRAY:
7507 case STOP_ARRAY_RO:
7508 case CLUSTERED_DISK_NACK:
7509 return true;
7510 default:
7511 return false;
7512 }
7513 }
7514
md_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)7515 static int md_ioctl(struct block_device *bdev, fmode_t mode,
7516 unsigned int cmd, unsigned long arg)
7517 {
7518 int err = 0;
7519 void __user *argp = (void __user *)arg;
7520 struct mddev *mddev = NULL;
7521 int ro;
7522 bool did_set_md_closing = false;
7523
7524 if (!md_ioctl_valid(cmd))
7525 return -ENOTTY;
7526
7527 switch (cmd) {
7528 case RAID_VERSION:
7529 case GET_ARRAY_INFO:
7530 case GET_DISK_INFO:
7531 break;
7532 default:
7533 if (!capable(CAP_SYS_ADMIN))
7534 return -EACCES;
7535 }
7536
7537 /*
7538 * Commands dealing with the RAID driver but not any
7539 * particular array:
7540 */
7541 switch (cmd) {
7542 case RAID_VERSION:
7543 err = get_version(argp);
7544 goto out;
7545 default:;
7546 }
7547
7548 /*
7549 * Commands creating/starting a new array:
7550 */
7551
7552 mddev = bdev->bd_disk->private_data;
7553
7554 if (!mddev) {
7555 BUG();
7556 goto out;
7557 }
7558
7559 /* Some actions do not requires the mutex */
7560 switch (cmd) {
7561 case GET_ARRAY_INFO:
7562 if (!mddev->raid_disks && !mddev->external)
7563 err = -ENODEV;
7564 else
7565 err = get_array_info(mddev, argp);
7566 goto out;
7567
7568 case GET_DISK_INFO:
7569 if (!mddev->raid_disks && !mddev->external)
7570 err = -ENODEV;
7571 else
7572 err = get_disk_info(mddev, argp);
7573 goto out;
7574
7575 case SET_DISK_FAULTY:
7576 err = set_disk_faulty(mddev, new_decode_dev(arg));
7577 goto out;
7578
7579 case GET_BITMAP_FILE:
7580 err = get_bitmap_file(mddev, argp);
7581 goto out;
7582
7583 }
7584
7585 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK)
7586 flush_rdev_wq(mddev);
7587
7588 if (cmd == HOT_REMOVE_DISK)
7589 /* need to ensure recovery thread has run */
7590 wait_event_interruptible_timeout(mddev->sb_wait,
7591 !test_bit(MD_RECOVERY_NEEDED,
7592 &mddev->recovery),
7593 msecs_to_jiffies(5000));
7594 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7595 /* Need to flush page cache, and ensure no-one else opens
7596 * and writes
7597 */
7598 mutex_lock(&mddev->open_mutex);
7599 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7600 mutex_unlock(&mddev->open_mutex);
7601 err = -EBUSY;
7602 goto out;
7603 }
7604 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) {
7605 mutex_unlock(&mddev->open_mutex);
7606 err = -EBUSY;
7607 goto out;
7608 }
7609 did_set_md_closing = true;
7610 mutex_unlock(&mddev->open_mutex);
7611 sync_blockdev(bdev);
7612 }
7613 err = mddev_lock(mddev);
7614 if (err) {
7615 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7616 err, cmd);
7617 goto out;
7618 }
7619
7620 if (cmd == SET_ARRAY_INFO) {
7621 mdu_array_info_t info;
7622 if (!arg)
7623 memset(&info, 0, sizeof(info));
7624 else if (copy_from_user(&info, argp, sizeof(info))) {
7625 err = -EFAULT;
7626 goto unlock;
7627 }
7628 if (mddev->pers) {
7629 err = update_array_info(mddev, &info);
7630 if (err) {
7631 pr_warn("md: couldn't update array info. %d\n", err);
7632 goto unlock;
7633 }
7634 goto unlock;
7635 }
7636 if (!list_empty(&mddev->disks)) {
7637 pr_warn("md: array %s already has disks!\n", mdname(mddev));
7638 err = -EBUSY;
7639 goto unlock;
7640 }
7641 if (mddev->raid_disks) {
7642 pr_warn("md: array %s already initialised!\n", mdname(mddev));
7643 err = -EBUSY;
7644 goto unlock;
7645 }
7646 err = md_set_array_info(mddev, &info);
7647 if (err) {
7648 pr_warn("md: couldn't set array info. %d\n", err);
7649 goto unlock;
7650 }
7651 goto unlock;
7652 }
7653
7654 /*
7655 * Commands querying/configuring an existing array:
7656 */
7657 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7658 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7659 if ((!mddev->raid_disks && !mddev->external)
7660 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7661 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7662 && cmd != GET_BITMAP_FILE) {
7663 err = -ENODEV;
7664 goto unlock;
7665 }
7666
7667 /*
7668 * Commands even a read-only array can execute:
7669 */
7670 switch (cmd) {
7671 case RESTART_ARRAY_RW:
7672 err = restart_array(mddev);
7673 goto unlock;
7674
7675 case STOP_ARRAY:
7676 err = do_md_stop(mddev, 0, bdev);
7677 goto unlock;
7678
7679 case STOP_ARRAY_RO:
7680 err = md_set_readonly(mddev, bdev);
7681 goto unlock;
7682
7683 case HOT_REMOVE_DISK:
7684 err = hot_remove_disk(mddev, new_decode_dev(arg));
7685 goto unlock;
7686
7687 case ADD_NEW_DISK:
7688 /* We can support ADD_NEW_DISK on read-only arrays
7689 * only if we are re-adding a preexisting device.
7690 * So require mddev->pers and MD_DISK_SYNC.
7691 */
7692 if (mddev->pers) {
7693 mdu_disk_info_t info;
7694 if (copy_from_user(&info, argp, sizeof(info)))
7695 err = -EFAULT;
7696 else if (!(info.state & (1<<MD_DISK_SYNC)))
7697 /* Need to clear read-only for this */
7698 break;
7699 else
7700 err = md_add_new_disk(mddev, &info);
7701 goto unlock;
7702 }
7703 break;
7704
7705 case BLKROSET:
7706 if (get_user(ro, (int __user *)(arg))) {
7707 err = -EFAULT;
7708 goto unlock;
7709 }
7710 err = -EINVAL;
7711
7712 /* if the bdev is going readonly the value of mddev->ro
7713 * does not matter, no writes are coming
7714 */
7715 if (ro)
7716 goto unlock;
7717
7718 /* are we are already prepared for writes? */
7719 if (mddev->ro != 1)
7720 goto unlock;
7721
7722 /* transitioning to readauto need only happen for
7723 * arrays that call md_write_start
7724 */
7725 if (mddev->pers) {
7726 err = restart_array(mddev);
7727 if (err == 0) {
7728 mddev->ro = 2;
7729 set_disk_ro(mddev->gendisk, 0);
7730 }
7731 }
7732 goto unlock;
7733 }
7734
7735 /*
7736 * The remaining ioctls are changing the state of the
7737 * superblock, so we do not allow them on read-only arrays.
7738 */
7739 if (mddev->ro && mddev->pers) {
7740 if (mddev->ro == 2) {
7741 mddev->ro = 0;
7742 sysfs_notify_dirent_safe(mddev->sysfs_state);
7743 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7744 /* mddev_unlock will wake thread */
7745 /* If a device failed while we were read-only, we
7746 * need to make sure the metadata is updated now.
7747 */
7748 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7749 mddev_unlock(mddev);
7750 wait_event(mddev->sb_wait,
7751 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7752 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7753 mddev_lock_nointr(mddev);
7754 }
7755 } else {
7756 err = -EROFS;
7757 goto unlock;
7758 }
7759 }
7760
7761 switch (cmd) {
7762 case ADD_NEW_DISK:
7763 {
7764 mdu_disk_info_t info;
7765 if (copy_from_user(&info, argp, sizeof(info)))
7766 err = -EFAULT;
7767 else
7768 err = md_add_new_disk(mddev, &info);
7769 goto unlock;
7770 }
7771
7772 case CLUSTERED_DISK_NACK:
7773 if (mddev_is_clustered(mddev))
7774 md_cluster_ops->new_disk_ack(mddev, false);
7775 else
7776 err = -EINVAL;
7777 goto unlock;
7778
7779 case HOT_ADD_DISK:
7780 err = hot_add_disk(mddev, new_decode_dev(arg));
7781 goto unlock;
7782
7783 case RUN_ARRAY:
7784 err = do_md_run(mddev);
7785 goto unlock;
7786
7787 case SET_BITMAP_FILE:
7788 err = set_bitmap_file(mddev, (int)arg);
7789 goto unlock;
7790
7791 default:
7792 err = -EINVAL;
7793 goto unlock;
7794 }
7795
7796 unlock:
7797 if (mddev->hold_active == UNTIL_IOCTL &&
7798 err != -EINVAL)
7799 mddev->hold_active = 0;
7800 mddev_unlock(mddev);
7801 out:
7802 if(did_set_md_closing)
7803 clear_bit(MD_CLOSING, &mddev->flags);
7804 return err;
7805 }
7806 #ifdef CONFIG_COMPAT
md_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)7807 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7808 unsigned int cmd, unsigned long arg)
7809 {
7810 switch (cmd) {
7811 case HOT_REMOVE_DISK:
7812 case HOT_ADD_DISK:
7813 case SET_DISK_FAULTY:
7814 case SET_BITMAP_FILE:
7815 /* These take in integer arg, do not convert */
7816 break;
7817 default:
7818 arg = (unsigned long)compat_ptr(arg);
7819 break;
7820 }
7821
7822 return md_ioctl(bdev, mode, cmd, arg);
7823 }
7824 #endif /* CONFIG_COMPAT */
7825
md_open(struct block_device * bdev,fmode_t mode)7826 static int md_open(struct block_device *bdev, fmode_t mode)
7827 {
7828 /*
7829 * Succeed if we can lock the mddev, which confirms that
7830 * it isn't being stopped right now.
7831 */
7832 struct mddev *mddev = mddev_find(bdev->bd_dev);
7833 int err;
7834
7835 if (!mddev)
7836 return -ENODEV;
7837
7838 if (mddev->gendisk != bdev->bd_disk) {
7839 /* we are racing with mddev_put which is discarding this
7840 * bd_disk.
7841 */
7842 mddev_put(mddev);
7843 /* Wait until bdev->bd_disk is definitely gone */
7844 if (work_pending(&mddev->del_work))
7845 flush_workqueue(md_misc_wq);
7846 return -EBUSY;
7847 }
7848 BUG_ON(mddev != bdev->bd_disk->private_data);
7849
7850 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7851 goto out;
7852
7853 if (test_bit(MD_CLOSING, &mddev->flags)) {
7854 mutex_unlock(&mddev->open_mutex);
7855 err = -ENODEV;
7856 goto out;
7857 }
7858
7859 err = 0;
7860 atomic_inc(&mddev->openers);
7861 mutex_unlock(&mddev->open_mutex);
7862
7863 bdev_check_media_change(bdev);
7864 out:
7865 if (err)
7866 mddev_put(mddev);
7867 return err;
7868 }
7869
md_release(struct gendisk * disk,fmode_t mode)7870 static void md_release(struct gendisk *disk, fmode_t mode)
7871 {
7872 struct mddev *mddev = disk->private_data;
7873
7874 BUG_ON(!mddev);
7875 atomic_dec(&mddev->openers);
7876 mddev_put(mddev);
7877 }
7878
md_check_events(struct gendisk * disk,unsigned int clearing)7879 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing)
7880 {
7881 struct mddev *mddev = disk->private_data;
7882 unsigned int ret = 0;
7883
7884 if (mddev->changed)
7885 ret = DISK_EVENT_MEDIA_CHANGE;
7886 mddev->changed = 0;
7887 return ret;
7888 }
7889
7890 const struct block_device_operations md_fops =
7891 {
7892 .owner = THIS_MODULE,
7893 .submit_bio = md_submit_bio,
7894 .open = md_open,
7895 .release = md_release,
7896 .ioctl = md_ioctl,
7897 #ifdef CONFIG_COMPAT
7898 .compat_ioctl = md_compat_ioctl,
7899 #endif
7900 .getgeo = md_getgeo,
7901 .check_events = md_check_events,
7902 };
7903
md_thread(void * arg)7904 static int md_thread(void *arg)
7905 {
7906 struct md_thread *thread = arg;
7907
7908 /*
7909 * md_thread is a 'system-thread', it's priority should be very
7910 * high. We avoid resource deadlocks individually in each
7911 * raid personality. (RAID5 does preallocation) We also use RR and
7912 * the very same RT priority as kswapd, thus we will never get
7913 * into a priority inversion deadlock.
7914 *
7915 * we definitely have to have equal or higher priority than
7916 * bdflush, otherwise bdflush will deadlock if there are too
7917 * many dirty RAID5 blocks.
7918 */
7919
7920 allow_signal(SIGKILL);
7921 while (!kthread_should_stop()) {
7922
7923 /* We need to wait INTERRUPTIBLE so that
7924 * we don't add to the load-average.
7925 * That means we need to be sure no signals are
7926 * pending
7927 */
7928 if (signal_pending(current))
7929 flush_signals(current);
7930
7931 wait_event_interruptible_timeout
7932 (thread->wqueue,
7933 test_bit(THREAD_WAKEUP, &thread->flags)
7934 || kthread_should_stop() || kthread_should_park(),
7935 thread->timeout);
7936
7937 clear_bit(THREAD_WAKEUP, &thread->flags);
7938 if (kthread_should_park())
7939 kthread_parkme();
7940 if (!kthread_should_stop())
7941 thread->run(thread);
7942 }
7943
7944 return 0;
7945 }
7946
md_wakeup_thread(struct md_thread * thread)7947 void md_wakeup_thread(struct md_thread *thread)
7948 {
7949 if (thread) {
7950 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7951 set_bit(THREAD_WAKEUP, &thread->flags);
7952 wake_up(&thread->wqueue);
7953 }
7954 }
7955 EXPORT_SYMBOL(md_wakeup_thread);
7956
md_register_thread(void (* run)(struct md_thread *),struct mddev * mddev,const char * name)7957 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7958 struct mddev *mddev, const char *name)
7959 {
7960 struct md_thread *thread;
7961
7962 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7963 if (!thread)
7964 return NULL;
7965
7966 init_waitqueue_head(&thread->wqueue);
7967
7968 thread->run = run;
7969 thread->mddev = mddev;
7970 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7971 thread->tsk = kthread_run(md_thread, thread,
7972 "%s_%s",
7973 mdname(thread->mddev),
7974 name);
7975 if (IS_ERR(thread->tsk)) {
7976 kfree(thread);
7977 return NULL;
7978 }
7979 return thread;
7980 }
7981 EXPORT_SYMBOL(md_register_thread);
7982
md_unregister_thread(struct md_thread ** threadp)7983 void md_unregister_thread(struct md_thread **threadp)
7984 {
7985 struct md_thread *thread;
7986
7987 /*
7988 * Locking ensures that mddev_unlock does not wake_up a
7989 * non-existent thread
7990 */
7991 spin_lock(&pers_lock);
7992 thread = *threadp;
7993 if (!thread) {
7994 spin_unlock(&pers_lock);
7995 return;
7996 }
7997 *threadp = NULL;
7998 spin_unlock(&pers_lock);
7999
8000 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
8001 kthread_stop(thread->tsk);
8002 kfree(thread);
8003 }
8004 EXPORT_SYMBOL(md_unregister_thread);
8005
md_error(struct mddev * mddev,struct md_rdev * rdev)8006 void md_error(struct mddev *mddev, struct md_rdev *rdev)
8007 {
8008 if (!rdev || test_bit(Faulty, &rdev->flags))
8009 return;
8010
8011 if (!mddev->pers || !mddev->pers->error_handler)
8012 return;
8013 mddev->pers->error_handler(mddev,rdev);
8014 if (mddev->degraded)
8015 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8016 sysfs_notify_dirent_safe(rdev->sysfs_state);
8017 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8018 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8019 md_wakeup_thread(mddev->thread);
8020 if (mddev->event_work.func)
8021 queue_work(md_misc_wq, &mddev->event_work);
8022 md_new_event(mddev);
8023 }
8024 EXPORT_SYMBOL(md_error);
8025
8026 /* seq_file implementation /proc/mdstat */
8027
status_unused(struct seq_file * seq)8028 static void status_unused(struct seq_file *seq)
8029 {
8030 int i = 0;
8031 struct md_rdev *rdev;
8032
8033 seq_printf(seq, "unused devices: ");
8034
8035 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
8036 char b[BDEVNAME_SIZE];
8037 i++;
8038 seq_printf(seq, "%s ",
8039 bdevname(rdev->bdev,b));
8040 }
8041 if (!i)
8042 seq_printf(seq, "<none>");
8043
8044 seq_printf(seq, "\n");
8045 }
8046
status_resync(struct seq_file * seq,struct mddev * mddev)8047 static int status_resync(struct seq_file *seq, struct mddev *mddev)
8048 {
8049 sector_t max_sectors, resync, res;
8050 unsigned long dt, db = 0;
8051 sector_t rt, curr_mark_cnt, resync_mark_cnt;
8052 int scale, recovery_active;
8053 unsigned int per_milli;
8054
8055 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8056 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8057 max_sectors = mddev->resync_max_sectors;
8058 else
8059 max_sectors = mddev->dev_sectors;
8060
8061 resync = mddev->curr_resync;
8062 if (resync <= 3) {
8063 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8064 /* Still cleaning up */
8065 resync = max_sectors;
8066 } else if (resync > max_sectors)
8067 resync = max_sectors;
8068 else
8069 resync -= atomic_read(&mddev->recovery_active);
8070
8071 if (resync == 0) {
8072 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
8073 struct md_rdev *rdev;
8074
8075 rdev_for_each(rdev, mddev)
8076 if (rdev->raid_disk >= 0 &&
8077 !test_bit(Faulty, &rdev->flags) &&
8078 rdev->recovery_offset != MaxSector &&
8079 rdev->recovery_offset) {
8080 seq_printf(seq, "\trecover=REMOTE");
8081 return 1;
8082 }
8083 if (mddev->reshape_position != MaxSector)
8084 seq_printf(seq, "\treshape=REMOTE");
8085 else
8086 seq_printf(seq, "\tresync=REMOTE");
8087 return 1;
8088 }
8089 if (mddev->recovery_cp < MaxSector) {
8090 seq_printf(seq, "\tresync=PENDING");
8091 return 1;
8092 }
8093 return 0;
8094 }
8095 if (resync < 3) {
8096 seq_printf(seq, "\tresync=DELAYED");
8097 return 1;
8098 }
8099
8100 WARN_ON(max_sectors == 0);
8101 /* Pick 'scale' such that (resync>>scale)*1000 will fit
8102 * in a sector_t, and (max_sectors>>scale) will fit in a
8103 * u32, as those are the requirements for sector_div.
8104 * Thus 'scale' must be at least 10
8105 */
8106 scale = 10;
8107 if (sizeof(sector_t) > sizeof(unsigned long)) {
8108 while ( max_sectors/2 > (1ULL<<(scale+32)))
8109 scale++;
8110 }
8111 res = (resync>>scale)*1000;
8112 sector_div(res, (u32)((max_sectors>>scale)+1));
8113
8114 per_milli = res;
8115 {
8116 int i, x = per_milli/50, y = 20-x;
8117 seq_printf(seq, "[");
8118 for (i = 0; i < x; i++)
8119 seq_printf(seq, "=");
8120 seq_printf(seq, ">");
8121 for (i = 0; i < y; i++)
8122 seq_printf(seq, ".");
8123 seq_printf(seq, "] ");
8124 }
8125 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
8126 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
8127 "reshape" :
8128 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
8129 "check" :
8130 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
8131 "resync" : "recovery"))),
8132 per_milli/10, per_milli % 10,
8133 (unsigned long long) resync/2,
8134 (unsigned long long) max_sectors/2);
8135
8136 /*
8137 * dt: time from mark until now
8138 * db: blocks written from mark until now
8139 * rt: remaining time
8140 *
8141 * rt is a sector_t, which is always 64bit now. We are keeping
8142 * the original algorithm, but it is not really necessary.
8143 *
8144 * Original algorithm:
8145 * So we divide before multiply in case it is 32bit and close
8146 * to the limit.
8147 * We scale the divisor (db) by 32 to avoid losing precision
8148 * near the end of resync when the number of remaining sectors
8149 * is close to 'db'.
8150 * We then divide rt by 32 after multiplying by db to compensate.
8151 * The '+1' avoids division by zero if db is very small.
8152 */
8153 dt = ((jiffies - mddev->resync_mark) / HZ);
8154 if (!dt) dt++;
8155
8156 curr_mark_cnt = mddev->curr_mark_cnt;
8157 recovery_active = atomic_read(&mddev->recovery_active);
8158 resync_mark_cnt = mddev->resync_mark_cnt;
8159
8160 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
8161 db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
8162
8163 rt = max_sectors - resync; /* number of remaining sectors */
8164 rt = div64_u64(rt, db/32+1);
8165 rt *= dt;
8166 rt >>= 5;
8167
8168 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
8169 ((unsigned long)rt % 60)/6);
8170
8171 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
8172 return 1;
8173 }
8174
md_seq_start(struct seq_file * seq,loff_t * pos)8175 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
8176 {
8177 struct list_head *tmp;
8178 loff_t l = *pos;
8179 struct mddev *mddev;
8180
8181 if (l == 0x10000) {
8182 ++*pos;
8183 return (void *)2;
8184 }
8185 if (l > 0x10000)
8186 return NULL;
8187 if (!l--)
8188 /* header */
8189 return (void*)1;
8190
8191 spin_lock(&all_mddevs_lock);
8192 list_for_each(tmp,&all_mddevs)
8193 if (!l--) {
8194 mddev = list_entry(tmp, struct mddev, all_mddevs);
8195 mddev_get(mddev);
8196 spin_unlock(&all_mddevs_lock);
8197 return mddev;
8198 }
8199 spin_unlock(&all_mddevs_lock);
8200 if (!l--)
8201 return (void*)2;/* tail */
8202 return NULL;
8203 }
8204
md_seq_next(struct seq_file * seq,void * v,loff_t * pos)8205 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
8206 {
8207 struct list_head *tmp;
8208 struct mddev *next_mddev, *mddev = v;
8209
8210 ++*pos;
8211 if (v == (void*)2)
8212 return NULL;
8213
8214 spin_lock(&all_mddevs_lock);
8215 if (v == (void*)1)
8216 tmp = all_mddevs.next;
8217 else
8218 tmp = mddev->all_mddevs.next;
8219 if (tmp != &all_mddevs)
8220 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
8221 else {
8222 next_mddev = (void*)2;
8223 *pos = 0x10000;
8224 }
8225 spin_unlock(&all_mddevs_lock);
8226
8227 if (v != (void*)1)
8228 mddev_put(mddev);
8229 return next_mddev;
8230
8231 }
8232
md_seq_stop(struct seq_file * seq,void * v)8233 static void md_seq_stop(struct seq_file *seq, void *v)
8234 {
8235 struct mddev *mddev = v;
8236
8237 if (mddev && v != (void*)1 && v != (void*)2)
8238 mddev_put(mddev);
8239 }
8240
md_seq_show(struct seq_file * seq,void * v)8241 static int md_seq_show(struct seq_file *seq, void *v)
8242 {
8243 struct mddev *mddev = v;
8244 sector_t sectors;
8245 struct md_rdev *rdev;
8246
8247 if (v == (void*)1) {
8248 struct md_personality *pers;
8249 seq_printf(seq, "Personalities : ");
8250 spin_lock(&pers_lock);
8251 list_for_each_entry(pers, &pers_list, list)
8252 seq_printf(seq, "[%s] ", pers->name);
8253
8254 spin_unlock(&pers_lock);
8255 seq_printf(seq, "\n");
8256 seq->poll_event = atomic_read(&md_event_count);
8257 return 0;
8258 }
8259 if (v == (void*)2) {
8260 status_unused(seq);
8261 return 0;
8262 }
8263
8264 spin_lock(&mddev->lock);
8265 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
8266 seq_printf(seq, "%s : %sactive", mdname(mddev),
8267 mddev->pers ? "" : "in");
8268 if (mddev->pers) {
8269 if (mddev->ro==1)
8270 seq_printf(seq, " (read-only)");
8271 if (mddev->ro==2)
8272 seq_printf(seq, " (auto-read-only)");
8273 seq_printf(seq, " %s", mddev->pers->name);
8274 }
8275
8276 sectors = 0;
8277 rcu_read_lock();
8278 rdev_for_each_rcu(rdev, mddev) {
8279 char b[BDEVNAME_SIZE];
8280 seq_printf(seq, " %s[%d]",
8281 bdevname(rdev->bdev,b), rdev->desc_nr);
8282 if (test_bit(WriteMostly, &rdev->flags))
8283 seq_printf(seq, "(W)");
8284 if (test_bit(Journal, &rdev->flags))
8285 seq_printf(seq, "(J)");
8286 if (test_bit(Faulty, &rdev->flags)) {
8287 seq_printf(seq, "(F)");
8288 continue;
8289 }
8290 if (rdev->raid_disk < 0)
8291 seq_printf(seq, "(S)"); /* spare */
8292 if (test_bit(Replacement, &rdev->flags))
8293 seq_printf(seq, "(R)");
8294 sectors += rdev->sectors;
8295 }
8296 rcu_read_unlock();
8297
8298 if (!list_empty(&mddev->disks)) {
8299 if (mddev->pers)
8300 seq_printf(seq, "\n %llu blocks",
8301 (unsigned long long)
8302 mddev->array_sectors / 2);
8303 else
8304 seq_printf(seq, "\n %llu blocks",
8305 (unsigned long long)sectors / 2);
8306 }
8307 if (mddev->persistent) {
8308 if (mddev->major_version != 0 ||
8309 mddev->minor_version != 90) {
8310 seq_printf(seq," super %d.%d",
8311 mddev->major_version,
8312 mddev->minor_version);
8313 }
8314 } else if (mddev->external)
8315 seq_printf(seq, " super external:%s",
8316 mddev->metadata_type);
8317 else
8318 seq_printf(seq, " super non-persistent");
8319
8320 if (mddev->pers) {
8321 mddev->pers->status(seq, mddev);
8322 seq_printf(seq, "\n ");
8323 if (mddev->pers->sync_request) {
8324 if (status_resync(seq, mddev))
8325 seq_printf(seq, "\n ");
8326 }
8327 } else
8328 seq_printf(seq, "\n ");
8329
8330 md_bitmap_status(seq, mddev->bitmap);
8331
8332 seq_printf(seq, "\n");
8333 }
8334 spin_unlock(&mddev->lock);
8335
8336 return 0;
8337 }
8338
8339 static const struct seq_operations md_seq_ops = {
8340 .start = md_seq_start,
8341 .next = md_seq_next,
8342 .stop = md_seq_stop,
8343 .show = md_seq_show,
8344 };
8345
md_seq_open(struct inode * inode,struct file * file)8346 static int md_seq_open(struct inode *inode, struct file *file)
8347 {
8348 struct seq_file *seq;
8349 int error;
8350
8351 error = seq_open(file, &md_seq_ops);
8352 if (error)
8353 return error;
8354
8355 seq = file->private_data;
8356 seq->poll_event = atomic_read(&md_event_count);
8357 return error;
8358 }
8359
8360 static int md_unloading;
mdstat_poll(struct file * filp,poll_table * wait)8361 static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
8362 {
8363 struct seq_file *seq = filp->private_data;
8364 __poll_t mask;
8365
8366 if (md_unloading)
8367 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
8368 poll_wait(filp, &md_event_waiters, wait);
8369
8370 /* always allow read */
8371 mask = EPOLLIN | EPOLLRDNORM;
8372
8373 if (seq->poll_event != atomic_read(&md_event_count))
8374 mask |= EPOLLERR | EPOLLPRI;
8375 return mask;
8376 }
8377
8378 static const struct proc_ops mdstat_proc_ops = {
8379 .proc_open = md_seq_open,
8380 .proc_read = seq_read,
8381 .proc_lseek = seq_lseek,
8382 .proc_release = seq_release,
8383 .proc_poll = mdstat_poll,
8384 };
8385
register_md_personality(struct md_personality * p)8386 int register_md_personality(struct md_personality *p)
8387 {
8388 pr_debug("md: %s personality registered for level %d\n",
8389 p->name, p->level);
8390 spin_lock(&pers_lock);
8391 list_add_tail(&p->list, &pers_list);
8392 spin_unlock(&pers_lock);
8393 return 0;
8394 }
8395 EXPORT_SYMBOL(register_md_personality);
8396
unregister_md_personality(struct md_personality * p)8397 int unregister_md_personality(struct md_personality *p)
8398 {
8399 pr_debug("md: %s personality unregistered\n", p->name);
8400 spin_lock(&pers_lock);
8401 list_del_init(&p->list);
8402 spin_unlock(&pers_lock);
8403 return 0;
8404 }
8405 EXPORT_SYMBOL(unregister_md_personality);
8406
register_md_cluster_operations(struct md_cluster_operations * ops,struct module * module)8407 int register_md_cluster_operations(struct md_cluster_operations *ops,
8408 struct module *module)
8409 {
8410 int ret = 0;
8411 spin_lock(&pers_lock);
8412 if (md_cluster_ops != NULL)
8413 ret = -EALREADY;
8414 else {
8415 md_cluster_ops = ops;
8416 md_cluster_mod = module;
8417 }
8418 spin_unlock(&pers_lock);
8419 return ret;
8420 }
8421 EXPORT_SYMBOL(register_md_cluster_operations);
8422
unregister_md_cluster_operations(void)8423 int unregister_md_cluster_operations(void)
8424 {
8425 spin_lock(&pers_lock);
8426 md_cluster_ops = NULL;
8427 spin_unlock(&pers_lock);
8428 return 0;
8429 }
8430 EXPORT_SYMBOL(unregister_md_cluster_operations);
8431
md_setup_cluster(struct mddev * mddev,int nodes)8432 int md_setup_cluster(struct mddev *mddev, int nodes)
8433 {
8434 int ret;
8435 if (!md_cluster_ops)
8436 request_module("md-cluster");
8437 spin_lock(&pers_lock);
8438 /* ensure module won't be unloaded */
8439 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
8440 pr_warn("can't find md-cluster module or get it's reference.\n");
8441 spin_unlock(&pers_lock);
8442 return -ENOENT;
8443 }
8444 spin_unlock(&pers_lock);
8445
8446 ret = md_cluster_ops->join(mddev, nodes);
8447 if (!ret)
8448 mddev->safemode_delay = 0;
8449 return ret;
8450 }
8451
md_cluster_stop(struct mddev * mddev)8452 void md_cluster_stop(struct mddev *mddev)
8453 {
8454 if (!md_cluster_ops)
8455 return;
8456 md_cluster_ops->leave(mddev);
8457 module_put(md_cluster_mod);
8458 }
8459
is_mddev_idle(struct mddev * mddev,int init)8460 static int is_mddev_idle(struct mddev *mddev, int init)
8461 {
8462 struct md_rdev *rdev;
8463 int idle;
8464 int curr_events;
8465
8466 idle = 1;
8467 rcu_read_lock();
8468 rdev_for_each_rcu(rdev, mddev) {
8469 struct gendisk *disk = rdev->bdev->bd_disk;
8470 curr_events = (int)part_stat_read_accum(&disk->part0, sectors) -
8471 atomic_read(&disk->sync_io);
8472 /* sync IO will cause sync_io to increase before the disk_stats
8473 * as sync_io is counted when a request starts, and
8474 * disk_stats is counted when it completes.
8475 * So resync activity will cause curr_events to be smaller than
8476 * when there was no such activity.
8477 * non-sync IO will cause disk_stat to increase without
8478 * increasing sync_io so curr_events will (eventually)
8479 * be larger than it was before. Once it becomes
8480 * substantially larger, the test below will cause
8481 * the array to appear non-idle, and resync will slow
8482 * down.
8483 * If there is a lot of outstanding resync activity when
8484 * we set last_event to curr_events, then all that activity
8485 * completing might cause the array to appear non-idle
8486 * and resync will be slowed down even though there might
8487 * not have been non-resync activity. This will only
8488 * happen once though. 'last_events' will soon reflect
8489 * the state where there is little or no outstanding
8490 * resync requests, and further resync activity will
8491 * always make curr_events less than last_events.
8492 *
8493 */
8494 if (init || curr_events - rdev->last_events > 64) {
8495 rdev->last_events = curr_events;
8496 idle = 0;
8497 }
8498 }
8499 rcu_read_unlock();
8500 return idle;
8501 }
8502
md_done_sync(struct mddev * mddev,int blocks,int ok)8503 void md_done_sync(struct mddev *mddev, int blocks, int ok)
8504 {
8505 /* another "blocks" (512byte) blocks have been synced */
8506 atomic_sub(blocks, &mddev->recovery_active);
8507 wake_up(&mddev->recovery_wait);
8508 if (!ok) {
8509 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8510 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8511 md_wakeup_thread(mddev->thread);
8512 // stop recovery, signal do_sync ....
8513 }
8514 }
8515 EXPORT_SYMBOL(md_done_sync);
8516
8517 /* md_write_start(mddev, bi)
8518 * If we need to update some array metadata (e.g. 'active' flag
8519 * in superblock) before writing, schedule a superblock update
8520 * and wait for it to complete.
8521 * A return value of 'false' means that the write wasn't recorded
8522 * and cannot proceed as the array is being suspend.
8523 */
md_write_start(struct mddev * mddev,struct bio * bi)8524 bool md_write_start(struct mddev *mddev, struct bio *bi)
8525 {
8526 int did_change = 0;
8527
8528 if (bio_data_dir(bi) != WRITE)
8529 return true;
8530
8531 BUG_ON(mddev->ro == 1);
8532 if (mddev->ro == 2) {
8533 /* need to switch to read/write */
8534 mddev->ro = 0;
8535 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8536 md_wakeup_thread(mddev->thread);
8537 md_wakeup_thread(mddev->sync_thread);
8538 did_change = 1;
8539 }
8540 rcu_read_lock();
8541 percpu_ref_get(&mddev->writes_pending);
8542 smp_mb(); /* Match smp_mb in set_in_sync() */
8543 if (mddev->safemode == 1)
8544 mddev->safemode = 0;
8545 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8546 if (mddev->in_sync || mddev->sync_checkers) {
8547 spin_lock(&mddev->lock);
8548 if (mddev->in_sync) {
8549 mddev->in_sync = 0;
8550 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8551 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8552 md_wakeup_thread(mddev->thread);
8553 did_change = 1;
8554 }
8555 spin_unlock(&mddev->lock);
8556 }
8557 rcu_read_unlock();
8558 if (did_change)
8559 sysfs_notify_dirent_safe(mddev->sysfs_state);
8560 if (!mddev->has_superblocks)
8561 return true;
8562 wait_event(mddev->sb_wait,
8563 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8564 mddev->suspended);
8565 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8566 percpu_ref_put(&mddev->writes_pending);
8567 return false;
8568 }
8569 return true;
8570 }
8571 EXPORT_SYMBOL(md_write_start);
8572
8573 /* md_write_inc can only be called when md_write_start() has
8574 * already been called at least once of the current request.
8575 * It increments the counter and is useful when a single request
8576 * is split into several parts. Each part causes an increment and
8577 * so needs a matching md_write_end().
8578 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8579 * a spinlocked region.
8580 */
md_write_inc(struct mddev * mddev,struct bio * bi)8581 void md_write_inc(struct mddev *mddev, struct bio *bi)
8582 {
8583 if (bio_data_dir(bi) != WRITE)
8584 return;
8585 WARN_ON_ONCE(mddev->in_sync || mddev->ro);
8586 percpu_ref_get(&mddev->writes_pending);
8587 }
8588 EXPORT_SYMBOL(md_write_inc);
8589
md_write_end(struct mddev * mddev)8590 void md_write_end(struct mddev *mddev)
8591 {
8592 percpu_ref_put(&mddev->writes_pending);
8593
8594 if (mddev->safemode == 2)
8595 md_wakeup_thread(mddev->thread);
8596 else if (mddev->safemode_delay)
8597 /* The roundup() ensures this only performs locking once
8598 * every ->safemode_delay jiffies
8599 */
8600 mod_timer(&mddev->safemode_timer,
8601 roundup(jiffies, mddev->safemode_delay) +
8602 mddev->safemode_delay);
8603 }
8604
8605 EXPORT_SYMBOL(md_write_end);
8606
8607 /* md_allow_write(mddev)
8608 * Calling this ensures that the array is marked 'active' so that writes
8609 * may proceed without blocking. It is important to call this before
8610 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8611 * Must be called with mddev_lock held.
8612 */
md_allow_write(struct mddev * mddev)8613 void md_allow_write(struct mddev *mddev)
8614 {
8615 if (!mddev->pers)
8616 return;
8617 if (mddev->ro)
8618 return;
8619 if (!mddev->pers->sync_request)
8620 return;
8621
8622 spin_lock(&mddev->lock);
8623 if (mddev->in_sync) {
8624 mddev->in_sync = 0;
8625 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8626 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8627 if (mddev->safemode_delay &&
8628 mddev->safemode == 0)
8629 mddev->safemode = 1;
8630 spin_unlock(&mddev->lock);
8631 md_update_sb(mddev, 0);
8632 sysfs_notify_dirent_safe(mddev->sysfs_state);
8633 /* wait for the dirty state to be recorded in the metadata */
8634 wait_event(mddev->sb_wait,
8635 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8636 } else
8637 spin_unlock(&mddev->lock);
8638 }
8639 EXPORT_SYMBOL_GPL(md_allow_write);
8640
8641 #define SYNC_MARKS 10
8642 #define SYNC_MARK_STEP (3*HZ)
8643 #define UPDATE_FREQUENCY (5*60*HZ)
md_do_sync(struct md_thread * thread)8644 void md_do_sync(struct md_thread *thread)
8645 {
8646 struct mddev *mddev = thread->mddev;
8647 struct mddev *mddev2;
8648 unsigned int currspeed = 0, window;
8649 sector_t max_sectors,j, io_sectors, recovery_done;
8650 unsigned long mark[SYNC_MARKS];
8651 unsigned long update_time;
8652 sector_t mark_cnt[SYNC_MARKS];
8653 int last_mark,m;
8654 struct list_head *tmp;
8655 sector_t last_check;
8656 int skipped = 0;
8657 struct md_rdev *rdev;
8658 char *desc, *action = NULL;
8659 struct blk_plug plug;
8660 int ret;
8661
8662 /* just incase thread restarts... */
8663 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8664 test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
8665 return;
8666 if (mddev->ro) {/* never try to sync a read-only array */
8667 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8668 return;
8669 }
8670
8671 if (mddev_is_clustered(mddev)) {
8672 ret = md_cluster_ops->resync_start(mddev);
8673 if (ret)
8674 goto skip;
8675
8676 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8677 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8678 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8679 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8680 && ((unsigned long long)mddev->curr_resync_completed
8681 < (unsigned long long)mddev->resync_max_sectors))
8682 goto skip;
8683 }
8684
8685 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8686 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8687 desc = "data-check";
8688 action = "check";
8689 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8690 desc = "requested-resync";
8691 action = "repair";
8692 } else
8693 desc = "resync";
8694 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8695 desc = "reshape";
8696 else
8697 desc = "recovery";
8698
8699 mddev->last_sync_action = action ?: desc;
8700
8701 /* we overload curr_resync somewhat here.
8702 * 0 == not engaged in resync at all
8703 * 2 == checking that there is no conflict with another sync
8704 * 1 == like 2, but have yielded to allow conflicting resync to
8705 * commence
8706 * other == active in resync - this many blocks
8707 *
8708 * Before starting a resync we must have set curr_resync to
8709 * 2, and then checked that every "conflicting" array has curr_resync
8710 * less than ours. When we find one that is the same or higher
8711 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
8712 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8713 * This will mean we have to start checking from the beginning again.
8714 *
8715 */
8716
8717 do {
8718 int mddev2_minor = -1;
8719 mddev->curr_resync = 2;
8720
8721 try_again:
8722 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8723 goto skip;
8724 for_each_mddev(mddev2, tmp) {
8725 if (mddev2 == mddev)
8726 continue;
8727 if (!mddev->parallel_resync
8728 && mddev2->curr_resync
8729 && match_mddev_units(mddev, mddev2)) {
8730 DEFINE_WAIT(wq);
8731 if (mddev < mddev2 && mddev->curr_resync == 2) {
8732 /* arbitrarily yield */
8733 mddev->curr_resync = 1;
8734 wake_up(&resync_wait);
8735 }
8736 if (mddev > mddev2 && mddev->curr_resync == 1)
8737 /* no need to wait here, we can wait the next
8738 * time 'round when curr_resync == 2
8739 */
8740 continue;
8741 /* We need to wait 'interruptible' so as not to
8742 * contribute to the load average, and not to
8743 * be caught by 'softlockup'
8744 */
8745 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8746 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8747 mddev2->curr_resync >= mddev->curr_resync) {
8748 if (mddev2_minor != mddev2->md_minor) {
8749 mddev2_minor = mddev2->md_minor;
8750 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8751 desc, mdname(mddev),
8752 mdname(mddev2));
8753 }
8754 mddev_put(mddev2);
8755 if (signal_pending(current))
8756 flush_signals(current);
8757 schedule();
8758 finish_wait(&resync_wait, &wq);
8759 goto try_again;
8760 }
8761 finish_wait(&resync_wait, &wq);
8762 }
8763 }
8764 } while (mddev->curr_resync < 2);
8765
8766 j = 0;
8767 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8768 /* resync follows the size requested by the personality,
8769 * which defaults to physical size, but can be virtual size
8770 */
8771 max_sectors = mddev->resync_max_sectors;
8772 atomic64_set(&mddev->resync_mismatches, 0);
8773 /* we don't use the checkpoint if there's a bitmap */
8774 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8775 j = mddev->resync_min;
8776 else if (!mddev->bitmap)
8777 j = mddev->recovery_cp;
8778
8779 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
8780 max_sectors = mddev->resync_max_sectors;
8781 /*
8782 * If the original node aborts reshaping then we continue the
8783 * reshaping, so set j again to avoid restart reshape from the
8784 * first beginning
8785 */
8786 if (mddev_is_clustered(mddev) &&
8787 mddev->reshape_position != MaxSector)
8788 j = mddev->reshape_position;
8789 } else {
8790 /* recovery follows the physical size of devices */
8791 max_sectors = mddev->dev_sectors;
8792 j = MaxSector;
8793 rcu_read_lock();
8794 rdev_for_each_rcu(rdev, mddev)
8795 if (rdev->raid_disk >= 0 &&
8796 !test_bit(Journal, &rdev->flags) &&
8797 !test_bit(Faulty, &rdev->flags) &&
8798 !test_bit(In_sync, &rdev->flags) &&
8799 rdev->recovery_offset < j)
8800 j = rdev->recovery_offset;
8801 rcu_read_unlock();
8802
8803 /* If there is a bitmap, we need to make sure all
8804 * writes that started before we added a spare
8805 * complete before we start doing a recovery.
8806 * Otherwise the write might complete and (via
8807 * bitmap_endwrite) set a bit in the bitmap after the
8808 * recovery has checked that bit and skipped that
8809 * region.
8810 */
8811 if (mddev->bitmap) {
8812 mddev->pers->quiesce(mddev, 1);
8813 mddev->pers->quiesce(mddev, 0);
8814 }
8815 }
8816
8817 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8818 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
8819 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8820 speed_max(mddev), desc);
8821
8822 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8823
8824 io_sectors = 0;
8825 for (m = 0; m < SYNC_MARKS; m++) {
8826 mark[m] = jiffies;
8827 mark_cnt[m] = io_sectors;
8828 }
8829 last_mark = 0;
8830 mddev->resync_mark = mark[last_mark];
8831 mddev->resync_mark_cnt = mark_cnt[last_mark];
8832
8833 /*
8834 * Tune reconstruction:
8835 */
8836 window = 32 * (PAGE_SIZE / 512);
8837 pr_debug("md: using %dk window, over a total of %lluk.\n",
8838 window/2, (unsigned long long)max_sectors/2);
8839
8840 atomic_set(&mddev->recovery_active, 0);
8841 last_check = 0;
8842
8843 if (j>2) {
8844 pr_debug("md: resuming %s of %s from checkpoint.\n",
8845 desc, mdname(mddev));
8846 mddev->curr_resync = j;
8847 } else
8848 mddev->curr_resync = 3; /* no longer delayed */
8849 mddev->curr_resync_completed = j;
8850 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8851 md_new_event(mddev);
8852 update_time = jiffies;
8853
8854 blk_start_plug(&plug);
8855 while (j < max_sectors) {
8856 sector_t sectors;
8857
8858 skipped = 0;
8859
8860 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8861 ((mddev->curr_resync > mddev->curr_resync_completed &&
8862 (mddev->curr_resync - mddev->curr_resync_completed)
8863 > (max_sectors >> 4)) ||
8864 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8865 (j - mddev->curr_resync_completed)*2
8866 >= mddev->resync_max - mddev->curr_resync_completed ||
8867 mddev->curr_resync_completed > mddev->resync_max
8868 )) {
8869 /* time to update curr_resync_completed */
8870 wait_event(mddev->recovery_wait,
8871 atomic_read(&mddev->recovery_active) == 0);
8872 mddev->curr_resync_completed = j;
8873 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8874 j > mddev->recovery_cp)
8875 mddev->recovery_cp = j;
8876 update_time = jiffies;
8877 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8878 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8879 }
8880
8881 while (j >= mddev->resync_max &&
8882 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8883 /* As this condition is controlled by user-space,
8884 * we can block indefinitely, so use '_interruptible'
8885 * to avoid triggering warnings.
8886 */
8887 flush_signals(current); /* just in case */
8888 wait_event_interruptible(mddev->recovery_wait,
8889 mddev->resync_max > j
8890 || test_bit(MD_RECOVERY_INTR,
8891 &mddev->recovery));
8892 }
8893
8894 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8895 break;
8896
8897 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8898 if (sectors == 0) {
8899 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8900 break;
8901 }
8902
8903 if (!skipped) { /* actual IO requested */
8904 io_sectors += sectors;
8905 atomic_add(sectors, &mddev->recovery_active);
8906 }
8907
8908 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8909 break;
8910
8911 j += sectors;
8912 if (j > max_sectors)
8913 /* when skipping, extra large numbers can be returned. */
8914 j = max_sectors;
8915 if (j > 2)
8916 mddev->curr_resync = j;
8917 mddev->curr_mark_cnt = io_sectors;
8918 if (last_check == 0)
8919 /* this is the earliest that rebuild will be
8920 * visible in /proc/mdstat
8921 */
8922 md_new_event(mddev);
8923
8924 if (last_check + window > io_sectors || j == max_sectors)
8925 continue;
8926
8927 last_check = io_sectors;
8928 repeat:
8929 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8930 /* step marks */
8931 int next = (last_mark+1) % SYNC_MARKS;
8932
8933 mddev->resync_mark = mark[next];
8934 mddev->resync_mark_cnt = mark_cnt[next];
8935 mark[next] = jiffies;
8936 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8937 last_mark = next;
8938 }
8939
8940 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8941 break;
8942
8943 /*
8944 * this loop exits only if either when we are slower than
8945 * the 'hard' speed limit, or the system was IO-idle for
8946 * a jiffy.
8947 * the system might be non-idle CPU-wise, but we only care
8948 * about not overloading the IO subsystem. (things like an
8949 * e2fsck being done on the RAID array should execute fast)
8950 */
8951 cond_resched();
8952
8953 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8954 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8955 /((jiffies-mddev->resync_mark)/HZ +1) +1;
8956
8957 if (currspeed > speed_min(mddev)) {
8958 if (currspeed > speed_max(mddev)) {
8959 msleep(500);
8960 goto repeat;
8961 }
8962 if (!is_mddev_idle(mddev, 0)) {
8963 /*
8964 * Give other IO more of a chance.
8965 * The faster the devices, the less we wait.
8966 */
8967 wait_event(mddev->recovery_wait,
8968 !atomic_read(&mddev->recovery_active));
8969 }
8970 }
8971 }
8972 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
8973 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8974 ? "interrupted" : "done");
8975 /*
8976 * this also signals 'finished resyncing' to md_stop
8977 */
8978 blk_finish_plug(&plug);
8979 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8980
8981 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8982 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8983 mddev->curr_resync > 3) {
8984 mddev->curr_resync_completed = mddev->curr_resync;
8985 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8986 }
8987 mddev->pers->sync_request(mddev, max_sectors, &skipped);
8988
8989 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8990 mddev->curr_resync > 3) {
8991 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8992 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8993 if (mddev->curr_resync >= mddev->recovery_cp) {
8994 pr_debug("md: checkpointing %s of %s.\n",
8995 desc, mdname(mddev));
8996 if (test_bit(MD_RECOVERY_ERROR,
8997 &mddev->recovery))
8998 mddev->recovery_cp =
8999 mddev->curr_resync_completed;
9000 else
9001 mddev->recovery_cp =
9002 mddev->curr_resync;
9003 }
9004 } else
9005 mddev->recovery_cp = MaxSector;
9006 } else {
9007 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9008 mddev->curr_resync = MaxSector;
9009 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9010 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
9011 rcu_read_lock();
9012 rdev_for_each_rcu(rdev, mddev)
9013 if (rdev->raid_disk >= 0 &&
9014 mddev->delta_disks >= 0 &&
9015 !test_bit(Journal, &rdev->flags) &&
9016 !test_bit(Faulty, &rdev->flags) &&
9017 !test_bit(In_sync, &rdev->flags) &&
9018 rdev->recovery_offset < mddev->curr_resync)
9019 rdev->recovery_offset = mddev->curr_resync;
9020 rcu_read_unlock();
9021 }
9022 }
9023 }
9024 skip:
9025 /* set CHANGE_PENDING here since maybe another update is needed,
9026 * so other nodes are informed. It should be harmless for normal
9027 * raid */
9028 set_mask_bits(&mddev->sb_flags, 0,
9029 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
9030
9031 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9032 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9033 mddev->delta_disks > 0 &&
9034 mddev->pers->finish_reshape &&
9035 mddev->pers->size &&
9036 mddev->queue) {
9037 mddev_lock_nointr(mddev);
9038 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
9039 mddev_unlock(mddev);
9040 if (!mddev_is_clustered(mddev)) {
9041 set_capacity(mddev->gendisk, mddev->array_sectors);
9042 revalidate_disk_size(mddev->gendisk, true);
9043 }
9044 }
9045
9046 spin_lock(&mddev->lock);
9047 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9048 /* We completed so min/max setting can be forgotten if used. */
9049 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9050 mddev->resync_min = 0;
9051 mddev->resync_max = MaxSector;
9052 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9053 mddev->resync_min = mddev->curr_resync_completed;
9054 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
9055 mddev->curr_resync = 0;
9056 spin_unlock(&mddev->lock);
9057
9058 wake_up(&resync_wait);
9059 md_wakeup_thread(mddev->thread);
9060 return;
9061 }
9062 EXPORT_SYMBOL_GPL(md_do_sync);
9063
remove_and_add_spares(struct mddev * mddev,struct md_rdev * this)9064 static int remove_and_add_spares(struct mddev *mddev,
9065 struct md_rdev *this)
9066 {
9067 struct md_rdev *rdev;
9068 int spares = 0;
9069 int removed = 0;
9070 bool remove_some = false;
9071
9072 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
9073 /* Mustn't remove devices when resync thread is running */
9074 return 0;
9075
9076 rdev_for_each(rdev, mddev) {
9077 if ((this == NULL || rdev == this) &&
9078 rdev->raid_disk >= 0 &&
9079 !test_bit(Blocked, &rdev->flags) &&
9080 test_bit(Faulty, &rdev->flags) &&
9081 atomic_read(&rdev->nr_pending)==0) {
9082 /* Faulty non-Blocked devices with nr_pending == 0
9083 * never get nr_pending incremented,
9084 * never get Faulty cleared, and never get Blocked set.
9085 * So we can synchronize_rcu now rather than once per device
9086 */
9087 remove_some = true;
9088 set_bit(RemoveSynchronized, &rdev->flags);
9089 }
9090 }
9091
9092 if (remove_some)
9093 synchronize_rcu();
9094 rdev_for_each(rdev, mddev) {
9095 if ((this == NULL || rdev == this) &&
9096 rdev->raid_disk >= 0 &&
9097 !test_bit(Blocked, &rdev->flags) &&
9098 ((test_bit(RemoveSynchronized, &rdev->flags) ||
9099 (!test_bit(In_sync, &rdev->flags) &&
9100 !test_bit(Journal, &rdev->flags))) &&
9101 atomic_read(&rdev->nr_pending)==0)) {
9102 if (mddev->pers->hot_remove_disk(
9103 mddev, rdev) == 0) {
9104 sysfs_unlink_rdev(mddev, rdev);
9105 rdev->saved_raid_disk = rdev->raid_disk;
9106 rdev->raid_disk = -1;
9107 removed++;
9108 }
9109 }
9110 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
9111 clear_bit(RemoveSynchronized, &rdev->flags);
9112 }
9113
9114 if (removed && mddev->kobj.sd)
9115 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9116
9117 if (this && removed)
9118 goto no_add;
9119
9120 rdev_for_each(rdev, mddev) {
9121 if (this && this != rdev)
9122 continue;
9123 if (test_bit(Candidate, &rdev->flags))
9124 continue;
9125 if (rdev->raid_disk >= 0 &&
9126 !test_bit(In_sync, &rdev->flags) &&
9127 !test_bit(Journal, &rdev->flags) &&
9128 !test_bit(Faulty, &rdev->flags))
9129 spares++;
9130 if (rdev->raid_disk >= 0)
9131 continue;
9132 if (test_bit(Faulty, &rdev->flags))
9133 continue;
9134 if (!test_bit(Journal, &rdev->flags)) {
9135 if (mddev->ro &&
9136 ! (rdev->saved_raid_disk >= 0 &&
9137 !test_bit(Bitmap_sync, &rdev->flags)))
9138 continue;
9139
9140 rdev->recovery_offset = 0;
9141 }
9142 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) {
9143 /* failure here is OK */
9144 sysfs_link_rdev(mddev, rdev);
9145 if (!test_bit(Journal, &rdev->flags))
9146 spares++;
9147 md_new_event(mddev);
9148 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9149 }
9150 }
9151 no_add:
9152 if (removed)
9153 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9154 return spares;
9155 }
9156
md_start_sync(struct work_struct * ws)9157 static void md_start_sync(struct work_struct *ws)
9158 {
9159 struct mddev *mddev = container_of(ws, struct mddev, del_work);
9160
9161 mddev->sync_thread = md_register_thread(md_do_sync,
9162 mddev,
9163 "resync");
9164 if (!mddev->sync_thread) {
9165 pr_warn("%s: could not start resync thread...\n",
9166 mdname(mddev));
9167 /* leave the spares where they are, it shouldn't hurt */
9168 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9169 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9170 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9171 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9172 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9173 wake_up(&resync_wait);
9174 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9175 &mddev->recovery))
9176 if (mddev->sysfs_action)
9177 sysfs_notify_dirent_safe(mddev->sysfs_action);
9178 } else
9179 md_wakeup_thread(mddev->sync_thread);
9180 sysfs_notify_dirent_safe(mddev->sysfs_action);
9181 md_new_event(mddev);
9182 }
9183
9184 /*
9185 * This routine is regularly called by all per-raid-array threads to
9186 * deal with generic issues like resync and super-block update.
9187 * Raid personalities that don't have a thread (linear/raid0) do not
9188 * need this as they never do any recovery or update the superblock.
9189 *
9190 * It does not do any resync itself, but rather "forks" off other threads
9191 * to do that as needed.
9192 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
9193 * "->recovery" and create a thread at ->sync_thread.
9194 * When the thread finishes it sets MD_RECOVERY_DONE
9195 * and wakeups up this thread which will reap the thread and finish up.
9196 * This thread also removes any faulty devices (with nr_pending == 0).
9197 *
9198 * The overall approach is:
9199 * 1/ if the superblock needs updating, update it.
9200 * 2/ If a recovery thread is running, don't do anything else.
9201 * 3/ If recovery has finished, clean up, possibly marking spares active.
9202 * 4/ If there are any faulty devices, remove them.
9203 * 5/ If array is degraded, try to add spares devices
9204 * 6/ If array has spares or is not in-sync, start a resync thread.
9205 */
md_check_recovery(struct mddev * mddev)9206 void md_check_recovery(struct mddev *mddev)
9207 {
9208 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
9209 /* Write superblock - thread that called mddev_suspend()
9210 * holds reconfig_mutex for us.
9211 */
9212 set_bit(MD_UPDATING_SB, &mddev->flags);
9213 smp_mb__after_atomic();
9214 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
9215 md_update_sb(mddev, 0);
9216 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
9217 wake_up(&mddev->sb_wait);
9218 }
9219
9220 if (mddev->suspended)
9221 return;
9222
9223 if (mddev->bitmap)
9224 md_bitmap_daemon_work(mddev);
9225
9226 if (signal_pending(current)) {
9227 if (mddev->pers->sync_request && !mddev->external) {
9228 pr_debug("md: %s in immediate safe mode\n",
9229 mdname(mddev));
9230 mddev->safemode = 2;
9231 }
9232 flush_signals(current);
9233 }
9234
9235 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
9236 return;
9237 if ( ! (
9238 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
9239 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9240 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
9241 (mddev->external == 0 && mddev->safemode == 1) ||
9242 (mddev->safemode == 2
9243 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
9244 ))
9245 return;
9246
9247 if (mddev_trylock(mddev)) {
9248 int spares = 0;
9249 bool try_set_sync = mddev->safemode != 0;
9250
9251 if (!mddev->external && mddev->safemode == 1)
9252 mddev->safemode = 0;
9253
9254 if (mddev->ro) {
9255 struct md_rdev *rdev;
9256 if (!mddev->external && mddev->in_sync)
9257 /* 'Blocked' flag not needed as failed devices
9258 * will be recorded if array switched to read/write.
9259 * Leaving it set will prevent the device
9260 * from being removed.
9261 */
9262 rdev_for_each(rdev, mddev)
9263 clear_bit(Blocked, &rdev->flags);
9264 /* On a read-only array we can:
9265 * - remove failed devices
9266 * - add already-in_sync devices if the array itself
9267 * is in-sync.
9268 * As we only add devices that are already in-sync,
9269 * we can activate the spares immediately.
9270 */
9271 remove_and_add_spares(mddev, NULL);
9272 /* There is no thread, but we need to call
9273 * ->spare_active and clear saved_raid_disk
9274 */
9275 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9276 md_reap_sync_thread(mddev);
9277 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9278 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9279 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
9280 goto unlock;
9281 }
9282
9283 if (mddev_is_clustered(mddev)) {
9284 struct md_rdev *rdev, *tmp;
9285 /* kick the device if another node issued a
9286 * remove disk.
9287 */
9288 rdev_for_each_safe(rdev, tmp, mddev) {
9289 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
9290 rdev->raid_disk < 0)
9291 md_kick_rdev_from_array(rdev);
9292 }
9293 }
9294
9295 if (try_set_sync && !mddev->external && !mddev->in_sync) {
9296 spin_lock(&mddev->lock);
9297 set_in_sync(mddev);
9298 spin_unlock(&mddev->lock);
9299 }
9300
9301 if (mddev->sb_flags)
9302 md_update_sb(mddev, 0);
9303
9304 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
9305 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
9306 /* resync/recovery still happening */
9307 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9308 goto unlock;
9309 }
9310 if (mddev->sync_thread) {
9311 md_reap_sync_thread(mddev);
9312 goto unlock;
9313 }
9314 /* Set RUNNING before clearing NEEDED to avoid
9315 * any transients in the value of "sync_action".
9316 */
9317 mddev->curr_resync_completed = 0;
9318 spin_lock(&mddev->lock);
9319 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9320 spin_unlock(&mddev->lock);
9321 /* Clear some bits that don't mean anything, but
9322 * might be left set
9323 */
9324 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
9325 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9326
9327 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9328 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
9329 goto not_running;
9330 /* no recovery is running.
9331 * remove any failed drives, then
9332 * add spares if possible.
9333 * Spares are also removed and re-added, to allow
9334 * the personality to fail the re-add.
9335 */
9336
9337 if (mddev->reshape_position != MaxSector) {
9338 if (mddev->pers->check_reshape == NULL ||
9339 mddev->pers->check_reshape(mddev) != 0)
9340 /* Cannot proceed */
9341 goto not_running;
9342 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9343 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9344 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
9345 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9346 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9347 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9348 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9349 } else if (mddev->recovery_cp < MaxSector) {
9350 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9351 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9352 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
9353 /* nothing to be done ... */
9354 goto not_running;
9355
9356 if (mddev->pers->sync_request) {
9357 if (spares) {
9358 /* We are adding a device or devices to an array
9359 * which has the bitmap stored on all devices.
9360 * So make sure all bitmap pages get written
9361 */
9362 md_bitmap_write_all(mddev->bitmap);
9363 }
9364 INIT_WORK(&mddev->del_work, md_start_sync);
9365 queue_work(md_misc_wq, &mddev->del_work);
9366 goto unlock;
9367 }
9368 not_running:
9369 if (!mddev->sync_thread) {
9370 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9371 wake_up(&resync_wait);
9372 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9373 &mddev->recovery))
9374 if (mddev->sysfs_action)
9375 sysfs_notify_dirent_safe(mddev->sysfs_action);
9376 }
9377 unlock:
9378 wake_up(&mddev->sb_wait);
9379 mddev_unlock(mddev);
9380 }
9381 }
9382 EXPORT_SYMBOL(md_check_recovery);
9383
md_reap_sync_thread(struct mddev * mddev)9384 void md_reap_sync_thread(struct mddev *mddev)
9385 {
9386 struct md_rdev *rdev;
9387 sector_t old_dev_sectors = mddev->dev_sectors;
9388 bool is_reshaped = false;
9389
9390 /* resync has finished, collect result */
9391 md_unregister_thread(&mddev->sync_thread);
9392 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9393 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
9394 mddev->degraded != mddev->raid_disks) {
9395 /* success...*/
9396 /* activate any spares */
9397 if (mddev->pers->spare_active(mddev)) {
9398 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9399 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9400 }
9401 }
9402 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9403 mddev->pers->finish_reshape) {
9404 mddev->pers->finish_reshape(mddev);
9405 if (mddev_is_clustered(mddev))
9406 is_reshaped = true;
9407 }
9408
9409 /* If array is no-longer degraded, then any saved_raid_disk
9410 * information must be scrapped.
9411 */
9412 if (!mddev->degraded)
9413 rdev_for_each(rdev, mddev)
9414 rdev->saved_raid_disk = -1;
9415
9416 md_update_sb(mddev, 1);
9417 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
9418 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
9419 * clustered raid */
9420 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
9421 md_cluster_ops->resync_finish(mddev);
9422 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9423 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9424 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9425 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9426 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9427 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9428 /*
9429 * We call md_cluster_ops->update_size here because sync_size could
9430 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
9431 * so it is time to update size across cluster.
9432 */
9433 if (mddev_is_clustered(mddev) && is_reshaped
9434 && !test_bit(MD_CLOSING, &mddev->flags))
9435 md_cluster_ops->update_size(mddev, old_dev_sectors);
9436 wake_up(&resync_wait);
9437 /* flag recovery needed just to double check */
9438 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9439 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9440 sysfs_notify_dirent_safe(mddev->sysfs_action);
9441 md_new_event(mddev);
9442 if (mddev->event_work.func)
9443 queue_work(md_misc_wq, &mddev->event_work);
9444 }
9445 EXPORT_SYMBOL(md_reap_sync_thread);
9446
md_wait_for_blocked_rdev(struct md_rdev * rdev,struct mddev * mddev)9447 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9448 {
9449 sysfs_notify_dirent_safe(rdev->sysfs_state);
9450 wait_event_timeout(rdev->blocked_wait,
9451 !test_bit(Blocked, &rdev->flags) &&
9452 !test_bit(BlockedBadBlocks, &rdev->flags),
9453 msecs_to_jiffies(5000));
9454 rdev_dec_pending(rdev, mddev);
9455 }
9456 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9457
md_finish_reshape(struct mddev * mddev)9458 void md_finish_reshape(struct mddev *mddev)
9459 {
9460 /* called be personality module when reshape completes. */
9461 struct md_rdev *rdev;
9462
9463 rdev_for_each(rdev, mddev) {
9464 if (rdev->data_offset > rdev->new_data_offset)
9465 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9466 else
9467 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9468 rdev->data_offset = rdev->new_data_offset;
9469 }
9470 }
9471 EXPORT_SYMBOL(md_finish_reshape);
9472
9473 /* Bad block management */
9474
9475 /* Returns 1 on success, 0 on failure */
rdev_set_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)9476 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9477 int is_new)
9478 {
9479 struct mddev *mddev = rdev->mddev;
9480 int rv;
9481 if (is_new)
9482 s += rdev->new_data_offset;
9483 else
9484 s += rdev->data_offset;
9485 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9486 if (rv == 0) {
9487 /* Make sure they get written out promptly */
9488 if (test_bit(ExternalBbl, &rdev->flags))
9489 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks);
9490 sysfs_notify_dirent_safe(rdev->sysfs_state);
9491 set_mask_bits(&mddev->sb_flags, 0,
9492 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9493 md_wakeup_thread(rdev->mddev->thread);
9494 return 1;
9495 } else
9496 return 0;
9497 }
9498 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9499
rdev_clear_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)9500 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9501 int is_new)
9502 {
9503 int rv;
9504 if (is_new)
9505 s += rdev->new_data_offset;
9506 else
9507 s += rdev->data_offset;
9508 rv = badblocks_clear(&rdev->badblocks, s, sectors);
9509 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9510 sysfs_notify_dirent_safe(rdev->sysfs_badblocks);
9511 return rv;
9512 }
9513 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9514
md_notify_reboot(struct notifier_block * this,unsigned long code,void * x)9515 static int md_notify_reboot(struct notifier_block *this,
9516 unsigned long code, void *x)
9517 {
9518 struct list_head *tmp;
9519 struct mddev *mddev;
9520 int need_delay = 0;
9521
9522 for_each_mddev(mddev, tmp) {
9523 if (mddev_trylock(mddev)) {
9524 if (mddev->pers)
9525 __md_stop_writes(mddev);
9526 if (mddev->persistent)
9527 mddev->safemode = 2;
9528 mddev_unlock(mddev);
9529 }
9530 need_delay = 1;
9531 }
9532 /*
9533 * certain more exotic SCSI devices are known to be
9534 * volatile wrt too early system reboots. While the
9535 * right place to handle this issue is the given
9536 * driver, we do want to have a safe RAID driver ...
9537 */
9538 if (need_delay)
9539 mdelay(1000*1);
9540
9541 return NOTIFY_DONE;
9542 }
9543
9544 static struct notifier_block md_notifier = {
9545 .notifier_call = md_notify_reboot,
9546 .next = NULL,
9547 .priority = INT_MAX, /* before any real devices */
9548 };
9549
md_geninit(void)9550 static void md_geninit(void)
9551 {
9552 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9553
9554 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops);
9555 }
9556
md_init(void)9557 static int __init md_init(void)
9558 {
9559 int ret = -ENOMEM;
9560
9561 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9562 if (!md_wq)
9563 goto err_wq;
9564
9565 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9566 if (!md_misc_wq)
9567 goto err_misc_wq;
9568
9569 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0);
9570 if (!md_rdev_misc_wq)
9571 goto err_rdev_misc_wq;
9572
9573 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
9574 goto err_md;
9575
9576 if ((ret = register_blkdev(0, "mdp")) < 0)
9577 goto err_mdp;
9578 mdp_major = ret;
9579
9580 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
9581 md_probe, NULL, NULL);
9582 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
9583 md_probe, NULL, NULL);
9584
9585 register_reboot_notifier(&md_notifier);
9586 raid_table_header = register_sysctl_table(raid_root_table);
9587
9588 md_geninit();
9589 return 0;
9590
9591 err_mdp:
9592 unregister_blkdev(MD_MAJOR, "md");
9593 err_md:
9594 destroy_workqueue(md_rdev_misc_wq);
9595 err_rdev_misc_wq:
9596 destroy_workqueue(md_misc_wq);
9597 err_misc_wq:
9598 destroy_workqueue(md_wq);
9599 err_wq:
9600 return ret;
9601 }
9602
check_sb_changes(struct mddev * mddev,struct md_rdev * rdev)9603 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9604 {
9605 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9606 struct md_rdev *rdev2, *tmp;
9607 int role, ret;
9608 char b[BDEVNAME_SIZE];
9609
9610 /*
9611 * If size is changed in another node then we need to
9612 * do resize as well.
9613 */
9614 if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9615 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9616 if (ret)
9617 pr_info("md-cluster: resize failed\n");
9618 else
9619 md_bitmap_update_sb(mddev->bitmap);
9620 }
9621
9622 /* Check for change of roles in the active devices */
9623 rdev_for_each_safe(rdev2, tmp, mddev) {
9624 if (test_bit(Faulty, &rdev2->flags))
9625 continue;
9626
9627 /* Check if the roles changed */
9628 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9629
9630 if (test_bit(Candidate, &rdev2->flags)) {
9631 if (role == 0xfffe) {
9632 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9633 md_kick_rdev_from_array(rdev2);
9634 continue;
9635 }
9636 else
9637 clear_bit(Candidate, &rdev2->flags);
9638 }
9639
9640 if (role != rdev2->raid_disk) {
9641 /*
9642 * got activated except reshape is happening.
9643 */
9644 if (rdev2->raid_disk == -1 && role != 0xffff &&
9645 !(le32_to_cpu(sb->feature_map) &
9646 MD_FEATURE_RESHAPE_ACTIVE)) {
9647 rdev2->saved_raid_disk = role;
9648 ret = remove_and_add_spares(mddev, rdev2);
9649 pr_info("Activated spare: %s\n",
9650 bdevname(rdev2->bdev,b));
9651 /* wakeup mddev->thread here, so array could
9652 * perform resync with the new activated disk */
9653 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9654 md_wakeup_thread(mddev->thread);
9655 }
9656 /* device faulty
9657 * We just want to do the minimum to mark the disk
9658 * as faulty. The recovery is performed by the
9659 * one who initiated the error.
9660 */
9661 if ((role == 0xfffe) || (role == 0xfffd)) {
9662 md_error(mddev, rdev2);
9663 clear_bit(Blocked, &rdev2->flags);
9664 }
9665 }
9666 }
9667
9668 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) {
9669 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9670 if (ret)
9671 pr_warn("md: updating array disks failed. %d\n", ret);
9672 }
9673
9674 /*
9675 * Since mddev->delta_disks has already updated in update_raid_disks,
9676 * so it is time to check reshape.
9677 */
9678 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9679 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9680 /*
9681 * reshape is happening in the remote node, we need to
9682 * update reshape_position and call start_reshape.
9683 */
9684 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
9685 if (mddev->pers->update_reshape_pos)
9686 mddev->pers->update_reshape_pos(mddev);
9687 if (mddev->pers->start_reshape)
9688 mddev->pers->start_reshape(mddev);
9689 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9690 mddev->reshape_position != MaxSector &&
9691 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9692 /* reshape is just done in another node. */
9693 mddev->reshape_position = MaxSector;
9694 if (mddev->pers->update_reshape_pos)
9695 mddev->pers->update_reshape_pos(mddev);
9696 }
9697
9698 /* Finally set the event to be up to date */
9699 mddev->events = le64_to_cpu(sb->events);
9700 }
9701
read_rdev(struct mddev * mddev,struct md_rdev * rdev)9702 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9703 {
9704 int err;
9705 struct page *swapout = rdev->sb_page;
9706 struct mdp_superblock_1 *sb;
9707
9708 /* Store the sb page of the rdev in the swapout temporary
9709 * variable in case we err in the future
9710 */
9711 rdev->sb_page = NULL;
9712 err = alloc_disk_sb(rdev);
9713 if (err == 0) {
9714 ClearPageUptodate(rdev->sb_page);
9715 rdev->sb_loaded = 0;
9716 err = super_types[mddev->major_version].
9717 load_super(rdev, NULL, mddev->minor_version);
9718 }
9719 if (err < 0) {
9720 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9721 __func__, __LINE__, rdev->desc_nr, err);
9722 if (rdev->sb_page)
9723 put_page(rdev->sb_page);
9724 rdev->sb_page = swapout;
9725 rdev->sb_loaded = 1;
9726 return err;
9727 }
9728
9729 sb = page_address(rdev->sb_page);
9730 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9731 * is not set
9732 */
9733
9734 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9735 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9736
9737 /* The other node finished recovery, call spare_active to set
9738 * device In_sync and mddev->degraded
9739 */
9740 if (rdev->recovery_offset == MaxSector &&
9741 !test_bit(In_sync, &rdev->flags) &&
9742 mddev->pers->spare_active(mddev))
9743 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9744
9745 put_page(swapout);
9746 return 0;
9747 }
9748
md_reload_sb(struct mddev * mddev,int nr)9749 void md_reload_sb(struct mddev *mddev, int nr)
9750 {
9751 struct md_rdev *rdev = NULL, *iter;
9752 int err;
9753
9754 /* Find the rdev */
9755 rdev_for_each_rcu(iter, mddev) {
9756 if (iter->desc_nr == nr) {
9757 rdev = iter;
9758 break;
9759 }
9760 }
9761
9762 if (!rdev) {
9763 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9764 return;
9765 }
9766
9767 err = read_rdev(mddev, rdev);
9768 if (err < 0)
9769 return;
9770
9771 check_sb_changes(mddev, rdev);
9772
9773 /* Read all rdev's to update recovery_offset */
9774 rdev_for_each_rcu(rdev, mddev) {
9775 if (!test_bit(Faulty, &rdev->flags))
9776 read_rdev(mddev, rdev);
9777 }
9778 }
9779 EXPORT_SYMBOL(md_reload_sb);
9780
9781 #ifndef MODULE
9782
9783 /*
9784 * Searches all registered partitions for autorun RAID arrays
9785 * at boot time.
9786 */
9787
9788 static DEFINE_MUTEX(detected_devices_mutex);
9789 static LIST_HEAD(all_detected_devices);
9790 struct detected_devices_node {
9791 struct list_head list;
9792 dev_t dev;
9793 };
9794
md_autodetect_dev(dev_t dev)9795 void md_autodetect_dev(dev_t dev)
9796 {
9797 struct detected_devices_node *node_detected_dev;
9798
9799 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9800 if (node_detected_dev) {
9801 node_detected_dev->dev = dev;
9802 mutex_lock(&detected_devices_mutex);
9803 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9804 mutex_unlock(&detected_devices_mutex);
9805 }
9806 }
9807
md_autostart_arrays(int part)9808 void md_autostart_arrays(int part)
9809 {
9810 struct md_rdev *rdev;
9811 struct detected_devices_node *node_detected_dev;
9812 dev_t dev;
9813 int i_scanned, i_passed;
9814
9815 i_scanned = 0;
9816 i_passed = 0;
9817
9818 pr_info("md: Autodetecting RAID arrays.\n");
9819
9820 mutex_lock(&detected_devices_mutex);
9821 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9822 i_scanned++;
9823 node_detected_dev = list_entry(all_detected_devices.next,
9824 struct detected_devices_node, list);
9825 list_del(&node_detected_dev->list);
9826 dev = node_detected_dev->dev;
9827 kfree(node_detected_dev);
9828 mutex_unlock(&detected_devices_mutex);
9829 rdev = md_import_device(dev,0, 90);
9830 mutex_lock(&detected_devices_mutex);
9831 if (IS_ERR(rdev))
9832 continue;
9833
9834 if (test_bit(Faulty, &rdev->flags))
9835 continue;
9836
9837 set_bit(AutoDetected, &rdev->flags);
9838 list_add(&rdev->same_set, &pending_raid_disks);
9839 i_passed++;
9840 }
9841 mutex_unlock(&detected_devices_mutex);
9842
9843 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9844
9845 autorun_devices(part);
9846 }
9847
9848 #endif /* !MODULE */
9849
md_exit(void)9850 static __exit void md_exit(void)
9851 {
9852 struct mddev *mddev;
9853 struct list_head *tmp;
9854 int delay = 1;
9855
9856 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9857 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9858
9859 unregister_blkdev(MD_MAJOR,"md");
9860 unregister_blkdev(mdp_major, "mdp");
9861 unregister_reboot_notifier(&md_notifier);
9862 unregister_sysctl_table(raid_table_header);
9863
9864 /* We cannot unload the modules while some process is
9865 * waiting for us in select() or poll() - wake them up
9866 */
9867 md_unloading = 1;
9868 while (waitqueue_active(&md_event_waiters)) {
9869 /* not safe to leave yet */
9870 wake_up(&md_event_waiters);
9871 msleep(delay);
9872 delay += delay;
9873 }
9874 remove_proc_entry("mdstat", NULL);
9875
9876 for_each_mddev(mddev, tmp) {
9877 export_array(mddev);
9878 mddev->ctime = 0;
9879 mddev->hold_active = 0;
9880 /*
9881 * for_each_mddev() will call mddev_put() at the end of each
9882 * iteration. As the mddev is now fully clear, this will
9883 * schedule the mddev for destruction by a workqueue, and the
9884 * destroy_workqueue() below will wait for that to complete.
9885 */
9886 }
9887 destroy_workqueue(md_rdev_misc_wq);
9888 destroy_workqueue(md_misc_wq);
9889 destroy_workqueue(md_wq);
9890 }
9891
9892 subsys_initcall(md_init);
module_exit(md_exit)9893 module_exit(md_exit)
9894
9895 static int get_ro(char *buffer, const struct kernel_param *kp)
9896 {
9897 return sprintf(buffer, "%d\n", start_readonly);
9898 }
set_ro(const char * val,const struct kernel_param * kp)9899 static int set_ro(const char *val, const struct kernel_param *kp)
9900 {
9901 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9902 }
9903
9904 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9905 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9906 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9907 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
9908
9909 MODULE_LICENSE("GPL");
9910 MODULE_DESCRIPTION("MD RAID framework");
9911 MODULE_ALIAS("md");
9912 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
9913