• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 
28 #include "dm_services.h"
29 
30 #include "dc.h"
31 
32 #include "core_status.h"
33 #include "core_types.h"
34 #include "hw_sequencer.h"
35 #include "dce/dce_hwseq.h"
36 
37 #include "resource.h"
38 
39 #include "clk_mgr.h"
40 #include "clock_source.h"
41 #include "dc_bios_types.h"
42 
43 #include "bios_parser_interface.h"
44 #include "include/irq_service_interface.h"
45 #include "transform.h"
46 #include "dmcu.h"
47 #include "dpp.h"
48 #include "timing_generator.h"
49 #include "abm.h"
50 #include "virtual/virtual_link_encoder.h"
51 
52 #include "link_hwss.h"
53 #include "link_encoder.h"
54 
55 #include "dc_link_ddc.h"
56 #include "dm_helpers.h"
57 #include "mem_input.h"
58 #include "hubp.h"
59 
60 #include "dc_link_dp.h"
61 #include "dc_dmub_srv.h"
62 
63 #include "dsc.h"
64 
65 #include "vm_helper.h"
66 
67 #include "dce/dce_i2c.h"
68 
69 #include "dmub/dmub_srv.h"
70 
71 #include "dce/dmub_hw_lock_mgr.h"
72 
73 #define CTX \
74 	dc->ctx
75 
76 #define DC_LOGGER \
77 	dc->ctx->logger
78 
79 static const char DC_BUILD_ID[] = "production-build";
80 
81 /**
82  * DOC: Overview
83  *
84  * DC is the OS-agnostic component of the amdgpu DC driver.
85  *
86  * DC maintains and validates a set of structs representing the state of the
87  * driver and writes that state to AMD hardware
88  *
89  * Main DC HW structs:
90  *
91  * struct dc - The central struct.  One per driver.  Created on driver load,
92  * destroyed on driver unload.
93  *
94  * struct dc_context - One per driver.
95  * Used as a backpointer by most other structs in dc.
96  *
97  * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
98  * plugpoints).  Created on driver load, destroyed on driver unload.
99  *
100  * struct dc_sink - One per display.  Created on boot or hotplug.
101  * Destroyed on shutdown or hotunplug.  A dc_link can have a local sink
102  * (the display directly attached).  It may also have one or more remote
103  * sinks (in the Multi-Stream Transport case)
104  *
105  * struct resource_pool - One per driver.  Represents the hw blocks not in the
106  * main pipeline.  Not directly accessible by dm.
107  *
108  * Main dc state structs:
109  *
110  * These structs can be created and destroyed as needed.  There is a full set of
111  * these structs in dc->current_state representing the currently programmed state.
112  *
113  * struct dc_state - The global DC state to track global state information,
114  * such as bandwidth values.
115  *
116  * struct dc_stream_state - Represents the hw configuration for the pipeline from
117  * a framebuffer to a display.  Maps one-to-one with dc_sink.
118  *
119  * struct dc_plane_state - Represents a framebuffer.  Each stream has at least one,
120  * and may have more in the Multi-Plane Overlay case.
121  *
122  * struct resource_context - Represents the programmable state of everything in
123  * the resource_pool.  Not directly accessible by dm.
124  *
125  * struct pipe_ctx - A member of struct resource_context.  Represents the
126  * internal hardware pipeline components.  Each dc_plane_state has either
127  * one or two (in the pipe-split case).
128  */
129 
130 /*******************************************************************************
131  * Private functions
132  ******************************************************************************/
133 
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)134 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
135 {
136 	if (new > *original)
137 		*original = new;
138 }
139 
destroy_links(struct dc * dc)140 static void destroy_links(struct dc *dc)
141 {
142 	uint32_t i;
143 
144 	for (i = 0; i < dc->link_count; i++) {
145 		if (NULL != dc->links[i])
146 			link_destroy(&dc->links[i]);
147 	}
148 }
149 
create_links(struct dc * dc,uint32_t num_virtual_links)150 static bool create_links(
151 		struct dc *dc,
152 		uint32_t num_virtual_links)
153 {
154 	int i;
155 	int connectors_num;
156 	struct dc_bios *bios = dc->ctx->dc_bios;
157 
158 	dc->link_count = 0;
159 
160 	connectors_num = bios->funcs->get_connectors_number(bios);
161 
162 	if (connectors_num > ENUM_ID_COUNT) {
163 		dm_error(
164 			"DC: Number of connectors %d exceeds maximum of %d!\n",
165 			connectors_num,
166 			ENUM_ID_COUNT);
167 		return false;
168 	}
169 
170 	dm_output_to_console(
171 		"DC: %s: connectors_num: physical:%d, virtual:%d\n",
172 		__func__,
173 		connectors_num,
174 		num_virtual_links);
175 
176 	for (i = 0; i < connectors_num; i++) {
177 		struct link_init_data link_init_params = {0};
178 		struct dc_link *link;
179 
180 		link_init_params.ctx = dc->ctx;
181 		/* next BIOS object table connector */
182 		link_init_params.connector_index = i;
183 		link_init_params.link_index = dc->link_count;
184 		link_init_params.dc = dc;
185 		link = link_create(&link_init_params);
186 
187 		if (link) {
188 			bool should_destory_link = false;
189 
190 			if (link->connector_signal == SIGNAL_TYPE_EDP) {
191 				if (dc->config.edp_not_connected) {
192 					if (!IS_DIAG_DC(dc->ctx->dce_environment))
193 						should_destory_link = true;
194 				} else {
195 					enum dc_connection_type type;
196 					dc_link_detect_sink(link, &type);
197 					if (type == dc_connection_none)
198 						should_destory_link = true;
199 				}
200 			}
201 
202 			if (dc->config.force_enum_edp || !should_destory_link) {
203 				dc->links[dc->link_count] = link;
204 				link->dc = dc;
205 				++dc->link_count;
206 			} else {
207 				link_destroy(&link);
208 			}
209 		}
210 	}
211 
212 	for (i = 0; i < num_virtual_links; i++) {
213 		struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
214 		struct encoder_init_data enc_init = {0};
215 
216 		if (link == NULL) {
217 			BREAK_TO_DEBUGGER();
218 			goto failed_alloc;
219 		}
220 
221 		link->link_index = dc->link_count;
222 		dc->links[dc->link_count] = link;
223 		dc->link_count++;
224 
225 		link->ctx = dc->ctx;
226 		link->dc = dc;
227 		link->connector_signal = SIGNAL_TYPE_VIRTUAL;
228 		link->link_id.type = OBJECT_TYPE_CONNECTOR;
229 		link->link_id.id = CONNECTOR_ID_VIRTUAL;
230 		link->link_id.enum_id = ENUM_ID_1;
231 		link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
232 
233 		if (!link->link_enc) {
234 			BREAK_TO_DEBUGGER();
235 			goto failed_alloc;
236 		}
237 
238 		link->link_status.dpcd_caps = &link->dpcd_caps;
239 
240 		enc_init.ctx = dc->ctx;
241 		enc_init.channel = CHANNEL_ID_UNKNOWN;
242 		enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
243 		enc_init.transmitter = TRANSMITTER_UNKNOWN;
244 		enc_init.connector = link->link_id;
245 		enc_init.encoder.type = OBJECT_TYPE_ENCODER;
246 		enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
247 		enc_init.encoder.enum_id = ENUM_ID_1;
248 		virtual_link_encoder_construct(link->link_enc, &enc_init);
249 	}
250 
251 	return true;
252 
253 failed_alloc:
254 	return false;
255 }
256 
dc_perf_trace_create(void)257 static struct dc_perf_trace *dc_perf_trace_create(void)
258 {
259 	return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
260 }
261 
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)262 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
263 {
264 	kfree(*perf_trace);
265 	*perf_trace = NULL;
266 }
267 
268 /**
269  *****************************************************************************
270  *  Function: dc_stream_adjust_vmin_vmax
271  *
272  *  @brief
273  *     Looks up the pipe context of dc_stream_state and updates the
274  *     vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
275  *     Rate, which is a power-saving feature that targets reducing panel
276  *     refresh rate while the screen is static
277  *
278  *  @param [in] dc: dc reference
279  *  @param [in] stream: Initial dc stream state
280  *  @param [in] adjust: Updated parameters for vertical_total_min and
281  *  vertical_total_max
282  *****************************************************************************
283  */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)284 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
285 		struct dc_stream_state *stream,
286 		struct dc_crtc_timing_adjust *adjust)
287 {
288 	int i = 0;
289 	bool ret = false;
290 
291 	stream->adjust = *adjust;
292 
293 	for (i = 0; i < MAX_PIPES; i++) {
294 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
295 
296 		if (pipe->stream == stream && pipe->stream_res.tg) {
297 			dc->hwss.set_drr(&pipe,
298 					1,
299 					adjust->v_total_min,
300 					adjust->v_total_max,
301 					adjust->v_total_mid,
302 					adjust->v_total_mid_frame_num);
303 
304 			ret = true;
305 		}
306 	}
307 	return ret;
308 }
309 
dc_stream_get_crtc_position(struct dc * dc,struct dc_stream_state ** streams,int num_streams,unsigned int * v_pos,unsigned int * nom_v_pos)310 bool dc_stream_get_crtc_position(struct dc *dc,
311 		struct dc_stream_state **streams, int num_streams,
312 		unsigned int *v_pos, unsigned int *nom_v_pos)
313 {
314 	/* TODO: Support multiple streams */
315 	const struct dc_stream_state *stream = streams[0];
316 	int i = 0;
317 	bool ret = false;
318 	struct crtc_position position;
319 
320 	for (i = 0; i < MAX_PIPES; i++) {
321 		struct pipe_ctx *pipe =
322 				&dc->current_state->res_ctx.pipe_ctx[i];
323 
324 		if (pipe->stream == stream && pipe->stream_res.stream_enc) {
325 			dc->hwss.get_position(&pipe, 1, &position);
326 
327 			*v_pos = position.vertical_count;
328 			*nom_v_pos = position.nominal_vcount;
329 			ret = true;
330 		}
331 	}
332 	return ret;
333 }
334 
335 /**
336  * dc_stream_configure_crc() - Configure CRC capture for the given stream.
337  * @dc: DC Object
338  * @stream: The stream to configure CRC on.
339  * @enable: Enable CRC if true, disable otherwise.
340  * @continuous: Capture CRC on every frame if true. Otherwise, only capture
341  *              once.
342  *
343  * By default, only CRC0 is configured, and the entire frame is used to
344  * calculate the crc.
345  */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,bool enable,bool continuous)346 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
347 			     bool enable, bool continuous)
348 {
349 	int i;
350 	struct pipe_ctx *pipe;
351 	struct crc_params param;
352 	struct timing_generator *tg;
353 
354 	for (i = 0; i < MAX_PIPES; i++) {
355 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
356 		if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
357 			break;
358 	}
359 	/* Stream not found */
360 	if (i == MAX_PIPES)
361 		return false;
362 
363 	/* Always capture the full frame */
364 	param.windowa_x_start = 0;
365 	param.windowa_y_start = 0;
366 	param.windowa_x_end = pipe->stream->timing.h_addressable;
367 	param.windowa_y_end = pipe->stream->timing.v_addressable;
368 	param.windowb_x_start = 0;
369 	param.windowb_y_start = 0;
370 	param.windowb_x_end = pipe->stream->timing.h_addressable;
371 	param.windowb_y_end = pipe->stream->timing.v_addressable;
372 
373 	param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
374 	param.odm_mode = pipe->next_odm_pipe ? 1:0;
375 
376 	/* Default to the union of both windows */
377 	param.selection = UNION_WINDOW_A_B;
378 	param.continuous_mode = continuous;
379 	param.enable = enable;
380 
381 	tg = pipe->stream_res.tg;
382 
383 	/* Only call if supported */
384 	if (tg->funcs->configure_crc)
385 		return tg->funcs->configure_crc(tg, &param);
386 	DC_LOG_WARNING("CRC capture not supported.");
387 	return false;
388 }
389 
390 /**
391  * dc_stream_get_crc() - Get CRC values for the given stream.
392  * @dc: DC object
393  * @stream: The DC stream state of the stream to get CRCs from.
394  * @r_cr, g_y, b_cb: CRC values for the three channels are stored here.
395  *
396  * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
397  * Return false if stream is not found, or if CRCs are not enabled.
398  */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)399 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
400 		       uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
401 {
402 	int i;
403 	struct pipe_ctx *pipe;
404 	struct timing_generator *tg;
405 
406 	for (i = 0; i < MAX_PIPES; i++) {
407 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
408 		if (pipe->stream == stream)
409 			break;
410 	}
411 	/* Stream not found */
412 	if (i == MAX_PIPES)
413 		return false;
414 
415 	tg = pipe->stream_res.tg;
416 
417 	if (tg->funcs->get_crc)
418 		return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
419 	DC_LOG_WARNING("CRC capture not supported.");
420 	return false;
421 }
422 
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)423 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
424 		enum dc_dynamic_expansion option)
425 {
426 	/* OPP FMT dyn expansion updates*/
427 	int i = 0;
428 	struct pipe_ctx *pipe_ctx;
429 
430 	for (i = 0; i < MAX_PIPES; i++) {
431 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
432 				== stream) {
433 			pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
434 			pipe_ctx->stream_res.opp->dyn_expansion = option;
435 			pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
436 					pipe_ctx->stream_res.opp,
437 					COLOR_SPACE_YCBCR601,
438 					stream->timing.display_color_depth,
439 					stream->signal);
440 		}
441 	}
442 }
443 
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)444 void dc_stream_set_dither_option(struct dc_stream_state *stream,
445 		enum dc_dither_option option)
446 {
447 	struct bit_depth_reduction_params params;
448 	struct dc_link *link = stream->link;
449 	struct pipe_ctx *pipes = NULL;
450 	int i;
451 
452 	for (i = 0; i < MAX_PIPES; i++) {
453 		if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
454 				stream) {
455 			pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
456 			break;
457 		}
458 	}
459 
460 	if (!pipes)
461 		return;
462 	if (option > DITHER_OPTION_MAX)
463 		return;
464 
465 	stream->dither_option = option;
466 
467 	memset(&params, 0, sizeof(params));
468 	resource_build_bit_depth_reduction_params(stream, &params);
469 	stream->bit_depth_params = params;
470 
471 	if (pipes->plane_res.xfm &&
472 	    pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
473 		pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
474 			pipes->plane_res.xfm,
475 			pipes->plane_res.scl_data.lb_params.depth,
476 			&stream->bit_depth_params);
477 	}
478 
479 	pipes->stream_res.opp->funcs->
480 		opp_program_bit_depth_reduction(pipes->stream_res.opp, &params);
481 }
482 
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)483 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
484 {
485 	int i = 0;
486 	bool ret = false;
487 	struct pipe_ctx *pipes;
488 
489 	for (i = 0; i < MAX_PIPES; i++) {
490 		if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
491 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
492 			dc->hwss.program_gamut_remap(pipes);
493 			ret = true;
494 		}
495 	}
496 
497 	return ret;
498 }
499 
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)500 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
501 {
502 	int i = 0;
503 	bool ret = false;
504 	struct pipe_ctx *pipes;
505 
506 	for (i = 0; i < MAX_PIPES; i++) {
507 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
508 				== stream) {
509 
510 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
511 			dc->hwss.program_output_csc(dc,
512 					pipes,
513 					stream->output_color_space,
514 					stream->csc_color_matrix.matrix,
515 					pipes->stream_res.opp->inst);
516 			ret = true;
517 		}
518 	}
519 
520 	return ret;
521 }
522 
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)523 void dc_stream_set_static_screen_params(struct dc *dc,
524 		struct dc_stream_state **streams,
525 		int num_streams,
526 		const struct dc_static_screen_params *params)
527 {
528 	int i = 0;
529 	int j = 0;
530 	struct pipe_ctx *pipes_affected[MAX_PIPES];
531 	int num_pipes_affected = 0;
532 
533 	for (i = 0; i < num_streams; i++) {
534 		struct dc_stream_state *stream = streams[i];
535 
536 		for (j = 0; j < MAX_PIPES; j++) {
537 			if (dc->current_state->res_ctx.pipe_ctx[j].stream
538 					== stream) {
539 				pipes_affected[num_pipes_affected++] =
540 						&dc->current_state->res_ctx.pipe_ctx[j];
541 			}
542 		}
543 	}
544 
545 	dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
546 }
547 
dc_destruct(struct dc * dc)548 static void dc_destruct(struct dc *dc)
549 {
550 	if (dc->current_state) {
551 		dc_release_state(dc->current_state);
552 		dc->current_state = NULL;
553 	}
554 
555 	destroy_links(dc);
556 
557 	if (dc->clk_mgr) {
558 		dc_destroy_clk_mgr(dc->clk_mgr);
559 		dc->clk_mgr = NULL;
560 	}
561 
562 	dc_destroy_resource_pool(dc);
563 
564 	if (dc->ctx->gpio_service)
565 		dal_gpio_service_destroy(&dc->ctx->gpio_service);
566 
567 	if (dc->ctx->created_bios)
568 		dal_bios_parser_destroy(&dc->ctx->dc_bios);
569 
570 	dc_perf_trace_destroy(&dc->ctx->perf_trace);
571 
572 	kfree(dc->ctx);
573 	dc->ctx = NULL;
574 
575 	kfree(dc->bw_vbios);
576 	dc->bw_vbios = NULL;
577 
578 	kfree(dc->bw_dceip);
579 	dc->bw_dceip = NULL;
580 
581 #ifdef CONFIG_DRM_AMD_DC_DCN
582 	kfree(dc->dcn_soc);
583 	dc->dcn_soc = NULL;
584 
585 	kfree(dc->dcn_ip);
586 	dc->dcn_ip = NULL;
587 
588 #endif
589 	kfree(dc->vm_helper);
590 	dc->vm_helper = NULL;
591 
592 }
593 
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)594 static bool dc_construct_ctx(struct dc *dc,
595 		const struct dc_init_data *init_params)
596 {
597 	struct dc_context *dc_ctx;
598 	enum dce_version dc_version = DCE_VERSION_UNKNOWN;
599 
600 	dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
601 	if (!dc_ctx)
602 		return false;
603 
604 	dc_ctx->cgs_device = init_params->cgs_device;
605 	dc_ctx->driver_context = init_params->driver;
606 	dc_ctx->dc = dc;
607 	dc_ctx->asic_id = init_params->asic_id;
608 	dc_ctx->dc_sink_id_count = 0;
609 	dc_ctx->dc_stream_id_count = 0;
610 	dc_ctx->dce_environment = init_params->dce_environment;
611 
612 	/* Create logger */
613 
614 	dc_version = resource_parse_asic_id(init_params->asic_id);
615 	dc_ctx->dce_version = dc_version;
616 
617 	dc_ctx->perf_trace = dc_perf_trace_create();
618 	if (!dc_ctx->perf_trace) {
619 		kfree(dc_ctx);
620 		ASSERT_CRITICAL(false);
621 		return false;
622 	}
623 
624 	dc->ctx = dc_ctx;
625 
626 	return true;
627 }
628 
dc_construct(struct dc * dc,const struct dc_init_data * init_params)629 static bool dc_construct(struct dc *dc,
630 		const struct dc_init_data *init_params)
631 {
632 	struct dc_context *dc_ctx;
633 	struct bw_calcs_dceip *dc_dceip;
634 	struct bw_calcs_vbios *dc_vbios;
635 #ifdef CONFIG_DRM_AMD_DC_DCN
636 	struct dcn_soc_bounding_box *dcn_soc;
637 	struct dcn_ip_params *dcn_ip;
638 #endif
639 
640 	dc->config = init_params->flags;
641 
642 	// Allocate memory for the vm_helper
643 	dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
644 	if (!dc->vm_helper) {
645 		dm_error("%s: failed to create dc->vm_helper\n", __func__);
646 		goto fail;
647 	}
648 
649 	memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
650 
651 	dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
652 	if (!dc_dceip) {
653 		dm_error("%s: failed to create dceip\n", __func__);
654 		goto fail;
655 	}
656 
657 	dc->bw_dceip = dc_dceip;
658 
659 	dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
660 	if (!dc_vbios) {
661 		dm_error("%s: failed to create vbios\n", __func__);
662 		goto fail;
663 	}
664 
665 	dc->bw_vbios = dc_vbios;
666 #ifdef CONFIG_DRM_AMD_DC_DCN
667 	dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
668 	if (!dcn_soc) {
669 		dm_error("%s: failed to create dcn_soc\n", __func__);
670 		goto fail;
671 	}
672 
673 	dc->dcn_soc = dcn_soc;
674 
675 	dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
676 	if (!dcn_ip) {
677 		dm_error("%s: failed to create dcn_ip\n", __func__);
678 		goto fail;
679 	}
680 
681 	dc->dcn_ip = dcn_ip;
682 	dc->soc_bounding_box = init_params->soc_bounding_box;
683 #endif
684 
685 	if (!dc_construct_ctx(dc, init_params)) {
686 		dm_error("%s: failed to create ctx\n", __func__);
687 		goto fail;
688 	}
689 
690         dc_ctx = dc->ctx;
691 
692 	/* Resource should construct all asic specific resources.
693 	 * This should be the only place where we need to parse the asic id
694 	 */
695 	if (init_params->vbios_override)
696 		dc_ctx->dc_bios = init_params->vbios_override;
697 	else {
698 		/* Create BIOS parser */
699 		struct bp_init_data bp_init_data;
700 
701 		bp_init_data.ctx = dc_ctx;
702 		bp_init_data.bios = init_params->asic_id.atombios_base_address;
703 
704 		dc_ctx->dc_bios = dal_bios_parser_create(
705 				&bp_init_data, dc_ctx->dce_version);
706 
707 		if (!dc_ctx->dc_bios) {
708 			ASSERT_CRITICAL(false);
709 			goto fail;
710 		}
711 
712 		dc_ctx->created_bios = true;
713 	}
714 
715 	dc->vendor_signature = init_params->vendor_signature;
716 
717 	/* Create GPIO service */
718 	dc_ctx->gpio_service = dal_gpio_service_create(
719 			dc_ctx->dce_version,
720 			dc_ctx->dce_environment,
721 			dc_ctx);
722 
723 	if (!dc_ctx->gpio_service) {
724 		ASSERT_CRITICAL(false);
725 		goto fail;
726 	}
727 
728 	dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
729 	if (!dc->res_pool)
730 		goto fail;
731 
732 	dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
733 	if (!dc->clk_mgr)
734 		goto fail;
735 #ifdef CONFIG_DRM_AMD_DC_DCN3_0
736 	dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
737 #endif
738 
739 	dc->debug.force_ignore_link_settings = init_params->force_ignore_link_settings;
740 
741 	if (dc->res_pool->funcs->update_bw_bounding_box)
742 		dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
743 
744 	/* Creation of current_state must occur after dc->dml
745 	 * is initialized in dc_create_resource_pool because
746 	 * on creation it copies the contents of dc->dml
747 	 */
748 
749 	dc->current_state = dc_create_state(dc);
750 
751 	if (!dc->current_state) {
752 		dm_error("%s: failed to create validate ctx\n", __func__);
753 		goto fail;
754 	}
755 
756 	dc_resource_state_construct(dc, dc->current_state);
757 
758 	if (!create_links(dc, init_params->num_virtual_links))
759 		goto fail;
760 
761 	return true;
762 
763 fail:
764 	return false;
765 }
766 
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)767 static bool disable_all_writeback_pipes_for_stream(
768 		const struct dc *dc,
769 		struct dc_stream_state *stream,
770 		struct dc_state *context)
771 {
772 	int i;
773 
774 	for (i = 0; i < stream->num_wb_info; i++)
775 		stream->writeback_info[i].wb_enabled = false;
776 
777 	return true;
778 }
779 
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)780 void apply_ctx_interdependent_lock(struct dc *dc, struct dc_state *context, struct dc_stream_state *stream, bool lock)
781 {
782 	int i = 0;
783 
784 	/* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
785 	if (dc->hwss.interdependent_update_lock)
786 		dc->hwss.interdependent_update_lock(dc, context, lock);
787 	else {
788 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
789 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
790 			struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
791 
792 			// Copied conditions that were previously in dce110_apply_ctx_for_surface
793 			if (stream == pipe_ctx->stream) {
794 				if (!pipe_ctx->top_pipe &&
795 					(pipe_ctx->plane_state || old_pipe_ctx->plane_state))
796 					dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
797 			}
798 		}
799 	}
800 }
801 
disable_dangling_plane(struct dc * dc,struct dc_state * context)802 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
803 {
804 	int i, j;
805 	struct dc_state *dangling_context = dc_create_state(dc);
806 	struct dc_state *current_ctx;
807 
808 	if (dangling_context == NULL)
809 		return;
810 
811 	dc_resource_state_copy_construct(dc->current_state, dangling_context);
812 
813 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
814 		struct dc_stream_state *old_stream =
815 				dc->current_state->res_ctx.pipe_ctx[i].stream;
816 		bool should_disable = true;
817 
818 		for (j = 0; j < context->stream_count; j++) {
819 			if (old_stream == context->streams[j]) {
820 				should_disable = false;
821 				break;
822 			}
823 		}
824 		if (should_disable && old_stream) {
825 			dc_rem_all_planes_for_stream(dc, old_stream, dangling_context);
826 			disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
827 
828 			if (dc->hwss.apply_ctx_for_surface) {
829 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
830 				dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
831 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
832 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
833 			}
834 			if (dc->hwss.program_front_end_for_ctx) {
835 				dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
836 				dc->hwss.program_front_end_for_ctx(dc, dangling_context);
837 				dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
838 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
839 			}
840 		}
841 	}
842 
843 	current_ctx = dc->current_state;
844 	dc->current_state = dangling_context;
845 	dc_release_state(current_ctx);
846 }
847 
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)848 static void disable_vbios_mode_if_required(
849 		struct dc *dc,
850 		struct dc_state *context)
851 {
852 	unsigned int i, j;
853 
854 	/* check if timing_changed, disable stream*/
855 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
856 		struct dc_stream_state *stream = NULL;
857 		struct dc_link *link = NULL;
858 		struct pipe_ctx *pipe = NULL;
859 
860 		pipe = &context->res_ctx.pipe_ctx[i];
861 		stream = pipe->stream;
862 		if (stream == NULL)
863 			continue;
864 
865 		if (stream->apply_seamless_boot_optimization)
866 			continue;
867 
868 		// only looking for first odm pipe
869 		if (pipe->prev_odm_pipe)
870 			continue;
871 
872 		if (stream->link->local_sink &&
873 			stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
874 			link = stream->link;
875 		}
876 
877 		if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
878 			unsigned int enc_inst, tg_inst = 0;
879 			unsigned int pix_clk_100hz;
880 
881 			enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
882 			if (enc_inst != ENGINE_ID_UNKNOWN) {
883 				for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
884 					if (dc->res_pool->stream_enc[j]->id == enc_inst) {
885 						tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
886 							dc->res_pool->stream_enc[j]);
887 						break;
888 					}
889 				}
890 
891 				dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
892 					dc->res_pool->dp_clock_source,
893 					tg_inst, &pix_clk_100hz);
894 
895 				if (link->link_status.link_active) {
896 					uint32_t requested_pix_clk_100hz =
897 						pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
898 
899 					if (pix_clk_100hz != requested_pix_clk_100hz) {
900 						core_link_disable_stream(pipe);
901 						pipe->stream->dpms_off = false;
902 					}
903 				}
904 			}
905 		}
906 	}
907 }
908 
wait_for_no_pipes_pending(struct dc * dc,struct dc_state * context)909 static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context)
910 {
911 	int i;
912 	PERF_TRACE();
913 	for (i = 0; i < MAX_PIPES; i++) {
914 		int count = 0;
915 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
916 
917 		if (!pipe->plane_state)
918 			continue;
919 
920 		/* Timeout 100 ms */
921 		while (count < 100000) {
922 			/* Must set to false to start with, due to OR in update function */
923 			pipe->plane_state->status.is_flip_pending = false;
924 			dc->hwss.update_pending_status(pipe);
925 			if (!pipe->plane_state->status.is_flip_pending)
926 				break;
927 			udelay(1);
928 			count++;
929 		}
930 		ASSERT(!pipe->plane_state->status.is_flip_pending);
931 	}
932 	PERF_TRACE();
933 }
934 
935 /*******************************************************************************
936  * Public functions
937  ******************************************************************************/
938 
dc_create(const struct dc_init_data * init_params)939 struct dc *dc_create(const struct dc_init_data *init_params)
940 {
941 	struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
942 	unsigned int full_pipe_count;
943 
944 	if (NULL == dc)
945 		goto alloc_fail;
946 
947 	if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
948 		if (false == dc_construct_ctx(dc, init_params)) {
949 			dc_destruct(dc);
950 			goto construct_fail;
951 		}
952 	} else {
953 		if (false == dc_construct(dc, init_params)) {
954 			dc_destruct(dc);
955 			goto construct_fail;
956 		}
957 
958 		full_pipe_count = dc->res_pool->pipe_count;
959 		if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
960 			full_pipe_count--;
961 		dc->caps.max_streams = min(
962 				full_pipe_count,
963 				dc->res_pool->stream_enc_count);
964 
965 		dc->optimize_seamless_boot_streams = 0;
966 		dc->caps.max_links = dc->link_count;
967 		dc->caps.max_audios = dc->res_pool->audio_count;
968 		dc->caps.linear_pitch_alignment = 64;
969 
970 		dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
971 
972 		if (dc->res_pool->dmcu != NULL)
973 			dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
974 	}
975 
976 	/* Populate versioning information */
977 	dc->versions.dc_ver = DC_VER;
978 
979 	dc->build_id = DC_BUILD_ID;
980 
981 	DC_LOG_DC("Display Core initialized\n");
982 
983 
984 
985 	return dc;
986 
987 construct_fail:
988 	kfree(dc);
989 
990 alloc_fail:
991 	return NULL;
992 }
993 
dc_hardware_init(struct dc * dc)994 void dc_hardware_init(struct dc *dc)
995 {
996 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
997 		dc->hwss.init_hw(dc);
998 }
999 
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)1000 void dc_init_callbacks(struct dc *dc,
1001 		const struct dc_callback_init *init_params)
1002 {
1003 #ifdef CONFIG_DRM_AMD_DC_HDCP
1004 	dc->ctx->cp_psp = init_params->cp_psp;
1005 #endif
1006 }
1007 
dc_deinit_callbacks(struct dc * dc)1008 void dc_deinit_callbacks(struct dc *dc)
1009 {
1010 #ifdef CONFIG_DRM_AMD_DC_HDCP
1011 	memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1012 #endif
1013 }
1014 
dc_destroy(struct dc ** dc)1015 void dc_destroy(struct dc **dc)
1016 {
1017 	dc_destruct(*dc);
1018 	kfree(*dc);
1019 	*dc = NULL;
1020 }
1021 
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1022 static void enable_timing_multisync(
1023 		struct dc *dc,
1024 		struct dc_state *ctx)
1025 {
1026 	int i = 0, multisync_count = 0;
1027 	int pipe_count = dc->res_pool->pipe_count;
1028 	struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1029 
1030 	for (i = 0; i < pipe_count; i++) {
1031 		if (!ctx->res_ctx.pipe_ctx[i].stream ||
1032 				!ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1033 			continue;
1034 		if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1035 			continue;
1036 		multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1037 		multisync_count++;
1038 	}
1039 
1040 	if (multisync_count > 0) {
1041 		dc->hwss.enable_per_frame_crtc_position_reset(
1042 			dc, multisync_count, multisync_pipes);
1043 	}
1044 }
1045 
program_timing_sync(struct dc * dc,struct dc_state * ctx)1046 static void program_timing_sync(
1047 		struct dc *dc,
1048 		struct dc_state *ctx)
1049 {
1050 	int i, j, k;
1051 	int group_index = 0;
1052 	int num_group = 0;
1053 	int pipe_count = dc->res_pool->pipe_count;
1054 	struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1055 
1056 	for (i = 0; i < pipe_count; i++) {
1057 		if (!ctx->res_ctx.pipe_ctx[i].stream || ctx->res_ctx.pipe_ctx[i].top_pipe)
1058 			continue;
1059 
1060 		unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1061 	}
1062 
1063 	for (i = 0; i < pipe_count; i++) {
1064 		int group_size = 1;
1065 		struct pipe_ctx *pipe_set[MAX_PIPES];
1066 
1067 		if (!unsynced_pipes[i])
1068 			continue;
1069 
1070 		pipe_set[0] = unsynced_pipes[i];
1071 		unsynced_pipes[i] = NULL;
1072 
1073 		/* Add tg to the set, search rest of the tg's for ones with
1074 		 * same timing, add all tgs with same timing to the group
1075 		 */
1076 		for (j = i + 1; j < pipe_count; j++) {
1077 			if (!unsynced_pipes[j])
1078 				continue;
1079 
1080 			if (resource_are_streams_timing_synchronizable(
1081 					unsynced_pipes[j]->stream,
1082 					pipe_set[0]->stream)) {
1083 				pipe_set[group_size] = unsynced_pipes[j];
1084 				unsynced_pipes[j] = NULL;
1085 				group_size++;
1086 			}
1087 		}
1088 
1089 		/* set first unblanked pipe as master */
1090 		for (j = 0; j < group_size; j++) {
1091 			bool is_blanked;
1092 
1093 			if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1094 				is_blanked =
1095 					pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1096 			else
1097 				is_blanked =
1098 					pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1099 			if (!is_blanked) {
1100 				if (j == 0)
1101 					break;
1102 
1103 				swap(pipe_set[0], pipe_set[j]);
1104 				break;
1105 			}
1106 		}
1107 
1108 
1109 		for (k = 0; k < group_size; k++) {
1110 			struct dc_stream_status *status = dc_stream_get_status_from_state(ctx, pipe_set[k]->stream);
1111 
1112 			status->timing_sync_info.group_id = num_group;
1113 			status->timing_sync_info.group_size = group_size;
1114 			if (k == 0)
1115 				status->timing_sync_info.master = true;
1116 			else
1117 				status->timing_sync_info.master = false;
1118 
1119 		}
1120 		/* remove any other unblanked pipes as they have already been synced */
1121 		for (j = j + 1; j < group_size; j++) {
1122 			bool is_blanked;
1123 
1124 			if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1125 				is_blanked =
1126 					pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1127 			else
1128 				is_blanked =
1129 					pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1130 			if (!is_blanked) {
1131 				group_size--;
1132 				pipe_set[j] = pipe_set[group_size];
1133 				j--;
1134 			}
1135 		}
1136 
1137 		if (group_size > 1) {
1138 			dc->hwss.enable_timing_synchronization(
1139 				dc, group_index, group_size, pipe_set);
1140 			group_index++;
1141 		}
1142 		num_group++;
1143 	}
1144 }
1145 
context_changed(struct dc * dc,struct dc_state * context)1146 static bool context_changed(
1147 		struct dc *dc,
1148 		struct dc_state *context)
1149 {
1150 	uint8_t i;
1151 
1152 	if (context->stream_count != dc->current_state->stream_count)
1153 		return true;
1154 
1155 	for (i = 0; i < dc->current_state->stream_count; i++) {
1156 		if (dc->current_state->streams[i] != context->streams[i])
1157 			return true;
1158 	}
1159 
1160 	return false;
1161 }
1162 
dc_validate_seamless_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1163 bool dc_validate_seamless_boot_timing(const struct dc *dc,
1164 				const struct dc_sink *sink,
1165 				struct dc_crtc_timing *crtc_timing)
1166 {
1167 	struct timing_generator *tg;
1168 	struct stream_encoder *se = NULL;
1169 
1170 	struct dc_crtc_timing hw_crtc_timing = {0};
1171 
1172 	struct dc_link *link = sink->link;
1173 	unsigned int i, enc_inst, tg_inst = 0;
1174 
1175 	// Seamless port only support single DP and EDP so far
1176 	if (sink->sink_signal != SIGNAL_TYPE_DISPLAY_PORT &&
1177 		sink->sink_signal != SIGNAL_TYPE_EDP)
1178 		return false;
1179 
1180 	/* Check for enabled DIG to identify enabled display */
1181 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1182 		return false;
1183 
1184 	enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1185 
1186 	if (enc_inst == ENGINE_ID_UNKNOWN)
1187 		return false;
1188 
1189 	for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1190 		if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1191 
1192 			se = dc->res_pool->stream_enc[i];
1193 
1194 			tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1195 				dc->res_pool->stream_enc[i]);
1196 			break;
1197 		}
1198 	}
1199 
1200 	// tg_inst not found
1201 	if (i == dc->res_pool->stream_enc_count)
1202 		return false;
1203 
1204 	if (tg_inst >= dc->res_pool->timing_generator_count)
1205 		return false;
1206 
1207 	tg = dc->res_pool->timing_generators[tg_inst];
1208 
1209 	if (!tg->funcs->get_hw_timing)
1210 		return false;
1211 
1212 	if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1213 		return false;
1214 
1215 	if (crtc_timing->h_total != hw_crtc_timing.h_total)
1216 		return false;
1217 
1218 	if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1219 		return false;
1220 
1221 	if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1222 		return false;
1223 
1224 	if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1225 		return false;
1226 
1227 	if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1228 		return false;
1229 
1230 	if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1231 		return false;
1232 
1233 	if (crtc_timing->v_total != hw_crtc_timing.v_total)
1234 		return false;
1235 
1236 	if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1237 		return false;
1238 
1239 	if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1240 		return false;
1241 
1242 	if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1243 		return false;
1244 
1245 	if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1246 		return false;
1247 
1248 	if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1249 		return false;
1250 
1251 	if (dc_is_dp_signal(link->connector_signal)) {
1252 		unsigned int pix_clk_100hz;
1253 
1254 		dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1255 			dc->res_pool->dp_clock_source,
1256 			tg_inst, &pix_clk_100hz);
1257 
1258 		if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1259 			return false;
1260 
1261 		if (!se->funcs->dp_get_pixel_format)
1262 			return false;
1263 
1264 		if (!se->funcs->dp_get_pixel_format(
1265 			se,
1266 			&hw_crtc_timing.pixel_encoding,
1267 			&hw_crtc_timing.display_color_depth))
1268 			return false;
1269 
1270 		if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1271 			return false;
1272 
1273 		if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1274 			return false;
1275 	}
1276 
1277 	return true;
1278 }
1279 
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1280 bool dc_enable_stereo(
1281 	struct dc *dc,
1282 	struct dc_state *context,
1283 	struct dc_stream_state *streams[],
1284 	uint8_t stream_count)
1285 {
1286 	bool ret = true;
1287 	int i, j;
1288 	struct pipe_ctx *pipe;
1289 
1290 	for (i = 0; i < MAX_PIPES; i++) {
1291 		if (context != NULL)
1292 			pipe = &context->res_ctx.pipe_ctx[i];
1293 		else
1294 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1295 		for (j = 0 ; pipe && j < stream_count; j++)  {
1296 			if (streams[j] && streams[j] == pipe->stream &&
1297 				dc->hwss.setup_stereo)
1298 				dc->hwss.setup_stereo(pipe, dc);
1299 		}
1300 	}
1301 
1302 	return ret;
1303 }
1304 
dc_trigger_sync(struct dc * dc,struct dc_state * context)1305 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1306 {
1307 	if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1308 		enable_timing_multisync(dc, context);
1309 		program_timing_sync(dc, context);
1310 	}
1311 }
1312 
get_stream_mask(struct dc * dc,struct dc_state * context)1313 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1314 {
1315 	int i;
1316 	unsigned int stream_mask = 0;
1317 
1318 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1319 		if (context->res_ctx.pipe_ctx[i].stream)
1320 			stream_mask |= 1 << i;
1321 	}
1322 
1323 	return stream_mask;
1324 }
1325 
1326 /*
1327  * Applies given context to HW and copy it into current context.
1328  * It's up to the user to release the src context afterwards.
1329  */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)1330 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1331 {
1332 	struct dc_bios *dcb = dc->ctx->dc_bios;
1333 	enum dc_status result = DC_ERROR_UNEXPECTED;
1334 	struct pipe_ctx *pipe;
1335 	int i, k, l;
1336 	struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1337 
1338 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
1339 	dc_allow_idle_optimizations(dc, false);
1340 #endif
1341 
1342 	for (i = 0; i < context->stream_count; i++)
1343 		dc_streams[i] =  context->streams[i];
1344 
1345 	if (!dcb->funcs->is_accelerated_mode(dcb)) {
1346 		disable_vbios_mode_if_required(dc, context);
1347 		dc->hwss.enable_accelerated_mode(dc, context);
1348 	}
1349 
1350 	for (i = 0; i < context->stream_count; i++)
1351 		if (context->streams[i]->apply_seamless_boot_optimization)
1352 			dc->optimize_seamless_boot_streams++;
1353 
1354 	if (context->stream_count > dc->optimize_seamless_boot_streams ||
1355 		context->stream_count == 0)
1356 		dc->hwss.prepare_bandwidth(dc, context);
1357 
1358 	disable_dangling_plane(dc, context);
1359 	/* re-program planes for existing stream, in case we need to
1360 	 * free up plane resource for later use
1361 	 */
1362 	if (dc->hwss.apply_ctx_for_surface) {
1363 		for (i = 0; i < context->stream_count; i++) {
1364 			if (context->streams[i]->mode_changed)
1365 				continue;
1366 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1367 			dc->hwss.apply_ctx_for_surface(
1368 				dc, context->streams[i],
1369 				context->stream_status[i].plane_count,
1370 				context); /* use new pipe config in new context */
1371 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1372 			dc->hwss.post_unlock_program_front_end(dc, context);
1373 		}
1374 	}
1375 
1376 	/* Program hardware */
1377 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1378 		pipe = &context->res_ctx.pipe_ctx[i];
1379 		dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1380 	}
1381 
1382 	result = dc->hwss.apply_ctx_to_hw(dc, context);
1383 
1384 	if (result != DC_OK)
1385 		return result;
1386 
1387 	dc_trigger_sync(dc, context);
1388 
1389 	/* Program all planes within new context*/
1390 	if (dc->hwss.program_front_end_for_ctx) {
1391 		dc->hwss.interdependent_update_lock(dc, context, true);
1392 		dc->hwss.program_front_end_for_ctx(dc, context);
1393 		dc->hwss.interdependent_update_lock(dc, context, false);
1394 		dc->hwss.post_unlock_program_front_end(dc, context);
1395 	}
1396 	for (i = 0; i < context->stream_count; i++) {
1397 		const struct dc_link *link = context->streams[i]->link;
1398 
1399 		if (!context->streams[i]->mode_changed)
1400 			continue;
1401 
1402 		if (dc->hwss.apply_ctx_for_surface) {
1403 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1404 			dc->hwss.apply_ctx_for_surface(
1405 					dc, context->streams[i],
1406 					context->stream_status[i].plane_count,
1407 					context);
1408 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1409 			dc->hwss.post_unlock_program_front_end(dc, context);
1410 		}
1411 
1412 		/*
1413 		 * enable stereo
1414 		 * TODO rework dc_enable_stereo call to work with validation sets?
1415 		 */
1416 		for (k = 0; k < MAX_PIPES; k++) {
1417 			pipe = &context->res_ctx.pipe_ctx[k];
1418 
1419 			for (l = 0 ; pipe && l < context->stream_count; l++)  {
1420 				if (context->streams[l] &&
1421 					context->streams[l] == pipe->stream &&
1422 					dc->hwss.setup_stereo)
1423 					dc->hwss.setup_stereo(pipe, dc);
1424 			}
1425 		}
1426 
1427 		CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
1428 				context->streams[i]->timing.h_addressable,
1429 				context->streams[i]->timing.v_addressable,
1430 				context->streams[i]->timing.h_total,
1431 				context->streams[i]->timing.v_total,
1432 				context->streams[i]->timing.pix_clk_100hz / 10);
1433 	}
1434 
1435 	dc_enable_stereo(dc, context, dc_streams, context->stream_count);
1436 
1437 	if (context->stream_count > dc->optimize_seamless_boot_streams ||
1438 		context->stream_count == 0) {
1439 		/* Must wait for no flips to be pending before doing optimize bw */
1440 		wait_for_no_pipes_pending(dc, context);
1441 		/* pplib is notified if disp_num changed */
1442 		dc->hwss.optimize_bandwidth(dc, context);
1443 	}
1444 
1445 	context->stream_mask = get_stream_mask(dc, context);
1446 
1447 	if (context->stream_mask != dc->current_state->stream_mask)
1448 		dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
1449 
1450 	for (i = 0; i < context->stream_count; i++)
1451 		context->streams[i]->mode_changed = false;
1452 
1453 	dc_release_state(dc->current_state);
1454 
1455 	dc->current_state = context;
1456 
1457 	dc_retain_state(dc->current_state);
1458 
1459 	return result;
1460 }
1461 
dc_commit_state(struct dc * dc,struct dc_state * context)1462 bool dc_commit_state(struct dc *dc, struct dc_state *context)
1463 {
1464 	enum dc_status result = DC_ERROR_UNEXPECTED;
1465 	int i;
1466 
1467 	if (false == context_changed(dc, context))
1468 		return DC_OK;
1469 
1470 	DC_LOG_DC("%s: %d streams\n",
1471 				__func__, context->stream_count);
1472 
1473 	for (i = 0; i < context->stream_count; i++) {
1474 		struct dc_stream_state *stream = context->streams[i];
1475 
1476 		dc_stream_log(dc, stream);
1477 	}
1478 
1479 	result = dc_commit_state_no_check(dc, context);
1480 
1481 	return (result == DC_OK);
1482 }
1483 
1484 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)1485 bool dc_acquire_release_mpc_3dlut(
1486 		struct dc *dc, bool acquire,
1487 		struct dc_stream_state *stream,
1488 		struct dc_3dlut **lut,
1489 		struct dc_transfer_func **shaper)
1490 {
1491 	int pipe_idx;
1492 	bool ret = false;
1493 	bool found_pipe_idx = false;
1494 	const struct resource_pool *pool = dc->res_pool;
1495 	struct resource_context *res_ctx = &dc->current_state->res_ctx;
1496 	int mpcc_id = 0;
1497 
1498 	if (pool && res_ctx) {
1499 		if (acquire) {
1500 			/*find pipe idx for the given stream*/
1501 			for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
1502 				if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
1503 					found_pipe_idx = true;
1504 					mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
1505 					break;
1506 				}
1507 			}
1508 		} else
1509 			found_pipe_idx = true;/*for release pipe_idx is not required*/
1510 
1511 		if (found_pipe_idx) {
1512 			if (acquire && pool->funcs->acquire_post_bldn_3dlut)
1513 				ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
1514 			else if (acquire == false && pool->funcs->release_post_bldn_3dlut)
1515 				ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
1516 		}
1517 	}
1518 	return ret;
1519 }
1520 #endif
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)1521 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
1522 {
1523 	int i;
1524 	struct pipe_ctx *pipe;
1525 
1526 	for (i = 0; i < MAX_PIPES; i++) {
1527 		pipe = &context->res_ctx.pipe_ctx[i];
1528 
1529 		if (!pipe->plane_state)
1530 			continue;
1531 
1532 		/* Must set to false to start with, due to OR in update function */
1533 		pipe->plane_state->status.is_flip_pending = false;
1534 		dc->hwss.update_pending_status(pipe);
1535 		if (pipe->plane_state->status.is_flip_pending)
1536 			return true;
1537 	}
1538 	return false;
1539 }
1540 
dc_post_update_surfaces_to_stream(struct dc * dc)1541 bool dc_post_update_surfaces_to_stream(struct dc *dc)
1542 {
1543 	int i;
1544 	struct dc_state *context = dc->current_state;
1545 
1546 	if ((!dc->optimized_required) || dc->optimize_seamless_boot_streams > 0)
1547 		return true;
1548 
1549 	post_surface_trace(dc);
1550 
1551 	if (is_flip_pending_in_pipes(dc, context))
1552 		return true;
1553 
1554 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1555 		if (context->res_ctx.pipe_ctx[i].stream == NULL ||
1556 		    context->res_ctx.pipe_ctx[i].plane_state == NULL) {
1557 			context->res_ctx.pipe_ctx[i].pipe_idx = i;
1558 			dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]);
1559 		}
1560 
1561 	dc->hwss.optimize_bandwidth(dc, context);
1562 
1563 	dc->optimized_required = false;
1564 	dc->wm_optimized_required = false;
1565 
1566 	return true;
1567 }
1568 
init_state(struct dc * dc,struct dc_state * context)1569 static void init_state(struct dc *dc, struct dc_state *context)
1570 {
1571 	/* Each context must have their own instance of VBA and in order to
1572 	 * initialize and obtain IP and SOC the base DML instance from DC is
1573 	 * initially copied into every context
1574 	 */
1575 #ifdef CONFIG_DRM_AMD_DC_DCN
1576 	memcpy(&context->bw_ctx.dml, &dc->dml, sizeof(struct display_mode_lib));
1577 #endif
1578 }
1579 
dc_create_state(struct dc * dc)1580 struct dc_state *dc_create_state(struct dc *dc)
1581 {
1582 	struct dc_state *context = kvzalloc(sizeof(struct dc_state),
1583 					    GFP_KERNEL);
1584 
1585 	if (!context)
1586 		return NULL;
1587 
1588 	init_state(dc, context);
1589 
1590 	kref_init(&context->refcount);
1591 
1592 	return context;
1593 }
1594 
dc_copy_state(struct dc_state * src_ctx)1595 struct dc_state *dc_copy_state(struct dc_state *src_ctx)
1596 {
1597 	int i, j;
1598 	struct dc_state *new_ctx = kvmalloc(sizeof(struct dc_state), GFP_KERNEL);
1599 
1600 	if (!new_ctx)
1601 		return NULL;
1602 	memcpy(new_ctx, src_ctx, sizeof(struct dc_state));
1603 
1604 	for (i = 0; i < MAX_PIPES; i++) {
1605 			struct pipe_ctx *cur_pipe = &new_ctx->res_ctx.pipe_ctx[i];
1606 
1607 			if (cur_pipe->top_pipe)
1608 				cur_pipe->top_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
1609 
1610 			if (cur_pipe->bottom_pipe)
1611 				cur_pipe->bottom_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
1612 
1613 			if (cur_pipe->prev_odm_pipe)
1614 				cur_pipe->prev_odm_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
1615 
1616 			if (cur_pipe->next_odm_pipe)
1617 				cur_pipe->next_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
1618 
1619 	}
1620 
1621 	for (i = 0; i < new_ctx->stream_count; i++) {
1622 			dc_stream_retain(new_ctx->streams[i]);
1623 			for (j = 0; j < new_ctx->stream_status[i].plane_count; j++)
1624 				dc_plane_state_retain(
1625 					new_ctx->stream_status[i].plane_states[j]);
1626 	}
1627 
1628 	kref_init(&new_ctx->refcount);
1629 
1630 	return new_ctx;
1631 }
1632 
dc_retain_state(struct dc_state * context)1633 void dc_retain_state(struct dc_state *context)
1634 {
1635 	kref_get(&context->refcount);
1636 }
1637 
dc_state_free(struct kref * kref)1638 static void dc_state_free(struct kref *kref)
1639 {
1640 	struct dc_state *context = container_of(kref, struct dc_state, refcount);
1641 	dc_resource_state_destruct(context);
1642 	kvfree(context);
1643 }
1644 
dc_release_state(struct dc_state * context)1645 void dc_release_state(struct dc_state *context)
1646 {
1647 	kref_put(&context->refcount, dc_state_free);
1648 }
1649 
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)1650 bool dc_set_generic_gpio_for_stereo(bool enable,
1651 		struct gpio_service *gpio_service)
1652 {
1653 	enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
1654 	struct gpio_pin_info pin_info;
1655 	struct gpio *generic;
1656 	struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
1657 			   GFP_KERNEL);
1658 
1659 	if (!config)
1660 		return false;
1661 	pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
1662 
1663 	if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
1664 		kfree(config);
1665 		return false;
1666 	} else {
1667 		generic = dal_gpio_service_create_generic_mux(
1668 			gpio_service,
1669 			pin_info.offset,
1670 			pin_info.mask);
1671 	}
1672 
1673 	if (!generic) {
1674 		kfree(config);
1675 		return false;
1676 	}
1677 
1678 	gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
1679 
1680 	config->enable_output_from_mux = enable;
1681 	config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
1682 
1683 	if (gpio_result == GPIO_RESULT_OK)
1684 		gpio_result = dal_mux_setup_config(generic, config);
1685 
1686 	if (gpio_result == GPIO_RESULT_OK) {
1687 		dal_gpio_close(generic);
1688 		dal_gpio_destroy_generic_mux(&generic);
1689 		kfree(config);
1690 		return true;
1691 	} else {
1692 		dal_gpio_close(generic);
1693 		dal_gpio_destroy_generic_mux(&generic);
1694 		kfree(config);
1695 		return false;
1696 	}
1697 }
1698 
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)1699 static bool is_surface_in_context(
1700 		const struct dc_state *context,
1701 		const struct dc_plane_state *plane_state)
1702 {
1703 	int j;
1704 
1705 	for (j = 0; j < MAX_PIPES; j++) {
1706 		const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
1707 
1708 		if (plane_state == pipe_ctx->plane_state) {
1709 			return true;
1710 		}
1711 	}
1712 
1713 	return false;
1714 }
1715 
get_plane_info_update_type(const struct dc_surface_update * u)1716 static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
1717 {
1718 	union surface_update_flags *update_flags = &u->surface->update_flags;
1719 	enum surface_update_type update_type = UPDATE_TYPE_FAST;
1720 
1721 	if (!u->plane_info)
1722 		return UPDATE_TYPE_FAST;
1723 
1724 	if (u->plane_info->color_space != u->surface->color_space) {
1725 		update_flags->bits.color_space_change = 1;
1726 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1727 	}
1728 
1729 	if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
1730 		update_flags->bits.horizontal_mirror_change = 1;
1731 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1732 	}
1733 
1734 	if (u->plane_info->rotation != u->surface->rotation) {
1735 		update_flags->bits.rotation_change = 1;
1736 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1737 	}
1738 
1739 	if (u->plane_info->format != u->surface->format) {
1740 		update_flags->bits.pixel_format_change = 1;
1741 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1742 	}
1743 
1744 	if (u->plane_info->stereo_format != u->surface->stereo_format) {
1745 		update_flags->bits.stereo_format_change = 1;
1746 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1747 	}
1748 
1749 	if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
1750 		update_flags->bits.per_pixel_alpha_change = 1;
1751 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1752 	}
1753 
1754 	if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
1755 		update_flags->bits.global_alpha_change = 1;
1756 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1757 	}
1758 
1759 	if (u->plane_info->dcc.enable != u->surface->dcc.enable
1760 			|| u->plane_info->dcc.independent_64b_blks != u->surface->dcc.independent_64b_blks
1761 			|| u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
1762 		update_flags->bits.dcc_change = 1;
1763 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1764 	}
1765 
1766 	if (resource_pixel_format_to_bpp(u->plane_info->format) !=
1767 			resource_pixel_format_to_bpp(u->surface->format)) {
1768 		/* different bytes per element will require full bandwidth
1769 		 * and DML calculation
1770 		 */
1771 		update_flags->bits.bpp_change = 1;
1772 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1773 	}
1774 
1775 	if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
1776 			|| u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
1777 		update_flags->bits.plane_size_change = 1;
1778 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1779 	}
1780 
1781 
1782 	if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
1783 			sizeof(union dc_tiling_info)) != 0) {
1784 		update_flags->bits.swizzle_change = 1;
1785 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1786 
1787 		/* todo: below are HW dependent, we should add a hook to
1788 		 * DCE/N resource and validated there.
1789 		 */
1790 		if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
1791 			/* swizzled mode requires RQ to be setup properly,
1792 			 * thus need to run DML to calculate RQ settings
1793 			 */
1794 			update_flags->bits.bandwidth_change = 1;
1795 			elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1796 		}
1797 	}
1798 
1799 	/* This should be UPDATE_TYPE_FAST if nothing has changed. */
1800 	return update_type;
1801 }
1802 
get_scaling_info_update_type(const struct dc_surface_update * u)1803 static enum surface_update_type get_scaling_info_update_type(
1804 		const struct dc_surface_update *u)
1805 {
1806 	union surface_update_flags *update_flags = &u->surface->update_flags;
1807 
1808 	if (!u->scaling_info)
1809 		return UPDATE_TYPE_FAST;
1810 
1811 	if (u->scaling_info->clip_rect.width != u->surface->clip_rect.width
1812 			|| u->scaling_info->clip_rect.height != u->surface->clip_rect.height
1813 			|| u->scaling_info->dst_rect.width != u->surface->dst_rect.width
1814 			|| u->scaling_info->dst_rect.height != u->surface->dst_rect.height
1815 			|| u->scaling_info->scaling_quality.integer_scaling !=
1816 				u->surface->scaling_quality.integer_scaling
1817 			) {
1818 		update_flags->bits.scaling_change = 1;
1819 
1820 		if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
1821 			|| u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
1822 				&& (u->scaling_info->dst_rect.width < u->surface->src_rect.width
1823 					|| u->scaling_info->dst_rect.height < u->surface->src_rect.height))
1824 			/* Making dst rect smaller requires a bandwidth change */
1825 			update_flags->bits.bandwidth_change = 1;
1826 	}
1827 
1828 	if (u->scaling_info->src_rect.width != u->surface->src_rect.width
1829 		|| u->scaling_info->src_rect.height != u->surface->src_rect.height) {
1830 
1831 		update_flags->bits.scaling_change = 1;
1832 		if (u->scaling_info->src_rect.width > u->surface->src_rect.width
1833 				|| u->scaling_info->src_rect.height > u->surface->src_rect.height)
1834 			/* Making src rect bigger requires a bandwidth change */
1835 			update_flags->bits.clock_change = 1;
1836 	}
1837 
1838 	if (u->scaling_info->src_rect.x != u->surface->src_rect.x
1839 			|| u->scaling_info->src_rect.y != u->surface->src_rect.y
1840 			|| u->scaling_info->clip_rect.x != u->surface->clip_rect.x
1841 			|| u->scaling_info->clip_rect.y != u->surface->clip_rect.y
1842 			|| u->scaling_info->dst_rect.x != u->surface->dst_rect.x
1843 			|| u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
1844 		update_flags->bits.position_change = 1;
1845 
1846 	if (update_flags->bits.clock_change
1847 			|| update_flags->bits.bandwidth_change
1848 			|| update_flags->bits.scaling_change)
1849 		return UPDATE_TYPE_FULL;
1850 
1851 	if (update_flags->bits.position_change)
1852 		return UPDATE_TYPE_MED;
1853 
1854 	return UPDATE_TYPE_FAST;
1855 }
1856 
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)1857 static enum surface_update_type det_surface_update(const struct dc *dc,
1858 		const struct dc_surface_update *u)
1859 {
1860 	const struct dc_state *context = dc->current_state;
1861 	enum surface_update_type type;
1862 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
1863 	union surface_update_flags *update_flags = &u->surface->update_flags;
1864 
1865 	if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
1866 		update_flags->raw = 0xFFFFFFFF;
1867 		return UPDATE_TYPE_FULL;
1868 	}
1869 
1870 	update_flags->raw = 0; // Reset all flags
1871 
1872 	type = get_plane_info_update_type(u);
1873 	elevate_update_type(&overall_type, type);
1874 
1875 	type = get_scaling_info_update_type(u);
1876 	elevate_update_type(&overall_type, type);
1877 
1878 	if (u->flip_addr)
1879 		update_flags->bits.addr_update = 1;
1880 
1881 	if (u->in_transfer_func)
1882 		update_flags->bits.in_transfer_func_change = 1;
1883 
1884 	if (u->input_csc_color_matrix)
1885 		update_flags->bits.input_csc_change = 1;
1886 
1887 	if (u->coeff_reduction_factor)
1888 		update_flags->bits.coeff_reduction_change = 1;
1889 
1890 	if (u->gamut_remap_matrix)
1891 		update_flags->bits.gamut_remap_change = 1;
1892 
1893 	if (u->gamma) {
1894 		enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
1895 
1896 		if (u->plane_info)
1897 			format = u->plane_info->format;
1898 		else if (u->surface)
1899 			format = u->surface->format;
1900 
1901 		if (dce_use_lut(format))
1902 			update_flags->bits.gamma_change = 1;
1903 	}
1904 
1905 	if (u->hdr_mult.value)
1906 		if (u->hdr_mult.value != u->surface->hdr_mult.value) {
1907 			update_flags->bits.hdr_mult = 1;
1908 			elevate_update_type(&overall_type, UPDATE_TYPE_MED);
1909 		}
1910 
1911 	if (update_flags->bits.in_transfer_func_change) {
1912 		type = UPDATE_TYPE_MED;
1913 		elevate_update_type(&overall_type, type);
1914 	}
1915 
1916 	if (update_flags->bits.input_csc_change
1917 			|| update_flags->bits.coeff_reduction_change
1918 			|| update_flags->bits.gamma_change
1919 			|| update_flags->bits.gamut_remap_change) {
1920 		type = UPDATE_TYPE_FULL;
1921 		elevate_update_type(&overall_type, type);
1922 	}
1923 
1924 	return overall_type;
1925 }
1926 
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)1927 static enum surface_update_type check_update_surfaces_for_stream(
1928 		struct dc *dc,
1929 		struct dc_surface_update *updates,
1930 		int surface_count,
1931 		struct dc_stream_update *stream_update,
1932 		const struct dc_stream_status *stream_status)
1933 {
1934 	int i;
1935 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
1936 
1937 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
1938 	if (dc->idle_optimizations_allowed)
1939 		overall_type = UPDATE_TYPE_FULL;
1940 
1941 #endif
1942 	if (stream_status == NULL || stream_status->plane_count != surface_count)
1943 		overall_type = UPDATE_TYPE_FULL;
1944 
1945 	/* some stream updates require passive update */
1946 	if (stream_update) {
1947 		union stream_update_flags *su_flags = &stream_update->stream->update_flags;
1948 
1949 		if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
1950 			(stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
1951 			stream_update->integer_scaling_update)
1952 			su_flags->bits.scaling = 1;
1953 
1954 		if (stream_update->out_transfer_func)
1955 			su_flags->bits.out_tf = 1;
1956 
1957 		if (stream_update->abm_level)
1958 			su_flags->bits.abm_level = 1;
1959 
1960 		if (stream_update->dpms_off)
1961 			su_flags->bits.dpms_off = 1;
1962 
1963 		if (stream_update->gamut_remap)
1964 			su_flags->bits.gamut_remap = 1;
1965 
1966 		if (stream_update->wb_update)
1967 			su_flags->bits.wb_update = 1;
1968 
1969 		if (stream_update->dsc_config)
1970 			su_flags->bits.dsc_changed = 1;
1971 
1972 		if (su_flags->raw != 0)
1973 			overall_type = UPDATE_TYPE_FULL;
1974 
1975 		if (stream_update->output_csc_transform || stream_update->output_color_space)
1976 			su_flags->bits.out_csc = 1;
1977 	}
1978 
1979 	for (i = 0 ; i < surface_count; i++) {
1980 		enum surface_update_type type =
1981 				det_surface_update(dc, &updates[i]);
1982 
1983 		elevate_update_type(&overall_type, type);
1984 	}
1985 
1986 	return overall_type;
1987 }
1988 
1989 /**
1990  * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
1991  *
1992  * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
1993  */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)1994 enum surface_update_type dc_check_update_surfaces_for_stream(
1995 		struct dc *dc,
1996 		struct dc_surface_update *updates,
1997 		int surface_count,
1998 		struct dc_stream_update *stream_update,
1999 		const struct dc_stream_status *stream_status)
2000 {
2001 	int i;
2002 	enum surface_update_type type;
2003 
2004 	if (stream_update)
2005 		stream_update->stream->update_flags.raw = 0;
2006 	for (i = 0; i < surface_count; i++)
2007 		updates[i].surface->update_flags.raw = 0;
2008 
2009 	type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2010 	if (type == UPDATE_TYPE_FULL) {
2011 		if (stream_update) {
2012 			uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2013 			stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2014 			stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2015 		}
2016 		for (i = 0; i < surface_count; i++)
2017 			updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2018 	}
2019 
2020 	if (type == UPDATE_TYPE_FAST) {
2021 		// If there's an available clock comparator, we use that.
2022 		if (dc->clk_mgr->funcs->are_clock_states_equal) {
2023 			if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2024 				dc->optimized_required = true;
2025 		// Else we fallback to mem compare.
2026 		} else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2027 			dc->optimized_required = true;
2028 		}
2029 
2030 		dc->optimized_required |= dc->wm_optimized_required;
2031 	}
2032 
2033 	return type;
2034 }
2035 
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)2036 static struct dc_stream_status *stream_get_status(
2037 	struct dc_state *ctx,
2038 	struct dc_stream_state *stream)
2039 {
2040 	uint8_t i;
2041 
2042 	for (i = 0; i < ctx->stream_count; i++) {
2043 		if (stream == ctx->streams[i]) {
2044 			return &ctx->stream_status[i];
2045 		}
2046 	}
2047 
2048 	return NULL;
2049 }
2050 
2051 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2052 
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)2053 static void copy_surface_update_to_plane(
2054 		struct dc_plane_state *surface,
2055 		struct dc_surface_update *srf_update)
2056 {
2057 	if (srf_update->flip_addr) {
2058 		surface->address = srf_update->flip_addr->address;
2059 		surface->flip_immediate =
2060 			srf_update->flip_addr->flip_immediate;
2061 		surface->time.time_elapsed_in_us[surface->time.index] =
2062 			srf_update->flip_addr->flip_timestamp_in_us -
2063 				surface->time.prev_update_time_in_us;
2064 		surface->time.prev_update_time_in_us =
2065 			srf_update->flip_addr->flip_timestamp_in_us;
2066 		surface->time.index++;
2067 		if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2068 			surface->time.index = 0;
2069 
2070 		surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2071 	}
2072 
2073 	if (srf_update->scaling_info) {
2074 		surface->scaling_quality =
2075 				srf_update->scaling_info->scaling_quality;
2076 		surface->dst_rect =
2077 				srf_update->scaling_info->dst_rect;
2078 		surface->src_rect =
2079 				srf_update->scaling_info->src_rect;
2080 		surface->clip_rect =
2081 				srf_update->scaling_info->clip_rect;
2082 	}
2083 
2084 	if (srf_update->plane_info) {
2085 		surface->color_space =
2086 				srf_update->plane_info->color_space;
2087 		surface->format =
2088 				srf_update->plane_info->format;
2089 		surface->plane_size =
2090 				srf_update->plane_info->plane_size;
2091 		surface->rotation =
2092 				srf_update->plane_info->rotation;
2093 		surface->horizontal_mirror =
2094 				srf_update->plane_info->horizontal_mirror;
2095 		surface->stereo_format =
2096 				srf_update->plane_info->stereo_format;
2097 		surface->tiling_info =
2098 				srf_update->plane_info->tiling_info;
2099 		surface->visible =
2100 				srf_update->plane_info->visible;
2101 		surface->per_pixel_alpha =
2102 				srf_update->plane_info->per_pixel_alpha;
2103 		surface->global_alpha =
2104 				srf_update->plane_info->global_alpha;
2105 		surface->global_alpha_value =
2106 				srf_update->plane_info->global_alpha_value;
2107 		surface->dcc =
2108 				srf_update->plane_info->dcc;
2109 		surface->layer_index =
2110 				srf_update->plane_info->layer_index;
2111 	}
2112 
2113 	if (srf_update->gamma &&
2114 			(surface->gamma_correction !=
2115 					srf_update->gamma)) {
2116 		memcpy(&surface->gamma_correction->entries,
2117 			&srf_update->gamma->entries,
2118 			sizeof(struct dc_gamma_entries));
2119 		surface->gamma_correction->is_identity =
2120 			srf_update->gamma->is_identity;
2121 		surface->gamma_correction->num_entries =
2122 			srf_update->gamma->num_entries;
2123 		surface->gamma_correction->type =
2124 			srf_update->gamma->type;
2125 	}
2126 
2127 	if (srf_update->in_transfer_func &&
2128 			(surface->in_transfer_func !=
2129 				srf_update->in_transfer_func)) {
2130 		surface->in_transfer_func->sdr_ref_white_level =
2131 			srf_update->in_transfer_func->sdr_ref_white_level;
2132 		surface->in_transfer_func->tf =
2133 			srf_update->in_transfer_func->tf;
2134 		surface->in_transfer_func->type =
2135 			srf_update->in_transfer_func->type;
2136 		memcpy(&surface->in_transfer_func->tf_pts,
2137 			&srf_update->in_transfer_func->tf_pts,
2138 			sizeof(struct dc_transfer_func_distributed_points));
2139 	}
2140 
2141 	if (srf_update->func_shaper &&
2142 			(surface->in_shaper_func !=
2143 			srf_update->func_shaper))
2144 		memcpy(surface->in_shaper_func, srf_update->func_shaper,
2145 		sizeof(*surface->in_shaper_func));
2146 
2147 	if (srf_update->lut3d_func &&
2148 			(surface->lut3d_func !=
2149 			srf_update->lut3d_func))
2150 		memcpy(surface->lut3d_func, srf_update->lut3d_func,
2151 		sizeof(*surface->lut3d_func));
2152 
2153 	if (srf_update->hdr_mult.value)
2154 		surface->hdr_mult =
2155 				srf_update->hdr_mult;
2156 
2157 	if (srf_update->blend_tf &&
2158 			(surface->blend_tf !=
2159 			srf_update->blend_tf))
2160 		memcpy(surface->blend_tf, srf_update->blend_tf,
2161 		sizeof(*surface->blend_tf));
2162 
2163 	if (srf_update->input_csc_color_matrix)
2164 		surface->input_csc_color_matrix =
2165 			*srf_update->input_csc_color_matrix;
2166 
2167 	if (srf_update->coeff_reduction_factor)
2168 		surface->coeff_reduction_factor =
2169 			*srf_update->coeff_reduction_factor;
2170 
2171 	if (srf_update->gamut_remap_matrix)
2172 		surface->gamut_remap_matrix =
2173 			*srf_update->gamut_remap_matrix;
2174 }
2175 
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)2176 static void copy_stream_update_to_stream(struct dc *dc,
2177 					 struct dc_state *context,
2178 					 struct dc_stream_state *stream,
2179 					 struct dc_stream_update *update)
2180 {
2181 	struct dc_context *dc_ctx = dc->ctx;
2182 
2183 	if (update == NULL || stream == NULL)
2184 		return;
2185 
2186 	if (update->src.height && update->src.width)
2187 		stream->src = update->src;
2188 
2189 	if (update->dst.height && update->dst.width)
2190 		stream->dst = update->dst;
2191 
2192 	if (update->out_transfer_func &&
2193 	    stream->out_transfer_func != update->out_transfer_func) {
2194 		stream->out_transfer_func->sdr_ref_white_level =
2195 			update->out_transfer_func->sdr_ref_white_level;
2196 		stream->out_transfer_func->tf = update->out_transfer_func->tf;
2197 		stream->out_transfer_func->type =
2198 			update->out_transfer_func->type;
2199 		memcpy(&stream->out_transfer_func->tf_pts,
2200 		       &update->out_transfer_func->tf_pts,
2201 		       sizeof(struct dc_transfer_func_distributed_points));
2202 	}
2203 
2204 	if (update->hdr_static_metadata)
2205 		stream->hdr_static_metadata = *update->hdr_static_metadata;
2206 
2207 	if (update->abm_level)
2208 		stream->abm_level = *update->abm_level;
2209 
2210 	if (update->periodic_interrupt)
2211 		stream->periodic_interrupt = *update->periodic_interrupt;
2212 
2213 	if (update->gamut_remap)
2214 		stream->gamut_remap_matrix = *update->gamut_remap;
2215 
2216 	/* Note: this being updated after mode set is currently not a use case
2217 	 * however if it arises OCSC would need to be reprogrammed at the
2218 	 * minimum
2219 	 */
2220 	if (update->output_color_space)
2221 		stream->output_color_space = *update->output_color_space;
2222 
2223 	if (update->output_csc_transform)
2224 		stream->csc_color_matrix = *update->output_csc_transform;
2225 
2226 	if (update->vrr_infopacket)
2227 		stream->vrr_infopacket = *update->vrr_infopacket;
2228 
2229 	if (update->dpms_off)
2230 		stream->dpms_off = *update->dpms_off;
2231 
2232 	if (update->vsc_infopacket)
2233 		stream->vsc_infopacket = *update->vsc_infopacket;
2234 
2235 	if (update->vsp_infopacket)
2236 		stream->vsp_infopacket = *update->vsp_infopacket;
2237 
2238 	if (update->dither_option)
2239 		stream->dither_option = *update->dither_option;
2240 	/* update current stream with writeback info */
2241 	if (update->wb_update) {
2242 		int i;
2243 
2244 		stream->num_wb_info = update->wb_update->num_wb_info;
2245 		ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
2246 		for (i = 0; i < stream->num_wb_info; i++)
2247 			stream->writeback_info[i] =
2248 				update->wb_update->writeback_info[i];
2249 	}
2250 	if (update->dsc_config) {
2251 		struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
2252 		uint32_t old_dsc_enabled = stream->timing.flags.DSC;
2253 		uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
2254 				       update->dsc_config->num_slices_v != 0);
2255 
2256 		/* Use temporarry context for validating new DSC config */
2257 		struct dc_state *dsc_validate_context = dc_create_state(dc);
2258 
2259 		if (dsc_validate_context) {
2260 			dc_resource_state_copy_construct(dc->current_state, dsc_validate_context);
2261 
2262 			stream->timing.dsc_cfg = *update->dsc_config;
2263 			stream->timing.flags.DSC = enable_dsc;
2264 			if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
2265 				stream->timing.dsc_cfg = old_dsc_cfg;
2266 				stream->timing.flags.DSC = old_dsc_enabled;
2267 				update->dsc_config = NULL;
2268 			}
2269 
2270 			dc_release_state(dsc_validate_context);
2271 		} else {
2272 			DC_ERROR("Failed to allocate new validate context for DSC change\n");
2273 			update->dsc_config = NULL;
2274 		}
2275 	}
2276 }
2277 
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)2278 static void commit_planes_do_stream_update(struct dc *dc,
2279 		struct dc_stream_state *stream,
2280 		struct dc_stream_update *stream_update,
2281 		enum surface_update_type update_type,
2282 		struct dc_state *context)
2283 {
2284 	int j;
2285 	bool should_program_abm;
2286 
2287 	// Stream updates
2288 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
2289 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2290 
2291 		if (!pipe_ctx->top_pipe &&  !pipe_ctx->prev_odm_pipe && pipe_ctx->stream == stream) {
2292 
2293 			if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
2294 				dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
2295 
2296 			if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
2297 					stream_update->vrr_infopacket ||
2298 					stream_update->vsc_infopacket ||
2299 					stream_update->vsp_infopacket) {
2300 				resource_build_info_frame(pipe_ctx);
2301 				dc->hwss.update_info_frame(pipe_ctx);
2302 			}
2303 
2304 			if (stream_update->hdr_static_metadata &&
2305 					stream->use_dynamic_meta &&
2306 					dc->hwss.set_dmdata_attributes &&
2307 					pipe_ctx->stream->dmdata_address.quad_part != 0)
2308 				dc->hwss.set_dmdata_attributes(pipe_ctx);
2309 
2310 			if (stream_update->gamut_remap)
2311 				dc_stream_set_gamut_remap(dc, stream);
2312 
2313 			if (stream_update->output_csc_transform)
2314 				dc_stream_program_csc_matrix(dc, stream);
2315 
2316 			if (stream_update->dither_option) {
2317 				struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
2318 				resource_build_bit_depth_reduction_params(pipe_ctx->stream,
2319 									&pipe_ctx->stream->bit_depth_params);
2320 				pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
2321 						&stream->bit_depth_params,
2322 						&stream->clamping);
2323 				while (odm_pipe) {
2324 					odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
2325 							&stream->bit_depth_params,
2326 							&stream->clamping);
2327 					odm_pipe = odm_pipe->next_odm_pipe;
2328 				}
2329 			}
2330 
2331 			/* Full fe update*/
2332 			if (update_type == UPDATE_TYPE_FAST)
2333 				continue;
2334 
2335 			if (stream_update->dsc_config)
2336 				dp_update_dsc_config(pipe_ctx);
2337 
2338 			if (stream_update->dpms_off) {
2339 				if (*stream_update->dpms_off) {
2340 					core_link_disable_stream(pipe_ctx);
2341 					/* for dpms, keep acquired resources*/
2342 					if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
2343 						pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
2344 
2345 					dc->optimized_required = true;
2346 
2347 				} else {
2348 					if (dc->optimize_seamless_boot_streams == 0)
2349 						dc->hwss.prepare_bandwidth(dc, dc->current_state);
2350 
2351 					core_link_enable_stream(dc->current_state, pipe_ctx);
2352 				}
2353 			}
2354 
2355 			if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
2356 				should_program_abm = true;
2357 
2358 				// if otg funcs defined check if blanked before programming
2359 				if (pipe_ctx->stream_res.tg->funcs->is_blanked)
2360 					if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
2361 						should_program_abm = false;
2362 
2363 				if (should_program_abm) {
2364 					if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
2365 						dc->hwss.set_abm_immediate_disable(pipe_ctx);
2366 					} else {
2367 						pipe_ctx->stream_res.abm->funcs->set_abm_level(
2368 							pipe_ctx->stream_res.abm, stream->abm_level);
2369 					}
2370 				}
2371 			}
2372 		}
2373 	}
2374 }
2375 
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)2376 static void commit_planes_for_stream(struct dc *dc,
2377 		struct dc_surface_update *srf_updates,
2378 		int surface_count,
2379 		struct dc_stream_state *stream,
2380 		struct dc_stream_update *stream_update,
2381 		enum surface_update_type update_type,
2382 		struct dc_state *context)
2383 {
2384 	bool mpcc_disconnected = false;
2385 	int i, j;
2386 	struct pipe_ctx *top_pipe_to_program = NULL;
2387 
2388 	if (dc->optimize_seamless_boot_streams > 0 && surface_count > 0) {
2389 		/* Optimize seamless boot flag keeps clocks and watermarks high until
2390 		 * first flip. After first flip, optimization is required to lower
2391 		 * bandwidth. Important to note that it is expected UEFI will
2392 		 * only light up a single display on POST, therefore we only expect
2393 		 * one stream with seamless boot flag set.
2394 		 */
2395 		if (stream->apply_seamless_boot_optimization) {
2396 			stream->apply_seamless_boot_optimization = false;
2397 			dc->optimize_seamless_boot_streams--;
2398 
2399 			if (dc->optimize_seamless_boot_streams == 0)
2400 				dc->optimized_required = true;
2401 		}
2402 	}
2403 
2404 	if (update_type == UPDATE_TYPE_FULL) {
2405 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
2406 		dc_allow_idle_optimizations(dc, false);
2407 
2408 #endif
2409 		if (dc->optimize_seamless_boot_streams == 0)
2410 			dc->hwss.prepare_bandwidth(dc, context);
2411 
2412 		context_clock_trace(dc, context);
2413 	}
2414 
2415 	if (update_type != UPDATE_TYPE_FAST && dc->hwss.interdependent_update_lock &&
2416 		dc->hwss.disconnect_pipes && dc->hwss.wait_for_pending_cleared){
2417 		dc->hwss.interdependent_update_lock(dc, context, true);
2418 		mpcc_disconnected = dc->hwss.disconnect_pipes(dc, context);
2419 		dc->hwss.interdependent_update_lock(dc, context, false);
2420 		if (mpcc_disconnected)
2421 			dc->hwss.wait_for_pending_cleared(dc, context);
2422 	}
2423 
2424 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
2425 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2426 
2427 		if (!pipe_ctx->top_pipe &&
2428 			!pipe_ctx->prev_odm_pipe &&
2429 			pipe_ctx->stream &&
2430 			pipe_ctx->stream == stream) {
2431 			top_pipe_to_program = pipe_ctx;
2432 		}
2433 	}
2434 
2435 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
2436 		if (top_pipe_to_program &&
2437 			top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
2438 			if (should_use_dmub_lock(stream->link)) {
2439 				union dmub_hw_lock_flags hw_locks = { 0 };
2440 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
2441 
2442 				hw_locks.bits.lock_dig = 1;
2443 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
2444 
2445 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
2446 							true,
2447 							&hw_locks,
2448 							&inst_flags);
2449 			} else
2450 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
2451 						top_pipe_to_program->stream_res.tg);
2452 		}
2453 
2454 	if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2455 		dc->hwss.interdependent_update_lock(dc, context, true);
2456 	else
2457 		/* Lock the top pipe while updating plane addrs, since freesync requires
2458 		 *  plane addr update event triggers to be synchronized.
2459 		 *  top_pipe_to_program is expected to never be NULL
2460 		 */
2461 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
2462 
2463 
2464 	// Stream updates
2465 	if (stream_update)
2466 		commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
2467 
2468 	if (surface_count == 0) {
2469 		/*
2470 		 * In case of turning off screen, no need to program front end a second time.
2471 		 * just return after program blank.
2472 		 */
2473 		if (dc->hwss.apply_ctx_for_surface)
2474 			dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
2475 		if (dc->hwss.program_front_end_for_ctx)
2476 			dc->hwss.program_front_end_for_ctx(dc, context);
2477 
2478 		if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2479 			dc->hwss.interdependent_update_lock(dc, context, false);
2480 		else
2481 			dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
2482 
2483 		dc->hwss.post_unlock_program_front_end(dc, context);
2484 		return;
2485 	}
2486 
2487 	if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
2488 		for (i = 0; i < surface_count; i++) {
2489 			struct dc_plane_state *plane_state = srf_updates[i].surface;
2490 			/*set logical flag for lock/unlock use*/
2491 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
2492 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2493 				if (!pipe_ctx->plane_state)
2494 					continue;
2495 				if (pipe_ctx->plane_state != plane_state)
2496 					continue;
2497 				plane_state->triplebuffer_flips = false;
2498 				if (update_type == UPDATE_TYPE_FAST &&
2499 					dc->hwss.program_triplebuffer != NULL &&
2500 					!plane_state->flip_immediate && dc->debug.enable_tri_buf) {
2501 						/*triple buffer for VUpdate  only*/
2502 						plane_state->triplebuffer_flips = true;
2503 				}
2504 			}
2505 			if (update_type == UPDATE_TYPE_FULL) {
2506 				/* force vsync flip when reconfiguring pipes to prevent underflow */
2507 				plane_state->flip_immediate = false;
2508 			}
2509 		}
2510 	}
2511 
2512 	// Update Type FULL, Surface updates
2513 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
2514 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2515 
2516 		if (!pipe_ctx->top_pipe &&
2517 			!pipe_ctx->prev_odm_pipe &&
2518 			pipe_ctx->stream &&
2519 			pipe_ctx->stream == stream) {
2520 			struct dc_stream_status *stream_status = NULL;
2521 
2522 			if (!pipe_ctx->plane_state)
2523 				continue;
2524 
2525 			/* Full fe update*/
2526 			if (update_type == UPDATE_TYPE_FAST)
2527 				continue;
2528 
2529 			ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
2530 
2531 			if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
2532 				/*turn off triple buffer for full update*/
2533 				dc->hwss.program_triplebuffer(
2534 					dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
2535 			}
2536 			stream_status =
2537 				stream_get_status(context, pipe_ctx->stream);
2538 
2539 			if (dc->hwss.apply_ctx_for_surface)
2540 				dc->hwss.apply_ctx_for_surface(
2541 					dc, pipe_ctx->stream, stream_status->plane_count, context);
2542 		}
2543 	}
2544 	if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
2545 		dc->hwss.program_front_end_for_ctx(dc, context);
2546 #ifdef CONFIG_DRM_AMD_DC_DCN
2547 		if (dc->debug.validate_dml_output) {
2548 			for (i = 0; i < dc->res_pool->pipe_count; i++) {
2549 				struct pipe_ctx cur_pipe = context->res_ctx.pipe_ctx[i];
2550 				if (cur_pipe.stream == NULL)
2551 					continue;
2552 
2553 				cur_pipe.plane_res.hubp->funcs->validate_dml_output(
2554 						cur_pipe.plane_res.hubp, dc->ctx,
2555 						&context->res_ctx.pipe_ctx[i].rq_regs,
2556 						&context->res_ctx.pipe_ctx[i].dlg_regs,
2557 						&context->res_ctx.pipe_ctx[i].ttu_regs);
2558 			}
2559 		}
2560 #endif
2561 	}
2562 
2563 	// Update Type FAST, Surface updates
2564 	if (update_type == UPDATE_TYPE_FAST) {
2565 		if (dc->hwss.set_flip_control_gsl)
2566 			for (i = 0; i < surface_count; i++) {
2567 				struct dc_plane_state *plane_state = srf_updates[i].surface;
2568 
2569 				for (j = 0; j < dc->res_pool->pipe_count; j++) {
2570 					struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2571 
2572 					if (pipe_ctx->stream != stream)
2573 						continue;
2574 
2575 					if (pipe_ctx->plane_state != plane_state)
2576 						continue;
2577 
2578 					// GSL has to be used for flip immediate
2579 					dc->hwss.set_flip_control_gsl(pipe_ctx,
2580 							plane_state->flip_immediate);
2581 				}
2582 			}
2583 		/* Perform requested Updates */
2584 		for (i = 0; i < surface_count; i++) {
2585 			struct dc_plane_state *plane_state = srf_updates[i].surface;
2586 
2587 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
2588 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2589 
2590 				if (pipe_ctx->stream != stream)
2591 					continue;
2592 
2593 				if (pipe_ctx->plane_state != plane_state)
2594 					continue;
2595 				/*program triple buffer after lock based on flip type*/
2596 				if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
2597 					/*only enable triplebuffer for  fast_update*/
2598 					dc->hwss.program_triplebuffer(
2599 						dc, pipe_ctx, plane_state->triplebuffer_flips);
2600 				}
2601 				if (srf_updates[i].flip_addr)
2602 					dc->hwss.update_plane_addr(dc, pipe_ctx);
2603 			}
2604 		}
2605 	}
2606 
2607 	if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2608 		dc->hwss.interdependent_update_lock(dc, context, false);
2609 	else
2610 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
2611 
2612 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
2613 		if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
2614 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2615 					top_pipe_to_program->stream_res.tg,
2616 					CRTC_STATE_VACTIVE);
2617 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2618 					top_pipe_to_program->stream_res.tg,
2619 					CRTC_STATE_VBLANK);
2620 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2621 					top_pipe_to_program->stream_res.tg,
2622 					CRTC_STATE_VACTIVE);
2623 
2624 			if (stream && should_use_dmub_lock(stream->link)) {
2625 				union dmub_hw_lock_flags hw_locks = { 0 };
2626 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
2627 
2628 				hw_locks.bits.lock_dig = 1;
2629 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
2630 
2631 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
2632 							false,
2633 							&hw_locks,
2634 							&inst_flags);
2635 			} else
2636 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
2637 					top_pipe_to_program->stream_res.tg);
2638 		}
2639 
2640 	if (update_type != UPDATE_TYPE_FAST)
2641 		dc->hwss.post_unlock_program_front_end(dc, context);
2642 
2643 	// Fire manual trigger only when bottom plane is flipped
2644 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
2645 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2646 
2647 		if (pipe_ctx->bottom_pipe ||
2648 				!pipe_ctx->stream ||
2649 				pipe_ctx->stream != stream ||
2650 				!pipe_ctx->plane_state->update_flags.bits.addr_update)
2651 			continue;
2652 
2653 		if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
2654 			pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
2655 	}
2656 }
2657 
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)2658 void dc_commit_updates_for_stream(struct dc *dc,
2659 		struct dc_surface_update *srf_updates,
2660 		int surface_count,
2661 		struct dc_stream_state *stream,
2662 		struct dc_stream_update *stream_update,
2663 		struct dc_state *state)
2664 {
2665 	const struct dc_stream_status *stream_status;
2666 	enum surface_update_type update_type;
2667 	struct dc_state *context;
2668 	struct dc_context *dc_ctx = dc->ctx;
2669 	int i, j;
2670 
2671 	stream_status = dc_stream_get_status(stream);
2672 	context = dc->current_state;
2673 
2674 	update_type = dc_check_update_surfaces_for_stream(
2675 				dc, srf_updates, surface_count, stream_update, stream_status);
2676 
2677 	if (update_type >= update_surface_trace_level)
2678 		update_surface_trace(dc, srf_updates, surface_count);
2679 
2680 
2681 	if (update_type >= UPDATE_TYPE_FULL) {
2682 
2683 		/* initialize scratch memory for building context */
2684 		context = dc_create_state(dc);
2685 		if (context == NULL) {
2686 			DC_ERROR("Failed to allocate new validate context!\n");
2687 			return;
2688 		}
2689 
2690 		dc_resource_state_copy_construct(state, context);
2691 
2692 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2693 			struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
2694 			struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2695 
2696 			if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
2697 				new_pipe->plane_state->force_full_update = true;
2698 		}
2699 	}
2700 
2701 
2702 	for (i = 0; i < surface_count; i++) {
2703 		struct dc_plane_state *surface = srf_updates[i].surface;
2704 
2705 		copy_surface_update_to_plane(surface, &srf_updates[i]);
2706 
2707 		if (update_type >= UPDATE_TYPE_MED) {
2708 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
2709 				struct pipe_ctx *pipe_ctx =
2710 					&context->res_ctx.pipe_ctx[j];
2711 
2712 				if (pipe_ctx->plane_state != surface)
2713 					continue;
2714 
2715 				resource_build_scaling_params(pipe_ctx);
2716 			}
2717 		}
2718 	}
2719 
2720 	copy_stream_update_to_stream(dc, context, stream, stream_update);
2721 
2722 	if (update_type >= UPDATE_TYPE_FULL) {
2723 		if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
2724 			DC_ERROR("Mode validation failed for stream update!\n");
2725 			dc_release_state(context);
2726 			return;
2727 		}
2728 	}
2729 
2730 	commit_planes_for_stream(
2731 				dc,
2732 				srf_updates,
2733 				surface_count,
2734 				stream,
2735 				stream_update,
2736 				update_type,
2737 				context);
2738 	/*update current_State*/
2739 	if (dc->current_state != context) {
2740 
2741 		struct dc_state *old = dc->current_state;
2742 
2743 		dc->current_state = context;
2744 		dc_release_state(old);
2745 
2746 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2747 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2748 
2749 			if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
2750 				pipe_ctx->plane_state->force_full_update = false;
2751 		}
2752 	}
2753 	/*let's use current_state to update watermark etc*/
2754 	if (update_type >= UPDATE_TYPE_FULL)
2755 		dc_post_update_surfaces_to_stream(dc);
2756 
2757 	return;
2758 
2759 }
2760 
dc_get_current_stream_count(struct dc * dc)2761 uint8_t dc_get_current_stream_count(struct dc *dc)
2762 {
2763 	return dc->current_state->stream_count;
2764 }
2765 
dc_get_stream_at_index(struct dc * dc,uint8_t i)2766 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
2767 {
2768 	if (i < dc->current_state->stream_count)
2769 		return dc->current_state->streams[i];
2770 	return NULL;
2771 }
2772 
dc_stream_find_from_link(const struct dc_link * link)2773 struct dc_stream_state *dc_stream_find_from_link(const struct dc_link *link)
2774 {
2775 	uint8_t i;
2776 	struct dc_context *ctx = link->ctx;
2777 
2778 	for (i = 0; i < ctx->dc->current_state->stream_count; i++) {
2779 		if (ctx->dc->current_state->streams[i]->link == link)
2780 			return ctx->dc->current_state->streams[i];
2781 	}
2782 
2783 	return NULL;
2784 }
2785 
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)2786 enum dc_irq_source dc_interrupt_to_irq_source(
2787 		struct dc *dc,
2788 		uint32_t src_id,
2789 		uint32_t ext_id)
2790 {
2791 	return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
2792 }
2793 
2794 /**
2795  * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
2796  */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)2797 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
2798 {
2799 
2800 	if (dc == NULL)
2801 		return false;
2802 
2803 	return dal_irq_service_set(dc->res_pool->irqs, src, enable);
2804 }
2805 
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)2806 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
2807 {
2808 	dal_irq_service_ack(dc->res_pool->irqs, src);
2809 }
2810 
dc_power_down_on_boot(struct dc * dc)2811 void dc_power_down_on_boot(struct dc *dc)
2812 {
2813 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
2814 			dc->hwss.power_down_on_boot)
2815 		dc->hwss.power_down_on_boot(dc);
2816 }
2817 
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)2818 void dc_set_power_state(
2819 	struct dc *dc,
2820 	enum dc_acpi_cm_power_state power_state)
2821 {
2822 	struct kref refcount;
2823 	struct display_mode_lib *dml;
2824 
2825 	switch (power_state) {
2826 	case DC_ACPI_CM_POWER_STATE_D0:
2827 		dc_resource_state_construct(dc, dc->current_state);
2828 
2829 		if (dc->ctx->dmub_srv)
2830 			dc_dmub_srv_wait_phy_init(dc->ctx->dmub_srv);
2831 
2832 		dc->hwss.init_hw(dc);
2833 
2834 		if (dc->hwss.init_sys_ctx != NULL &&
2835 			dc->vm_pa_config.valid) {
2836 			dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
2837 		}
2838 
2839 		break;
2840 	default:
2841 		ASSERT(dc->current_state->stream_count == 0);
2842 		/* Zero out the current context so that on resume we start with
2843 		 * clean state, and dc hw programming optimizations will not
2844 		 * cause any trouble.
2845 		 */
2846 		dml = kzalloc(sizeof(struct display_mode_lib),
2847 				GFP_KERNEL);
2848 
2849 		ASSERT(dml);
2850 		if (!dml)
2851 			return;
2852 
2853 		/* Preserve refcount */
2854 		refcount = dc->current_state->refcount;
2855 		/* Preserve display mode lib */
2856 		memcpy(dml, &dc->current_state->bw_ctx.dml, sizeof(struct display_mode_lib));
2857 
2858 		dc_resource_state_destruct(dc->current_state);
2859 		memset(dc->current_state, 0,
2860 				sizeof(*dc->current_state));
2861 
2862 		dc->current_state->refcount = refcount;
2863 		dc->current_state->bw_ctx.dml = *dml;
2864 
2865 		kfree(dml);
2866 
2867 		break;
2868 	}
2869 }
2870 
dc_resume(struct dc * dc)2871 void dc_resume(struct dc *dc)
2872 {
2873 	uint32_t i;
2874 
2875 	for (i = 0; i < dc->link_count; i++)
2876 		core_link_resume(dc->links[i]);
2877 }
2878 
dc_is_dmcu_initialized(struct dc * dc)2879 bool dc_is_dmcu_initialized(struct dc *dc)
2880 {
2881 	struct dmcu *dmcu = dc->res_pool->dmcu;
2882 
2883 	if (dmcu)
2884 		return dmcu->funcs->is_dmcu_initialized(dmcu);
2885 	return false;
2886 }
2887 
dc_submit_i2c(struct dc * dc,uint32_t link_index,struct i2c_command * cmd)2888 bool dc_submit_i2c(
2889 		struct dc *dc,
2890 		uint32_t link_index,
2891 		struct i2c_command *cmd)
2892 {
2893 
2894 	struct dc_link *link = dc->links[link_index];
2895 	struct ddc_service *ddc = link->ddc;
2896 	return dce_i2c_submit_command(
2897 		dc->res_pool,
2898 		ddc->ddc_pin,
2899 		cmd);
2900 }
2901 
dc_submit_i2c_oem(struct dc * dc,struct i2c_command * cmd)2902 bool dc_submit_i2c_oem(
2903 		struct dc *dc,
2904 		struct i2c_command *cmd)
2905 {
2906 	struct ddc_service *ddc = dc->res_pool->oem_device;
2907 	return dce_i2c_submit_command(
2908 		dc->res_pool,
2909 		ddc->ddc_pin,
2910 		cmd);
2911 }
2912 
link_add_remote_sink_helper(struct dc_link * dc_link,struct dc_sink * sink)2913 static bool link_add_remote_sink_helper(struct dc_link *dc_link, struct dc_sink *sink)
2914 {
2915 	if (dc_link->sink_count >= MAX_SINKS_PER_LINK) {
2916 		BREAK_TO_DEBUGGER();
2917 		return false;
2918 	}
2919 
2920 	dc_sink_retain(sink);
2921 
2922 	dc_link->remote_sinks[dc_link->sink_count] = sink;
2923 	dc_link->sink_count++;
2924 
2925 	return true;
2926 }
2927 
2928 /**
2929  * dc_link_add_remote_sink() - Create a sink and attach it to an existing link
2930  *
2931  * EDID length is in bytes
2932  */
dc_link_add_remote_sink(struct dc_link * link,const uint8_t * edid,int len,struct dc_sink_init_data * init_data)2933 struct dc_sink *dc_link_add_remote_sink(
2934 		struct dc_link *link,
2935 		const uint8_t *edid,
2936 		int len,
2937 		struct dc_sink_init_data *init_data)
2938 {
2939 	struct dc_sink *dc_sink;
2940 	enum dc_edid_status edid_status;
2941 
2942 	if (len > DC_MAX_EDID_BUFFER_SIZE) {
2943 		dm_error("Max EDID buffer size breached!\n");
2944 		return NULL;
2945 	}
2946 
2947 	if (!init_data) {
2948 		BREAK_TO_DEBUGGER();
2949 		return NULL;
2950 	}
2951 
2952 	if (!init_data->link) {
2953 		BREAK_TO_DEBUGGER();
2954 		return NULL;
2955 	}
2956 
2957 	dc_sink = dc_sink_create(init_data);
2958 
2959 	if (!dc_sink)
2960 		return NULL;
2961 
2962 	memmove(dc_sink->dc_edid.raw_edid, edid, len);
2963 	dc_sink->dc_edid.length = len;
2964 
2965 	if (!link_add_remote_sink_helper(
2966 			link,
2967 			dc_sink))
2968 		goto fail_add_sink;
2969 
2970 	edid_status = dm_helpers_parse_edid_caps(
2971 			link->ctx,
2972 			&dc_sink->dc_edid,
2973 			&dc_sink->edid_caps);
2974 
2975 	/*
2976 	 * Treat device as no EDID device if EDID
2977 	 * parsing fails
2978 	 */
2979 	if (edid_status != EDID_OK) {
2980 		dc_sink->dc_edid.length = 0;
2981 		dm_error("Bad EDID, status%d!\n", edid_status);
2982 	}
2983 
2984 	return dc_sink;
2985 
2986 fail_add_sink:
2987 	dc_sink_release(dc_sink);
2988 	return NULL;
2989 }
2990 
2991 /**
2992  * dc_link_remove_remote_sink() - Remove a remote sink from a dc_link
2993  *
2994  * Note that this just removes the struct dc_sink - it doesn't
2995  * program hardware or alter other members of dc_link
2996  */
dc_link_remove_remote_sink(struct dc_link * link,struct dc_sink * sink)2997 void dc_link_remove_remote_sink(struct dc_link *link, struct dc_sink *sink)
2998 {
2999 	int i;
3000 
3001 	if (!link->sink_count) {
3002 		BREAK_TO_DEBUGGER();
3003 		return;
3004 	}
3005 
3006 	for (i = 0; i < link->sink_count; i++) {
3007 		if (link->remote_sinks[i] == sink) {
3008 			dc_sink_release(sink);
3009 			link->remote_sinks[i] = NULL;
3010 
3011 			/* shrink array to remove empty place */
3012 			while (i < link->sink_count - 1) {
3013 				link->remote_sinks[i] = link->remote_sinks[i+1];
3014 				i++;
3015 			}
3016 			link->remote_sinks[i] = NULL;
3017 			link->sink_count--;
3018 			return;
3019 		}
3020 	}
3021 }
3022 
get_clock_requirements_for_state(struct dc_state * state,struct AsicStateEx * info)3023 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
3024 {
3025 	info->displayClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
3026 	info->engineClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
3027 	info->memoryClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
3028 	info->maxSupportedDppClock		= (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
3029 	info->dppClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
3030 	info->socClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
3031 	info->dcfClockDeepSleep			= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
3032 	info->fClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
3033 	info->phyClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
3034 }
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)3035 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
3036 {
3037 	if (dc->hwss.set_clock)
3038 		return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
3039 	return DC_ERROR_UNEXPECTED;
3040 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)3041 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
3042 {
3043 	if (dc->hwss.get_clock)
3044 		dc->hwss.get_clock(dc, clock_type, clock_cfg);
3045 }
3046 
3047 /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)3048 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
3049 {
3050 	int i;
3051 
3052 	for (i = 0; i < dc->current_state->stream_count ; i++) {
3053 		struct dc_link *link;
3054 		struct dc_stream_state *stream = dc->current_state->streams[i];
3055 
3056 		link = stream->link;
3057 		if (!link)
3058 			continue;
3059 
3060 		if (link->psr_settings.psr_feature_enabled) {
3061 			if (enable && !link->psr_settings.psr_allow_active)
3062 				return dc_link_set_psr_allow_active(link, true, false);
3063 			else if (!enable && link->psr_settings.psr_allow_active)
3064 				return dc_link_set_psr_allow_active(link, false, true);
3065 		}
3066 	}
3067 
3068 	return true;
3069 }
3070 
3071 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
3072 
dc_allow_idle_optimizations(struct dc * dc,bool allow)3073 void dc_allow_idle_optimizations(struct dc *dc, bool allow)
3074 {
3075 	if (dc->debug.disable_idle_power_optimizations)
3076 		return;
3077 
3078 	if (allow == dc->idle_optimizations_allowed)
3079 		return;
3080 
3081 	if (dc->hwss.apply_idle_power_optimizations && dc->hwss.apply_idle_power_optimizations(dc, allow))
3082 		dc->idle_optimizations_allowed = allow;
3083 }
3084 
3085 /*
3086  * blank all streams, and set min and max memory clock to
3087  * lowest and highest DPM level, respectively
3088  */
dc_unlock_memory_clock_frequency(struct dc * dc)3089 void dc_unlock_memory_clock_frequency(struct dc *dc)
3090 {
3091 	unsigned int i;
3092 
3093 	for (i = 0; i < MAX_PIPES; i++)
3094 		if (dc->current_state->res_ctx.pipe_ctx[i].plane_state)
3095 			core_link_disable_stream(&dc->current_state->res_ctx.pipe_ctx[i]);
3096 
3097 	dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
3098 	dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
3099 }
3100 
3101 /*
3102  * set min memory clock to the min required for current mode,
3103  * max to maxDPM, and unblank streams
3104  */
dc_lock_memory_clock_frequency(struct dc * dc)3105 void dc_lock_memory_clock_frequency(struct dc *dc)
3106 {
3107 	unsigned int i;
3108 
3109 	dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
3110 	dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
3111 	dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
3112 
3113 	for (i = 0; i < MAX_PIPES; i++)
3114 		if (dc->current_state->res_ctx.pipe_ctx[i].plane_state)
3115 			core_link_enable_stream(dc->current_state, &dc->current_state->res_ctx.pipe_ctx[i]);
3116 }
3117 
dc_is_plane_eligible_for_idle_optimizaitons(struct dc * dc,struct dc_plane_state * plane)3118 bool dc_is_plane_eligible_for_idle_optimizaitons(struct dc *dc,
3119 						 struct dc_plane_state *plane)
3120 {
3121 	return false;
3122 }
3123 #endif
3124