1 //===- AArch64InstructionSelector.cpp ----------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the targeting of the InstructionSelector class for
10 /// AArch64.
11 /// \todo This should be generated by TableGen.
12 //===----------------------------------------------------------------------===//
13
14 #include "AArch64InstrInfo.h"
15 #include "AArch64MachineFunctionInfo.h"
16 #include "AArch64RegisterBankInfo.h"
17 #include "AArch64RegisterInfo.h"
18 #include "AArch64Subtarget.h"
19 #include "AArch64TargetMachine.h"
20 #include "MCTargetDesc/AArch64AddressingModes.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
23 #include "llvm/CodeGen/GlobalISel/InstructionSelectorImpl.h"
24 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
25 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
26 #include "llvm/CodeGen/GlobalISel/Utils.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/IntrinsicsAArch64.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38
39 #define DEBUG_TYPE "aarch64-isel"
40
41 using namespace llvm;
42
43 namespace {
44
45 #define GET_GLOBALISEL_PREDICATE_BITSET
46 #include "AArch64GenGlobalISel.inc"
47 #undef GET_GLOBALISEL_PREDICATE_BITSET
48
49 class AArch64InstructionSelector : public InstructionSelector {
50 public:
51 AArch64InstructionSelector(const AArch64TargetMachine &TM,
52 const AArch64Subtarget &STI,
53 const AArch64RegisterBankInfo &RBI);
54
55 bool select(MachineInstr &I) override;
getName()56 static const char *getName() { return DEBUG_TYPE; }
57
setupMF(MachineFunction & MF,GISelKnownBits & KB,CodeGenCoverage & CoverageInfo)58 void setupMF(MachineFunction &MF, GISelKnownBits &KB,
59 CodeGenCoverage &CoverageInfo) override {
60 InstructionSelector::setupMF(MF, KB, CoverageInfo);
61
62 // hasFnAttribute() is expensive to call on every BRCOND selection, so
63 // cache it here for each run of the selector.
64 ProduceNonFlagSettingCondBr =
65 !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening);
66 }
67
68 private:
69 /// tblgen-erated 'select' implementation, used as the initial selector for
70 /// the patterns that don't require complex C++.
71 bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const;
72
73 // A lowering phase that runs before any selection attempts.
74
75 void preISelLower(MachineInstr &I) const;
76
77 // An early selection function that runs before the selectImpl() call.
78 bool earlySelect(MachineInstr &I) const;
79
80 bool earlySelectSHL(MachineInstr &I, MachineRegisterInfo &MRI) const;
81
82 /// Eliminate same-sized cross-bank copies into stores before selectImpl().
83 void contractCrossBankCopyIntoStore(MachineInstr &I,
84 MachineRegisterInfo &MRI) const;
85
86 bool selectVaStartAAPCS(MachineInstr &I, MachineFunction &MF,
87 MachineRegisterInfo &MRI) const;
88 bool selectVaStartDarwin(MachineInstr &I, MachineFunction &MF,
89 MachineRegisterInfo &MRI) const;
90
91 bool selectCompareBranch(MachineInstr &I, MachineFunction &MF,
92 MachineRegisterInfo &MRI) const;
93
94 bool selectVectorASHR(MachineInstr &I, MachineRegisterInfo &MRI) const;
95 bool selectVectorSHL(MachineInstr &I, MachineRegisterInfo &MRI) const;
96
97 // Helper to generate an equivalent of scalar_to_vector into a new register,
98 // returned via 'Dst'.
99 MachineInstr *emitScalarToVector(unsigned EltSize,
100 const TargetRegisterClass *DstRC,
101 Register Scalar,
102 MachineIRBuilder &MIRBuilder) const;
103
104 /// Emit a lane insert into \p DstReg, or a new vector register if None is
105 /// provided.
106 ///
107 /// The lane inserted into is defined by \p LaneIdx. The vector source
108 /// register is given by \p SrcReg. The register containing the element is
109 /// given by \p EltReg.
110 MachineInstr *emitLaneInsert(Optional<Register> DstReg, Register SrcReg,
111 Register EltReg, unsigned LaneIdx,
112 const RegisterBank &RB,
113 MachineIRBuilder &MIRBuilder) const;
114 bool selectInsertElt(MachineInstr &I, MachineRegisterInfo &MRI) const;
115 bool selectBuildVector(MachineInstr &I, MachineRegisterInfo &MRI) const;
116 bool selectMergeValues(MachineInstr &I, MachineRegisterInfo &MRI) const;
117 bool selectUnmergeValues(MachineInstr &I, MachineRegisterInfo &MRI) const;
118
119 bool selectShuffleVector(MachineInstr &I, MachineRegisterInfo &MRI) const;
120 bool selectExtractElt(MachineInstr &I, MachineRegisterInfo &MRI) const;
121 bool selectConcatVectors(MachineInstr &I, MachineRegisterInfo &MRI) const;
122 bool selectSplitVectorUnmerge(MachineInstr &I,
123 MachineRegisterInfo &MRI) const;
124 bool selectIntrinsicWithSideEffects(MachineInstr &I,
125 MachineRegisterInfo &MRI) const;
126 bool selectIntrinsic(MachineInstr &I, MachineRegisterInfo &MRI) const;
127 bool selectVectorICmp(MachineInstr &I, MachineRegisterInfo &MRI) const;
128 bool selectIntrinsicTrunc(MachineInstr &I, MachineRegisterInfo &MRI) const;
129 bool selectIntrinsicRound(MachineInstr &I, MachineRegisterInfo &MRI) const;
130 bool selectJumpTable(MachineInstr &I, MachineRegisterInfo &MRI) const;
131 bool selectBrJT(MachineInstr &I, MachineRegisterInfo &MRI) const;
132 bool selectTLSGlobalValue(MachineInstr &I, MachineRegisterInfo &MRI) const;
133
134 unsigned emitConstantPoolEntry(Constant *CPVal, MachineFunction &MF) const;
135 MachineInstr *emitLoadFromConstantPool(Constant *CPVal,
136 MachineIRBuilder &MIRBuilder) const;
137
138 // Emit a vector concat operation.
139 MachineInstr *emitVectorConcat(Optional<Register> Dst, Register Op1,
140 Register Op2,
141 MachineIRBuilder &MIRBuilder) const;
142 MachineInstr *emitIntegerCompare(MachineOperand &LHS, MachineOperand &RHS,
143 MachineOperand &Predicate,
144 MachineIRBuilder &MIRBuilder) const;
145 MachineInstr *emitADD(Register DefReg, MachineOperand &LHS, MachineOperand &RHS,
146 MachineIRBuilder &MIRBuilder) const;
147 MachineInstr *emitCMN(MachineOperand &LHS, MachineOperand &RHS,
148 MachineIRBuilder &MIRBuilder) const;
149 MachineInstr *emitTST(const Register &LHS, const Register &RHS,
150 MachineIRBuilder &MIRBuilder) const;
151 MachineInstr *emitExtractVectorElt(Optional<Register> DstReg,
152 const RegisterBank &DstRB, LLT ScalarTy,
153 Register VecReg, unsigned LaneIdx,
154 MachineIRBuilder &MIRBuilder) const;
155
156 /// Helper function for selecting G_FCONSTANT. If the G_FCONSTANT can be
157 /// materialized using a FMOV instruction, then update MI and return it.
158 /// Otherwise, do nothing and return a nullptr.
159 MachineInstr *emitFMovForFConstant(MachineInstr &MI,
160 MachineRegisterInfo &MRI) const;
161
162 /// Emit a CSet for a compare.
163 MachineInstr *emitCSetForICMP(Register DefReg, unsigned Pred,
164 MachineIRBuilder &MIRBuilder) const;
165
166 // Equivalent to the i32shift_a and friends from AArch64InstrInfo.td.
167 // We use these manually instead of using the importer since it doesn't
168 // support SDNodeXForm.
169 ComplexRendererFns selectShiftA_32(const MachineOperand &Root) const;
170 ComplexRendererFns selectShiftB_32(const MachineOperand &Root) const;
171 ComplexRendererFns selectShiftA_64(const MachineOperand &Root) const;
172 ComplexRendererFns selectShiftB_64(const MachineOperand &Root) const;
173
174 ComplexRendererFns select12BitValueWithLeftShift(uint64_t Immed) const;
175 ComplexRendererFns selectArithImmed(MachineOperand &Root) const;
176 ComplexRendererFns selectNegArithImmed(MachineOperand &Root) const;
177
178 ComplexRendererFns selectAddrModeUnscaled(MachineOperand &Root,
179 unsigned Size) const;
180
selectAddrModeUnscaled8(MachineOperand & Root) const181 ComplexRendererFns selectAddrModeUnscaled8(MachineOperand &Root) const {
182 return selectAddrModeUnscaled(Root, 1);
183 }
selectAddrModeUnscaled16(MachineOperand & Root) const184 ComplexRendererFns selectAddrModeUnscaled16(MachineOperand &Root) const {
185 return selectAddrModeUnscaled(Root, 2);
186 }
selectAddrModeUnscaled32(MachineOperand & Root) const187 ComplexRendererFns selectAddrModeUnscaled32(MachineOperand &Root) const {
188 return selectAddrModeUnscaled(Root, 4);
189 }
selectAddrModeUnscaled64(MachineOperand & Root) const190 ComplexRendererFns selectAddrModeUnscaled64(MachineOperand &Root) const {
191 return selectAddrModeUnscaled(Root, 8);
192 }
selectAddrModeUnscaled128(MachineOperand & Root) const193 ComplexRendererFns selectAddrModeUnscaled128(MachineOperand &Root) const {
194 return selectAddrModeUnscaled(Root, 16);
195 }
196
197 ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root,
198 unsigned Size) const;
199 template <int Width>
selectAddrModeIndexed(MachineOperand & Root) const200 ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root) const {
201 return selectAddrModeIndexed(Root, Width / 8);
202 }
203
204 bool isWorthFoldingIntoExtendedReg(MachineInstr &MI,
205 const MachineRegisterInfo &MRI) const;
206 ComplexRendererFns
207 selectAddrModeShiftedExtendXReg(MachineOperand &Root,
208 unsigned SizeInBytes) const;
209
210 /// Returns a \p ComplexRendererFns which contains a base, offset, and whether
211 /// or not a shift + extend should be folded into an addressing mode. Returns
212 /// None when this is not profitable or possible.
213 ComplexRendererFns
214 selectExtendedSHL(MachineOperand &Root, MachineOperand &Base,
215 MachineOperand &Offset, unsigned SizeInBytes,
216 bool WantsExt) const;
217 ComplexRendererFns selectAddrModeRegisterOffset(MachineOperand &Root) const;
218 ComplexRendererFns selectAddrModeXRO(MachineOperand &Root,
219 unsigned SizeInBytes) const;
220 template <int Width>
selectAddrModeXRO(MachineOperand & Root) const221 ComplexRendererFns selectAddrModeXRO(MachineOperand &Root) const {
222 return selectAddrModeXRO(Root, Width / 8);
223 }
224
225 ComplexRendererFns selectAddrModeWRO(MachineOperand &Root,
226 unsigned SizeInBytes) const;
227 template <int Width>
selectAddrModeWRO(MachineOperand & Root) const228 ComplexRendererFns selectAddrModeWRO(MachineOperand &Root) const {
229 return selectAddrModeWRO(Root, Width / 8);
230 }
231
232 ComplexRendererFns selectShiftedRegister(MachineOperand &Root) const;
233
selectArithShiftedRegister(MachineOperand & Root) const234 ComplexRendererFns selectArithShiftedRegister(MachineOperand &Root) const {
235 return selectShiftedRegister(Root);
236 }
237
selectLogicalShiftedRegister(MachineOperand & Root) const238 ComplexRendererFns selectLogicalShiftedRegister(MachineOperand &Root) const {
239 // TODO: selectShiftedRegister should allow for rotates on logical shifts.
240 // For now, make them the same. The only difference between the two is that
241 // logical shifts are allowed to fold in rotates. Otherwise, these are
242 // functionally the same.
243 return selectShiftedRegister(Root);
244 }
245
246 /// Given an extend instruction, determine the correct shift-extend type for
247 /// that instruction.
248 ///
249 /// If the instruction is going to be used in a load or store, pass
250 /// \p IsLoadStore = true.
251 AArch64_AM::ShiftExtendType
252 getExtendTypeForInst(MachineInstr &MI, MachineRegisterInfo &MRI,
253 bool IsLoadStore = false) const;
254
255 /// Instructions that accept extend modifiers like UXTW expect the register
256 /// being extended to be a GPR32. Narrow ExtReg to a 32-bit register using a
257 /// subregister copy if necessary. Return either ExtReg, or the result of the
258 /// new copy.
259 Register narrowExtendRegIfNeeded(Register ExtReg,
260 MachineIRBuilder &MIB) const;
261 ComplexRendererFns selectArithExtendedRegister(MachineOperand &Root) const;
262
263 void renderTruncImm(MachineInstrBuilder &MIB, const MachineInstr &MI,
264 int OpIdx = -1) const;
265 void renderLogicalImm32(MachineInstrBuilder &MIB, const MachineInstr &I,
266 int OpIdx = -1) const;
267 void renderLogicalImm64(MachineInstrBuilder &MIB, const MachineInstr &I,
268 int OpIdx = -1) const;
269
270 // Materialize a GlobalValue or BlockAddress using a movz+movk sequence.
271 void materializeLargeCMVal(MachineInstr &I, const Value *V,
272 unsigned OpFlags) const;
273
274 // Optimization methods.
275 bool tryOptVectorShuffle(MachineInstr &I) const;
276 bool tryOptVectorDup(MachineInstr &MI) const;
277 bool tryOptSelect(MachineInstr &MI) const;
278 MachineInstr *tryFoldIntegerCompare(MachineOperand &LHS, MachineOperand &RHS,
279 MachineOperand &Predicate,
280 MachineIRBuilder &MIRBuilder) const;
281
282 /// Return true if \p MI is a load or store of \p NumBytes bytes.
283 bool isLoadStoreOfNumBytes(const MachineInstr &MI, unsigned NumBytes) const;
284
285 /// Returns true if \p MI is guaranteed to have the high-half of a 64-bit
286 /// register zeroed out. In other words, the result of MI has been explicitly
287 /// zero extended.
288 bool isDef32(const MachineInstr &MI) const;
289
290 const AArch64TargetMachine &TM;
291 const AArch64Subtarget &STI;
292 const AArch64InstrInfo &TII;
293 const AArch64RegisterInfo &TRI;
294 const AArch64RegisterBankInfo &RBI;
295
296 bool ProduceNonFlagSettingCondBr = false;
297
298 #define GET_GLOBALISEL_PREDICATES_DECL
299 #include "AArch64GenGlobalISel.inc"
300 #undef GET_GLOBALISEL_PREDICATES_DECL
301
302 // We declare the temporaries used by selectImpl() in the class to minimize the
303 // cost of constructing placeholder values.
304 #define GET_GLOBALISEL_TEMPORARIES_DECL
305 #include "AArch64GenGlobalISel.inc"
306 #undef GET_GLOBALISEL_TEMPORARIES_DECL
307 };
308
309 } // end anonymous namespace
310
311 #define GET_GLOBALISEL_IMPL
312 #include "AArch64GenGlobalISel.inc"
313 #undef GET_GLOBALISEL_IMPL
314
AArch64InstructionSelector(const AArch64TargetMachine & TM,const AArch64Subtarget & STI,const AArch64RegisterBankInfo & RBI)315 AArch64InstructionSelector::AArch64InstructionSelector(
316 const AArch64TargetMachine &TM, const AArch64Subtarget &STI,
317 const AArch64RegisterBankInfo &RBI)
318 : InstructionSelector(), TM(TM), STI(STI), TII(*STI.getInstrInfo()),
319 TRI(*STI.getRegisterInfo()), RBI(RBI),
320 #define GET_GLOBALISEL_PREDICATES_INIT
321 #include "AArch64GenGlobalISel.inc"
322 #undef GET_GLOBALISEL_PREDICATES_INIT
323 #define GET_GLOBALISEL_TEMPORARIES_INIT
324 #include "AArch64GenGlobalISel.inc"
325 #undef GET_GLOBALISEL_TEMPORARIES_INIT
326 {
327 }
328
329 // FIXME: This should be target-independent, inferred from the types declared
330 // for each class in the bank.
331 static const TargetRegisterClass *
getRegClassForTypeOnBank(LLT Ty,const RegisterBank & RB,const RegisterBankInfo & RBI,bool GetAllRegSet=false)332 getRegClassForTypeOnBank(LLT Ty, const RegisterBank &RB,
333 const RegisterBankInfo &RBI,
334 bool GetAllRegSet = false) {
335 if (RB.getID() == AArch64::GPRRegBankID) {
336 if (Ty.getSizeInBits() <= 32)
337 return GetAllRegSet ? &AArch64::GPR32allRegClass
338 : &AArch64::GPR32RegClass;
339 if (Ty.getSizeInBits() == 64)
340 return GetAllRegSet ? &AArch64::GPR64allRegClass
341 : &AArch64::GPR64RegClass;
342 return nullptr;
343 }
344
345 if (RB.getID() == AArch64::FPRRegBankID) {
346 if (Ty.getSizeInBits() <= 16)
347 return &AArch64::FPR16RegClass;
348 if (Ty.getSizeInBits() == 32)
349 return &AArch64::FPR32RegClass;
350 if (Ty.getSizeInBits() == 64)
351 return &AArch64::FPR64RegClass;
352 if (Ty.getSizeInBits() == 128)
353 return &AArch64::FPR128RegClass;
354 return nullptr;
355 }
356
357 return nullptr;
358 }
359
360 /// Given a register bank, and size in bits, return the smallest register class
361 /// that can represent that combination.
362 static const TargetRegisterClass *
getMinClassForRegBank(const RegisterBank & RB,unsigned SizeInBits,bool GetAllRegSet=false)363 getMinClassForRegBank(const RegisterBank &RB, unsigned SizeInBits,
364 bool GetAllRegSet = false) {
365 unsigned RegBankID = RB.getID();
366
367 if (RegBankID == AArch64::GPRRegBankID) {
368 if (SizeInBits <= 32)
369 return GetAllRegSet ? &AArch64::GPR32allRegClass
370 : &AArch64::GPR32RegClass;
371 if (SizeInBits == 64)
372 return GetAllRegSet ? &AArch64::GPR64allRegClass
373 : &AArch64::GPR64RegClass;
374 }
375
376 if (RegBankID == AArch64::FPRRegBankID) {
377 switch (SizeInBits) {
378 default:
379 return nullptr;
380 case 8:
381 return &AArch64::FPR8RegClass;
382 case 16:
383 return &AArch64::FPR16RegClass;
384 case 32:
385 return &AArch64::FPR32RegClass;
386 case 64:
387 return &AArch64::FPR64RegClass;
388 case 128:
389 return &AArch64::FPR128RegClass;
390 }
391 }
392
393 return nullptr;
394 }
395
396 /// Returns the correct subregister to use for a given register class.
getSubRegForClass(const TargetRegisterClass * RC,const TargetRegisterInfo & TRI,unsigned & SubReg)397 static bool getSubRegForClass(const TargetRegisterClass *RC,
398 const TargetRegisterInfo &TRI, unsigned &SubReg) {
399 switch (TRI.getRegSizeInBits(*RC)) {
400 case 8:
401 SubReg = AArch64::bsub;
402 break;
403 case 16:
404 SubReg = AArch64::hsub;
405 break;
406 case 32:
407 if (RC != &AArch64::FPR32RegClass)
408 SubReg = AArch64::sub_32;
409 else
410 SubReg = AArch64::ssub;
411 break;
412 case 64:
413 SubReg = AArch64::dsub;
414 break;
415 default:
416 LLVM_DEBUG(
417 dbgs() << "Couldn't find appropriate subregister for register class.");
418 return false;
419 }
420
421 return true;
422 }
423
424 /// Check whether \p I is a currently unsupported binary operation:
425 /// - it has an unsized type
426 /// - an operand is not a vreg
427 /// - all operands are not in the same bank
428 /// These are checks that should someday live in the verifier, but right now,
429 /// these are mostly limitations of the aarch64 selector.
unsupportedBinOp(const MachineInstr & I,const AArch64RegisterBankInfo & RBI,const MachineRegisterInfo & MRI,const AArch64RegisterInfo & TRI)430 static bool unsupportedBinOp(const MachineInstr &I,
431 const AArch64RegisterBankInfo &RBI,
432 const MachineRegisterInfo &MRI,
433 const AArch64RegisterInfo &TRI) {
434 LLT Ty = MRI.getType(I.getOperand(0).getReg());
435 if (!Ty.isValid()) {
436 LLVM_DEBUG(dbgs() << "Generic binop register should be typed\n");
437 return true;
438 }
439
440 const RegisterBank *PrevOpBank = nullptr;
441 for (auto &MO : I.operands()) {
442 // FIXME: Support non-register operands.
443 if (!MO.isReg()) {
444 LLVM_DEBUG(dbgs() << "Generic inst non-reg operands are unsupported\n");
445 return true;
446 }
447
448 // FIXME: Can generic operations have physical registers operands? If
449 // so, this will need to be taught about that, and we'll need to get the
450 // bank out of the minimal class for the register.
451 // Either way, this needs to be documented (and possibly verified).
452 if (!Register::isVirtualRegister(MO.getReg())) {
453 LLVM_DEBUG(dbgs() << "Generic inst has physical register operand\n");
454 return true;
455 }
456
457 const RegisterBank *OpBank = RBI.getRegBank(MO.getReg(), MRI, TRI);
458 if (!OpBank) {
459 LLVM_DEBUG(dbgs() << "Generic register has no bank or class\n");
460 return true;
461 }
462
463 if (PrevOpBank && OpBank != PrevOpBank) {
464 LLVM_DEBUG(dbgs() << "Generic inst operands have different banks\n");
465 return true;
466 }
467 PrevOpBank = OpBank;
468 }
469 return false;
470 }
471
472 /// Select the AArch64 opcode for the basic binary operation \p GenericOpc
473 /// (such as G_OR or G_SDIV), appropriate for the register bank \p RegBankID
474 /// and of size \p OpSize.
475 /// \returns \p GenericOpc if the combination is unsupported.
selectBinaryOp(unsigned GenericOpc,unsigned RegBankID,unsigned OpSize)476 static unsigned selectBinaryOp(unsigned GenericOpc, unsigned RegBankID,
477 unsigned OpSize) {
478 switch (RegBankID) {
479 case AArch64::GPRRegBankID:
480 if (OpSize == 32) {
481 switch (GenericOpc) {
482 case TargetOpcode::G_SHL:
483 return AArch64::LSLVWr;
484 case TargetOpcode::G_LSHR:
485 return AArch64::LSRVWr;
486 case TargetOpcode::G_ASHR:
487 return AArch64::ASRVWr;
488 default:
489 return GenericOpc;
490 }
491 } else if (OpSize == 64) {
492 switch (GenericOpc) {
493 case TargetOpcode::G_PTR_ADD:
494 return AArch64::ADDXrr;
495 case TargetOpcode::G_SHL:
496 return AArch64::LSLVXr;
497 case TargetOpcode::G_LSHR:
498 return AArch64::LSRVXr;
499 case TargetOpcode::G_ASHR:
500 return AArch64::ASRVXr;
501 default:
502 return GenericOpc;
503 }
504 }
505 break;
506 case AArch64::FPRRegBankID:
507 switch (OpSize) {
508 case 32:
509 switch (GenericOpc) {
510 case TargetOpcode::G_FADD:
511 return AArch64::FADDSrr;
512 case TargetOpcode::G_FSUB:
513 return AArch64::FSUBSrr;
514 case TargetOpcode::G_FMUL:
515 return AArch64::FMULSrr;
516 case TargetOpcode::G_FDIV:
517 return AArch64::FDIVSrr;
518 default:
519 return GenericOpc;
520 }
521 case 64:
522 switch (GenericOpc) {
523 case TargetOpcode::G_FADD:
524 return AArch64::FADDDrr;
525 case TargetOpcode::G_FSUB:
526 return AArch64::FSUBDrr;
527 case TargetOpcode::G_FMUL:
528 return AArch64::FMULDrr;
529 case TargetOpcode::G_FDIV:
530 return AArch64::FDIVDrr;
531 case TargetOpcode::G_OR:
532 return AArch64::ORRv8i8;
533 default:
534 return GenericOpc;
535 }
536 }
537 break;
538 }
539 return GenericOpc;
540 }
541
542 /// Select the AArch64 opcode for the G_LOAD or G_STORE operation \p GenericOpc,
543 /// appropriate for the (value) register bank \p RegBankID and of memory access
544 /// size \p OpSize. This returns the variant with the base+unsigned-immediate
545 /// addressing mode (e.g., LDRXui).
546 /// \returns \p GenericOpc if the combination is unsupported.
selectLoadStoreUIOp(unsigned GenericOpc,unsigned RegBankID,unsigned OpSize)547 static unsigned selectLoadStoreUIOp(unsigned GenericOpc, unsigned RegBankID,
548 unsigned OpSize) {
549 const bool isStore = GenericOpc == TargetOpcode::G_STORE;
550 switch (RegBankID) {
551 case AArch64::GPRRegBankID:
552 switch (OpSize) {
553 case 8:
554 return isStore ? AArch64::STRBBui : AArch64::LDRBBui;
555 case 16:
556 return isStore ? AArch64::STRHHui : AArch64::LDRHHui;
557 case 32:
558 return isStore ? AArch64::STRWui : AArch64::LDRWui;
559 case 64:
560 return isStore ? AArch64::STRXui : AArch64::LDRXui;
561 }
562 break;
563 case AArch64::FPRRegBankID:
564 switch (OpSize) {
565 case 8:
566 return isStore ? AArch64::STRBui : AArch64::LDRBui;
567 case 16:
568 return isStore ? AArch64::STRHui : AArch64::LDRHui;
569 case 32:
570 return isStore ? AArch64::STRSui : AArch64::LDRSui;
571 case 64:
572 return isStore ? AArch64::STRDui : AArch64::LDRDui;
573 }
574 break;
575 }
576 return GenericOpc;
577 }
578
579 #ifndef NDEBUG
580 /// Helper function that verifies that we have a valid copy at the end of
581 /// selectCopy. Verifies that the source and dest have the expected sizes and
582 /// then returns true.
isValidCopy(const MachineInstr & I,const RegisterBank & DstBank,const MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI,const RegisterBankInfo & RBI)583 static bool isValidCopy(const MachineInstr &I, const RegisterBank &DstBank,
584 const MachineRegisterInfo &MRI,
585 const TargetRegisterInfo &TRI,
586 const RegisterBankInfo &RBI) {
587 const Register DstReg = I.getOperand(0).getReg();
588 const Register SrcReg = I.getOperand(1).getReg();
589 const unsigned DstSize = RBI.getSizeInBits(DstReg, MRI, TRI);
590 const unsigned SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI);
591
592 // Make sure the size of the source and dest line up.
593 assert(
594 (DstSize == SrcSize ||
595 // Copies are a mean to setup initial types, the number of
596 // bits may not exactly match.
597 (Register::isPhysicalRegister(SrcReg) && DstSize <= SrcSize) ||
598 // Copies are a mean to copy bits around, as long as we are
599 // on the same register class, that's fine. Otherwise, that
600 // means we need some SUBREG_TO_REG or AND & co.
601 (((DstSize + 31) / 32 == (SrcSize + 31) / 32) && DstSize > SrcSize)) &&
602 "Copy with different width?!");
603
604 // Check the size of the destination.
605 assert((DstSize <= 64 || DstBank.getID() == AArch64::FPRRegBankID) &&
606 "GPRs cannot get more than 64-bit width values");
607
608 return true;
609 }
610 #endif
611
612 /// Helper function for selectCopy. Inserts a subregister copy from
613 /// \p *From to \p *To, linking it up to \p I.
614 ///
615 /// e.g, given I = "Dst = COPY SrcReg", we'll transform that into
616 ///
617 /// CopyReg (From class) = COPY SrcReg
618 /// SubRegCopy (To class) = COPY CopyReg:SubReg
619 /// Dst = COPY SubRegCopy
selectSubregisterCopy(MachineInstr & I,MachineRegisterInfo & MRI,const RegisterBankInfo & RBI,Register SrcReg,const TargetRegisterClass * From,const TargetRegisterClass * To,unsigned SubReg)620 static bool selectSubregisterCopy(MachineInstr &I, MachineRegisterInfo &MRI,
621 const RegisterBankInfo &RBI, Register SrcReg,
622 const TargetRegisterClass *From,
623 const TargetRegisterClass *To,
624 unsigned SubReg) {
625 MachineIRBuilder MIB(I);
626 auto Copy = MIB.buildCopy({From}, {SrcReg});
627 auto SubRegCopy = MIB.buildInstr(TargetOpcode::COPY, {To}, {})
628 .addReg(Copy.getReg(0), 0, SubReg);
629 MachineOperand &RegOp = I.getOperand(1);
630 RegOp.setReg(SubRegCopy.getReg(0));
631
632 // It's possible that the destination register won't be constrained. Make
633 // sure that happens.
634 if (!Register::isPhysicalRegister(I.getOperand(0).getReg()))
635 RBI.constrainGenericRegister(I.getOperand(0).getReg(), *To, MRI);
636
637 return true;
638 }
639
640 /// Helper function to get the source and destination register classes for a
641 /// copy. Returns a std::pair containing the source register class for the
642 /// copy, and the destination register class for the copy. If a register class
643 /// cannot be determined, then it will be nullptr.
644 static std::pair<const TargetRegisterClass *, const TargetRegisterClass *>
getRegClassesForCopy(MachineInstr & I,const TargetInstrInfo & TII,MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI,const RegisterBankInfo & RBI)645 getRegClassesForCopy(MachineInstr &I, const TargetInstrInfo &TII,
646 MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
647 const RegisterBankInfo &RBI) {
648 Register DstReg = I.getOperand(0).getReg();
649 Register SrcReg = I.getOperand(1).getReg();
650 const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI);
651 const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI);
652 unsigned DstSize = RBI.getSizeInBits(DstReg, MRI, TRI);
653 unsigned SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI);
654
655 // Special casing for cross-bank copies of s1s. We can technically represent
656 // a 1-bit value with any size of register. The minimum size for a GPR is 32
657 // bits. So, we need to put the FPR on 32 bits as well.
658 //
659 // FIXME: I'm not sure if this case holds true outside of copies. If it does,
660 // then we can pull it into the helpers that get the appropriate class for a
661 // register bank. Or make a new helper that carries along some constraint
662 // information.
663 if (SrcRegBank != DstRegBank && (DstSize == 1 && SrcSize == 1))
664 SrcSize = DstSize = 32;
665
666 return {getMinClassForRegBank(SrcRegBank, SrcSize, true),
667 getMinClassForRegBank(DstRegBank, DstSize, true)};
668 }
669
selectCopy(MachineInstr & I,const TargetInstrInfo & TII,MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI,const RegisterBankInfo & RBI)670 static bool selectCopy(MachineInstr &I, const TargetInstrInfo &TII,
671 MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
672 const RegisterBankInfo &RBI) {
673
674 Register DstReg = I.getOperand(0).getReg();
675 Register SrcReg = I.getOperand(1).getReg();
676 const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI);
677 const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI);
678
679 // Find the correct register classes for the source and destination registers.
680 const TargetRegisterClass *SrcRC;
681 const TargetRegisterClass *DstRC;
682 std::tie(SrcRC, DstRC) = getRegClassesForCopy(I, TII, MRI, TRI, RBI);
683
684 if (!DstRC) {
685 LLVM_DEBUG(dbgs() << "Unexpected dest size "
686 << RBI.getSizeInBits(DstReg, MRI, TRI) << '\n');
687 return false;
688 }
689
690 // A couple helpers below, for making sure that the copy we produce is valid.
691
692 // Set to true if we insert a SUBREG_TO_REG. If we do this, then we don't want
693 // to verify that the src and dst are the same size, since that's handled by
694 // the SUBREG_TO_REG.
695 bool KnownValid = false;
696
697 // Returns true, or asserts if something we don't expect happens. Instead of
698 // returning true, we return isValidCopy() to ensure that we verify the
699 // result.
700 auto CheckCopy = [&]() {
701 // If we have a bitcast or something, we can't have physical registers.
702 assert((I.isCopy() ||
703 (!Register::isPhysicalRegister(I.getOperand(0).getReg()) &&
704 !Register::isPhysicalRegister(I.getOperand(1).getReg()))) &&
705 "No phys reg on generic operator!");
706 assert(KnownValid || isValidCopy(I, DstRegBank, MRI, TRI, RBI));
707 (void)KnownValid;
708 return true;
709 };
710
711 // Is this a copy? If so, then we may need to insert a subregister copy, or
712 // a SUBREG_TO_REG.
713 if (I.isCopy()) {
714 // Yes. Check if there's anything to fix up.
715 if (!SrcRC) {
716 LLVM_DEBUG(dbgs() << "Couldn't determine source register class\n");
717 return false;
718 }
719
720 unsigned SrcSize = TRI.getRegSizeInBits(*SrcRC);
721 unsigned DstSize = TRI.getRegSizeInBits(*DstRC);
722
723 // If we're doing a cross-bank copy on different-sized registers, we need
724 // to do a bit more work.
725 if (SrcSize > DstSize) {
726 // We're doing a cross-bank copy into a smaller register. We need a
727 // subregister copy. First, get a register class that's on the same bank
728 // as the destination, but the same size as the source.
729 const TargetRegisterClass *SubregRC =
730 getMinClassForRegBank(DstRegBank, SrcSize, true);
731 assert(SubregRC && "Didn't get a register class for subreg?");
732
733 // Get the appropriate subregister for the destination.
734 unsigned SubReg = 0;
735 if (!getSubRegForClass(DstRC, TRI, SubReg)) {
736 LLVM_DEBUG(dbgs() << "Couldn't determine subregister for copy.\n");
737 return false;
738 }
739
740 // Now, insert a subregister copy using the new register class.
741 selectSubregisterCopy(I, MRI, RBI, SrcReg, SubregRC, DstRC, SubReg);
742 return CheckCopy();
743 }
744
745 // Is this a cross-bank copy?
746 if (DstRegBank.getID() != SrcRegBank.getID()) {
747 if (DstRegBank.getID() == AArch64::GPRRegBankID && DstSize == 32 &&
748 SrcSize == 16) {
749 // Special case for FPR16 to GPR32.
750 // FIXME: This can probably be generalized like the above case.
751 Register PromoteReg =
752 MRI.createVirtualRegister(&AArch64::FPR32RegClass);
753 BuildMI(*I.getParent(), I, I.getDebugLoc(),
754 TII.get(AArch64::SUBREG_TO_REG), PromoteReg)
755 .addImm(0)
756 .addUse(SrcReg)
757 .addImm(AArch64::hsub);
758 MachineOperand &RegOp = I.getOperand(1);
759 RegOp.setReg(PromoteReg);
760
761 // Promise that the copy is implicitly validated by the SUBREG_TO_REG.
762 KnownValid = true;
763 }
764 }
765
766 // If the destination is a physical register, then there's nothing to
767 // change, so we're done.
768 if (Register::isPhysicalRegister(DstReg))
769 return CheckCopy();
770 }
771
772 // No need to constrain SrcReg. It will get constrained when we hit another
773 // of its use or its defs. Copies do not have constraints.
774 if (!RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
775 LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
776 << " operand\n");
777 return false;
778 }
779 I.setDesc(TII.get(AArch64::COPY));
780 return CheckCopy();
781 }
782
selectFPConvOpc(unsigned GenericOpc,LLT DstTy,LLT SrcTy)783 static unsigned selectFPConvOpc(unsigned GenericOpc, LLT DstTy, LLT SrcTy) {
784 if (!DstTy.isScalar() || !SrcTy.isScalar())
785 return GenericOpc;
786
787 const unsigned DstSize = DstTy.getSizeInBits();
788 const unsigned SrcSize = SrcTy.getSizeInBits();
789
790 switch (DstSize) {
791 case 32:
792 switch (SrcSize) {
793 case 32:
794 switch (GenericOpc) {
795 case TargetOpcode::G_SITOFP:
796 return AArch64::SCVTFUWSri;
797 case TargetOpcode::G_UITOFP:
798 return AArch64::UCVTFUWSri;
799 case TargetOpcode::G_FPTOSI:
800 return AArch64::FCVTZSUWSr;
801 case TargetOpcode::G_FPTOUI:
802 return AArch64::FCVTZUUWSr;
803 default:
804 return GenericOpc;
805 }
806 case 64:
807 switch (GenericOpc) {
808 case TargetOpcode::G_SITOFP:
809 return AArch64::SCVTFUXSri;
810 case TargetOpcode::G_UITOFP:
811 return AArch64::UCVTFUXSri;
812 case TargetOpcode::G_FPTOSI:
813 return AArch64::FCVTZSUWDr;
814 case TargetOpcode::G_FPTOUI:
815 return AArch64::FCVTZUUWDr;
816 default:
817 return GenericOpc;
818 }
819 default:
820 return GenericOpc;
821 }
822 case 64:
823 switch (SrcSize) {
824 case 32:
825 switch (GenericOpc) {
826 case TargetOpcode::G_SITOFP:
827 return AArch64::SCVTFUWDri;
828 case TargetOpcode::G_UITOFP:
829 return AArch64::UCVTFUWDri;
830 case TargetOpcode::G_FPTOSI:
831 return AArch64::FCVTZSUXSr;
832 case TargetOpcode::G_FPTOUI:
833 return AArch64::FCVTZUUXSr;
834 default:
835 return GenericOpc;
836 }
837 case 64:
838 switch (GenericOpc) {
839 case TargetOpcode::G_SITOFP:
840 return AArch64::SCVTFUXDri;
841 case TargetOpcode::G_UITOFP:
842 return AArch64::UCVTFUXDri;
843 case TargetOpcode::G_FPTOSI:
844 return AArch64::FCVTZSUXDr;
845 case TargetOpcode::G_FPTOUI:
846 return AArch64::FCVTZUUXDr;
847 default:
848 return GenericOpc;
849 }
850 default:
851 return GenericOpc;
852 }
853 default:
854 return GenericOpc;
855 };
856 return GenericOpc;
857 }
858
selectSelectOpc(MachineInstr & I,MachineRegisterInfo & MRI,const RegisterBankInfo & RBI)859 static unsigned selectSelectOpc(MachineInstr &I, MachineRegisterInfo &MRI,
860 const RegisterBankInfo &RBI) {
861 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
862 bool IsFP = (RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI)->getID() !=
863 AArch64::GPRRegBankID);
864 LLT Ty = MRI.getType(I.getOperand(0).getReg());
865 if (Ty == LLT::scalar(32))
866 return IsFP ? AArch64::FCSELSrrr : AArch64::CSELWr;
867 else if (Ty == LLT::scalar(64) || Ty == LLT::pointer(0, 64))
868 return IsFP ? AArch64::FCSELDrrr : AArch64::CSELXr;
869 return 0;
870 }
871
872 /// Helper function to select the opcode for a G_FCMP.
selectFCMPOpc(MachineInstr & I,MachineRegisterInfo & MRI)873 static unsigned selectFCMPOpc(MachineInstr &I, MachineRegisterInfo &MRI) {
874 // If this is a compare against +0.0, then we don't have to explicitly
875 // materialize a constant.
876 const ConstantFP *FPImm = getConstantFPVRegVal(I.getOperand(3).getReg(), MRI);
877 bool ShouldUseImm = FPImm && (FPImm->isZero() && !FPImm->isNegative());
878 unsigned OpSize = MRI.getType(I.getOperand(2).getReg()).getSizeInBits();
879 if (OpSize != 32 && OpSize != 64)
880 return 0;
881 unsigned CmpOpcTbl[2][2] = {{AArch64::FCMPSrr, AArch64::FCMPDrr},
882 {AArch64::FCMPSri, AArch64::FCMPDri}};
883 return CmpOpcTbl[ShouldUseImm][OpSize == 64];
884 }
885
886 /// Returns true if \p P is an unsigned integer comparison predicate.
isUnsignedICMPPred(const CmpInst::Predicate P)887 static bool isUnsignedICMPPred(const CmpInst::Predicate P) {
888 switch (P) {
889 default:
890 return false;
891 case CmpInst::ICMP_UGT:
892 case CmpInst::ICMP_UGE:
893 case CmpInst::ICMP_ULT:
894 case CmpInst::ICMP_ULE:
895 return true;
896 }
897 }
898
changeICMPPredToAArch64CC(CmpInst::Predicate P)899 static AArch64CC::CondCode changeICMPPredToAArch64CC(CmpInst::Predicate P) {
900 switch (P) {
901 default:
902 llvm_unreachable("Unknown condition code!");
903 case CmpInst::ICMP_NE:
904 return AArch64CC::NE;
905 case CmpInst::ICMP_EQ:
906 return AArch64CC::EQ;
907 case CmpInst::ICMP_SGT:
908 return AArch64CC::GT;
909 case CmpInst::ICMP_SGE:
910 return AArch64CC::GE;
911 case CmpInst::ICMP_SLT:
912 return AArch64CC::LT;
913 case CmpInst::ICMP_SLE:
914 return AArch64CC::LE;
915 case CmpInst::ICMP_UGT:
916 return AArch64CC::HI;
917 case CmpInst::ICMP_UGE:
918 return AArch64CC::HS;
919 case CmpInst::ICMP_ULT:
920 return AArch64CC::LO;
921 case CmpInst::ICMP_ULE:
922 return AArch64CC::LS;
923 }
924 }
925
changeFCMPPredToAArch64CC(CmpInst::Predicate P,AArch64CC::CondCode & CondCode,AArch64CC::CondCode & CondCode2)926 static void changeFCMPPredToAArch64CC(CmpInst::Predicate P,
927 AArch64CC::CondCode &CondCode,
928 AArch64CC::CondCode &CondCode2) {
929 CondCode2 = AArch64CC::AL;
930 switch (P) {
931 default:
932 llvm_unreachable("Unknown FP condition!");
933 case CmpInst::FCMP_OEQ:
934 CondCode = AArch64CC::EQ;
935 break;
936 case CmpInst::FCMP_OGT:
937 CondCode = AArch64CC::GT;
938 break;
939 case CmpInst::FCMP_OGE:
940 CondCode = AArch64CC::GE;
941 break;
942 case CmpInst::FCMP_OLT:
943 CondCode = AArch64CC::MI;
944 break;
945 case CmpInst::FCMP_OLE:
946 CondCode = AArch64CC::LS;
947 break;
948 case CmpInst::FCMP_ONE:
949 CondCode = AArch64CC::MI;
950 CondCode2 = AArch64CC::GT;
951 break;
952 case CmpInst::FCMP_ORD:
953 CondCode = AArch64CC::VC;
954 break;
955 case CmpInst::FCMP_UNO:
956 CondCode = AArch64CC::VS;
957 break;
958 case CmpInst::FCMP_UEQ:
959 CondCode = AArch64CC::EQ;
960 CondCode2 = AArch64CC::VS;
961 break;
962 case CmpInst::FCMP_UGT:
963 CondCode = AArch64CC::HI;
964 break;
965 case CmpInst::FCMP_UGE:
966 CondCode = AArch64CC::PL;
967 break;
968 case CmpInst::FCMP_ULT:
969 CondCode = AArch64CC::LT;
970 break;
971 case CmpInst::FCMP_ULE:
972 CondCode = AArch64CC::LE;
973 break;
974 case CmpInst::FCMP_UNE:
975 CondCode = AArch64CC::NE;
976 break;
977 }
978 }
979
selectCompareBranch(MachineInstr & I,MachineFunction & MF,MachineRegisterInfo & MRI) const980 bool AArch64InstructionSelector::selectCompareBranch(
981 MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
982
983 const Register CondReg = I.getOperand(0).getReg();
984 MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
985 MachineInstr *CCMI = MRI.getVRegDef(CondReg);
986 if (CCMI->getOpcode() == TargetOpcode::G_TRUNC)
987 CCMI = MRI.getVRegDef(CCMI->getOperand(1).getReg());
988 if (CCMI->getOpcode() != TargetOpcode::G_ICMP)
989 return false;
990
991 Register LHS = CCMI->getOperand(2).getReg();
992 Register RHS = CCMI->getOperand(3).getReg();
993 auto VRegAndVal = getConstantVRegValWithLookThrough(RHS, MRI);
994 if (!VRegAndVal)
995 std::swap(RHS, LHS);
996
997 VRegAndVal = getConstantVRegValWithLookThrough(RHS, MRI);
998 if (!VRegAndVal || VRegAndVal->Value != 0) {
999 MachineIRBuilder MIB(I);
1000 // If we can't select a CBZ then emit a cmp + Bcc.
1001 if (!emitIntegerCompare(CCMI->getOperand(2), CCMI->getOperand(3),
1002 CCMI->getOperand(1), MIB))
1003 return false;
1004 const AArch64CC::CondCode CC = changeICMPPredToAArch64CC(
1005 (CmpInst::Predicate)CCMI->getOperand(1).getPredicate());
1006 MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC).addMBB(DestMBB);
1007 I.eraseFromParent();
1008 return true;
1009 }
1010
1011 const RegisterBank &RB = *RBI.getRegBank(LHS, MRI, TRI);
1012 if (RB.getID() != AArch64::GPRRegBankID)
1013 return false;
1014
1015 const auto Pred = (CmpInst::Predicate)CCMI->getOperand(1).getPredicate();
1016 if (Pred != CmpInst::ICMP_NE && Pred != CmpInst::ICMP_EQ)
1017 return false;
1018
1019 const unsigned CmpWidth = MRI.getType(LHS).getSizeInBits();
1020 unsigned CBOpc = 0;
1021 if (CmpWidth <= 32)
1022 CBOpc = (Pred == CmpInst::ICMP_EQ ? AArch64::CBZW : AArch64::CBNZW);
1023 else if (CmpWidth == 64)
1024 CBOpc = (Pred == CmpInst::ICMP_EQ ? AArch64::CBZX : AArch64::CBNZX);
1025 else
1026 return false;
1027
1028 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(CBOpc))
1029 .addUse(LHS)
1030 .addMBB(DestMBB)
1031 .constrainAllUses(TII, TRI, RBI);
1032
1033 I.eraseFromParent();
1034 return true;
1035 }
1036
1037 /// Returns the element immediate value of a vector shift operand if found.
1038 /// This needs to detect a splat-like operation, e.g. a G_BUILD_VECTOR.
getVectorShiftImm(Register Reg,MachineRegisterInfo & MRI)1039 static Optional<int64_t> getVectorShiftImm(Register Reg,
1040 MachineRegisterInfo &MRI) {
1041 assert(MRI.getType(Reg).isVector() && "Expected a *vector* shift operand");
1042 MachineInstr *OpMI = MRI.getVRegDef(Reg);
1043 assert(OpMI && "Expected to find a vreg def for vector shift operand");
1044 if (OpMI->getOpcode() != TargetOpcode::G_BUILD_VECTOR)
1045 return None;
1046
1047 // Check all operands are identical immediates.
1048 int64_t ImmVal = 0;
1049 for (unsigned Idx = 1; Idx < OpMI->getNumOperands(); ++Idx) {
1050 auto VRegAndVal = getConstantVRegValWithLookThrough(OpMI->getOperand(Idx).getReg(), MRI);
1051 if (!VRegAndVal)
1052 return None;
1053
1054 if (Idx == 1)
1055 ImmVal = VRegAndVal->Value;
1056 if (ImmVal != VRegAndVal->Value)
1057 return None;
1058 }
1059
1060 return ImmVal;
1061 }
1062
1063 /// Matches and returns the shift immediate value for a SHL instruction given
1064 /// a shift operand.
getVectorSHLImm(LLT SrcTy,Register Reg,MachineRegisterInfo & MRI)1065 static Optional<int64_t> getVectorSHLImm(LLT SrcTy, Register Reg, MachineRegisterInfo &MRI) {
1066 Optional<int64_t> ShiftImm = getVectorShiftImm(Reg, MRI);
1067 if (!ShiftImm)
1068 return None;
1069 // Check the immediate is in range for a SHL.
1070 int64_t Imm = *ShiftImm;
1071 if (Imm < 0)
1072 return None;
1073 switch (SrcTy.getElementType().getSizeInBits()) {
1074 default:
1075 LLVM_DEBUG(dbgs() << "Unhandled element type for vector shift");
1076 return None;
1077 case 8:
1078 if (Imm > 7)
1079 return None;
1080 break;
1081 case 16:
1082 if (Imm > 15)
1083 return None;
1084 break;
1085 case 32:
1086 if (Imm > 31)
1087 return None;
1088 break;
1089 case 64:
1090 if (Imm > 63)
1091 return None;
1092 break;
1093 }
1094 return Imm;
1095 }
1096
selectVectorSHL(MachineInstr & I,MachineRegisterInfo & MRI) const1097 bool AArch64InstructionSelector::selectVectorSHL(
1098 MachineInstr &I, MachineRegisterInfo &MRI) const {
1099 assert(I.getOpcode() == TargetOpcode::G_SHL);
1100 Register DstReg = I.getOperand(0).getReg();
1101 const LLT Ty = MRI.getType(DstReg);
1102 Register Src1Reg = I.getOperand(1).getReg();
1103 Register Src2Reg = I.getOperand(2).getReg();
1104
1105 if (!Ty.isVector())
1106 return false;
1107
1108 // Check if we have a vector of constants on RHS that we can select as the
1109 // immediate form.
1110 Optional<int64_t> ImmVal = getVectorSHLImm(Ty, Src2Reg, MRI);
1111
1112 unsigned Opc = 0;
1113 if (Ty == LLT::vector(2, 64)) {
1114 Opc = ImmVal ? AArch64::SHLv2i64_shift : AArch64::USHLv2i64;
1115 } else if (Ty == LLT::vector(4, 32)) {
1116 Opc = ImmVal ? AArch64::SHLv4i32_shift : AArch64::USHLv4i32;
1117 } else if (Ty == LLT::vector(2, 32)) {
1118 Opc = ImmVal ? AArch64::SHLv2i32_shift : AArch64::USHLv2i32;
1119 } else {
1120 LLVM_DEBUG(dbgs() << "Unhandled G_SHL type");
1121 return false;
1122 }
1123
1124 MachineIRBuilder MIB(I);
1125 auto Shl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg});
1126 if (ImmVal)
1127 Shl.addImm(*ImmVal);
1128 else
1129 Shl.addUse(Src2Reg);
1130 constrainSelectedInstRegOperands(*Shl, TII, TRI, RBI);
1131 I.eraseFromParent();
1132 return true;
1133 }
1134
selectVectorASHR(MachineInstr & I,MachineRegisterInfo & MRI) const1135 bool AArch64InstructionSelector::selectVectorASHR(
1136 MachineInstr &I, MachineRegisterInfo &MRI) const {
1137 assert(I.getOpcode() == TargetOpcode::G_ASHR);
1138 Register DstReg = I.getOperand(0).getReg();
1139 const LLT Ty = MRI.getType(DstReg);
1140 Register Src1Reg = I.getOperand(1).getReg();
1141 Register Src2Reg = I.getOperand(2).getReg();
1142
1143 if (!Ty.isVector())
1144 return false;
1145
1146 // There is not a shift right register instruction, but the shift left
1147 // register instruction takes a signed value, where negative numbers specify a
1148 // right shift.
1149
1150 unsigned Opc = 0;
1151 unsigned NegOpc = 0;
1152 const TargetRegisterClass *RC = nullptr;
1153 if (Ty == LLT::vector(2, 64)) {
1154 Opc = AArch64::SSHLv2i64;
1155 NegOpc = AArch64::NEGv2i64;
1156 RC = &AArch64::FPR128RegClass;
1157 } else if (Ty == LLT::vector(4, 32)) {
1158 Opc = AArch64::SSHLv4i32;
1159 NegOpc = AArch64::NEGv4i32;
1160 RC = &AArch64::FPR128RegClass;
1161 } else if (Ty == LLT::vector(2, 32)) {
1162 Opc = AArch64::SSHLv2i32;
1163 NegOpc = AArch64::NEGv2i32;
1164 RC = &AArch64::FPR64RegClass;
1165 } else {
1166 LLVM_DEBUG(dbgs() << "Unhandled G_ASHR type");
1167 return false;
1168 }
1169
1170 MachineIRBuilder MIB(I);
1171 auto Neg = MIB.buildInstr(NegOpc, {RC}, {Src2Reg});
1172 constrainSelectedInstRegOperands(*Neg, TII, TRI, RBI);
1173 auto SShl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg, Neg});
1174 constrainSelectedInstRegOperands(*SShl, TII, TRI, RBI);
1175 I.eraseFromParent();
1176 return true;
1177 }
1178
selectVaStartAAPCS(MachineInstr & I,MachineFunction & MF,MachineRegisterInfo & MRI) const1179 bool AArch64InstructionSelector::selectVaStartAAPCS(
1180 MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
1181 return false;
1182 }
1183
selectVaStartDarwin(MachineInstr & I,MachineFunction & MF,MachineRegisterInfo & MRI) const1184 bool AArch64InstructionSelector::selectVaStartDarwin(
1185 MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
1186 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
1187 Register ListReg = I.getOperand(0).getReg();
1188
1189 Register ArgsAddrReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
1190
1191 auto MIB =
1192 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::ADDXri))
1193 .addDef(ArgsAddrReg)
1194 .addFrameIndex(FuncInfo->getVarArgsStackIndex())
1195 .addImm(0)
1196 .addImm(0);
1197
1198 constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
1199
1200 MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::STRXui))
1201 .addUse(ArgsAddrReg)
1202 .addUse(ListReg)
1203 .addImm(0)
1204 .addMemOperand(*I.memoperands_begin());
1205
1206 constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
1207 I.eraseFromParent();
1208 return true;
1209 }
1210
materializeLargeCMVal(MachineInstr & I,const Value * V,unsigned OpFlags) const1211 void AArch64InstructionSelector::materializeLargeCMVal(
1212 MachineInstr &I, const Value *V, unsigned OpFlags) const {
1213 MachineBasicBlock &MBB = *I.getParent();
1214 MachineFunction &MF = *MBB.getParent();
1215 MachineRegisterInfo &MRI = MF.getRegInfo();
1216 MachineIRBuilder MIB(I);
1217
1218 auto MovZ = MIB.buildInstr(AArch64::MOVZXi, {&AArch64::GPR64RegClass}, {});
1219 MovZ->addOperand(MF, I.getOperand(1));
1220 MovZ->getOperand(1).setTargetFlags(OpFlags | AArch64II::MO_G0 |
1221 AArch64II::MO_NC);
1222 MovZ->addOperand(MF, MachineOperand::CreateImm(0));
1223 constrainSelectedInstRegOperands(*MovZ, TII, TRI, RBI);
1224
1225 auto BuildMovK = [&](Register SrcReg, unsigned char Flags, unsigned Offset,
1226 Register ForceDstReg) {
1227 Register DstReg = ForceDstReg
1228 ? ForceDstReg
1229 : MRI.createVirtualRegister(&AArch64::GPR64RegClass);
1230 auto MovI = MIB.buildInstr(AArch64::MOVKXi).addDef(DstReg).addUse(SrcReg);
1231 if (auto *GV = dyn_cast<GlobalValue>(V)) {
1232 MovI->addOperand(MF, MachineOperand::CreateGA(
1233 GV, MovZ->getOperand(1).getOffset(), Flags));
1234 } else {
1235 MovI->addOperand(
1236 MF, MachineOperand::CreateBA(cast<BlockAddress>(V),
1237 MovZ->getOperand(1).getOffset(), Flags));
1238 }
1239 MovI->addOperand(MF, MachineOperand::CreateImm(Offset));
1240 constrainSelectedInstRegOperands(*MovI, TII, TRI, RBI);
1241 return DstReg;
1242 };
1243 Register DstReg = BuildMovK(MovZ.getReg(0),
1244 AArch64II::MO_G1 | AArch64II::MO_NC, 16, 0);
1245 DstReg = BuildMovK(DstReg, AArch64II::MO_G2 | AArch64II::MO_NC, 32, 0);
1246 BuildMovK(DstReg, AArch64II::MO_G3, 48, I.getOperand(0).getReg());
1247 return;
1248 }
1249
preISelLower(MachineInstr & I) const1250 void AArch64InstructionSelector::preISelLower(MachineInstr &I) const {
1251 MachineBasicBlock &MBB = *I.getParent();
1252 MachineFunction &MF = *MBB.getParent();
1253 MachineRegisterInfo &MRI = MF.getRegInfo();
1254
1255 switch (I.getOpcode()) {
1256 case TargetOpcode::G_SHL:
1257 case TargetOpcode::G_ASHR:
1258 case TargetOpcode::G_LSHR: {
1259 // These shifts are legalized to have 64 bit shift amounts because we want
1260 // to take advantage of the existing imported selection patterns that assume
1261 // the immediates are s64s. However, if the shifted type is 32 bits and for
1262 // some reason we receive input GMIR that has an s64 shift amount that's not
1263 // a G_CONSTANT, insert a truncate so that we can still select the s32
1264 // register-register variant.
1265 Register SrcReg = I.getOperand(1).getReg();
1266 Register ShiftReg = I.getOperand(2).getReg();
1267 const LLT ShiftTy = MRI.getType(ShiftReg);
1268 const LLT SrcTy = MRI.getType(SrcReg);
1269 if (SrcTy.isVector())
1270 return;
1271 assert(!ShiftTy.isVector() && "unexpected vector shift ty");
1272 if (SrcTy.getSizeInBits() != 32 || ShiftTy.getSizeInBits() != 64)
1273 return;
1274 auto *AmtMI = MRI.getVRegDef(ShiftReg);
1275 assert(AmtMI && "could not find a vreg definition for shift amount");
1276 if (AmtMI->getOpcode() != TargetOpcode::G_CONSTANT) {
1277 // Insert a subregister copy to implement a 64->32 trunc
1278 MachineIRBuilder MIB(I);
1279 auto Trunc = MIB.buildInstr(TargetOpcode::COPY, {SrcTy}, {})
1280 .addReg(ShiftReg, 0, AArch64::sub_32);
1281 MRI.setRegBank(Trunc.getReg(0), RBI.getRegBank(AArch64::GPRRegBankID));
1282 I.getOperand(2).setReg(Trunc.getReg(0));
1283 }
1284 return;
1285 }
1286 case TargetOpcode::G_STORE:
1287 contractCrossBankCopyIntoStore(I, MRI);
1288 return;
1289 default:
1290 return;
1291 }
1292 }
1293
earlySelectSHL(MachineInstr & I,MachineRegisterInfo & MRI) const1294 bool AArch64InstructionSelector::earlySelectSHL(
1295 MachineInstr &I, MachineRegisterInfo &MRI) const {
1296 // We try to match the immediate variant of LSL, which is actually an alias
1297 // for a special case of UBFM. Otherwise, we fall back to the imported
1298 // selector which will match the register variant.
1299 assert(I.getOpcode() == TargetOpcode::G_SHL && "unexpected op");
1300 const auto &MO = I.getOperand(2);
1301 auto VRegAndVal = getConstantVRegVal(MO.getReg(), MRI);
1302 if (!VRegAndVal)
1303 return false;
1304
1305 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
1306 if (DstTy.isVector())
1307 return false;
1308 bool Is64Bit = DstTy.getSizeInBits() == 64;
1309 auto Imm1Fn = Is64Bit ? selectShiftA_64(MO) : selectShiftA_32(MO);
1310 auto Imm2Fn = Is64Bit ? selectShiftB_64(MO) : selectShiftB_32(MO);
1311 MachineIRBuilder MIB(I);
1312
1313 if (!Imm1Fn || !Imm2Fn)
1314 return false;
1315
1316 auto NewI =
1317 MIB.buildInstr(Is64Bit ? AArch64::UBFMXri : AArch64::UBFMWri,
1318 {I.getOperand(0).getReg()}, {I.getOperand(1).getReg()});
1319
1320 for (auto &RenderFn : *Imm1Fn)
1321 RenderFn(NewI);
1322 for (auto &RenderFn : *Imm2Fn)
1323 RenderFn(NewI);
1324
1325 I.eraseFromParent();
1326 return constrainSelectedInstRegOperands(*NewI, TII, TRI, RBI);
1327 }
1328
contractCrossBankCopyIntoStore(MachineInstr & I,MachineRegisterInfo & MRI) const1329 void AArch64InstructionSelector::contractCrossBankCopyIntoStore(
1330 MachineInstr &I, MachineRegisterInfo &MRI) const {
1331 assert(I.getOpcode() == TargetOpcode::G_STORE && "Expected G_STORE");
1332 // If we're storing a scalar, it doesn't matter what register bank that
1333 // scalar is on. All that matters is the size.
1334 //
1335 // So, if we see something like this (with a 32-bit scalar as an example):
1336 //
1337 // %x:gpr(s32) = ... something ...
1338 // %y:fpr(s32) = COPY %x:gpr(s32)
1339 // G_STORE %y:fpr(s32)
1340 //
1341 // We can fix this up into something like this:
1342 //
1343 // G_STORE %x:gpr(s32)
1344 //
1345 // And then continue the selection process normally.
1346 MachineInstr *Def = getDefIgnoringCopies(I.getOperand(0).getReg(), MRI);
1347 if (!Def)
1348 return;
1349 Register DefDstReg = Def->getOperand(0).getReg();
1350 LLT DefDstTy = MRI.getType(DefDstReg);
1351 Register StoreSrcReg = I.getOperand(0).getReg();
1352 LLT StoreSrcTy = MRI.getType(StoreSrcReg);
1353
1354 // If we get something strange like a physical register, then we shouldn't
1355 // go any further.
1356 if (!DefDstTy.isValid())
1357 return;
1358
1359 // Are the source and dst types the same size?
1360 if (DefDstTy.getSizeInBits() != StoreSrcTy.getSizeInBits())
1361 return;
1362
1363 if (RBI.getRegBank(StoreSrcReg, MRI, TRI) ==
1364 RBI.getRegBank(DefDstReg, MRI, TRI))
1365 return;
1366
1367 // We have a cross-bank copy, which is entering a store. Let's fold it.
1368 I.getOperand(0).setReg(DefDstReg);
1369 }
1370
earlySelect(MachineInstr & I) const1371 bool AArch64InstructionSelector::earlySelect(MachineInstr &I) const {
1372 assert(I.getParent() && "Instruction should be in a basic block!");
1373 assert(I.getParent()->getParent() && "Instruction should be in a function!");
1374
1375 MachineBasicBlock &MBB = *I.getParent();
1376 MachineFunction &MF = *MBB.getParent();
1377 MachineRegisterInfo &MRI = MF.getRegInfo();
1378
1379 switch (I.getOpcode()) {
1380 case TargetOpcode::G_SHL:
1381 return earlySelectSHL(I, MRI);
1382 case TargetOpcode::G_CONSTANT: {
1383 bool IsZero = false;
1384 if (I.getOperand(1).isCImm())
1385 IsZero = I.getOperand(1).getCImm()->getZExtValue() == 0;
1386 else if (I.getOperand(1).isImm())
1387 IsZero = I.getOperand(1).getImm() == 0;
1388
1389 if (!IsZero)
1390 return false;
1391
1392 Register DefReg = I.getOperand(0).getReg();
1393 LLT Ty = MRI.getType(DefReg);
1394 if (Ty != LLT::scalar(64) && Ty != LLT::scalar(32))
1395 return false;
1396
1397 if (Ty == LLT::scalar(64)) {
1398 I.getOperand(1).ChangeToRegister(AArch64::XZR, false);
1399 RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass, MRI);
1400 } else {
1401 I.getOperand(1).ChangeToRegister(AArch64::WZR, false);
1402 RBI.constrainGenericRegister(DefReg, AArch64::GPR32RegClass, MRI);
1403 }
1404 I.setDesc(TII.get(TargetOpcode::COPY));
1405 return true;
1406 }
1407 default:
1408 return false;
1409 }
1410 }
1411
select(MachineInstr & I)1412 bool AArch64InstructionSelector::select(MachineInstr &I) {
1413 assert(I.getParent() && "Instruction should be in a basic block!");
1414 assert(I.getParent()->getParent() && "Instruction should be in a function!");
1415
1416 MachineBasicBlock &MBB = *I.getParent();
1417 MachineFunction &MF = *MBB.getParent();
1418 MachineRegisterInfo &MRI = MF.getRegInfo();
1419
1420 unsigned Opcode = I.getOpcode();
1421 // G_PHI requires same handling as PHI
1422 if (!isPreISelGenericOpcode(Opcode) || Opcode == TargetOpcode::G_PHI) {
1423 // Certain non-generic instructions also need some special handling.
1424
1425 if (Opcode == TargetOpcode::LOAD_STACK_GUARD)
1426 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1427
1428 if (Opcode == TargetOpcode::PHI || Opcode == TargetOpcode::G_PHI) {
1429 const Register DefReg = I.getOperand(0).getReg();
1430 const LLT DefTy = MRI.getType(DefReg);
1431
1432 const RegClassOrRegBank &RegClassOrBank =
1433 MRI.getRegClassOrRegBank(DefReg);
1434
1435 const TargetRegisterClass *DefRC
1436 = RegClassOrBank.dyn_cast<const TargetRegisterClass *>();
1437 if (!DefRC) {
1438 if (!DefTy.isValid()) {
1439 LLVM_DEBUG(dbgs() << "PHI operand has no type, not a gvreg?\n");
1440 return false;
1441 }
1442 const RegisterBank &RB = *RegClassOrBank.get<const RegisterBank *>();
1443 DefRC = getRegClassForTypeOnBank(DefTy, RB, RBI);
1444 if (!DefRC) {
1445 LLVM_DEBUG(dbgs() << "PHI operand has unexpected size/bank\n");
1446 return false;
1447 }
1448 }
1449
1450 I.setDesc(TII.get(TargetOpcode::PHI));
1451
1452 return RBI.constrainGenericRegister(DefReg, *DefRC, MRI);
1453 }
1454
1455 if (I.isCopy())
1456 return selectCopy(I, TII, MRI, TRI, RBI);
1457
1458 return true;
1459 }
1460
1461
1462 if (I.getNumOperands() != I.getNumExplicitOperands()) {
1463 LLVM_DEBUG(
1464 dbgs() << "Generic instruction has unexpected implicit operands\n");
1465 return false;
1466 }
1467
1468 // Try to do some lowering before we start instruction selecting. These
1469 // lowerings are purely transformations on the input G_MIR and so selection
1470 // must continue after any modification of the instruction.
1471 preISelLower(I);
1472
1473 // There may be patterns where the importer can't deal with them optimally,
1474 // but does select it to a suboptimal sequence so our custom C++ selection
1475 // code later never has a chance to work on it. Therefore, we have an early
1476 // selection attempt here to give priority to certain selection routines
1477 // over the imported ones.
1478 if (earlySelect(I))
1479 return true;
1480
1481 if (selectImpl(I, *CoverageInfo))
1482 return true;
1483
1484 LLT Ty =
1485 I.getOperand(0).isReg() ? MRI.getType(I.getOperand(0).getReg()) : LLT{};
1486
1487 MachineIRBuilder MIB(I);
1488
1489 switch (Opcode) {
1490 case TargetOpcode::G_BRCOND: {
1491 if (Ty.getSizeInBits() > 32) {
1492 // We shouldn't need this on AArch64, but it would be implemented as an
1493 // EXTRACT_SUBREG followed by a TBNZW because TBNZX has no encoding if the
1494 // bit being tested is < 32.
1495 LLVM_DEBUG(dbgs() << "G_BRCOND has type: " << Ty
1496 << ", expected at most 32-bits");
1497 return false;
1498 }
1499
1500 const Register CondReg = I.getOperand(0).getReg();
1501 MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
1502
1503 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z
1504 // instructions will not be produced, as they are conditional branch
1505 // instructions that do not set flags.
1506 bool ProduceNonFlagSettingCondBr =
1507 !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening);
1508 if (ProduceNonFlagSettingCondBr && selectCompareBranch(I, MF, MRI))
1509 return true;
1510
1511 if (ProduceNonFlagSettingCondBr) {
1512 auto MIB = BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::TBNZW))
1513 .addUse(CondReg)
1514 .addImm(/*bit offset=*/0)
1515 .addMBB(DestMBB);
1516
1517 I.eraseFromParent();
1518 return constrainSelectedInstRegOperands(*MIB.getInstr(), TII, TRI, RBI);
1519 } else {
1520 auto CMP = BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::ANDSWri))
1521 .addDef(AArch64::WZR)
1522 .addUse(CondReg)
1523 .addImm(1);
1524 constrainSelectedInstRegOperands(*CMP.getInstr(), TII, TRI, RBI);
1525 auto Bcc =
1526 BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::Bcc))
1527 .addImm(AArch64CC::EQ)
1528 .addMBB(DestMBB);
1529
1530 I.eraseFromParent();
1531 return constrainSelectedInstRegOperands(*Bcc.getInstr(), TII, TRI, RBI);
1532 }
1533 }
1534
1535 case TargetOpcode::G_BRINDIRECT: {
1536 I.setDesc(TII.get(AArch64::BR));
1537 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1538 }
1539
1540 case TargetOpcode::G_BRJT:
1541 return selectBrJT(I, MRI);
1542
1543 case TargetOpcode::G_BSWAP: {
1544 // Handle vector types for G_BSWAP directly.
1545 Register DstReg = I.getOperand(0).getReg();
1546 LLT DstTy = MRI.getType(DstReg);
1547
1548 // We should only get vector types here; everything else is handled by the
1549 // importer right now.
1550 if (!DstTy.isVector() || DstTy.getSizeInBits() > 128) {
1551 LLVM_DEBUG(dbgs() << "Dst type for G_BSWAP currently unsupported.\n");
1552 return false;
1553 }
1554
1555 // Only handle 4 and 2 element vectors for now.
1556 // TODO: 16-bit elements.
1557 unsigned NumElts = DstTy.getNumElements();
1558 if (NumElts != 4 && NumElts != 2) {
1559 LLVM_DEBUG(dbgs() << "Unsupported number of elements for G_BSWAP.\n");
1560 return false;
1561 }
1562
1563 // Choose the correct opcode for the supported types. Right now, that's
1564 // v2s32, v4s32, and v2s64.
1565 unsigned Opc = 0;
1566 unsigned EltSize = DstTy.getElementType().getSizeInBits();
1567 if (EltSize == 32)
1568 Opc = (DstTy.getNumElements() == 2) ? AArch64::REV32v8i8
1569 : AArch64::REV32v16i8;
1570 else if (EltSize == 64)
1571 Opc = AArch64::REV64v16i8;
1572
1573 // We should always get something by the time we get here...
1574 assert(Opc != 0 && "Didn't get an opcode for G_BSWAP?");
1575
1576 I.setDesc(TII.get(Opc));
1577 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1578 }
1579
1580 case TargetOpcode::G_FCONSTANT:
1581 case TargetOpcode::G_CONSTANT: {
1582 const bool isFP = Opcode == TargetOpcode::G_FCONSTANT;
1583
1584 const LLT s8 = LLT::scalar(8);
1585 const LLT s16 = LLT::scalar(16);
1586 const LLT s32 = LLT::scalar(32);
1587 const LLT s64 = LLT::scalar(64);
1588 const LLT p0 = LLT::pointer(0, 64);
1589
1590 const Register DefReg = I.getOperand(0).getReg();
1591 const LLT DefTy = MRI.getType(DefReg);
1592 const unsigned DefSize = DefTy.getSizeInBits();
1593 const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
1594
1595 // FIXME: Redundant check, but even less readable when factored out.
1596 if (isFP) {
1597 if (Ty != s32 && Ty != s64) {
1598 LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty
1599 << " constant, expected: " << s32 << " or " << s64
1600 << '\n');
1601 return false;
1602 }
1603
1604 if (RB.getID() != AArch64::FPRRegBankID) {
1605 LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty
1606 << " constant on bank: " << RB
1607 << ", expected: FPR\n");
1608 return false;
1609 }
1610
1611 // The case when we have 0.0 is covered by tablegen. Reject it here so we
1612 // can be sure tablegen works correctly and isn't rescued by this code.
1613 if (I.getOperand(1).getFPImm()->getValueAPF().isExactlyValue(0.0))
1614 return false;
1615 } else {
1616 // s32 and s64 are covered by tablegen.
1617 if (Ty != p0 && Ty != s8 && Ty != s16) {
1618 LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty
1619 << " constant, expected: " << s32 << ", " << s64
1620 << ", or " << p0 << '\n');
1621 return false;
1622 }
1623
1624 if (RB.getID() != AArch64::GPRRegBankID) {
1625 LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty
1626 << " constant on bank: " << RB
1627 << ", expected: GPR\n");
1628 return false;
1629 }
1630 }
1631
1632 // We allow G_CONSTANT of types < 32b.
1633 const unsigned MovOpc =
1634 DefSize == 64 ? AArch64::MOVi64imm : AArch64::MOVi32imm;
1635
1636 if (isFP) {
1637 // Either emit a FMOV, or emit a copy to emit a normal mov.
1638 const TargetRegisterClass &GPRRC =
1639 DefSize == 32 ? AArch64::GPR32RegClass : AArch64::GPR64RegClass;
1640 const TargetRegisterClass &FPRRC =
1641 DefSize == 32 ? AArch64::FPR32RegClass : AArch64::FPR64RegClass;
1642
1643 // Can we use a FMOV instruction to represent the immediate?
1644 if (emitFMovForFConstant(I, MRI))
1645 return true;
1646
1647 // Nope. Emit a copy and use a normal mov instead.
1648 const Register DefGPRReg = MRI.createVirtualRegister(&GPRRC);
1649 MachineOperand &RegOp = I.getOperand(0);
1650 RegOp.setReg(DefGPRReg);
1651 MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator()));
1652 MIB.buildCopy({DefReg}, {DefGPRReg});
1653
1654 if (!RBI.constrainGenericRegister(DefReg, FPRRC, MRI)) {
1655 LLVM_DEBUG(dbgs() << "Failed to constrain G_FCONSTANT def operand\n");
1656 return false;
1657 }
1658
1659 MachineOperand &ImmOp = I.getOperand(1);
1660 // FIXME: Is going through int64_t always correct?
1661 ImmOp.ChangeToImmediate(
1662 ImmOp.getFPImm()->getValueAPF().bitcastToAPInt().getZExtValue());
1663 } else if (I.getOperand(1).isCImm()) {
1664 uint64_t Val = I.getOperand(1).getCImm()->getZExtValue();
1665 I.getOperand(1).ChangeToImmediate(Val);
1666 } else if (I.getOperand(1).isImm()) {
1667 uint64_t Val = I.getOperand(1).getImm();
1668 I.getOperand(1).ChangeToImmediate(Val);
1669 }
1670
1671 I.setDesc(TII.get(MovOpc));
1672 constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1673 return true;
1674 }
1675 case TargetOpcode::G_EXTRACT: {
1676 Register DstReg = I.getOperand(0).getReg();
1677 Register SrcReg = I.getOperand(1).getReg();
1678 LLT SrcTy = MRI.getType(SrcReg);
1679 LLT DstTy = MRI.getType(DstReg);
1680 (void)DstTy;
1681 unsigned SrcSize = SrcTy.getSizeInBits();
1682
1683 if (SrcTy.getSizeInBits() > 64) {
1684 // This should be an extract of an s128, which is like a vector extract.
1685 if (SrcTy.getSizeInBits() != 128)
1686 return false;
1687 // Only support extracting 64 bits from an s128 at the moment.
1688 if (DstTy.getSizeInBits() != 64)
1689 return false;
1690
1691 const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
1692 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
1693 // Check we have the right regbank always.
1694 assert(SrcRB.getID() == AArch64::FPRRegBankID &&
1695 DstRB.getID() == AArch64::FPRRegBankID &&
1696 "Wrong extract regbank!");
1697 (void)SrcRB;
1698
1699 // Emit the same code as a vector extract.
1700 // Offset must be a multiple of 64.
1701 unsigned Offset = I.getOperand(2).getImm();
1702 if (Offset % 64 != 0)
1703 return false;
1704 unsigned LaneIdx = Offset / 64;
1705 MachineIRBuilder MIB(I);
1706 MachineInstr *Extract = emitExtractVectorElt(
1707 DstReg, DstRB, LLT::scalar(64), SrcReg, LaneIdx, MIB);
1708 if (!Extract)
1709 return false;
1710 I.eraseFromParent();
1711 return true;
1712 }
1713
1714 I.setDesc(TII.get(SrcSize == 64 ? AArch64::UBFMXri : AArch64::UBFMWri));
1715 MachineInstrBuilder(MF, I).addImm(I.getOperand(2).getImm() +
1716 Ty.getSizeInBits() - 1);
1717
1718 if (SrcSize < 64) {
1719 assert(SrcSize == 32 && DstTy.getSizeInBits() == 16 &&
1720 "unexpected G_EXTRACT types");
1721 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1722 }
1723
1724 DstReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
1725 MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator()));
1726 MIB.buildInstr(TargetOpcode::COPY, {I.getOperand(0).getReg()}, {})
1727 .addReg(DstReg, 0, AArch64::sub_32);
1728 RBI.constrainGenericRegister(I.getOperand(0).getReg(),
1729 AArch64::GPR32RegClass, MRI);
1730 I.getOperand(0).setReg(DstReg);
1731
1732 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1733 }
1734
1735 case TargetOpcode::G_INSERT: {
1736 LLT SrcTy = MRI.getType(I.getOperand(2).getReg());
1737 LLT DstTy = MRI.getType(I.getOperand(0).getReg());
1738 unsigned DstSize = DstTy.getSizeInBits();
1739 // Larger inserts are vectors, same-size ones should be something else by
1740 // now (split up or turned into COPYs).
1741 if (Ty.getSizeInBits() > 64 || SrcTy.getSizeInBits() > 32)
1742 return false;
1743
1744 I.setDesc(TII.get(DstSize == 64 ? AArch64::BFMXri : AArch64::BFMWri));
1745 unsigned LSB = I.getOperand(3).getImm();
1746 unsigned Width = MRI.getType(I.getOperand(2).getReg()).getSizeInBits();
1747 I.getOperand(3).setImm((DstSize - LSB) % DstSize);
1748 MachineInstrBuilder(MF, I).addImm(Width - 1);
1749
1750 if (DstSize < 64) {
1751 assert(DstSize == 32 && SrcTy.getSizeInBits() == 16 &&
1752 "unexpected G_INSERT types");
1753 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1754 }
1755
1756 Register SrcReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
1757 BuildMI(MBB, I.getIterator(), I.getDebugLoc(),
1758 TII.get(AArch64::SUBREG_TO_REG))
1759 .addDef(SrcReg)
1760 .addImm(0)
1761 .addUse(I.getOperand(2).getReg())
1762 .addImm(AArch64::sub_32);
1763 RBI.constrainGenericRegister(I.getOperand(2).getReg(),
1764 AArch64::GPR32RegClass, MRI);
1765 I.getOperand(2).setReg(SrcReg);
1766
1767 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1768 }
1769 case TargetOpcode::G_FRAME_INDEX: {
1770 // allocas and G_FRAME_INDEX are only supported in addrspace(0).
1771 if (Ty != LLT::pointer(0, 64)) {
1772 LLVM_DEBUG(dbgs() << "G_FRAME_INDEX pointer has type: " << Ty
1773 << ", expected: " << LLT::pointer(0, 64) << '\n');
1774 return false;
1775 }
1776 I.setDesc(TII.get(AArch64::ADDXri));
1777
1778 // MOs for a #0 shifted immediate.
1779 I.addOperand(MachineOperand::CreateImm(0));
1780 I.addOperand(MachineOperand::CreateImm(0));
1781
1782 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1783 }
1784
1785 case TargetOpcode::G_GLOBAL_VALUE: {
1786 auto GV = I.getOperand(1).getGlobal();
1787 if (GV->isThreadLocal())
1788 return selectTLSGlobalValue(I, MRI);
1789
1790 unsigned OpFlags = STI.ClassifyGlobalReference(GV, TM);
1791 if (OpFlags & AArch64II::MO_GOT) {
1792 I.setDesc(TII.get(AArch64::LOADgot));
1793 I.getOperand(1).setTargetFlags(OpFlags);
1794 } else if (TM.getCodeModel() == CodeModel::Large) {
1795 // Materialize the global using movz/movk instructions.
1796 materializeLargeCMVal(I, GV, OpFlags);
1797 I.eraseFromParent();
1798 return true;
1799 } else if (TM.getCodeModel() == CodeModel::Tiny) {
1800 I.setDesc(TII.get(AArch64::ADR));
1801 I.getOperand(1).setTargetFlags(OpFlags);
1802 } else {
1803 I.setDesc(TII.get(AArch64::MOVaddr));
1804 I.getOperand(1).setTargetFlags(OpFlags | AArch64II::MO_PAGE);
1805 MachineInstrBuilder MIB(MF, I);
1806 MIB.addGlobalAddress(GV, I.getOperand(1).getOffset(),
1807 OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
1808 }
1809 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1810 }
1811
1812 case TargetOpcode::G_ZEXTLOAD:
1813 case TargetOpcode::G_LOAD:
1814 case TargetOpcode::G_STORE: {
1815 bool IsZExtLoad = I.getOpcode() == TargetOpcode::G_ZEXTLOAD;
1816 MachineIRBuilder MIB(I);
1817
1818 LLT PtrTy = MRI.getType(I.getOperand(1).getReg());
1819
1820 if (PtrTy != LLT::pointer(0, 64)) {
1821 LLVM_DEBUG(dbgs() << "Load/Store pointer has type: " << PtrTy
1822 << ", expected: " << LLT::pointer(0, 64) << '\n');
1823 return false;
1824 }
1825
1826 auto &MemOp = **I.memoperands_begin();
1827 if (MemOp.isAtomic()) {
1828 // For now we just support s8 acquire loads to be able to compile stack
1829 // protector code.
1830 if (MemOp.getOrdering() == AtomicOrdering::Acquire &&
1831 MemOp.getSize() == 1) {
1832 I.setDesc(TII.get(AArch64::LDARB));
1833 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1834 }
1835 LLVM_DEBUG(dbgs() << "Atomic load/store not fully supported yet\n");
1836 return false;
1837 }
1838 unsigned MemSizeInBits = MemOp.getSize() * 8;
1839
1840 const Register PtrReg = I.getOperand(1).getReg();
1841 #ifndef NDEBUG
1842 const RegisterBank &PtrRB = *RBI.getRegBank(PtrReg, MRI, TRI);
1843 // Sanity-check the pointer register.
1844 assert(PtrRB.getID() == AArch64::GPRRegBankID &&
1845 "Load/Store pointer operand isn't a GPR");
1846 assert(MRI.getType(PtrReg).isPointer() &&
1847 "Load/Store pointer operand isn't a pointer");
1848 #endif
1849
1850 const Register ValReg = I.getOperand(0).getReg();
1851 const RegisterBank &RB = *RBI.getRegBank(ValReg, MRI, TRI);
1852
1853 const unsigned NewOpc =
1854 selectLoadStoreUIOp(I.getOpcode(), RB.getID(), MemSizeInBits);
1855 if (NewOpc == I.getOpcode())
1856 return false;
1857
1858 I.setDesc(TII.get(NewOpc));
1859
1860 uint64_t Offset = 0;
1861 auto *PtrMI = MRI.getVRegDef(PtrReg);
1862
1863 // Try to fold a GEP into our unsigned immediate addressing mode.
1864 if (PtrMI->getOpcode() == TargetOpcode::G_PTR_ADD) {
1865 if (auto COff = getConstantVRegVal(PtrMI->getOperand(2).getReg(), MRI)) {
1866 int64_t Imm = *COff;
1867 const unsigned Size = MemSizeInBits / 8;
1868 const unsigned Scale = Log2_32(Size);
1869 if ((Imm & (Size - 1)) == 0 && Imm >= 0 && Imm < (0x1000 << Scale)) {
1870 Register Ptr2Reg = PtrMI->getOperand(1).getReg();
1871 I.getOperand(1).setReg(Ptr2Reg);
1872 PtrMI = MRI.getVRegDef(Ptr2Reg);
1873 Offset = Imm / Size;
1874 }
1875 }
1876 }
1877
1878 // If we haven't folded anything into our addressing mode yet, try to fold
1879 // a frame index into the base+offset.
1880 if (!Offset && PtrMI->getOpcode() == TargetOpcode::G_FRAME_INDEX)
1881 I.getOperand(1).ChangeToFrameIndex(PtrMI->getOperand(1).getIndex());
1882
1883 I.addOperand(MachineOperand::CreateImm(Offset));
1884
1885 // If we're storing a 0, use WZR/XZR.
1886 if (auto CVal = getConstantVRegVal(ValReg, MRI)) {
1887 if (*CVal == 0 && Opcode == TargetOpcode::G_STORE) {
1888 if (I.getOpcode() == AArch64::STRWui)
1889 I.getOperand(0).setReg(AArch64::WZR);
1890 else if (I.getOpcode() == AArch64::STRXui)
1891 I.getOperand(0).setReg(AArch64::XZR);
1892 }
1893 }
1894
1895 if (IsZExtLoad) {
1896 // The zextload from a smaller type to i32 should be handled by the importer.
1897 if (MRI.getType(ValReg).getSizeInBits() != 64)
1898 return false;
1899 // If we have a ZEXTLOAD then change the load's type to be a narrower reg
1900 //and zero_extend with SUBREG_TO_REG.
1901 Register LdReg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
1902 Register DstReg = I.getOperand(0).getReg();
1903 I.getOperand(0).setReg(LdReg);
1904
1905 MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator()));
1906 MIB.buildInstr(AArch64::SUBREG_TO_REG, {DstReg}, {})
1907 .addImm(0)
1908 .addUse(LdReg)
1909 .addImm(AArch64::sub_32);
1910 constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1911 return RBI.constrainGenericRegister(DstReg, AArch64::GPR64allRegClass,
1912 MRI);
1913 }
1914 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1915 }
1916
1917 case TargetOpcode::G_SMULH:
1918 case TargetOpcode::G_UMULH: {
1919 // Reject the various things we don't support yet.
1920 if (unsupportedBinOp(I, RBI, MRI, TRI))
1921 return false;
1922
1923 const Register DefReg = I.getOperand(0).getReg();
1924 const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
1925
1926 if (RB.getID() != AArch64::GPRRegBankID) {
1927 LLVM_DEBUG(dbgs() << "G_[SU]MULH on bank: " << RB << ", expected: GPR\n");
1928 return false;
1929 }
1930
1931 if (Ty != LLT::scalar(64)) {
1932 LLVM_DEBUG(dbgs() << "G_[SU]MULH has type: " << Ty
1933 << ", expected: " << LLT::scalar(64) << '\n');
1934 return false;
1935 }
1936
1937 unsigned NewOpc = I.getOpcode() == TargetOpcode::G_SMULH ? AArch64::SMULHrr
1938 : AArch64::UMULHrr;
1939 I.setDesc(TII.get(NewOpc));
1940
1941 // Now that we selected an opcode, we need to constrain the register
1942 // operands to use appropriate classes.
1943 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1944 }
1945 case TargetOpcode::G_FADD:
1946 case TargetOpcode::G_FSUB:
1947 case TargetOpcode::G_FMUL:
1948 case TargetOpcode::G_FDIV:
1949
1950 case TargetOpcode::G_ASHR:
1951 if (MRI.getType(I.getOperand(0).getReg()).isVector())
1952 return selectVectorASHR(I, MRI);
1953 LLVM_FALLTHROUGH;
1954 case TargetOpcode::G_SHL:
1955 if (Opcode == TargetOpcode::G_SHL &&
1956 MRI.getType(I.getOperand(0).getReg()).isVector())
1957 return selectVectorSHL(I, MRI);
1958 LLVM_FALLTHROUGH;
1959 case TargetOpcode::G_OR:
1960 case TargetOpcode::G_LSHR: {
1961 // Reject the various things we don't support yet.
1962 if (unsupportedBinOp(I, RBI, MRI, TRI))
1963 return false;
1964
1965 const unsigned OpSize = Ty.getSizeInBits();
1966
1967 const Register DefReg = I.getOperand(0).getReg();
1968 const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
1969
1970 const unsigned NewOpc = selectBinaryOp(I.getOpcode(), RB.getID(), OpSize);
1971 if (NewOpc == I.getOpcode())
1972 return false;
1973
1974 I.setDesc(TII.get(NewOpc));
1975 // FIXME: Should the type be always reset in setDesc?
1976
1977 // Now that we selected an opcode, we need to constrain the register
1978 // operands to use appropriate classes.
1979 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1980 }
1981
1982 case TargetOpcode::G_PTR_ADD: {
1983 MachineIRBuilder MIRBuilder(I);
1984 emitADD(I.getOperand(0).getReg(), I.getOperand(1), I.getOperand(2),
1985 MIRBuilder);
1986 I.eraseFromParent();
1987 return true;
1988 }
1989 case TargetOpcode::G_UADDO: {
1990 // TODO: Support other types.
1991 unsigned OpSize = Ty.getSizeInBits();
1992 if (OpSize != 32 && OpSize != 64) {
1993 LLVM_DEBUG(
1994 dbgs()
1995 << "G_UADDO currently only supported for 32 and 64 b types.\n");
1996 return false;
1997 }
1998
1999 // TODO: Support vectors.
2000 if (Ty.isVector()) {
2001 LLVM_DEBUG(dbgs() << "G_UADDO currently only supported for scalars.\n");
2002 return false;
2003 }
2004
2005 // Add and set the set condition flag.
2006 unsigned AddsOpc = OpSize == 32 ? AArch64::ADDSWrr : AArch64::ADDSXrr;
2007 MachineIRBuilder MIRBuilder(I);
2008 auto AddsMI = MIRBuilder.buildInstr(
2009 AddsOpc, {I.getOperand(0).getReg()},
2010 {I.getOperand(2).getReg(), I.getOperand(3).getReg()});
2011 constrainSelectedInstRegOperands(*AddsMI, TII, TRI, RBI);
2012
2013 // Now, put the overflow result in the register given by the first operand
2014 // to the G_UADDO. CSINC increments the result when the predicate is false,
2015 // so to get the increment when it's true, we need to use the inverse. In
2016 // this case, we want to increment when carry is set.
2017 auto CsetMI = MIRBuilder
2018 .buildInstr(AArch64::CSINCWr, {I.getOperand(1).getReg()},
2019 {Register(AArch64::WZR), Register(AArch64::WZR)})
2020 .addImm(getInvertedCondCode(AArch64CC::HS));
2021 constrainSelectedInstRegOperands(*CsetMI, TII, TRI, RBI);
2022 I.eraseFromParent();
2023 return true;
2024 }
2025
2026 case TargetOpcode::G_PTR_MASK: {
2027 uint64_t Align = I.getOperand(2).getImm();
2028 if (Align >= 64 || Align == 0)
2029 return false;
2030
2031 uint64_t Mask = ~((1ULL << Align) - 1);
2032 I.setDesc(TII.get(AArch64::ANDXri));
2033 I.getOperand(2).setImm(AArch64_AM::encodeLogicalImmediate(Mask, 64));
2034
2035 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2036 }
2037 case TargetOpcode::G_PTRTOINT:
2038 case TargetOpcode::G_TRUNC: {
2039 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
2040 const LLT SrcTy = MRI.getType(I.getOperand(1).getReg());
2041
2042 const Register DstReg = I.getOperand(0).getReg();
2043 const Register SrcReg = I.getOperand(1).getReg();
2044
2045 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
2046 const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
2047
2048 if (DstRB.getID() != SrcRB.getID()) {
2049 LLVM_DEBUG(
2050 dbgs() << "G_TRUNC/G_PTRTOINT input/output on different banks\n");
2051 return false;
2052 }
2053
2054 if (DstRB.getID() == AArch64::GPRRegBankID) {
2055 const TargetRegisterClass *DstRC =
2056 getRegClassForTypeOnBank(DstTy, DstRB, RBI);
2057 if (!DstRC)
2058 return false;
2059
2060 const TargetRegisterClass *SrcRC =
2061 getRegClassForTypeOnBank(SrcTy, SrcRB, RBI);
2062 if (!SrcRC)
2063 return false;
2064
2065 if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) ||
2066 !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
2067 LLVM_DEBUG(dbgs() << "Failed to constrain G_TRUNC/G_PTRTOINT\n");
2068 return false;
2069 }
2070
2071 if (DstRC == SrcRC) {
2072 // Nothing to be done
2073 } else if (Opcode == TargetOpcode::G_TRUNC && DstTy == LLT::scalar(32) &&
2074 SrcTy == LLT::scalar(64)) {
2075 llvm_unreachable("TableGen can import this case");
2076 return false;
2077 } else if (DstRC == &AArch64::GPR32RegClass &&
2078 SrcRC == &AArch64::GPR64RegClass) {
2079 I.getOperand(1).setSubReg(AArch64::sub_32);
2080 } else {
2081 LLVM_DEBUG(
2082 dbgs() << "Unhandled mismatched classes in G_TRUNC/G_PTRTOINT\n");
2083 return false;
2084 }
2085
2086 I.setDesc(TII.get(TargetOpcode::COPY));
2087 return true;
2088 } else if (DstRB.getID() == AArch64::FPRRegBankID) {
2089 if (DstTy == LLT::vector(4, 16) && SrcTy == LLT::vector(4, 32)) {
2090 I.setDesc(TII.get(AArch64::XTNv4i16));
2091 constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2092 return true;
2093 }
2094
2095 if (!SrcTy.isVector() && SrcTy.getSizeInBits() == 128) {
2096 MachineIRBuilder MIB(I);
2097 MachineInstr *Extract = emitExtractVectorElt(
2098 DstReg, DstRB, LLT::scalar(DstTy.getSizeInBits()), SrcReg, 0, MIB);
2099 if (!Extract)
2100 return false;
2101 I.eraseFromParent();
2102 return true;
2103 }
2104 }
2105
2106 return false;
2107 }
2108
2109 case TargetOpcode::G_ANYEXT: {
2110 const Register DstReg = I.getOperand(0).getReg();
2111 const Register SrcReg = I.getOperand(1).getReg();
2112
2113 const RegisterBank &RBDst = *RBI.getRegBank(DstReg, MRI, TRI);
2114 if (RBDst.getID() != AArch64::GPRRegBankID) {
2115 LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBDst
2116 << ", expected: GPR\n");
2117 return false;
2118 }
2119
2120 const RegisterBank &RBSrc = *RBI.getRegBank(SrcReg, MRI, TRI);
2121 if (RBSrc.getID() != AArch64::GPRRegBankID) {
2122 LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBSrc
2123 << ", expected: GPR\n");
2124 return false;
2125 }
2126
2127 const unsigned DstSize = MRI.getType(DstReg).getSizeInBits();
2128
2129 if (DstSize == 0) {
2130 LLVM_DEBUG(dbgs() << "G_ANYEXT operand has no size, not a gvreg?\n");
2131 return false;
2132 }
2133
2134 if (DstSize != 64 && DstSize > 32) {
2135 LLVM_DEBUG(dbgs() << "G_ANYEXT to size: " << DstSize
2136 << ", expected: 32 or 64\n");
2137 return false;
2138 }
2139 // At this point G_ANYEXT is just like a plain COPY, but we need
2140 // to explicitly form the 64-bit value if any.
2141 if (DstSize > 32) {
2142 Register ExtSrc = MRI.createVirtualRegister(&AArch64::GPR64allRegClass);
2143 BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::SUBREG_TO_REG))
2144 .addDef(ExtSrc)
2145 .addImm(0)
2146 .addUse(SrcReg)
2147 .addImm(AArch64::sub_32);
2148 I.getOperand(1).setReg(ExtSrc);
2149 }
2150 return selectCopy(I, TII, MRI, TRI, RBI);
2151 }
2152
2153 case TargetOpcode::G_ZEXT:
2154 case TargetOpcode::G_SEXT: {
2155 unsigned Opcode = I.getOpcode();
2156 const bool IsSigned = Opcode == TargetOpcode::G_SEXT;
2157 const Register DefReg = I.getOperand(0).getReg();
2158 const Register SrcReg = I.getOperand(1).getReg();
2159 const LLT DstTy = MRI.getType(DefReg);
2160 const LLT SrcTy = MRI.getType(SrcReg);
2161 unsigned DstSize = DstTy.getSizeInBits();
2162 unsigned SrcSize = SrcTy.getSizeInBits();
2163
2164 if (DstTy.isVector())
2165 return false; // Should be handled by imported patterns.
2166
2167 assert((*RBI.getRegBank(DefReg, MRI, TRI)).getID() ==
2168 AArch64::GPRRegBankID &&
2169 "Unexpected ext regbank");
2170
2171 MachineIRBuilder MIB(I);
2172 MachineInstr *ExtI;
2173
2174 // First check if we're extending the result of a load which has a dest type
2175 // smaller than 32 bits, then this zext is redundant. GPR32 is the smallest
2176 // GPR register on AArch64 and all loads which are smaller automatically
2177 // zero-extend the upper bits. E.g.
2178 // %v(s8) = G_LOAD %p, :: (load 1)
2179 // %v2(s32) = G_ZEXT %v(s8)
2180 if (!IsSigned) {
2181 auto *LoadMI = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI);
2182 if (LoadMI &&
2183 RBI.getRegBank(SrcReg, MRI, TRI)->getID() == AArch64::GPRRegBankID) {
2184 const MachineMemOperand *MemOp = *LoadMI->memoperands_begin();
2185 unsigned BytesLoaded = MemOp->getSize();
2186 if (BytesLoaded < 4 && SrcTy.getSizeInBytes() == BytesLoaded)
2187 return selectCopy(I, TII, MRI, TRI, RBI);
2188 }
2189 }
2190
2191 if (DstSize == 64) {
2192 // FIXME: Can we avoid manually doing this?
2193 if (!RBI.constrainGenericRegister(SrcReg, AArch64::GPR32RegClass, MRI)) {
2194 LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(Opcode)
2195 << " operand\n");
2196 return false;
2197 }
2198
2199 auto SubregToReg =
2200 MIB.buildInstr(AArch64::SUBREG_TO_REG, {&AArch64::GPR64RegClass}, {})
2201 .addImm(0)
2202 .addUse(SrcReg)
2203 .addImm(AArch64::sub_32);
2204
2205 ExtI = MIB.buildInstr(IsSigned ? AArch64::SBFMXri : AArch64::UBFMXri,
2206 {DefReg}, {SubregToReg})
2207 .addImm(0)
2208 .addImm(SrcSize - 1);
2209 } else if (DstSize <= 32) {
2210 ExtI = MIB.buildInstr(IsSigned ? AArch64::SBFMWri : AArch64::UBFMWri,
2211 {DefReg}, {SrcReg})
2212 .addImm(0)
2213 .addImm(SrcSize - 1);
2214 } else {
2215 return false;
2216 }
2217
2218 constrainSelectedInstRegOperands(*ExtI, TII, TRI, RBI);
2219 I.eraseFromParent();
2220 return true;
2221 }
2222
2223 case TargetOpcode::G_SITOFP:
2224 case TargetOpcode::G_UITOFP:
2225 case TargetOpcode::G_FPTOSI:
2226 case TargetOpcode::G_FPTOUI: {
2227 const LLT DstTy = MRI.getType(I.getOperand(0).getReg()),
2228 SrcTy = MRI.getType(I.getOperand(1).getReg());
2229 const unsigned NewOpc = selectFPConvOpc(Opcode, DstTy, SrcTy);
2230 if (NewOpc == Opcode)
2231 return false;
2232
2233 I.setDesc(TII.get(NewOpc));
2234 constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2235
2236 return true;
2237 }
2238
2239
2240 case TargetOpcode::G_INTTOPTR:
2241 // The importer is currently unable to import pointer types since they
2242 // didn't exist in SelectionDAG.
2243 return selectCopy(I, TII, MRI, TRI, RBI);
2244
2245 case TargetOpcode::G_BITCAST:
2246 // Imported SelectionDAG rules can handle every bitcast except those that
2247 // bitcast from a type to the same type. Ideally, these shouldn't occur
2248 // but we might not run an optimizer that deletes them. The other exception
2249 // is bitcasts involving pointer types, as SelectionDAG has no knowledge
2250 // of them.
2251 return selectCopy(I, TII, MRI, TRI, RBI);
2252
2253 case TargetOpcode::G_SELECT: {
2254 if (MRI.getType(I.getOperand(1).getReg()) != LLT::scalar(1)) {
2255 LLVM_DEBUG(dbgs() << "G_SELECT cond has type: " << Ty
2256 << ", expected: " << LLT::scalar(1) << '\n');
2257 return false;
2258 }
2259
2260 const Register CondReg = I.getOperand(1).getReg();
2261 const Register TReg = I.getOperand(2).getReg();
2262 const Register FReg = I.getOperand(3).getReg();
2263
2264 if (tryOptSelect(I))
2265 return true;
2266
2267 Register CSelOpc = selectSelectOpc(I, MRI, RBI);
2268 MachineInstr &TstMI =
2269 *BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::ANDSWri))
2270 .addDef(AArch64::WZR)
2271 .addUse(CondReg)
2272 .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
2273
2274 MachineInstr &CSelMI = *BuildMI(MBB, I, I.getDebugLoc(), TII.get(CSelOpc))
2275 .addDef(I.getOperand(0).getReg())
2276 .addUse(TReg)
2277 .addUse(FReg)
2278 .addImm(AArch64CC::NE);
2279
2280 constrainSelectedInstRegOperands(TstMI, TII, TRI, RBI);
2281 constrainSelectedInstRegOperands(CSelMI, TII, TRI, RBI);
2282
2283 I.eraseFromParent();
2284 return true;
2285 }
2286 case TargetOpcode::G_ICMP: {
2287 if (Ty.isVector())
2288 return selectVectorICmp(I, MRI);
2289
2290 if (Ty != LLT::scalar(32)) {
2291 LLVM_DEBUG(dbgs() << "G_ICMP result has type: " << Ty
2292 << ", expected: " << LLT::scalar(32) << '\n');
2293 return false;
2294 }
2295
2296 MachineIRBuilder MIRBuilder(I);
2297 if (!emitIntegerCompare(I.getOperand(2), I.getOperand(3), I.getOperand(1),
2298 MIRBuilder))
2299 return false;
2300 emitCSetForICMP(I.getOperand(0).getReg(), I.getOperand(1).getPredicate(),
2301 MIRBuilder);
2302 I.eraseFromParent();
2303 return true;
2304 }
2305
2306 case TargetOpcode::G_FCMP: {
2307 if (Ty != LLT::scalar(32)) {
2308 LLVM_DEBUG(dbgs() << "G_FCMP result has type: " << Ty
2309 << ", expected: " << LLT::scalar(32) << '\n');
2310 return false;
2311 }
2312
2313 unsigned CmpOpc = selectFCMPOpc(I, MRI);
2314 if (!CmpOpc)
2315 return false;
2316
2317 // FIXME: regbank
2318
2319 AArch64CC::CondCode CC1, CC2;
2320 changeFCMPPredToAArch64CC(
2321 (CmpInst::Predicate)I.getOperand(1).getPredicate(), CC1, CC2);
2322
2323 // Partially build the compare. Decide if we need to add a use for the
2324 // third operand based off whether or not we're comparing against 0.0.
2325 auto CmpMI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(CmpOpc))
2326 .addUse(I.getOperand(2).getReg());
2327
2328 // If we don't have an immediate compare, then we need to add a use of the
2329 // register which wasn't used for the immediate.
2330 // Note that the immediate will always be the last operand.
2331 if (CmpOpc != AArch64::FCMPSri && CmpOpc != AArch64::FCMPDri)
2332 CmpMI = CmpMI.addUse(I.getOperand(3).getReg());
2333
2334 const Register DefReg = I.getOperand(0).getReg();
2335 Register Def1Reg = DefReg;
2336 if (CC2 != AArch64CC::AL)
2337 Def1Reg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
2338
2339 MachineInstr &CSetMI =
2340 *BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::CSINCWr))
2341 .addDef(Def1Reg)
2342 .addUse(AArch64::WZR)
2343 .addUse(AArch64::WZR)
2344 .addImm(getInvertedCondCode(CC1));
2345
2346 if (CC2 != AArch64CC::AL) {
2347 Register Def2Reg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
2348 MachineInstr &CSet2MI =
2349 *BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::CSINCWr))
2350 .addDef(Def2Reg)
2351 .addUse(AArch64::WZR)
2352 .addUse(AArch64::WZR)
2353 .addImm(getInvertedCondCode(CC2));
2354 MachineInstr &OrMI =
2355 *BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::ORRWrr))
2356 .addDef(DefReg)
2357 .addUse(Def1Reg)
2358 .addUse(Def2Reg);
2359 constrainSelectedInstRegOperands(OrMI, TII, TRI, RBI);
2360 constrainSelectedInstRegOperands(CSet2MI, TII, TRI, RBI);
2361 }
2362 constrainSelectedInstRegOperands(*CmpMI, TII, TRI, RBI);
2363 constrainSelectedInstRegOperands(CSetMI, TII, TRI, RBI);
2364
2365 I.eraseFromParent();
2366 return true;
2367 }
2368 case TargetOpcode::G_VASTART:
2369 return STI.isTargetDarwin() ? selectVaStartDarwin(I, MF, MRI)
2370 : selectVaStartAAPCS(I, MF, MRI);
2371 case TargetOpcode::G_INTRINSIC:
2372 return selectIntrinsic(I, MRI);
2373 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
2374 return selectIntrinsicWithSideEffects(I, MRI);
2375 case TargetOpcode::G_IMPLICIT_DEF: {
2376 I.setDesc(TII.get(TargetOpcode::IMPLICIT_DEF));
2377 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
2378 const Register DstReg = I.getOperand(0).getReg();
2379 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
2380 const TargetRegisterClass *DstRC =
2381 getRegClassForTypeOnBank(DstTy, DstRB, RBI);
2382 RBI.constrainGenericRegister(DstReg, *DstRC, MRI);
2383 return true;
2384 }
2385 case TargetOpcode::G_BLOCK_ADDR: {
2386 if (TM.getCodeModel() == CodeModel::Large) {
2387 materializeLargeCMVal(I, I.getOperand(1).getBlockAddress(), 0);
2388 I.eraseFromParent();
2389 return true;
2390 } else {
2391 I.setDesc(TII.get(AArch64::MOVaddrBA));
2392 auto MovMI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::MOVaddrBA),
2393 I.getOperand(0).getReg())
2394 .addBlockAddress(I.getOperand(1).getBlockAddress(),
2395 /* Offset */ 0, AArch64II::MO_PAGE)
2396 .addBlockAddress(
2397 I.getOperand(1).getBlockAddress(), /* Offset */ 0,
2398 AArch64II::MO_NC | AArch64II::MO_PAGEOFF);
2399 I.eraseFromParent();
2400 return constrainSelectedInstRegOperands(*MovMI, TII, TRI, RBI);
2401 }
2402 }
2403 case TargetOpcode::G_INTRINSIC_TRUNC:
2404 return selectIntrinsicTrunc(I, MRI);
2405 case TargetOpcode::G_INTRINSIC_ROUND:
2406 return selectIntrinsicRound(I, MRI);
2407 case TargetOpcode::G_BUILD_VECTOR:
2408 return selectBuildVector(I, MRI);
2409 case TargetOpcode::G_MERGE_VALUES:
2410 return selectMergeValues(I, MRI);
2411 case TargetOpcode::G_UNMERGE_VALUES:
2412 return selectUnmergeValues(I, MRI);
2413 case TargetOpcode::G_SHUFFLE_VECTOR:
2414 return selectShuffleVector(I, MRI);
2415 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2416 return selectExtractElt(I, MRI);
2417 case TargetOpcode::G_INSERT_VECTOR_ELT:
2418 return selectInsertElt(I, MRI);
2419 case TargetOpcode::G_CONCAT_VECTORS:
2420 return selectConcatVectors(I, MRI);
2421 case TargetOpcode::G_JUMP_TABLE:
2422 return selectJumpTable(I, MRI);
2423 }
2424
2425 return false;
2426 }
2427
selectBrJT(MachineInstr & I,MachineRegisterInfo & MRI) const2428 bool AArch64InstructionSelector::selectBrJT(MachineInstr &I,
2429 MachineRegisterInfo &MRI) const {
2430 assert(I.getOpcode() == TargetOpcode::G_BRJT && "Expected G_BRJT");
2431 Register JTAddr = I.getOperand(0).getReg();
2432 unsigned JTI = I.getOperand(1).getIndex();
2433 Register Index = I.getOperand(2).getReg();
2434 MachineIRBuilder MIB(I);
2435
2436 Register TargetReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
2437 Register ScratchReg = MRI.createVirtualRegister(&AArch64::GPR64spRegClass);
2438 MIB.buildInstr(AArch64::JumpTableDest32, {TargetReg, ScratchReg},
2439 {JTAddr, Index})
2440 .addJumpTableIndex(JTI);
2441
2442 // Build the indirect branch.
2443 MIB.buildInstr(AArch64::BR, {}, {TargetReg});
2444 I.eraseFromParent();
2445 return true;
2446 }
2447
selectJumpTable(MachineInstr & I,MachineRegisterInfo & MRI) const2448 bool AArch64InstructionSelector::selectJumpTable(
2449 MachineInstr &I, MachineRegisterInfo &MRI) const {
2450 assert(I.getOpcode() == TargetOpcode::G_JUMP_TABLE && "Expected jump table");
2451 assert(I.getOperand(1).isJTI() && "Jump table op should have a JTI!");
2452
2453 Register DstReg = I.getOperand(0).getReg();
2454 unsigned JTI = I.getOperand(1).getIndex();
2455 // We generate a MOVaddrJT which will get expanded to an ADRP + ADD later.
2456 MachineIRBuilder MIB(I);
2457 auto MovMI =
2458 MIB.buildInstr(AArch64::MOVaddrJT, {DstReg}, {})
2459 .addJumpTableIndex(JTI, AArch64II::MO_PAGE)
2460 .addJumpTableIndex(JTI, AArch64II::MO_NC | AArch64II::MO_PAGEOFF);
2461 I.eraseFromParent();
2462 return constrainSelectedInstRegOperands(*MovMI, TII, TRI, RBI);
2463 }
2464
selectTLSGlobalValue(MachineInstr & I,MachineRegisterInfo & MRI) const2465 bool AArch64InstructionSelector::selectTLSGlobalValue(
2466 MachineInstr &I, MachineRegisterInfo &MRI) const {
2467 if (!STI.isTargetMachO())
2468 return false;
2469 MachineFunction &MF = *I.getParent()->getParent();
2470 MF.getFrameInfo().setAdjustsStack(true);
2471
2472 const GlobalValue &GV = *I.getOperand(1).getGlobal();
2473 MachineIRBuilder MIB(I);
2474
2475 MIB.buildInstr(AArch64::LOADgot, {AArch64::X0}, {})
2476 .addGlobalAddress(&GV, 0, AArch64II::MO_TLS);
2477
2478 auto Load = MIB.buildInstr(AArch64::LDRXui, {&AArch64::GPR64commonRegClass},
2479 {Register(AArch64::X0)})
2480 .addImm(0);
2481
2482 // TLS calls preserve all registers except those that absolutely must be
2483 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
2484 // silly).
2485 MIB.buildInstr(AArch64::BLR, {}, {Load})
2486 .addDef(AArch64::X0, RegState::Implicit)
2487 .addRegMask(TRI.getTLSCallPreservedMask());
2488
2489 MIB.buildCopy(I.getOperand(0).getReg(), Register(AArch64::X0));
2490 RBI.constrainGenericRegister(I.getOperand(0).getReg(), AArch64::GPR64RegClass,
2491 MRI);
2492 I.eraseFromParent();
2493 return true;
2494 }
2495
selectIntrinsicTrunc(MachineInstr & I,MachineRegisterInfo & MRI) const2496 bool AArch64InstructionSelector::selectIntrinsicTrunc(
2497 MachineInstr &I, MachineRegisterInfo &MRI) const {
2498 const LLT SrcTy = MRI.getType(I.getOperand(0).getReg());
2499
2500 // Select the correct opcode.
2501 unsigned Opc = 0;
2502 if (!SrcTy.isVector()) {
2503 switch (SrcTy.getSizeInBits()) {
2504 default:
2505 case 16:
2506 Opc = AArch64::FRINTZHr;
2507 break;
2508 case 32:
2509 Opc = AArch64::FRINTZSr;
2510 break;
2511 case 64:
2512 Opc = AArch64::FRINTZDr;
2513 break;
2514 }
2515 } else {
2516 unsigned NumElts = SrcTy.getNumElements();
2517 switch (SrcTy.getElementType().getSizeInBits()) {
2518 default:
2519 break;
2520 case 16:
2521 if (NumElts == 4)
2522 Opc = AArch64::FRINTZv4f16;
2523 else if (NumElts == 8)
2524 Opc = AArch64::FRINTZv8f16;
2525 break;
2526 case 32:
2527 if (NumElts == 2)
2528 Opc = AArch64::FRINTZv2f32;
2529 else if (NumElts == 4)
2530 Opc = AArch64::FRINTZv4f32;
2531 break;
2532 case 64:
2533 if (NumElts == 2)
2534 Opc = AArch64::FRINTZv2f64;
2535 break;
2536 }
2537 }
2538
2539 if (!Opc) {
2540 // Didn't get an opcode above, bail.
2541 LLVM_DEBUG(dbgs() << "Unsupported type for G_INTRINSIC_TRUNC!\n");
2542 return false;
2543 }
2544
2545 // Legalization would have set us up perfectly for this; we just need to
2546 // set the opcode and move on.
2547 I.setDesc(TII.get(Opc));
2548 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2549 }
2550
selectIntrinsicRound(MachineInstr & I,MachineRegisterInfo & MRI) const2551 bool AArch64InstructionSelector::selectIntrinsicRound(
2552 MachineInstr &I, MachineRegisterInfo &MRI) const {
2553 const LLT SrcTy = MRI.getType(I.getOperand(0).getReg());
2554
2555 // Select the correct opcode.
2556 unsigned Opc = 0;
2557 if (!SrcTy.isVector()) {
2558 switch (SrcTy.getSizeInBits()) {
2559 default:
2560 case 16:
2561 Opc = AArch64::FRINTAHr;
2562 break;
2563 case 32:
2564 Opc = AArch64::FRINTASr;
2565 break;
2566 case 64:
2567 Opc = AArch64::FRINTADr;
2568 break;
2569 }
2570 } else {
2571 unsigned NumElts = SrcTy.getNumElements();
2572 switch (SrcTy.getElementType().getSizeInBits()) {
2573 default:
2574 break;
2575 case 16:
2576 if (NumElts == 4)
2577 Opc = AArch64::FRINTAv4f16;
2578 else if (NumElts == 8)
2579 Opc = AArch64::FRINTAv8f16;
2580 break;
2581 case 32:
2582 if (NumElts == 2)
2583 Opc = AArch64::FRINTAv2f32;
2584 else if (NumElts == 4)
2585 Opc = AArch64::FRINTAv4f32;
2586 break;
2587 case 64:
2588 if (NumElts == 2)
2589 Opc = AArch64::FRINTAv2f64;
2590 break;
2591 }
2592 }
2593
2594 if (!Opc) {
2595 // Didn't get an opcode above, bail.
2596 LLVM_DEBUG(dbgs() << "Unsupported type for G_INTRINSIC_ROUND!\n");
2597 return false;
2598 }
2599
2600 // Legalization would have set us up perfectly for this; we just need to
2601 // set the opcode and move on.
2602 I.setDesc(TII.get(Opc));
2603 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2604 }
2605
selectVectorICmp(MachineInstr & I,MachineRegisterInfo & MRI) const2606 bool AArch64InstructionSelector::selectVectorICmp(
2607 MachineInstr &I, MachineRegisterInfo &MRI) const {
2608 Register DstReg = I.getOperand(0).getReg();
2609 LLT DstTy = MRI.getType(DstReg);
2610 Register SrcReg = I.getOperand(2).getReg();
2611 Register Src2Reg = I.getOperand(3).getReg();
2612 LLT SrcTy = MRI.getType(SrcReg);
2613
2614 unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits();
2615 unsigned NumElts = DstTy.getNumElements();
2616
2617 // First index is element size, 0 == 8b, 1 == 16b, 2 == 32b, 3 == 64b
2618 // Second index is num elts, 0 == v2, 1 == v4, 2 == v8, 3 == v16
2619 // Third index is cc opcode:
2620 // 0 == eq
2621 // 1 == ugt
2622 // 2 == uge
2623 // 3 == ult
2624 // 4 == ule
2625 // 5 == sgt
2626 // 6 == sge
2627 // 7 == slt
2628 // 8 == sle
2629 // ne is done by negating 'eq' result.
2630
2631 // This table below assumes that for some comparisons the operands will be
2632 // commuted.
2633 // ult op == commute + ugt op
2634 // ule op == commute + uge op
2635 // slt op == commute + sgt op
2636 // sle op == commute + sge op
2637 unsigned PredIdx = 0;
2638 bool SwapOperands = false;
2639 CmpInst::Predicate Pred = (CmpInst::Predicate)I.getOperand(1).getPredicate();
2640 switch (Pred) {
2641 case CmpInst::ICMP_NE:
2642 case CmpInst::ICMP_EQ:
2643 PredIdx = 0;
2644 break;
2645 case CmpInst::ICMP_UGT:
2646 PredIdx = 1;
2647 break;
2648 case CmpInst::ICMP_UGE:
2649 PredIdx = 2;
2650 break;
2651 case CmpInst::ICMP_ULT:
2652 PredIdx = 3;
2653 SwapOperands = true;
2654 break;
2655 case CmpInst::ICMP_ULE:
2656 PredIdx = 4;
2657 SwapOperands = true;
2658 break;
2659 case CmpInst::ICMP_SGT:
2660 PredIdx = 5;
2661 break;
2662 case CmpInst::ICMP_SGE:
2663 PredIdx = 6;
2664 break;
2665 case CmpInst::ICMP_SLT:
2666 PredIdx = 7;
2667 SwapOperands = true;
2668 break;
2669 case CmpInst::ICMP_SLE:
2670 PredIdx = 8;
2671 SwapOperands = true;
2672 break;
2673 default:
2674 llvm_unreachable("Unhandled icmp predicate");
2675 return false;
2676 }
2677
2678 // This table obviously should be tablegen'd when we have our GISel native
2679 // tablegen selector.
2680
2681 static const unsigned OpcTable[4][4][9] = {
2682 {
2683 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2684 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2685 0 /* invalid */},
2686 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2687 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2688 0 /* invalid */},
2689 {AArch64::CMEQv8i8, AArch64::CMHIv8i8, AArch64::CMHSv8i8,
2690 AArch64::CMHIv8i8, AArch64::CMHSv8i8, AArch64::CMGTv8i8,
2691 AArch64::CMGEv8i8, AArch64::CMGTv8i8, AArch64::CMGEv8i8},
2692 {AArch64::CMEQv16i8, AArch64::CMHIv16i8, AArch64::CMHSv16i8,
2693 AArch64::CMHIv16i8, AArch64::CMHSv16i8, AArch64::CMGTv16i8,
2694 AArch64::CMGEv16i8, AArch64::CMGTv16i8, AArch64::CMGEv16i8}
2695 },
2696 {
2697 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2698 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2699 0 /* invalid */},
2700 {AArch64::CMEQv4i16, AArch64::CMHIv4i16, AArch64::CMHSv4i16,
2701 AArch64::CMHIv4i16, AArch64::CMHSv4i16, AArch64::CMGTv4i16,
2702 AArch64::CMGEv4i16, AArch64::CMGTv4i16, AArch64::CMGEv4i16},
2703 {AArch64::CMEQv8i16, AArch64::CMHIv8i16, AArch64::CMHSv8i16,
2704 AArch64::CMHIv8i16, AArch64::CMHSv8i16, AArch64::CMGTv8i16,
2705 AArch64::CMGEv8i16, AArch64::CMGTv8i16, AArch64::CMGEv8i16},
2706 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2707 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2708 0 /* invalid */}
2709 },
2710 {
2711 {AArch64::CMEQv2i32, AArch64::CMHIv2i32, AArch64::CMHSv2i32,
2712 AArch64::CMHIv2i32, AArch64::CMHSv2i32, AArch64::CMGTv2i32,
2713 AArch64::CMGEv2i32, AArch64::CMGTv2i32, AArch64::CMGEv2i32},
2714 {AArch64::CMEQv4i32, AArch64::CMHIv4i32, AArch64::CMHSv4i32,
2715 AArch64::CMHIv4i32, AArch64::CMHSv4i32, AArch64::CMGTv4i32,
2716 AArch64::CMGEv4i32, AArch64::CMGTv4i32, AArch64::CMGEv4i32},
2717 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2718 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2719 0 /* invalid */},
2720 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2721 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2722 0 /* invalid */}
2723 },
2724 {
2725 {AArch64::CMEQv2i64, AArch64::CMHIv2i64, AArch64::CMHSv2i64,
2726 AArch64::CMHIv2i64, AArch64::CMHSv2i64, AArch64::CMGTv2i64,
2727 AArch64::CMGEv2i64, AArch64::CMGTv2i64, AArch64::CMGEv2i64},
2728 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2729 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2730 0 /* invalid */},
2731 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2732 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2733 0 /* invalid */},
2734 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2735 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2736 0 /* invalid */}
2737 },
2738 };
2739 unsigned EltIdx = Log2_32(SrcEltSize / 8);
2740 unsigned NumEltsIdx = Log2_32(NumElts / 2);
2741 unsigned Opc = OpcTable[EltIdx][NumEltsIdx][PredIdx];
2742 if (!Opc) {
2743 LLVM_DEBUG(dbgs() << "Could not map G_ICMP to cmp opcode");
2744 return false;
2745 }
2746
2747 const RegisterBank &VecRB = *RBI.getRegBank(SrcReg, MRI, TRI);
2748 const TargetRegisterClass *SrcRC =
2749 getRegClassForTypeOnBank(SrcTy, VecRB, RBI, true);
2750 if (!SrcRC) {
2751 LLVM_DEBUG(dbgs() << "Could not determine source register class.\n");
2752 return false;
2753 }
2754
2755 unsigned NotOpc = Pred == ICmpInst::ICMP_NE ? AArch64::NOTv8i8 : 0;
2756 if (SrcTy.getSizeInBits() == 128)
2757 NotOpc = NotOpc ? AArch64::NOTv16i8 : 0;
2758
2759 if (SwapOperands)
2760 std::swap(SrcReg, Src2Reg);
2761
2762 MachineIRBuilder MIB(I);
2763 auto Cmp = MIB.buildInstr(Opc, {SrcRC}, {SrcReg, Src2Reg});
2764 constrainSelectedInstRegOperands(*Cmp, TII, TRI, RBI);
2765
2766 // Invert if we had a 'ne' cc.
2767 if (NotOpc) {
2768 Cmp = MIB.buildInstr(NotOpc, {DstReg}, {Cmp});
2769 constrainSelectedInstRegOperands(*Cmp, TII, TRI, RBI);
2770 } else {
2771 MIB.buildCopy(DstReg, Cmp.getReg(0));
2772 }
2773 RBI.constrainGenericRegister(DstReg, *SrcRC, MRI);
2774 I.eraseFromParent();
2775 return true;
2776 }
2777
emitScalarToVector(unsigned EltSize,const TargetRegisterClass * DstRC,Register Scalar,MachineIRBuilder & MIRBuilder) const2778 MachineInstr *AArch64InstructionSelector::emitScalarToVector(
2779 unsigned EltSize, const TargetRegisterClass *DstRC, Register Scalar,
2780 MachineIRBuilder &MIRBuilder) const {
2781 auto Undef = MIRBuilder.buildInstr(TargetOpcode::IMPLICIT_DEF, {DstRC}, {});
2782
2783 auto BuildFn = [&](unsigned SubregIndex) {
2784 auto Ins =
2785 MIRBuilder
2786 .buildInstr(TargetOpcode::INSERT_SUBREG, {DstRC}, {Undef, Scalar})
2787 .addImm(SubregIndex);
2788 constrainSelectedInstRegOperands(*Undef, TII, TRI, RBI);
2789 constrainSelectedInstRegOperands(*Ins, TII, TRI, RBI);
2790 return &*Ins;
2791 };
2792
2793 switch (EltSize) {
2794 case 16:
2795 return BuildFn(AArch64::hsub);
2796 case 32:
2797 return BuildFn(AArch64::ssub);
2798 case 64:
2799 return BuildFn(AArch64::dsub);
2800 default:
2801 return nullptr;
2802 }
2803 }
2804
selectMergeValues(MachineInstr & I,MachineRegisterInfo & MRI) const2805 bool AArch64InstructionSelector::selectMergeValues(
2806 MachineInstr &I, MachineRegisterInfo &MRI) const {
2807 assert(I.getOpcode() == TargetOpcode::G_MERGE_VALUES && "unexpected opcode");
2808 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
2809 const LLT SrcTy = MRI.getType(I.getOperand(1).getReg());
2810 assert(!DstTy.isVector() && !SrcTy.isVector() && "invalid merge operation");
2811 const RegisterBank &RB = *RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI);
2812
2813 if (I.getNumOperands() != 3)
2814 return false;
2815
2816 // Merging 2 s64s into an s128.
2817 if (DstTy == LLT::scalar(128)) {
2818 if (SrcTy.getSizeInBits() != 64)
2819 return false;
2820 MachineIRBuilder MIB(I);
2821 Register DstReg = I.getOperand(0).getReg();
2822 Register Src1Reg = I.getOperand(1).getReg();
2823 Register Src2Reg = I.getOperand(2).getReg();
2824 auto Tmp = MIB.buildInstr(TargetOpcode::IMPLICIT_DEF, {DstTy}, {});
2825 MachineInstr *InsMI =
2826 emitLaneInsert(None, Tmp.getReg(0), Src1Reg, /* LaneIdx */ 0, RB, MIB);
2827 if (!InsMI)
2828 return false;
2829 MachineInstr *Ins2MI = emitLaneInsert(DstReg, InsMI->getOperand(0).getReg(),
2830 Src2Reg, /* LaneIdx */ 1, RB, MIB);
2831 if (!Ins2MI)
2832 return false;
2833 constrainSelectedInstRegOperands(*InsMI, TII, TRI, RBI);
2834 constrainSelectedInstRegOperands(*Ins2MI, TII, TRI, RBI);
2835 I.eraseFromParent();
2836 return true;
2837 }
2838
2839 if (RB.getID() != AArch64::GPRRegBankID)
2840 return false;
2841
2842 if (DstTy.getSizeInBits() != 64 || SrcTy.getSizeInBits() != 32)
2843 return false;
2844
2845 auto *DstRC = &AArch64::GPR64RegClass;
2846 Register SubToRegDef = MRI.createVirtualRegister(DstRC);
2847 MachineInstr &SubRegMI = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
2848 TII.get(TargetOpcode::SUBREG_TO_REG))
2849 .addDef(SubToRegDef)
2850 .addImm(0)
2851 .addUse(I.getOperand(1).getReg())
2852 .addImm(AArch64::sub_32);
2853 Register SubToRegDef2 = MRI.createVirtualRegister(DstRC);
2854 // Need to anyext the second scalar before we can use bfm
2855 MachineInstr &SubRegMI2 = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
2856 TII.get(TargetOpcode::SUBREG_TO_REG))
2857 .addDef(SubToRegDef2)
2858 .addImm(0)
2859 .addUse(I.getOperand(2).getReg())
2860 .addImm(AArch64::sub_32);
2861 MachineInstr &BFM =
2862 *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::BFMXri))
2863 .addDef(I.getOperand(0).getReg())
2864 .addUse(SubToRegDef)
2865 .addUse(SubToRegDef2)
2866 .addImm(32)
2867 .addImm(31);
2868 constrainSelectedInstRegOperands(SubRegMI, TII, TRI, RBI);
2869 constrainSelectedInstRegOperands(SubRegMI2, TII, TRI, RBI);
2870 constrainSelectedInstRegOperands(BFM, TII, TRI, RBI);
2871 I.eraseFromParent();
2872 return true;
2873 }
2874
getLaneCopyOpcode(unsigned & CopyOpc,unsigned & ExtractSubReg,const unsigned EltSize)2875 static bool getLaneCopyOpcode(unsigned &CopyOpc, unsigned &ExtractSubReg,
2876 const unsigned EltSize) {
2877 // Choose a lane copy opcode and subregister based off of the size of the
2878 // vector's elements.
2879 switch (EltSize) {
2880 case 16:
2881 CopyOpc = AArch64::CPYi16;
2882 ExtractSubReg = AArch64::hsub;
2883 break;
2884 case 32:
2885 CopyOpc = AArch64::CPYi32;
2886 ExtractSubReg = AArch64::ssub;
2887 break;
2888 case 64:
2889 CopyOpc = AArch64::CPYi64;
2890 ExtractSubReg = AArch64::dsub;
2891 break;
2892 default:
2893 // Unknown size, bail out.
2894 LLVM_DEBUG(dbgs() << "Elt size '" << EltSize << "' unsupported.\n");
2895 return false;
2896 }
2897 return true;
2898 }
2899
emitExtractVectorElt(Optional<Register> DstReg,const RegisterBank & DstRB,LLT ScalarTy,Register VecReg,unsigned LaneIdx,MachineIRBuilder & MIRBuilder) const2900 MachineInstr *AArch64InstructionSelector::emitExtractVectorElt(
2901 Optional<Register> DstReg, const RegisterBank &DstRB, LLT ScalarTy,
2902 Register VecReg, unsigned LaneIdx, MachineIRBuilder &MIRBuilder) const {
2903 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
2904 unsigned CopyOpc = 0;
2905 unsigned ExtractSubReg = 0;
2906 if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, ScalarTy.getSizeInBits())) {
2907 LLVM_DEBUG(
2908 dbgs() << "Couldn't determine lane copy opcode for instruction.\n");
2909 return nullptr;
2910 }
2911
2912 const TargetRegisterClass *DstRC =
2913 getRegClassForTypeOnBank(ScalarTy, DstRB, RBI, true);
2914 if (!DstRC) {
2915 LLVM_DEBUG(dbgs() << "Could not determine destination register class.\n");
2916 return nullptr;
2917 }
2918
2919 const RegisterBank &VecRB = *RBI.getRegBank(VecReg, MRI, TRI);
2920 const LLT &VecTy = MRI.getType(VecReg);
2921 const TargetRegisterClass *VecRC =
2922 getRegClassForTypeOnBank(VecTy, VecRB, RBI, true);
2923 if (!VecRC) {
2924 LLVM_DEBUG(dbgs() << "Could not determine source register class.\n");
2925 return nullptr;
2926 }
2927
2928 // The register that we're going to copy into.
2929 Register InsertReg = VecReg;
2930 if (!DstReg)
2931 DstReg = MRI.createVirtualRegister(DstRC);
2932 // If the lane index is 0, we just use a subregister COPY.
2933 if (LaneIdx == 0) {
2934 auto Copy = MIRBuilder.buildInstr(TargetOpcode::COPY, {*DstReg}, {})
2935 .addReg(VecReg, 0, ExtractSubReg);
2936 RBI.constrainGenericRegister(*DstReg, *DstRC, MRI);
2937 return &*Copy;
2938 }
2939
2940 // Lane copies require 128-bit wide registers. If we're dealing with an
2941 // unpacked vector, then we need to move up to that width. Insert an implicit
2942 // def and a subregister insert to get us there.
2943 if (VecTy.getSizeInBits() != 128) {
2944 MachineInstr *ScalarToVector = emitScalarToVector(
2945 VecTy.getSizeInBits(), &AArch64::FPR128RegClass, VecReg, MIRBuilder);
2946 if (!ScalarToVector)
2947 return nullptr;
2948 InsertReg = ScalarToVector->getOperand(0).getReg();
2949 }
2950
2951 MachineInstr *LaneCopyMI =
2952 MIRBuilder.buildInstr(CopyOpc, {*DstReg}, {InsertReg}).addImm(LaneIdx);
2953 constrainSelectedInstRegOperands(*LaneCopyMI, TII, TRI, RBI);
2954
2955 // Make sure that we actually constrain the initial copy.
2956 RBI.constrainGenericRegister(*DstReg, *DstRC, MRI);
2957 return LaneCopyMI;
2958 }
2959
selectExtractElt(MachineInstr & I,MachineRegisterInfo & MRI) const2960 bool AArch64InstructionSelector::selectExtractElt(
2961 MachineInstr &I, MachineRegisterInfo &MRI) const {
2962 assert(I.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT &&
2963 "unexpected opcode!");
2964 Register DstReg = I.getOperand(0).getReg();
2965 const LLT NarrowTy = MRI.getType(DstReg);
2966 const Register SrcReg = I.getOperand(1).getReg();
2967 const LLT WideTy = MRI.getType(SrcReg);
2968 (void)WideTy;
2969 assert(WideTy.getSizeInBits() >= NarrowTy.getSizeInBits() &&
2970 "source register size too small!");
2971 assert(NarrowTy.isScalar() && "cannot extract vector into vector!");
2972
2973 // Need the lane index to determine the correct copy opcode.
2974 MachineOperand &LaneIdxOp = I.getOperand(2);
2975 assert(LaneIdxOp.isReg() && "Lane index operand was not a register?");
2976
2977 if (RBI.getRegBank(DstReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) {
2978 LLVM_DEBUG(dbgs() << "Cannot extract into GPR.\n");
2979 return false;
2980 }
2981
2982 // Find the index to extract from.
2983 auto VRegAndVal = getConstantVRegValWithLookThrough(LaneIdxOp.getReg(), MRI);
2984 if (!VRegAndVal)
2985 return false;
2986 unsigned LaneIdx = VRegAndVal->Value;
2987
2988 MachineIRBuilder MIRBuilder(I);
2989
2990 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
2991 MachineInstr *Extract = emitExtractVectorElt(DstReg, DstRB, NarrowTy, SrcReg,
2992 LaneIdx, MIRBuilder);
2993 if (!Extract)
2994 return false;
2995
2996 I.eraseFromParent();
2997 return true;
2998 }
2999
selectSplitVectorUnmerge(MachineInstr & I,MachineRegisterInfo & MRI) const3000 bool AArch64InstructionSelector::selectSplitVectorUnmerge(
3001 MachineInstr &I, MachineRegisterInfo &MRI) const {
3002 unsigned NumElts = I.getNumOperands() - 1;
3003 Register SrcReg = I.getOperand(NumElts).getReg();
3004 const LLT NarrowTy = MRI.getType(I.getOperand(0).getReg());
3005 const LLT SrcTy = MRI.getType(SrcReg);
3006
3007 assert(NarrowTy.isVector() && "Expected an unmerge into vectors");
3008 if (SrcTy.getSizeInBits() > 128) {
3009 LLVM_DEBUG(dbgs() << "Unexpected vector type for vec split unmerge");
3010 return false;
3011 }
3012
3013 MachineIRBuilder MIB(I);
3014
3015 // We implement a split vector operation by treating the sub-vectors as
3016 // scalars and extracting them.
3017 const RegisterBank &DstRB =
3018 *RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI);
3019 for (unsigned OpIdx = 0; OpIdx < NumElts; ++OpIdx) {
3020 Register Dst = I.getOperand(OpIdx).getReg();
3021 MachineInstr *Extract =
3022 emitExtractVectorElt(Dst, DstRB, NarrowTy, SrcReg, OpIdx, MIB);
3023 if (!Extract)
3024 return false;
3025 }
3026 I.eraseFromParent();
3027 return true;
3028 }
3029
selectUnmergeValues(MachineInstr & I,MachineRegisterInfo & MRI) const3030 bool AArch64InstructionSelector::selectUnmergeValues(
3031 MachineInstr &I, MachineRegisterInfo &MRI) const {
3032 assert(I.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
3033 "unexpected opcode");
3034
3035 // TODO: Handle unmerging into GPRs and from scalars to scalars.
3036 if (RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI)->getID() !=
3037 AArch64::FPRRegBankID ||
3038 RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI)->getID() !=
3039 AArch64::FPRRegBankID) {
3040 LLVM_DEBUG(dbgs() << "Unmerging vector-to-gpr and scalar-to-scalar "
3041 "currently unsupported.\n");
3042 return false;
3043 }
3044
3045 // The last operand is the vector source register, and every other operand is
3046 // a register to unpack into.
3047 unsigned NumElts = I.getNumOperands() - 1;
3048 Register SrcReg = I.getOperand(NumElts).getReg();
3049 const LLT NarrowTy = MRI.getType(I.getOperand(0).getReg());
3050 const LLT WideTy = MRI.getType(SrcReg);
3051 (void)WideTy;
3052 assert((WideTy.isVector() || WideTy.getSizeInBits() == 128) &&
3053 "can only unmerge from vector or s128 types!");
3054 assert(WideTy.getSizeInBits() > NarrowTy.getSizeInBits() &&
3055 "source register size too small!");
3056
3057 if (!NarrowTy.isScalar())
3058 return selectSplitVectorUnmerge(I, MRI);
3059
3060 MachineIRBuilder MIB(I);
3061
3062 // Choose a lane copy opcode and subregister based off of the size of the
3063 // vector's elements.
3064 unsigned CopyOpc = 0;
3065 unsigned ExtractSubReg = 0;
3066 if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, NarrowTy.getSizeInBits()))
3067 return false;
3068
3069 // Set up for the lane copies.
3070 MachineBasicBlock &MBB = *I.getParent();
3071
3072 // Stores the registers we'll be copying from.
3073 SmallVector<Register, 4> InsertRegs;
3074
3075 // We'll use the first register twice, so we only need NumElts-1 registers.
3076 unsigned NumInsertRegs = NumElts - 1;
3077
3078 // If our elements fit into exactly 128 bits, then we can copy from the source
3079 // directly. Otherwise, we need to do a bit of setup with some subregister
3080 // inserts.
3081 if (NarrowTy.getSizeInBits() * NumElts == 128) {
3082 InsertRegs = SmallVector<Register, 4>(NumInsertRegs, SrcReg);
3083 } else {
3084 // No. We have to perform subregister inserts. For each insert, create an
3085 // implicit def and a subregister insert, and save the register we create.
3086 for (unsigned Idx = 0; Idx < NumInsertRegs; ++Idx) {
3087 Register ImpDefReg = MRI.createVirtualRegister(&AArch64::FPR128RegClass);
3088 MachineInstr &ImpDefMI =
3089 *BuildMI(MBB, I, I.getDebugLoc(), TII.get(TargetOpcode::IMPLICIT_DEF),
3090 ImpDefReg);
3091
3092 // Now, create the subregister insert from SrcReg.
3093 Register InsertReg = MRI.createVirtualRegister(&AArch64::FPR128RegClass);
3094 MachineInstr &InsMI =
3095 *BuildMI(MBB, I, I.getDebugLoc(),
3096 TII.get(TargetOpcode::INSERT_SUBREG), InsertReg)
3097 .addUse(ImpDefReg)
3098 .addUse(SrcReg)
3099 .addImm(AArch64::dsub);
3100
3101 constrainSelectedInstRegOperands(ImpDefMI, TII, TRI, RBI);
3102 constrainSelectedInstRegOperands(InsMI, TII, TRI, RBI);
3103
3104 // Save the register so that we can copy from it after.
3105 InsertRegs.push_back(InsertReg);
3106 }
3107 }
3108
3109 // Now that we've created any necessary subregister inserts, we can
3110 // create the copies.
3111 //
3112 // Perform the first copy separately as a subregister copy.
3113 Register CopyTo = I.getOperand(0).getReg();
3114 auto FirstCopy = MIB.buildInstr(TargetOpcode::COPY, {CopyTo}, {})
3115 .addReg(InsertRegs[0], 0, ExtractSubReg);
3116 constrainSelectedInstRegOperands(*FirstCopy, TII, TRI, RBI);
3117
3118 // Now, perform the remaining copies as vector lane copies.
3119 unsigned LaneIdx = 1;
3120 for (Register InsReg : InsertRegs) {
3121 Register CopyTo = I.getOperand(LaneIdx).getReg();
3122 MachineInstr &CopyInst =
3123 *BuildMI(MBB, I, I.getDebugLoc(), TII.get(CopyOpc), CopyTo)
3124 .addUse(InsReg)
3125 .addImm(LaneIdx);
3126 constrainSelectedInstRegOperands(CopyInst, TII, TRI, RBI);
3127 ++LaneIdx;
3128 }
3129
3130 // Separately constrain the first copy's destination. Because of the
3131 // limitation in constrainOperandRegClass, we can't guarantee that this will
3132 // actually be constrained. So, do it ourselves using the second operand.
3133 const TargetRegisterClass *RC =
3134 MRI.getRegClassOrNull(I.getOperand(1).getReg());
3135 if (!RC) {
3136 LLVM_DEBUG(dbgs() << "Couldn't constrain copy destination.\n");
3137 return false;
3138 }
3139
3140 RBI.constrainGenericRegister(CopyTo, *RC, MRI);
3141 I.eraseFromParent();
3142 return true;
3143 }
3144
selectConcatVectors(MachineInstr & I,MachineRegisterInfo & MRI) const3145 bool AArch64InstructionSelector::selectConcatVectors(
3146 MachineInstr &I, MachineRegisterInfo &MRI) const {
3147 assert(I.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
3148 "Unexpected opcode");
3149 Register Dst = I.getOperand(0).getReg();
3150 Register Op1 = I.getOperand(1).getReg();
3151 Register Op2 = I.getOperand(2).getReg();
3152 MachineIRBuilder MIRBuilder(I);
3153 MachineInstr *ConcatMI = emitVectorConcat(Dst, Op1, Op2, MIRBuilder);
3154 if (!ConcatMI)
3155 return false;
3156 I.eraseFromParent();
3157 return true;
3158 }
3159
3160 unsigned
emitConstantPoolEntry(Constant * CPVal,MachineFunction & MF) const3161 AArch64InstructionSelector::emitConstantPoolEntry(Constant *CPVal,
3162 MachineFunction &MF) const {
3163 Type *CPTy = CPVal->getType();
3164 unsigned Align = MF.getDataLayout().getPrefTypeAlignment(CPTy);
3165 if (Align == 0)
3166 Align = MF.getDataLayout().getTypeAllocSize(CPTy);
3167
3168 MachineConstantPool *MCP = MF.getConstantPool();
3169 return MCP->getConstantPoolIndex(CPVal, Align);
3170 }
3171
emitLoadFromConstantPool(Constant * CPVal,MachineIRBuilder & MIRBuilder) const3172 MachineInstr *AArch64InstructionSelector::emitLoadFromConstantPool(
3173 Constant *CPVal, MachineIRBuilder &MIRBuilder) const {
3174 unsigned CPIdx = emitConstantPoolEntry(CPVal, MIRBuilder.getMF());
3175
3176 auto Adrp =
3177 MIRBuilder.buildInstr(AArch64::ADRP, {&AArch64::GPR64RegClass}, {})
3178 .addConstantPoolIndex(CPIdx, 0, AArch64II::MO_PAGE);
3179
3180 MachineInstr *LoadMI = nullptr;
3181 switch (MIRBuilder.getDataLayout().getTypeStoreSize(CPVal->getType())) {
3182 case 16:
3183 LoadMI =
3184 &*MIRBuilder
3185 .buildInstr(AArch64::LDRQui, {&AArch64::FPR128RegClass}, {Adrp})
3186 .addConstantPoolIndex(CPIdx, 0,
3187 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3188 break;
3189 case 8:
3190 LoadMI = &*MIRBuilder
3191 .buildInstr(AArch64::LDRDui, {&AArch64::FPR64RegClass}, {Adrp})
3192 .addConstantPoolIndex(
3193 CPIdx, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3194 break;
3195 default:
3196 LLVM_DEBUG(dbgs() << "Could not load from constant pool of type "
3197 << *CPVal->getType());
3198 return nullptr;
3199 }
3200 constrainSelectedInstRegOperands(*Adrp, TII, TRI, RBI);
3201 constrainSelectedInstRegOperands(*LoadMI, TII, TRI, RBI);
3202 return LoadMI;
3203 }
3204
3205 /// Return an <Opcode, SubregIndex> pair to do an vector elt insert of a given
3206 /// size and RB.
3207 static std::pair<unsigned, unsigned>
getInsertVecEltOpInfo(const RegisterBank & RB,unsigned EltSize)3208 getInsertVecEltOpInfo(const RegisterBank &RB, unsigned EltSize) {
3209 unsigned Opc, SubregIdx;
3210 if (RB.getID() == AArch64::GPRRegBankID) {
3211 if (EltSize == 32) {
3212 Opc = AArch64::INSvi32gpr;
3213 SubregIdx = AArch64::ssub;
3214 } else if (EltSize == 64) {
3215 Opc = AArch64::INSvi64gpr;
3216 SubregIdx = AArch64::dsub;
3217 } else {
3218 llvm_unreachable("invalid elt size!");
3219 }
3220 } else {
3221 if (EltSize == 8) {
3222 Opc = AArch64::INSvi8lane;
3223 SubregIdx = AArch64::bsub;
3224 } else if (EltSize == 16) {
3225 Opc = AArch64::INSvi16lane;
3226 SubregIdx = AArch64::hsub;
3227 } else if (EltSize == 32) {
3228 Opc = AArch64::INSvi32lane;
3229 SubregIdx = AArch64::ssub;
3230 } else if (EltSize == 64) {
3231 Opc = AArch64::INSvi64lane;
3232 SubregIdx = AArch64::dsub;
3233 } else {
3234 llvm_unreachable("invalid elt size!");
3235 }
3236 }
3237 return std::make_pair(Opc, SubregIdx);
3238 }
3239
3240 MachineInstr *
emitADD(Register DefReg,MachineOperand & LHS,MachineOperand & RHS,MachineIRBuilder & MIRBuilder) const3241 AArch64InstructionSelector::emitADD(Register DefReg, MachineOperand &LHS,
3242 MachineOperand &RHS,
3243 MachineIRBuilder &MIRBuilder) const {
3244 assert(LHS.isReg() && RHS.isReg() && "Expected LHS and RHS to be registers!");
3245 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
3246 static const unsigned OpcTable[2][2]{{AArch64::ADDXrr, AArch64::ADDXri},
3247 {AArch64::ADDWrr, AArch64::ADDWri}};
3248 bool Is32Bit = MRI.getType(LHS.getReg()).getSizeInBits() == 32;
3249 auto ImmFns = selectArithImmed(RHS);
3250 unsigned Opc = OpcTable[Is32Bit][ImmFns.hasValue()];
3251 auto AddMI = MIRBuilder.buildInstr(Opc, {DefReg}, {LHS.getReg()});
3252
3253 // If we matched a valid constant immediate, add those operands.
3254 if (ImmFns) {
3255 for (auto &RenderFn : *ImmFns)
3256 RenderFn(AddMI);
3257 } else {
3258 AddMI.addUse(RHS.getReg());
3259 }
3260
3261 constrainSelectedInstRegOperands(*AddMI, TII, TRI, RBI);
3262 return &*AddMI;
3263 }
3264
3265 MachineInstr *
emitCMN(MachineOperand & LHS,MachineOperand & RHS,MachineIRBuilder & MIRBuilder) const3266 AArch64InstructionSelector::emitCMN(MachineOperand &LHS, MachineOperand &RHS,
3267 MachineIRBuilder &MIRBuilder) const {
3268 assert(LHS.isReg() && RHS.isReg() && "Expected LHS and RHS to be registers!");
3269 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
3270 static const unsigned OpcTable[2][2]{{AArch64::ADDSXrr, AArch64::ADDSXri},
3271 {AArch64::ADDSWrr, AArch64::ADDSWri}};
3272 bool Is32Bit = (MRI.getType(LHS.getReg()).getSizeInBits() == 32);
3273 auto ImmFns = selectArithImmed(RHS);
3274 unsigned Opc = OpcTable[Is32Bit][ImmFns.hasValue()];
3275 Register ZReg = Is32Bit ? AArch64::WZR : AArch64::XZR;
3276
3277 auto CmpMI = MIRBuilder.buildInstr(Opc, {ZReg}, {LHS.getReg()});
3278
3279 // If we matched a valid constant immediate, add those operands.
3280 if (ImmFns) {
3281 for (auto &RenderFn : *ImmFns)
3282 RenderFn(CmpMI);
3283 } else {
3284 CmpMI.addUse(RHS.getReg());
3285 }
3286
3287 constrainSelectedInstRegOperands(*CmpMI, TII, TRI, RBI);
3288 return &*CmpMI;
3289 }
3290
3291 MachineInstr *
emitTST(const Register & LHS,const Register & RHS,MachineIRBuilder & MIRBuilder) const3292 AArch64InstructionSelector::emitTST(const Register &LHS, const Register &RHS,
3293 MachineIRBuilder &MIRBuilder) const {
3294 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
3295 unsigned RegSize = MRI.getType(LHS).getSizeInBits();
3296 bool Is32Bit = (RegSize == 32);
3297 static const unsigned OpcTable[2][2]{{AArch64::ANDSXrr, AArch64::ANDSXri},
3298 {AArch64::ANDSWrr, AArch64::ANDSWri}};
3299 Register ZReg = Is32Bit ? AArch64::WZR : AArch64::XZR;
3300
3301 // We might be able to fold in an immediate into the TST. We need to make sure
3302 // it's a logical immediate though, since ANDS requires that.
3303 auto ValAndVReg = getConstantVRegValWithLookThrough(RHS, MRI);
3304 bool IsImmForm = ValAndVReg.hasValue() &&
3305 AArch64_AM::isLogicalImmediate(ValAndVReg->Value, RegSize);
3306 unsigned Opc = OpcTable[Is32Bit][IsImmForm];
3307 auto TstMI = MIRBuilder.buildInstr(Opc, {ZReg}, {LHS});
3308
3309 if (IsImmForm)
3310 TstMI.addImm(
3311 AArch64_AM::encodeLogicalImmediate(ValAndVReg->Value, RegSize));
3312 else
3313 TstMI.addUse(RHS);
3314
3315 constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI);
3316 return &*TstMI;
3317 }
3318
emitIntegerCompare(MachineOperand & LHS,MachineOperand & RHS,MachineOperand & Predicate,MachineIRBuilder & MIRBuilder) const3319 MachineInstr *AArch64InstructionSelector::emitIntegerCompare(
3320 MachineOperand &LHS, MachineOperand &RHS, MachineOperand &Predicate,
3321 MachineIRBuilder &MIRBuilder) const {
3322 assert(LHS.isReg() && RHS.isReg() && "Expected LHS and RHS to be registers!");
3323 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
3324
3325 // Fold the compare if possible.
3326 MachineInstr *FoldCmp =
3327 tryFoldIntegerCompare(LHS, RHS, Predicate, MIRBuilder);
3328 if (FoldCmp)
3329 return FoldCmp;
3330
3331 // Can't fold into a CMN. Just emit a normal compare.
3332 unsigned CmpOpc = 0;
3333 Register ZReg;
3334
3335 LLT CmpTy = MRI.getType(LHS.getReg());
3336 assert((CmpTy.isScalar() || CmpTy.isPointer()) &&
3337 "Expected scalar or pointer");
3338 if (CmpTy == LLT::scalar(32)) {
3339 CmpOpc = AArch64::SUBSWrr;
3340 ZReg = AArch64::WZR;
3341 } else if (CmpTy == LLT::scalar(64) || CmpTy.isPointer()) {
3342 CmpOpc = AArch64::SUBSXrr;
3343 ZReg = AArch64::XZR;
3344 } else {
3345 return nullptr;
3346 }
3347
3348 // Try to match immediate forms.
3349 auto ImmFns = selectArithImmed(RHS);
3350 if (ImmFns)
3351 CmpOpc = CmpOpc == AArch64::SUBSWrr ? AArch64::SUBSWri : AArch64::SUBSXri;
3352
3353 auto CmpMI = MIRBuilder.buildInstr(CmpOpc).addDef(ZReg).addUse(LHS.getReg());
3354 // If we matched a valid constant immediate, add those operands.
3355 if (ImmFns) {
3356 for (auto &RenderFn : *ImmFns)
3357 RenderFn(CmpMI);
3358 } else {
3359 CmpMI.addUse(RHS.getReg());
3360 }
3361
3362 // Make sure that we can constrain the compare that we emitted.
3363 constrainSelectedInstRegOperands(*CmpMI, TII, TRI, RBI);
3364 return &*CmpMI;
3365 }
3366
emitVectorConcat(Optional<Register> Dst,Register Op1,Register Op2,MachineIRBuilder & MIRBuilder) const3367 MachineInstr *AArch64InstructionSelector::emitVectorConcat(
3368 Optional<Register> Dst, Register Op1, Register Op2,
3369 MachineIRBuilder &MIRBuilder) const {
3370 // We implement a vector concat by:
3371 // 1. Use scalar_to_vector to insert the lower vector into the larger dest
3372 // 2. Insert the upper vector into the destination's upper element
3373 // TODO: some of this code is common with G_BUILD_VECTOR handling.
3374 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
3375
3376 const LLT Op1Ty = MRI.getType(Op1);
3377 const LLT Op2Ty = MRI.getType(Op2);
3378
3379 if (Op1Ty != Op2Ty) {
3380 LLVM_DEBUG(dbgs() << "Could not do vector concat of differing vector tys");
3381 return nullptr;
3382 }
3383 assert(Op1Ty.isVector() && "Expected a vector for vector concat");
3384
3385 if (Op1Ty.getSizeInBits() >= 128) {
3386 LLVM_DEBUG(dbgs() << "Vector concat not supported for full size vectors");
3387 return nullptr;
3388 }
3389
3390 // At the moment we just support 64 bit vector concats.
3391 if (Op1Ty.getSizeInBits() != 64) {
3392 LLVM_DEBUG(dbgs() << "Vector concat supported for 64b vectors");
3393 return nullptr;
3394 }
3395
3396 const LLT ScalarTy = LLT::scalar(Op1Ty.getSizeInBits());
3397 const RegisterBank &FPRBank = *RBI.getRegBank(Op1, MRI, TRI);
3398 const TargetRegisterClass *DstRC =
3399 getMinClassForRegBank(FPRBank, Op1Ty.getSizeInBits() * 2);
3400
3401 MachineInstr *WidenedOp1 =
3402 emitScalarToVector(ScalarTy.getSizeInBits(), DstRC, Op1, MIRBuilder);
3403 MachineInstr *WidenedOp2 =
3404 emitScalarToVector(ScalarTy.getSizeInBits(), DstRC, Op2, MIRBuilder);
3405 if (!WidenedOp1 || !WidenedOp2) {
3406 LLVM_DEBUG(dbgs() << "Could not emit a vector from scalar value");
3407 return nullptr;
3408 }
3409
3410 // Now do the insert of the upper element.
3411 unsigned InsertOpc, InsSubRegIdx;
3412 std::tie(InsertOpc, InsSubRegIdx) =
3413 getInsertVecEltOpInfo(FPRBank, ScalarTy.getSizeInBits());
3414
3415 if (!Dst)
3416 Dst = MRI.createVirtualRegister(DstRC);
3417 auto InsElt =
3418 MIRBuilder
3419 .buildInstr(InsertOpc, {*Dst}, {WidenedOp1->getOperand(0).getReg()})
3420 .addImm(1) /* Lane index */
3421 .addUse(WidenedOp2->getOperand(0).getReg())
3422 .addImm(0);
3423 constrainSelectedInstRegOperands(*InsElt, TII, TRI, RBI);
3424 return &*InsElt;
3425 }
3426
emitFMovForFConstant(MachineInstr & I,MachineRegisterInfo & MRI) const3427 MachineInstr *AArch64InstructionSelector::emitFMovForFConstant(
3428 MachineInstr &I, MachineRegisterInfo &MRI) const {
3429 assert(I.getOpcode() == TargetOpcode::G_FCONSTANT &&
3430 "Expected a G_FCONSTANT!");
3431 MachineOperand &ImmOp = I.getOperand(1);
3432 unsigned DefSize = MRI.getType(I.getOperand(0).getReg()).getSizeInBits();
3433
3434 // Only handle 32 and 64 bit defs for now.
3435 if (DefSize != 32 && DefSize != 64)
3436 return nullptr;
3437
3438 // Don't handle null values using FMOV.
3439 if (ImmOp.getFPImm()->isNullValue())
3440 return nullptr;
3441
3442 // Get the immediate representation for the FMOV.
3443 const APFloat &ImmValAPF = ImmOp.getFPImm()->getValueAPF();
3444 int Imm = DefSize == 32 ? AArch64_AM::getFP32Imm(ImmValAPF)
3445 : AArch64_AM::getFP64Imm(ImmValAPF);
3446
3447 // If this is -1, it means the immediate can't be represented as the requested
3448 // floating point value. Bail.
3449 if (Imm == -1)
3450 return nullptr;
3451
3452 // Update MI to represent the new FMOV instruction, constrain it, and return.
3453 ImmOp.ChangeToImmediate(Imm);
3454 unsigned MovOpc = DefSize == 32 ? AArch64::FMOVSi : AArch64::FMOVDi;
3455 I.setDesc(TII.get(MovOpc));
3456 constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3457 return &I;
3458 }
3459
3460 MachineInstr *
emitCSetForICMP(Register DefReg,unsigned Pred,MachineIRBuilder & MIRBuilder) const3461 AArch64InstructionSelector::emitCSetForICMP(Register DefReg, unsigned Pred,
3462 MachineIRBuilder &MIRBuilder) const {
3463 // CSINC increments the result when the predicate is false. Invert it.
3464 const AArch64CC::CondCode InvCC = changeICMPPredToAArch64CC(
3465 CmpInst::getInversePredicate((CmpInst::Predicate)Pred));
3466 auto I =
3467 MIRBuilder
3468 .buildInstr(AArch64::CSINCWr, {DefReg}, {Register(AArch64::WZR), Register(AArch64::WZR)})
3469 .addImm(InvCC);
3470 constrainSelectedInstRegOperands(*I, TII, TRI, RBI);
3471 return &*I;
3472 }
3473
tryOptSelect(MachineInstr & I) const3474 bool AArch64InstructionSelector::tryOptSelect(MachineInstr &I) const {
3475 MachineIRBuilder MIB(I);
3476 MachineRegisterInfo &MRI = *MIB.getMRI();
3477 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
3478
3479 // We want to recognize this pattern:
3480 //
3481 // $z = G_FCMP pred, $x, $y
3482 // ...
3483 // $w = G_SELECT $z, $a, $b
3484 //
3485 // Where the value of $z is *only* ever used by the G_SELECT (possibly with
3486 // some copies/truncs in between.)
3487 //
3488 // If we see this, then we can emit something like this:
3489 //
3490 // fcmp $x, $y
3491 // fcsel $w, $a, $b, pred
3492 //
3493 // Rather than emitting both of the rather long sequences in the standard
3494 // G_FCMP/G_SELECT select methods.
3495
3496 // First, check if the condition is defined by a compare.
3497 MachineInstr *CondDef = MRI.getVRegDef(I.getOperand(1).getReg());
3498 while (CondDef) {
3499 // We can only fold if all of the defs have one use.
3500 if (!MRI.hasOneUse(CondDef->getOperand(0).getReg()))
3501 return false;
3502
3503 // We can skip over G_TRUNC since the condition is 1-bit.
3504 // Truncating/extending can have no impact on the value.
3505 unsigned Opc = CondDef->getOpcode();
3506 if (Opc != TargetOpcode::COPY && Opc != TargetOpcode::G_TRUNC)
3507 break;
3508
3509 // Can't see past copies from physregs.
3510 if (Opc == TargetOpcode::COPY &&
3511 Register::isPhysicalRegister(CondDef->getOperand(1).getReg()))
3512 return false;
3513
3514 CondDef = MRI.getVRegDef(CondDef->getOperand(1).getReg());
3515 }
3516
3517 // Is the condition defined by a compare?
3518 if (!CondDef)
3519 return false;
3520
3521 unsigned CondOpc = CondDef->getOpcode();
3522 if (CondOpc != TargetOpcode::G_ICMP && CondOpc != TargetOpcode::G_FCMP)
3523 return false;
3524
3525 AArch64CC::CondCode CondCode;
3526 if (CondOpc == TargetOpcode::G_ICMP) {
3527 CondCode = changeICMPPredToAArch64CC(
3528 (CmpInst::Predicate)CondDef->getOperand(1).getPredicate());
3529 if (!emitIntegerCompare(CondDef->getOperand(2), CondDef->getOperand(3),
3530 CondDef->getOperand(1), MIB)) {
3531 LLVM_DEBUG(dbgs() << "Couldn't emit compare for select!\n");
3532 return false;
3533 }
3534 } else {
3535 // Get the condition code for the select.
3536 AArch64CC::CondCode CondCode2;
3537 changeFCMPPredToAArch64CC(
3538 (CmpInst::Predicate)CondDef->getOperand(1).getPredicate(), CondCode,
3539 CondCode2);
3540
3541 // changeFCMPPredToAArch64CC sets CondCode2 to AL when we require two
3542 // instructions to emit the comparison.
3543 // TODO: Handle FCMP_UEQ and FCMP_ONE. After that, this check will be
3544 // unnecessary.
3545 if (CondCode2 != AArch64CC::AL)
3546 return false;
3547
3548 // Make sure we'll be able to select the compare.
3549 unsigned CmpOpc = selectFCMPOpc(*CondDef, MRI);
3550 if (!CmpOpc)
3551 return false;
3552
3553 // Emit a new compare.
3554 auto Cmp = MIB.buildInstr(CmpOpc, {}, {CondDef->getOperand(2).getReg()});
3555 if (CmpOpc != AArch64::FCMPSri && CmpOpc != AArch64::FCMPDri)
3556 Cmp.addUse(CondDef->getOperand(3).getReg());
3557 constrainSelectedInstRegOperands(*Cmp, TII, TRI, RBI);
3558 }
3559
3560 // Emit the select.
3561 unsigned CSelOpc = selectSelectOpc(I, MRI, RBI);
3562 auto CSel =
3563 MIB.buildInstr(CSelOpc, {I.getOperand(0).getReg()},
3564 {I.getOperand(2).getReg(), I.getOperand(3).getReg()})
3565 .addImm(CondCode);
3566 constrainSelectedInstRegOperands(*CSel, TII, TRI, RBI);
3567 I.eraseFromParent();
3568 return true;
3569 }
3570
tryFoldIntegerCompare(MachineOperand & LHS,MachineOperand & RHS,MachineOperand & Predicate,MachineIRBuilder & MIRBuilder) const3571 MachineInstr *AArch64InstructionSelector::tryFoldIntegerCompare(
3572 MachineOperand &LHS, MachineOperand &RHS, MachineOperand &Predicate,
3573 MachineIRBuilder &MIRBuilder) const {
3574 assert(LHS.isReg() && RHS.isReg() && Predicate.isPredicate() &&
3575 "Unexpected MachineOperand");
3576 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
3577 // We want to find this sort of thing:
3578 // x = G_SUB 0, y
3579 // G_ICMP z, x
3580 //
3581 // In this case, we can fold the G_SUB into the G_ICMP using a CMN instead.
3582 // e.g:
3583 //
3584 // cmn z, y
3585
3586 // Helper lambda to detect the subtract followed by the compare.
3587 // Takes in the def of the LHS or RHS, and checks if it's a subtract from 0.
3588 auto IsCMN = [&](MachineInstr *DefMI, const AArch64CC::CondCode &CC) {
3589 if (!DefMI || DefMI->getOpcode() != TargetOpcode::G_SUB)
3590 return false;
3591
3592 // Need to make sure NZCV is the same at the end of the transformation.
3593 if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
3594 return false;
3595
3596 // We want to match against SUBs.
3597 if (DefMI->getOpcode() != TargetOpcode::G_SUB)
3598 return false;
3599
3600 // Make sure that we're getting
3601 // x = G_SUB 0, y
3602 auto ValAndVReg =
3603 getConstantVRegValWithLookThrough(DefMI->getOperand(1).getReg(), MRI);
3604 if (!ValAndVReg || ValAndVReg->Value != 0)
3605 return false;
3606
3607 // This can safely be represented as a CMN.
3608 return true;
3609 };
3610
3611 // Check if the RHS or LHS of the G_ICMP is defined by a SUB
3612 MachineInstr *LHSDef = getDefIgnoringCopies(LHS.getReg(), MRI);
3613 MachineInstr *RHSDef = getDefIgnoringCopies(RHS.getReg(), MRI);
3614 CmpInst::Predicate P = (CmpInst::Predicate)Predicate.getPredicate();
3615 const AArch64CC::CondCode CC = changeICMPPredToAArch64CC(P);
3616
3617 // Given this:
3618 //
3619 // x = G_SUB 0, y
3620 // G_ICMP x, z
3621 //
3622 // Produce this:
3623 //
3624 // cmn y, z
3625 if (IsCMN(LHSDef, CC))
3626 return emitCMN(LHSDef->getOperand(2), RHS, MIRBuilder);
3627
3628 // Same idea here, but with the RHS of the compare instead:
3629 //
3630 // Given this:
3631 //
3632 // x = G_SUB 0, y
3633 // G_ICMP z, x
3634 //
3635 // Produce this:
3636 //
3637 // cmn z, y
3638 if (IsCMN(RHSDef, CC))
3639 return emitCMN(LHS, RHSDef->getOperand(2), MIRBuilder);
3640
3641 // Given this:
3642 //
3643 // z = G_AND x, y
3644 // G_ICMP z, 0
3645 //
3646 // Produce this if the compare is signed:
3647 //
3648 // tst x, y
3649 if (!isUnsignedICMPPred(P) && LHSDef &&
3650 LHSDef->getOpcode() == TargetOpcode::G_AND) {
3651 // Make sure that the RHS is 0.
3652 auto ValAndVReg = getConstantVRegValWithLookThrough(RHS.getReg(), MRI);
3653 if (!ValAndVReg || ValAndVReg->Value != 0)
3654 return nullptr;
3655
3656 return emitTST(LHSDef->getOperand(1).getReg(),
3657 LHSDef->getOperand(2).getReg(), MIRBuilder);
3658 }
3659
3660 return nullptr;
3661 }
3662
tryOptVectorDup(MachineInstr & I) const3663 bool AArch64InstructionSelector::tryOptVectorDup(MachineInstr &I) const {
3664 // Try to match a vector splat operation into a dup instruction.
3665 // We're looking for this pattern:
3666 // %scalar:gpr(s64) = COPY $x0
3667 // %undef:fpr(<2 x s64>) = G_IMPLICIT_DEF
3668 // %cst0:gpr(s32) = G_CONSTANT i32 0
3669 // %zerovec:fpr(<2 x s32>) = G_BUILD_VECTOR %cst0(s32), %cst0(s32)
3670 // %ins:fpr(<2 x s64>) = G_INSERT_VECTOR_ELT %undef, %scalar(s64), %cst0(s32)
3671 // %splat:fpr(<2 x s64>) = G_SHUFFLE_VECTOR %ins(<2 x s64>), %undef,
3672 // %zerovec(<2 x s32>)
3673 //
3674 // ...into:
3675 // %splat = DUP %scalar
3676 // We use the regbank of the scalar to determine which kind of dup to use.
3677 MachineIRBuilder MIB(I);
3678 MachineRegisterInfo &MRI = *MIB.getMRI();
3679 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
3680 using namespace TargetOpcode;
3681 using namespace MIPatternMatch;
3682
3683 // Begin matching the insert.
3684 auto *InsMI =
3685 getOpcodeDef(G_INSERT_VECTOR_ELT, I.getOperand(1).getReg(), MRI);
3686 if (!InsMI)
3687 return false;
3688 // Match the undef vector operand.
3689 auto *UndefMI =
3690 getOpcodeDef(G_IMPLICIT_DEF, InsMI->getOperand(1).getReg(), MRI);
3691 if (!UndefMI)
3692 return false;
3693 // Match the scalar being splatted.
3694 Register ScalarReg = InsMI->getOperand(2).getReg();
3695 const RegisterBank *ScalarRB = RBI.getRegBank(ScalarReg, MRI, TRI);
3696 // Match the index constant 0.
3697 int64_t Index = 0;
3698 if (!mi_match(InsMI->getOperand(3).getReg(), MRI, m_ICst(Index)) || Index)
3699 return false;
3700
3701 // The shuffle's second operand doesn't matter if the mask is all zero.
3702 ArrayRef<int> Mask = I.getOperand(3).getShuffleMask();
3703 if (!all_of(Mask, [](int Elem) { return Elem == 0; }))
3704 return false;
3705
3706 // We're done, now find out what kind of splat we need.
3707 LLT VecTy = MRI.getType(I.getOperand(0).getReg());
3708 LLT EltTy = VecTy.getElementType();
3709 if (EltTy.getSizeInBits() < 32) {
3710 LLVM_DEBUG(dbgs() << "Could not optimize splat pattern < 32b elts yet");
3711 return false;
3712 }
3713 bool IsFP = ScalarRB->getID() == AArch64::FPRRegBankID;
3714 unsigned Opc = 0;
3715 if (IsFP) {
3716 switch (EltTy.getSizeInBits()) {
3717 case 32:
3718 if (VecTy.getNumElements() == 2) {
3719 Opc = AArch64::DUPv2i32lane;
3720 } else {
3721 Opc = AArch64::DUPv4i32lane;
3722 assert(VecTy.getNumElements() == 4);
3723 }
3724 break;
3725 case 64:
3726 assert(VecTy.getNumElements() == 2 && "Unexpected num elts");
3727 Opc = AArch64::DUPv2i64lane;
3728 break;
3729 }
3730 } else {
3731 switch (EltTy.getSizeInBits()) {
3732 case 32:
3733 if (VecTy.getNumElements() == 2) {
3734 Opc = AArch64::DUPv2i32gpr;
3735 } else {
3736 Opc = AArch64::DUPv4i32gpr;
3737 assert(VecTy.getNumElements() == 4);
3738 }
3739 break;
3740 case 64:
3741 assert(VecTy.getNumElements() == 2 && "Unexpected num elts");
3742 Opc = AArch64::DUPv2i64gpr;
3743 break;
3744 }
3745 }
3746 assert(Opc && "Did not compute an opcode for a dup");
3747
3748 // For FP splats, we need to widen the scalar reg via undef too.
3749 if (IsFP) {
3750 MachineInstr *Widen = emitScalarToVector(
3751 EltTy.getSizeInBits(), &AArch64::FPR128RegClass, ScalarReg, MIB);
3752 if (!Widen)
3753 return false;
3754 ScalarReg = Widen->getOperand(0).getReg();
3755 }
3756 auto Dup = MIB.buildInstr(Opc, {I.getOperand(0).getReg()}, {ScalarReg});
3757 if (IsFP)
3758 Dup.addImm(0);
3759 constrainSelectedInstRegOperands(*Dup, TII, TRI, RBI);
3760 I.eraseFromParent();
3761 return true;
3762 }
3763
tryOptVectorShuffle(MachineInstr & I) const3764 bool AArch64InstructionSelector::tryOptVectorShuffle(MachineInstr &I) const {
3765 if (TM.getOptLevel() == CodeGenOpt::None)
3766 return false;
3767 if (tryOptVectorDup(I))
3768 return true;
3769 return false;
3770 }
3771
selectShuffleVector(MachineInstr & I,MachineRegisterInfo & MRI) const3772 bool AArch64InstructionSelector::selectShuffleVector(
3773 MachineInstr &I, MachineRegisterInfo &MRI) const {
3774 if (tryOptVectorShuffle(I))
3775 return true;
3776 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
3777 Register Src1Reg = I.getOperand(1).getReg();
3778 const LLT Src1Ty = MRI.getType(Src1Reg);
3779 Register Src2Reg = I.getOperand(2).getReg();
3780 const LLT Src2Ty = MRI.getType(Src2Reg);
3781 ArrayRef<int> Mask = I.getOperand(3).getShuffleMask();
3782
3783 MachineBasicBlock &MBB = *I.getParent();
3784 MachineFunction &MF = *MBB.getParent();
3785 LLVMContext &Ctx = MF.getFunction().getContext();
3786
3787 // G_SHUFFLE_VECTOR is weird in that the source operands can be scalars, if
3788 // it's originated from a <1 x T> type. Those should have been lowered into
3789 // G_BUILD_VECTOR earlier.
3790 if (!Src1Ty.isVector() || !Src2Ty.isVector()) {
3791 LLVM_DEBUG(dbgs() << "Could not select a \"scalar\" G_SHUFFLE_VECTOR\n");
3792 return false;
3793 }
3794
3795 unsigned BytesPerElt = DstTy.getElementType().getSizeInBits() / 8;
3796
3797 SmallVector<Constant *, 64> CstIdxs;
3798 for (int Val : Mask) {
3799 // For now, any undef indexes we'll just assume to be 0. This should be
3800 // optimized in future, e.g. to select DUP etc.
3801 Val = Val < 0 ? 0 : Val;
3802 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
3803 unsigned Offset = Byte + Val * BytesPerElt;
3804 CstIdxs.emplace_back(ConstantInt::get(Type::getInt8Ty(Ctx), Offset));
3805 }
3806 }
3807
3808 MachineIRBuilder MIRBuilder(I);
3809
3810 // Use a constant pool to load the index vector for TBL.
3811 Constant *CPVal = ConstantVector::get(CstIdxs);
3812 MachineInstr *IndexLoad = emitLoadFromConstantPool(CPVal, MIRBuilder);
3813 if (!IndexLoad) {
3814 LLVM_DEBUG(dbgs() << "Could not load from a constant pool");
3815 return false;
3816 }
3817
3818 if (DstTy.getSizeInBits() != 128) {
3819 assert(DstTy.getSizeInBits() == 64 && "Unexpected shuffle result ty");
3820 // This case can be done with TBL1.
3821 MachineInstr *Concat = emitVectorConcat(None, Src1Reg, Src2Reg, MIRBuilder);
3822 if (!Concat) {
3823 LLVM_DEBUG(dbgs() << "Could not do vector concat for tbl1");
3824 return false;
3825 }
3826
3827 // The constant pool load will be 64 bits, so need to convert to FPR128 reg.
3828 IndexLoad =
3829 emitScalarToVector(64, &AArch64::FPR128RegClass,
3830 IndexLoad->getOperand(0).getReg(), MIRBuilder);
3831
3832 auto TBL1 = MIRBuilder.buildInstr(
3833 AArch64::TBLv16i8One, {&AArch64::FPR128RegClass},
3834 {Concat->getOperand(0).getReg(), IndexLoad->getOperand(0).getReg()});
3835 constrainSelectedInstRegOperands(*TBL1, TII, TRI, RBI);
3836
3837 auto Copy =
3838 MIRBuilder
3839 .buildInstr(TargetOpcode::COPY, {I.getOperand(0).getReg()}, {})
3840 .addReg(TBL1.getReg(0), 0, AArch64::dsub);
3841 RBI.constrainGenericRegister(Copy.getReg(0), AArch64::FPR64RegClass, MRI);
3842 I.eraseFromParent();
3843 return true;
3844 }
3845
3846 // For TBL2 we need to emit a REG_SEQUENCE to tie together two consecutive
3847 // Q registers for regalloc.
3848 auto RegSeq = MIRBuilder
3849 .buildInstr(TargetOpcode::REG_SEQUENCE,
3850 {&AArch64::QQRegClass}, {Src1Reg})
3851 .addImm(AArch64::qsub0)
3852 .addUse(Src2Reg)
3853 .addImm(AArch64::qsub1);
3854
3855 auto TBL2 =
3856 MIRBuilder.buildInstr(AArch64::TBLv16i8Two, {I.getOperand(0).getReg()},
3857 {RegSeq, IndexLoad->getOperand(0).getReg()});
3858 constrainSelectedInstRegOperands(*RegSeq, TII, TRI, RBI);
3859 constrainSelectedInstRegOperands(*TBL2, TII, TRI, RBI);
3860 I.eraseFromParent();
3861 return true;
3862 }
3863
emitLaneInsert(Optional<Register> DstReg,Register SrcReg,Register EltReg,unsigned LaneIdx,const RegisterBank & RB,MachineIRBuilder & MIRBuilder) const3864 MachineInstr *AArch64InstructionSelector::emitLaneInsert(
3865 Optional<Register> DstReg, Register SrcReg, Register EltReg,
3866 unsigned LaneIdx, const RegisterBank &RB,
3867 MachineIRBuilder &MIRBuilder) const {
3868 MachineInstr *InsElt = nullptr;
3869 const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass;
3870 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
3871
3872 // Create a register to define with the insert if one wasn't passed in.
3873 if (!DstReg)
3874 DstReg = MRI.createVirtualRegister(DstRC);
3875
3876 unsigned EltSize = MRI.getType(EltReg).getSizeInBits();
3877 unsigned Opc = getInsertVecEltOpInfo(RB, EltSize).first;
3878
3879 if (RB.getID() == AArch64::FPRRegBankID) {
3880 auto InsSub = emitScalarToVector(EltSize, DstRC, EltReg, MIRBuilder);
3881 InsElt = MIRBuilder.buildInstr(Opc, {*DstReg}, {SrcReg})
3882 .addImm(LaneIdx)
3883 .addUse(InsSub->getOperand(0).getReg())
3884 .addImm(0);
3885 } else {
3886 InsElt = MIRBuilder.buildInstr(Opc, {*DstReg}, {SrcReg})
3887 .addImm(LaneIdx)
3888 .addUse(EltReg);
3889 }
3890
3891 constrainSelectedInstRegOperands(*InsElt, TII, TRI, RBI);
3892 return InsElt;
3893 }
3894
selectInsertElt(MachineInstr & I,MachineRegisterInfo & MRI) const3895 bool AArch64InstructionSelector::selectInsertElt(
3896 MachineInstr &I, MachineRegisterInfo &MRI) const {
3897 assert(I.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT);
3898
3899 // Get information on the destination.
3900 Register DstReg = I.getOperand(0).getReg();
3901 const LLT DstTy = MRI.getType(DstReg);
3902 unsigned VecSize = DstTy.getSizeInBits();
3903
3904 // Get information on the element we want to insert into the destination.
3905 Register EltReg = I.getOperand(2).getReg();
3906 const LLT EltTy = MRI.getType(EltReg);
3907 unsigned EltSize = EltTy.getSizeInBits();
3908 if (EltSize < 16 || EltSize > 64)
3909 return false; // Don't support all element types yet.
3910
3911 // Find the definition of the index. Bail out if it's not defined by a
3912 // G_CONSTANT.
3913 Register IdxReg = I.getOperand(3).getReg();
3914 auto VRegAndVal = getConstantVRegValWithLookThrough(IdxReg, MRI);
3915 if (!VRegAndVal)
3916 return false;
3917 unsigned LaneIdx = VRegAndVal->Value;
3918
3919 // Perform the lane insert.
3920 Register SrcReg = I.getOperand(1).getReg();
3921 const RegisterBank &EltRB = *RBI.getRegBank(EltReg, MRI, TRI);
3922 MachineIRBuilder MIRBuilder(I);
3923
3924 if (VecSize < 128) {
3925 // If the vector we're inserting into is smaller than 128 bits, widen it
3926 // to 128 to do the insert.
3927 MachineInstr *ScalarToVec = emitScalarToVector(
3928 VecSize, &AArch64::FPR128RegClass, SrcReg, MIRBuilder);
3929 if (!ScalarToVec)
3930 return false;
3931 SrcReg = ScalarToVec->getOperand(0).getReg();
3932 }
3933
3934 // Create an insert into a new FPR128 register.
3935 // Note that if our vector is already 128 bits, we end up emitting an extra
3936 // register.
3937 MachineInstr *InsMI =
3938 emitLaneInsert(None, SrcReg, EltReg, LaneIdx, EltRB, MIRBuilder);
3939
3940 if (VecSize < 128) {
3941 // If we had to widen to perform the insert, then we have to demote back to
3942 // the original size to get the result we want.
3943 Register DemoteVec = InsMI->getOperand(0).getReg();
3944 const TargetRegisterClass *RC =
3945 getMinClassForRegBank(*RBI.getRegBank(DemoteVec, MRI, TRI), VecSize);
3946 if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) {
3947 LLVM_DEBUG(dbgs() << "Unsupported register class!\n");
3948 return false;
3949 }
3950 unsigned SubReg = 0;
3951 if (!getSubRegForClass(RC, TRI, SubReg))
3952 return false;
3953 if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) {
3954 LLVM_DEBUG(dbgs() << "Unsupported destination size! (" << VecSize
3955 << "\n");
3956 return false;
3957 }
3958 MIRBuilder.buildInstr(TargetOpcode::COPY, {DstReg}, {})
3959 .addReg(DemoteVec, 0, SubReg);
3960 RBI.constrainGenericRegister(DstReg, *RC, MRI);
3961 } else {
3962 // No widening needed.
3963 InsMI->getOperand(0).setReg(DstReg);
3964 constrainSelectedInstRegOperands(*InsMI, TII, TRI, RBI);
3965 }
3966
3967 I.eraseFromParent();
3968 return true;
3969 }
3970
selectBuildVector(MachineInstr & I,MachineRegisterInfo & MRI) const3971 bool AArch64InstructionSelector::selectBuildVector(
3972 MachineInstr &I, MachineRegisterInfo &MRI) const {
3973 assert(I.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
3974 // Until we port more of the optimized selections, for now just use a vector
3975 // insert sequence.
3976 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
3977 const LLT EltTy = MRI.getType(I.getOperand(1).getReg());
3978 unsigned EltSize = EltTy.getSizeInBits();
3979 if (EltSize < 16 || EltSize > 64)
3980 return false; // Don't support all element types yet.
3981 const RegisterBank &RB = *RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI);
3982 MachineIRBuilder MIRBuilder(I);
3983
3984 const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass;
3985 MachineInstr *ScalarToVec =
3986 emitScalarToVector(DstTy.getElementType().getSizeInBits(), DstRC,
3987 I.getOperand(1).getReg(), MIRBuilder);
3988 if (!ScalarToVec)
3989 return false;
3990
3991 Register DstVec = ScalarToVec->getOperand(0).getReg();
3992 unsigned DstSize = DstTy.getSizeInBits();
3993
3994 // Keep track of the last MI we inserted. Later on, we might be able to save
3995 // a copy using it.
3996 MachineInstr *PrevMI = nullptr;
3997 for (unsigned i = 2, e = DstSize / EltSize + 1; i < e; ++i) {
3998 // Note that if we don't do a subregister copy, we can end up making an
3999 // extra register.
4000 PrevMI = &*emitLaneInsert(None, DstVec, I.getOperand(i).getReg(), i - 1, RB,
4001 MIRBuilder);
4002 DstVec = PrevMI->getOperand(0).getReg();
4003 }
4004
4005 // If DstTy's size in bits is less than 128, then emit a subregister copy
4006 // from DstVec to the last register we've defined.
4007 if (DstSize < 128) {
4008 // Force this to be FPR using the destination vector.
4009 const TargetRegisterClass *RC =
4010 getMinClassForRegBank(*RBI.getRegBank(DstVec, MRI, TRI), DstSize);
4011 if (!RC)
4012 return false;
4013 if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) {
4014 LLVM_DEBUG(dbgs() << "Unsupported register class!\n");
4015 return false;
4016 }
4017
4018 unsigned SubReg = 0;
4019 if (!getSubRegForClass(RC, TRI, SubReg))
4020 return false;
4021 if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) {
4022 LLVM_DEBUG(dbgs() << "Unsupported destination size! (" << DstSize
4023 << "\n");
4024 return false;
4025 }
4026
4027 Register Reg = MRI.createVirtualRegister(RC);
4028 Register DstReg = I.getOperand(0).getReg();
4029
4030 MIRBuilder.buildInstr(TargetOpcode::COPY, {DstReg}, {})
4031 .addReg(DstVec, 0, SubReg);
4032 MachineOperand &RegOp = I.getOperand(1);
4033 RegOp.setReg(Reg);
4034 RBI.constrainGenericRegister(DstReg, *RC, MRI);
4035 } else {
4036 // We don't need a subregister copy. Save a copy by re-using the
4037 // destination register on the final insert.
4038 assert(PrevMI && "PrevMI was null?");
4039 PrevMI->getOperand(0).setReg(I.getOperand(0).getReg());
4040 constrainSelectedInstRegOperands(*PrevMI, TII, TRI, RBI);
4041 }
4042
4043 I.eraseFromParent();
4044 return true;
4045 }
4046
4047 /// Helper function to find an intrinsic ID on an a MachineInstr. Returns the
4048 /// ID if it exists, and 0 otherwise.
findIntrinsicID(MachineInstr & I)4049 static unsigned findIntrinsicID(MachineInstr &I) {
4050 auto IntrinOp = find_if(I.operands(), [&](const MachineOperand &Op) {
4051 return Op.isIntrinsicID();
4052 });
4053 if (IntrinOp == I.operands_end())
4054 return 0;
4055 return IntrinOp->getIntrinsicID();
4056 }
4057
selectIntrinsicWithSideEffects(MachineInstr & I,MachineRegisterInfo & MRI) const4058 bool AArch64InstructionSelector::selectIntrinsicWithSideEffects(
4059 MachineInstr &I, MachineRegisterInfo &MRI) const {
4060 // Find the intrinsic ID.
4061 unsigned IntrinID = findIntrinsicID(I);
4062 if (!IntrinID)
4063 return false;
4064 MachineIRBuilder MIRBuilder(I);
4065
4066 // Select the instruction.
4067 switch (IntrinID) {
4068 default:
4069 return false;
4070 case Intrinsic::trap:
4071 MIRBuilder.buildInstr(AArch64::BRK, {}, {}).addImm(1);
4072 break;
4073 case Intrinsic::debugtrap:
4074 if (!STI.isTargetWindows())
4075 return false;
4076 MIRBuilder.buildInstr(AArch64::BRK, {}, {}).addImm(0xF000);
4077 break;
4078 }
4079
4080 I.eraseFromParent();
4081 return true;
4082 }
4083
selectIntrinsic(MachineInstr & I,MachineRegisterInfo & MRI) const4084 bool AArch64InstructionSelector::selectIntrinsic(
4085 MachineInstr &I, MachineRegisterInfo &MRI) const {
4086 unsigned IntrinID = findIntrinsicID(I);
4087 if (!IntrinID)
4088 return false;
4089 MachineIRBuilder MIRBuilder(I);
4090
4091 switch (IntrinID) {
4092 default:
4093 break;
4094 case Intrinsic::aarch64_crypto_sha1h:
4095 Register DstReg = I.getOperand(0).getReg();
4096 Register SrcReg = I.getOperand(2).getReg();
4097
4098 // FIXME: Should this be an assert?
4099 if (MRI.getType(DstReg).getSizeInBits() != 32 ||
4100 MRI.getType(SrcReg).getSizeInBits() != 32)
4101 return false;
4102
4103 // The operation has to happen on FPRs. Set up some new FPR registers for
4104 // the source and destination if they are on GPRs.
4105 if (RBI.getRegBank(SrcReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) {
4106 SrcReg = MRI.createVirtualRegister(&AArch64::FPR32RegClass);
4107 MIRBuilder.buildCopy({SrcReg}, {I.getOperand(2)});
4108
4109 // Make sure the copy ends up getting constrained properly.
4110 RBI.constrainGenericRegister(I.getOperand(2).getReg(),
4111 AArch64::GPR32RegClass, MRI);
4112 }
4113
4114 if (RBI.getRegBank(DstReg, MRI, TRI)->getID() != AArch64::FPRRegBankID)
4115 DstReg = MRI.createVirtualRegister(&AArch64::FPR32RegClass);
4116
4117 // Actually insert the instruction.
4118 auto SHA1Inst = MIRBuilder.buildInstr(AArch64::SHA1Hrr, {DstReg}, {SrcReg});
4119 constrainSelectedInstRegOperands(*SHA1Inst, TII, TRI, RBI);
4120
4121 // Did we create a new register for the destination?
4122 if (DstReg != I.getOperand(0).getReg()) {
4123 // Yep. Copy the result of the instruction back into the original
4124 // destination.
4125 MIRBuilder.buildCopy({I.getOperand(0)}, {DstReg});
4126 RBI.constrainGenericRegister(I.getOperand(0).getReg(),
4127 AArch64::GPR32RegClass, MRI);
4128 }
4129
4130 I.eraseFromParent();
4131 return true;
4132 }
4133 return false;
4134 }
4135
getImmedFromMO(const MachineOperand & Root)4136 static Optional<uint64_t> getImmedFromMO(const MachineOperand &Root) {
4137 auto &MI = *Root.getParent();
4138 auto &MBB = *MI.getParent();
4139 auto &MF = *MBB.getParent();
4140 auto &MRI = MF.getRegInfo();
4141 uint64_t Immed;
4142 if (Root.isImm())
4143 Immed = Root.getImm();
4144 else if (Root.isCImm())
4145 Immed = Root.getCImm()->getZExtValue();
4146 else if (Root.isReg()) {
4147 auto ValAndVReg =
4148 getConstantVRegValWithLookThrough(Root.getReg(), MRI, true);
4149 if (!ValAndVReg)
4150 return None;
4151 Immed = ValAndVReg->Value;
4152 } else
4153 return None;
4154 return Immed;
4155 }
4156
4157 InstructionSelector::ComplexRendererFns
selectShiftA_32(const MachineOperand & Root) const4158 AArch64InstructionSelector::selectShiftA_32(const MachineOperand &Root) const {
4159 auto MaybeImmed = getImmedFromMO(Root);
4160 if (MaybeImmed == None || *MaybeImmed > 31)
4161 return None;
4162 uint64_t Enc = (32 - *MaybeImmed) & 0x1f;
4163 return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
4164 }
4165
4166 InstructionSelector::ComplexRendererFns
selectShiftB_32(const MachineOperand & Root) const4167 AArch64InstructionSelector::selectShiftB_32(const MachineOperand &Root) const {
4168 auto MaybeImmed = getImmedFromMO(Root);
4169 if (MaybeImmed == None || *MaybeImmed > 31)
4170 return None;
4171 uint64_t Enc = 31 - *MaybeImmed;
4172 return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
4173 }
4174
4175 InstructionSelector::ComplexRendererFns
selectShiftA_64(const MachineOperand & Root) const4176 AArch64InstructionSelector::selectShiftA_64(const MachineOperand &Root) const {
4177 auto MaybeImmed = getImmedFromMO(Root);
4178 if (MaybeImmed == None || *MaybeImmed > 63)
4179 return None;
4180 uint64_t Enc = (64 - *MaybeImmed) & 0x3f;
4181 return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
4182 }
4183
4184 InstructionSelector::ComplexRendererFns
selectShiftB_64(const MachineOperand & Root) const4185 AArch64InstructionSelector::selectShiftB_64(const MachineOperand &Root) const {
4186 auto MaybeImmed = getImmedFromMO(Root);
4187 if (MaybeImmed == None || *MaybeImmed > 63)
4188 return None;
4189 uint64_t Enc = 63 - *MaybeImmed;
4190 return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
4191 }
4192
4193 /// Helper to select an immediate value that can be represented as a 12-bit
4194 /// value shifted left by either 0 or 12. If it is possible to do so, return
4195 /// the immediate and shift value. If not, return None.
4196 ///
4197 /// Used by selectArithImmed and selectNegArithImmed.
4198 InstructionSelector::ComplexRendererFns
select12BitValueWithLeftShift(uint64_t Immed) const4199 AArch64InstructionSelector::select12BitValueWithLeftShift(
4200 uint64_t Immed) const {
4201 unsigned ShiftAmt;
4202 if (Immed >> 12 == 0) {
4203 ShiftAmt = 0;
4204 } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
4205 ShiftAmt = 12;
4206 Immed = Immed >> 12;
4207 } else
4208 return None;
4209
4210 unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt);
4211 return {{
4212 [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed); },
4213 [=](MachineInstrBuilder &MIB) { MIB.addImm(ShVal); },
4214 }};
4215 }
4216
4217 /// SelectArithImmed - Select an immediate value that can be represented as
4218 /// a 12-bit value shifted left by either 0 or 12. If so, return true with
4219 /// Val set to the 12-bit value and Shift set to the shifter operand.
4220 InstructionSelector::ComplexRendererFns
selectArithImmed(MachineOperand & Root) const4221 AArch64InstructionSelector::selectArithImmed(MachineOperand &Root) const {
4222 // This function is called from the addsub_shifted_imm ComplexPattern,
4223 // which lists [imm] as the list of opcode it's interested in, however
4224 // we still need to check whether the operand is actually an immediate
4225 // here because the ComplexPattern opcode list is only used in
4226 // root-level opcode matching.
4227 auto MaybeImmed = getImmedFromMO(Root);
4228 if (MaybeImmed == None)
4229 return None;
4230 return select12BitValueWithLeftShift(*MaybeImmed);
4231 }
4232
4233 /// SelectNegArithImmed - As above, but negates the value before trying to
4234 /// select it.
4235 InstructionSelector::ComplexRendererFns
selectNegArithImmed(MachineOperand & Root) const4236 AArch64InstructionSelector::selectNegArithImmed(MachineOperand &Root) const {
4237 // We need a register here, because we need to know if we have a 64 or 32
4238 // bit immediate.
4239 if (!Root.isReg())
4240 return None;
4241 auto MaybeImmed = getImmedFromMO(Root);
4242 if (MaybeImmed == None)
4243 return None;
4244 uint64_t Immed = *MaybeImmed;
4245
4246 // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
4247 // have the opposite effect on the C flag, so this pattern mustn't match under
4248 // those circumstances.
4249 if (Immed == 0)
4250 return None;
4251
4252 // Check if we're dealing with a 32-bit type on the root or a 64-bit type on
4253 // the root.
4254 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
4255 if (MRI.getType(Root.getReg()).getSizeInBits() == 32)
4256 Immed = ~((uint32_t)Immed) + 1;
4257 else
4258 Immed = ~Immed + 1ULL;
4259
4260 if (Immed & 0xFFFFFFFFFF000000ULL)
4261 return None;
4262
4263 Immed &= 0xFFFFFFULL;
4264 return select12BitValueWithLeftShift(Immed);
4265 }
4266
4267 /// Return true if it is worth folding MI into an extended register. That is,
4268 /// if it's safe to pull it into the addressing mode of a load or store as a
4269 /// shift.
isWorthFoldingIntoExtendedReg(MachineInstr & MI,const MachineRegisterInfo & MRI) const4270 bool AArch64InstructionSelector::isWorthFoldingIntoExtendedReg(
4271 MachineInstr &MI, const MachineRegisterInfo &MRI) const {
4272 // Always fold if there is one use, or if we're optimizing for size.
4273 Register DefReg = MI.getOperand(0).getReg();
4274 if (MRI.hasOneUse(DefReg) ||
4275 MI.getParent()->getParent()->getFunction().hasMinSize())
4276 return true;
4277
4278 // It's better to avoid folding and recomputing shifts when we don't have a
4279 // fastpath.
4280 if (!STI.hasLSLFast())
4281 return false;
4282
4283 // We have a fastpath, so folding a shift in and potentially computing it
4284 // many times may be beneficial. Check if this is only used in memory ops.
4285 // If it is, then we should fold.
4286 return all_of(MRI.use_instructions(DefReg),
4287 [](MachineInstr &Use) { return Use.mayLoadOrStore(); });
4288 }
4289
4290 InstructionSelector::ComplexRendererFns
selectExtendedSHL(MachineOperand & Root,MachineOperand & Base,MachineOperand & Offset,unsigned SizeInBytes,bool WantsExt) const4291 AArch64InstructionSelector::selectExtendedSHL(
4292 MachineOperand &Root, MachineOperand &Base, MachineOperand &Offset,
4293 unsigned SizeInBytes, bool WantsExt) const {
4294 assert(Base.isReg() && "Expected base to be a register operand");
4295 assert(Offset.isReg() && "Expected offset to be a register operand");
4296
4297 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
4298 MachineInstr *OffsetInst = MRI.getVRegDef(Offset.getReg());
4299 if (!OffsetInst)
4300 return None;
4301
4302 unsigned OffsetOpc = OffsetInst->getOpcode();
4303 if (OffsetOpc != TargetOpcode::G_SHL && OffsetOpc != TargetOpcode::G_MUL)
4304 return None;
4305
4306 // Make sure that the memory op is a valid size.
4307 int64_t LegalShiftVal = Log2_32(SizeInBytes);
4308 if (LegalShiftVal == 0)
4309 return None;
4310 if (!isWorthFoldingIntoExtendedReg(*OffsetInst, MRI))
4311 return None;
4312
4313 // Now, try to find the specific G_CONSTANT. Start by assuming that the
4314 // register we will offset is the LHS, and the register containing the
4315 // constant is the RHS.
4316 Register OffsetReg = OffsetInst->getOperand(1).getReg();
4317 Register ConstantReg = OffsetInst->getOperand(2).getReg();
4318 auto ValAndVReg = getConstantVRegValWithLookThrough(ConstantReg, MRI);
4319 if (!ValAndVReg) {
4320 // We didn't get a constant on the RHS. If the opcode is a shift, then
4321 // we're done.
4322 if (OffsetOpc == TargetOpcode::G_SHL)
4323 return None;
4324
4325 // If we have a G_MUL, we can use either register. Try looking at the RHS.
4326 std::swap(OffsetReg, ConstantReg);
4327 ValAndVReg = getConstantVRegValWithLookThrough(ConstantReg, MRI);
4328 if (!ValAndVReg)
4329 return None;
4330 }
4331
4332 // The value must fit into 3 bits, and must be positive. Make sure that is
4333 // true.
4334 int64_t ImmVal = ValAndVReg->Value;
4335
4336 // Since we're going to pull this into a shift, the constant value must be
4337 // a power of 2. If we got a multiply, then we need to check this.
4338 if (OffsetOpc == TargetOpcode::G_MUL) {
4339 if (!isPowerOf2_32(ImmVal))
4340 return None;
4341
4342 // Got a power of 2. So, the amount we'll shift is the log base-2 of that.
4343 ImmVal = Log2_32(ImmVal);
4344 }
4345
4346 if ((ImmVal & 0x7) != ImmVal)
4347 return None;
4348
4349 // We are only allowed to shift by LegalShiftVal. This shift value is built
4350 // into the instruction, so we can't just use whatever we want.
4351 if (ImmVal != LegalShiftVal)
4352 return None;
4353
4354 unsigned SignExtend = 0;
4355 if (WantsExt) {
4356 // Check if the offset is defined by an extend.
4357 MachineInstr *ExtInst = getDefIgnoringCopies(OffsetReg, MRI);
4358 auto Ext = getExtendTypeForInst(*ExtInst, MRI, true);
4359 if (Ext == AArch64_AM::InvalidShiftExtend)
4360 return None;
4361
4362 SignExtend = Ext == AArch64_AM::SXTW;
4363
4364 // Need a 32-bit wide register here.
4365 MachineIRBuilder MIB(*MRI.getVRegDef(Root.getReg()));
4366 OffsetReg = ExtInst->getOperand(1).getReg();
4367 OffsetReg = narrowExtendRegIfNeeded(OffsetReg, MIB);
4368 }
4369
4370 // We can use the LHS of the GEP as the base, and the LHS of the shift as an
4371 // offset. Signify that we are shifting by setting the shift flag to 1.
4372 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(Base.getReg()); },
4373 [=](MachineInstrBuilder &MIB) { MIB.addUse(OffsetReg); },
4374 [=](MachineInstrBuilder &MIB) {
4375 // Need to add both immediates here to make sure that they are both
4376 // added to the instruction.
4377 MIB.addImm(SignExtend);
4378 MIB.addImm(1);
4379 }}};
4380 }
4381
4382 /// This is used for computing addresses like this:
4383 ///
4384 /// ldr x1, [x2, x3, lsl #3]
4385 ///
4386 /// Where x2 is the base register, and x3 is an offset register. The shift-left
4387 /// is a constant value specific to this load instruction. That is, we'll never
4388 /// see anything other than a 3 here (which corresponds to the size of the
4389 /// element being loaded.)
4390 InstructionSelector::ComplexRendererFns
selectAddrModeShiftedExtendXReg(MachineOperand & Root,unsigned SizeInBytes) const4391 AArch64InstructionSelector::selectAddrModeShiftedExtendXReg(
4392 MachineOperand &Root, unsigned SizeInBytes) const {
4393 if (!Root.isReg())
4394 return None;
4395 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
4396
4397 // We want to find something like this:
4398 //
4399 // val = G_CONSTANT LegalShiftVal
4400 // shift = G_SHL off_reg val
4401 // ptr = G_PTR_ADD base_reg shift
4402 // x = G_LOAD ptr
4403 //
4404 // And fold it into this addressing mode:
4405 //
4406 // ldr x, [base_reg, off_reg, lsl #LegalShiftVal]
4407
4408 // Check if we can find the G_PTR_ADD.
4409 MachineInstr *PtrAdd =
4410 getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI);
4411 if (!PtrAdd || !isWorthFoldingIntoExtendedReg(*PtrAdd, MRI))
4412 return None;
4413
4414 // Now, try to match an opcode which will match our specific offset.
4415 // We want a G_SHL or a G_MUL.
4416 MachineInstr *OffsetInst =
4417 getDefIgnoringCopies(PtrAdd->getOperand(2).getReg(), MRI);
4418 return selectExtendedSHL(Root, PtrAdd->getOperand(1),
4419 OffsetInst->getOperand(0), SizeInBytes,
4420 /*WantsExt=*/false);
4421 }
4422
4423 /// This is used for computing addresses like this:
4424 ///
4425 /// ldr x1, [x2, x3]
4426 ///
4427 /// Where x2 is the base register, and x3 is an offset register.
4428 ///
4429 /// When possible (or profitable) to fold a G_PTR_ADD into the address calculation,
4430 /// this will do so. Otherwise, it will return None.
4431 InstructionSelector::ComplexRendererFns
selectAddrModeRegisterOffset(MachineOperand & Root) const4432 AArch64InstructionSelector::selectAddrModeRegisterOffset(
4433 MachineOperand &Root) const {
4434 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
4435
4436 // We need a GEP.
4437 MachineInstr *Gep = MRI.getVRegDef(Root.getReg());
4438 if (!Gep || Gep->getOpcode() != TargetOpcode::G_PTR_ADD)
4439 return None;
4440
4441 // If this is used more than once, let's not bother folding.
4442 // TODO: Check if they are memory ops. If they are, then we can still fold
4443 // without having to recompute anything.
4444 if (!MRI.hasOneUse(Gep->getOperand(0).getReg()))
4445 return None;
4446
4447 // Base is the GEP's LHS, offset is its RHS.
4448 return {{[=](MachineInstrBuilder &MIB) {
4449 MIB.addUse(Gep->getOperand(1).getReg());
4450 },
4451 [=](MachineInstrBuilder &MIB) {
4452 MIB.addUse(Gep->getOperand(2).getReg());
4453 },
4454 [=](MachineInstrBuilder &MIB) {
4455 // Need to add both immediates here to make sure that they are both
4456 // added to the instruction.
4457 MIB.addImm(0);
4458 MIB.addImm(0);
4459 }}};
4460 }
4461
4462 /// This is intended to be equivalent to selectAddrModeXRO in
4463 /// AArch64ISelDAGtoDAG. It's used for selecting X register offset loads.
4464 InstructionSelector::ComplexRendererFns
selectAddrModeXRO(MachineOperand & Root,unsigned SizeInBytes) const4465 AArch64InstructionSelector::selectAddrModeXRO(MachineOperand &Root,
4466 unsigned SizeInBytes) const {
4467 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
4468
4469 // If we have a constant offset, then we probably don't want to match a
4470 // register offset.
4471 if (isBaseWithConstantOffset(Root, MRI))
4472 return None;
4473
4474 // Try to fold shifts into the addressing mode.
4475 auto AddrModeFns = selectAddrModeShiftedExtendXReg(Root, SizeInBytes);
4476 if (AddrModeFns)
4477 return AddrModeFns;
4478
4479 // If that doesn't work, see if it's possible to fold in registers from
4480 // a GEP.
4481 return selectAddrModeRegisterOffset(Root);
4482 }
4483
4484 /// This is used for computing addresses like this:
4485 ///
4486 /// ldr x0, [xBase, wOffset, sxtw #LegalShiftVal]
4487 ///
4488 /// Where we have a 64-bit base register, a 32-bit offset register, and an
4489 /// extend (which may or may not be signed).
4490 InstructionSelector::ComplexRendererFns
selectAddrModeWRO(MachineOperand & Root,unsigned SizeInBytes) const4491 AArch64InstructionSelector::selectAddrModeWRO(MachineOperand &Root,
4492 unsigned SizeInBytes) const {
4493 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
4494
4495 MachineInstr *PtrAdd =
4496 getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI);
4497 if (!PtrAdd || !isWorthFoldingIntoExtendedReg(*PtrAdd, MRI))
4498 return None;
4499
4500 MachineOperand &LHS = PtrAdd->getOperand(1);
4501 MachineOperand &RHS = PtrAdd->getOperand(2);
4502 MachineInstr *OffsetInst = getDefIgnoringCopies(RHS.getReg(), MRI);
4503
4504 // The first case is the same as selectAddrModeXRO, except we need an extend.
4505 // In this case, we try to find a shift and extend, and fold them into the
4506 // addressing mode.
4507 //
4508 // E.g.
4509 //
4510 // off_reg = G_Z/S/ANYEXT ext_reg
4511 // val = G_CONSTANT LegalShiftVal
4512 // shift = G_SHL off_reg val
4513 // ptr = G_PTR_ADD base_reg shift
4514 // x = G_LOAD ptr
4515 //
4516 // In this case we can get a load like this:
4517 //
4518 // ldr x0, [base_reg, ext_reg, sxtw #LegalShiftVal]
4519 auto ExtendedShl = selectExtendedSHL(Root, LHS, OffsetInst->getOperand(0),
4520 SizeInBytes, /*WantsExt=*/true);
4521 if (ExtendedShl)
4522 return ExtendedShl;
4523
4524 // There was no shift. We can try and fold a G_Z/S/ANYEXT in alone though.
4525 //
4526 // e.g.
4527 // ldr something, [base_reg, ext_reg, sxtw]
4528 if (!isWorthFoldingIntoExtendedReg(*OffsetInst, MRI))
4529 return None;
4530
4531 // Check if this is an extend. We'll get an extend type if it is.
4532 AArch64_AM::ShiftExtendType Ext =
4533 getExtendTypeForInst(*OffsetInst, MRI, /*IsLoadStore=*/true);
4534 if (Ext == AArch64_AM::InvalidShiftExtend)
4535 return None;
4536
4537 // Need a 32-bit wide register.
4538 MachineIRBuilder MIB(*PtrAdd);
4539 Register ExtReg =
4540 narrowExtendRegIfNeeded(OffsetInst->getOperand(1).getReg(), MIB);
4541 unsigned SignExtend = Ext == AArch64_AM::SXTW;
4542
4543 // Base is LHS, offset is ExtReg.
4544 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(LHS.getReg()); },
4545 [=](MachineInstrBuilder &MIB) { MIB.addUse(ExtReg); },
4546 [=](MachineInstrBuilder &MIB) {
4547 MIB.addImm(SignExtend);
4548 MIB.addImm(0);
4549 }}};
4550 }
4551
4552 /// Select a "register plus unscaled signed 9-bit immediate" address. This
4553 /// should only match when there is an offset that is not valid for a scaled
4554 /// immediate addressing mode. The "Size" argument is the size in bytes of the
4555 /// memory reference, which is needed here to know what is valid for a scaled
4556 /// immediate.
4557 InstructionSelector::ComplexRendererFns
selectAddrModeUnscaled(MachineOperand & Root,unsigned Size) const4558 AArch64InstructionSelector::selectAddrModeUnscaled(MachineOperand &Root,
4559 unsigned Size) const {
4560 MachineRegisterInfo &MRI =
4561 Root.getParent()->getParent()->getParent()->getRegInfo();
4562
4563 if (!Root.isReg())
4564 return None;
4565
4566 if (!isBaseWithConstantOffset(Root, MRI))
4567 return None;
4568
4569 MachineInstr *RootDef = MRI.getVRegDef(Root.getReg());
4570 if (!RootDef)
4571 return None;
4572
4573 MachineOperand &OffImm = RootDef->getOperand(2);
4574 if (!OffImm.isReg())
4575 return None;
4576 MachineInstr *RHS = MRI.getVRegDef(OffImm.getReg());
4577 if (!RHS || RHS->getOpcode() != TargetOpcode::G_CONSTANT)
4578 return None;
4579 int64_t RHSC;
4580 MachineOperand &RHSOp1 = RHS->getOperand(1);
4581 if (!RHSOp1.isCImm() || RHSOp1.getCImm()->getBitWidth() > 64)
4582 return None;
4583 RHSC = RHSOp1.getCImm()->getSExtValue();
4584
4585 // If the offset is valid as a scaled immediate, don't match here.
4586 if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Log2_32(Size)))
4587 return None;
4588 if (RHSC >= -256 && RHSC < 256) {
4589 MachineOperand &Base = RootDef->getOperand(1);
4590 return {{
4591 [=](MachineInstrBuilder &MIB) { MIB.add(Base); },
4592 [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC); },
4593 }};
4594 }
4595 return None;
4596 }
4597
4598 /// Select a "register plus scaled unsigned 12-bit immediate" address. The
4599 /// "Size" argument is the size in bytes of the memory reference, which
4600 /// determines the scale.
4601 InstructionSelector::ComplexRendererFns
selectAddrModeIndexed(MachineOperand & Root,unsigned Size) const4602 AArch64InstructionSelector::selectAddrModeIndexed(MachineOperand &Root,
4603 unsigned Size) const {
4604 MachineRegisterInfo &MRI =
4605 Root.getParent()->getParent()->getParent()->getRegInfo();
4606
4607 if (!Root.isReg())
4608 return None;
4609
4610 MachineInstr *RootDef = MRI.getVRegDef(Root.getReg());
4611 if (!RootDef)
4612 return None;
4613
4614 if (RootDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
4615 return {{
4616 [=](MachineInstrBuilder &MIB) { MIB.add(RootDef->getOperand(1)); },
4617 [=](MachineInstrBuilder &MIB) { MIB.addImm(0); },
4618 }};
4619 }
4620
4621 if (isBaseWithConstantOffset(Root, MRI)) {
4622 MachineOperand &LHS = RootDef->getOperand(1);
4623 MachineOperand &RHS = RootDef->getOperand(2);
4624 MachineInstr *LHSDef = MRI.getVRegDef(LHS.getReg());
4625 MachineInstr *RHSDef = MRI.getVRegDef(RHS.getReg());
4626 if (LHSDef && RHSDef) {
4627 int64_t RHSC = (int64_t)RHSDef->getOperand(1).getCImm()->getZExtValue();
4628 unsigned Scale = Log2_32(Size);
4629 if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) {
4630 if (LHSDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
4631 return {{
4632 [=](MachineInstrBuilder &MIB) { MIB.add(LHSDef->getOperand(1)); },
4633 [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC >> Scale); },
4634 }};
4635
4636 return {{
4637 [=](MachineInstrBuilder &MIB) { MIB.add(LHS); },
4638 [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC >> Scale); },
4639 }};
4640 }
4641 }
4642 }
4643
4644 // Before falling back to our general case, check if the unscaled
4645 // instructions can handle this. If so, that's preferable.
4646 if (selectAddrModeUnscaled(Root, Size).hasValue())
4647 return None;
4648
4649 return {{
4650 [=](MachineInstrBuilder &MIB) { MIB.add(Root); },
4651 [=](MachineInstrBuilder &MIB) { MIB.addImm(0); },
4652 }};
4653 }
4654
4655 /// Given a shift instruction, return the correct shift type for that
4656 /// instruction.
getShiftTypeForInst(MachineInstr & MI)4657 static AArch64_AM::ShiftExtendType getShiftTypeForInst(MachineInstr &MI) {
4658 // TODO: Handle AArch64_AM::ROR
4659 switch (MI.getOpcode()) {
4660 default:
4661 return AArch64_AM::InvalidShiftExtend;
4662 case TargetOpcode::G_SHL:
4663 return AArch64_AM::LSL;
4664 case TargetOpcode::G_LSHR:
4665 return AArch64_AM::LSR;
4666 case TargetOpcode::G_ASHR:
4667 return AArch64_AM::ASR;
4668 }
4669 }
4670
4671 /// Select a "shifted register" operand. If the value is not shifted, set the
4672 /// shift operand to a default value of "lsl 0".
4673 ///
4674 /// TODO: Allow shifted register to be rotated in logical instructions.
4675 InstructionSelector::ComplexRendererFns
selectShiftedRegister(MachineOperand & Root) const4676 AArch64InstructionSelector::selectShiftedRegister(MachineOperand &Root) const {
4677 if (!Root.isReg())
4678 return None;
4679 MachineRegisterInfo &MRI =
4680 Root.getParent()->getParent()->getParent()->getRegInfo();
4681
4682 // Check if the operand is defined by an instruction which corresponds to
4683 // a ShiftExtendType. E.g. a G_SHL, G_LSHR, etc.
4684 //
4685 // TODO: Handle AArch64_AM::ROR for logical instructions.
4686 MachineInstr *ShiftInst = MRI.getVRegDef(Root.getReg());
4687 if (!ShiftInst)
4688 return None;
4689 AArch64_AM::ShiftExtendType ShType = getShiftTypeForInst(*ShiftInst);
4690 if (ShType == AArch64_AM::InvalidShiftExtend)
4691 return None;
4692 if (!isWorthFoldingIntoExtendedReg(*ShiftInst, MRI))
4693 return None;
4694
4695 // Need an immediate on the RHS.
4696 MachineOperand &ShiftRHS = ShiftInst->getOperand(2);
4697 auto Immed = getImmedFromMO(ShiftRHS);
4698 if (!Immed)
4699 return None;
4700
4701 // We have something that we can fold. Fold in the shift's LHS and RHS into
4702 // the instruction.
4703 MachineOperand &ShiftLHS = ShiftInst->getOperand(1);
4704 Register ShiftReg = ShiftLHS.getReg();
4705
4706 unsigned NumBits = MRI.getType(ShiftReg).getSizeInBits();
4707 unsigned Val = *Immed & (NumBits - 1);
4708 unsigned ShiftVal = AArch64_AM::getShifterImm(ShType, Val);
4709
4710 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ShiftReg); },
4711 [=](MachineInstrBuilder &MIB) { MIB.addImm(ShiftVal); }}};
4712 }
4713
getExtendTypeForInst(MachineInstr & MI,MachineRegisterInfo & MRI,bool IsLoadStore) const4714 AArch64_AM::ShiftExtendType AArch64InstructionSelector::getExtendTypeForInst(
4715 MachineInstr &MI, MachineRegisterInfo &MRI, bool IsLoadStore) const {
4716 unsigned Opc = MI.getOpcode();
4717
4718 // Handle explicit extend instructions first.
4719 if (Opc == TargetOpcode::G_SEXT || Opc == TargetOpcode::G_SEXT_INREG) {
4720 unsigned Size = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4721 assert(Size != 64 && "Extend from 64 bits?");
4722 switch (Size) {
4723 case 8:
4724 return AArch64_AM::SXTB;
4725 case 16:
4726 return AArch64_AM::SXTH;
4727 case 32:
4728 return AArch64_AM::SXTW;
4729 default:
4730 return AArch64_AM::InvalidShiftExtend;
4731 }
4732 }
4733
4734 if (Opc == TargetOpcode::G_ZEXT || Opc == TargetOpcode::G_ANYEXT) {
4735 unsigned Size = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4736 assert(Size != 64 && "Extend from 64 bits?");
4737 switch (Size) {
4738 case 8:
4739 return AArch64_AM::UXTB;
4740 case 16:
4741 return AArch64_AM::UXTH;
4742 case 32:
4743 return AArch64_AM::UXTW;
4744 default:
4745 return AArch64_AM::InvalidShiftExtend;
4746 }
4747 }
4748
4749 // Don't have an explicit extend. Try to handle a G_AND with a constant mask
4750 // on the RHS.
4751 if (Opc != TargetOpcode::G_AND)
4752 return AArch64_AM::InvalidShiftExtend;
4753
4754 Optional<uint64_t> MaybeAndMask = getImmedFromMO(MI.getOperand(2));
4755 if (!MaybeAndMask)
4756 return AArch64_AM::InvalidShiftExtend;
4757 uint64_t AndMask = *MaybeAndMask;
4758 switch (AndMask) {
4759 default:
4760 return AArch64_AM::InvalidShiftExtend;
4761 case 0xFF:
4762 return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend;
4763 case 0xFFFF:
4764 return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend;
4765 case 0xFFFFFFFF:
4766 return AArch64_AM::UXTW;
4767 }
4768 }
4769
narrowExtendRegIfNeeded(Register ExtReg,MachineIRBuilder & MIB) const4770 Register AArch64InstructionSelector::narrowExtendRegIfNeeded(
4771 Register ExtReg, MachineIRBuilder &MIB) const {
4772 MachineRegisterInfo &MRI = *MIB.getMRI();
4773 if (MRI.getType(ExtReg).getSizeInBits() == 32)
4774 return ExtReg;
4775
4776 // Insert a copy to move ExtReg to GPR32.
4777 Register NarrowReg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
4778 auto Copy = MIB.buildCopy({NarrowReg}, {ExtReg});
4779
4780 // Select the copy into a subregister copy.
4781 selectCopy(*Copy, TII, MRI, TRI, RBI);
4782 return Copy.getReg(0);
4783 }
4784
4785 /// Select an "extended register" operand. This operand folds in an extend
4786 /// followed by an optional left shift.
4787 InstructionSelector::ComplexRendererFns
selectArithExtendedRegister(MachineOperand & Root) const4788 AArch64InstructionSelector::selectArithExtendedRegister(
4789 MachineOperand &Root) const {
4790 if (!Root.isReg())
4791 return None;
4792 MachineRegisterInfo &MRI =
4793 Root.getParent()->getParent()->getParent()->getRegInfo();
4794
4795 uint64_t ShiftVal = 0;
4796 Register ExtReg;
4797 AArch64_AM::ShiftExtendType Ext;
4798 MachineInstr *RootDef = getDefIgnoringCopies(Root.getReg(), MRI);
4799 if (!RootDef)
4800 return None;
4801
4802 if (!isWorthFoldingIntoExtendedReg(*RootDef, MRI))
4803 return None;
4804
4805 // Check if we can fold a shift and an extend.
4806 if (RootDef->getOpcode() == TargetOpcode::G_SHL) {
4807 // Look for a constant on the RHS of the shift.
4808 MachineOperand &RHS = RootDef->getOperand(2);
4809 Optional<uint64_t> MaybeShiftVal = getImmedFromMO(RHS);
4810 if (!MaybeShiftVal)
4811 return None;
4812 ShiftVal = *MaybeShiftVal;
4813 if (ShiftVal > 4)
4814 return None;
4815 // Look for a valid extend instruction on the LHS of the shift.
4816 MachineOperand &LHS = RootDef->getOperand(1);
4817 MachineInstr *ExtDef = getDefIgnoringCopies(LHS.getReg(), MRI);
4818 if (!ExtDef)
4819 return None;
4820 Ext = getExtendTypeForInst(*ExtDef, MRI);
4821 if (Ext == AArch64_AM::InvalidShiftExtend)
4822 return None;
4823 ExtReg = ExtDef->getOperand(1).getReg();
4824 } else {
4825 // Didn't get a shift. Try just folding an extend.
4826 Ext = getExtendTypeForInst(*RootDef, MRI);
4827 if (Ext == AArch64_AM::InvalidShiftExtend)
4828 return None;
4829 ExtReg = RootDef->getOperand(1).getReg();
4830
4831 // If we have a 32 bit instruction which zeroes out the high half of a
4832 // register, we get an implicit zero extend for free. Check if we have one.
4833 // FIXME: We actually emit the extend right now even though we don't have
4834 // to.
4835 if (Ext == AArch64_AM::UXTW && MRI.getType(ExtReg).getSizeInBits() == 32) {
4836 MachineInstr *ExtInst = MRI.getVRegDef(ExtReg);
4837 if (ExtInst && isDef32(*ExtInst))
4838 return None;
4839 }
4840 }
4841
4842 // We require a GPR32 here. Narrow the ExtReg if needed using a subregister
4843 // copy.
4844 MachineIRBuilder MIB(*RootDef);
4845 ExtReg = narrowExtendRegIfNeeded(ExtReg, MIB);
4846
4847 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ExtReg); },
4848 [=](MachineInstrBuilder &MIB) {
4849 MIB.addImm(getArithExtendImm(Ext, ShiftVal));
4850 }}};
4851 }
4852
renderTruncImm(MachineInstrBuilder & MIB,const MachineInstr & MI,int OpIdx) const4853 void AArch64InstructionSelector::renderTruncImm(MachineInstrBuilder &MIB,
4854 const MachineInstr &MI,
4855 int OpIdx) const {
4856 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4857 assert(MI.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
4858 "Expected G_CONSTANT");
4859 Optional<int64_t> CstVal = getConstantVRegVal(MI.getOperand(0).getReg(), MRI);
4860 assert(CstVal && "Expected constant value");
4861 MIB.addImm(CstVal.getValue());
4862 }
4863
renderLogicalImm32(MachineInstrBuilder & MIB,const MachineInstr & I,int OpIdx) const4864 void AArch64InstructionSelector::renderLogicalImm32(
4865 MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const {
4866 assert(I.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
4867 "Expected G_CONSTANT");
4868 uint64_t CstVal = I.getOperand(1).getCImm()->getZExtValue();
4869 uint64_t Enc = AArch64_AM::encodeLogicalImmediate(CstVal, 32);
4870 MIB.addImm(Enc);
4871 }
4872
renderLogicalImm64(MachineInstrBuilder & MIB,const MachineInstr & I,int OpIdx) const4873 void AArch64InstructionSelector::renderLogicalImm64(
4874 MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const {
4875 assert(I.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
4876 "Expected G_CONSTANT");
4877 uint64_t CstVal = I.getOperand(1).getCImm()->getZExtValue();
4878 uint64_t Enc = AArch64_AM::encodeLogicalImmediate(CstVal, 64);
4879 MIB.addImm(Enc);
4880 }
4881
isLoadStoreOfNumBytes(const MachineInstr & MI,unsigned NumBytes) const4882 bool AArch64InstructionSelector::isLoadStoreOfNumBytes(
4883 const MachineInstr &MI, unsigned NumBytes) const {
4884 if (!MI.mayLoadOrStore())
4885 return false;
4886 assert(MI.hasOneMemOperand() &&
4887 "Expected load/store to have only one mem op!");
4888 return (*MI.memoperands_begin())->getSize() == NumBytes;
4889 }
4890
isDef32(const MachineInstr & MI) const4891 bool AArch64InstructionSelector::isDef32(const MachineInstr &MI) const {
4892 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4893 if (MRI.getType(MI.getOperand(0).getReg()).getSizeInBits() != 32)
4894 return false;
4895
4896 // Only return true if we know the operation will zero-out the high half of
4897 // the 64-bit register. Truncates can be subregister copies, which don't
4898 // zero out the high bits. Copies and other copy-like instructions can be
4899 // fed by truncates, or could be lowered as subregister copies.
4900 switch (MI.getOpcode()) {
4901 default:
4902 return true;
4903 case TargetOpcode::COPY:
4904 case TargetOpcode::G_BITCAST:
4905 case TargetOpcode::G_TRUNC:
4906 case TargetOpcode::G_PHI:
4907 return false;
4908 }
4909 }
4910
4911 namespace llvm {
4912 InstructionSelector *
createAArch64InstructionSelector(const AArch64TargetMachine & TM,AArch64Subtarget & Subtarget,AArch64RegisterBankInfo & RBI)4913 createAArch64InstructionSelector(const AArch64TargetMachine &TM,
4914 AArch64Subtarget &Subtarget,
4915 AArch64RegisterBankInfo &RBI) {
4916 return new AArch64InstructionSelector(TM, Subtarget, RBI);
4917 }
4918 }
4919