1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "misc.h"
20 #include "tree-log.h"
21 #include "disk-io.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "locking.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37
38 #undef SCRAMBLE_DELAYED_REFS
39
40
41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
42 struct btrfs_delayed_ref_node *node, u64 parent,
43 u64 root_objectid, u64 owner_objectid,
44 u64 owner_offset, int refs_to_drop,
45 struct btrfs_delayed_extent_op *extra_op);
46 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
47 struct extent_buffer *leaf,
48 struct btrfs_extent_item *ei);
49 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
50 u64 parent, u64 root_objectid,
51 u64 flags, u64 owner, u64 offset,
52 struct btrfs_key *ins, int ref_mod);
53 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
54 struct btrfs_delayed_ref_node *node,
55 struct btrfs_delayed_extent_op *extent_op);
56 static int find_next_key(struct btrfs_path *path, int level,
57 struct btrfs_key *key);
58
block_group_bits(struct btrfs_block_group * cache,u64 bits)59 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
60 {
61 return (cache->flags & bits) == bits;
62 }
63
btrfs_add_excluded_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)64 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
65 u64 start, u64 num_bytes)
66 {
67 u64 end = start + num_bytes - 1;
68 set_extent_bits(&fs_info->excluded_extents, start, end,
69 EXTENT_UPTODATE);
70 return 0;
71 }
72
btrfs_free_excluded_extents(struct btrfs_block_group * cache)73 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
74 {
75 struct btrfs_fs_info *fs_info = cache->fs_info;
76 u64 start, end;
77
78 start = cache->start;
79 end = start + cache->length - 1;
80
81 clear_extent_bits(&fs_info->excluded_extents, start, end,
82 EXTENT_UPTODATE);
83 }
84
85 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)86 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
87 {
88 int ret;
89 struct btrfs_key key;
90 struct btrfs_path *path;
91
92 path = btrfs_alloc_path();
93 if (!path)
94 return -ENOMEM;
95
96 key.objectid = start;
97 key.offset = len;
98 key.type = BTRFS_EXTENT_ITEM_KEY;
99 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
100 btrfs_free_path(path);
101 return ret;
102 }
103
104 /*
105 * helper function to lookup reference count and flags of a tree block.
106 *
107 * the head node for delayed ref is used to store the sum of all the
108 * reference count modifications queued up in the rbtree. the head
109 * node may also store the extent flags to set. This way you can check
110 * to see what the reference count and extent flags would be if all of
111 * the delayed refs are not processed.
112 */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags)113 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
114 struct btrfs_fs_info *fs_info, u64 bytenr,
115 u64 offset, int metadata, u64 *refs, u64 *flags)
116 {
117 struct btrfs_delayed_ref_head *head;
118 struct btrfs_delayed_ref_root *delayed_refs;
119 struct btrfs_path *path;
120 struct btrfs_extent_item *ei;
121 struct extent_buffer *leaf;
122 struct btrfs_key key;
123 u32 item_size;
124 u64 num_refs;
125 u64 extent_flags;
126 int ret;
127
128 /*
129 * If we don't have skinny metadata, don't bother doing anything
130 * different
131 */
132 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
133 offset = fs_info->nodesize;
134 metadata = 0;
135 }
136
137 path = btrfs_alloc_path();
138 if (!path)
139 return -ENOMEM;
140
141 if (!trans) {
142 path->skip_locking = 1;
143 path->search_commit_root = 1;
144 }
145
146 search_again:
147 key.objectid = bytenr;
148 key.offset = offset;
149 if (metadata)
150 key.type = BTRFS_METADATA_ITEM_KEY;
151 else
152 key.type = BTRFS_EXTENT_ITEM_KEY;
153
154 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
155 if (ret < 0)
156 goto out_free;
157
158 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
159 if (path->slots[0]) {
160 path->slots[0]--;
161 btrfs_item_key_to_cpu(path->nodes[0], &key,
162 path->slots[0]);
163 if (key.objectid == bytenr &&
164 key.type == BTRFS_EXTENT_ITEM_KEY &&
165 key.offset == fs_info->nodesize)
166 ret = 0;
167 }
168 }
169
170 if (ret == 0) {
171 leaf = path->nodes[0];
172 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
173 if (item_size >= sizeof(*ei)) {
174 ei = btrfs_item_ptr(leaf, path->slots[0],
175 struct btrfs_extent_item);
176 num_refs = btrfs_extent_refs(leaf, ei);
177 extent_flags = btrfs_extent_flags(leaf, ei);
178 } else {
179 ret = -EINVAL;
180 btrfs_print_v0_err(fs_info);
181 if (trans)
182 btrfs_abort_transaction(trans, ret);
183 else
184 btrfs_handle_fs_error(fs_info, ret, NULL);
185
186 goto out_free;
187 }
188
189 BUG_ON(num_refs == 0);
190 } else {
191 num_refs = 0;
192 extent_flags = 0;
193 ret = 0;
194 }
195
196 if (!trans)
197 goto out;
198
199 delayed_refs = &trans->transaction->delayed_refs;
200 spin_lock(&delayed_refs->lock);
201 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
202 if (head) {
203 if (!mutex_trylock(&head->mutex)) {
204 refcount_inc(&head->refs);
205 spin_unlock(&delayed_refs->lock);
206
207 btrfs_release_path(path);
208
209 /*
210 * Mutex was contended, block until it's released and try
211 * again
212 */
213 mutex_lock(&head->mutex);
214 mutex_unlock(&head->mutex);
215 btrfs_put_delayed_ref_head(head);
216 goto search_again;
217 }
218 spin_lock(&head->lock);
219 if (head->extent_op && head->extent_op->update_flags)
220 extent_flags |= head->extent_op->flags_to_set;
221 else
222 BUG_ON(num_refs == 0);
223
224 num_refs += head->ref_mod;
225 spin_unlock(&head->lock);
226 mutex_unlock(&head->mutex);
227 }
228 spin_unlock(&delayed_refs->lock);
229 out:
230 WARN_ON(num_refs == 0);
231 if (refs)
232 *refs = num_refs;
233 if (flags)
234 *flags = extent_flags;
235 out_free:
236 btrfs_free_path(path);
237 return ret;
238 }
239
240 /*
241 * Back reference rules. Back refs have three main goals:
242 *
243 * 1) differentiate between all holders of references to an extent so that
244 * when a reference is dropped we can make sure it was a valid reference
245 * before freeing the extent.
246 *
247 * 2) Provide enough information to quickly find the holders of an extent
248 * if we notice a given block is corrupted or bad.
249 *
250 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
251 * maintenance. This is actually the same as #2, but with a slightly
252 * different use case.
253 *
254 * There are two kinds of back refs. The implicit back refs is optimized
255 * for pointers in non-shared tree blocks. For a given pointer in a block,
256 * back refs of this kind provide information about the block's owner tree
257 * and the pointer's key. These information allow us to find the block by
258 * b-tree searching. The full back refs is for pointers in tree blocks not
259 * referenced by their owner trees. The location of tree block is recorded
260 * in the back refs. Actually the full back refs is generic, and can be
261 * used in all cases the implicit back refs is used. The major shortcoming
262 * of the full back refs is its overhead. Every time a tree block gets
263 * COWed, we have to update back refs entry for all pointers in it.
264 *
265 * For a newly allocated tree block, we use implicit back refs for
266 * pointers in it. This means most tree related operations only involve
267 * implicit back refs. For a tree block created in old transaction, the
268 * only way to drop a reference to it is COW it. So we can detect the
269 * event that tree block loses its owner tree's reference and do the
270 * back refs conversion.
271 *
272 * When a tree block is COWed through a tree, there are four cases:
273 *
274 * The reference count of the block is one and the tree is the block's
275 * owner tree. Nothing to do in this case.
276 *
277 * The reference count of the block is one and the tree is not the
278 * block's owner tree. In this case, full back refs is used for pointers
279 * in the block. Remove these full back refs, add implicit back refs for
280 * every pointers in the new block.
281 *
282 * The reference count of the block is greater than one and the tree is
283 * the block's owner tree. In this case, implicit back refs is used for
284 * pointers in the block. Add full back refs for every pointers in the
285 * block, increase lower level extents' reference counts. The original
286 * implicit back refs are entailed to the new block.
287 *
288 * The reference count of the block is greater than one and the tree is
289 * not the block's owner tree. Add implicit back refs for every pointer in
290 * the new block, increase lower level extents' reference count.
291 *
292 * Back Reference Key composing:
293 *
294 * The key objectid corresponds to the first byte in the extent,
295 * The key type is used to differentiate between types of back refs.
296 * There are different meanings of the key offset for different types
297 * of back refs.
298 *
299 * File extents can be referenced by:
300 *
301 * - multiple snapshots, subvolumes, or different generations in one subvol
302 * - different files inside a single subvolume
303 * - different offsets inside a file (bookend extents in file.c)
304 *
305 * The extent ref structure for the implicit back refs has fields for:
306 *
307 * - Objectid of the subvolume root
308 * - objectid of the file holding the reference
309 * - original offset in the file
310 * - how many bookend extents
311 *
312 * The key offset for the implicit back refs is hash of the first
313 * three fields.
314 *
315 * The extent ref structure for the full back refs has field for:
316 *
317 * - number of pointers in the tree leaf
318 *
319 * The key offset for the implicit back refs is the first byte of
320 * the tree leaf
321 *
322 * When a file extent is allocated, The implicit back refs is used.
323 * the fields are filled in:
324 *
325 * (root_key.objectid, inode objectid, offset in file, 1)
326 *
327 * When a file extent is removed file truncation, we find the
328 * corresponding implicit back refs and check the following fields:
329 *
330 * (btrfs_header_owner(leaf), inode objectid, offset in file)
331 *
332 * Btree extents can be referenced by:
333 *
334 * - Different subvolumes
335 *
336 * Both the implicit back refs and the full back refs for tree blocks
337 * only consist of key. The key offset for the implicit back refs is
338 * objectid of block's owner tree. The key offset for the full back refs
339 * is the first byte of parent block.
340 *
341 * When implicit back refs is used, information about the lowest key and
342 * level of the tree block are required. These information are stored in
343 * tree block info structure.
344 */
345
346 /*
347 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
348 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
349 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
350 */
btrfs_get_extent_inline_ref_type(const struct extent_buffer * eb,struct btrfs_extent_inline_ref * iref,enum btrfs_inline_ref_type is_data)351 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
352 struct btrfs_extent_inline_ref *iref,
353 enum btrfs_inline_ref_type is_data)
354 {
355 int type = btrfs_extent_inline_ref_type(eb, iref);
356 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
357
358 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
359 type == BTRFS_SHARED_BLOCK_REF_KEY ||
360 type == BTRFS_SHARED_DATA_REF_KEY ||
361 type == BTRFS_EXTENT_DATA_REF_KEY) {
362 if (is_data == BTRFS_REF_TYPE_BLOCK) {
363 if (type == BTRFS_TREE_BLOCK_REF_KEY)
364 return type;
365 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
366 ASSERT(eb->fs_info);
367 /*
368 * Every shared one has parent tree block,
369 * which must be aligned to sector size.
370 */
371 if (offset &&
372 IS_ALIGNED(offset, eb->fs_info->sectorsize))
373 return type;
374 }
375 } else if (is_data == BTRFS_REF_TYPE_DATA) {
376 if (type == BTRFS_EXTENT_DATA_REF_KEY)
377 return type;
378 if (type == BTRFS_SHARED_DATA_REF_KEY) {
379 ASSERT(eb->fs_info);
380 /*
381 * Every shared one has parent tree block,
382 * which must be aligned to sector size.
383 */
384 if (offset &&
385 IS_ALIGNED(offset, eb->fs_info->sectorsize))
386 return type;
387 }
388 } else {
389 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
390 return type;
391 }
392 }
393
394 btrfs_print_leaf((struct extent_buffer *)eb);
395 btrfs_err(eb->fs_info,
396 "eb %llu iref 0x%lx invalid extent inline ref type %d",
397 eb->start, (unsigned long)iref, type);
398 WARN_ON(1);
399
400 return BTRFS_REF_TYPE_INVALID;
401 }
402
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)403 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
404 {
405 u32 high_crc = ~(u32)0;
406 u32 low_crc = ~(u32)0;
407 __le64 lenum;
408
409 lenum = cpu_to_le64(root_objectid);
410 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
411 lenum = cpu_to_le64(owner);
412 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
413 lenum = cpu_to_le64(offset);
414 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
415
416 return ((u64)high_crc << 31) ^ (u64)low_crc;
417 }
418
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)419 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
420 struct btrfs_extent_data_ref *ref)
421 {
422 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
423 btrfs_extent_data_ref_objectid(leaf, ref),
424 btrfs_extent_data_ref_offset(leaf, ref));
425 }
426
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)427 static int match_extent_data_ref(struct extent_buffer *leaf,
428 struct btrfs_extent_data_ref *ref,
429 u64 root_objectid, u64 owner, u64 offset)
430 {
431 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
432 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
433 btrfs_extent_data_ref_offset(leaf, ref) != offset)
434 return 0;
435 return 1;
436 }
437
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)438 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
439 struct btrfs_path *path,
440 u64 bytenr, u64 parent,
441 u64 root_objectid,
442 u64 owner, u64 offset)
443 {
444 struct btrfs_root *root = trans->fs_info->extent_root;
445 struct btrfs_key key;
446 struct btrfs_extent_data_ref *ref;
447 struct extent_buffer *leaf;
448 u32 nritems;
449 int ret;
450 int recow;
451 int err = -ENOENT;
452
453 key.objectid = bytenr;
454 if (parent) {
455 key.type = BTRFS_SHARED_DATA_REF_KEY;
456 key.offset = parent;
457 } else {
458 key.type = BTRFS_EXTENT_DATA_REF_KEY;
459 key.offset = hash_extent_data_ref(root_objectid,
460 owner, offset);
461 }
462 again:
463 recow = 0;
464 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
465 if (ret < 0) {
466 err = ret;
467 goto fail;
468 }
469
470 if (parent) {
471 if (!ret)
472 return 0;
473 goto fail;
474 }
475
476 leaf = path->nodes[0];
477 nritems = btrfs_header_nritems(leaf);
478 while (1) {
479 if (path->slots[0] >= nritems) {
480 ret = btrfs_next_leaf(root, path);
481 if (ret < 0)
482 err = ret;
483 if (ret)
484 goto fail;
485
486 leaf = path->nodes[0];
487 nritems = btrfs_header_nritems(leaf);
488 recow = 1;
489 }
490
491 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
492 if (key.objectid != bytenr ||
493 key.type != BTRFS_EXTENT_DATA_REF_KEY)
494 goto fail;
495
496 ref = btrfs_item_ptr(leaf, path->slots[0],
497 struct btrfs_extent_data_ref);
498
499 if (match_extent_data_ref(leaf, ref, root_objectid,
500 owner, offset)) {
501 if (recow) {
502 btrfs_release_path(path);
503 goto again;
504 }
505 err = 0;
506 break;
507 }
508 path->slots[0]++;
509 }
510 fail:
511 return err;
512 }
513
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)514 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
515 struct btrfs_path *path,
516 u64 bytenr, u64 parent,
517 u64 root_objectid, u64 owner,
518 u64 offset, int refs_to_add)
519 {
520 struct btrfs_root *root = trans->fs_info->extent_root;
521 struct btrfs_key key;
522 struct extent_buffer *leaf;
523 u32 size;
524 u32 num_refs;
525 int ret;
526
527 key.objectid = bytenr;
528 if (parent) {
529 key.type = BTRFS_SHARED_DATA_REF_KEY;
530 key.offset = parent;
531 size = sizeof(struct btrfs_shared_data_ref);
532 } else {
533 key.type = BTRFS_EXTENT_DATA_REF_KEY;
534 key.offset = hash_extent_data_ref(root_objectid,
535 owner, offset);
536 size = sizeof(struct btrfs_extent_data_ref);
537 }
538
539 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
540 if (ret && ret != -EEXIST)
541 goto fail;
542
543 leaf = path->nodes[0];
544 if (parent) {
545 struct btrfs_shared_data_ref *ref;
546 ref = btrfs_item_ptr(leaf, path->slots[0],
547 struct btrfs_shared_data_ref);
548 if (ret == 0) {
549 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
550 } else {
551 num_refs = btrfs_shared_data_ref_count(leaf, ref);
552 num_refs += refs_to_add;
553 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
554 }
555 } else {
556 struct btrfs_extent_data_ref *ref;
557 while (ret == -EEXIST) {
558 ref = btrfs_item_ptr(leaf, path->slots[0],
559 struct btrfs_extent_data_ref);
560 if (match_extent_data_ref(leaf, ref, root_objectid,
561 owner, offset))
562 break;
563 btrfs_release_path(path);
564 key.offset++;
565 ret = btrfs_insert_empty_item(trans, root, path, &key,
566 size);
567 if (ret && ret != -EEXIST)
568 goto fail;
569
570 leaf = path->nodes[0];
571 }
572 ref = btrfs_item_ptr(leaf, path->slots[0],
573 struct btrfs_extent_data_ref);
574 if (ret == 0) {
575 btrfs_set_extent_data_ref_root(leaf, ref,
576 root_objectid);
577 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
578 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
579 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
580 } else {
581 num_refs = btrfs_extent_data_ref_count(leaf, ref);
582 num_refs += refs_to_add;
583 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
584 }
585 }
586 btrfs_mark_buffer_dirty(leaf);
587 ret = 0;
588 fail:
589 btrfs_release_path(path);
590 return ret;
591 }
592
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,int refs_to_drop,int * last_ref)593 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
594 struct btrfs_path *path,
595 int refs_to_drop, int *last_ref)
596 {
597 struct btrfs_key key;
598 struct btrfs_extent_data_ref *ref1 = NULL;
599 struct btrfs_shared_data_ref *ref2 = NULL;
600 struct extent_buffer *leaf;
601 u32 num_refs = 0;
602 int ret = 0;
603
604 leaf = path->nodes[0];
605 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
606
607 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
608 ref1 = btrfs_item_ptr(leaf, path->slots[0],
609 struct btrfs_extent_data_ref);
610 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
611 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
612 ref2 = btrfs_item_ptr(leaf, path->slots[0],
613 struct btrfs_shared_data_ref);
614 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
615 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
616 btrfs_print_v0_err(trans->fs_info);
617 btrfs_abort_transaction(trans, -EINVAL);
618 return -EINVAL;
619 } else {
620 BUG();
621 }
622
623 BUG_ON(num_refs < refs_to_drop);
624 num_refs -= refs_to_drop;
625
626 if (num_refs == 0) {
627 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
628 *last_ref = 1;
629 } else {
630 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
631 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
632 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
633 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
634 btrfs_mark_buffer_dirty(leaf);
635 }
636 return ret;
637 }
638
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)639 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
640 struct btrfs_extent_inline_ref *iref)
641 {
642 struct btrfs_key key;
643 struct extent_buffer *leaf;
644 struct btrfs_extent_data_ref *ref1;
645 struct btrfs_shared_data_ref *ref2;
646 u32 num_refs = 0;
647 int type;
648
649 leaf = path->nodes[0];
650 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
651
652 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
653 if (iref) {
654 /*
655 * If type is invalid, we should have bailed out earlier than
656 * this call.
657 */
658 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
659 ASSERT(type != BTRFS_REF_TYPE_INVALID);
660 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
661 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
662 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
663 } else {
664 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
665 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
666 }
667 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
668 ref1 = btrfs_item_ptr(leaf, path->slots[0],
669 struct btrfs_extent_data_ref);
670 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
671 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
672 ref2 = btrfs_item_ptr(leaf, path->slots[0],
673 struct btrfs_shared_data_ref);
674 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
675 } else {
676 WARN_ON(1);
677 }
678 return num_refs;
679 }
680
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)681 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
682 struct btrfs_path *path,
683 u64 bytenr, u64 parent,
684 u64 root_objectid)
685 {
686 struct btrfs_root *root = trans->fs_info->extent_root;
687 struct btrfs_key key;
688 int ret;
689
690 key.objectid = bytenr;
691 if (parent) {
692 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
693 key.offset = parent;
694 } else {
695 key.type = BTRFS_TREE_BLOCK_REF_KEY;
696 key.offset = root_objectid;
697 }
698
699 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
700 if (ret > 0)
701 ret = -ENOENT;
702 return ret;
703 }
704
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)705 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
706 struct btrfs_path *path,
707 u64 bytenr, u64 parent,
708 u64 root_objectid)
709 {
710 struct btrfs_key key;
711 int ret;
712
713 key.objectid = bytenr;
714 if (parent) {
715 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
716 key.offset = parent;
717 } else {
718 key.type = BTRFS_TREE_BLOCK_REF_KEY;
719 key.offset = root_objectid;
720 }
721
722 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
723 path, &key, 0);
724 btrfs_release_path(path);
725 return ret;
726 }
727
extent_ref_type(u64 parent,u64 owner)728 static inline int extent_ref_type(u64 parent, u64 owner)
729 {
730 int type;
731 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
732 if (parent > 0)
733 type = BTRFS_SHARED_BLOCK_REF_KEY;
734 else
735 type = BTRFS_TREE_BLOCK_REF_KEY;
736 } else {
737 if (parent > 0)
738 type = BTRFS_SHARED_DATA_REF_KEY;
739 else
740 type = BTRFS_EXTENT_DATA_REF_KEY;
741 }
742 return type;
743 }
744
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)745 static int find_next_key(struct btrfs_path *path, int level,
746 struct btrfs_key *key)
747
748 {
749 for (; level < BTRFS_MAX_LEVEL; level++) {
750 if (!path->nodes[level])
751 break;
752 if (path->slots[level] + 1 >=
753 btrfs_header_nritems(path->nodes[level]))
754 continue;
755 if (level == 0)
756 btrfs_item_key_to_cpu(path->nodes[level], key,
757 path->slots[level] + 1);
758 else
759 btrfs_node_key_to_cpu(path->nodes[level], key,
760 path->slots[level] + 1);
761 return 0;
762 }
763 return 1;
764 }
765
766 /*
767 * look for inline back ref. if back ref is found, *ref_ret is set
768 * to the address of inline back ref, and 0 is returned.
769 *
770 * if back ref isn't found, *ref_ret is set to the address where it
771 * should be inserted, and -ENOENT is returned.
772 *
773 * if insert is true and there are too many inline back refs, the path
774 * points to the extent item, and -EAGAIN is returned.
775 *
776 * NOTE: inline back refs are ordered in the same way that back ref
777 * items in the tree are ordered.
778 */
779 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)780 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
781 struct btrfs_path *path,
782 struct btrfs_extent_inline_ref **ref_ret,
783 u64 bytenr, u64 num_bytes,
784 u64 parent, u64 root_objectid,
785 u64 owner, u64 offset, int insert)
786 {
787 struct btrfs_fs_info *fs_info = trans->fs_info;
788 struct btrfs_root *root = fs_info->extent_root;
789 struct btrfs_key key;
790 struct extent_buffer *leaf;
791 struct btrfs_extent_item *ei;
792 struct btrfs_extent_inline_ref *iref;
793 u64 flags;
794 u64 item_size;
795 unsigned long ptr;
796 unsigned long end;
797 int extra_size;
798 int type;
799 int want;
800 int ret;
801 int err = 0;
802 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
803 int needed;
804
805 key.objectid = bytenr;
806 key.type = BTRFS_EXTENT_ITEM_KEY;
807 key.offset = num_bytes;
808
809 want = extent_ref_type(parent, owner);
810 if (insert) {
811 extra_size = btrfs_extent_inline_ref_size(want);
812 path->keep_locks = 1;
813 } else
814 extra_size = -1;
815
816 /*
817 * Owner is our level, so we can just add one to get the level for the
818 * block we are interested in.
819 */
820 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
821 key.type = BTRFS_METADATA_ITEM_KEY;
822 key.offset = owner;
823 }
824
825 again:
826 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
827 if (ret < 0) {
828 err = ret;
829 goto out;
830 }
831
832 /*
833 * We may be a newly converted file system which still has the old fat
834 * extent entries for metadata, so try and see if we have one of those.
835 */
836 if (ret > 0 && skinny_metadata) {
837 skinny_metadata = false;
838 if (path->slots[0]) {
839 path->slots[0]--;
840 btrfs_item_key_to_cpu(path->nodes[0], &key,
841 path->slots[0]);
842 if (key.objectid == bytenr &&
843 key.type == BTRFS_EXTENT_ITEM_KEY &&
844 key.offset == num_bytes)
845 ret = 0;
846 }
847 if (ret) {
848 key.objectid = bytenr;
849 key.type = BTRFS_EXTENT_ITEM_KEY;
850 key.offset = num_bytes;
851 btrfs_release_path(path);
852 goto again;
853 }
854 }
855
856 if (ret && !insert) {
857 err = -ENOENT;
858 goto out;
859 } else if (WARN_ON(ret)) {
860 btrfs_print_leaf(path->nodes[0]);
861 btrfs_err(fs_info,
862 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
863 bytenr, num_bytes, parent, root_objectid, owner,
864 offset);
865 err = -EIO;
866 goto out;
867 }
868
869 leaf = path->nodes[0];
870 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
871 if (unlikely(item_size < sizeof(*ei))) {
872 err = -EINVAL;
873 btrfs_print_v0_err(fs_info);
874 btrfs_abort_transaction(trans, err);
875 goto out;
876 }
877
878 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
879 flags = btrfs_extent_flags(leaf, ei);
880
881 ptr = (unsigned long)(ei + 1);
882 end = (unsigned long)ei + item_size;
883
884 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
885 ptr += sizeof(struct btrfs_tree_block_info);
886 BUG_ON(ptr > end);
887 }
888
889 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
890 needed = BTRFS_REF_TYPE_DATA;
891 else
892 needed = BTRFS_REF_TYPE_BLOCK;
893
894 err = -ENOENT;
895 while (1) {
896 if (ptr >= end) {
897 WARN_ON(ptr > end);
898 break;
899 }
900 iref = (struct btrfs_extent_inline_ref *)ptr;
901 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
902 if (type == BTRFS_REF_TYPE_INVALID) {
903 err = -EUCLEAN;
904 goto out;
905 }
906
907 if (want < type)
908 break;
909 if (want > type) {
910 ptr += btrfs_extent_inline_ref_size(type);
911 continue;
912 }
913
914 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
915 struct btrfs_extent_data_ref *dref;
916 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
917 if (match_extent_data_ref(leaf, dref, root_objectid,
918 owner, offset)) {
919 err = 0;
920 break;
921 }
922 if (hash_extent_data_ref_item(leaf, dref) <
923 hash_extent_data_ref(root_objectid, owner, offset))
924 break;
925 } else {
926 u64 ref_offset;
927 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
928 if (parent > 0) {
929 if (parent == ref_offset) {
930 err = 0;
931 break;
932 }
933 if (ref_offset < parent)
934 break;
935 } else {
936 if (root_objectid == ref_offset) {
937 err = 0;
938 break;
939 }
940 if (ref_offset < root_objectid)
941 break;
942 }
943 }
944 ptr += btrfs_extent_inline_ref_size(type);
945 }
946 if (err == -ENOENT && insert) {
947 if (item_size + extra_size >=
948 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
949 err = -EAGAIN;
950 goto out;
951 }
952 /*
953 * To add new inline back ref, we have to make sure
954 * there is no corresponding back ref item.
955 * For simplicity, we just do not add new inline back
956 * ref if there is any kind of item for this block
957 */
958 if (find_next_key(path, 0, &key) == 0 &&
959 key.objectid == bytenr &&
960 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
961 err = -EAGAIN;
962 goto out;
963 }
964 }
965 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
966 out:
967 if (insert) {
968 path->keep_locks = 0;
969 btrfs_unlock_up_safe(path, 1);
970 }
971 return err;
972 }
973
974 /*
975 * helper to add new inline back ref
976 */
977 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)978 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
979 struct btrfs_path *path,
980 struct btrfs_extent_inline_ref *iref,
981 u64 parent, u64 root_objectid,
982 u64 owner, u64 offset, int refs_to_add,
983 struct btrfs_delayed_extent_op *extent_op)
984 {
985 struct extent_buffer *leaf;
986 struct btrfs_extent_item *ei;
987 unsigned long ptr;
988 unsigned long end;
989 unsigned long item_offset;
990 u64 refs;
991 int size;
992 int type;
993
994 leaf = path->nodes[0];
995 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
996 item_offset = (unsigned long)iref - (unsigned long)ei;
997
998 type = extent_ref_type(parent, owner);
999 size = btrfs_extent_inline_ref_size(type);
1000
1001 btrfs_extend_item(path, size);
1002
1003 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1004 refs = btrfs_extent_refs(leaf, ei);
1005 refs += refs_to_add;
1006 btrfs_set_extent_refs(leaf, ei, refs);
1007 if (extent_op)
1008 __run_delayed_extent_op(extent_op, leaf, ei);
1009
1010 ptr = (unsigned long)ei + item_offset;
1011 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1012 if (ptr < end - size)
1013 memmove_extent_buffer(leaf, ptr + size, ptr,
1014 end - size - ptr);
1015
1016 iref = (struct btrfs_extent_inline_ref *)ptr;
1017 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1018 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1019 struct btrfs_extent_data_ref *dref;
1020 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1021 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1022 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1023 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1024 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1025 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1026 struct btrfs_shared_data_ref *sref;
1027 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1028 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1029 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1030 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1031 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1032 } else {
1033 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1034 }
1035 btrfs_mark_buffer_dirty(leaf);
1036 }
1037
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1038 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1039 struct btrfs_path *path,
1040 struct btrfs_extent_inline_ref **ref_ret,
1041 u64 bytenr, u64 num_bytes, u64 parent,
1042 u64 root_objectid, u64 owner, u64 offset)
1043 {
1044 int ret;
1045
1046 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1047 num_bytes, parent, root_objectid,
1048 owner, offset, 0);
1049 if (ret != -ENOENT)
1050 return ret;
1051
1052 btrfs_release_path(path);
1053 *ref_ret = NULL;
1054
1055 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1056 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1057 root_objectid);
1058 } else {
1059 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1060 root_objectid, owner, offset);
1061 }
1062 return ret;
1063 }
1064
1065 /*
1066 * helper to update/remove inline back ref
1067 */
1068 static noinline_for_stack
update_inline_extent_backref(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op,int * last_ref)1069 void update_inline_extent_backref(struct btrfs_path *path,
1070 struct btrfs_extent_inline_ref *iref,
1071 int refs_to_mod,
1072 struct btrfs_delayed_extent_op *extent_op,
1073 int *last_ref)
1074 {
1075 struct extent_buffer *leaf = path->nodes[0];
1076 struct btrfs_extent_item *ei;
1077 struct btrfs_extent_data_ref *dref = NULL;
1078 struct btrfs_shared_data_ref *sref = NULL;
1079 unsigned long ptr;
1080 unsigned long end;
1081 u32 item_size;
1082 int size;
1083 int type;
1084 u64 refs;
1085
1086 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1087 refs = btrfs_extent_refs(leaf, ei);
1088 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1089 refs += refs_to_mod;
1090 btrfs_set_extent_refs(leaf, ei, refs);
1091 if (extent_op)
1092 __run_delayed_extent_op(extent_op, leaf, ei);
1093
1094 /*
1095 * If type is invalid, we should have bailed out after
1096 * lookup_inline_extent_backref().
1097 */
1098 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1099 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1100
1101 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1102 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1103 refs = btrfs_extent_data_ref_count(leaf, dref);
1104 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1105 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1106 refs = btrfs_shared_data_ref_count(leaf, sref);
1107 } else {
1108 refs = 1;
1109 BUG_ON(refs_to_mod != -1);
1110 }
1111
1112 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1113 refs += refs_to_mod;
1114
1115 if (refs > 0) {
1116 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1117 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1118 else
1119 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1120 } else {
1121 *last_ref = 1;
1122 size = btrfs_extent_inline_ref_size(type);
1123 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1124 ptr = (unsigned long)iref;
1125 end = (unsigned long)ei + item_size;
1126 if (ptr + size < end)
1127 memmove_extent_buffer(leaf, ptr, ptr + size,
1128 end - ptr - size);
1129 item_size -= size;
1130 btrfs_truncate_item(path, item_size, 1);
1131 }
1132 btrfs_mark_buffer_dirty(leaf);
1133 }
1134
1135 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1136 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1137 struct btrfs_path *path,
1138 u64 bytenr, u64 num_bytes, u64 parent,
1139 u64 root_objectid, u64 owner,
1140 u64 offset, int refs_to_add,
1141 struct btrfs_delayed_extent_op *extent_op)
1142 {
1143 struct btrfs_extent_inline_ref *iref;
1144 int ret;
1145
1146 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1147 num_bytes, parent, root_objectid,
1148 owner, offset, 1);
1149 if (ret == 0) {
1150 /*
1151 * We're adding refs to a tree block we already own, this
1152 * should not happen at all.
1153 */
1154 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1155 btrfs_crit(trans->fs_info,
1156 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu",
1157 bytenr, num_bytes, root_objectid);
1158 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
1159 WARN_ON(1);
1160 btrfs_crit(trans->fs_info,
1161 "path->slots[0]=%d path->nodes[0]:", path->slots[0]);
1162 btrfs_print_leaf(path->nodes[0]);
1163 }
1164 return -EUCLEAN;
1165 }
1166 update_inline_extent_backref(path, iref, refs_to_add,
1167 extent_op, NULL);
1168 } else if (ret == -ENOENT) {
1169 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1170 root_objectid, owner, offset,
1171 refs_to_add, extent_op);
1172 ret = 0;
1173 }
1174 return ret;
1175 }
1176
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data,int * last_ref)1177 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1178 struct btrfs_path *path,
1179 struct btrfs_extent_inline_ref *iref,
1180 int refs_to_drop, int is_data, int *last_ref)
1181 {
1182 int ret = 0;
1183
1184 BUG_ON(!is_data && refs_to_drop != 1);
1185 if (iref) {
1186 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1187 last_ref);
1188 } else if (is_data) {
1189 ret = remove_extent_data_ref(trans, path, refs_to_drop,
1190 last_ref);
1191 } else {
1192 *last_ref = 1;
1193 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1194 }
1195 return ret;
1196 }
1197
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1198 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1199 u64 *discarded_bytes)
1200 {
1201 int j, ret = 0;
1202 u64 bytes_left, end;
1203 u64 aligned_start = ALIGN(start, 1 << 9);
1204
1205 if (WARN_ON(start != aligned_start)) {
1206 len -= aligned_start - start;
1207 len = round_down(len, 1 << 9);
1208 start = aligned_start;
1209 }
1210
1211 *discarded_bytes = 0;
1212
1213 if (!len)
1214 return 0;
1215
1216 end = start + len;
1217 bytes_left = len;
1218
1219 /* Skip any superblocks on this device. */
1220 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1221 u64 sb_start = btrfs_sb_offset(j);
1222 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1223 u64 size = sb_start - start;
1224
1225 if (!in_range(sb_start, start, bytes_left) &&
1226 !in_range(sb_end, start, bytes_left) &&
1227 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1228 continue;
1229
1230 /*
1231 * Superblock spans beginning of range. Adjust start and
1232 * try again.
1233 */
1234 if (sb_start <= start) {
1235 start += sb_end - start;
1236 if (start > end) {
1237 bytes_left = 0;
1238 break;
1239 }
1240 bytes_left = end - start;
1241 continue;
1242 }
1243
1244 if (size) {
1245 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1246 GFP_NOFS, 0);
1247 if (!ret)
1248 *discarded_bytes += size;
1249 else if (ret != -EOPNOTSUPP)
1250 return ret;
1251 }
1252
1253 start = sb_end;
1254 if (start > end) {
1255 bytes_left = 0;
1256 break;
1257 }
1258 bytes_left = end - start;
1259 }
1260
1261 if (bytes_left) {
1262 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1263 GFP_NOFS, 0);
1264 if (!ret)
1265 *discarded_bytes += bytes_left;
1266 }
1267 return ret;
1268 }
1269
btrfs_discard_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 * actual_bytes)1270 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1271 u64 num_bytes, u64 *actual_bytes)
1272 {
1273 int ret = 0;
1274 u64 discarded_bytes = 0;
1275 u64 end = bytenr + num_bytes;
1276 u64 cur = bytenr;
1277 struct btrfs_bio *bbio = NULL;
1278
1279
1280 /*
1281 * Avoid races with device replace and make sure our bbio has devices
1282 * associated to its stripes that don't go away while we are discarding.
1283 */
1284 btrfs_bio_counter_inc_blocked(fs_info);
1285 while (cur < end) {
1286 struct btrfs_bio_stripe *stripe;
1287 int i;
1288
1289 num_bytes = end - cur;
1290 /* Tell the block device(s) that the sectors can be discarded */
1291 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur,
1292 &num_bytes, &bbio, 0);
1293 /*
1294 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or
1295 * -EOPNOTSUPP. For any such error, @num_bytes is not updated,
1296 * thus we can't continue anyway.
1297 */
1298 if (ret < 0)
1299 goto out;
1300
1301 stripe = bbio->stripes;
1302 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1303 u64 bytes;
1304 struct request_queue *req_q;
1305 struct btrfs_device *device = stripe->dev;
1306
1307 if (!device->bdev) {
1308 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1309 continue;
1310 }
1311 req_q = bdev_get_queue(device->bdev);
1312 if (!blk_queue_discard(req_q))
1313 continue;
1314
1315 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
1316 continue;
1317
1318 ret = btrfs_issue_discard(device->bdev,
1319 stripe->physical,
1320 stripe->length,
1321 &bytes);
1322 if (!ret) {
1323 discarded_bytes += bytes;
1324 } else if (ret != -EOPNOTSUPP) {
1325 /*
1326 * Logic errors or -ENOMEM, or -EIO, but
1327 * unlikely to happen.
1328 *
1329 * And since there are two loops, explicitly
1330 * go to out to avoid confusion.
1331 */
1332 btrfs_put_bbio(bbio);
1333 goto out;
1334 }
1335
1336 /*
1337 * Just in case we get back EOPNOTSUPP for some reason,
1338 * just ignore the return value so we don't screw up
1339 * people calling discard_extent.
1340 */
1341 ret = 0;
1342 }
1343 btrfs_put_bbio(bbio);
1344 cur += num_bytes;
1345 }
1346 out:
1347 btrfs_bio_counter_dec(fs_info);
1348
1349 if (actual_bytes)
1350 *actual_bytes = discarded_bytes;
1351
1352
1353 if (ret == -EOPNOTSUPP)
1354 ret = 0;
1355 return ret;
1356 }
1357
1358 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref)1359 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1360 struct btrfs_ref *generic_ref)
1361 {
1362 struct btrfs_fs_info *fs_info = trans->fs_info;
1363 int ret;
1364
1365 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1366 generic_ref->action);
1367 BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1368 generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
1369
1370 if (generic_ref->type == BTRFS_REF_METADATA)
1371 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1372 else
1373 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1374
1375 btrfs_ref_tree_mod(fs_info, generic_ref);
1376
1377 return ret;
1378 }
1379
1380 /*
1381 * __btrfs_inc_extent_ref - insert backreference for a given extent
1382 *
1383 * The counterpart is in __btrfs_free_extent(), with examples and more details
1384 * how it works.
1385 *
1386 * @trans: Handle of transaction
1387 *
1388 * @node: The delayed ref node used to get the bytenr/length for
1389 * extent whose references are incremented.
1390 *
1391 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1392 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1393 * bytenr of the parent block. Since new extents are always
1394 * created with indirect references, this will only be the case
1395 * when relocating a shared extent. In that case, root_objectid
1396 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
1397 * be 0
1398 *
1399 * @root_objectid: The id of the root where this modification has originated,
1400 * this can be either one of the well-known metadata trees or
1401 * the subvolume id which references this extent.
1402 *
1403 * @owner: For data extents it is the inode number of the owning file.
1404 * For metadata extents this parameter holds the level in the
1405 * tree of the extent.
1406 *
1407 * @offset: For metadata extents the offset is ignored and is currently
1408 * always passed as 0. For data extents it is the fileoffset
1409 * this extent belongs to.
1410 *
1411 * @refs_to_add Number of references to add
1412 *
1413 * @extent_op Pointer to a structure, holding information necessary when
1414 * updating a tree block's flags
1415 *
1416 */
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1417 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1418 struct btrfs_delayed_ref_node *node,
1419 u64 parent, u64 root_objectid,
1420 u64 owner, u64 offset, int refs_to_add,
1421 struct btrfs_delayed_extent_op *extent_op)
1422 {
1423 struct btrfs_path *path;
1424 struct extent_buffer *leaf;
1425 struct btrfs_extent_item *item;
1426 struct btrfs_key key;
1427 u64 bytenr = node->bytenr;
1428 u64 num_bytes = node->num_bytes;
1429 u64 refs;
1430 int ret;
1431
1432 path = btrfs_alloc_path();
1433 if (!path)
1434 return -ENOMEM;
1435
1436 path->leave_spinning = 1;
1437 /* this will setup the path even if it fails to insert the back ref */
1438 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1439 parent, root_objectid, owner,
1440 offset, refs_to_add, extent_op);
1441 if ((ret < 0 && ret != -EAGAIN) || !ret)
1442 goto out;
1443
1444 /*
1445 * Ok we had -EAGAIN which means we didn't have space to insert and
1446 * inline extent ref, so just update the reference count and add a
1447 * normal backref.
1448 */
1449 leaf = path->nodes[0];
1450 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1451 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1452 refs = btrfs_extent_refs(leaf, item);
1453 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1454 if (extent_op)
1455 __run_delayed_extent_op(extent_op, leaf, item);
1456
1457 btrfs_mark_buffer_dirty(leaf);
1458 btrfs_release_path(path);
1459
1460 path->leave_spinning = 1;
1461 /* now insert the actual backref */
1462 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1463 BUG_ON(refs_to_add != 1);
1464 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1465 root_objectid);
1466 } else {
1467 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1468 root_objectid, owner, offset,
1469 refs_to_add);
1470 }
1471 if (ret)
1472 btrfs_abort_transaction(trans, ret);
1473 out:
1474 btrfs_free_path(path);
1475 return ret;
1476 }
1477
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)1478 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1479 struct btrfs_delayed_ref_node *node,
1480 struct btrfs_delayed_extent_op *extent_op,
1481 int insert_reserved)
1482 {
1483 int ret = 0;
1484 struct btrfs_delayed_data_ref *ref;
1485 struct btrfs_key ins;
1486 u64 parent = 0;
1487 u64 ref_root = 0;
1488 u64 flags = 0;
1489
1490 ins.objectid = node->bytenr;
1491 ins.offset = node->num_bytes;
1492 ins.type = BTRFS_EXTENT_ITEM_KEY;
1493
1494 ref = btrfs_delayed_node_to_data_ref(node);
1495 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1496
1497 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1498 parent = ref->parent;
1499 ref_root = ref->root;
1500
1501 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1502 if (extent_op)
1503 flags |= extent_op->flags_to_set;
1504 ret = alloc_reserved_file_extent(trans, parent, ref_root,
1505 flags, ref->objectid,
1506 ref->offset, &ins,
1507 node->ref_mod);
1508 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1509 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1510 ref->objectid, ref->offset,
1511 node->ref_mod, extent_op);
1512 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1513 ret = __btrfs_free_extent(trans, node, parent,
1514 ref_root, ref->objectid,
1515 ref->offset, node->ref_mod,
1516 extent_op);
1517 } else {
1518 BUG();
1519 }
1520 return ret;
1521 }
1522
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)1523 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1524 struct extent_buffer *leaf,
1525 struct btrfs_extent_item *ei)
1526 {
1527 u64 flags = btrfs_extent_flags(leaf, ei);
1528 if (extent_op->update_flags) {
1529 flags |= extent_op->flags_to_set;
1530 btrfs_set_extent_flags(leaf, ei, flags);
1531 }
1532
1533 if (extent_op->update_key) {
1534 struct btrfs_tree_block_info *bi;
1535 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1536 bi = (struct btrfs_tree_block_info *)(ei + 1);
1537 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1538 }
1539 }
1540
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_extent_op * extent_op)1541 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1542 struct btrfs_delayed_ref_head *head,
1543 struct btrfs_delayed_extent_op *extent_op)
1544 {
1545 struct btrfs_fs_info *fs_info = trans->fs_info;
1546 struct btrfs_key key;
1547 struct btrfs_path *path;
1548 struct btrfs_extent_item *ei;
1549 struct extent_buffer *leaf;
1550 u32 item_size;
1551 int ret;
1552 int err = 0;
1553 int metadata = !extent_op->is_data;
1554
1555 if (TRANS_ABORTED(trans))
1556 return 0;
1557
1558 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1559 metadata = 0;
1560
1561 path = btrfs_alloc_path();
1562 if (!path)
1563 return -ENOMEM;
1564
1565 key.objectid = head->bytenr;
1566
1567 if (metadata) {
1568 key.type = BTRFS_METADATA_ITEM_KEY;
1569 key.offset = extent_op->level;
1570 } else {
1571 key.type = BTRFS_EXTENT_ITEM_KEY;
1572 key.offset = head->num_bytes;
1573 }
1574
1575 again:
1576 path->leave_spinning = 1;
1577 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
1578 if (ret < 0) {
1579 err = ret;
1580 goto out;
1581 }
1582 if (ret > 0) {
1583 if (metadata) {
1584 if (path->slots[0] > 0) {
1585 path->slots[0]--;
1586 btrfs_item_key_to_cpu(path->nodes[0], &key,
1587 path->slots[0]);
1588 if (key.objectid == head->bytenr &&
1589 key.type == BTRFS_EXTENT_ITEM_KEY &&
1590 key.offset == head->num_bytes)
1591 ret = 0;
1592 }
1593 if (ret > 0) {
1594 btrfs_release_path(path);
1595 metadata = 0;
1596
1597 key.objectid = head->bytenr;
1598 key.offset = head->num_bytes;
1599 key.type = BTRFS_EXTENT_ITEM_KEY;
1600 goto again;
1601 }
1602 } else {
1603 err = -EIO;
1604 goto out;
1605 }
1606 }
1607
1608 leaf = path->nodes[0];
1609 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1610
1611 if (unlikely(item_size < sizeof(*ei))) {
1612 err = -EINVAL;
1613 btrfs_print_v0_err(fs_info);
1614 btrfs_abort_transaction(trans, err);
1615 goto out;
1616 }
1617
1618 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1619 __run_delayed_extent_op(extent_op, leaf, ei);
1620
1621 btrfs_mark_buffer_dirty(leaf);
1622 out:
1623 btrfs_free_path(path);
1624 return err;
1625 }
1626
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)1627 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1628 struct btrfs_delayed_ref_node *node,
1629 struct btrfs_delayed_extent_op *extent_op,
1630 int insert_reserved)
1631 {
1632 int ret = 0;
1633 struct btrfs_delayed_tree_ref *ref;
1634 u64 parent = 0;
1635 u64 ref_root = 0;
1636
1637 ref = btrfs_delayed_node_to_tree_ref(node);
1638 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1639
1640 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1641 parent = ref->parent;
1642 ref_root = ref->root;
1643
1644 if (unlikely(node->ref_mod != 1)) {
1645 btrfs_err(trans->fs_info,
1646 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1647 node->bytenr, node->ref_mod, node->action, ref_root,
1648 parent);
1649 return -EUCLEAN;
1650 }
1651 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1652 BUG_ON(!extent_op || !extent_op->update_flags);
1653 ret = alloc_reserved_tree_block(trans, node, extent_op);
1654 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1655 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1656 ref->level, 0, 1, extent_op);
1657 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1658 ret = __btrfs_free_extent(trans, node, parent, ref_root,
1659 ref->level, 0, 1, extent_op);
1660 } else {
1661 BUG();
1662 }
1663 return ret;
1664 }
1665
1666 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)1667 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1668 struct btrfs_delayed_ref_node *node,
1669 struct btrfs_delayed_extent_op *extent_op,
1670 int insert_reserved)
1671 {
1672 int ret = 0;
1673
1674 if (TRANS_ABORTED(trans)) {
1675 if (insert_reserved)
1676 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1677 return 0;
1678 }
1679
1680 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1681 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1682 ret = run_delayed_tree_ref(trans, node, extent_op,
1683 insert_reserved);
1684 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1685 node->type == BTRFS_SHARED_DATA_REF_KEY)
1686 ret = run_delayed_data_ref(trans, node, extent_op,
1687 insert_reserved);
1688 else
1689 BUG();
1690 if (ret && insert_reserved)
1691 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1692 if (ret < 0)
1693 btrfs_err(trans->fs_info,
1694 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1695 node->bytenr, node->num_bytes, node->type,
1696 node->action, node->ref_mod, ret);
1697 return ret;
1698 }
1699
1700 static inline struct btrfs_delayed_ref_node *
select_delayed_ref(struct btrfs_delayed_ref_head * head)1701 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1702 {
1703 struct btrfs_delayed_ref_node *ref;
1704
1705 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1706 return NULL;
1707
1708 /*
1709 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1710 * This is to prevent a ref count from going down to zero, which deletes
1711 * the extent item from the extent tree, when there still are references
1712 * to add, which would fail because they would not find the extent item.
1713 */
1714 if (!list_empty(&head->ref_add_list))
1715 return list_first_entry(&head->ref_add_list,
1716 struct btrfs_delayed_ref_node, add_list);
1717
1718 ref = rb_entry(rb_first_cached(&head->ref_tree),
1719 struct btrfs_delayed_ref_node, ref_node);
1720 ASSERT(list_empty(&ref->add_list));
1721 return ref;
1722 }
1723
unselect_delayed_ref_head(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1724 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1725 struct btrfs_delayed_ref_head *head)
1726 {
1727 spin_lock(&delayed_refs->lock);
1728 head->processing = 0;
1729 delayed_refs->num_heads_ready++;
1730 spin_unlock(&delayed_refs->lock);
1731 btrfs_delayed_ref_unlock(head);
1732 }
1733
cleanup_extent_op(struct btrfs_delayed_ref_head * head)1734 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1735 struct btrfs_delayed_ref_head *head)
1736 {
1737 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1738
1739 if (!extent_op)
1740 return NULL;
1741
1742 if (head->must_insert_reserved) {
1743 head->extent_op = NULL;
1744 btrfs_free_delayed_extent_op(extent_op);
1745 return NULL;
1746 }
1747 return extent_op;
1748 }
1749
run_and_cleanup_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1750 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1751 struct btrfs_delayed_ref_head *head)
1752 {
1753 struct btrfs_delayed_extent_op *extent_op;
1754 int ret;
1755
1756 extent_op = cleanup_extent_op(head);
1757 if (!extent_op)
1758 return 0;
1759 head->extent_op = NULL;
1760 spin_unlock(&head->lock);
1761 ret = run_delayed_extent_op(trans, head, extent_op);
1762 btrfs_free_delayed_extent_op(extent_op);
1763 return ret ? ret : 1;
1764 }
1765
btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1766 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1767 struct btrfs_delayed_ref_root *delayed_refs,
1768 struct btrfs_delayed_ref_head *head)
1769 {
1770 int nr_items = 1; /* Dropping this ref head update. */
1771
1772 /*
1773 * We had csum deletions accounted for in our delayed refs rsv, we need
1774 * to drop the csum leaves for this update from our delayed_refs_rsv.
1775 */
1776 if (head->total_ref_mod < 0 && head->is_data) {
1777 spin_lock(&delayed_refs->lock);
1778 delayed_refs->pending_csums -= head->num_bytes;
1779 spin_unlock(&delayed_refs->lock);
1780 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1781 }
1782
1783 /*
1784 * We were dropping refs, or had a new ref and dropped it, and thus must
1785 * adjust down our total_bytes_pinned, the space may or may not have
1786 * been pinned and so is accounted for properly in the pinned space by
1787 * now.
1788 */
1789 if (head->total_ref_mod < 0 ||
1790 (head->total_ref_mod == 0 && head->must_insert_reserved)) {
1791 u64 flags = btrfs_ref_head_to_space_flags(head);
1792
1793 btrfs_mod_total_bytes_pinned(fs_info, flags, -head->num_bytes);
1794 }
1795
1796 btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1797 }
1798
cleanup_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1799 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1800 struct btrfs_delayed_ref_head *head)
1801 {
1802
1803 struct btrfs_fs_info *fs_info = trans->fs_info;
1804 struct btrfs_delayed_ref_root *delayed_refs;
1805 int ret;
1806
1807 delayed_refs = &trans->transaction->delayed_refs;
1808
1809 ret = run_and_cleanup_extent_op(trans, head);
1810 if (ret < 0) {
1811 unselect_delayed_ref_head(delayed_refs, head);
1812 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1813 return ret;
1814 } else if (ret) {
1815 return ret;
1816 }
1817
1818 /*
1819 * Need to drop our head ref lock and re-acquire the delayed ref lock
1820 * and then re-check to make sure nobody got added.
1821 */
1822 spin_unlock(&head->lock);
1823 spin_lock(&delayed_refs->lock);
1824 spin_lock(&head->lock);
1825 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1826 spin_unlock(&head->lock);
1827 spin_unlock(&delayed_refs->lock);
1828 return 1;
1829 }
1830 btrfs_delete_ref_head(delayed_refs, head);
1831 spin_unlock(&head->lock);
1832 spin_unlock(&delayed_refs->lock);
1833
1834 if (head->must_insert_reserved) {
1835 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1836 if (head->is_data) {
1837 ret = btrfs_del_csums(trans, fs_info->csum_root,
1838 head->bytenr, head->num_bytes);
1839 }
1840 }
1841
1842 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1843
1844 trace_run_delayed_ref_head(fs_info, head, 0);
1845 btrfs_delayed_ref_unlock(head);
1846 btrfs_put_delayed_ref_head(head);
1847 return ret;
1848 }
1849
btrfs_obtain_ref_head(struct btrfs_trans_handle * trans)1850 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1851 struct btrfs_trans_handle *trans)
1852 {
1853 struct btrfs_delayed_ref_root *delayed_refs =
1854 &trans->transaction->delayed_refs;
1855 struct btrfs_delayed_ref_head *head = NULL;
1856 int ret;
1857
1858 spin_lock(&delayed_refs->lock);
1859 head = btrfs_select_ref_head(delayed_refs);
1860 if (!head) {
1861 spin_unlock(&delayed_refs->lock);
1862 return head;
1863 }
1864
1865 /*
1866 * Grab the lock that says we are going to process all the refs for
1867 * this head
1868 */
1869 ret = btrfs_delayed_ref_lock(delayed_refs, head);
1870 spin_unlock(&delayed_refs->lock);
1871
1872 /*
1873 * We may have dropped the spin lock to get the head mutex lock, and
1874 * that might have given someone else time to free the head. If that's
1875 * true, it has been removed from our list and we can move on.
1876 */
1877 if (ret == -EAGAIN)
1878 head = ERR_PTR(-EAGAIN);
1879
1880 return head;
1881 }
1882
btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * locked_ref,unsigned long * run_refs)1883 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1884 struct btrfs_delayed_ref_head *locked_ref,
1885 unsigned long *run_refs)
1886 {
1887 struct btrfs_fs_info *fs_info = trans->fs_info;
1888 struct btrfs_delayed_ref_root *delayed_refs;
1889 struct btrfs_delayed_extent_op *extent_op;
1890 struct btrfs_delayed_ref_node *ref;
1891 int must_insert_reserved = 0;
1892 int ret;
1893
1894 delayed_refs = &trans->transaction->delayed_refs;
1895
1896 lockdep_assert_held(&locked_ref->mutex);
1897 lockdep_assert_held(&locked_ref->lock);
1898
1899 while ((ref = select_delayed_ref(locked_ref))) {
1900 if (ref->seq &&
1901 btrfs_check_delayed_seq(fs_info, ref->seq)) {
1902 spin_unlock(&locked_ref->lock);
1903 unselect_delayed_ref_head(delayed_refs, locked_ref);
1904 return -EAGAIN;
1905 }
1906
1907 (*run_refs)++;
1908 ref->in_tree = 0;
1909 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1910 RB_CLEAR_NODE(&ref->ref_node);
1911 if (!list_empty(&ref->add_list))
1912 list_del(&ref->add_list);
1913 /*
1914 * When we play the delayed ref, also correct the ref_mod on
1915 * head
1916 */
1917 switch (ref->action) {
1918 case BTRFS_ADD_DELAYED_REF:
1919 case BTRFS_ADD_DELAYED_EXTENT:
1920 locked_ref->ref_mod -= ref->ref_mod;
1921 break;
1922 case BTRFS_DROP_DELAYED_REF:
1923 locked_ref->ref_mod += ref->ref_mod;
1924 break;
1925 default:
1926 WARN_ON(1);
1927 }
1928 atomic_dec(&delayed_refs->num_entries);
1929
1930 /*
1931 * Record the must_insert_reserved flag before we drop the
1932 * spin lock.
1933 */
1934 must_insert_reserved = locked_ref->must_insert_reserved;
1935 locked_ref->must_insert_reserved = 0;
1936
1937 extent_op = locked_ref->extent_op;
1938 locked_ref->extent_op = NULL;
1939 spin_unlock(&locked_ref->lock);
1940
1941 ret = run_one_delayed_ref(trans, ref, extent_op,
1942 must_insert_reserved);
1943
1944 btrfs_free_delayed_extent_op(extent_op);
1945 if (ret) {
1946 unselect_delayed_ref_head(delayed_refs, locked_ref);
1947 btrfs_put_delayed_ref(ref);
1948 return ret;
1949 }
1950
1951 btrfs_put_delayed_ref(ref);
1952 cond_resched();
1953
1954 spin_lock(&locked_ref->lock);
1955 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1956 }
1957
1958 return 0;
1959 }
1960
1961 /*
1962 * Returns 0 on success or if called with an already aborted transaction.
1963 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1964 */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long nr)1965 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1966 unsigned long nr)
1967 {
1968 struct btrfs_fs_info *fs_info = trans->fs_info;
1969 struct btrfs_delayed_ref_root *delayed_refs;
1970 struct btrfs_delayed_ref_head *locked_ref = NULL;
1971 ktime_t start = ktime_get();
1972 int ret;
1973 unsigned long count = 0;
1974 unsigned long actual_count = 0;
1975
1976 delayed_refs = &trans->transaction->delayed_refs;
1977 do {
1978 if (!locked_ref) {
1979 locked_ref = btrfs_obtain_ref_head(trans);
1980 if (IS_ERR_OR_NULL(locked_ref)) {
1981 if (PTR_ERR(locked_ref) == -EAGAIN) {
1982 continue;
1983 } else {
1984 break;
1985 }
1986 }
1987 count++;
1988 }
1989 /*
1990 * We need to try and merge add/drops of the same ref since we
1991 * can run into issues with relocate dropping the implicit ref
1992 * and then it being added back again before the drop can
1993 * finish. If we merged anything we need to re-loop so we can
1994 * get a good ref.
1995 * Or we can get node references of the same type that weren't
1996 * merged when created due to bumps in the tree mod seq, and
1997 * we need to merge them to prevent adding an inline extent
1998 * backref before dropping it (triggering a BUG_ON at
1999 * insert_inline_extent_backref()).
2000 */
2001 spin_lock(&locked_ref->lock);
2002 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2003
2004 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2005 &actual_count);
2006 if (ret < 0 && ret != -EAGAIN) {
2007 /*
2008 * Error, btrfs_run_delayed_refs_for_head already
2009 * unlocked everything so just bail out
2010 */
2011 return ret;
2012 } else if (!ret) {
2013 /*
2014 * Success, perform the usual cleanup of a processed
2015 * head
2016 */
2017 ret = cleanup_ref_head(trans, locked_ref);
2018 if (ret > 0 ) {
2019 /* We dropped our lock, we need to loop. */
2020 ret = 0;
2021 continue;
2022 } else if (ret) {
2023 return ret;
2024 }
2025 }
2026
2027 /*
2028 * Either success case or btrfs_run_delayed_refs_for_head
2029 * returned -EAGAIN, meaning we need to select another head
2030 */
2031
2032 locked_ref = NULL;
2033 cond_resched();
2034 } while ((nr != -1 && count < nr) || locked_ref);
2035
2036 /*
2037 * We don't want to include ref heads since we can have empty ref heads
2038 * and those will drastically skew our runtime down since we just do
2039 * accounting, no actual extent tree updates.
2040 */
2041 if (actual_count > 0) {
2042 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2043 u64 avg;
2044
2045 /*
2046 * We weigh the current average higher than our current runtime
2047 * to avoid large swings in the average.
2048 */
2049 spin_lock(&delayed_refs->lock);
2050 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2051 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2052 spin_unlock(&delayed_refs->lock);
2053 }
2054 return 0;
2055 }
2056
2057 #ifdef SCRAMBLE_DELAYED_REFS
2058 /*
2059 * Normally delayed refs get processed in ascending bytenr order. This
2060 * correlates in most cases to the order added. To expose dependencies on this
2061 * order, we start to process the tree in the middle instead of the beginning
2062 */
find_middle(struct rb_root * root)2063 static u64 find_middle(struct rb_root *root)
2064 {
2065 struct rb_node *n = root->rb_node;
2066 struct btrfs_delayed_ref_node *entry;
2067 int alt = 1;
2068 u64 middle;
2069 u64 first = 0, last = 0;
2070
2071 n = rb_first(root);
2072 if (n) {
2073 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2074 first = entry->bytenr;
2075 }
2076 n = rb_last(root);
2077 if (n) {
2078 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2079 last = entry->bytenr;
2080 }
2081 n = root->rb_node;
2082
2083 while (n) {
2084 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2085 WARN_ON(!entry->in_tree);
2086
2087 middle = entry->bytenr;
2088
2089 if (alt)
2090 n = n->rb_left;
2091 else
2092 n = n->rb_right;
2093
2094 alt = 1 - alt;
2095 }
2096 return middle;
2097 }
2098 #endif
2099
2100 /*
2101 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2102 * would require to store the csums for that many bytes.
2103 */
btrfs_csum_bytes_to_leaves(struct btrfs_fs_info * fs_info,u64 csum_bytes)2104 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2105 {
2106 u64 csum_size;
2107 u64 num_csums_per_leaf;
2108 u64 num_csums;
2109
2110 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2111 num_csums_per_leaf = div64_u64(csum_size,
2112 (u64)btrfs_super_csum_size(fs_info->super_copy));
2113 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2114 num_csums += num_csums_per_leaf - 1;
2115 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2116 return num_csums;
2117 }
2118
2119 /*
2120 * this starts processing the delayed reference count updates and
2121 * extent insertions we have queued up so far. count can be
2122 * 0, which means to process everything in the tree at the start
2123 * of the run (but not newly added entries), or it can be some target
2124 * number you'd like to process.
2125 *
2126 * Returns 0 on success or if called with an aborted transaction
2127 * Returns <0 on error and aborts the transaction
2128 */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long count)2129 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2130 unsigned long count)
2131 {
2132 struct btrfs_fs_info *fs_info = trans->fs_info;
2133 struct rb_node *node;
2134 struct btrfs_delayed_ref_root *delayed_refs;
2135 struct btrfs_delayed_ref_head *head;
2136 int ret;
2137 int run_all = count == (unsigned long)-1;
2138
2139 /* We'll clean this up in btrfs_cleanup_transaction */
2140 if (TRANS_ABORTED(trans))
2141 return 0;
2142
2143 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2144 return 0;
2145
2146 delayed_refs = &trans->transaction->delayed_refs;
2147 if (count == 0)
2148 count = atomic_read(&delayed_refs->num_entries) * 2;
2149
2150 again:
2151 #ifdef SCRAMBLE_DELAYED_REFS
2152 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2153 #endif
2154 ret = __btrfs_run_delayed_refs(trans, count);
2155 if (ret < 0) {
2156 btrfs_abort_transaction(trans, ret);
2157 return ret;
2158 }
2159
2160 if (run_all) {
2161 btrfs_create_pending_block_groups(trans);
2162
2163 spin_lock(&delayed_refs->lock);
2164 node = rb_first_cached(&delayed_refs->href_root);
2165 if (!node) {
2166 spin_unlock(&delayed_refs->lock);
2167 goto out;
2168 }
2169 head = rb_entry(node, struct btrfs_delayed_ref_head,
2170 href_node);
2171 refcount_inc(&head->refs);
2172 spin_unlock(&delayed_refs->lock);
2173
2174 /* Mutex was contended, block until it's released and retry. */
2175 mutex_lock(&head->mutex);
2176 mutex_unlock(&head->mutex);
2177
2178 btrfs_put_delayed_ref_head(head);
2179 cond_resched();
2180 goto again;
2181 }
2182 out:
2183 return 0;
2184 }
2185
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct extent_buffer * eb,u64 flags,int level,int is_data)2186 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2187 struct extent_buffer *eb, u64 flags,
2188 int level, int is_data)
2189 {
2190 struct btrfs_delayed_extent_op *extent_op;
2191 int ret;
2192
2193 extent_op = btrfs_alloc_delayed_extent_op();
2194 if (!extent_op)
2195 return -ENOMEM;
2196
2197 extent_op->flags_to_set = flags;
2198 extent_op->update_flags = true;
2199 extent_op->update_key = false;
2200 extent_op->is_data = is_data ? true : false;
2201 extent_op->level = level;
2202
2203 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2204 if (ret)
2205 btrfs_free_delayed_extent_op(extent_op);
2206 return ret;
2207 }
2208
check_delayed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)2209 static noinline int check_delayed_ref(struct btrfs_root *root,
2210 struct btrfs_path *path,
2211 u64 objectid, u64 offset, u64 bytenr)
2212 {
2213 struct btrfs_delayed_ref_head *head;
2214 struct btrfs_delayed_ref_node *ref;
2215 struct btrfs_delayed_data_ref *data_ref;
2216 struct btrfs_delayed_ref_root *delayed_refs;
2217 struct btrfs_transaction *cur_trans;
2218 struct rb_node *node;
2219 int ret = 0;
2220
2221 spin_lock(&root->fs_info->trans_lock);
2222 cur_trans = root->fs_info->running_transaction;
2223 if (cur_trans)
2224 refcount_inc(&cur_trans->use_count);
2225 spin_unlock(&root->fs_info->trans_lock);
2226 if (!cur_trans)
2227 return 0;
2228
2229 delayed_refs = &cur_trans->delayed_refs;
2230 spin_lock(&delayed_refs->lock);
2231 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2232 if (!head) {
2233 spin_unlock(&delayed_refs->lock);
2234 btrfs_put_transaction(cur_trans);
2235 return 0;
2236 }
2237
2238 if (!mutex_trylock(&head->mutex)) {
2239 refcount_inc(&head->refs);
2240 spin_unlock(&delayed_refs->lock);
2241
2242 btrfs_release_path(path);
2243
2244 /*
2245 * Mutex was contended, block until it's released and let
2246 * caller try again
2247 */
2248 mutex_lock(&head->mutex);
2249 mutex_unlock(&head->mutex);
2250 btrfs_put_delayed_ref_head(head);
2251 btrfs_put_transaction(cur_trans);
2252 return -EAGAIN;
2253 }
2254 spin_unlock(&delayed_refs->lock);
2255
2256 spin_lock(&head->lock);
2257 /*
2258 * XXX: We should replace this with a proper search function in the
2259 * future.
2260 */
2261 for (node = rb_first_cached(&head->ref_tree); node;
2262 node = rb_next(node)) {
2263 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2264 /* If it's a shared ref we know a cross reference exists */
2265 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2266 ret = 1;
2267 break;
2268 }
2269
2270 data_ref = btrfs_delayed_node_to_data_ref(ref);
2271
2272 /*
2273 * If our ref doesn't match the one we're currently looking at
2274 * then we have a cross reference.
2275 */
2276 if (data_ref->root != root->root_key.objectid ||
2277 data_ref->objectid != objectid ||
2278 data_ref->offset != offset) {
2279 ret = 1;
2280 break;
2281 }
2282 }
2283 spin_unlock(&head->lock);
2284 mutex_unlock(&head->mutex);
2285 btrfs_put_transaction(cur_trans);
2286 return ret;
2287 }
2288
check_committed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr,bool strict)2289 static noinline int check_committed_ref(struct btrfs_root *root,
2290 struct btrfs_path *path,
2291 u64 objectid, u64 offset, u64 bytenr,
2292 bool strict)
2293 {
2294 struct btrfs_fs_info *fs_info = root->fs_info;
2295 struct btrfs_root *extent_root = fs_info->extent_root;
2296 struct extent_buffer *leaf;
2297 struct btrfs_extent_data_ref *ref;
2298 struct btrfs_extent_inline_ref *iref;
2299 struct btrfs_extent_item *ei;
2300 struct btrfs_key key;
2301 u32 item_size;
2302 int type;
2303 int ret;
2304
2305 key.objectid = bytenr;
2306 key.offset = (u64)-1;
2307 key.type = BTRFS_EXTENT_ITEM_KEY;
2308
2309 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2310 if (ret < 0)
2311 goto out;
2312 BUG_ON(ret == 0); /* Corruption */
2313
2314 ret = -ENOENT;
2315 if (path->slots[0] == 0)
2316 goto out;
2317
2318 path->slots[0]--;
2319 leaf = path->nodes[0];
2320 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2321
2322 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2323 goto out;
2324
2325 ret = 1;
2326 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2327 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2328
2329 /* If extent item has more than 1 inline ref then it's shared */
2330 if (item_size != sizeof(*ei) +
2331 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2332 goto out;
2333
2334 /*
2335 * If extent created before last snapshot => it's shared unless the
2336 * snapshot has been deleted. Use the heuristic if strict is false.
2337 */
2338 if (!strict &&
2339 (btrfs_extent_generation(leaf, ei) <=
2340 btrfs_root_last_snapshot(&root->root_item)))
2341 goto out;
2342
2343 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2344
2345 /* If this extent has SHARED_DATA_REF then it's shared */
2346 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2347 if (type != BTRFS_EXTENT_DATA_REF_KEY)
2348 goto out;
2349
2350 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2351 if (btrfs_extent_refs(leaf, ei) !=
2352 btrfs_extent_data_ref_count(leaf, ref) ||
2353 btrfs_extent_data_ref_root(leaf, ref) !=
2354 root->root_key.objectid ||
2355 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2356 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2357 goto out;
2358
2359 ret = 0;
2360 out:
2361 return ret;
2362 }
2363
btrfs_cross_ref_exist(struct btrfs_root * root,u64 objectid,u64 offset,u64 bytenr,bool strict)2364 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2365 u64 bytenr, bool strict)
2366 {
2367 struct btrfs_path *path;
2368 int ret;
2369
2370 path = btrfs_alloc_path();
2371 if (!path)
2372 return -ENOMEM;
2373
2374 do {
2375 ret = check_committed_ref(root, path, objectid,
2376 offset, bytenr, strict);
2377 if (ret && ret != -ENOENT)
2378 goto out;
2379
2380 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2381 } while (ret == -EAGAIN);
2382
2383 out:
2384 btrfs_free_path(path);
2385 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2386 WARN_ON(ret > 0);
2387 return ret;
2388 }
2389
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)2390 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2391 struct btrfs_root *root,
2392 struct extent_buffer *buf,
2393 int full_backref, int inc)
2394 {
2395 struct btrfs_fs_info *fs_info = root->fs_info;
2396 u64 bytenr;
2397 u64 num_bytes;
2398 u64 parent;
2399 u64 ref_root;
2400 u32 nritems;
2401 struct btrfs_key key;
2402 struct btrfs_file_extent_item *fi;
2403 struct btrfs_ref generic_ref = { 0 };
2404 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2405 int i;
2406 int action;
2407 int level;
2408 int ret = 0;
2409
2410 if (btrfs_is_testing(fs_info))
2411 return 0;
2412
2413 ref_root = btrfs_header_owner(buf);
2414 nritems = btrfs_header_nritems(buf);
2415 level = btrfs_header_level(buf);
2416
2417 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2418 return 0;
2419
2420 if (full_backref)
2421 parent = buf->start;
2422 else
2423 parent = 0;
2424 if (inc)
2425 action = BTRFS_ADD_DELAYED_REF;
2426 else
2427 action = BTRFS_DROP_DELAYED_REF;
2428
2429 for (i = 0; i < nritems; i++) {
2430 if (level == 0) {
2431 btrfs_item_key_to_cpu(buf, &key, i);
2432 if (key.type != BTRFS_EXTENT_DATA_KEY)
2433 continue;
2434 fi = btrfs_item_ptr(buf, i,
2435 struct btrfs_file_extent_item);
2436 if (btrfs_file_extent_type(buf, fi) ==
2437 BTRFS_FILE_EXTENT_INLINE)
2438 continue;
2439 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2440 if (bytenr == 0)
2441 continue;
2442
2443 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2444 key.offset -= btrfs_file_extent_offset(buf, fi);
2445 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2446 num_bytes, parent);
2447 generic_ref.real_root = root->root_key.objectid;
2448 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2449 key.offset);
2450 generic_ref.skip_qgroup = for_reloc;
2451 if (inc)
2452 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2453 else
2454 ret = btrfs_free_extent(trans, &generic_ref);
2455 if (ret)
2456 goto fail;
2457 } else {
2458 bytenr = btrfs_node_blockptr(buf, i);
2459 num_bytes = fs_info->nodesize;
2460 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2461 num_bytes, parent);
2462 generic_ref.real_root = root->root_key.objectid;
2463 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
2464 generic_ref.skip_qgroup = for_reloc;
2465 if (inc)
2466 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2467 else
2468 ret = btrfs_free_extent(trans, &generic_ref);
2469 if (ret)
2470 goto fail;
2471 }
2472 }
2473 return 0;
2474 fail:
2475 return ret;
2476 }
2477
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2478 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2479 struct extent_buffer *buf, int full_backref)
2480 {
2481 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2482 }
2483
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2484 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2485 struct extent_buffer *buf, int full_backref)
2486 {
2487 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2488 }
2489
btrfs_extent_readonly(struct btrfs_fs_info * fs_info,u64 bytenr)2490 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
2491 {
2492 struct btrfs_block_group *block_group;
2493 int readonly = 0;
2494
2495 block_group = btrfs_lookup_block_group(fs_info, bytenr);
2496 if (!block_group || block_group->ro)
2497 readonly = 1;
2498 if (block_group)
2499 btrfs_put_block_group(block_group);
2500 return readonly;
2501 }
2502
get_alloc_profile_by_root(struct btrfs_root * root,int data)2503 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2504 {
2505 struct btrfs_fs_info *fs_info = root->fs_info;
2506 u64 flags;
2507 u64 ret;
2508
2509 if (data)
2510 flags = BTRFS_BLOCK_GROUP_DATA;
2511 else if (root == fs_info->chunk_root)
2512 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2513 else
2514 flags = BTRFS_BLOCK_GROUP_METADATA;
2515
2516 ret = btrfs_get_alloc_profile(fs_info, flags);
2517 return ret;
2518 }
2519
first_logical_byte(struct btrfs_fs_info * fs_info,u64 search_start)2520 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
2521 {
2522 struct btrfs_block_group *cache;
2523 u64 bytenr;
2524
2525 spin_lock(&fs_info->block_group_cache_lock);
2526 bytenr = fs_info->first_logical_byte;
2527 spin_unlock(&fs_info->block_group_cache_lock);
2528
2529 if (bytenr < (u64)-1)
2530 return bytenr;
2531
2532 cache = btrfs_lookup_first_block_group(fs_info, search_start);
2533 if (!cache)
2534 return 0;
2535
2536 bytenr = cache->start;
2537 btrfs_put_block_group(cache);
2538
2539 return bytenr;
2540 }
2541
pin_down_extent(struct btrfs_trans_handle * trans,struct btrfs_block_group * cache,u64 bytenr,u64 num_bytes,int reserved)2542 static int pin_down_extent(struct btrfs_trans_handle *trans,
2543 struct btrfs_block_group *cache,
2544 u64 bytenr, u64 num_bytes, int reserved)
2545 {
2546 struct btrfs_fs_info *fs_info = cache->fs_info;
2547
2548 spin_lock(&cache->space_info->lock);
2549 spin_lock(&cache->lock);
2550 cache->pinned += num_bytes;
2551 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2552 num_bytes);
2553 if (reserved) {
2554 cache->reserved -= num_bytes;
2555 cache->space_info->bytes_reserved -= num_bytes;
2556 }
2557 spin_unlock(&cache->lock);
2558 spin_unlock(&cache->space_info->lock);
2559
2560 __btrfs_mod_total_bytes_pinned(cache->space_info, num_bytes);
2561 set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2562 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2563 return 0;
2564 }
2565
btrfs_pin_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,int reserved)2566 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2567 u64 bytenr, u64 num_bytes, int reserved)
2568 {
2569 struct btrfs_block_group *cache;
2570
2571 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2572 BUG_ON(!cache); /* Logic error */
2573
2574 pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2575
2576 btrfs_put_block_group(cache);
2577 return 0;
2578 }
2579
2580 /*
2581 * this function must be called within transaction
2582 */
btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes)2583 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2584 u64 bytenr, u64 num_bytes)
2585 {
2586 struct btrfs_block_group *cache;
2587 int ret;
2588
2589 btrfs_add_excluded_extent(trans->fs_info, bytenr, num_bytes);
2590
2591 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2592 if (!cache)
2593 return -EINVAL;
2594
2595 /*
2596 * pull in the free space cache (if any) so that our pin
2597 * removes the free space from the cache. We have load_only set
2598 * to one because the slow code to read in the free extents does check
2599 * the pinned extents.
2600 */
2601 btrfs_cache_block_group(cache, 1);
2602
2603 pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2604
2605 /* remove us from the free space cache (if we're there at all) */
2606 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2607 btrfs_put_block_group(cache);
2608 return ret;
2609 }
2610
__exclude_logged_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)2611 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2612 u64 start, u64 num_bytes)
2613 {
2614 int ret;
2615 struct btrfs_block_group *block_group;
2616 struct btrfs_caching_control *caching_ctl;
2617
2618 block_group = btrfs_lookup_block_group(fs_info, start);
2619 if (!block_group)
2620 return -EINVAL;
2621
2622 btrfs_cache_block_group(block_group, 0);
2623 caching_ctl = btrfs_get_caching_control(block_group);
2624
2625 if (!caching_ctl) {
2626 /* Logic error */
2627 BUG_ON(!btrfs_block_group_done(block_group));
2628 ret = btrfs_remove_free_space(block_group, start, num_bytes);
2629 } else {
2630 mutex_lock(&caching_ctl->mutex);
2631
2632 if (start >= caching_ctl->progress) {
2633 ret = btrfs_add_excluded_extent(fs_info, start,
2634 num_bytes);
2635 } else if (start + num_bytes <= caching_ctl->progress) {
2636 ret = btrfs_remove_free_space(block_group,
2637 start, num_bytes);
2638 } else {
2639 num_bytes = caching_ctl->progress - start;
2640 ret = btrfs_remove_free_space(block_group,
2641 start, num_bytes);
2642 if (ret)
2643 goto out_lock;
2644
2645 num_bytes = (start + num_bytes) -
2646 caching_ctl->progress;
2647 start = caching_ctl->progress;
2648 ret = btrfs_add_excluded_extent(fs_info, start,
2649 num_bytes);
2650 }
2651 out_lock:
2652 mutex_unlock(&caching_ctl->mutex);
2653 btrfs_put_caching_control(caching_ctl);
2654 }
2655 btrfs_put_block_group(block_group);
2656 return ret;
2657 }
2658
btrfs_exclude_logged_extents(struct extent_buffer * eb)2659 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2660 {
2661 struct btrfs_fs_info *fs_info = eb->fs_info;
2662 struct btrfs_file_extent_item *item;
2663 struct btrfs_key key;
2664 int found_type;
2665 int i;
2666 int ret = 0;
2667
2668 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2669 return 0;
2670
2671 for (i = 0; i < btrfs_header_nritems(eb); i++) {
2672 btrfs_item_key_to_cpu(eb, &key, i);
2673 if (key.type != BTRFS_EXTENT_DATA_KEY)
2674 continue;
2675 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2676 found_type = btrfs_file_extent_type(eb, item);
2677 if (found_type == BTRFS_FILE_EXTENT_INLINE)
2678 continue;
2679 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2680 continue;
2681 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2682 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2683 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2684 if (ret)
2685 break;
2686 }
2687
2688 return ret;
2689 }
2690
2691 static void
btrfs_inc_block_group_reservations(struct btrfs_block_group * bg)2692 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2693 {
2694 atomic_inc(&bg->reservations);
2695 }
2696
2697 /*
2698 * Returns the free cluster for the given space info and sets empty_cluster to
2699 * what it should be based on the mount options.
2700 */
2701 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 * empty_cluster)2702 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2703 struct btrfs_space_info *space_info, u64 *empty_cluster)
2704 {
2705 struct btrfs_free_cluster *ret = NULL;
2706
2707 *empty_cluster = 0;
2708 if (btrfs_mixed_space_info(space_info))
2709 return ret;
2710
2711 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2712 ret = &fs_info->meta_alloc_cluster;
2713 if (btrfs_test_opt(fs_info, SSD))
2714 *empty_cluster = SZ_2M;
2715 else
2716 *empty_cluster = SZ_64K;
2717 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2718 btrfs_test_opt(fs_info, SSD_SPREAD)) {
2719 *empty_cluster = SZ_2M;
2720 ret = &fs_info->data_alloc_cluster;
2721 }
2722
2723 return ret;
2724 }
2725
unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end,const bool return_free_space)2726 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2727 u64 start, u64 end,
2728 const bool return_free_space)
2729 {
2730 struct btrfs_block_group *cache = NULL;
2731 struct btrfs_space_info *space_info;
2732 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2733 struct btrfs_free_cluster *cluster = NULL;
2734 u64 len;
2735 u64 total_unpinned = 0;
2736 u64 empty_cluster = 0;
2737 bool readonly;
2738
2739 while (start <= end) {
2740 readonly = false;
2741 if (!cache ||
2742 start >= cache->start + cache->length) {
2743 if (cache)
2744 btrfs_put_block_group(cache);
2745 total_unpinned = 0;
2746 cache = btrfs_lookup_block_group(fs_info, start);
2747 BUG_ON(!cache); /* Logic error */
2748
2749 cluster = fetch_cluster_info(fs_info,
2750 cache->space_info,
2751 &empty_cluster);
2752 empty_cluster <<= 1;
2753 }
2754
2755 len = cache->start + cache->length - start;
2756 len = min(len, end + 1 - start);
2757
2758 if (start < cache->last_byte_to_unpin && return_free_space) {
2759 u64 add_len = min(len, cache->last_byte_to_unpin - start);
2760
2761 btrfs_add_free_space(cache, start, add_len);
2762 }
2763
2764 start += len;
2765 total_unpinned += len;
2766 space_info = cache->space_info;
2767
2768 /*
2769 * If this space cluster has been marked as fragmented and we've
2770 * unpinned enough in this block group to potentially allow a
2771 * cluster to be created inside of it go ahead and clear the
2772 * fragmented check.
2773 */
2774 if (cluster && cluster->fragmented &&
2775 total_unpinned > empty_cluster) {
2776 spin_lock(&cluster->lock);
2777 cluster->fragmented = 0;
2778 spin_unlock(&cluster->lock);
2779 }
2780
2781 spin_lock(&space_info->lock);
2782 spin_lock(&cache->lock);
2783 cache->pinned -= len;
2784 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2785 space_info->max_extent_size = 0;
2786 __btrfs_mod_total_bytes_pinned(space_info, -len);
2787 if (cache->ro) {
2788 space_info->bytes_readonly += len;
2789 readonly = true;
2790 }
2791 spin_unlock(&cache->lock);
2792 if (!readonly && return_free_space &&
2793 global_rsv->space_info == space_info) {
2794 u64 to_add = len;
2795
2796 spin_lock(&global_rsv->lock);
2797 if (!global_rsv->full) {
2798 to_add = min(len, global_rsv->size -
2799 global_rsv->reserved);
2800 global_rsv->reserved += to_add;
2801 btrfs_space_info_update_bytes_may_use(fs_info,
2802 space_info, to_add);
2803 if (global_rsv->reserved >= global_rsv->size)
2804 global_rsv->full = 1;
2805 len -= to_add;
2806 }
2807 spin_unlock(&global_rsv->lock);
2808 }
2809 /* Add to any tickets we may have */
2810 if (!readonly && return_free_space && len)
2811 btrfs_try_granting_tickets(fs_info, space_info);
2812 spin_unlock(&space_info->lock);
2813 }
2814
2815 if (cache)
2816 btrfs_put_block_group(cache);
2817 return 0;
2818 }
2819
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans)2820 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2821 {
2822 struct btrfs_fs_info *fs_info = trans->fs_info;
2823 struct btrfs_block_group *block_group, *tmp;
2824 struct list_head *deleted_bgs;
2825 struct extent_io_tree *unpin;
2826 u64 start;
2827 u64 end;
2828 int ret;
2829
2830 unpin = &trans->transaction->pinned_extents;
2831
2832 while (!TRANS_ABORTED(trans)) {
2833 struct extent_state *cached_state = NULL;
2834
2835 mutex_lock(&fs_info->unused_bg_unpin_mutex);
2836 ret = find_first_extent_bit(unpin, 0, &start, &end,
2837 EXTENT_DIRTY, &cached_state);
2838 if (ret) {
2839 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2840 break;
2841 }
2842 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
2843 clear_extent_bits(&fs_info->excluded_extents, start,
2844 end, EXTENT_UPTODATE);
2845
2846 if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2847 ret = btrfs_discard_extent(fs_info, start,
2848 end + 1 - start, NULL);
2849
2850 clear_extent_dirty(unpin, start, end, &cached_state);
2851 unpin_extent_range(fs_info, start, end, true);
2852 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2853 free_extent_state(cached_state);
2854 cond_resched();
2855 }
2856
2857 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2858 btrfs_discard_calc_delay(&fs_info->discard_ctl);
2859 btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2860 }
2861
2862 /*
2863 * Transaction is finished. We don't need the lock anymore. We
2864 * do need to clean up the block groups in case of a transaction
2865 * abort.
2866 */
2867 deleted_bgs = &trans->transaction->deleted_bgs;
2868 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2869 u64 trimmed = 0;
2870
2871 ret = -EROFS;
2872 if (!TRANS_ABORTED(trans))
2873 ret = btrfs_discard_extent(fs_info,
2874 block_group->start,
2875 block_group->length,
2876 &trimmed);
2877
2878 list_del_init(&block_group->bg_list);
2879 btrfs_unfreeze_block_group(block_group);
2880 btrfs_put_block_group(block_group);
2881
2882 if (ret) {
2883 const char *errstr = btrfs_decode_error(ret);
2884 btrfs_warn(fs_info,
2885 "discard failed while removing blockgroup: errno=%d %s",
2886 ret, errstr);
2887 }
2888 }
2889
2890 return 0;
2891 }
2892
2893 /*
2894 * Drop one or more refs of @node.
2895 *
2896 * 1. Locate the extent refs.
2897 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2898 * Locate it, then reduce the refs number or remove the ref line completely.
2899 *
2900 * 2. Update the refs count in EXTENT/METADATA_ITEM
2901 *
2902 * Inline backref case:
2903 *
2904 * in extent tree we have:
2905 *
2906 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2907 * refs 2 gen 6 flags DATA
2908 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2909 * extent data backref root FS_TREE objectid 257 offset 0 count 1
2910 *
2911 * This function gets called with:
2912 *
2913 * node->bytenr = 13631488
2914 * node->num_bytes = 1048576
2915 * root_objectid = FS_TREE
2916 * owner_objectid = 257
2917 * owner_offset = 0
2918 * refs_to_drop = 1
2919 *
2920 * Then we should get some like:
2921 *
2922 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2923 * refs 1 gen 6 flags DATA
2924 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2925 *
2926 * Keyed backref case:
2927 *
2928 * in extent tree we have:
2929 *
2930 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2931 * refs 754 gen 6 flags DATA
2932 * [...]
2933 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2934 * extent data backref root FS_TREE objectid 866 offset 0 count 1
2935 *
2936 * This function get called with:
2937 *
2938 * node->bytenr = 13631488
2939 * node->num_bytes = 1048576
2940 * root_objectid = FS_TREE
2941 * owner_objectid = 866
2942 * owner_offset = 0
2943 * refs_to_drop = 1
2944 *
2945 * Then we should get some like:
2946 *
2947 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2948 * refs 753 gen 6 flags DATA
2949 *
2950 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2951 */
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner_objectid,u64 owner_offset,int refs_to_drop,struct btrfs_delayed_extent_op * extent_op)2952 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2953 struct btrfs_delayed_ref_node *node, u64 parent,
2954 u64 root_objectid, u64 owner_objectid,
2955 u64 owner_offset, int refs_to_drop,
2956 struct btrfs_delayed_extent_op *extent_op)
2957 {
2958 struct btrfs_fs_info *info = trans->fs_info;
2959 struct btrfs_key key;
2960 struct btrfs_path *path;
2961 struct btrfs_root *extent_root = info->extent_root;
2962 struct extent_buffer *leaf;
2963 struct btrfs_extent_item *ei;
2964 struct btrfs_extent_inline_ref *iref;
2965 int ret;
2966 int is_data;
2967 int extent_slot = 0;
2968 int found_extent = 0;
2969 int num_to_del = 1;
2970 u32 item_size;
2971 u64 refs;
2972 u64 bytenr = node->bytenr;
2973 u64 num_bytes = node->num_bytes;
2974 int last_ref = 0;
2975 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2976
2977 path = btrfs_alloc_path();
2978 if (!path)
2979 return -ENOMEM;
2980
2981 path->leave_spinning = 1;
2982
2983 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2984
2985 if (!is_data && refs_to_drop != 1) {
2986 btrfs_crit(info,
2987 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2988 node->bytenr, refs_to_drop);
2989 ret = -EINVAL;
2990 btrfs_abort_transaction(trans, ret);
2991 goto out;
2992 }
2993
2994 if (is_data)
2995 skinny_metadata = false;
2996
2997 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2998 parent, root_objectid, owner_objectid,
2999 owner_offset);
3000 if (ret == 0) {
3001 /*
3002 * Either the inline backref or the SHARED_DATA_REF/
3003 * SHARED_BLOCK_REF is found
3004 *
3005 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3006 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3007 */
3008 extent_slot = path->slots[0];
3009 while (extent_slot >= 0) {
3010 btrfs_item_key_to_cpu(path->nodes[0], &key,
3011 extent_slot);
3012 if (key.objectid != bytenr)
3013 break;
3014 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3015 key.offset == num_bytes) {
3016 found_extent = 1;
3017 break;
3018 }
3019 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3020 key.offset == owner_objectid) {
3021 found_extent = 1;
3022 break;
3023 }
3024
3025 /* Quick path didn't find the EXTEMT/METADATA_ITEM */
3026 if (path->slots[0] - extent_slot > 5)
3027 break;
3028 extent_slot--;
3029 }
3030
3031 if (!found_extent) {
3032 if (iref) {
3033 btrfs_crit(info,
3034 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref");
3035 btrfs_abort_transaction(trans, -EUCLEAN);
3036 goto err_dump;
3037 }
3038 /* Must be SHARED_* item, remove the backref first */
3039 ret = remove_extent_backref(trans, path, NULL,
3040 refs_to_drop,
3041 is_data, &last_ref);
3042 if (ret) {
3043 btrfs_abort_transaction(trans, ret);
3044 goto out;
3045 }
3046 btrfs_release_path(path);
3047 path->leave_spinning = 1;
3048
3049 /* Slow path to locate EXTENT/METADATA_ITEM */
3050 key.objectid = bytenr;
3051 key.type = BTRFS_EXTENT_ITEM_KEY;
3052 key.offset = num_bytes;
3053
3054 if (!is_data && skinny_metadata) {
3055 key.type = BTRFS_METADATA_ITEM_KEY;
3056 key.offset = owner_objectid;
3057 }
3058
3059 ret = btrfs_search_slot(trans, extent_root,
3060 &key, path, -1, 1);
3061 if (ret > 0 && skinny_metadata && path->slots[0]) {
3062 /*
3063 * Couldn't find our skinny metadata item,
3064 * see if we have ye olde extent item.
3065 */
3066 path->slots[0]--;
3067 btrfs_item_key_to_cpu(path->nodes[0], &key,
3068 path->slots[0]);
3069 if (key.objectid == bytenr &&
3070 key.type == BTRFS_EXTENT_ITEM_KEY &&
3071 key.offset == num_bytes)
3072 ret = 0;
3073 }
3074
3075 if (ret > 0 && skinny_metadata) {
3076 skinny_metadata = false;
3077 key.objectid = bytenr;
3078 key.type = BTRFS_EXTENT_ITEM_KEY;
3079 key.offset = num_bytes;
3080 btrfs_release_path(path);
3081 ret = btrfs_search_slot(trans, extent_root,
3082 &key, path, -1, 1);
3083 }
3084
3085 if (ret) {
3086 btrfs_err(info,
3087 "umm, got %d back from search, was looking for %llu",
3088 ret, bytenr);
3089 if (ret > 0)
3090 btrfs_print_leaf(path->nodes[0]);
3091 }
3092 if (ret < 0) {
3093 btrfs_abort_transaction(trans, ret);
3094 goto out;
3095 }
3096 extent_slot = path->slots[0];
3097 }
3098 } else if (WARN_ON(ret == -ENOENT)) {
3099 btrfs_print_leaf(path->nodes[0]);
3100 btrfs_err(info,
3101 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
3102 bytenr, parent, root_objectid, owner_objectid,
3103 owner_offset);
3104 btrfs_abort_transaction(trans, ret);
3105 goto out;
3106 } else {
3107 btrfs_abort_transaction(trans, ret);
3108 goto out;
3109 }
3110
3111 leaf = path->nodes[0];
3112 item_size = btrfs_item_size_nr(leaf, extent_slot);
3113 if (unlikely(item_size < sizeof(*ei))) {
3114 ret = -EINVAL;
3115 btrfs_print_v0_err(info);
3116 btrfs_abort_transaction(trans, ret);
3117 goto out;
3118 }
3119 ei = btrfs_item_ptr(leaf, extent_slot,
3120 struct btrfs_extent_item);
3121 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3122 key.type == BTRFS_EXTENT_ITEM_KEY) {
3123 struct btrfs_tree_block_info *bi;
3124 if (item_size < sizeof(*ei) + sizeof(*bi)) {
3125 btrfs_crit(info,
3126 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu",
3127 key.objectid, key.type, key.offset,
3128 owner_objectid, item_size,
3129 sizeof(*ei) + sizeof(*bi));
3130 btrfs_abort_transaction(trans, -EUCLEAN);
3131 goto err_dump;
3132 }
3133 bi = (struct btrfs_tree_block_info *)(ei + 1);
3134 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3135 }
3136
3137 refs = btrfs_extent_refs(leaf, ei);
3138 if (refs < refs_to_drop) {
3139 btrfs_crit(info,
3140 "trying to drop %d refs but we only have %llu for bytenr %llu",
3141 refs_to_drop, refs, bytenr);
3142 btrfs_abort_transaction(trans, -EUCLEAN);
3143 goto err_dump;
3144 }
3145 refs -= refs_to_drop;
3146
3147 if (refs > 0) {
3148 if (extent_op)
3149 __run_delayed_extent_op(extent_op, leaf, ei);
3150 /*
3151 * In the case of inline back ref, reference count will
3152 * be updated by remove_extent_backref
3153 */
3154 if (iref) {
3155 if (!found_extent) {
3156 btrfs_crit(info,
3157 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found");
3158 btrfs_abort_transaction(trans, -EUCLEAN);
3159 goto err_dump;
3160 }
3161 } else {
3162 btrfs_set_extent_refs(leaf, ei, refs);
3163 btrfs_mark_buffer_dirty(leaf);
3164 }
3165 if (found_extent) {
3166 ret = remove_extent_backref(trans, path, iref,
3167 refs_to_drop, is_data,
3168 &last_ref);
3169 if (ret) {
3170 btrfs_abort_transaction(trans, ret);
3171 goto out;
3172 }
3173 }
3174 } else {
3175 /* In this branch refs == 1 */
3176 if (found_extent) {
3177 if (is_data && refs_to_drop !=
3178 extent_data_ref_count(path, iref)) {
3179 btrfs_crit(info,
3180 "invalid refs_to_drop, current refs %u refs_to_drop %u",
3181 extent_data_ref_count(path, iref),
3182 refs_to_drop);
3183 btrfs_abort_transaction(trans, -EUCLEAN);
3184 goto err_dump;
3185 }
3186 if (iref) {
3187 if (path->slots[0] != extent_slot) {
3188 btrfs_crit(info,
3189 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref",
3190 key.objectid, key.type,
3191 key.offset);
3192 btrfs_abort_transaction(trans, -EUCLEAN);
3193 goto err_dump;
3194 }
3195 } else {
3196 /*
3197 * No inline ref, we must be at SHARED_* item,
3198 * And it's single ref, it must be:
3199 * | extent_slot ||extent_slot + 1|
3200 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3201 */
3202 if (path->slots[0] != extent_slot + 1) {
3203 btrfs_crit(info,
3204 "invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM");
3205 btrfs_abort_transaction(trans, -EUCLEAN);
3206 goto err_dump;
3207 }
3208 path->slots[0] = extent_slot;
3209 num_to_del = 2;
3210 }
3211 }
3212
3213 last_ref = 1;
3214 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3215 num_to_del);
3216 if (ret) {
3217 btrfs_abort_transaction(trans, ret);
3218 goto out;
3219 }
3220 btrfs_release_path(path);
3221
3222 if (is_data) {
3223 ret = btrfs_del_csums(trans, info->csum_root, bytenr,
3224 num_bytes);
3225 if (ret) {
3226 btrfs_abort_transaction(trans, ret);
3227 goto out;
3228 }
3229 }
3230
3231 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3232 if (ret) {
3233 btrfs_abort_transaction(trans, ret);
3234 goto out;
3235 }
3236
3237 ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0);
3238 if (ret) {
3239 btrfs_abort_transaction(trans, ret);
3240 goto out;
3241 }
3242 }
3243 btrfs_release_path(path);
3244
3245 out:
3246 btrfs_free_path(path);
3247 return ret;
3248 err_dump:
3249 /*
3250 * Leaf dump can take up a lot of log buffer, so we only do full leaf
3251 * dump for debug build.
3252 */
3253 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
3254 btrfs_crit(info, "path->slots[0]=%d extent_slot=%d",
3255 path->slots[0], extent_slot);
3256 btrfs_print_leaf(path->nodes[0]);
3257 }
3258
3259 btrfs_free_path(path);
3260 return -EUCLEAN;
3261 }
3262
3263 /*
3264 * when we free an block, it is possible (and likely) that we free the last
3265 * delayed ref for that extent as well. This searches the delayed ref tree for
3266 * a given extent, and if there are no other delayed refs to be processed, it
3267 * removes it from the tree.
3268 */
check_ref_cleanup(struct btrfs_trans_handle * trans,u64 bytenr)3269 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3270 u64 bytenr)
3271 {
3272 struct btrfs_delayed_ref_head *head;
3273 struct btrfs_delayed_ref_root *delayed_refs;
3274 int ret = 0;
3275
3276 delayed_refs = &trans->transaction->delayed_refs;
3277 spin_lock(&delayed_refs->lock);
3278 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3279 if (!head)
3280 goto out_delayed_unlock;
3281
3282 spin_lock(&head->lock);
3283 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3284 goto out;
3285
3286 if (cleanup_extent_op(head) != NULL)
3287 goto out;
3288
3289 /*
3290 * waiting for the lock here would deadlock. If someone else has it
3291 * locked they are already in the process of dropping it anyway
3292 */
3293 if (!mutex_trylock(&head->mutex))
3294 goto out;
3295
3296 btrfs_delete_ref_head(delayed_refs, head);
3297 head->processing = 0;
3298
3299 spin_unlock(&head->lock);
3300 spin_unlock(&delayed_refs->lock);
3301
3302 BUG_ON(head->extent_op);
3303 if (head->must_insert_reserved)
3304 ret = 1;
3305
3306 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3307 mutex_unlock(&head->mutex);
3308 btrfs_put_delayed_ref_head(head);
3309 return ret;
3310 out:
3311 spin_unlock(&head->lock);
3312
3313 out_delayed_unlock:
3314 spin_unlock(&delayed_refs->lock);
3315 return 0;
3316 }
3317
btrfs_free_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,u64 parent,int last_ref)3318 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3319 struct btrfs_root *root,
3320 struct extent_buffer *buf,
3321 u64 parent, int last_ref)
3322 {
3323 struct btrfs_fs_info *fs_info = root->fs_info;
3324 struct btrfs_ref generic_ref = { 0 };
3325 int ret;
3326
3327 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3328 buf->start, buf->len, parent);
3329 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3330 root->root_key.objectid);
3331
3332 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3333 btrfs_ref_tree_mod(fs_info, &generic_ref);
3334 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3335 BUG_ON(ret); /* -ENOMEM */
3336 }
3337
3338 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3339 struct btrfs_block_group *cache;
3340
3341 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3342 ret = check_ref_cleanup(trans, buf->start);
3343 if (!ret)
3344 goto out;
3345 }
3346
3347 cache = btrfs_lookup_block_group(fs_info, buf->start);
3348
3349 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3350 pin_down_extent(trans, cache, buf->start, buf->len, 1);
3351 btrfs_put_block_group(cache);
3352 goto out;
3353 }
3354
3355 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3356
3357 btrfs_add_free_space(cache, buf->start, buf->len);
3358 btrfs_free_reserved_bytes(cache, buf->len, 0);
3359 btrfs_put_block_group(cache);
3360 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3361 }
3362 out:
3363 if (last_ref) {
3364 /*
3365 * Deleting the buffer, clear the corrupt flag since it doesn't
3366 * matter anymore.
3367 */
3368 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3369 }
3370 }
3371
3372 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_ref * ref)3373 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3374 {
3375 struct btrfs_fs_info *fs_info = trans->fs_info;
3376 int ret;
3377
3378 if (btrfs_is_testing(fs_info))
3379 return 0;
3380
3381 /*
3382 * tree log blocks never actually go into the extent allocation
3383 * tree, just update pinning info and exit early.
3384 */
3385 if ((ref->type == BTRFS_REF_METADATA &&
3386 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3387 (ref->type == BTRFS_REF_DATA &&
3388 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3389 /* unlocks the pinned mutex */
3390 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3391 ret = 0;
3392 } else if (ref->type == BTRFS_REF_METADATA) {
3393 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3394 } else {
3395 ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3396 }
3397
3398 if (!((ref->type == BTRFS_REF_METADATA &&
3399 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3400 (ref->type == BTRFS_REF_DATA &&
3401 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3402 btrfs_ref_tree_mod(fs_info, ref);
3403
3404 return ret;
3405 }
3406
3407 enum btrfs_loop_type {
3408 LOOP_CACHING_NOWAIT,
3409 LOOP_CACHING_WAIT,
3410 LOOP_ALLOC_CHUNK,
3411 LOOP_NO_EMPTY_SIZE,
3412 };
3413
3414 static inline void
btrfs_lock_block_group(struct btrfs_block_group * cache,int delalloc)3415 btrfs_lock_block_group(struct btrfs_block_group *cache,
3416 int delalloc)
3417 {
3418 if (delalloc)
3419 down_read(&cache->data_rwsem);
3420 }
3421
btrfs_grab_block_group(struct btrfs_block_group * cache,int delalloc)3422 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3423 int delalloc)
3424 {
3425 btrfs_get_block_group(cache);
3426 if (delalloc)
3427 down_read(&cache->data_rwsem);
3428 }
3429
btrfs_lock_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,int delalloc)3430 static struct btrfs_block_group *btrfs_lock_cluster(
3431 struct btrfs_block_group *block_group,
3432 struct btrfs_free_cluster *cluster,
3433 int delalloc)
3434 __acquires(&cluster->refill_lock)
3435 {
3436 struct btrfs_block_group *used_bg = NULL;
3437
3438 spin_lock(&cluster->refill_lock);
3439 while (1) {
3440 used_bg = cluster->block_group;
3441 if (!used_bg)
3442 return NULL;
3443
3444 if (used_bg == block_group)
3445 return used_bg;
3446
3447 btrfs_get_block_group(used_bg);
3448
3449 if (!delalloc)
3450 return used_bg;
3451
3452 if (down_read_trylock(&used_bg->data_rwsem))
3453 return used_bg;
3454
3455 spin_unlock(&cluster->refill_lock);
3456
3457 /* We should only have one-level nested. */
3458 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3459
3460 spin_lock(&cluster->refill_lock);
3461 if (used_bg == cluster->block_group)
3462 return used_bg;
3463
3464 up_read(&used_bg->data_rwsem);
3465 btrfs_put_block_group(used_bg);
3466 }
3467 }
3468
3469 static inline void
btrfs_release_block_group(struct btrfs_block_group * cache,int delalloc)3470 btrfs_release_block_group(struct btrfs_block_group *cache,
3471 int delalloc)
3472 {
3473 if (delalloc)
3474 up_read(&cache->data_rwsem);
3475 btrfs_put_block_group(cache);
3476 }
3477
3478 enum btrfs_extent_allocation_policy {
3479 BTRFS_EXTENT_ALLOC_CLUSTERED,
3480 };
3481
3482 /*
3483 * Structure used internally for find_free_extent() function. Wraps needed
3484 * parameters.
3485 */
3486 struct find_free_extent_ctl {
3487 /* Basic allocation info */
3488 u64 num_bytes;
3489 u64 empty_size;
3490 u64 flags;
3491 int delalloc;
3492
3493 /* Where to start the search inside the bg */
3494 u64 search_start;
3495
3496 /* For clustered allocation */
3497 u64 empty_cluster;
3498 struct btrfs_free_cluster *last_ptr;
3499 bool use_cluster;
3500
3501 bool have_caching_bg;
3502 bool orig_have_caching_bg;
3503
3504 /* RAID index, converted from flags */
3505 int index;
3506
3507 /*
3508 * Current loop number, check find_free_extent_update_loop() for details
3509 */
3510 int loop;
3511
3512 /*
3513 * Whether we're refilling a cluster, if true we need to re-search
3514 * current block group but don't try to refill the cluster again.
3515 */
3516 bool retry_clustered;
3517
3518 /*
3519 * Whether we're updating free space cache, if true we need to re-search
3520 * current block group but don't try updating free space cache again.
3521 */
3522 bool retry_unclustered;
3523
3524 /* If current block group is cached */
3525 int cached;
3526
3527 /* Max contiguous hole found */
3528 u64 max_extent_size;
3529
3530 /* Total free space from free space cache, not always contiguous */
3531 u64 total_free_space;
3532
3533 /* Found result */
3534 u64 found_offset;
3535
3536 /* Hint where to start looking for an empty space */
3537 u64 hint_byte;
3538
3539 /* Allocation policy */
3540 enum btrfs_extent_allocation_policy policy;
3541 };
3542
3543
3544 /*
3545 * Helper function for find_free_extent().
3546 *
3547 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3548 * Return -EAGAIN to inform caller that we need to re-search this block group
3549 * Return >0 to inform caller that we find nothing
3550 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3551 */
find_free_extent_clustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** cluster_bg_ret)3552 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3553 struct find_free_extent_ctl *ffe_ctl,
3554 struct btrfs_block_group **cluster_bg_ret)
3555 {
3556 struct btrfs_block_group *cluster_bg;
3557 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3558 u64 aligned_cluster;
3559 u64 offset;
3560 int ret;
3561
3562 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3563 if (!cluster_bg)
3564 goto refill_cluster;
3565 if (cluster_bg != bg && (cluster_bg->ro ||
3566 !block_group_bits(cluster_bg, ffe_ctl->flags)))
3567 goto release_cluster;
3568
3569 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3570 ffe_ctl->num_bytes, cluster_bg->start,
3571 &ffe_ctl->max_extent_size);
3572 if (offset) {
3573 /* We have a block, we're done */
3574 spin_unlock(&last_ptr->refill_lock);
3575 trace_btrfs_reserve_extent_cluster(cluster_bg,
3576 ffe_ctl->search_start, ffe_ctl->num_bytes);
3577 *cluster_bg_ret = cluster_bg;
3578 ffe_ctl->found_offset = offset;
3579 return 0;
3580 }
3581 WARN_ON(last_ptr->block_group != cluster_bg);
3582
3583 release_cluster:
3584 /*
3585 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3586 * lets just skip it and let the allocator find whatever block it can
3587 * find. If we reach this point, we will have tried the cluster
3588 * allocator plenty of times and not have found anything, so we are
3589 * likely way too fragmented for the clustering stuff to find anything.
3590 *
3591 * However, if the cluster is taken from the current block group,
3592 * release the cluster first, so that we stand a better chance of
3593 * succeeding in the unclustered allocation.
3594 */
3595 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3596 spin_unlock(&last_ptr->refill_lock);
3597 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3598 return -ENOENT;
3599 }
3600
3601 /* This cluster didn't work out, free it and start over */
3602 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3603
3604 if (cluster_bg != bg)
3605 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3606
3607 refill_cluster:
3608 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3609 spin_unlock(&last_ptr->refill_lock);
3610 return -ENOENT;
3611 }
3612
3613 aligned_cluster = max_t(u64,
3614 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3615 bg->full_stripe_len);
3616 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3617 ffe_ctl->num_bytes, aligned_cluster);
3618 if (ret == 0) {
3619 /* Now pull our allocation out of this cluster */
3620 offset = btrfs_alloc_from_cluster(bg, last_ptr,
3621 ffe_ctl->num_bytes, ffe_ctl->search_start,
3622 &ffe_ctl->max_extent_size);
3623 if (offset) {
3624 /* We found one, proceed */
3625 spin_unlock(&last_ptr->refill_lock);
3626 trace_btrfs_reserve_extent_cluster(bg,
3627 ffe_ctl->search_start,
3628 ffe_ctl->num_bytes);
3629 ffe_ctl->found_offset = offset;
3630 return 0;
3631 }
3632 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3633 !ffe_ctl->retry_clustered) {
3634 spin_unlock(&last_ptr->refill_lock);
3635
3636 ffe_ctl->retry_clustered = true;
3637 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3638 ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3639 return -EAGAIN;
3640 }
3641 /*
3642 * At this point we either didn't find a cluster or we weren't able to
3643 * allocate a block from our cluster. Free the cluster we've been
3644 * trying to use, and go to the next block group.
3645 */
3646 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3647 spin_unlock(&last_ptr->refill_lock);
3648 return 1;
3649 }
3650
3651 /*
3652 * Return >0 to inform caller that we find nothing
3653 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3654 * Return -EAGAIN to inform caller that we need to re-search this block group
3655 */
find_free_extent_unclustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl)3656 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3657 struct find_free_extent_ctl *ffe_ctl)
3658 {
3659 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3660 u64 offset;
3661
3662 /*
3663 * We are doing an unclustered allocation, set the fragmented flag so
3664 * we don't bother trying to setup a cluster again until we get more
3665 * space.
3666 */
3667 if (unlikely(last_ptr)) {
3668 spin_lock(&last_ptr->lock);
3669 last_ptr->fragmented = 1;
3670 spin_unlock(&last_ptr->lock);
3671 }
3672 if (ffe_ctl->cached) {
3673 struct btrfs_free_space_ctl *free_space_ctl;
3674
3675 free_space_ctl = bg->free_space_ctl;
3676 spin_lock(&free_space_ctl->tree_lock);
3677 if (free_space_ctl->free_space <
3678 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3679 ffe_ctl->empty_size) {
3680 ffe_ctl->total_free_space = max_t(u64,
3681 ffe_ctl->total_free_space,
3682 free_space_ctl->free_space);
3683 spin_unlock(&free_space_ctl->tree_lock);
3684 return 1;
3685 }
3686 spin_unlock(&free_space_ctl->tree_lock);
3687 }
3688
3689 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3690 ffe_ctl->num_bytes, ffe_ctl->empty_size,
3691 &ffe_ctl->max_extent_size);
3692
3693 /*
3694 * If we didn't find a chunk, and we haven't failed on this block group
3695 * before, and this block group is in the middle of caching and we are
3696 * ok with waiting, then go ahead and wait for progress to be made, and
3697 * set @retry_unclustered to true.
3698 *
3699 * If @retry_unclustered is true then we've already waited on this
3700 * block group once and should move on to the next block group.
3701 */
3702 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3703 ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3704 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3705 ffe_ctl->empty_size);
3706 ffe_ctl->retry_unclustered = true;
3707 return -EAGAIN;
3708 } else if (!offset) {
3709 return 1;
3710 }
3711 ffe_ctl->found_offset = offset;
3712 return 0;
3713 }
3714
do_allocation_clustered(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3715 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3716 struct find_free_extent_ctl *ffe_ctl,
3717 struct btrfs_block_group **bg_ret)
3718 {
3719 int ret;
3720
3721 /* We want to try and use the cluster allocator, so lets look there */
3722 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3723 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3724 if (ret >= 0 || ret == -EAGAIN)
3725 return ret;
3726 /* ret == -ENOENT case falls through */
3727 }
3728
3729 return find_free_extent_unclustered(block_group, ffe_ctl);
3730 }
3731
do_allocation(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3732 static int do_allocation(struct btrfs_block_group *block_group,
3733 struct find_free_extent_ctl *ffe_ctl,
3734 struct btrfs_block_group **bg_ret)
3735 {
3736 switch (ffe_ctl->policy) {
3737 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3738 return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3739 default:
3740 BUG();
3741 }
3742 }
3743
release_block_group(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,int delalloc)3744 static void release_block_group(struct btrfs_block_group *block_group,
3745 struct find_free_extent_ctl *ffe_ctl,
3746 int delalloc)
3747 {
3748 switch (ffe_ctl->policy) {
3749 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3750 ffe_ctl->retry_clustered = false;
3751 ffe_ctl->retry_unclustered = false;
3752 break;
3753 default:
3754 BUG();
3755 }
3756
3757 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3758 ffe_ctl->index);
3759 btrfs_release_block_group(block_group, delalloc);
3760 }
3761
found_extent_clustered(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)3762 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3763 struct btrfs_key *ins)
3764 {
3765 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3766
3767 if (!ffe_ctl->use_cluster && last_ptr) {
3768 spin_lock(&last_ptr->lock);
3769 last_ptr->window_start = ins->objectid;
3770 spin_unlock(&last_ptr->lock);
3771 }
3772 }
3773
found_extent(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)3774 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3775 struct btrfs_key *ins)
3776 {
3777 switch (ffe_ctl->policy) {
3778 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3779 found_extent_clustered(ffe_ctl, ins);
3780 break;
3781 default:
3782 BUG();
3783 }
3784 }
3785
chunk_allocation_failed(struct find_free_extent_ctl * ffe_ctl)3786 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl)
3787 {
3788 switch (ffe_ctl->policy) {
3789 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3790 /*
3791 * If we can't allocate a new chunk we've already looped through
3792 * at least once, move on to the NO_EMPTY_SIZE case.
3793 */
3794 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
3795 return 0;
3796 default:
3797 BUG();
3798 }
3799 }
3800
3801 /*
3802 * Return >0 means caller needs to re-search for free extent
3803 * Return 0 means we have the needed free extent.
3804 * Return <0 means we failed to locate any free extent.
3805 */
find_free_extent_update_loop(struct btrfs_fs_info * fs_info,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl,bool full_search)3806 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3807 struct btrfs_key *ins,
3808 struct find_free_extent_ctl *ffe_ctl,
3809 bool full_search)
3810 {
3811 struct btrfs_root *root = fs_info->extent_root;
3812 int ret;
3813
3814 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3815 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3816 ffe_ctl->orig_have_caching_bg = true;
3817
3818 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
3819 ffe_ctl->have_caching_bg)
3820 return 1;
3821
3822 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
3823 return 1;
3824
3825 if (ins->objectid) {
3826 found_extent(ffe_ctl, ins);
3827 return 0;
3828 }
3829
3830 /*
3831 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3832 * caching kthreads as we move along
3833 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3834 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3835 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3836 * again
3837 */
3838 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
3839 ffe_ctl->index = 0;
3840 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
3841 /*
3842 * We want to skip the LOOP_CACHING_WAIT step if we
3843 * don't have any uncached bgs and we've already done a
3844 * full search through.
3845 */
3846 if (ffe_ctl->orig_have_caching_bg || !full_search)
3847 ffe_ctl->loop = LOOP_CACHING_WAIT;
3848 else
3849 ffe_ctl->loop = LOOP_ALLOC_CHUNK;
3850 } else {
3851 ffe_ctl->loop++;
3852 }
3853
3854 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
3855 struct btrfs_trans_handle *trans;
3856 int exist = 0;
3857
3858 trans = current->journal_info;
3859 if (trans)
3860 exist = 1;
3861 else
3862 trans = btrfs_join_transaction(root);
3863
3864 if (IS_ERR(trans)) {
3865 ret = PTR_ERR(trans);
3866 return ret;
3867 }
3868
3869 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
3870 CHUNK_ALLOC_FORCE);
3871
3872 /* Do not bail out on ENOSPC since we can do more. */
3873 if (ret == -ENOSPC)
3874 ret = chunk_allocation_failed(ffe_ctl);
3875 else if (ret < 0)
3876 btrfs_abort_transaction(trans, ret);
3877 else
3878 ret = 0;
3879 if (!exist)
3880 btrfs_end_transaction(trans);
3881 if (ret)
3882 return ret;
3883 }
3884
3885 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
3886 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
3887 return -ENOSPC;
3888
3889 /*
3890 * Don't loop again if we already have no empty_size and
3891 * no empty_cluster.
3892 */
3893 if (ffe_ctl->empty_size == 0 &&
3894 ffe_ctl->empty_cluster == 0)
3895 return -ENOSPC;
3896 ffe_ctl->empty_size = 0;
3897 ffe_ctl->empty_cluster = 0;
3898 }
3899 return 1;
3900 }
3901 return -ENOSPC;
3902 }
3903
prepare_allocation_clustered(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)3904 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
3905 struct find_free_extent_ctl *ffe_ctl,
3906 struct btrfs_space_info *space_info,
3907 struct btrfs_key *ins)
3908 {
3909 /*
3910 * If our free space is heavily fragmented we may not be able to make
3911 * big contiguous allocations, so instead of doing the expensive search
3912 * for free space, simply return ENOSPC with our max_extent_size so we
3913 * can go ahead and search for a more manageable chunk.
3914 *
3915 * If our max_extent_size is large enough for our allocation simply
3916 * disable clustering since we will likely not be able to find enough
3917 * space to create a cluster and induce latency trying.
3918 */
3919 if (space_info->max_extent_size) {
3920 spin_lock(&space_info->lock);
3921 if (space_info->max_extent_size &&
3922 ffe_ctl->num_bytes > space_info->max_extent_size) {
3923 ins->offset = space_info->max_extent_size;
3924 spin_unlock(&space_info->lock);
3925 return -ENOSPC;
3926 } else if (space_info->max_extent_size) {
3927 ffe_ctl->use_cluster = false;
3928 }
3929 spin_unlock(&space_info->lock);
3930 }
3931
3932 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
3933 &ffe_ctl->empty_cluster);
3934 if (ffe_ctl->last_ptr) {
3935 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3936
3937 spin_lock(&last_ptr->lock);
3938 if (last_ptr->block_group)
3939 ffe_ctl->hint_byte = last_ptr->window_start;
3940 if (last_ptr->fragmented) {
3941 /*
3942 * We still set window_start so we can keep track of the
3943 * last place we found an allocation to try and save
3944 * some time.
3945 */
3946 ffe_ctl->hint_byte = last_ptr->window_start;
3947 ffe_ctl->use_cluster = false;
3948 }
3949 spin_unlock(&last_ptr->lock);
3950 }
3951
3952 return 0;
3953 }
3954
prepare_allocation(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)3955 static int prepare_allocation(struct btrfs_fs_info *fs_info,
3956 struct find_free_extent_ctl *ffe_ctl,
3957 struct btrfs_space_info *space_info,
3958 struct btrfs_key *ins)
3959 {
3960 switch (ffe_ctl->policy) {
3961 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3962 return prepare_allocation_clustered(fs_info, ffe_ctl,
3963 space_info, ins);
3964 default:
3965 BUG();
3966 }
3967 }
3968
3969 /*
3970 * walks the btree of allocated extents and find a hole of a given size.
3971 * The key ins is changed to record the hole:
3972 * ins->objectid == start position
3973 * ins->flags = BTRFS_EXTENT_ITEM_KEY
3974 * ins->offset == the size of the hole.
3975 * Any available blocks before search_start are skipped.
3976 *
3977 * If there is no suitable free space, we will record the max size of
3978 * the free space extent currently.
3979 *
3980 * The overall logic and call chain:
3981 *
3982 * find_free_extent()
3983 * |- Iterate through all block groups
3984 * | |- Get a valid block group
3985 * | |- Try to do clustered allocation in that block group
3986 * | |- Try to do unclustered allocation in that block group
3987 * | |- Check if the result is valid
3988 * | | |- If valid, then exit
3989 * | |- Jump to next block group
3990 * |
3991 * |- Push harder to find free extents
3992 * |- If not found, re-iterate all block groups
3993 */
find_free_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 empty_size,u64 hint_byte_orig,struct btrfs_key * ins,u64 flags,int delalloc)3994 static noinline int find_free_extent(struct btrfs_root *root,
3995 u64 ram_bytes, u64 num_bytes, u64 empty_size,
3996 u64 hint_byte_orig, struct btrfs_key *ins,
3997 u64 flags, int delalloc)
3998 {
3999 struct btrfs_fs_info *fs_info = root->fs_info;
4000 int ret = 0;
4001 int cache_block_group_error = 0;
4002 struct btrfs_block_group *block_group = NULL;
4003 struct find_free_extent_ctl ffe_ctl = {0};
4004 struct btrfs_space_info *space_info;
4005 bool full_search = false;
4006
4007 WARN_ON(num_bytes < fs_info->sectorsize);
4008
4009 ffe_ctl.num_bytes = num_bytes;
4010 ffe_ctl.empty_size = empty_size;
4011 ffe_ctl.flags = flags;
4012 ffe_ctl.search_start = 0;
4013 ffe_ctl.delalloc = delalloc;
4014 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
4015 ffe_ctl.have_caching_bg = false;
4016 ffe_ctl.orig_have_caching_bg = false;
4017 ffe_ctl.found_offset = 0;
4018 ffe_ctl.hint_byte = hint_byte_orig;
4019 ffe_ctl.policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4020
4021 /* For clustered allocation */
4022 ffe_ctl.retry_clustered = false;
4023 ffe_ctl.retry_unclustered = false;
4024 ffe_ctl.last_ptr = NULL;
4025 ffe_ctl.use_cluster = true;
4026
4027 ins->type = BTRFS_EXTENT_ITEM_KEY;
4028 ins->objectid = 0;
4029 ins->offset = 0;
4030
4031 trace_find_free_extent(root, num_bytes, empty_size, flags);
4032
4033 space_info = btrfs_find_space_info(fs_info, flags);
4034 if (!space_info) {
4035 btrfs_err(fs_info, "No space info for %llu", flags);
4036 return -ENOSPC;
4037 }
4038
4039 ret = prepare_allocation(fs_info, &ffe_ctl, space_info, ins);
4040 if (ret < 0)
4041 return ret;
4042
4043 ffe_ctl.search_start = max(ffe_ctl.search_start,
4044 first_logical_byte(fs_info, 0));
4045 ffe_ctl.search_start = max(ffe_ctl.search_start, ffe_ctl.hint_byte);
4046 if (ffe_ctl.search_start == ffe_ctl.hint_byte) {
4047 block_group = btrfs_lookup_block_group(fs_info,
4048 ffe_ctl.search_start);
4049 /*
4050 * we don't want to use the block group if it doesn't match our
4051 * allocation bits, or if its not cached.
4052 *
4053 * However if we are re-searching with an ideal block group
4054 * picked out then we don't care that the block group is cached.
4055 */
4056 if (block_group && block_group_bits(block_group, flags) &&
4057 block_group->cached != BTRFS_CACHE_NO) {
4058 down_read(&space_info->groups_sem);
4059 if (list_empty(&block_group->list) ||
4060 block_group->ro) {
4061 /*
4062 * someone is removing this block group,
4063 * we can't jump into the have_block_group
4064 * target because our list pointers are not
4065 * valid
4066 */
4067 btrfs_put_block_group(block_group);
4068 up_read(&space_info->groups_sem);
4069 } else {
4070 ffe_ctl.index = btrfs_bg_flags_to_raid_index(
4071 block_group->flags);
4072 btrfs_lock_block_group(block_group, delalloc);
4073 goto have_block_group;
4074 }
4075 } else if (block_group) {
4076 btrfs_put_block_group(block_group);
4077 }
4078 }
4079 search:
4080 ffe_ctl.have_caching_bg = false;
4081 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
4082 ffe_ctl.index == 0)
4083 full_search = true;
4084 down_read(&space_info->groups_sem);
4085 list_for_each_entry(block_group,
4086 &space_info->block_groups[ffe_ctl.index], list) {
4087 struct btrfs_block_group *bg_ret;
4088
4089 /* If the block group is read-only, we can skip it entirely. */
4090 if (unlikely(block_group->ro))
4091 continue;
4092
4093 btrfs_grab_block_group(block_group, delalloc);
4094 ffe_ctl.search_start = block_group->start;
4095
4096 /*
4097 * this can happen if we end up cycling through all the
4098 * raid types, but we want to make sure we only allocate
4099 * for the proper type.
4100 */
4101 if (!block_group_bits(block_group, flags)) {
4102 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4103 BTRFS_BLOCK_GROUP_RAID1_MASK |
4104 BTRFS_BLOCK_GROUP_RAID56_MASK |
4105 BTRFS_BLOCK_GROUP_RAID10;
4106
4107 /*
4108 * if they asked for extra copies and this block group
4109 * doesn't provide them, bail. This does allow us to
4110 * fill raid0 from raid1.
4111 */
4112 if ((flags & extra) && !(block_group->flags & extra))
4113 goto loop;
4114
4115 /*
4116 * This block group has different flags than we want.
4117 * It's possible that we have MIXED_GROUP flag but no
4118 * block group is mixed. Just skip such block group.
4119 */
4120 btrfs_release_block_group(block_group, delalloc);
4121 continue;
4122 }
4123
4124 have_block_group:
4125 ffe_ctl.cached = btrfs_block_group_done(block_group);
4126 if (unlikely(!ffe_ctl.cached)) {
4127 ffe_ctl.have_caching_bg = true;
4128 ret = btrfs_cache_block_group(block_group, 0);
4129
4130 /*
4131 * If we get ENOMEM here or something else we want to
4132 * try other block groups, because it may not be fatal.
4133 * However if we can't find anything else we need to
4134 * save our return here so that we return the actual
4135 * error that caused problems, not ENOSPC.
4136 */
4137 if (ret < 0) {
4138 if (!cache_block_group_error)
4139 cache_block_group_error = ret;
4140 ret = 0;
4141 goto loop;
4142 }
4143 ret = 0;
4144 }
4145
4146 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4147 if (!cache_block_group_error)
4148 cache_block_group_error = -EIO;
4149 goto loop;
4150 }
4151
4152 bg_ret = NULL;
4153 ret = do_allocation(block_group, &ffe_ctl, &bg_ret);
4154 if (ret == 0) {
4155 if (bg_ret && bg_ret != block_group) {
4156 btrfs_release_block_group(block_group, delalloc);
4157 block_group = bg_ret;
4158 }
4159 } else if (ret == -EAGAIN) {
4160 goto have_block_group;
4161 } else if (ret > 0) {
4162 goto loop;
4163 }
4164
4165 /* Checks */
4166 ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
4167 fs_info->stripesize);
4168
4169 /* move on to the next group */
4170 if (ffe_ctl.search_start + num_bytes >
4171 block_group->start + block_group->length) {
4172 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4173 num_bytes);
4174 goto loop;
4175 }
4176
4177 if (ffe_ctl.found_offset < ffe_ctl.search_start)
4178 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4179 ffe_ctl.search_start - ffe_ctl.found_offset);
4180
4181 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
4182 num_bytes, delalloc);
4183 if (ret == -EAGAIN) {
4184 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4185 num_bytes);
4186 goto loop;
4187 }
4188 btrfs_inc_block_group_reservations(block_group);
4189
4190 /* we are all good, lets return */
4191 ins->objectid = ffe_ctl.search_start;
4192 ins->offset = num_bytes;
4193
4194 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
4195 num_bytes);
4196 btrfs_release_block_group(block_group, delalloc);
4197 break;
4198 loop:
4199 release_block_group(block_group, &ffe_ctl, delalloc);
4200 cond_resched();
4201 }
4202 up_read(&space_info->groups_sem);
4203
4204 ret = find_free_extent_update_loop(fs_info, ins, &ffe_ctl, full_search);
4205 if (ret > 0)
4206 goto search;
4207
4208 if (ret == -ENOSPC && !cache_block_group_error) {
4209 /*
4210 * Use ffe_ctl->total_free_space as fallback if we can't find
4211 * any contiguous hole.
4212 */
4213 if (!ffe_ctl.max_extent_size)
4214 ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4215 spin_lock(&space_info->lock);
4216 space_info->max_extent_size = ffe_ctl.max_extent_size;
4217 spin_unlock(&space_info->lock);
4218 ins->offset = ffe_ctl.max_extent_size;
4219 } else if (ret == -ENOSPC) {
4220 ret = cache_block_group_error;
4221 }
4222 return ret;
4223 }
4224
4225 /*
4226 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4227 * hole that is at least as big as @num_bytes.
4228 *
4229 * @root - The root that will contain this extent
4230 *
4231 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4232 * is used for accounting purposes. This value differs
4233 * from @num_bytes only in the case of compressed extents.
4234 *
4235 * @num_bytes - Number of bytes to allocate on-disk.
4236 *
4237 * @min_alloc_size - Indicates the minimum amount of space that the
4238 * allocator should try to satisfy. In some cases
4239 * @num_bytes may be larger than what is required and if
4240 * the filesystem is fragmented then allocation fails.
4241 * However, the presence of @min_alloc_size gives a
4242 * chance to try and satisfy the smaller allocation.
4243 *
4244 * @empty_size - A hint that you plan on doing more COW. This is the
4245 * size in bytes the allocator should try to find free
4246 * next to the block it returns. This is just a hint and
4247 * may be ignored by the allocator.
4248 *
4249 * @hint_byte - Hint to the allocator to start searching above the byte
4250 * address passed. It might be ignored.
4251 *
4252 * @ins - This key is modified to record the found hole. It will
4253 * have the following values:
4254 * ins->objectid == start position
4255 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4256 * ins->offset == the size of the hole.
4257 *
4258 * @is_data - Boolean flag indicating whether an extent is
4259 * allocated for data (true) or metadata (false)
4260 *
4261 * @delalloc - Boolean flag indicating whether this allocation is for
4262 * delalloc or not. If 'true' data_rwsem of block groups
4263 * is going to be acquired.
4264 *
4265 *
4266 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4267 * case -ENOSPC is returned then @ins->offset will contain the size of the
4268 * largest available hole the allocator managed to find.
4269 */
btrfs_reserve_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)4270 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4271 u64 num_bytes, u64 min_alloc_size,
4272 u64 empty_size, u64 hint_byte,
4273 struct btrfs_key *ins, int is_data, int delalloc)
4274 {
4275 struct btrfs_fs_info *fs_info = root->fs_info;
4276 bool final_tried = num_bytes == min_alloc_size;
4277 u64 flags;
4278 int ret;
4279
4280 flags = get_alloc_profile_by_root(root, is_data);
4281 again:
4282 WARN_ON(num_bytes < fs_info->sectorsize);
4283 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
4284 hint_byte, ins, flags, delalloc);
4285 if (!ret && !is_data) {
4286 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4287 } else if (ret == -ENOSPC) {
4288 if (!final_tried && ins->offset) {
4289 num_bytes = min(num_bytes >> 1, ins->offset);
4290 num_bytes = round_down(num_bytes,
4291 fs_info->sectorsize);
4292 num_bytes = max(num_bytes, min_alloc_size);
4293 ram_bytes = num_bytes;
4294 if (num_bytes == min_alloc_size)
4295 final_tried = true;
4296 goto again;
4297 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4298 struct btrfs_space_info *sinfo;
4299
4300 sinfo = btrfs_find_space_info(fs_info, flags);
4301 btrfs_err(fs_info,
4302 "allocation failed flags %llu, wanted %llu",
4303 flags, num_bytes);
4304 if (sinfo)
4305 btrfs_dump_space_info(fs_info, sinfo,
4306 num_bytes, 1);
4307 }
4308 }
4309
4310 return ret;
4311 }
4312
btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int delalloc)4313 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4314 u64 start, u64 len, int delalloc)
4315 {
4316 struct btrfs_block_group *cache;
4317
4318 cache = btrfs_lookup_block_group(fs_info, start);
4319 if (!cache) {
4320 btrfs_err(fs_info, "Unable to find block group for %llu",
4321 start);
4322 return -ENOSPC;
4323 }
4324
4325 btrfs_add_free_space(cache, start, len);
4326 btrfs_free_reserved_bytes(cache, len, delalloc);
4327 trace_btrfs_reserved_extent_free(fs_info, start, len);
4328
4329 btrfs_put_block_group(cache);
4330 return 0;
4331 }
4332
btrfs_pin_reserved_extent(struct btrfs_trans_handle * trans,u64 start,u64 len)4333 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4334 u64 len)
4335 {
4336 struct btrfs_block_group *cache;
4337 int ret = 0;
4338
4339 cache = btrfs_lookup_block_group(trans->fs_info, start);
4340 if (!cache) {
4341 btrfs_err(trans->fs_info, "unable to find block group for %llu",
4342 start);
4343 return -ENOSPC;
4344 }
4345
4346 ret = pin_down_extent(trans, cache, start, len, 1);
4347 btrfs_put_block_group(cache);
4348 return ret;
4349 }
4350
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod)4351 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4352 u64 parent, u64 root_objectid,
4353 u64 flags, u64 owner, u64 offset,
4354 struct btrfs_key *ins, int ref_mod)
4355 {
4356 struct btrfs_fs_info *fs_info = trans->fs_info;
4357 int ret;
4358 struct btrfs_extent_item *extent_item;
4359 struct btrfs_extent_inline_ref *iref;
4360 struct btrfs_path *path;
4361 struct extent_buffer *leaf;
4362 int type;
4363 u32 size;
4364
4365 if (parent > 0)
4366 type = BTRFS_SHARED_DATA_REF_KEY;
4367 else
4368 type = BTRFS_EXTENT_DATA_REF_KEY;
4369
4370 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4371
4372 path = btrfs_alloc_path();
4373 if (!path)
4374 return -ENOMEM;
4375
4376 path->leave_spinning = 1;
4377 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4378 ins, size);
4379 if (ret) {
4380 btrfs_free_path(path);
4381 return ret;
4382 }
4383
4384 leaf = path->nodes[0];
4385 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4386 struct btrfs_extent_item);
4387 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4388 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4389 btrfs_set_extent_flags(leaf, extent_item,
4390 flags | BTRFS_EXTENT_FLAG_DATA);
4391
4392 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4393 btrfs_set_extent_inline_ref_type(leaf, iref, type);
4394 if (parent > 0) {
4395 struct btrfs_shared_data_ref *ref;
4396 ref = (struct btrfs_shared_data_ref *)(iref + 1);
4397 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4398 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4399 } else {
4400 struct btrfs_extent_data_ref *ref;
4401 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4402 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4403 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4404 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4405 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4406 }
4407
4408 btrfs_mark_buffer_dirty(path->nodes[0]);
4409 btrfs_free_path(path);
4410
4411 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
4412 if (ret)
4413 return ret;
4414
4415 ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1);
4416 if (ret) { /* -ENOENT, logic error */
4417 btrfs_err(fs_info, "update block group failed for %llu %llu",
4418 ins->objectid, ins->offset);
4419 BUG();
4420 }
4421 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
4422 return ret;
4423 }
4424
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)4425 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4426 struct btrfs_delayed_ref_node *node,
4427 struct btrfs_delayed_extent_op *extent_op)
4428 {
4429 struct btrfs_fs_info *fs_info = trans->fs_info;
4430 int ret;
4431 struct btrfs_extent_item *extent_item;
4432 struct btrfs_key extent_key;
4433 struct btrfs_tree_block_info *block_info;
4434 struct btrfs_extent_inline_ref *iref;
4435 struct btrfs_path *path;
4436 struct extent_buffer *leaf;
4437 struct btrfs_delayed_tree_ref *ref;
4438 u32 size = sizeof(*extent_item) + sizeof(*iref);
4439 u64 num_bytes;
4440 u64 flags = extent_op->flags_to_set;
4441 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4442
4443 ref = btrfs_delayed_node_to_tree_ref(node);
4444
4445 extent_key.objectid = node->bytenr;
4446 if (skinny_metadata) {
4447 extent_key.offset = ref->level;
4448 extent_key.type = BTRFS_METADATA_ITEM_KEY;
4449 num_bytes = fs_info->nodesize;
4450 } else {
4451 extent_key.offset = node->num_bytes;
4452 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4453 size += sizeof(*block_info);
4454 num_bytes = node->num_bytes;
4455 }
4456
4457 path = btrfs_alloc_path();
4458 if (!path)
4459 return -ENOMEM;
4460
4461 path->leave_spinning = 1;
4462 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4463 &extent_key, size);
4464 if (ret) {
4465 btrfs_free_path(path);
4466 return ret;
4467 }
4468
4469 leaf = path->nodes[0];
4470 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4471 struct btrfs_extent_item);
4472 btrfs_set_extent_refs(leaf, extent_item, 1);
4473 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4474 btrfs_set_extent_flags(leaf, extent_item,
4475 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4476
4477 if (skinny_metadata) {
4478 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4479 } else {
4480 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4481 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4482 btrfs_set_tree_block_level(leaf, block_info, ref->level);
4483 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4484 }
4485
4486 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4487 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
4488 btrfs_set_extent_inline_ref_type(leaf, iref,
4489 BTRFS_SHARED_BLOCK_REF_KEY);
4490 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4491 } else {
4492 btrfs_set_extent_inline_ref_type(leaf, iref,
4493 BTRFS_TREE_BLOCK_REF_KEY);
4494 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4495 }
4496
4497 btrfs_mark_buffer_dirty(leaf);
4498 btrfs_free_path(path);
4499
4500 ret = remove_from_free_space_tree(trans, extent_key.objectid,
4501 num_bytes);
4502 if (ret)
4503 return ret;
4504
4505 ret = btrfs_update_block_group(trans, extent_key.objectid,
4506 fs_info->nodesize, 1);
4507 if (ret) { /* -ENOENT, logic error */
4508 btrfs_err(fs_info, "update block group failed for %llu %llu",
4509 extent_key.objectid, extent_key.offset);
4510 BUG();
4511 }
4512
4513 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
4514 fs_info->nodesize);
4515 return ret;
4516 }
4517
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)4518 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4519 struct btrfs_root *root, u64 owner,
4520 u64 offset, u64 ram_bytes,
4521 struct btrfs_key *ins)
4522 {
4523 struct btrfs_ref generic_ref = { 0 };
4524
4525 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4526
4527 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4528 ins->objectid, ins->offset, 0);
4529 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
4530 btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4531
4532 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4533 }
4534
4535 /*
4536 * this is used by the tree logging recovery code. It records that
4537 * an extent has been allocated and makes sure to clear the free
4538 * space cache bits as well
4539 */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)4540 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4541 u64 root_objectid, u64 owner, u64 offset,
4542 struct btrfs_key *ins)
4543 {
4544 struct btrfs_fs_info *fs_info = trans->fs_info;
4545 int ret;
4546 struct btrfs_block_group *block_group;
4547 struct btrfs_space_info *space_info;
4548
4549 /*
4550 * Mixed block groups will exclude before processing the log so we only
4551 * need to do the exclude dance if this fs isn't mixed.
4552 */
4553 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4554 ret = __exclude_logged_extent(fs_info, ins->objectid,
4555 ins->offset);
4556 if (ret)
4557 return ret;
4558 }
4559
4560 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4561 if (!block_group)
4562 return -EINVAL;
4563
4564 space_info = block_group->space_info;
4565 spin_lock(&space_info->lock);
4566 spin_lock(&block_group->lock);
4567 space_info->bytes_reserved += ins->offset;
4568 block_group->reserved += ins->offset;
4569 spin_unlock(&block_group->lock);
4570 spin_unlock(&space_info->lock);
4571
4572 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4573 offset, ins, 1);
4574 if (ret)
4575 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4576 btrfs_put_block_group(block_group);
4577 return ret;
4578 }
4579
4580 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level,u64 owner,enum btrfs_lock_nesting nest)4581 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4582 u64 bytenr, int level, u64 owner,
4583 enum btrfs_lock_nesting nest)
4584 {
4585 struct btrfs_fs_info *fs_info = root->fs_info;
4586 struct extent_buffer *buf;
4587
4588 buf = btrfs_find_create_tree_block(fs_info, bytenr);
4589 if (IS_ERR(buf))
4590 return buf;
4591
4592 /*
4593 * Extra safety check in case the extent tree is corrupted and extent
4594 * allocator chooses to use a tree block which is already used and
4595 * locked.
4596 */
4597 if (buf->lock_owner == current->pid) {
4598 btrfs_err_rl(fs_info,
4599 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4600 buf->start, btrfs_header_owner(buf), current->pid);
4601 free_extent_buffer(buf);
4602 return ERR_PTR(-EUCLEAN);
4603 }
4604
4605 btrfs_set_buffer_lockdep_class(owner, buf, level);
4606 __btrfs_tree_lock(buf, nest);
4607 btrfs_clean_tree_block(buf);
4608 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4609
4610 btrfs_set_lock_blocking_write(buf);
4611 set_extent_buffer_uptodate(buf);
4612
4613 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4614 btrfs_set_header_level(buf, level);
4615 btrfs_set_header_bytenr(buf, buf->start);
4616 btrfs_set_header_generation(buf, trans->transid);
4617 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4618 btrfs_set_header_owner(buf, owner);
4619 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4620 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4621 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4622 buf->log_index = root->log_transid % 2;
4623 /*
4624 * we allow two log transactions at a time, use different
4625 * EXTENT bit to differentiate dirty pages.
4626 */
4627 if (buf->log_index == 0)
4628 set_extent_dirty(&root->dirty_log_pages, buf->start,
4629 buf->start + buf->len - 1, GFP_NOFS);
4630 else
4631 set_extent_new(&root->dirty_log_pages, buf->start,
4632 buf->start + buf->len - 1);
4633 } else {
4634 buf->log_index = -1;
4635 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4636 buf->start + buf->len - 1, GFP_NOFS);
4637 }
4638 trans->dirty = true;
4639 /* this returns a buffer locked for blocking */
4640 return buf;
4641 }
4642
4643 /*
4644 * finds a free extent and does all the dirty work required for allocation
4645 * returns the tree buffer or an ERR_PTR on error.
4646 */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,const struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size,enum btrfs_lock_nesting nest)4647 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4648 struct btrfs_root *root,
4649 u64 parent, u64 root_objectid,
4650 const struct btrfs_disk_key *key,
4651 int level, u64 hint,
4652 u64 empty_size,
4653 enum btrfs_lock_nesting nest)
4654 {
4655 struct btrfs_fs_info *fs_info = root->fs_info;
4656 struct btrfs_key ins;
4657 struct btrfs_block_rsv *block_rsv;
4658 struct extent_buffer *buf;
4659 struct btrfs_delayed_extent_op *extent_op;
4660 struct btrfs_ref generic_ref = { 0 };
4661 u64 flags = 0;
4662 int ret;
4663 u32 blocksize = fs_info->nodesize;
4664 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4665
4666 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4667 if (btrfs_is_testing(fs_info)) {
4668 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4669 level, root_objectid, nest);
4670 if (!IS_ERR(buf))
4671 root->alloc_bytenr += blocksize;
4672 return buf;
4673 }
4674 #endif
4675
4676 block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4677 if (IS_ERR(block_rsv))
4678 return ERR_CAST(block_rsv);
4679
4680 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4681 empty_size, hint, &ins, 0, 0);
4682 if (ret)
4683 goto out_unuse;
4684
4685 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4686 root_objectid, nest);
4687 if (IS_ERR(buf)) {
4688 ret = PTR_ERR(buf);
4689 goto out_free_reserved;
4690 }
4691
4692 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4693 if (parent == 0)
4694 parent = ins.objectid;
4695 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4696 } else
4697 BUG_ON(parent > 0);
4698
4699 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4700 extent_op = btrfs_alloc_delayed_extent_op();
4701 if (!extent_op) {
4702 ret = -ENOMEM;
4703 goto out_free_buf;
4704 }
4705 if (key)
4706 memcpy(&extent_op->key, key, sizeof(extent_op->key));
4707 else
4708 memset(&extent_op->key, 0, sizeof(extent_op->key));
4709 extent_op->flags_to_set = flags;
4710 extent_op->update_key = skinny_metadata ? false : true;
4711 extent_op->update_flags = true;
4712 extent_op->is_data = false;
4713 extent_op->level = level;
4714
4715 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4716 ins.objectid, ins.offset, parent);
4717 generic_ref.real_root = root->root_key.objectid;
4718 btrfs_init_tree_ref(&generic_ref, level, root_objectid);
4719 btrfs_ref_tree_mod(fs_info, &generic_ref);
4720 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
4721 if (ret)
4722 goto out_free_delayed;
4723 }
4724 return buf;
4725
4726 out_free_delayed:
4727 btrfs_free_delayed_extent_op(extent_op);
4728 out_free_buf:
4729 btrfs_tree_unlock(buf);
4730 free_extent_buffer(buf);
4731 out_free_reserved:
4732 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4733 out_unuse:
4734 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4735 return ERR_PTR(ret);
4736 }
4737
4738 struct walk_control {
4739 u64 refs[BTRFS_MAX_LEVEL];
4740 u64 flags[BTRFS_MAX_LEVEL];
4741 struct btrfs_key update_progress;
4742 struct btrfs_key drop_progress;
4743 int drop_level;
4744 int stage;
4745 int level;
4746 int shared_level;
4747 int update_ref;
4748 int keep_locks;
4749 int reada_slot;
4750 int reada_count;
4751 int restarted;
4752 };
4753
4754 #define DROP_REFERENCE 1
4755 #define UPDATE_BACKREF 2
4756
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)4757 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4758 struct btrfs_root *root,
4759 struct walk_control *wc,
4760 struct btrfs_path *path)
4761 {
4762 struct btrfs_fs_info *fs_info = root->fs_info;
4763 u64 bytenr;
4764 u64 generation;
4765 u64 refs;
4766 u64 flags;
4767 u32 nritems;
4768 struct btrfs_key key;
4769 struct extent_buffer *eb;
4770 int ret;
4771 int slot;
4772 int nread = 0;
4773
4774 if (path->slots[wc->level] < wc->reada_slot) {
4775 wc->reada_count = wc->reada_count * 2 / 3;
4776 wc->reada_count = max(wc->reada_count, 2);
4777 } else {
4778 wc->reada_count = wc->reada_count * 3 / 2;
4779 wc->reada_count = min_t(int, wc->reada_count,
4780 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
4781 }
4782
4783 eb = path->nodes[wc->level];
4784 nritems = btrfs_header_nritems(eb);
4785
4786 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
4787 if (nread >= wc->reada_count)
4788 break;
4789
4790 cond_resched();
4791 bytenr = btrfs_node_blockptr(eb, slot);
4792 generation = btrfs_node_ptr_generation(eb, slot);
4793
4794 if (slot == path->slots[wc->level])
4795 goto reada;
4796
4797 if (wc->stage == UPDATE_BACKREF &&
4798 generation <= root->root_key.offset)
4799 continue;
4800
4801 /* We don't lock the tree block, it's OK to be racy here */
4802 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
4803 wc->level - 1, 1, &refs,
4804 &flags);
4805 /* We don't care about errors in readahead. */
4806 if (ret < 0)
4807 continue;
4808 BUG_ON(refs == 0);
4809
4810 if (wc->stage == DROP_REFERENCE) {
4811 if (refs == 1)
4812 goto reada;
4813
4814 if (wc->level == 1 &&
4815 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4816 continue;
4817 if (!wc->update_ref ||
4818 generation <= root->root_key.offset)
4819 continue;
4820 btrfs_node_key_to_cpu(eb, &key, slot);
4821 ret = btrfs_comp_cpu_keys(&key,
4822 &wc->update_progress);
4823 if (ret < 0)
4824 continue;
4825 } else {
4826 if (wc->level == 1 &&
4827 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4828 continue;
4829 }
4830 reada:
4831 readahead_tree_block(fs_info, bytenr);
4832 nread++;
4833 }
4834 wc->reada_slot = slot;
4835 }
4836
4837 /*
4838 * helper to process tree block while walking down the tree.
4839 *
4840 * when wc->stage == UPDATE_BACKREF, this function updates
4841 * back refs for pointers in the block.
4842 *
4843 * NOTE: return value 1 means we should stop walking down.
4844 */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int lookup_info)4845 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
4846 struct btrfs_root *root,
4847 struct btrfs_path *path,
4848 struct walk_control *wc, int lookup_info)
4849 {
4850 struct btrfs_fs_info *fs_info = root->fs_info;
4851 int level = wc->level;
4852 struct extent_buffer *eb = path->nodes[level];
4853 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
4854 int ret;
4855
4856 if (wc->stage == UPDATE_BACKREF &&
4857 btrfs_header_owner(eb) != root->root_key.objectid)
4858 return 1;
4859
4860 /*
4861 * when reference count of tree block is 1, it won't increase
4862 * again. once full backref flag is set, we never clear it.
4863 */
4864 if (lookup_info &&
4865 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
4866 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
4867 BUG_ON(!path->locks[level]);
4868 ret = btrfs_lookup_extent_info(trans, fs_info,
4869 eb->start, level, 1,
4870 &wc->refs[level],
4871 &wc->flags[level]);
4872 BUG_ON(ret == -ENOMEM);
4873 if (ret)
4874 return ret;
4875 BUG_ON(wc->refs[level] == 0);
4876 }
4877
4878 if (wc->stage == DROP_REFERENCE) {
4879 if (wc->refs[level] > 1)
4880 return 1;
4881
4882 if (path->locks[level] && !wc->keep_locks) {
4883 btrfs_tree_unlock_rw(eb, path->locks[level]);
4884 path->locks[level] = 0;
4885 }
4886 return 0;
4887 }
4888
4889 /* wc->stage == UPDATE_BACKREF */
4890 if (!(wc->flags[level] & flag)) {
4891 BUG_ON(!path->locks[level]);
4892 ret = btrfs_inc_ref(trans, root, eb, 1);
4893 BUG_ON(ret); /* -ENOMEM */
4894 ret = btrfs_dec_ref(trans, root, eb, 0);
4895 BUG_ON(ret); /* -ENOMEM */
4896 ret = btrfs_set_disk_extent_flags(trans, eb, flag,
4897 btrfs_header_level(eb), 0);
4898 BUG_ON(ret); /* -ENOMEM */
4899 wc->flags[level] |= flag;
4900 }
4901
4902 /*
4903 * the block is shared by multiple trees, so it's not good to
4904 * keep the tree lock
4905 */
4906 if (path->locks[level] && level > 0) {
4907 btrfs_tree_unlock_rw(eb, path->locks[level]);
4908 path->locks[level] = 0;
4909 }
4910 return 0;
4911 }
4912
4913 /*
4914 * This is used to verify a ref exists for this root to deal with a bug where we
4915 * would have a drop_progress key that hadn't been updated properly.
4916 */
check_ref_exists(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 parent,int level)4917 static int check_ref_exists(struct btrfs_trans_handle *trans,
4918 struct btrfs_root *root, u64 bytenr, u64 parent,
4919 int level)
4920 {
4921 struct btrfs_path *path;
4922 struct btrfs_extent_inline_ref *iref;
4923 int ret;
4924
4925 path = btrfs_alloc_path();
4926 if (!path)
4927 return -ENOMEM;
4928
4929 ret = lookup_extent_backref(trans, path, &iref, bytenr,
4930 root->fs_info->nodesize, parent,
4931 root->root_key.objectid, level, 0);
4932 btrfs_free_path(path);
4933 if (ret == -ENOENT)
4934 return 0;
4935 if (ret < 0)
4936 return ret;
4937 return 1;
4938 }
4939
4940 /*
4941 * helper to process tree block pointer.
4942 *
4943 * when wc->stage == DROP_REFERENCE, this function checks
4944 * reference count of the block pointed to. if the block
4945 * is shared and we need update back refs for the subtree
4946 * rooted at the block, this function changes wc->stage to
4947 * UPDATE_BACKREF. if the block is shared and there is no
4948 * need to update back, this function drops the reference
4949 * to the block.
4950 *
4951 * NOTE: return value 1 means we should stop walking down.
4952 */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int * lookup_info)4953 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
4954 struct btrfs_root *root,
4955 struct btrfs_path *path,
4956 struct walk_control *wc, int *lookup_info)
4957 {
4958 struct btrfs_fs_info *fs_info = root->fs_info;
4959 u64 bytenr;
4960 u64 generation;
4961 u64 parent;
4962 struct btrfs_key key;
4963 struct btrfs_key first_key;
4964 struct btrfs_ref ref = { 0 };
4965 struct extent_buffer *next;
4966 int level = wc->level;
4967 int reada = 0;
4968 int ret = 0;
4969 bool need_account = false;
4970
4971 generation = btrfs_node_ptr_generation(path->nodes[level],
4972 path->slots[level]);
4973 /*
4974 * if the lower level block was created before the snapshot
4975 * was created, we know there is no need to update back refs
4976 * for the subtree
4977 */
4978 if (wc->stage == UPDATE_BACKREF &&
4979 generation <= root->root_key.offset) {
4980 *lookup_info = 1;
4981 return 1;
4982 }
4983
4984 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
4985 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
4986 path->slots[level]);
4987
4988 next = find_extent_buffer(fs_info, bytenr);
4989 if (!next) {
4990 next = btrfs_find_create_tree_block(fs_info, bytenr);
4991 if (IS_ERR(next))
4992 return PTR_ERR(next);
4993
4994 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
4995 level - 1);
4996 reada = 1;
4997 }
4998 btrfs_tree_lock(next);
4999 btrfs_set_lock_blocking_write(next);
5000
5001 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5002 &wc->refs[level - 1],
5003 &wc->flags[level - 1]);
5004 if (ret < 0)
5005 goto out_unlock;
5006
5007 if (unlikely(wc->refs[level - 1] == 0)) {
5008 btrfs_err(fs_info, "Missing references.");
5009 ret = -EIO;
5010 goto out_unlock;
5011 }
5012 *lookup_info = 0;
5013
5014 if (wc->stage == DROP_REFERENCE) {
5015 if (wc->refs[level - 1] > 1) {
5016 need_account = true;
5017 if (level == 1 &&
5018 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5019 goto skip;
5020
5021 if (!wc->update_ref ||
5022 generation <= root->root_key.offset)
5023 goto skip;
5024
5025 btrfs_node_key_to_cpu(path->nodes[level], &key,
5026 path->slots[level]);
5027 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5028 if (ret < 0)
5029 goto skip;
5030
5031 wc->stage = UPDATE_BACKREF;
5032 wc->shared_level = level - 1;
5033 }
5034 } else {
5035 if (level == 1 &&
5036 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5037 goto skip;
5038 }
5039
5040 if (!btrfs_buffer_uptodate(next, generation, 0)) {
5041 btrfs_tree_unlock(next);
5042 free_extent_buffer(next);
5043 next = NULL;
5044 *lookup_info = 1;
5045 }
5046
5047 if (!next) {
5048 if (reada && level == 1)
5049 reada_walk_down(trans, root, wc, path);
5050 next = read_tree_block(fs_info, bytenr, generation, level - 1,
5051 &first_key);
5052 if (IS_ERR(next)) {
5053 return PTR_ERR(next);
5054 } else if (!extent_buffer_uptodate(next)) {
5055 free_extent_buffer(next);
5056 return -EIO;
5057 }
5058 btrfs_tree_lock(next);
5059 btrfs_set_lock_blocking_write(next);
5060 }
5061
5062 level--;
5063 ASSERT(level == btrfs_header_level(next));
5064 if (level != btrfs_header_level(next)) {
5065 btrfs_err(root->fs_info, "mismatched level");
5066 ret = -EIO;
5067 goto out_unlock;
5068 }
5069 path->nodes[level] = next;
5070 path->slots[level] = 0;
5071 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5072 wc->level = level;
5073 if (wc->level == 1)
5074 wc->reada_slot = 0;
5075 return 0;
5076 skip:
5077 wc->refs[level - 1] = 0;
5078 wc->flags[level - 1] = 0;
5079 if (wc->stage == DROP_REFERENCE) {
5080 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5081 parent = path->nodes[level]->start;
5082 } else {
5083 ASSERT(root->root_key.objectid ==
5084 btrfs_header_owner(path->nodes[level]));
5085 if (root->root_key.objectid !=
5086 btrfs_header_owner(path->nodes[level])) {
5087 btrfs_err(root->fs_info,
5088 "mismatched block owner");
5089 ret = -EIO;
5090 goto out_unlock;
5091 }
5092 parent = 0;
5093 }
5094
5095 /*
5096 * If we had a drop_progress we need to verify the refs are set
5097 * as expected. If we find our ref then we know that from here
5098 * on out everything should be correct, and we can clear the
5099 * ->restarted flag.
5100 */
5101 if (wc->restarted) {
5102 ret = check_ref_exists(trans, root, bytenr, parent,
5103 level - 1);
5104 if (ret < 0)
5105 goto out_unlock;
5106 if (ret == 0)
5107 goto no_delete;
5108 ret = 0;
5109 wc->restarted = 0;
5110 }
5111
5112 /*
5113 * Reloc tree doesn't contribute to qgroup numbers, and we have
5114 * already accounted them at merge time (replace_path),
5115 * thus we could skip expensive subtree trace here.
5116 */
5117 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5118 need_account) {
5119 ret = btrfs_qgroup_trace_subtree(trans, next,
5120 generation, level - 1);
5121 if (ret) {
5122 btrfs_err_rl(fs_info,
5123 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5124 ret);
5125 }
5126 }
5127
5128 /*
5129 * We need to update the next key in our walk control so we can
5130 * update the drop_progress key accordingly. We don't care if
5131 * find_next_key doesn't find a key because that means we're at
5132 * the end and are going to clean up now.
5133 */
5134 wc->drop_level = level;
5135 find_next_key(path, level, &wc->drop_progress);
5136
5137 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5138 fs_info->nodesize, parent);
5139 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
5140 ret = btrfs_free_extent(trans, &ref);
5141 if (ret)
5142 goto out_unlock;
5143 }
5144 no_delete:
5145 *lookup_info = 1;
5146 ret = 1;
5147
5148 out_unlock:
5149 btrfs_tree_unlock(next);
5150 free_extent_buffer(next);
5151
5152 return ret;
5153 }
5154
5155 /*
5156 * helper to process tree block while walking up the tree.
5157 *
5158 * when wc->stage == DROP_REFERENCE, this function drops
5159 * reference count on the block.
5160 *
5161 * when wc->stage == UPDATE_BACKREF, this function changes
5162 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5163 * to UPDATE_BACKREF previously while processing the block.
5164 *
5165 * NOTE: return value 1 means we should stop walking up.
5166 */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5167 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5168 struct btrfs_root *root,
5169 struct btrfs_path *path,
5170 struct walk_control *wc)
5171 {
5172 struct btrfs_fs_info *fs_info = root->fs_info;
5173 int ret;
5174 int level = wc->level;
5175 struct extent_buffer *eb = path->nodes[level];
5176 u64 parent = 0;
5177
5178 if (wc->stage == UPDATE_BACKREF) {
5179 BUG_ON(wc->shared_level < level);
5180 if (level < wc->shared_level)
5181 goto out;
5182
5183 ret = find_next_key(path, level + 1, &wc->update_progress);
5184 if (ret > 0)
5185 wc->update_ref = 0;
5186
5187 wc->stage = DROP_REFERENCE;
5188 wc->shared_level = -1;
5189 path->slots[level] = 0;
5190
5191 /*
5192 * check reference count again if the block isn't locked.
5193 * we should start walking down the tree again if reference
5194 * count is one.
5195 */
5196 if (!path->locks[level]) {
5197 BUG_ON(level == 0);
5198 btrfs_tree_lock(eb);
5199 btrfs_set_lock_blocking_write(eb);
5200 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5201
5202 ret = btrfs_lookup_extent_info(trans, fs_info,
5203 eb->start, level, 1,
5204 &wc->refs[level],
5205 &wc->flags[level]);
5206 if (ret < 0) {
5207 btrfs_tree_unlock_rw(eb, path->locks[level]);
5208 path->locks[level] = 0;
5209 return ret;
5210 }
5211 BUG_ON(wc->refs[level] == 0);
5212 if (wc->refs[level] == 1) {
5213 btrfs_tree_unlock_rw(eb, path->locks[level]);
5214 path->locks[level] = 0;
5215 return 1;
5216 }
5217 }
5218 }
5219
5220 /* wc->stage == DROP_REFERENCE */
5221 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5222
5223 if (wc->refs[level] == 1) {
5224 if (level == 0) {
5225 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5226 ret = btrfs_dec_ref(trans, root, eb, 1);
5227 else
5228 ret = btrfs_dec_ref(trans, root, eb, 0);
5229 BUG_ON(ret); /* -ENOMEM */
5230 if (is_fstree(root->root_key.objectid)) {
5231 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5232 if (ret) {
5233 btrfs_err_rl(fs_info,
5234 "error %d accounting leaf items, quota is out of sync, rescan required",
5235 ret);
5236 }
5237 }
5238 }
5239 /* make block locked assertion in btrfs_clean_tree_block happy */
5240 if (!path->locks[level] &&
5241 btrfs_header_generation(eb) == trans->transid) {
5242 btrfs_tree_lock(eb);
5243 btrfs_set_lock_blocking_write(eb);
5244 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5245 }
5246 btrfs_clean_tree_block(eb);
5247 }
5248
5249 if (eb == root->node) {
5250 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5251 parent = eb->start;
5252 else if (root->root_key.objectid != btrfs_header_owner(eb))
5253 goto owner_mismatch;
5254 } else {
5255 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5256 parent = path->nodes[level + 1]->start;
5257 else if (root->root_key.objectid !=
5258 btrfs_header_owner(path->nodes[level + 1]))
5259 goto owner_mismatch;
5260 }
5261
5262 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
5263 out:
5264 wc->refs[level] = 0;
5265 wc->flags[level] = 0;
5266 return 0;
5267
5268 owner_mismatch:
5269 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5270 btrfs_header_owner(eb), root->root_key.objectid);
5271 return -EUCLEAN;
5272 }
5273
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5274 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5275 struct btrfs_root *root,
5276 struct btrfs_path *path,
5277 struct walk_control *wc)
5278 {
5279 int level = wc->level;
5280 int lookup_info = 1;
5281 int ret;
5282
5283 while (level >= 0) {
5284 ret = walk_down_proc(trans, root, path, wc, lookup_info);
5285 if (ret > 0)
5286 break;
5287
5288 if (level == 0)
5289 break;
5290
5291 if (path->slots[level] >=
5292 btrfs_header_nritems(path->nodes[level]))
5293 break;
5294
5295 ret = do_walk_down(trans, root, path, wc, &lookup_info);
5296 if (ret > 0) {
5297 path->slots[level]++;
5298 continue;
5299 } else if (ret < 0)
5300 return ret;
5301 level = wc->level;
5302 }
5303 return 0;
5304 }
5305
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)5306 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5307 struct btrfs_root *root,
5308 struct btrfs_path *path,
5309 struct walk_control *wc, int max_level)
5310 {
5311 int level = wc->level;
5312 int ret;
5313
5314 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5315 while (level < max_level && path->nodes[level]) {
5316 wc->level = level;
5317 if (path->slots[level] + 1 <
5318 btrfs_header_nritems(path->nodes[level])) {
5319 path->slots[level]++;
5320 return 0;
5321 } else {
5322 ret = walk_up_proc(trans, root, path, wc);
5323 if (ret > 0)
5324 return 0;
5325 if (ret < 0)
5326 return ret;
5327
5328 if (path->locks[level]) {
5329 btrfs_tree_unlock_rw(path->nodes[level],
5330 path->locks[level]);
5331 path->locks[level] = 0;
5332 }
5333 free_extent_buffer(path->nodes[level]);
5334 path->nodes[level] = NULL;
5335 level++;
5336 }
5337 }
5338 return 1;
5339 }
5340
5341 /*
5342 * drop a subvolume tree.
5343 *
5344 * this function traverses the tree freeing any blocks that only
5345 * referenced by the tree.
5346 *
5347 * when a shared tree block is found. this function decreases its
5348 * reference count by one. if update_ref is true, this function
5349 * also make sure backrefs for the shared block and all lower level
5350 * blocks are properly updated.
5351 *
5352 * If called with for_reloc == 0, may exit early with -EAGAIN
5353 */
btrfs_drop_snapshot(struct btrfs_root * root,int update_ref,int for_reloc)5354 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5355 {
5356 struct btrfs_fs_info *fs_info = root->fs_info;
5357 struct btrfs_path *path;
5358 struct btrfs_trans_handle *trans;
5359 struct btrfs_root *tree_root = fs_info->tree_root;
5360 struct btrfs_root_item *root_item = &root->root_item;
5361 struct walk_control *wc;
5362 struct btrfs_key key;
5363 int err = 0;
5364 int ret;
5365 int level;
5366 bool root_dropped = false;
5367
5368 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5369
5370 path = btrfs_alloc_path();
5371 if (!path) {
5372 err = -ENOMEM;
5373 goto out;
5374 }
5375
5376 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5377 if (!wc) {
5378 btrfs_free_path(path);
5379 err = -ENOMEM;
5380 goto out;
5381 }
5382
5383 /*
5384 * Use join to avoid potential EINTR from transaction start. See
5385 * wait_reserve_ticket and the whole reservation callchain.
5386 */
5387 if (for_reloc)
5388 trans = btrfs_join_transaction(tree_root);
5389 else
5390 trans = btrfs_start_transaction(tree_root, 0);
5391 if (IS_ERR(trans)) {
5392 err = PTR_ERR(trans);
5393 goto out_free;
5394 }
5395
5396 err = btrfs_run_delayed_items(trans);
5397 if (err)
5398 goto out_end_trans;
5399
5400 /*
5401 * This will help us catch people modifying the fs tree while we're
5402 * dropping it. It is unsafe to mess with the fs tree while it's being
5403 * dropped as we unlock the root node and parent nodes as we walk down
5404 * the tree, assuming nothing will change. If something does change
5405 * then we'll have stale information and drop references to blocks we've
5406 * already dropped.
5407 */
5408 set_bit(BTRFS_ROOT_DELETING, &root->state);
5409 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5410 level = btrfs_header_level(root->node);
5411 path->nodes[level] = btrfs_lock_root_node(root);
5412 btrfs_set_lock_blocking_write(path->nodes[level]);
5413 path->slots[level] = 0;
5414 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5415 memset(&wc->update_progress, 0,
5416 sizeof(wc->update_progress));
5417 } else {
5418 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5419 memcpy(&wc->update_progress, &key,
5420 sizeof(wc->update_progress));
5421
5422 level = root_item->drop_level;
5423 BUG_ON(level == 0);
5424 path->lowest_level = level;
5425 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5426 path->lowest_level = 0;
5427 if (ret < 0) {
5428 err = ret;
5429 goto out_end_trans;
5430 }
5431 WARN_ON(ret > 0);
5432
5433 /*
5434 * unlock our path, this is safe because only this
5435 * function is allowed to delete this snapshot
5436 */
5437 btrfs_unlock_up_safe(path, 0);
5438
5439 level = btrfs_header_level(root->node);
5440 while (1) {
5441 btrfs_tree_lock(path->nodes[level]);
5442 btrfs_set_lock_blocking_write(path->nodes[level]);
5443 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5444
5445 ret = btrfs_lookup_extent_info(trans, fs_info,
5446 path->nodes[level]->start,
5447 level, 1, &wc->refs[level],
5448 &wc->flags[level]);
5449 if (ret < 0) {
5450 err = ret;
5451 goto out_end_trans;
5452 }
5453 BUG_ON(wc->refs[level] == 0);
5454
5455 if (level == root_item->drop_level)
5456 break;
5457
5458 btrfs_tree_unlock(path->nodes[level]);
5459 path->locks[level] = 0;
5460 WARN_ON(wc->refs[level] != 1);
5461 level--;
5462 }
5463 }
5464
5465 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5466 wc->level = level;
5467 wc->shared_level = -1;
5468 wc->stage = DROP_REFERENCE;
5469 wc->update_ref = update_ref;
5470 wc->keep_locks = 0;
5471 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5472
5473 while (1) {
5474
5475 ret = walk_down_tree(trans, root, path, wc);
5476 if (ret < 0) {
5477 err = ret;
5478 break;
5479 }
5480
5481 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5482 if (ret < 0) {
5483 err = ret;
5484 break;
5485 }
5486
5487 if (ret > 0) {
5488 BUG_ON(wc->stage != DROP_REFERENCE);
5489 break;
5490 }
5491
5492 if (wc->stage == DROP_REFERENCE) {
5493 wc->drop_level = wc->level;
5494 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5495 &wc->drop_progress,
5496 path->slots[wc->drop_level]);
5497 }
5498 btrfs_cpu_key_to_disk(&root_item->drop_progress,
5499 &wc->drop_progress);
5500 root_item->drop_level = wc->drop_level;
5501
5502 BUG_ON(wc->level == 0);
5503 if (btrfs_should_end_transaction(trans) ||
5504 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5505 ret = btrfs_update_root(trans, tree_root,
5506 &root->root_key,
5507 root_item);
5508 if (ret) {
5509 btrfs_abort_transaction(trans, ret);
5510 err = ret;
5511 goto out_end_trans;
5512 }
5513
5514 btrfs_end_transaction_throttle(trans);
5515 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5516 btrfs_debug(fs_info,
5517 "drop snapshot early exit");
5518 err = -EAGAIN;
5519 goto out_free;
5520 }
5521
5522 /*
5523 * Use join to avoid potential EINTR from transaction
5524 * start. See wait_reserve_ticket and the whole
5525 * reservation callchain.
5526 */
5527 if (for_reloc)
5528 trans = btrfs_join_transaction(tree_root);
5529 else
5530 trans = btrfs_start_transaction(tree_root, 0);
5531 if (IS_ERR(trans)) {
5532 err = PTR_ERR(trans);
5533 goto out_free;
5534 }
5535 }
5536 }
5537 btrfs_release_path(path);
5538 if (err)
5539 goto out_end_trans;
5540
5541 ret = btrfs_del_root(trans, &root->root_key);
5542 if (ret) {
5543 btrfs_abort_transaction(trans, ret);
5544 err = ret;
5545 goto out_end_trans;
5546 }
5547
5548 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5549 ret = btrfs_find_root(tree_root, &root->root_key, path,
5550 NULL, NULL);
5551 if (ret < 0) {
5552 btrfs_abort_transaction(trans, ret);
5553 err = ret;
5554 goto out_end_trans;
5555 } else if (ret > 0) {
5556 /* if we fail to delete the orphan item this time
5557 * around, it'll get picked up the next time.
5558 *
5559 * The most common failure here is just -ENOENT.
5560 */
5561 btrfs_del_orphan_item(trans, tree_root,
5562 root->root_key.objectid);
5563 }
5564 }
5565
5566 /*
5567 * This subvolume is going to be completely dropped, and won't be
5568 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5569 * commit transaction time. So free it here manually.
5570 */
5571 btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5572 btrfs_qgroup_free_meta_all_pertrans(root);
5573
5574 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5575 btrfs_add_dropped_root(trans, root);
5576 else
5577 btrfs_put_root(root);
5578 root_dropped = true;
5579 out_end_trans:
5580 btrfs_end_transaction_throttle(trans);
5581 out_free:
5582 kfree(wc);
5583 btrfs_free_path(path);
5584 out:
5585 /*
5586 * So if we need to stop dropping the snapshot for whatever reason we
5587 * need to make sure to add it back to the dead root list so that we
5588 * keep trying to do the work later. This also cleans up roots if we
5589 * don't have it in the radix (like when we recover after a power fail
5590 * or unmount) so we don't leak memory.
5591 */
5592 if (!for_reloc && !root_dropped)
5593 btrfs_add_dead_root(root);
5594 return err;
5595 }
5596
5597 /*
5598 * drop subtree rooted at tree block 'node'.
5599 *
5600 * NOTE: this function will unlock and release tree block 'node'
5601 * only used by relocation code
5602 */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)5603 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5604 struct btrfs_root *root,
5605 struct extent_buffer *node,
5606 struct extent_buffer *parent)
5607 {
5608 struct btrfs_fs_info *fs_info = root->fs_info;
5609 struct btrfs_path *path;
5610 struct walk_control *wc;
5611 int level;
5612 int parent_level;
5613 int ret = 0;
5614 int wret;
5615
5616 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5617
5618 path = btrfs_alloc_path();
5619 if (!path)
5620 return -ENOMEM;
5621
5622 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5623 if (!wc) {
5624 btrfs_free_path(path);
5625 return -ENOMEM;
5626 }
5627
5628 btrfs_assert_tree_locked(parent);
5629 parent_level = btrfs_header_level(parent);
5630 atomic_inc(&parent->refs);
5631 path->nodes[parent_level] = parent;
5632 path->slots[parent_level] = btrfs_header_nritems(parent);
5633
5634 btrfs_assert_tree_locked(node);
5635 level = btrfs_header_level(node);
5636 path->nodes[level] = node;
5637 path->slots[level] = 0;
5638 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5639
5640 wc->refs[parent_level] = 1;
5641 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5642 wc->level = level;
5643 wc->shared_level = -1;
5644 wc->stage = DROP_REFERENCE;
5645 wc->update_ref = 0;
5646 wc->keep_locks = 1;
5647 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5648
5649 while (1) {
5650 wret = walk_down_tree(trans, root, path, wc);
5651 if (wret < 0) {
5652 ret = wret;
5653 break;
5654 }
5655
5656 wret = walk_up_tree(trans, root, path, wc, parent_level);
5657 if (wret < 0)
5658 ret = wret;
5659 if (wret != 0)
5660 break;
5661 }
5662
5663 kfree(wc);
5664 btrfs_free_path(path);
5665 return ret;
5666 }
5667
5668 /*
5669 * helper to account the unused space of all the readonly block group in the
5670 * space_info. takes mirrors into account.
5671 */
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info * sinfo)5672 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5673 {
5674 struct btrfs_block_group *block_group;
5675 u64 free_bytes = 0;
5676 int factor;
5677
5678 /* It's df, we don't care if it's racy */
5679 if (list_empty(&sinfo->ro_bgs))
5680 return 0;
5681
5682 spin_lock(&sinfo->lock);
5683 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5684 spin_lock(&block_group->lock);
5685
5686 if (!block_group->ro) {
5687 spin_unlock(&block_group->lock);
5688 continue;
5689 }
5690
5691 factor = btrfs_bg_type_to_factor(block_group->flags);
5692 free_bytes += (block_group->length -
5693 block_group->used) * factor;
5694
5695 spin_unlock(&block_group->lock);
5696 }
5697 spin_unlock(&sinfo->lock);
5698
5699 return free_bytes;
5700 }
5701
btrfs_error_unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)5702 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5703 u64 start, u64 end)
5704 {
5705 return unpin_extent_range(fs_info, start, end, false);
5706 }
5707
5708 /*
5709 * It used to be that old block groups would be left around forever.
5710 * Iterating over them would be enough to trim unused space. Since we
5711 * now automatically remove them, we also need to iterate over unallocated
5712 * space.
5713 *
5714 * We don't want a transaction for this since the discard may take a
5715 * substantial amount of time. We don't require that a transaction be
5716 * running, but we do need to take a running transaction into account
5717 * to ensure that we're not discarding chunks that were released or
5718 * allocated in the current transaction.
5719 *
5720 * Holding the chunks lock will prevent other threads from allocating
5721 * or releasing chunks, but it won't prevent a running transaction
5722 * from committing and releasing the memory that the pending chunks
5723 * list head uses. For that, we need to take a reference to the
5724 * transaction and hold the commit root sem. We only need to hold
5725 * it while performing the free space search since we have already
5726 * held back allocations.
5727 */
btrfs_trim_free_extents(struct btrfs_device * device,u64 * trimmed)5728 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5729 {
5730 u64 start = SZ_1M, len = 0, end = 0;
5731 int ret;
5732
5733 *trimmed = 0;
5734
5735 /* Discard not supported = nothing to do. */
5736 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
5737 return 0;
5738
5739 /* Not writable = nothing to do. */
5740 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5741 return 0;
5742
5743 /* No free space = nothing to do. */
5744 if (device->total_bytes <= device->bytes_used)
5745 return 0;
5746
5747 ret = 0;
5748
5749 while (1) {
5750 struct btrfs_fs_info *fs_info = device->fs_info;
5751 u64 bytes;
5752
5753 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5754 if (ret)
5755 break;
5756
5757 find_first_clear_extent_bit(&device->alloc_state, start,
5758 &start, &end,
5759 CHUNK_TRIMMED | CHUNK_ALLOCATED);
5760
5761 /* Check if there are any CHUNK_* bits left */
5762 if (start > device->total_bytes) {
5763 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5764 btrfs_warn_in_rcu(fs_info,
5765 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
5766 start, end - start + 1,
5767 rcu_str_deref(device->name),
5768 device->total_bytes);
5769 mutex_unlock(&fs_info->chunk_mutex);
5770 ret = 0;
5771 break;
5772 }
5773
5774 /* Ensure we skip the reserved area in the first 1M */
5775 start = max_t(u64, start, SZ_1M);
5776
5777 /*
5778 * If find_first_clear_extent_bit find a range that spans the
5779 * end of the device it will set end to -1, in this case it's up
5780 * to the caller to trim the value to the size of the device.
5781 */
5782 end = min(end, device->total_bytes - 1);
5783
5784 len = end - start + 1;
5785
5786 /* We didn't find any extents */
5787 if (!len) {
5788 mutex_unlock(&fs_info->chunk_mutex);
5789 ret = 0;
5790 break;
5791 }
5792
5793 ret = btrfs_issue_discard(device->bdev, start, len,
5794 &bytes);
5795 if (!ret)
5796 set_extent_bits(&device->alloc_state, start,
5797 start + bytes - 1,
5798 CHUNK_TRIMMED);
5799 mutex_unlock(&fs_info->chunk_mutex);
5800
5801 if (ret)
5802 break;
5803
5804 start += len;
5805 *trimmed += bytes;
5806
5807 if (fatal_signal_pending(current)) {
5808 ret = -ERESTARTSYS;
5809 break;
5810 }
5811
5812 cond_resched();
5813 }
5814
5815 return ret;
5816 }
5817
5818 /*
5819 * Trim the whole filesystem by:
5820 * 1) trimming the free space in each block group
5821 * 2) trimming the unallocated space on each device
5822 *
5823 * This will also continue trimming even if a block group or device encounters
5824 * an error. The return value will be the last error, or 0 if nothing bad
5825 * happens.
5826 */
btrfs_trim_fs(struct btrfs_fs_info * fs_info,struct fstrim_range * range)5827 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
5828 {
5829 struct btrfs_block_group *cache = NULL;
5830 struct btrfs_device *device;
5831 struct list_head *devices;
5832 u64 group_trimmed;
5833 u64 range_end = U64_MAX;
5834 u64 start;
5835 u64 end;
5836 u64 trimmed = 0;
5837 u64 bg_failed = 0;
5838 u64 dev_failed = 0;
5839 int bg_ret = 0;
5840 int dev_ret = 0;
5841 int ret = 0;
5842
5843 /*
5844 * Check range overflow if range->len is set.
5845 * The default range->len is U64_MAX.
5846 */
5847 if (range->len != U64_MAX &&
5848 check_add_overflow(range->start, range->len, &range_end))
5849 return -EINVAL;
5850
5851 cache = btrfs_lookup_first_block_group(fs_info, range->start);
5852 for (; cache; cache = btrfs_next_block_group(cache)) {
5853 if (cache->start >= range_end) {
5854 btrfs_put_block_group(cache);
5855 break;
5856 }
5857
5858 start = max(range->start, cache->start);
5859 end = min(range_end, cache->start + cache->length);
5860
5861 if (end - start >= range->minlen) {
5862 if (!btrfs_block_group_done(cache)) {
5863 ret = btrfs_cache_block_group(cache, 0);
5864 if (ret) {
5865 bg_failed++;
5866 bg_ret = ret;
5867 continue;
5868 }
5869 ret = btrfs_wait_block_group_cache_done(cache);
5870 if (ret) {
5871 bg_failed++;
5872 bg_ret = ret;
5873 continue;
5874 }
5875 }
5876 ret = btrfs_trim_block_group(cache,
5877 &group_trimmed,
5878 start,
5879 end,
5880 range->minlen);
5881
5882 trimmed += group_trimmed;
5883 if (ret) {
5884 bg_failed++;
5885 bg_ret = ret;
5886 continue;
5887 }
5888 }
5889 }
5890
5891 if (bg_failed)
5892 btrfs_warn(fs_info,
5893 "failed to trim %llu block group(s), last error %d",
5894 bg_failed, bg_ret);
5895 mutex_lock(&fs_info->fs_devices->device_list_mutex);
5896 devices = &fs_info->fs_devices->devices;
5897 list_for_each_entry(device, devices, dev_list) {
5898 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
5899 continue;
5900
5901 ret = btrfs_trim_free_extents(device, &group_trimmed);
5902 if (ret) {
5903 dev_failed++;
5904 dev_ret = ret;
5905 break;
5906 }
5907
5908 trimmed += group_trimmed;
5909 }
5910 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5911
5912 if (dev_failed)
5913 btrfs_warn(fs_info,
5914 "failed to trim %llu device(s), last error %d",
5915 dev_failed, dev_ret);
5916 range->len = trimmed;
5917 if (bg_ret)
5918 return bg_ret;
5919 return dev_ret;
5920 }
5921