• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dsa.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/pkt_cls.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/crash_dump.h>
142 #include <linux/sctp.h>
143 #include <net/udp_tunnel.h>
144 #include <linux/net_namespace.h>
145 #include <linux/indirect_call_wrapper.h>
146 #include <net/devlink.h>
147 #include <linux/pm_runtime.h>
148 #include <linux/prandom.h>
149 
150 #include "net-sysfs.h"
151 
152 #define MAX_GRO_SKBS 8
153 
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 static struct list_head offload_base __read_mostly;
162 
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165 					 struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167 					   struct net_device *dev,
168 					   struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170 
171 /*
172  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173  * semaphore.
174  *
175  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176  *
177  * Writers must hold the rtnl semaphore while they loop through the
178  * dev_base_head list, and hold dev_base_lock for writing when they do the
179  * actual updates.  This allows pure readers to access the list even
180  * while a writer is preparing to update it.
181  *
182  * To put it another way, dev_base_lock is held for writing only to
183  * protect against pure readers; the rtnl semaphore provides the
184  * protection against other writers.
185  *
186  * See, for example usages, register_netdevice() and
187  * unregister_netdevice(), which must be called with the rtnl
188  * semaphore held.
189  */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192 
193 static DEFINE_MUTEX(ifalias_mutex);
194 
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197 
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200 
201 static DECLARE_RWSEM(devnet_rename_sem);
202 
dev_base_seq_inc(struct net * net)203 static inline void dev_base_seq_inc(struct net *net)
204 {
205 	while (++net->dev_base_seq == 0)
206 		;
207 }
208 
dev_name_hash(struct net * net,const char * name)209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212 
213 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215 
dev_index_hash(struct net * net,int ifindex)216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220 
rps_lock(struct softnet_data * sd)221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 	spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227 
rps_unlock(struct softnet_data * sd)228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 	spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234 
netdev_name_node_alloc(struct net_device * dev,const char * name)235 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
236 						       const char *name)
237 {
238 	struct netdev_name_node *name_node;
239 
240 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
241 	if (!name_node)
242 		return NULL;
243 	INIT_HLIST_NODE(&name_node->hlist);
244 	name_node->dev = dev;
245 	name_node->name = name;
246 	return name_node;
247 }
248 
249 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)250 netdev_name_node_head_alloc(struct net_device *dev)
251 {
252 	struct netdev_name_node *name_node;
253 
254 	name_node = netdev_name_node_alloc(dev, dev->name);
255 	if (!name_node)
256 		return NULL;
257 	INIT_LIST_HEAD(&name_node->list);
258 	return name_node;
259 }
260 
netdev_name_node_free(struct netdev_name_node * name_node)261 static void netdev_name_node_free(struct netdev_name_node *name_node)
262 {
263 	kfree(name_node);
264 }
265 
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)266 static void netdev_name_node_add(struct net *net,
267 				 struct netdev_name_node *name_node)
268 {
269 	hlist_add_head_rcu(&name_node->hlist,
270 			   dev_name_hash(net, name_node->name));
271 }
272 
netdev_name_node_del(struct netdev_name_node * name_node)273 static void netdev_name_node_del(struct netdev_name_node *name_node)
274 {
275 	hlist_del_rcu(&name_node->hlist);
276 }
277 
netdev_name_node_lookup(struct net * net,const char * name)278 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
279 							const char *name)
280 {
281 	struct hlist_head *head = dev_name_hash(net, name);
282 	struct netdev_name_node *name_node;
283 
284 	hlist_for_each_entry(name_node, head, hlist)
285 		if (!strcmp(name_node->name, name))
286 			return name_node;
287 	return NULL;
288 }
289 
netdev_name_node_lookup_rcu(struct net * net,const char * name)290 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
291 							    const char *name)
292 {
293 	struct hlist_head *head = dev_name_hash(net, name);
294 	struct netdev_name_node *name_node;
295 
296 	hlist_for_each_entry_rcu(name_node, head, hlist)
297 		if (!strcmp(name_node->name, name))
298 			return name_node;
299 	return NULL;
300 }
301 
netdev_name_node_alt_create(struct net_device * dev,const char * name)302 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
303 {
304 	struct netdev_name_node *name_node;
305 	struct net *net = dev_net(dev);
306 
307 	name_node = netdev_name_node_lookup(net, name);
308 	if (name_node)
309 		return -EEXIST;
310 	name_node = netdev_name_node_alloc(dev, name);
311 	if (!name_node)
312 		return -ENOMEM;
313 	netdev_name_node_add(net, name_node);
314 	/* The node that holds dev->name acts as a head of per-device list. */
315 	list_add_tail(&name_node->list, &dev->name_node->list);
316 
317 	return 0;
318 }
319 EXPORT_SYMBOL(netdev_name_node_alt_create);
320 
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)321 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
322 {
323 	list_del(&name_node->list);
324 	netdev_name_node_del(name_node);
325 	kfree(name_node->name);
326 	netdev_name_node_free(name_node);
327 }
328 
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)329 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
330 {
331 	struct netdev_name_node *name_node;
332 	struct net *net = dev_net(dev);
333 
334 	name_node = netdev_name_node_lookup(net, name);
335 	if (!name_node)
336 		return -ENOENT;
337 	/* lookup might have found our primary name or a name belonging
338 	 * to another device.
339 	 */
340 	if (name_node == dev->name_node || name_node->dev != dev)
341 		return -EINVAL;
342 
343 	__netdev_name_node_alt_destroy(name_node);
344 
345 	return 0;
346 }
347 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
348 
netdev_name_node_alt_flush(struct net_device * dev)349 static void netdev_name_node_alt_flush(struct net_device *dev)
350 {
351 	struct netdev_name_node *name_node, *tmp;
352 
353 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
354 		__netdev_name_node_alt_destroy(name_node);
355 }
356 
357 /* Device list insertion */
list_netdevice(struct net_device * dev)358 static void list_netdevice(struct net_device *dev)
359 {
360 	struct net *net = dev_net(dev);
361 
362 	ASSERT_RTNL();
363 
364 	write_lock_bh(&dev_base_lock);
365 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
366 	netdev_name_node_add(net, dev->name_node);
367 	hlist_add_head_rcu(&dev->index_hlist,
368 			   dev_index_hash(net, dev->ifindex));
369 	write_unlock_bh(&dev_base_lock);
370 
371 	dev_base_seq_inc(net);
372 }
373 
374 /* Device list removal
375  * caller must respect a RCU grace period before freeing/reusing dev
376  */
unlist_netdevice(struct net_device * dev)377 static void unlist_netdevice(struct net_device *dev)
378 {
379 	ASSERT_RTNL();
380 
381 	/* Unlink dev from the device chain */
382 	write_lock_bh(&dev_base_lock);
383 	list_del_rcu(&dev->dev_list);
384 	netdev_name_node_del(dev->name_node);
385 	hlist_del_rcu(&dev->index_hlist);
386 	write_unlock_bh(&dev_base_lock);
387 
388 	dev_base_seq_inc(dev_net(dev));
389 }
390 
391 /*
392  *	Our notifier list
393  */
394 
395 static RAW_NOTIFIER_HEAD(netdev_chain);
396 
397 /*
398  *	Device drivers call our routines to queue packets here. We empty the
399  *	queue in the local softnet handler.
400  */
401 
402 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
403 EXPORT_PER_CPU_SYMBOL(softnet_data);
404 
405 #ifdef CONFIG_LOCKDEP
406 /*
407  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
408  * according to dev->type
409  */
410 static const unsigned short netdev_lock_type[] = {
411 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
412 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
413 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
414 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
415 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
416 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
417 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
418 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
419 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
420 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
421 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
422 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
423 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
424 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
425 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
426 
427 static const char *const netdev_lock_name[] = {
428 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
429 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
430 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
431 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
432 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
433 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
434 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
435 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
436 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
437 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
438 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
439 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
440 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
441 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
442 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
443 
444 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
445 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
446 
netdev_lock_pos(unsigned short dev_type)447 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
448 {
449 	int i;
450 
451 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
452 		if (netdev_lock_type[i] == dev_type)
453 			return i;
454 	/* the last key is used by default */
455 	return ARRAY_SIZE(netdev_lock_type) - 1;
456 }
457 
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)458 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
459 						 unsigned short dev_type)
460 {
461 	int i;
462 
463 	i = netdev_lock_pos(dev_type);
464 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
465 				   netdev_lock_name[i]);
466 }
467 
netdev_set_addr_lockdep_class(struct net_device * dev)468 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
469 {
470 	int i;
471 
472 	i = netdev_lock_pos(dev->type);
473 	lockdep_set_class_and_name(&dev->addr_list_lock,
474 				   &netdev_addr_lock_key[i],
475 				   netdev_lock_name[i]);
476 }
477 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)478 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
479 						 unsigned short dev_type)
480 {
481 }
482 
netdev_set_addr_lockdep_class(struct net_device * dev)483 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
484 {
485 }
486 #endif
487 
488 /*******************************************************************************
489  *
490  *		Protocol management and registration routines
491  *
492  *******************************************************************************/
493 
494 
495 /*
496  *	Add a protocol ID to the list. Now that the input handler is
497  *	smarter we can dispense with all the messy stuff that used to be
498  *	here.
499  *
500  *	BEWARE!!! Protocol handlers, mangling input packets,
501  *	MUST BE last in hash buckets and checking protocol handlers
502  *	MUST start from promiscuous ptype_all chain in net_bh.
503  *	It is true now, do not change it.
504  *	Explanation follows: if protocol handler, mangling packet, will
505  *	be the first on list, it is not able to sense, that packet
506  *	is cloned and should be copied-on-write, so that it will
507  *	change it and subsequent readers will get broken packet.
508  *							--ANK (980803)
509  */
510 
ptype_head(const struct packet_type * pt)511 static inline struct list_head *ptype_head(const struct packet_type *pt)
512 {
513 	if (pt->type == htons(ETH_P_ALL))
514 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
515 	else
516 		return pt->dev ? &pt->dev->ptype_specific :
517 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
518 }
519 
520 /**
521  *	dev_add_pack - add packet handler
522  *	@pt: packet type declaration
523  *
524  *	Add a protocol handler to the networking stack. The passed &packet_type
525  *	is linked into kernel lists and may not be freed until it has been
526  *	removed from the kernel lists.
527  *
528  *	This call does not sleep therefore it can not
529  *	guarantee all CPU's that are in middle of receiving packets
530  *	will see the new packet type (until the next received packet).
531  */
532 
dev_add_pack(struct packet_type * pt)533 void dev_add_pack(struct packet_type *pt)
534 {
535 	struct list_head *head = ptype_head(pt);
536 
537 	spin_lock(&ptype_lock);
538 	list_add_rcu(&pt->list, head);
539 	spin_unlock(&ptype_lock);
540 }
541 EXPORT_SYMBOL(dev_add_pack);
542 
543 /**
544  *	__dev_remove_pack	 - remove packet handler
545  *	@pt: packet type declaration
546  *
547  *	Remove a protocol handler that was previously added to the kernel
548  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
549  *	from the kernel lists and can be freed or reused once this function
550  *	returns.
551  *
552  *      The packet type might still be in use by receivers
553  *	and must not be freed until after all the CPU's have gone
554  *	through a quiescent state.
555  */
__dev_remove_pack(struct packet_type * pt)556 void __dev_remove_pack(struct packet_type *pt)
557 {
558 	struct list_head *head = ptype_head(pt);
559 	struct packet_type *pt1;
560 
561 	spin_lock(&ptype_lock);
562 
563 	list_for_each_entry(pt1, head, list) {
564 		if (pt == pt1) {
565 			list_del_rcu(&pt->list);
566 			goto out;
567 		}
568 	}
569 
570 	pr_warn("dev_remove_pack: %p not found\n", pt);
571 out:
572 	spin_unlock(&ptype_lock);
573 }
574 EXPORT_SYMBOL(__dev_remove_pack);
575 
576 /**
577  *	dev_remove_pack	 - remove packet handler
578  *	@pt: packet type declaration
579  *
580  *	Remove a protocol handler that was previously added to the kernel
581  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
582  *	from the kernel lists and can be freed or reused once this function
583  *	returns.
584  *
585  *	This call sleeps to guarantee that no CPU is looking at the packet
586  *	type after return.
587  */
dev_remove_pack(struct packet_type * pt)588 void dev_remove_pack(struct packet_type *pt)
589 {
590 	__dev_remove_pack(pt);
591 
592 	synchronize_net();
593 }
594 EXPORT_SYMBOL(dev_remove_pack);
595 
596 
597 /**
598  *	dev_add_offload - register offload handlers
599  *	@po: protocol offload declaration
600  *
601  *	Add protocol offload handlers to the networking stack. The passed
602  *	&proto_offload is linked into kernel lists and may not be freed until
603  *	it has been removed from the kernel lists.
604  *
605  *	This call does not sleep therefore it can not
606  *	guarantee all CPU's that are in middle of receiving packets
607  *	will see the new offload handlers (until the next received packet).
608  */
dev_add_offload(struct packet_offload * po)609 void dev_add_offload(struct packet_offload *po)
610 {
611 	struct packet_offload *elem;
612 
613 	spin_lock(&offload_lock);
614 	list_for_each_entry(elem, &offload_base, list) {
615 		if (po->priority < elem->priority)
616 			break;
617 	}
618 	list_add_rcu(&po->list, elem->list.prev);
619 	spin_unlock(&offload_lock);
620 }
621 EXPORT_SYMBOL(dev_add_offload);
622 
623 /**
624  *	__dev_remove_offload	 - remove offload handler
625  *	@po: packet offload declaration
626  *
627  *	Remove a protocol offload handler that was previously added to the
628  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
629  *	is removed from the kernel lists and can be freed or reused once this
630  *	function returns.
631  *
632  *      The packet type might still be in use by receivers
633  *	and must not be freed until after all the CPU's have gone
634  *	through a quiescent state.
635  */
__dev_remove_offload(struct packet_offload * po)636 static void __dev_remove_offload(struct packet_offload *po)
637 {
638 	struct list_head *head = &offload_base;
639 	struct packet_offload *po1;
640 
641 	spin_lock(&offload_lock);
642 
643 	list_for_each_entry(po1, head, list) {
644 		if (po == po1) {
645 			list_del_rcu(&po->list);
646 			goto out;
647 		}
648 	}
649 
650 	pr_warn("dev_remove_offload: %p not found\n", po);
651 out:
652 	spin_unlock(&offload_lock);
653 }
654 
655 /**
656  *	dev_remove_offload	 - remove packet offload handler
657  *	@po: packet offload declaration
658  *
659  *	Remove a packet offload handler that was previously added to the kernel
660  *	offload handlers by dev_add_offload(). The passed &offload_type is
661  *	removed from the kernel lists and can be freed or reused once this
662  *	function returns.
663  *
664  *	This call sleeps to guarantee that no CPU is looking at the packet
665  *	type after return.
666  */
dev_remove_offload(struct packet_offload * po)667 void dev_remove_offload(struct packet_offload *po)
668 {
669 	__dev_remove_offload(po);
670 
671 	synchronize_net();
672 }
673 EXPORT_SYMBOL(dev_remove_offload);
674 
675 /******************************************************************************
676  *
677  *		      Device Boot-time Settings Routines
678  *
679  ******************************************************************************/
680 
681 /* Boot time configuration table */
682 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
683 
684 /**
685  *	netdev_boot_setup_add	- add new setup entry
686  *	@name: name of the device
687  *	@map: configured settings for the device
688  *
689  *	Adds new setup entry to the dev_boot_setup list.  The function
690  *	returns 0 on error and 1 on success.  This is a generic routine to
691  *	all netdevices.
692  */
netdev_boot_setup_add(char * name,struct ifmap * map)693 static int netdev_boot_setup_add(char *name, struct ifmap *map)
694 {
695 	struct netdev_boot_setup *s;
696 	int i;
697 
698 	s = dev_boot_setup;
699 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
700 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
701 			memset(s[i].name, 0, sizeof(s[i].name));
702 			strlcpy(s[i].name, name, IFNAMSIZ);
703 			memcpy(&s[i].map, map, sizeof(s[i].map));
704 			break;
705 		}
706 	}
707 
708 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
709 }
710 
711 /**
712  * netdev_boot_setup_check	- check boot time settings
713  * @dev: the netdevice
714  *
715  * Check boot time settings for the device.
716  * The found settings are set for the device to be used
717  * later in the device probing.
718  * Returns 0 if no settings found, 1 if they are.
719  */
netdev_boot_setup_check(struct net_device * dev)720 int netdev_boot_setup_check(struct net_device *dev)
721 {
722 	struct netdev_boot_setup *s = dev_boot_setup;
723 	int i;
724 
725 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
726 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
727 		    !strcmp(dev->name, s[i].name)) {
728 			dev->irq = s[i].map.irq;
729 			dev->base_addr = s[i].map.base_addr;
730 			dev->mem_start = s[i].map.mem_start;
731 			dev->mem_end = s[i].map.mem_end;
732 			return 1;
733 		}
734 	}
735 	return 0;
736 }
737 EXPORT_SYMBOL(netdev_boot_setup_check);
738 
739 
740 /**
741  * netdev_boot_base	- get address from boot time settings
742  * @prefix: prefix for network device
743  * @unit: id for network device
744  *
745  * Check boot time settings for the base address of device.
746  * The found settings are set for the device to be used
747  * later in the device probing.
748  * Returns 0 if no settings found.
749  */
netdev_boot_base(const char * prefix,int unit)750 unsigned long netdev_boot_base(const char *prefix, int unit)
751 {
752 	const struct netdev_boot_setup *s = dev_boot_setup;
753 	char name[IFNAMSIZ];
754 	int i;
755 
756 	sprintf(name, "%s%d", prefix, unit);
757 
758 	/*
759 	 * If device already registered then return base of 1
760 	 * to indicate not to probe for this interface
761 	 */
762 	if (__dev_get_by_name(&init_net, name))
763 		return 1;
764 
765 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
766 		if (!strcmp(name, s[i].name))
767 			return s[i].map.base_addr;
768 	return 0;
769 }
770 
771 /*
772  * Saves at boot time configured settings for any netdevice.
773  */
netdev_boot_setup(char * str)774 int __init netdev_boot_setup(char *str)
775 {
776 	int ints[5];
777 	struct ifmap map;
778 
779 	str = get_options(str, ARRAY_SIZE(ints), ints);
780 	if (!str || !*str)
781 		return 0;
782 
783 	/* Save settings */
784 	memset(&map, 0, sizeof(map));
785 	if (ints[0] > 0)
786 		map.irq = ints[1];
787 	if (ints[0] > 1)
788 		map.base_addr = ints[2];
789 	if (ints[0] > 2)
790 		map.mem_start = ints[3];
791 	if (ints[0] > 3)
792 		map.mem_end = ints[4];
793 
794 	/* Add new entry to the list */
795 	return netdev_boot_setup_add(str, &map);
796 }
797 
798 __setup("netdev=", netdev_boot_setup);
799 
800 /*******************************************************************************
801  *
802  *			    Device Interface Subroutines
803  *
804  *******************************************************************************/
805 
806 /**
807  *	dev_get_iflink	- get 'iflink' value of a interface
808  *	@dev: targeted interface
809  *
810  *	Indicates the ifindex the interface is linked to.
811  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
812  */
813 
dev_get_iflink(const struct net_device * dev)814 int dev_get_iflink(const struct net_device *dev)
815 {
816 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
817 		return dev->netdev_ops->ndo_get_iflink(dev);
818 
819 	return dev->ifindex;
820 }
821 EXPORT_SYMBOL(dev_get_iflink);
822 
823 /**
824  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
825  *	@dev: targeted interface
826  *	@skb: The packet.
827  *
828  *	For better visibility of tunnel traffic OVS needs to retrieve
829  *	egress tunnel information for a packet. Following API allows
830  *	user to get this info.
831  */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)832 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
833 {
834 	struct ip_tunnel_info *info;
835 
836 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
837 		return -EINVAL;
838 
839 	info = skb_tunnel_info_unclone(skb);
840 	if (!info)
841 		return -ENOMEM;
842 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
843 		return -EINVAL;
844 
845 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
846 }
847 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
848 
849 /**
850  *	__dev_get_by_name	- find a device by its name
851  *	@net: the applicable net namespace
852  *	@name: name to find
853  *
854  *	Find an interface by name. Must be called under RTNL semaphore
855  *	or @dev_base_lock. If the name is found a pointer to the device
856  *	is returned. If the name is not found then %NULL is returned. The
857  *	reference counters are not incremented so the caller must be
858  *	careful with locks.
859  */
860 
__dev_get_by_name(struct net * net,const char * name)861 struct net_device *__dev_get_by_name(struct net *net, const char *name)
862 {
863 	struct netdev_name_node *node_name;
864 
865 	node_name = netdev_name_node_lookup(net, name);
866 	return node_name ? node_name->dev : NULL;
867 }
868 EXPORT_SYMBOL(__dev_get_by_name);
869 
870 /**
871  * dev_get_by_name_rcu	- find a device by its name
872  * @net: the applicable net namespace
873  * @name: name to find
874  *
875  * Find an interface by name.
876  * If the name is found a pointer to the device is returned.
877  * If the name is not found then %NULL is returned.
878  * The reference counters are not incremented so the caller must be
879  * careful with locks. The caller must hold RCU lock.
880  */
881 
dev_get_by_name_rcu(struct net * net,const char * name)882 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
883 {
884 	struct netdev_name_node *node_name;
885 
886 	node_name = netdev_name_node_lookup_rcu(net, name);
887 	return node_name ? node_name->dev : NULL;
888 }
889 EXPORT_SYMBOL(dev_get_by_name_rcu);
890 
891 /**
892  *	dev_get_by_name		- find a device by its name
893  *	@net: the applicable net namespace
894  *	@name: name to find
895  *
896  *	Find an interface by name. This can be called from any
897  *	context and does its own locking. The returned handle has
898  *	the usage count incremented and the caller must use dev_put() to
899  *	release it when it is no longer needed. %NULL is returned if no
900  *	matching device is found.
901  */
902 
dev_get_by_name(struct net * net,const char * name)903 struct net_device *dev_get_by_name(struct net *net, const char *name)
904 {
905 	struct net_device *dev;
906 
907 	rcu_read_lock();
908 	dev = dev_get_by_name_rcu(net, name);
909 	if (dev)
910 		dev_hold(dev);
911 	rcu_read_unlock();
912 	return dev;
913 }
914 EXPORT_SYMBOL(dev_get_by_name);
915 
916 /**
917  *	__dev_get_by_index - find a device by its ifindex
918  *	@net: the applicable net namespace
919  *	@ifindex: index of device
920  *
921  *	Search for an interface by index. Returns %NULL if the device
922  *	is not found or a pointer to the device. The device has not
923  *	had its reference counter increased so the caller must be careful
924  *	about locking. The caller must hold either the RTNL semaphore
925  *	or @dev_base_lock.
926  */
927 
__dev_get_by_index(struct net * net,int ifindex)928 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
929 {
930 	struct net_device *dev;
931 	struct hlist_head *head = dev_index_hash(net, ifindex);
932 
933 	hlist_for_each_entry(dev, head, index_hlist)
934 		if (dev->ifindex == ifindex)
935 			return dev;
936 
937 	return NULL;
938 }
939 EXPORT_SYMBOL(__dev_get_by_index);
940 
941 /**
942  *	dev_get_by_index_rcu - find a device by its ifindex
943  *	@net: the applicable net namespace
944  *	@ifindex: index of device
945  *
946  *	Search for an interface by index. Returns %NULL if the device
947  *	is not found or a pointer to the device. The device has not
948  *	had its reference counter increased so the caller must be careful
949  *	about locking. The caller must hold RCU lock.
950  */
951 
dev_get_by_index_rcu(struct net * net,int ifindex)952 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
953 {
954 	struct net_device *dev;
955 	struct hlist_head *head = dev_index_hash(net, ifindex);
956 
957 	hlist_for_each_entry_rcu(dev, head, index_hlist)
958 		if (dev->ifindex == ifindex)
959 			return dev;
960 
961 	return NULL;
962 }
963 EXPORT_SYMBOL(dev_get_by_index_rcu);
964 
965 
966 /**
967  *	dev_get_by_index - find a device by its ifindex
968  *	@net: the applicable net namespace
969  *	@ifindex: index of device
970  *
971  *	Search for an interface by index. Returns NULL if the device
972  *	is not found or a pointer to the device. The device returned has
973  *	had a reference added and the pointer is safe until the user calls
974  *	dev_put to indicate they have finished with it.
975  */
976 
dev_get_by_index(struct net * net,int ifindex)977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979 	struct net_device *dev;
980 
981 	rcu_read_lock();
982 	dev = dev_get_by_index_rcu(net, ifindex);
983 	if (dev)
984 		dev_hold(dev);
985 	rcu_read_unlock();
986 	return dev;
987 }
988 EXPORT_SYMBOL(dev_get_by_index);
989 
990 /**
991  *	dev_get_by_napi_id - find a device by napi_id
992  *	@napi_id: ID of the NAPI struct
993  *
994  *	Search for an interface by NAPI ID. Returns %NULL if the device
995  *	is not found or a pointer to the device. The device has not had
996  *	its reference counter increased so the caller must be careful
997  *	about locking. The caller must hold RCU lock.
998  */
999 
dev_get_by_napi_id(unsigned int napi_id)1000 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1001 {
1002 	struct napi_struct *napi;
1003 
1004 	WARN_ON_ONCE(!rcu_read_lock_held());
1005 
1006 	if (napi_id < MIN_NAPI_ID)
1007 		return NULL;
1008 
1009 	napi = napi_by_id(napi_id);
1010 
1011 	return napi ? napi->dev : NULL;
1012 }
1013 EXPORT_SYMBOL(dev_get_by_napi_id);
1014 
1015 /**
1016  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1017  *	@net: network namespace
1018  *	@name: a pointer to the buffer where the name will be stored.
1019  *	@ifindex: the ifindex of the interface to get the name from.
1020  */
netdev_get_name(struct net * net,char * name,int ifindex)1021 int netdev_get_name(struct net *net, char *name, int ifindex)
1022 {
1023 	struct net_device *dev;
1024 	int ret;
1025 
1026 	down_read(&devnet_rename_sem);
1027 	rcu_read_lock();
1028 
1029 	dev = dev_get_by_index_rcu(net, ifindex);
1030 	if (!dev) {
1031 		ret = -ENODEV;
1032 		goto out;
1033 	}
1034 
1035 	strcpy(name, dev->name);
1036 
1037 	ret = 0;
1038 out:
1039 	rcu_read_unlock();
1040 	up_read(&devnet_rename_sem);
1041 	return ret;
1042 }
1043 
1044 /**
1045  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1046  *	@net: the applicable net namespace
1047  *	@type: media type of device
1048  *	@ha: hardware address
1049  *
1050  *	Search for an interface by MAC address. Returns NULL if the device
1051  *	is not found or a pointer to the device.
1052  *	The caller must hold RCU or RTNL.
1053  *	The returned device has not had its ref count increased
1054  *	and the caller must therefore be careful about locking
1055  *
1056  */
1057 
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1058 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1059 				       const char *ha)
1060 {
1061 	struct net_device *dev;
1062 
1063 	for_each_netdev_rcu(net, dev)
1064 		if (dev->type == type &&
1065 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1066 			return dev;
1067 
1068 	return NULL;
1069 }
1070 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1071 
__dev_getfirstbyhwtype(struct net * net,unsigned short type)1072 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1073 {
1074 	struct net_device *dev;
1075 
1076 	ASSERT_RTNL();
1077 	for_each_netdev(net, dev)
1078 		if (dev->type == type)
1079 			return dev;
1080 
1081 	return NULL;
1082 }
1083 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1084 
dev_getfirstbyhwtype(struct net * net,unsigned short type)1085 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1086 {
1087 	struct net_device *dev, *ret = NULL;
1088 
1089 	rcu_read_lock();
1090 	for_each_netdev_rcu(net, dev)
1091 		if (dev->type == type) {
1092 			dev_hold(dev);
1093 			ret = dev;
1094 			break;
1095 		}
1096 	rcu_read_unlock();
1097 	return ret;
1098 }
1099 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1100 
1101 /**
1102  *	__dev_get_by_flags - find any device with given flags
1103  *	@net: the applicable net namespace
1104  *	@if_flags: IFF_* values
1105  *	@mask: bitmask of bits in if_flags to check
1106  *
1107  *	Search for any interface with the given flags. Returns NULL if a device
1108  *	is not found or a pointer to the device. Must be called inside
1109  *	rtnl_lock(), and result refcount is unchanged.
1110  */
1111 
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1112 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1113 				      unsigned short mask)
1114 {
1115 	struct net_device *dev, *ret;
1116 
1117 	ASSERT_RTNL();
1118 
1119 	ret = NULL;
1120 	for_each_netdev(net, dev) {
1121 		if (((dev->flags ^ if_flags) & mask) == 0) {
1122 			ret = dev;
1123 			break;
1124 		}
1125 	}
1126 	return ret;
1127 }
1128 EXPORT_SYMBOL(__dev_get_by_flags);
1129 
1130 /**
1131  *	dev_valid_name - check if name is okay for network device
1132  *	@name: name string
1133  *
1134  *	Network device names need to be valid file names to
1135  *	allow sysfs to work.  We also disallow any kind of
1136  *	whitespace.
1137  */
dev_valid_name(const char * name)1138 bool dev_valid_name(const char *name)
1139 {
1140 	if (*name == '\0')
1141 		return false;
1142 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1143 		return false;
1144 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1145 		return false;
1146 
1147 	while (*name) {
1148 		if (*name == '/' || *name == ':' || isspace(*name))
1149 			return false;
1150 		name++;
1151 	}
1152 	return true;
1153 }
1154 EXPORT_SYMBOL(dev_valid_name);
1155 
1156 /**
1157  *	__dev_alloc_name - allocate a name for a device
1158  *	@net: network namespace to allocate the device name in
1159  *	@name: name format string
1160  *	@buf:  scratch buffer and result name string
1161  *
1162  *	Passed a format string - eg "lt%d" it will try and find a suitable
1163  *	id. It scans list of devices to build up a free map, then chooses
1164  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1165  *	while allocating the name and adding the device in order to avoid
1166  *	duplicates.
1167  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1168  *	Returns the number of the unit assigned or a negative errno code.
1169  */
1170 
__dev_alloc_name(struct net * net,const char * name,char * buf)1171 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1172 {
1173 	int i = 0;
1174 	const char *p;
1175 	const int max_netdevices = 8*PAGE_SIZE;
1176 	unsigned long *inuse;
1177 	struct net_device *d;
1178 
1179 	if (!dev_valid_name(name))
1180 		return -EINVAL;
1181 
1182 	p = strchr(name, '%');
1183 	if (p) {
1184 		/*
1185 		 * Verify the string as this thing may have come from
1186 		 * the user.  There must be either one "%d" and no other "%"
1187 		 * characters.
1188 		 */
1189 		if (p[1] != 'd' || strchr(p + 2, '%'))
1190 			return -EINVAL;
1191 
1192 		/* Use one page as a bit array of possible slots */
1193 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1194 		if (!inuse)
1195 			return -ENOMEM;
1196 
1197 		for_each_netdev(net, d) {
1198 			struct netdev_name_node *name_node;
1199 			list_for_each_entry(name_node, &d->name_node->list, list) {
1200 				if (!sscanf(name_node->name, name, &i))
1201 					continue;
1202 				if (i < 0 || i >= max_netdevices)
1203 					continue;
1204 
1205 				/*  avoid cases where sscanf is not exact inverse of printf */
1206 				snprintf(buf, IFNAMSIZ, name, i);
1207 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1208 					set_bit(i, inuse);
1209 			}
1210 			if (!sscanf(d->name, name, &i))
1211 				continue;
1212 			if (i < 0 || i >= max_netdevices)
1213 				continue;
1214 
1215 			/*  avoid cases where sscanf is not exact inverse of printf */
1216 			snprintf(buf, IFNAMSIZ, name, i);
1217 			if (!strncmp(buf, d->name, IFNAMSIZ))
1218 				set_bit(i, inuse);
1219 		}
1220 
1221 		i = find_first_zero_bit(inuse, max_netdevices);
1222 		free_page((unsigned long) inuse);
1223 	}
1224 
1225 	snprintf(buf, IFNAMSIZ, name, i);
1226 	if (!__dev_get_by_name(net, buf))
1227 		return i;
1228 
1229 	/* It is possible to run out of possible slots
1230 	 * when the name is long and there isn't enough space left
1231 	 * for the digits, or if all bits are used.
1232 	 */
1233 	return -ENFILE;
1234 }
1235 
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1236 static int dev_alloc_name_ns(struct net *net,
1237 			     struct net_device *dev,
1238 			     const char *name)
1239 {
1240 	char buf[IFNAMSIZ];
1241 	int ret;
1242 
1243 	BUG_ON(!net);
1244 	ret = __dev_alloc_name(net, name, buf);
1245 	if (ret >= 0)
1246 		strlcpy(dev->name, buf, IFNAMSIZ);
1247 	return ret;
1248 }
1249 
1250 /**
1251  *	dev_alloc_name - allocate a name for a device
1252  *	@dev: device
1253  *	@name: name format string
1254  *
1255  *	Passed a format string - eg "lt%d" it will try and find a suitable
1256  *	id. It scans list of devices to build up a free map, then chooses
1257  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1258  *	while allocating the name and adding the device in order to avoid
1259  *	duplicates.
1260  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1261  *	Returns the number of the unit assigned or a negative errno code.
1262  */
1263 
dev_alloc_name(struct net_device * dev,const char * name)1264 int dev_alloc_name(struct net_device *dev, const char *name)
1265 {
1266 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1267 }
1268 EXPORT_SYMBOL(dev_alloc_name);
1269 
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1270 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1271 			      const char *name)
1272 {
1273 	BUG_ON(!net);
1274 
1275 	if (!dev_valid_name(name))
1276 		return -EINVAL;
1277 
1278 	if (strchr(name, '%'))
1279 		return dev_alloc_name_ns(net, dev, name);
1280 	else if (__dev_get_by_name(net, name))
1281 		return -EEXIST;
1282 	else if (dev->name != name)
1283 		strlcpy(dev->name, name, IFNAMSIZ);
1284 
1285 	return 0;
1286 }
1287 
1288 /**
1289  *	dev_change_name - change name of a device
1290  *	@dev: device
1291  *	@newname: name (or format string) must be at least IFNAMSIZ
1292  *
1293  *	Change name of a device, can pass format strings "eth%d".
1294  *	for wildcarding.
1295  */
dev_change_name(struct net_device * dev,const char * newname)1296 int dev_change_name(struct net_device *dev, const char *newname)
1297 {
1298 	unsigned char old_assign_type;
1299 	char oldname[IFNAMSIZ];
1300 	int err = 0;
1301 	int ret;
1302 	struct net *net;
1303 
1304 	ASSERT_RTNL();
1305 	BUG_ON(!dev_net(dev));
1306 
1307 	net = dev_net(dev);
1308 
1309 	/* Some auto-enslaved devices e.g. failover slaves are
1310 	 * special, as userspace might rename the device after
1311 	 * the interface had been brought up and running since
1312 	 * the point kernel initiated auto-enslavement. Allow
1313 	 * live name change even when these slave devices are
1314 	 * up and running.
1315 	 *
1316 	 * Typically, users of these auto-enslaving devices
1317 	 * don't actually care about slave name change, as
1318 	 * they are supposed to operate on master interface
1319 	 * directly.
1320 	 */
1321 	if (dev->flags & IFF_UP &&
1322 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1323 		return -EBUSY;
1324 
1325 	down_write(&devnet_rename_sem);
1326 
1327 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1328 		up_write(&devnet_rename_sem);
1329 		return 0;
1330 	}
1331 
1332 	memcpy(oldname, dev->name, IFNAMSIZ);
1333 
1334 	err = dev_get_valid_name(net, dev, newname);
1335 	if (err < 0) {
1336 		up_write(&devnet_rename_sem);
1337 		return err;
1338 	}
1339 
1340 	if (oldname[0] && !strchr(oldname, '%'))
1341 		netdev_info(dev, "renamed from %s\n", oldname);
1342 
1343 	old_assign_type = dev->name_assign_type;
1344 	dev->name_assign_type = NET_NAME_RENAMED;
1345 
1346 rollback:
1347 	ret = device_rename(&dev->dev, dev->name);
1348 	if (ret) {
1349 		memcpy(dev->name, oldname, IFNAMSIZ);
1350 		dev->name_assign_type = old_assign_type;
1351 		up_write(&devnet_rename_sem);
1352 		return ret;
1353 	}
1354 
1355 	up_write(&devnet_rename_sem);
1356 
1357 	netdev_adjacent_rename_links(dev, oldname);
1358 
1359 	write_lock_bh(&dev_base_lock);
1360 	netdev_name_node_del(dev->name_node);
1361 	write_unlock_bh(&dev_base_lock);
1362 
1363 	synchronize_rcu();
1364 
1365 	write_lock_bh(&dev_base_lock);
1366 	netdev_name_node_add(net, dev->name_node);
1367 	write_unlock_bh(&dev_base_lock);
1368 
1369 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1370 	ret = notifier_to_errno(ret);
1371 
1372 	if (ret) {
1373 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1374 		if (err >= 0) {
1375 			err = ret;
1376 			down_write(&devnet_rename_sem);
1377 			memcpy(dev->name, oldname, IFNAMSIZ);
1378 			memcpy(oldname, newname, IFNAMSIZ);
1379 			dev->name_assign_type = old_assign_type;
1380 			old_assign_type = NET_NAME_RENAMED;
1381 			goto rollback;
1382 		} else {
1383 			pr_err("%s: name change rollback failed: %d\n",
1384 			       dev->name, ret);
1385 		}
1386 	}
1387 
1388 	return err;
1389 }
1390 
1391 /**
1392  *	dev_set_alias - change ifalias of a device
1393  *	@dev: device
1394  *	@alias: name up to IFALIASZ
1395  *	@len: limit of bytes to copy from info
1396  *
1397  *	Set ifalias for a device,
1398  */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1399 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1400 {
1401 	struct dev_ifalias *new_alias = NULL;
1402 
1403 	if (len >= IFALIASZ)
1404 		return -EINVAL;
1405 
1406 	if (len) {
1407 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1408 		if (!new_alias)
1409 			return -ENOMEM;
1410 
1411 		memcpy(new_alias->ifalias, alias, len);
1412 		new_alias->ifalias[len] = 0;
1413 	}
1414 
1415 	mutex_lock(&ifalias_mutex);
1416 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1417 					mutex_is_locked(&ifalias_mutex));
1418 	mutex_unlock(&ifalias_mutex);
1419 
1420 	if (new_alias)
1421 		kfree_rcu(new_alias, rcuhead);
1422 
1423 	return len;
1424 }
1425 EXPORT_SYMBOL(dev_set_alias);
1426 
1427 /**
1428  *	dev_get_alias - get ifalias of a device
1429  *	@dev: device
1430  *	@name: buffer to store name of ifalias
1431  *	@len: size of buffer
1432  *
1433  *	get ifalias for a device.  Caller must make sure dev cannot go
1434  *	away,  e.g. rcu read lock or own a reference count to device.
1435  */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1436 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1437 {
1438 	const struct dev_ifalias *alias;
1439 	int ret = 0;
1440 
1441 	rcu_read_lock();
1442 	alias = rcu_dereference(dev->ifalias);
1443 	if (alias)
1444 		ret = snprintf(name, len, "%s", alias->ifalias);
1445 	rcu_read_unlock();
1446 
1447 	return ret;
1448 }
1449 
1450 /**
1451  *	netdev_features_change - device changes features
1452  *	@dev: device to cause notification
1453  *
1454  *	Called to indicate a device has changed features.
1455  */
netdev_features_change(struct net_device * dev)1456 void netdev_features_change(struct net_device *dev)
1457 {
1458 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1459 }
1460 EXPORT_SYMBOL(netdev_features_change);
1461 
1462 /**
1463  *	netdev_state_change - device changes state
1464  *	@dev: device to cause notification
1465  *
1466  *	Called to indicate a device has changed state. This function calls
1467  *	the notifier chains for netdev_chain and sends a NEWLINK message
1468  *	to the routing socket.
1469  */
netdev_state_change(struct net_device * dev)1470 void netdev_state_change(struct net_device *dev)
1471 {
1472 	if (dev->flags & IFF_UP) {
1473 		struct netdev_notifier_change_info change_info = {
1474 			.info.dev = dev,
1475 		};
1476 
1477 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1478 					      &change_info.info);
1479 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1480 	}
1481 }
1482 EXPORT_SYMBOL(netdev_state_change);
1483 
1484 /**
1485  * netdev_notify_peers - notify network peers about existence of @dev
1486  * @dev: network device
1487  *
1488  * Generate traffic such that interested network peers are aware of
1489  * @dev, such as by generating a gratuitous ARP. This may be used when
1490  * a device wants to inform the rest of the network about some sort of
1491  * reconfiguration such as a failover event or virtual machine
1492  * migration.
1493  */
netdev_notify_peers(struct net_device * dev)1494 void netdev_notify_peers(struct net_device *dev)
1495 {
1496 	rtnl_lock();
1497 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1498 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1499 	rtnl_unlock();
1500 }
1501 EXPORT_SYMBOL(netdev_notify_peers);
1502 
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1503 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1504 {
1505 	const struct net_device_ops *ops = dev->netdev_ops;
1506 	int ret;
1507 
1508 	ASSERT_RTNL();
1509 
1510 	if (!netif_device_present(dev)) {
1511 		/* may be detached because parent is runtime-suspended */
1512 		if (dev->dev.parent)
1513 			pm_runtime_resume(dev->dev.parent);
1514 		if (!netif_device_present(dev))
1515 			return -ENODEV;
1516 	}
1517 
1518 	/* Block netpoll from trying to do any rx path servicing.
1519 	 * If we don't do this there is a chance ndo_poll_controller
1520 	 * or ndo_poll may be running while we open the device
1521 	 */
1522 	netpoll_poll_disable(dev);
1523 
1524 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1525 	ret = notifier_to_errno(ret);
1526 	if (ret)
1527 		return ret;
1528 
1529 	set_bit(__LINK_STATE_START, &dev->state);
1530 
1531 	if (ops->ndo_validate_addr)
1532 		ret = ops->ndo_validate_addr(dev);
1533 
1534 	if (!ret && ops->ndo_open)
1535 		ret = ops->ndo_open(dev);
1536 
1537 	netpoll_poll_enable(dev);
1538 
1539 	if (ret)
1540 		clear_bit(__LINK_STATE_START, &dev->state);
1541 	else {
1542 		dev->flags |= IFF_UP;
1543 		dev_set_rx_mode(dev);
1544 		dev_activate(dev);
1545 		add_device_randomness(dev->dev_addr, dev->addr_len);
1546 	}
1547 
1548 	return ret;
1549 }
1550 
1551 /**
1552  *	dev_open	- prepare an interface for use.
1553  *	@dev: device to open
1554  *	@extack: netlink extended ack
1555  *
1556  *	Takes a device from down to up state. The device's private open
1557  *	function is invoked and then the multicast lists are loaded. Finally
1558  *	the device is moved into the up state and a %NETDEV_UP message is
1559  *	sent to the netdev notifier chain.
1560  *
1561  *	Calling this function on an active interface is a nop. On a failure
1562  *	a negative errno code is returned.
1563  */
dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1564 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1565 {
1566 	int ret;
1567 
1568 	if (dev->flags & IFF_UP)
1569 		return 0;
1570 
1571 	ret = __dev_open(dev, extack);
1572 	if (ret < 0)
1573 		return ret;
1574 
1575 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1576 	call_netdevice_notifiers(NETDEV_UP, dev);
1577 
1578 	return ret;
1579 }
1580 EXPORT_SYMBOL(dev_open);
1581 
__dev_close_many(struct list_head * head)1582 static void __dev_close_many(struct list_head *head)
1583 {
1584 	struct net_device *dev;
1585 
1586 	ASSERT_RTNL();
1587 	might_sleep();
1588 
1589 	list_for_each_entry(dev, head, close_list) {
1590 		/* Temporarily disable netpoll until the interface is down */
1591 		netpoll_poll_disable(dev);
1592 
1593 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1594 
1595 		clear_bit(__LINK_STATE_START, &dev->state);
1596 
1597 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1598 		 * can be even on different cpu. So just clear netif_running().
1599 		 *
1600 		 * dev->stop() will invoke napi_disable() on all of it's
1601 		 * napi_struct instances on this device.
1602 		 */
1603 		smp_mb__after_atomic(); /* Commit netif_running(). */
1604 	}
1605 
1606 	dev_deactivate_many(head);
1607 
1608 	list_for_each_entry(dev, head, close_list) {
1609 		const struct net_device_ops *ops = dev->netdev_ops;
1610 
1611 		/*
1612 		 *	Call the device specific close. This cannot fail.
1613 		 *	Only if device is UP
1614 		 *
1615 		 *	We allow it to be called even after a DETACH hot-plug
1616 		 *	event.
1617 		 */
1618 		if (ops->ndo_stop)
1619 			ops->ndo_stop(dev);
1620 
1621 		dev->flags &= ~IFF_UP;
1622 		netpoll_poll_enable(dev);
1623 	}
1624 }
1625 
__dev_close(struct net_device * dev)1626 static void __dev_close(struct net_device *dev)
1627 {
1628 	LIST_HEAD(single);
1629 
1630 	list_add(&dev->close_list, &single);
1631 	__dev_close_many(&single);
1632 	list_del(&single);
1633 }
1634 
dev_close_many(struct list_head * head,bool unlink)1635 void dev_close_many(struct list_head *head, bool unlink)
1636 {
1637 	struct net_device *dev, *tmp;
1638 
1639 	/* Remove the devices that don't need to be closed */
1640 	list_for_each_entry_safe(dev, tmp, head, close_list)
1641 		if (!(dev->flags & IFF_UP))
1642 			list_del_init(&dev->close_list);
1643 
1644 	__dev_close_many(head);
1645 
1646 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1647 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1648 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1649 		if (unlink)
1650 			list_del_init(&dev->close_list);
1651 	}
1652 }
1653 EXPORT_SYMBOL(dev_close_many);
1654 
1655 /**
1656  *	dev_close - shutdown an interface.
1657  *	@dev: device to shutdown
1658  *
1659  *	This function moves an active device into down state. A
1660  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1661  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1662  *	chain.
1663  */
dev_close(struct net_device * dev)1664 void dev_close(struct net_device *dev)
1665 {
1666 	if (dev->flags & IFF_UP) {
1667 		LIST_HEAD(single);
1668 
1669 		list_add(&dev->close_list, &single);
1670 		dev_close_many(&single, true);
1671 		list_del(&single);
1672 	}
1673 }
1674 EXPORT_SYMBOL(dev_close);
1675 
1676 
1677 /**
1678  *	dev_disable_lro - disable Large Receive Offload on a device
1679  *	@dev: device
1680  *
1681  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1682  *	called under RTNL.  This is needed if received packets may be
1683  *	forwarded to another interface.
1684  */
dev_disable_lro(struct net_device * dev)1685 void dev_disable_lro(struct net_device *dev)
1686 {
1687 	struct net_device *lower_dev;
1688 	struct list_head *iter;
1689 
1690 	dev->wanted_features &= ~NETIF_F_LRO;
1691 	netdev_update_features(dev);
1692 
1693 	if (unlikely(dev->features & NETIF_F_LRO))
1694 		netdev_WARN(dev, "failed to disable LRO!\n");
1695 
1696 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1697 		dev_disable_lro(lower_dev);
1698 }
1699 EXPORT_SYMBOL(dev_disable_lro);
1700 
1701 /**
1702  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1703  *	@dev: device
1704  *
1705  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1706  *	called under RTNL.  This is needed if Generic XDP is installed on
1707  *	the device.
1708  */
dev_disable_gro_hw(struct net_device * dev)1709 static void dev_disable_gro_hw(struct net_device *dev)
1710 {
1711 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1712 	netdev_update_features(dev);
1713 
1714 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1715 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1716 }
1717 
netdev_cmd_to_name(enum netdev_cmd cmd)1718 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1719 {
1720 #define N(val) 						\
1721 	case NETDEV_##val:				\
1722 		return "NETDEV_" __stringify(val);
1723 	switch (cmd) {
1724 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1725 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1726 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1727 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1728 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1729 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1730 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1731 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1732 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1733 	N(PRE_CHANGEADDR)
1734 	}
1735 #undef N
1736 	return "UNKNOWN_NETDEV_EVENT";
1737 }
1738 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1739 
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1740 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1741 				   struct net_device *dev)
1742 {
1743 	struct netdev_notifier_info info = {
1744 		.dev = dev,
1745 	};
1746 
1747 	return nb->notifier_call(nb, val, &info);
1748 }
1749 
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1750 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1751 					     struct net_device *dev)
1752 {
1753 	int err;
1754 
1755 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1756 	err = notifier_to_errno(err);
1757 	if (err)
1758 		return err;
1759 
1760 	if (!(dev->flags & IFF_UP))
1761 		return 0;
1762 
1763 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1764 	return 0;
1765 }
1766 
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1767 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1768 						struct net_device *dev)
1769 {
1770 	if (dev->flags & IFF_UP) {
1771 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1772 					dev);
1773 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1774 	}
1775 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1776 }
1777 
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1778 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1779 						 struct net *net)
1780 {
1781 	struct net_device *dev;
1782 	int err;
1783 
1784 	for_each_netdev(net, dev) {
1785 		err = call_netdevice_register_notifiers(nb, dev);
1786 		if (err)
1787 			goto rollback;
1788 	}
1789 	return 0;
1790 
1791 rollback:
1792 	for_each_netdev_continue_reverse(net, dev)
1793 		call_netdevice_unregister_notifiers(nb, dev);
1794 	return err;
1795 }
1796 
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1797 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1798 						    struct net *net)
1799 {
1800 	struct net_device *dev;
1801 
1802 	for_each_netdev(net, dev)
1803 		call_netdevice_unregister_notifiers(nb, dev);
1804 }
1805 
1806 static int dev_boot_phase = 1;
1807 
1808 /**
1809  * register_netdevice_notifier - register a network notifier block
1810  * @nb: notifier
1811  *
1812  * Register a notifier to be called when network device events occur.
1813  * The notifier passed is linked into the kernel structures and must
1814  * not be reused until it has been unregistered. A negative errno code
1815  * is returned on a failure.
1816  *
1817  * When registered all registration and up events are replayed
1818  * to the new notifier to allow device to have a race free
1819  * view of the network device list.
1820  */
1821 
register_netdevice_notifier(struct notifier_block * nb)1822 int register_netdevice_notifier(struct notifier_block *nb)
1823 {
1824 	struct net *net;
1825 	int err;
1826 
1827 	/* Close race with setup_net() and cleanup_net() */
1828 	down_write(&pernet_ops_rwsem);
1829 	rtnl_lock();
1830 	err = raw_notifier_chain_register(&netdev_chain, nb);
1831 	if (err)
1832 		goto unlock;
1833 	if (dev_boot_phase)
1834 		goto unlock;
1835 	for_each_net(net) {
1836 		err = call_netdevice_register_net_notifiers(nb, net);
1837 		if (err)
1838 			goto rollback;
1839 	}
1840 
1841 unlock:
1842 	rtnl_unlock();
1843 	up_write(&pernet_ops_rwsem);
1844 	return err;
1845 
1846 rollback:
1847 	for_each_net_continue_reverse(net)
1848 		call_netdevice_unregister_net_notifiers(nb, net);
1849 
1850 	raw_notifier_chain_unregister(&netdev_chain, nb);
1851 	goto unlock;
1852 }
1853 EXPORT_SYMBOL(register_netdevice_notifier);
1854 
1855 /**
1856  * unregister_netdevice_notifier - unregister a network notifier block
1857  * @nb: notifier
1858  *
1859  * Unregister a notifier previously registered by
1860  * register_netdevice_notifier(). The notifier is unlinked into the
1861  * kernel structures and may then be reused. A negative errno code
1862  * is returned on a failure.
1863  *
1864  * After unregistering unregister and down device events are synthesized
1865  * for all devices on the device list to the removed notifier to remove
1866  * the need for special case cleanup code.
1867  */
1868 
unregister_netdevice_notifier(struct notifier_block * nb)1869 int unregister_netdevice_notifier(struct notifier_block *nb)
1870 {
1871 	struct net *net;
1872 	int err;
1873 
1874 	/* Close race with setup_net() and cleanup_net() */
1875 	down_write(&pernet_ops_rwsem);
1876 	rtnl_lock();
1877 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1878 	if (err)
1879 		goto unlock;
1880 
1881 	for_each_net(net)
1882 		call_netdevice_unregister_net_notifiers(nb, net);
1883 
1884 unlock:
1885 	rtnl_unlock();
1886 	up_write(&pernet_ops_rwsem);
1887 	return err;
1888 }
1889 EXPORT_SYMBOL(unregister_netdevice_notifier);
1890 
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1891 static int __register_netdevice_notifier_net(struct net *net,
1892 					     struct notifier_block *nb,
1893 					     bool ignore_call_fail)
1894 {
1895 	int err;
1896 
1897 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1898 	if (err)
1899 		return err;
1900 	if (dev_boot_phase)
1901 		return 0;
1902 
1903 	err = call_netdevice_register_net_notifiers(nb, net);
1904 	if (err && !ignore_call_fail)
1905 		goto chain_unregister;
1906 
1907 	return 0;
1908 
1909 chain_unregister:
1910 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1911 	return err;
1912 }
1913 
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1914 static int __unregister_netdevice_notifier_net(struct net *net,
1915 					       struct notifier_block *nb)
1916 {
1917 	int err;
1918 
1919 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1920 	if (err)
1921 		return err;
1922 
1923 	call_netdevice_unregister_net_notifiers(nb, net);
1924 	return 0;
1925 }
1926 
1927 /**
1928  * register_netdevice_notifier_net - register a per-netns network notifier block
1929  * @net: network namespace
1930  * @nb: notifier
1931  *
1932  * Register a notifier to be called when network device events occur.
1933  * The notifier passed is linked into the kernel structures and must
1934  * not be reused until it has been unregistered. A negative errno code
1935  * is returned on a failure.
1936  *
1937  * When registered all registration and up events are replayed
1938  * to the new notifier to allow device to have a race free
1939  * view of the network device list.
1940  */
1941 
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1942 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1943 {
1944 	int err;
1945 
1946 	rtnl_lock();
1947 	err = __register_netdevice_notifier_net(net, nb, false);
1948 	rtnl_unlock();
1949 	return err;
1950 }
1951 EXPORT_SYMBOL(register_netdevice_notifier_net);
1952 
1953 /**
1954  * unregister_netdevice_notifier_net - unregister a per-netns
1955  *                                     network notifier block
1956  * @net: network namespace
1957  * @nb: notifier
1958  *
1959  * Unregister a notifier previously registered by
1960  * register_netdevice_notifier(). The notifier is unlinked into the
1961  * kernel structures and may then be reused. A negative errno code
1962  * is returned on a failure.
1963  *
1964  * After unregistering unregister and down device events are synthesized
1965  * for all devices on the device list to the removed notifier to remove
1966  * the need for special case cleanup code.
1967  */
1968 
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1969 int unregister_netdevice_notifier_net(struct net *net,
1970 				      struct notifier_block *nb)
1971 {
1972 	int err;
1973 
1974 	rtnl_lock();
1975 	err = __unregister_netdevice_notifier_net(net, nb);
1976 	rtnl_unlock();
1977 	return err;
1978 }
1979 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1980 
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1981 int register_netdevice_notifier_dev_net(struct net_device *dev,
1982 					struct notifier_block *nb,
1983 					struct netdev_net_notifier *nn)
1984 {
1985 	int err;
1986 
1987 	rtnl_lock();
1988 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1989 	if (!err) {
1990 		nn->nb = nb;
1991 		list_add(&nn->list, &dev->net_notifier_list);
1992 	}
1993 	rtnl_unlock();
1994 	return err;
1995 }
1996 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1997 
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1998 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1999 					  struct notifier_block *nb,
2000 					  struct netdev_net_notifier *nn)
2001 {
2002 	int err;
2003 
2004 	rtnl_lock();
2005 	list_del(&nn->list);
2006 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2007 	rtnl_unlock();
2008 	return err;
2009 }
2010 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2011 
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2012 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2013 					     struct net *net)
2014 {
2015 	struct netdev_net_notifier *nn;
2016 
2017 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
2018 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2019 		__register_netdevice_notifier_net(net, nn->nb, true);
2020 	}
2021 }
2022 
2023 /**
2024  *	call_netdevice_notifiers_info - call all network notifier blocks
2025  *	@val: value passed unmodified to notifier function
2026  *	@info: notifier information data
2027  *
2028  *	Call all network notifier blocks.  Parameters and return value
2029  *	are as for raw_notifier_call_chain().
2030  */
2031 
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2032 static int call_netdevice_notifiers_info(unsigned long val,
2033 					 struct netdev_notifier_info *info)
2034 {
2035 	struct net *net = dev_net(info->dev);
2036 	int ret;
2037 
2038 	ASSERT_RTNL();
2039 
2040 	/* Run per-netns notifier block chain first, then run the global one.
2041 	 * Hopefully, one day, the global one is going to be removed after
2042 	 * all notifier block registrators get converted to be per-netns.
2043 	 */
2044 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2045 	if (ret & NOTIFY_STOP_MASK)
2046 		return ret;
2047 	return raw_notifier_call_chain(&netdev_chain, val, info);
2048 }
2049 
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2050 static int call_netdevice_notifiers_extack(unsigned long val,
2051 					   struct net_device *dev,
2052 					   struct netlink_ext_ack *extack)
2053 {
2054 	struct netdev_notifier_info info = {
2055 		.dev = dev,
2056 		.extack = extack,
2057 	};
2058 
2059 	return call_netdevice_notifiers_info(val, &info);
2060 }
2061 
2062 /**
2063  *	call_netdevice_notifiers - call all network notifier blocks
2064  *      @val: value passed unmodified to notifier function
2065  *      @dev: net_device pointer passed unmodified to notifier function
2066  *
2067  *	Call all network notifier blocks.  Parameters and return value
2068  *	are as for raw_notifier_call_chain().
2069  */
2070 
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2071 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2072 {
2073 	return call_netdevice_notifiers_extack(val, dev, NULL);
2074 }
2075 EXPORT_SYMBOL(call_netdevice_notifiers);
2076 
2077 /**
2078  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2079  *	@val: value passed unmodified to notifier function
2080  *	@dev: net_device pointer passed unmodified to notifier function
2081  *	@arg: additional u32 argument passed to the notifier function
2082  *
2083  *	Call all network notifier blocks.  Parameters and return value
2084  *	are as for raw_notifier_call_chain().
2085  */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2086 static int call_netdevice_notifiers_mtu(unsigned long val,
2087 					struct net_device *dev, u32 arg)
2088 {
2089 	struct netdev_notifier_info_ext info = {
2090 		.info.dev = dev,
2091 		.ext.mtu = arg,
2092 	};
2093 
2094 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2095 
2096 	return call_netdevice_notifiers_info(val, &info.info);
2097 }
2098 
2099 #ifdef CONFIG_NET_INGRESS
2100 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2101 
net_inc_ingress_queue(void)2102 void net_inc_ingress_queue(void)
2103 {
2104 	static_branch_inc(&ingress_needed_key);
2105 }
2106 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2107 
net_dec_ingress_queue(void)2108 void net_dec_ingress_queue(void)
2109 {
2110 	static_branch_dec(&ingress_needed_key);
2111 }
2112 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2113 #endif
2114 
2115 #ifdef CONFIG_NET_EGRESS
2116 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2117 
net_inc_egress_queue(void)2118 void net_inc_egress_queue(void)
2119 {
2120 	static_branch_inc(&egress_needed_key);
2121 }
2122 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2123 
net_dec_egress_queue(void)2124 void net_dec_egress_queue(void)
2125 {
2126 	static_branch_dec(&egress_needed_key);
2127 }
2128 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2129 #endif
2130 
2131 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2132 #ifdef CONFIG_JUMP_LABEL
2133 static atomic_t netstamp_needed_deferred;
2134 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2135 static void netstamp_clear(struct work_struct *work)
2136 {
2137 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2138 	int wanted;
2139 
2140 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2141 	if (wanted > 0)
2142 		static_branch_enable(&netstamp_needed_key);
2143 	else
2144 		static_branch_disable(&netstamp_needed_key);
2145 }
2146 static DECLARE_WORK(netstamp_work, netstamp_clear);
2147 #endif
2148 
net_enable_timestamp(void)2149 void net_enable_timestamp(void)
2150 {
2151 #ifdef CONFIG_JUMP_LABEL
2152 	int wanted;
2153 
2154 	while (1) {
2155 		wanted = atomic_read(&netstamp_wanted);
2156 		if (wanted <= 0)
2157 			break;
2158 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2159 			return;
2160 	}
2161 	atomic_inc(&netstamp_needed_deferred);
2162 	schedule_work(&netstamp_work);
2163 #else
2164 	static_branch_inc(&netstamp_needed_key);
2165 #endif
2166 }
2167 EXPORT_SYMBOL(net_enable_timestamp);
2168 
net_disable_timestamp(void)2169 void net_disable_timestamp(void)
2170 {
2171 #ifdef CONFIG_JUMP_LABEL
2172 	int wanted;
2173 
2174 	while (1) {
2175 		wanted = atomic_read(&netstamp_wanted);
2176 		if (wanted <= 1)
2177 			break;
2178 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2179 			return;
2180 	}
2181 	atomic_dec(&netstamp_needed_deferred);
2182 	schedule_work(&netstamp_work);
2183 #else
2184 	static_branch_dec(&netstamp_needed_key);
2185 #endif
2186 }
2187 EXPORT_SYMBOL(net_disable_timestamp);
2188 
net_timestamp_set(struct sk_buff * skb)2189 static inline void net_timestamp_set(struct sk_buff *skb)
2190 {
2191 	skb->tstamp = 0;
2192 	if (static_branch_unlikely(&netstamp_needed_key))
2193 		__net_timestamp(skb);
2194 }
2195 
2196 #define net_timestamp_check(COND, SKB)				\
2197 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2198 		if ((COND) && !(SKB)->tstamp)			\
2199 			__net_timestamp(SKB);			\
2200 	}							\
2201 
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2202 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2203 {
2204 	unsigned int len;
2205 
2206 	if (!(dev->flags & IFF_UP))
2207 		return false;
2208 
2209 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2210 	if (skb->len <= len)
2211 		return true;
2212 
2213 	/* if TSO is enabled, we don't care about the length as the packet
2214 	 * could be forwarded without being segmented before
2215 	 */
2216 	if (skb_is_gso(skb))
2217 		return true;
2218 
2219 	return false;
2220 }
2221 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2222 
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2223 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2224 {
2225 	int ret = ____dev_forward_skb(dev, skb);
2226 
2227 	if (likely(!ret)) {
2228 		skb->protocol = eth_type_trans(skb, dev);
2229 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2230 	}
2231 
2232 	return ret;
2233 }
2234 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2235 
2236 /**
2237  * dev_forward_skb - loopback an skb to another netif
2238  *
2239  * @dev: destination network device
2240  * @skb: buffer to forward
2241  *
2242  * return values:
2243  *	NET_RX_SUCCESS	(no congestion)
2244  *	NET_RX_DROP     (packet was dropped, but freed)
2245  *
2246  * dev_forward_skb can be used for injecting an skb from the
2247  * start_xmit function of one device into the receive queue
2248  * of another device.
2249  *
2250  * The receiving device may be in another namespace, so
2251  * we have to clear all information in the skb that could
2252  * impact namespace isolation.
2253  */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2254 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2255 {
2256 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2257 }
2258 EXPORT_SYMBOL_GPL(dev_forward_skb);
2259 
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2260 static inline int deliver_skb(struct sk_buff *skb,
2261 			      struct packet_type *pt_prev,
2262 			      struct net_device *orig_dev)
2263 {
2264 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2265 		return -ENOMEM;
2266 	refcount_inc(&skb->users);
2267 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2268 }
2269 
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2270 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2271 					  struct packet_type **pt,
2272 					  struct net_device *orig_dev,
2273 					  __be16 type,
2274 					  struct list_head *ptype_list)
2275 {
2276 	struct packet_type *ptype, *pt_prev = *pt;
2277 
2278 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2279 		if (ptype->type != type)
2280 			continue;
2281 		if (pt_prev)
2282 			deliver_skb(skb, pt_prev, orig_dev);
2283 		pt_prev = ptype;
2284 	}
2285 	*pt = pt_prev;
2286 }
2287 
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2288 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2289 {
2290 	if (!ptype->af_packet_priv || !skb->sk)
2291 		return false;
2292 
2293 	if (ptype->id_match)
2294 		return ptype->id_match(ptype, skb->sk);
2295 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2296 		return true;
2297 
2298 	return false;
2299 }
2300 
2301 /**
2302  * dev_nit_active - return true if any network interface taps are in use
2303  *
2304  * @dev: network device to check for the presence of taps
2305  */
dev_nit_active(struct net_device * dev)2306 bool dev_nit_active(struct net_device *dev)
2307 {
2308 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2309 }
2310 EXPORT_SYMBOL_GPL(dev_nit_active);
2311 
2312 /*
2313  *	Support routine. Sends outgoing frames to any network
2314  *	taps currently in use.
2315  */
2316 
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2317 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2318 {
2319 	struct packet_type *ptype;
2320 	struct sk_buff *skb2 = NULL;
2321 	struct packet_type *pt_prev = NULL;
2322 	struct list_head *ptype_list = &ptype_all;
2323 
2324 	rcu_read_lock();
2325 again:
2326 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2327 		if (READ_ONCE(ptype->ignore_outgoing))
2328 			continue;
2329 
2330 		/* Never send packets back to the socket
2331 		 * they originated from - MvS (miquels@drinkel.ow.org)
2332 		 */
2333 		if (skb_loop_sk(ptype, skb))
2334 			continue;
2335 
2336 		if (pt_prev) {
2337 			deliver_skb(skb2, pt_prev, skb->dev);
2338 			pt_prev = ptype;
2339 			continue;
2340 		}
2341 
2342 		/* need to clone skb, done only once */
2343 		skb2 = skb_clone(skb, GFP_ATOMIC);
2344 		if (!skb2)
2345 			goto out_unlock;
2346 
2347 		net_timestamp_set(skb2);
2348 
2349 		/* skb->nh should be correctly
2350 		 * set by sender, so that the second statement is
2351 		 * just protection against buggy protocols.
2352 		 */
2353 		skb_reset_mac_header(skb2);
2354 
2355 		if (skb_network_header(skb2) < skb2->data ||
2356 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2357 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2358 					     ntohs(skb2->protocol),
2359 					     dev->name);
2360 			skb_reset_network_header(skb2);
2361 		}
2362 
2363 		skb2->transport_header = skb2->network_header;
2364 		skb2->pkt_type = PACKET_OUTGOING;
2365 		pt_prev = ptype;
2366 	}
2367 
2368 	if (ptype_list == &ptype_all) {
2369 		ptype_list = &dev->ptype_all;
2370 		goto again;
2371 	}
2372 out_unlock:
2373 	if (pt_prev) {
2374 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2375 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2376 		else
2377 			kfree_skb(skb2);
2378 	}
2379 	rcu_read_unlock();
2380 }
2381 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2382 
2383 /**
2384  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2385  * @dev: Network device
2386  * @txq: number of queues available
2387  *
2388  * If real_num_tx_queues is changed the tc mappings may no longer be
2389  * valid. To resolve this verify the tc mapping remains valid and if
2390  * not NULL the mapping. With no priorities mapping to this
2391  * offset/count pair it will no longer be used. In the worst case TC0
2392  * is invalid nothing can be done so disable priority mappings. If is
2393  * expected that drivers will fix this mapping if they can before
2394  * calling netif_set_real_num_tx_queues.
2395  */
netif_setup_tc(struct net_device * dev,unsigned int txq)2396 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2397 {
2398 	int i;
2399 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2400 
2401 	/* If TC0 is invalidated disable TC mapping */
2402 	if (tc->offset + tc->count > txq) {
2403 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2404 		dev->num_tc = 0;
2405 		return;
2406 	}
2407 
2408 	/* Invalidated prio to tc mappings set to TC0 */
2409 	for (i = 1; i < TC_BITMASK + 1; i++) {
2410 		int q = netdev_get_prio_tc_map(dev, i);
2411 
2412 		tc = &dev->tc_to_txq[q];
2413 		if (tc->offset + tc->count > txq) {
2414 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2415 				i, q);
2416 			netdev_set_prio_tc_map(dev, i, 0);
2417 		}
2418 	}
2419 }
2420 
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2421 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2422 {
2423 	if (dev->num_tc) {
2424 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2425 		int i;
2426 
2427 		/* walk through the TCs and see if it falls into any of them */
2428 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2429 			if ((txq - tc->offset) < tc->count)
2430 				return i;
2431 		}
2432 
2433 		/* didn't find it, just return -1 to indicate no match */
2434 		return -1;
2435 	}
2436 
2437 	return 0;
2438 }
2439 EXPORT_SYMBOL(netdev_txq_to_tc);
2440 
2441 #ifdef CONFIG_XPS
2442 struct static_key xps_needed __read_mostly;
2443 EXPORT_SYMBOL(xps_needed);
2444 struct static_key xps_rxqs_needed __read_mostly;
2445 EXPORT_SYMBOL(xps_rxqs_needed);
2446 static DEFINE_MUTEX(xps_map_mutex);
2447 #define xmap_dereference(P)		\
2448 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2449 
remove_xps_queue(struct xps_dev_maps * dev_maps,int tci,u16 index)2450 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2451 			     int tci, u16 index)
2452 {
2453 	struct xps_map *map = NULL;
2454 	int pos;
2455 
2456 	if (dev_maps)
2457 		map = xmap_dereference(dev_maps->attr_map[tci]);
2458 	if (!map)
2459 		return false;
2460 
2461 	for (pos = map->len; pos--;) {
2462 		if (map->queues[pos] != index)
2463 			continue;
2464 
2465 		if (map->len > 1) {
2466 			map->queues[pos] = map->queues[--map->len];
2467 			break;
2468 		}
2469 
2470 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2471 		kfree_rcu(map, rcu);
2472 		return false;
2473 	}
2474 
2475 	return true;
2476 }
2477 
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2478 static bool remove_xps_queue_cpu(struct net_device *dev,
2479 				 struct xps_dev_maps *dev_maps,
2480 				 int cpu, u16 offset, u16 count)
2481 {
2482 	int num_tc = dev->num_tc ? : 1;
2483 	bool active = false;
2484 	int tci;
2485 
2486 	for (tci = cpu * num_tc; num_tc--; tci++) {
2487 		int i, j;
2488 
2489 		for (i = count, j = offset; i--; j++) {
2490 			if (!remove_xps_queue(dev_maps, tci, j))
2491 				break;
2492 		}
2493 
2494 		active |= i < 0;
2495 	}
2496 
2497 	return active;
2498 }
2499 
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,bool is_rxqs_map)2500 static void reset_xps_maps(struct net_device *dev,
2501 			   struct xps_dev_maps *dev_maps,
2502 			   bool is_rxqs_map)
2503 {
2504 	if (is_rxqs_map) {
2505 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2506 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2507 	} else {
2508 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2509 	}
2510 	static_key_slow_dec_cpuslocked(&xps_needed);
2511 	kfree_rcu(dev_maps, rcu);
2512 }
2513 
clean_xps_maps(struct net_device * dev,const unsigned long * mask,struct xps_dev_maps * dev_maps,unsigned int nr_ids,u16 offset,u16 count,bool is_rxqs_map)2514 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2515 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2516 			   u16 offset, u16 count, bool is_rxqs_map)
2517 {
2518 	bool active = false;
2519 	int i, j;
2520 
2521 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2522 	     j < nr_ids;)
2523 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2524 					       count);
2525 	if (!active)
2526 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2527 
2528 	if (!is_rxqs_map) {
2529 		for (i = offset + (count - 1); count--; i--) {
2530 			netdev_queue_numa_node_write(
2531 				netdev_get_tx_queue(dev, i),
2532 				NUMA_NO_NODE);
2533 		}
2534 	}
2535 }
2536 
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2537 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2538 				   u16 count)
2539 {
2540 	const unsigned long *possible_mask = NULL;
2541 	struct xps_dev_maps *dev_maps;
2542 	unsigned int nr_ids;
2543 
2544 	if (!static_key_false(&xps_needed))
2545 		return;
2546 
2547 	cpus_read_lock();
2548 	mutex_lock(&xps_map_mutex);
2549 
2550 	if (static_key_false(&xps_rxqs_needed)) {
2551 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2552 		if (dev_maps) {
2553 			nr_ids = dev->num_rx_queues;
2554 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2555 				       offset, count, true);
2556 		}
2557 	}
2558 
2559 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2560 	if (!dev_maps)
2561 		goto out_no_maps;
2562 
2563 	if (num_possible_cpus() > 1)
2564 		possible_mask = cpumask_bits(cpu_possible_mask);
2565 	nr_ids = nr_cpu_ids;
2566 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2567 		       false);
2568 
2569 out_no_maps:
2570 	mutex_unlock(&xps_map_mutex);
2571 	cpus_read_unlock();
2572 }
2573 
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2574 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2575 {
2576 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2577 }
2578 
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2579 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2580 				      u16 index, bool is_rxqs_map)
2581 {
2582 	struct xps_map *new_map;
2583 	int alloc_len = XPS_MIN_MAP_ALLOC;
2584 	int i, pos;
2585 
2586 	for (pos = 0; map && pos < map->len; pos++) {
2587 		if (map->queues[pos] != index)
2588 			continue;
2589 		return map;
2590 	}
2591 
2592 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2593 	if (map) {
2594 		if (pos < map->alloc_len)
2595 			return map;
2596 
2597 		alloc_len = map->alloc_len * 2;
2598 	}
2599 
2600 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2601 	 *  map
2602 	 */
2603 	if (is_rxqs_map)
2604 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2605 	else
2606 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2607 				       cpu_to_node(attr_index));
2608 	if (!new_map)
2609 		return NULL;
2610 
2611 	for (i = 0; i < pos; i++)
2612 		new_map->queues[i] = map->queues[i];
2613 	new_map->alloc_len = alloc_len;
2614 	new_map->len = pos;
2615 
2616 	return new_map;
2617 }
2618 
2619 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)2620 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2621 			  u16 index, bool is_rxqs_map)
2622 {
2623 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2624 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2625 	int i, j, tci, numa_node_id = -2;
2626 	int maps_sz, num_tc = 1, tc = 0;
2627 	struct xps_map *map, *new_map;
2628 	bool active = false;
2629 	unsigned int nr_ids;
2630 
2631 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2632 
2633 	if (dev->num_tc) {
2634 		/* Do not allow XPS on subordinate device directly */
2635 		num_tc = dev->num_tc;
2636 		if (num_tc < 0)
2637 			return -EINVAL;
2638 
2639 		/* If queue belongs to subordinate dev use its map */
2640 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2641 
2642 		tc = netdev_txq_to_tc(dev, index);
2643 		if (tc < 0)
2644 			return -EINVAL;
2645 	}
2646 
2647 	mutex_lock(&xps_map_mutex);
2648 	if (is_rxqs_map) {
2649 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2650 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2651 		nr_ids = dev->num_rx_queues;
2652 	} else {
2653 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2654 		if (num_possible_cpus() > 1) {
2655 			online_mask = cpumask_bits(cpu_online_mask);
2656 			possible_mask = cpumask_bits(cpu_possible_mask);
2657 		}
2658 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2659 		nr_ids = nr_cpu_ids;
2660 	}
2661 
2662 	if (maps_sz < L1_CACHE_BYTES)
2663 		maps_sz = L1_CACHE_BYTES;
2664 
2665 	/* allocate memory for queue storage */
2666 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2667 	     j < nr_ids;) {
2668 		if (!new_dev_maps)
2669 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2670 		if (!new_dev_maps) {
2671 			mutex_unlock(&xps_map_mutex);
2672 			return -ENOMEM;
2673 		}
2674 
2675 		tci = j * num_tc + tc;
2676 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2677 				 NULL;
2678 
2679 		map = expand_xps_map(map, j, index, is_rxqs_map);
2680 		if (!map)
2681 			goto error;
2682 
2683 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2684 	}
2685 
2686 	if (!new_dev_maps)
2687 		goto out_no_new_maps;
2688 
2689 	if (!dev_maps) {
2690 		/* Increment static keys at most once per type */
2691 		static_key_slow_inc_cpuslocked(&xps_needed);
2692 		if (is_rxqs_map)
2693 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2694 	}
2695 
2696 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2697 	     j < nr_ids;) {
2698 		/* copy maps belonging to foreign traffic classes */
2699 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2700 			/* fill in the new device map from the old device map */
2701 			map = xmap_dereference(dev_maps->attr_map[tci]);
2702 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2703 		}
2704 
2705 		/* We need to explicitly update tci as prevous loop
2706 		 * could break out early if dev_maps is NULL.
2707 		 */
2708 		tci = j * num_tc + tc;
2709 
2710 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2711 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2712 			/* add tx-queue to CPU/rx-queue maps */
2713 			int pos = 0;
2714 
2715 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2716 			while ((pos < map->len) && (map->queues[pos] != index))
2717 				pos++;
2718 
2719 			if (pos == map->len)
2720 				map->queues[map->len++] = index;
2721 #ifdef CONFIG_NUMA
2722 			if (!is_rxqs_map) {
2723 				if (numa_node_id == -2)
2724 					numa_node_id = cpu_to_node(j);
2725 				else if (numa_node_id != cpu_to_node(j))
2726 					numa_node_id = -1;
2727 			}
2728 #endif
2729 		} else if (dev_maps) {
2730 			/* fill in the new device map from the old device map */
2731 			map = xmap_dereference(dev_maps->attr_map[tci]);
2732 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2733 		}
2734 
2735 		/* copy maps belonging to foreign traffic classes */
2736 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2737 			/* fill in the new device map from the old device map */
2738 			map = xmap_dereference(dev_maps->attr_map[tci]);
2739 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2740 		}
2741 	}
2742 
2743 	if (is_rxqs_map)
2744 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2745 	else
2746 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2747 
2748 	/* Cleanup old maps */
2749 	if (!dev_maps)
2750 		goto out_no_old_maps;
2751 
2752 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2753 	     j < nr_ids;) {
2754 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2755 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2756 			map = xmap_dereference(dev_maps->attr_map[tci]);
2757 			if (map && map != new_map)
2758 				kfree_rcu(map, rcu);
2759 		}
2760 	}
2761 
2762 	kfree_rcu(dev_maps, rcu);
2763 
2764 out_no_old_maps:
2765 	dev_maps = new_dev_maps;
2766 	active = true;
2767 
2768 out_no_new_maps:
2769 	if (!is_rxqs_map) {
2770 		/* update Tx queue numa node */
2771 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2772 					     (numa_node_id >= 0) ?
2773 					     numa_node_id : NUMA_NO_NODE);
2774 	}
2775 
2776 	if (!dev_maps)
2777 		goto out_no_maps;
2778 
2779 	/* removes tx-queue from unused CPUs/rx-queues */
2780 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2781 	     j < nr_ids;) {
2782 		for (i = tc, tci = j * num_tc; i--; tci++)
2783 			active |= remove_xps_queue(dev_maps, tci, index);
2784 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2785 		    !netif_attr_test_online(j, online_mask, nr_ids))
2786 			active |= remove_xps_queue(dev_maps, tci, index);
2787 		for (i = num_tc - tc, tci++; --i; tci++)
2788 			active |= remove_xps_queue(dev_maps, tci, index);
2789 	}
2790 
2791 	/* free map if not active */
2792 	if (!active)
2793 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2794 
2795 out_no_maps:
2796 	mutex_unlock(&xps_map_mutex);
2797 
2798 	return 0;
2799 error:
2800 	/* remove any maps that we added */
2801 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2802 	     j < nr_ids;) {
2803 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2804 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2805 			map = dev_maps ?
2806 			      xmap_dereference(dev_maps->attr_map[tci]) :
2807 			      NULL;
2808 			if (new_map && new_map != map)
2809 				kfree(new_map);
2810 		}
2811 	}
2812 
2813 	mutex_unlock(&xps_map_mutex);
2814 
2815 	kfree(new_dev_maps);
2816 	return -ENOMEM;
2817 }
2818 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2819 
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2820 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2821 			u16 index)
2822 {
2823 	int ret;
2824 
2825 	cpus_read_lock();
2826 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2827 	cpus_read_unlock();
2828 
2829 	return ret;
2830 }
2831 EXPORT_SYMBOL(netif_set_xps_queue);
2832 
2833 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2834 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2835 {
2836 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2837 
2838 	/* Unbind any subordinate channels */
2839 	while (txq-- != &dev->_tx[0]) {
2840 		if (txq->sb_dev)
2841 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2842 	}
2843 }
2844 
netdev_reset_tc(struct net_device * dev)2845 void netdev_reset_tc(struct net_device *dev)
2846 {
2847 #ifdef CONFIG_XPS
2848 	netif_reset_xps_queues_gt(dev, 0);
2849 #endif
2850 	netdev_unbind_all_sb_channels(dev);
2851 
2852 	/* Reset TC configuration of device */
2853 	dev->num_tc = 0;
2854 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2855 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2856 }
2857 EXPORT_SYMBOL(netdev_reset_tc);
2858 
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2859 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2860 {
2861 	if (tc >= dev->num_tc)
2862 		return -EINVAL;
2863 
2864 #ifdef CONFIG_XPS
2865 	netif_reset_xps_queues(dev, offset, count);
2866 #endif
2867 	dev->tc_to_txq[tc].count = count;
2868 	dev->tc_to_txq[tc].offset = offset;
2869 	return 0;
2870 }
2871 EXPORT_SYMBOL(netdev_set_tc_queue);
2872 
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2873 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2874 {
2875 	if (num_tc > TC_MAX_QUEUE)
2876 		return -EINVAL;
2877 
2878 #ifdef CONFIG_XPS
2879 	netif_reset_xps_queues_gt(dev, 0);
2880 #endif
2881 	netdev_unbind_all_sb_channels(dev);
2882 
2883 	dev->num_tc = num_tc;
2884 	return 0;
2885 }
2886 EXPORT_SYMBOL(netdev_set_num_tc);
2887 
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2888 void netdev_unbind_sb_channel(struct net_device *dev,
2889 			      struct net_device *sb_dev)
2890 {
2891 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2892 
2893 #ifdef CONFIG_XPS
2894 	netif_reset_xps_queues_gt(sb_dev, 0);
2895 #endif
2896 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2897 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2898 
2899 	while (txq-- != &dev->_tx[0]) {
2900 		if (txq->sb_dev == sb_dev)
2901 			txq->sb_dev = NULL;
2902 	}
2903 }
2904 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2905 
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2906 int netdev_bind_sb_channel_queue(struct net_device *dev,
2907 				 struct net_device *sb_dev,
2908 				 u8 tc, u16 count, u16 offset)
2909 {
2910 	/* Make certain the sb_dev and dev are already configured */
2911 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2912 		return -EINVAL;
2913 
2914 	/* We cannot hand out queues we don't have */
2915 	if ((offset + count) > dev->real_num_tx_queues)
2916 		return -EINVAL;
2917 
2918 	/* Record the mapping */
2919 	sb_dev->tc_to_txq[tc].count = count;
2920 	sb_dev->tc_to_txq[tc].offset = offset;
2921 
2922 	/* Provide a way for Tx queue to find the tc_to_txq map or
2923 	 * XPS map for itself.
2924 	 */
2925 	while (count--)
2926 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2927 
2928 	return 0;
2929 }
2930 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2931 
netdev_set_sb_channel(struct net_device * dev,u16 channel)2932 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2933 {
2934 	/* Do not use a multiqueue device to represent a subordinate channel */
2935 	if (netif_is_multiqueue(dev))
2936 		return -ENODEV;
2937 
2938 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2939 	 * Channel 0 is meant to be "native" mode and used only to represent
2940 	 * the main root device. We allow writing 0 to reset the device back
2941 	 * to normal mode after being used as a subordinate channel.
2942 	 */
2943 	if (channel > S16_MAX)
2944 		return -EINVAL;
2945 
2946 	dev->num_tc = -channel;
2947 
2948 	return 0;
2949 }
2950 EXPORT_SYMBOL(netdev_set_sb_channel);
2951 
2952 /*
2953  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2954  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2955  */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2956 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2957 {
2958 	bool disabling;
2959 	int rc;
2960 
2961 	disabling = txq < dev->real_num_tx_queues;
2962 
2963 	if (txq < 1 || txq > dev->num_tx_queues)
2964 		return -EINVAL;
2965 
2966 	if (dev->reg_state == NETREG_REGISTERED ||
2967 	    dev->reg_state == NETREG_UNREGISTERING) {
2968 		ASSERT_RTNL();
2969 
2970 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2971 						  txq);
2972 		if (rc)
2973 			return rc;
2974 
2975 		if (dev->num_tc)
2976 			netif_setup_tc(dev, txq);
2977 
2978 		dev_qdisc_change_real_num_tx(dev, txq);
2979 
2980 		dev->real_num_tx_queues = txq;
2981 
2982 		if (disabling) {
2983 			synchronize_net();
2984 			qdisc_reset_all_tx_gt(dev, txq);
2985 #ifdef CONFIG_XPS
2986 			netif_reset_xps_queues_gt(dev, txq);
2987 #endif
2988 		}
2989 	} else {
2990 		dev->real_num_tx_queues = txq;
2991 	}
2992 
2993 	return 0;
2994 }
2995 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2996 
2997 #ifdef CONFIG_SYSFS
2998 /**
2999  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3000  *	@dev: Network device
3001  *	@rxq: Actual number of RX queues
3002  *
3003  *	This must be called either with the rtnl_lock held or before
3004  *	registration of the net device.  Returns 0 on success, or a
3005  *	negative error code.  If called before registration, it always
3006  *	succeeds.
3007  */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3008 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3009 {
3010 	int rc;
3011 
3012 	if (rxq < 1 || rxq > dev->num_rx_queues)
3013 		return -EINVAL;
3014 
3015 	if (dev->reg_state == NETREG_REGISTERED) {
3016 		ASSERT_RTNL();
3017 
3018 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3019 						  rxq);
3020 		if (rc)
3021 			return rc;
3022 	}
3023 
3024 	dev->real_num_rx_queues = rxq;
3025 	return 0;
3026 }
3027 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3028 #endif
3029 
3030 /**
3031  * netif_get_num_default_rss_queues - default number of RSS queues
3032  *
3033  * This routine should set an upper limit on the number of RSS queues
3034  * used by default by multiqueue devices.
3035  */
netif_get_num_default_rss_queues(void)3036 int netif_get_num_default_rss_queues(void)
3037 {
3038 	return is_kdump_kernel() ?
3039 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3040 }
3041 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3042 
__netif_reschedule(struct Qdisc * q)3043 static void __netif_reschedule(struct Qdisc *q)
3044 {
3045 	struct softnet_data *sd;
3046 	unsigned long flags;
3047 
3048 	local_irq_save(flags);
3049 	sd = this_cpu_ptr(&softnet_data);
3050 	q->next_sched = NULL;
3051 	*sd->output_queue_tailp = q;
3052 	sd->output_queue_tailp = &q->next_sched;
3053 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3054 	local_irq_restore(flags);
3055 }
3056 
__netif_schedule(struct Qdisc * q)3057 void __netif_schedule(struct Qdisc *q)
3058 {
3059 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3060 		__netif_reschedule(q);
3061 }
3062 EXPORT_SYMBOL(__netif_schedule);
3063 
3064 struct dev_kfree_skb_cb {
3065 	enum skb_free_reason reason;
3066 };
3067 
get_kfree_skb_cb(const struct sk_buff * skb)3068 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3069 {
3070 	return (struct dev_kfree_skb_cb *)skb->cb;
3071 }
3072 
netif_schedule_queue(struct netdev_queue * txq)3073 void netif_schedule_queue(struct netdev_queue *txq)
3074 {
3075 	rcu_read_lock();
3076 	if (!netif_xmit_stopped(txq)) {
3077 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3078 
3079 		__netif_schedule(q);
3080 	}
3081 	rcu_read_unlock();
3082 }
3083 EXPORT_SYMBOL(netif_schedule_queue);
3084 
netif_tx_wake_queue(struct netdev_queue * dev_queue)3085 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3086 {
3087 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3088 		struct Qdisc *q;
3089 
3090 		rcu_read_lock();
3091 		q = rcu_dereference(dev_queue->qdisc);
3092 		__netif_schedule(q);
3093 		rcu_read_unlock();
3094 	}
3095 }
3096 EXPORT_SYMBOL(netif_tx_wake_queue);
3097 
__dev_kfree_skb_irq(struct sk_buff * skb,enum skb_free_reason reason)3098 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3099 {
3100 	unsigned long flags;
3101 
3102 	if (unlikely(!skb))
3103 		return;
3104 
3105 	if (likely(refcount_read(&skb->users) == 1)) {
3106 		smp_rmb();
3107 		refcount_set(&skb->users, 0);
3108 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3109 		return;
3110 	}
3111 	get_kfree_skb_cb(skb)->reason = reason;
3112 	local_irq_save(flags);
3113 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3114 	__this_cpu_write(softnet_data.completion_queue, skb);
3115 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3116 	local_irq_restore(flags);
3117 }
3118 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3119 
__dev_kfree_skb_any(struct sk_buff * skb,enum skb_free_reason reason)3120 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3121 {
3122 	if (in_irq() || irqs_disabled())
3123 		__dev_kfree_skb_irq(skb, reason);
3124 	else if (unlikely(reason == SKB_REASON_DROPPED))
3125 		kfree_skb(skb);
3126 	else
3127 		consume_skb(skb);
3128 }
3129 EXPORT_SYMBOL(__dev_kfree_skb_any);
3130 
3131 
3132 /**
3133  * netif_device_detach - mark device as removed
3134  * @dev: network device
3135  *
3136  * Mark device as removed from system and therefore no longer available.
3137  */
netif_device_detach(struct net_device * dev)3138 void netif_device_detach(struct net_device *dev)
3139 {
3140 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3141 	    netif_running(dev)) {
3142 		netif_tx_stop_all_queues(dev);
3143 	}
3144 }
3145 EXPORT_SYMBOL(netif_device_detach);
3146 
3147 /**
3148  * netif_device_attach - mark device as attached
3149  * @dev: network device
3150  *
3151  * Mark device as attached from system and restart if needed.
3152  */
netif_device_attach(struct net_device * dev)3153 void netif_device_attach(struct net_device *dev)
3154 {
3155 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3156 	    netif_running(dev)) {
3157 		netif_tx_wake_all_queues(dev);
3158 		__netdev_watchdog_up(dev);
3159 	}
3160 }
3161 EXPORT_SYMBOL(netif_device_attach);
3162 
3163 /*
3164  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3165  * to be used as a distribution range.
3166  */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3167 static u16 skb_tx_hash(const struct net_device *dev,
3168 		       const struct net_device *sb_dev,
3169 		       struct sk_buff *skb)
3170 {
3171 	u32 hash;
3172 	u16 qoffset = 0;
3173 	u16 qcount = dev->real_num_tx_queues;
3174 
3175 	if (dev->num_tc) {
3176 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3177 
3178 		qoffset = sb_dev->tc_to_txq[tc].offset;
3179 		qcount = sb_dev->tc_to_txq[tc].count;
3180 		if (unlikely(!qcount)) {
3181 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3182 					     sb_dev->name, qoffset, tc);
3183 			qoffset = 0;
3184 			qcount = dev->real_num_tx_queues;
3185 		}
3186 	}
3187 
3188 	if (skb_rx_queue_recorded(skb)) {
3189 		hash = skb_get_rx_queue(skb);
3190 		if (hash >= qoffset)
3191 			hash -= qoffset;
3192 		while (unlikely(hash >= qcount))
3193 			hash -= qcount;
3194 		return hash + qoffset;
3195 	}
3196 
3197 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3198 }
3199 
skb_warn_bad_offload(const struct sk_buff * skb)3200 static void skb_warn_bad_offload(const struct sk_buff *skb)
3201 {
3202 	static const netdev_features_t null_features;
3203 	struct net_device *dev = skb->dev;
3204 	const char *name = "";
3205 
3206 	if (!net_ratelimit())
3207 		return;
3208 
3209 	if (dev) {
3210 		if (dev->dev.parent)
3211 			name = dev_driver_string(dev->dev.parent);
3212 		else
3213 			name = netdev_name(dev);
3214 	}
3215 	skb_dump(KERN_WARNING, skb, false);
3216 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3217 	     name, dev ? &dev->features : &null_features,
3218 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3219 }
3220 
3221 /*
3222  * Invalidate hardware checksum when packet is to be mangled, and
3223  * complete checksum manually on outgoing path.
3224  */
skb_checksum_help(struct sk_buff * skb)3225 int skb_checksum_help(struct sk_buff *skb)
3226 {
3227 	__wsum csum;
3228 	int ret = 0, offset;
3229 
3230 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3231 		goto out_set_summed;
3232 
3233 	if (unlikely(skb_shinfo(skb)->gso_size)) {
3234 		skb_warn_bad_offload(skb);
3235 		return -EINVAL;
3236 	}
3237 
3238 	/* Before computing a checksum, we should make sure no frag could
3239 	 * be modified by an external entity : checksum could be wrong.
3240 	 */
3241 	if (skb_has_shared_frag(skb)) {
3242 		ret = __skb_linearize(skb);
3243 		if (ret)
3244 			goto out;
3245 	}
3246 
3247 	offset = skb_checksum_start_offset(skb);
3248 	ret = -EINVAL;
3249 	if (WARN_ON_ONCE(offset >= skb_headlen(skb)))
3250 		goto out;
3251 
3252 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3253 
3254 	offset += skb->csum_offset;
3255 	if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb)))
3256 		goto out;
3257 
3258 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3259 	if (ret)
3260 		goto out;
3261 
3262 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3263 out_set_summed:
3264 	skb->ip_summed = CHECKSUM_NONE;
3265 out:
3266 	return ret;
3267 }
3268 EXPORT_SYMBOL(skb_checksum_help);
3269 
skb_crc32c_csum_help(struct sk_buff * skb)3270 int skb_crc32c_csum_help(struct sk_buff *skb)
3271 {
3272 	__le32 crc32c_csum;
3273 	int ret = 0, offset, start;
3274 
3275 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3276 		goto out;
3277 
3278 	if (unlikely(skb_is_gso(skb)))
3279 		goto out;
3280 
3281 	/* Before computing a checksum, we should make sure no frag could
3282 	 * be modified by an external entity : checksum could be wrong.
3283 	 */
3284 	if (unlikely(skb_has_shared_frag(skb))) {
3285 		ret = __skb_linearize(skb);
3286 		if (ret)
3287 			goto out;
3288 	}
3289 	start = skb_checksum_start_offset(skb);
3290 	offset = start + offsetof(struct sctphdr, checksum);
3291 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3292 		ret = -EINVAL;
3293 		goto out;
3294 	}
3295 
3296 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3297 	if (ret)
3298 		goto out;
3299 
3300 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3301 						  skb->len - start, ~(__u32)0,
3302 						  crc32c_csum_stub));
3303 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3304 	skb->ip_summed = CHECKSUM_NONE;
3305 	skb->csum_not_inet = 0;
3306 out:
3307 	return ret;
3308 }
3309 
skb_network_protocol(struct sk_buff * skb,int * depth)3310 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3311 {
3312 	__be16 type = skb->protocol;
3313 
3314 	/* Tunnel gso handlers can set protocol to ethernet. */
3315 	if (type == htons(ETH_P_TEB)) {
3316 		struct ethhdr *eth;
3317 
3318 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3319 			return 0;
3320 
3321 		eth = (struct ethhdr *)skb->data;
3322 		type = eth->h_proto;
3323 	}
3324 
3325 	return vlan_get_protocol_and_depth(skb, type, depth);
3326 }
3327 
3328 /**
3329  *	skb_mac_gso_segment - mac layer segmentation handler.
3330  *	@skb: buffer to segment
3331  *	@features: features for the output path (see dev->features)
3332  */
skb_mac_gso_segment(struct sk_buff * skb,netdev_features_t features)3333 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3334 				    netdev_features_t features)
3335 {
3336 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3337 	struct packet_offload *ptype;
3338 	int vlan_depth = skb->mac_len;
3339 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3340 
3341 	if (unlikely(!type))
3342 		return ERR_PTR(-EINVAL);
3343 
3344 	__skb_pull(skb, vlan_depth);
3345 
3346 	rcu_read_lock();
3347 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3348 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3349 			segs = ptype->callbacks.gso_segment(skb, features);
3350 			break;
3351 		}
3352 	}
3353 	rcu_read_unlock();
3354 
3355 	__skb_push(skb, skb->data - skb_mac_header(skb));
3356 
3357 	return segs;
3358 }
3359 EXPORT_SYMBOL(skb_mac_gso_segment);
3360 
3361 
3362 /* openvswitch calls this on rx path, so we need a different check.
3363  */
skb_needs_check(struct sk_buff * skb,bool tx_path)3364 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3365 {
3366 	if (tx_path)
3367 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3368 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3369 
3370 	return skb->ip_summed == CHECKSUM_NONE;
3371 }
3372 
3373 /**
3374  *	__skb_gso_segment - Perform segmentation on skb.
3375  *	@skb: buffer to segment
3376  *	@features: features for the output path (see dev->features)
3377  *	@tx_path: whether it is called in TX path
3378  *
3379  *	This function segments the given skb and returns a list of segments.
3380  *
3381  *	It may return NULL if the skb requires no segmentation.  This is
3382  *	only possible when GSO is used for verifying header integrity.
3383  *
3384  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3385  */
__skb_gso_segment(struct sk_buff * skb,netdev_features_t features,bool tx_path)3386 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3387 				  netdev_features_t features, bool tx_path)
3388 {
3389 	struct sk_buff *segs;
3390 
3391 	if (unlikely(skb_needs_check(skb, tx_path))) {
3392 		int err;
3393 
3394 		/* We're going to init ->check field in TCP or UDP header */
3395 		err = skb_cow_head(skb, 0);
3396 		if (err < 0)
3397 			return ERR_PTR(err);
3398 	}
3399 
3400 	/* Only report GSO partial support if it will enable us to
3401 	 * support segmentation on this frame without needing additional
3402 	 * work.
3403 	 */
3404 	if (features & NETIF_F_GSO_PARTIAL) {
3405 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3406 		struct net_device *dev = skb->dev;
3407 
3408 		partial_features |= dev->features & dev->gso_partial_features;
3409 		if (!skb_gso_ok(skb, features | partial_features))
3410 			features &= ~NETIF_F_GSO_PARTIAL;
3411 	}
3412 
3413 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3414 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3415 
3416 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3417 	SKB_GSO_CB(skb)->encap_level = 0;
3418 
3419 	skb_reset_mac_header(skb);
3420 	skb_reset_mac_len(skb);
3421 
3422 	segs = skb_mac_gso_segment(skb, features);
3423 
3424 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3425 		skb_warn_bad_offload(skb);
3426 
3427 	return segs;
3428 }
3429 EXPORT_SYMBOL(__skb_gso_segment);
3430 
3431 /* Take action when hardware reception checksum errors are detected. */
3432 #ifdef CONFIG_BUG
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3433 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3434 {
3435 	if (net_ratelimit()) {
3436 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3437 		skb_dump(KERN_ERR, skb, true);
3438 		dump_stack();
3439 	}
3440 }
3441 EXPORT_SYMBOL(netdev_rx_csum_fault);
3442 #endif
3443 
3444 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3445 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3446 {
3447 #ifdef CONFIG_HIGHMEM
3448 	int i;
3449 
3450 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3451 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3452 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3453 
3454 			if (PageHighMem(skb_frag_page(frag)))
3455 				return 1;
3456 		}
3457 	}
3458 #endif
3459 	return 0;
3460 }
3461 
3462 /* If MPLS offload request, verify we are testing hardware MPLS features
3463  * instead of standard features for the netdev.
3464  */
3465 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3466 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3467 					   netdev_features_t features,
3468 					   __be16 type)
3469 {
3470 	if (eth_p_mpls(type))
3471 		features &= skb->dev->mpls_features;
3472 
3473 	return features;
3474 }
3475 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3476 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3477 					   netdev_features_t features,
3478 					   __be16 type)
3479 {
3480 	return features;
3481 }
3482 #endif
3483 
harmonize_features(struct sk_buff * skb,netdev_features_t features)3484 static netdev_features_t harmonize_features(struct sk_buff *skb,
3485 	netdev_features_t features)
3486 {
3487 	__be16 type;
3488 
3489 	type = skb_network_protocol(skb, NULL);
3490 	features = net_mpls_features(skb, features, type);
3491 
3492 	if (skb->ip_summed != CHECKSUM_NONE &&
3493 	    !can_checksum_protocol(features, type)) {
3494 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3495 	}
3496 	if (illegal_highdma(skb->dev, skb))
3497 		features &= ~NETIF_F_SG;
3498 
3499 	return features;
3500 }
3501 
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3502 netdev_features_t passthru_features_check(struct sk_buff *skb,
3503 					  struct net_device *dev,
3504 					  netdev_features_t features)
3505 {
3506 	return features;
3507 }
3508 EXPORT_SYMBOL(passthru_features_check);
3509 
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3510 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3511 					     struct net_device *dev,
3512 					     netdev_features_t features)
3513 {
3514 	return vlan_features_check(skb, features);
3515 }
3516 
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3517 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3518 					    struct net_device *dev,
3519 					    netdev_features_t features)
3520 {
3521 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3522 
3523 	if (gso_segs > dev->gso_max_segs)
3524 		return features & ~NETIF_F_GSO_MASK;
3525 
3526 	if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3527 		return features & ~NETIF_F_GSO_MASK;
3528 
3529 	if (!skb_shinfo(skb)->gso_type) {
3530 		skb_warn_bad_offload(skb);
3531 		return features & ~NETIF_F_GSO_MASK;
3532 	}
3533 
3534 	/* Support for GSO partial features requires software
3535 	 * intervention before we can actually process the packets
3536 	 * so we need to strip support for any partial features now
3537 	 * and we can pull them back in after we have partially
3538 	 * segmented the frame.
3539 	 */
3540 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3541 		features &= ~dev->gso_partial_features;
3542 
3543 	/* Make sure to clear the IPv4 ID mangling feature if the
3544 	 * IPv4 header has the potential to be fragmented.
3545 	 */
3546 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3547 		struct iphdr *iph = skb->encapsulation ?
3548 				    inner_ip_hdr(skb) : ip_hdr(skb);
3549 
3550 		if (!(iph->frag_off & htons(IP_DF)))
3551 			features &= ~NETIF_F_TSO_MANGLEID;
3552 	}
3553 
3554 	return features;
3555 }
3556 
netif_skb_features(struct sk_buff * skb)3557 netdev_features_t netif_skb_features(struct sk_buff *skb)
3558 {
3559 	struct net_device *dev = skb->dev;
3560 	netdev_features_t features = dev->features;
3561 
3562 	if (skb_is_gso(skb))
3563 		features = gso_features_check(skb, dev, features);
3564 
3565 	/* If encapsulation offload request, verify we are testing
3566 	 * hardware encapsulation features instead of standard
3567 	 * features for the netdev
3568 	 */
3569 	if (skb->encapsulation)
3570 		features &= dev->hw_enc_features;
3571 
3572 	if (skb_vlan_tagged(skb))
3573 		features = netdev_intersect_features(features,
3574 						     dev->vlan_features |
3575 						     NETIF_F_HW_VLAN_CTAG_TX |
3576 						     NETIF_F_HW_VLAN_STAG_TX);
3577 
3578 	if (dev->netdev_ops->ndo_features_check)
3579 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3580 								features);
3581 	else
3582 		features &= dflt_features_check(skb, dev, features);
3583 
3584 	return harmonize_features(skb, features);
3585 }
3586 EXPORT_SYMBOL(netif_skb_features);
3587 
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3588 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3589 		    struct netdev_queue *txq, bool more)
3590 {
3591 	unsigned int len;
3592 	int rc;
3593 
3594 	if (dev_nit_active(dev))
3595 		dev_queue_xmit_nit(skb, dev);
3596 
3597 	len = skb->len;
3598 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3599 	trace_net_dev_start_xmit(skb, dev);
3600 	rc = netdev_start_xmit(skb, dev, txq, more);
3601 	trace_net_dev_xmit(skb, rc, dev, len);
3602 
3603 	return rc;
3604 }
3605 
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3606 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3607 				    struct netdev_queue *txq, int *ret)
3608 {
3609 	struct sk_buff *skb = first;
3610 	int rc = NETDEV_TX_OK;
3611 
3612 	while (skb) {
3613 		struct sk_buff *next = skb->next;
3614 
3615 		skb_mark_not_on_list(skb);
3616 		rc = xmit_one(skb, dev, txq, next != NULL);
3617 		if (unlikely(!dev_xmit_complete(rc))) {
3618 			skb->next = next;
3619 			goto out;
3620 		}
3621 
3622 		skb = next;
3623 		if (netif_tx_queue_stopped(txq) && skb) {
3624 			rc = NETDEV_TX_BUSY;
3625 			break;
3626 		}
3627 	}
3628 
3629 out:
3630 	*ret = rc;
3631 	return skb;
3632 }
3633 
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3634 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3635 					  netdev_features_t features)
3636 {
3637 	if (skb_vlan_tag_present(skb) &&
3638 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3639 		skb = __vlan_hwaccel_push_inside(skb);
3640 	return skb;
3641 }
3642 
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3643 int skb_csum_hwoffload_help(struct sk_buff *skb,
3644 			    const netdev_features_t features)
3645 {
3646 	if (unlikely(skb_csum_is_sctp(skb)))
3647 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3648 			skb_crc32c_csum_help(skb);
3649 
3650 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3651 }
3652 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3653 
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3654 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3655 {
3656 	netdev_features_t features;
3657 
3658 	features = netif_skb_features(skb);
3659 	skb = validate_xmit_vlan(skb, features);
3660 	if (unlikely(!skb))
3661 		goto out_null;
3662 
3663 	skb = sk_validate_xmit_skb(skb, dev);
3664 	if (unlikely(!skb))
3665 		goto out_null;
3666 
3667 	if (netif_needs_gso(skb, features)) {
3668 		struct sk_buff *segs;
3669 
3670 		segs = skb_gso_segment(skb, features);
3671 		if (IS_ERR(segs)) {
3672 			goto out_kfree_skb;
3673 		} else if (segs) {
3674 			consume_skb(skb);
3675 			skb = segs;
3676 		}
3677 	} else {
3678 		if (skb_needs_linearize(skb, features) &&
3679 		    __skb_linearize(skb))
3680 			goto out_kfree_skb;
3681 
3682 		/* If packet is not checksummed and device does not
3683 		 * support checksumming for this protocol, complete
3684 		 * checksumming here.
3685 		 */
3686 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3687 			if (skb->encapsulation)
3688 				skb_set_inner_transport_header(skb,
3689 							       skb_checksum_start_offset(skb));
3690 			else
3691 				skb_set_transport_header(skb,
3692 							 skb_checksum_start_offset(skb));
3693 			if (skb_csum_hwoffload_help(skb, features))
3694 				goto out_kfree_skb;
3695 		}
3696 	}
3697 
3698 	skb = validate_xmit_xfrm(skb, features, again);
3699 
3700 	return skb;
3701 
3702 out_kfree_skb:
3703 	kfree_skb(skb);
3704 out_null:
3705 	atomic_long_inc(&dev->tx_dropped);
3706 	return NULL;
3707 }
3708 
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3709 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3710 {
3711 	struct sk_buff *next, *head = NULL, *tail;
3712 
3713 	for (; skb != NULL; skb = next) {
3714 		next = skb->next;
3715 		skb_mark_not_on_list(skb);
3716 
3717 		/* in case skb wont be segmented, point to itself */
3718 		skb->prev = skb;
3719 
3720 		skb = validate_xmit_skb(skb, dev, again);
3721 		if (!skb)
3722 			continue;
3723 
3724 		if (!head)
3725 			head = skb;
3726 		else
3727 			tail->next = skb;
3728 		/* If skb was segmented, skb->prev points to
3729 		 * the last segment. If not, it still contains skb.
3730 		 */
3731 		tail = skb->prev;
3732 	}
3733 	return head;
3734 }
3735 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3736 
qdisc_pkt_len_init(struct sk_buff * skb)3737 static void qdisc_pkt_len_init(struct sk_buff *skb)
3738 {
3739 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3740 
3741 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3742 
3743 	/* To get more precise estimation of bytes sent on wire,
3744 	 * we add to pkt_len the headers size of all segments
3745 	 */
3746 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3747 		unsigned int hdr_len;
3748 		u16 gso_segs = shinfo->gso_segs;
3749 
3750 		/* mac layer + network layer */
3751 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3752 
3753 		/* + transport layer */
3754 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3755 			const struct tcphdr *th;
3756 			struct tcphdr _tcphdr;
3757 
3758 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3759 						sizeof(_tcphdr), &_tcphdr);
3760 			if (likely(th))
3761 				hdr_len += __tcp_hdrlen(th);
3762 		} else {
3763 			struct udphdr _udphdr;
3764 
3765 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3766 					       sizeof(_udphdr), &_udphdr))
3767 				hdr_len += sizeof(struct udphdr);
3768 		}
3769 
3770 		if (shinfo->gso_type & SKB_GSO_DODGY)
3771 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3772 						shinfo->gso_size);
3773 
3774 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3775 	}
3776 }
3777 
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3778 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3779 				 struct net_device *dev,
3780 				 struct netdev_queue *txq)
3781 {
3782 	spinlock_t *root_lock = qdisc_lock(q);
3783 	struct sk_buff *to_free = NULL;
3784 	bool contended;
3785 	int rc;
3786 
3787 	qdisc_calculate_pkt_len(skb, q);
3788 
3789 	if (q->flags & TCQ_F_NOLOCK) {
3790 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3791 		if (likely(!netif_xmit_frozen_or_stopped(txq)))
3792 			qdisc_run(q);
3793 
3794 		if (unlikely(to_free))
3795 			kfree_skb_list(to_free);
3796 		return rc;
3797 	}
3798 
3799 	/*
3800 	 * Heuristic to force contended enqueues to serialize on a
3801 	 * separate lock before trying to get qdisc main lock.
3802 	 * This permits qdisc->running owner to get the lock more
3803 	 * often and dequeue packets faster.
3804 	 */
3805 	contended = qdisc_is_running(q);
3806 	if (unlikely(contended))
3807 		spin_lock(&q->busylock);
3808 
3809 	spin_lock(root_lock);
3810 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3811 		__qdisc_drop(skb, &to_free);
3812 		rc = NET_XMIT_DROP;
3813 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3814 		   qdisc_run_begin(q)) {
3815 		/*
3816 		 * This is a work-conserving queue; there are no old skbs
3817 		 * waiting to be sent out; and the qdisc is not running -
3818 		 * xmit the skb directly.
3819 		 */
3820 
3821 		qdisc_bstats_update(q, skb);
3822 
3823 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3824 			if (unlikely(contended)) {
3825 				spin_unlock(&q->busylock);
3826 				contended = false;
3827 			}
3828 			__qdisc_run(q);
3829 		}
3830 
3831 		qdisc_run_end(q);
3832 		rc = NET_XMIT_SUCCESS;
3833 	} else {
3834 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3835 		if (qdisc_run_begin(q)) {
3836 			if (unlikely(contended)) {
3837 				spin_unlock(&q->busylock);
3838 				contended = false;
3839 			}
3840 			__qdisc_run(q);
3841 			qdisc_run_end(q);
3842 		}
3843 	}
3844 	spin_unlock(root_lock);
3845 	if (unlikely(to_free))
3846 		kfree_skb_list(to_free);
3847 	if (unlikely(contended))
3848 		spin_unlock(&q->busylock);
3849 	return rc;
3850 }
3851 
3852 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3853 static void skb_update_prio(struct sk_buff *skb)
3854 {
3855 	const struct netprio_map *map;
3856 	const struct sock *sk;
3857 	unsigned int prioidx;
3858 
3859 	if (skb->priority)
3860 		return;
3861 	map = rcu_dereference_bh(skb->dev->priomap);
3862 	if (!map)
3863 		return;
3864 	sk = skb_to_full_sk(skb);
3865 	if (!sk)
3866 		return;
3867 
3868 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3869 
3870 	if (prioidx < map->priomap_len)
3871 		skb->priority = map->priomap[prioidx];
3872 }
3873 #else
3874 #define skb_update_prio(skb)
3875 #endif
3876 
3877 /**
3878  *	dev_loopback_xmit - loop back @skb
3879  *	@net: network namespace this loopback is happening in
3880  *	@sk:  sk needed to be a netfilter okfn
3881  *	@skb: buffer to transmit
3882  */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3883 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3884 {
3885 	skb_reset_mac_header(skb);
3886 	__skb_pull(skb, skb_network_offset(skb));
3887 	skb->pkt_type = PACKET_LOOPBACK;
3888 	if (skb->ip_summed == CHECKSUM_NONE)
3889 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3890 	WARN_ON(!skb_dst(skb));
3891 	skb_dst_force(skb);
3892 	netif_rx_ni(skb);
3893 	return 0;
3894 }
3895 EXPORT_SYMBOL(dev_loopback_xmit);
3896 
3897 #ifdef CONFIG_NET_EGRESS
3898 static struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)3899 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3900 {
3901 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3902 	struct tcf_result cl_res;
3903 
3904 	if (!miniq)
3905 		return skb;
3906 
3907 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3908 	qdisc_skb_cb(skb)->mru = 0;
3909 	mini_qdisc_bstats_cpu_update(miniq, skb);
3910 
3911 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3912 	case TC_ACT_OK:
3913 	case TC_ACT_RECLASSIFY:
3914 		skb->tc_index = TC_H_MIN(cl_res.classid);
3915 		break;
3916 	case TC_ACT_SHOT:
3917 		mini_qdisc_qstats_cpu_drop(miniq);
3918 		*ret = NET_XMIT_DROP;
3919 		kfree_skb(skb);
3920 		return NULL;
3921 	case TC_ACT_STOLEN:
3922 	case TC_ACT_QUEUED:
3923 	case TC_ACT_TRAP:
3924 		*ret = NET_XMIT_SUCCESS;
3925 		consume_skb(skb);
3926 		return NULL;
3927 	case TC_ACT_REDIRECT:
3928 		/* No need to push/pop skb's mac_header here on egress! */
3929 		skb_do_redirect(skb);
3930 		*ret = NET_XMIT_SUCCESS;
3931 		return NULL;
3932 	default:
3933 		break;
3934 	}
3935 
3936 	return skb;
3937 }
3938 #endif /* CONFIG_NET_EGRESS */
3939 
3940 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)3941 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3942 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3943 {
3944 	struct xps_map *map;
3945 	int queue_index = -1;
3946 
3947 	if (dev->num_tc) {
3948 		tci *= dev->num_tc;
3949 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3950 	}
3951 
3952 	map = rcu_dereference(dev_maps->attr_map[tci]);
3953 	if (map) {
3954 		if (map->len == 1)
3955 			queue_index = map->queues[0];
3956 		else
3957 			queue_index = map->queues[reciprocal_scale(
3958 						skb_get_hash(skb), map->len)];
3959 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3960 			queue_index = -1;
3961 	}
3962 	return queue_index;
3963 }
3964 #endif
3965 
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)3966 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3967 			 struct sk_buff *skb)
3968 {
3969 #ifdef CONFIG_XPS
3970 	struct xps_dev_maps *dev_maps;
3971 	struct sock *sk = skb->sk;
3972 	int queue_index = -1;
3973 
3974 	if (!static_key_false(&xps_needed))
3975 		return -1;
3976 
3977 	rcu_read_lock();
3978 	if (!static_key_false(&xps_rxqs_needed))
3979 		goto get_cpus_map;
3980 
3981 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3982 	if (dev_maps) {
3983 		int tci = sk_rx_queue_get(sk);
3984 
3985 		if (tci >= 0 && tci < dev->num_rx_queues)
3986 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3987 							  tci);
3988 	}
3989 
3990 get_cpus_map:
3991 	if (queue_index < 0) {
3992 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3993 		if (dev_maps) {
3994 			unsigned int tci = skb->sender_cpu - 1;
3995 
3996 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3997 							  tci);
3998 		}
3999 	}
4000 	rcu_read_unlock();
4001 
4002 	return queue_index;
4003 #else
4004 	return -1;
4005 #endif
4006 }
4007 
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4008 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4009 		     struct net_device *sb_dev)
4010 {
4011 	return 0;
4012 }
4013 EXPORT_SYMBOL(dev_pick_tx_zero);
4014 
dev_pick_tx_cpu_id(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4015 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4016 		       struct net_device *sb_dev)
4017 {
4018 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4019 }
4020 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4021 
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4022 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4023 		     struct net_device *sb_dev)
4024 {
4025 	struct sock *sk = skb->sk;
4026 	int queue_index = sk_tx_queue_get(sk);
4027 
4028 	sb_dev = sb_dev ? : dev;
4029 
4030 	if (queue_index < 0 || skb->ooo_okay ||
4031 	    queue_index >= dev->real_num_tx_queues) {
4032 		int new_index = get_xps_queue(dev, sb_dev, skb);
4033 
4034 		if (new_index < 0)
4035 			new_index = skb_tx_hash(dev, sb_dev, skb);
4036 
4037 		if (queue_index != new_index && sk &&
4038 		    sk_fullsock(sk) &&
4039 		    rcu_access_pointer(sk->sk_dst_cache))
4040 			sk_tx_queue_set(sk, new_index);
4041 
4042 		queue_index = new_index;
4043 	}
4044 
4045 	return queue_index;
4046 }
4047 EXPORT_SYMBOL(netdev_pick_tx);
4048 
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4049 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4050 					 struct sk_buff *skb,
4051 					 struct net_device *sb_dev)
4052 {
4053 	int queue_index = 0;
4054 
4055 #ifdef CONFIG_XPS
4056 	u32 sender_cpu = skb->sender_cpu - 1;
4057 
4058 	if (sender_cpu >= (u32)NR_CPUS)
4059 		skb->sender_cpu = raw_smp_processor_id() + 1;
4060 #endif
4061 
4062 	if (dev->real_num_tx_queues != 1) {
4063 		const struct net_device_ops *ops = dev->netdev_ops;
4064 
4065 		if (ops->ndo_select_queue)
4066 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4067 		else
4068 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4069 
4070 		queue_index = netdev_cap_txqueue(dev, queue_index);
4071 	}
4072 
4073 	skb_set_queue_mapping(skb, queue_index);
4074 	return netdev_get_tx_queue(dev, queue_index);
4075 }
4076 
4077 /**
4078  *	__dev_queue_xmit - transmit a buffer
4079  *	@skb: buffer to transmit
4080  *	@sb_dev: suboordinate device used for L2 forwarding offload
4081  *
4082  *	Queue a buffer for transmission to a network device. The caller must
4083  *	have set the device and priority and built the buffer before calling
4084  *	this function. The function can be called from an interrupt.
4085  *
4086  *	A negative errno code is returned on a failure. A success does not
4087  *	guarantee the frame will be transmitted as it may be dropped due
4088  *	to congestion or traffic shaping.
4089  *
4090  * -----------------------------------------------------------------------------------
4091  *      I notice this method can also return errors from the queue disciplines,
4092  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4093  *      be positive.
4094  *
4095  *      Regardless of the return value, the skb is consumed, so it is currently
4096  *      difficult to retry a send to this method.  (You can bump the ref count
4097  *      before sending to hold a reference for retry if you are careful.)
4098  *
4099  *      When calling this method, interrupts MUST be enabled.  This is because
4100  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4101  *          --BLG
4102  */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4103 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4104 {
4105 	struct net_device *dev = skb->dev;
4106 	struct netdev_queue *txq;
4107 	struct Qdisc *q;
4108 	int rc = -ENOMEM;
4109 	bool again = false;
4110 
4111 	skb_reset_mac_header(skb);
4112 	skb_assert_len(skb);
4113 
4114 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4115 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4116 
4117 	/* Disable soft irqs for various locks below. Also
4118 	 * stops preemption for RCU.
4119 	 */
4120 	rcu_read_lock_bh();
4121 
4122 	skb_update_prio(skb);
4123 
4124 	qdisc_pkt_len_init(skb);
4125 #ifdef CONFIG_NET_CLS_ACT
4126 	skb->tc_at_ingress = 0;
4127 # ifdef CONFIG_NET_EGRESS
4128 	if (static_branch_unlikely(&egress_needed_key)) {
4129 		skb = sch_handle_egress(skb, &rc, dev);
4130 		if (!skb)
4131 			goto out;
4132 	}
4133 # endif
4134 #endif
4135 	/* If device/qdisc don't need skb->dst, release it right now while
4136 	 * its hot in this cpu cache.
4137 	 */
4138 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4139 		skb_dst_drop(skb);
4140 	else
4141 		skb_dst_force(skb);
4142 
4143 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4144 	q = rcu_dereference_bh(txq->qdisc);
4145 
4146 	trace_net_dev_queue(skb);
4147 	if (q->enqueue) {
4148 		rc = __dev_xmit_skb(skb, q, dev, txq);
4149 		goto out;
4150 	}
4151 
4152 	/* The device has no queue. Common case for software devices:
4153 	 * loopback, all the sorts of tunnels...
4154 
4155 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4156 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4157 	 * counters.)
4158 	 * However, it is possible, that they rely on protection
4159 	 * made by us here.
4160 
4161 	 * Check this and shot the lock. It is not prone from deadlocks.
4162 	 *Either shot noqueue qdisc, it is even simpler 8)
4163 	 */
4164 	if (dev->flags & IFF_UP) {
4165 		int cpu = smp_processor_id(); /* ok because BHs are off */
4166 
4167 		/* Other cpus might concurrently change txq->xmit_lock_owner
4168 		 * to -1 or to their cpu id, but not to our id.
4169 		 */
4170 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4171 			if (dev_xmit_recursion())
4172 				goto recursion_alert;
4173 
4174 			skb = validate_xmit_skb(skb, dev, &again);
4175 			if (!skb)
4176 				goto out;
4177 
4178 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4179 			HARD_TX_LOCK(dev, txq, cpu);
4180 
4181 			if (!netif_xmit_stopped(txq)) {
4182 				dev_xmit_recursion_inc();
4183 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4184 				dev_xmit_recursion_dec();
4185 				if (dev_xmit_complete(rc)) {
4186 					HARD_TX_UNLOCK(dev, txq);
4187 					goto out;
4188 				}
4189 			}
4190 			HARD_TX_UNLOCK(dev, txq);
4191 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4192 					     dev->name);
4193 		} else {
4194 			/* Recursion is detected! It is possible,
4195 			 * unfortunately
4196 			 */
4197 recursion_alert:
4198 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4199 					     dev->name);
4200 		}
4201 	}
4202 
4203 	rc = -ENETDOWN;
4204 	rcu_read_unlock_bh();
4205 
4206 	atomic_long_inc(&dev->tx_dropped);
4207 	kfree_skb_list(skb);
4208 	return rc;
4209 out:
4210 	rcu_read_unlock_bh();
4211 	return rc;
4212 }
4213 
dev_queue_xmit(struct sk_buff * skb)4214 int dev_queue_xmit(struct sk_buff *skb)
4215 {
4216 	return __dev_queue_xmit(skb, NULL);
4217 }
4218 EXPORT_SYMBOL(dev_queue_xmit);
4219 
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)4220 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4221 {
4222 	return __dev_queue_xmit(skb, sb_dev);
4223 }
4224 EXPORT_SYMBOL(dev_queue_xmit_accel);
4225 
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4226 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4227 {
4228 	struct net_device *dev = skb->dev;
4229 	struct sk_buff *orig_skb = skb;
4230 	struct netdev_queue *txq;
4231 	int ret = NETDEV_TX_BUSY;
4232 	bool again = false;
4233 
4234 	if (unlikely(!netif_running(dev) ||
4235 		     !netif_carrier_ok(dev)))
4236 		goto drop;
4237 
4238 	skb = validate_xmit_skb_list(skb, dev, &again);
4239 	if (skb != orig_skb)
4240 		goto drop;
4241 
4242 	skb_set_queue_mapping(skb, queue_id);
4243 	txq = skb_get_tx_queue(dev, skb);
4244 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4245 
4246 	local_bh_disable();
4247 
4248 	dev_xmit_recursion_inc();
4249 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4250 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4251 		ret = netdev_start_xmit(skb, dev, txq, false);
4252 	HARD_TX_UNLOCK(dev, txq);
4253 	dev_xmit_recursion_dec();
4254 
4255 	local_bh_enable();
4256 	return ret;
4257 drop:
4258 	atomic_long_inc(&dev->tx_dropped);
4259 	kfree_skb_list(skb);
4260 	return NET_XMIT_DROP;
4261 }
4262 EXPORT_SYMBOL(__dev_direct_xmit);
4263 
4264 /*************************************************************************
4265  *			Receiver routines
4266  *************************************************************************/
4267 
4268 int netdev_max_backlog __read_mostly = 1000;
4269 EXPORT_SYMBOL(netdev_max_backlog);
4270 
4271 int netdev_tstamp_prequeue __read_mostly = 1;
4272 int netdev_budget __read_mostly = 300;
4273 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4274 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4275 int weight_p __read_mostly = 64;           /* old backlog weight */
4276 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4277 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4278 int dev_rx_weight __read_mostly = 64;
4279 int dev_tx_weight __read_mostly = 64;
4280 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4281 int gro_normal_batch __read_mostly = 8;
4282 
4283 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4284 static inline void ____napi_schedule(struct softnet_data *sd,
4285 				     struct napi_struct *napi)
4286 {
4287 	list_add_tail(&napi->poll_list, &sd->poll_list);
4288 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4289 }
4290 
4291 #ifdef CONFIG_RPS
4292 
4293 /* One global table that all flow-based protocols share. */
4294 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4295 EXPORT_SYMBOL(rps_sock_flow_table);
4296 u32 rps_cpu_mask __read_mostly;
4297 EXPORT_SYMBOL(rps_cpu_mask);
4298 
4299 struct static_key_false rps_needed __read_mostly;
4300 EXPORT_SYMBOL(rps_needed);
4301 struct static_key_false rfs_needed __read_mostly;
4302 EXPORT_SYMBOL(rfs_needed);
4303 
4304 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4305 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4306 	    struct rps_dev_flow *rflow, u16 next_cpu)
4307 {
4308 	if (next_cpu < nr_cpu_ids) {
4309 #ifdef CONFIG_RFS_ACCEL
4310 		struct netdev_rx_queue *rxqueue;
4311 		struct rps_dev_flow_table *flow_table;
4312 		struct rps_dev_flow *old_rflow;
4313 		u32 flow_id;
4314 		u16 rxq_index;
4315 		int rc;
4316 
4317 		/* Should we steer this flow to a different hardware queue? */
4318 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4319 		    !(dev->features & NETIF_F_NTUPLE))
4320 			goto out;
4321 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4322 		if (rxq_index == skb_get_rx_queue(skb))
4323 			goto out;
4324 
4325 		rxqueue = dev->_rx + rxq_index;
4326 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4327 		if (!flow_table)
4328 			goto out;
4329 		flow_id = skb_get_hash(skb) & flow_table->mask;
4330 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4331 							rxq_index, flow_id);
4332 		if (rc < 0)
4333 			goto out;
4334 		old_rflow = rflow;
4335 		rflow = &flow_table->flows[flow_id];
4336 		rflow->filter = rc;
4337 		if (old_rflow->filter == rflow->filter)
4338 			old_rflow->filter = RPS_NO_FILTER;
4339 	out:
4340 #endif
4341 		rflow->last_qtail =
4342 			per_cpu(softnet_data, next_cpu).input_queue_head;
4343 	}
4344 
4345 	rflow->cpu = next_cpu;
4346 	return rflow;
4347 }
4348 
4349 /*
4350  * get_rps_cpu is called from netif_receive_skb and returns the target
4351  * CPU from the RPS map of the receiving queue for a given skb.
4352  * rcu_read_lock must be held on entry.
4353  */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4354 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4355 		       struct rps_dev_flow **rflowp)
4356 {
4357 	const struct rps_sock_flow_table *sock_flow_table;
4358 	struct netdev_rx_queue *rxqueue = dev->_rx;
4359 	struct rps_dev_flow_table *flow_table;
4360 	struct rps_map *map;
4361 	int cpu = -1;
4362 	u32 tcpu;
4363 	u32 hash;
4364 
4365 	if (skb_rx_queue_recorded(skb)) {
4366 		u16 index = skb_get_rx_queue(skb);
4367 
4368 		if (unlikely(index >= dev->real_num_rx_queues)) {
4369 			WARN_ONCE(dev->real_num_rx_queues > 1,
4370 				  "%s received packet on queue %u, but number "
4371 				  "of RX queues is %u\n",
4372 				  dev->name, index, dev->real_num_rx_queues);
4373 			goto done;
4374 		}
4375 		rxqueue += index;
4376 	}
4377 
4378 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4379 
4380 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4381 	map = rcu_dereference(rxqueue->rps_map);
4382 	if (!flow_table && !map)
4383 		goto done;
4384 
4385 	skb_reset_network_header(skb);
4386 	hash = skb_get_hash(skb);
4387 	if (!hash)
4388 		goto done;
4389 
4390 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4391 	if (flow_table && sock_flow_table) {
4392 		struct rps_dev_flow *rflow;
4393 		u32 next_cpu;
4394 		u32 ident;
4395 
4396 		/* First check into global flow table if there is a match.
4397 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4398 		 */
4399 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4400 		if ((ident ^ hash) & ~rps_cpu_mask)
4401 			goto try_rps;
4402 
4403 		next_cpu = ident & rps_cpu_mask;
4404 
4405 		/* OK, now we know there is a match,
4406 		 * we can look at the local (per receive queue) flow table
4407 		 */
4408 		rflow = &flow_table->flows[hash & flow_table->mask];
4409 		tcpu = rflow->cpu;
4410 
4411 		/*
4412 		 * If the desired CPU (where last recvmsg was done) is
4413 		 * different from current CPU (one in the rx-queue flow
4414 		 * table entry), switch if one of the following holds:
4415 		 *   - Current CPU is unset (>= nr_cpu_ids).
4416 		 *   - Current CPU is offline.
4417 		 *   - The current CPU's queue tail has advanced beyond the
4418 		 *     last packet that was enqueued using this table entry.
4419 		 *     This guarantees that all previous packets for the flow
4420 		 *     have been dequeued, thus preserving in order delivery.
4421 		 */
4422 		if (unlikely(tcpu != next_cpu) &&
4423 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4424 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4425 		      rflow->last_qtail)) >= 0)) {
4426 			tcpu = next_cpu;
4427 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4428 		}
4429 
4430 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4431 			*rflowp = rflow;
4432 			cpu = tcpu;
4433 			goto done;
4434 		}
4435 	}
4436 
4437 try_rps:
4438 
4439 	if (map) {
4440 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4441 		if (cpu_online(tcpu)) {
4442 			cpu = tcpu;
4443 			goto done;
4444 		}
4445 	}
4446 
4447 done:
4448 	return cpu;
4449 }
4450 
4451 #ifdef CONFIG_RFS_ACCEL
4452 
4453 /**
4454  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4455  * @dev: Device on which the filter was set
4456  * @rxq_index: RX queue index
4457  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4458  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4459  *
4460  * Drivers that implement ndo_rx_flow_steer() should periodically call
4461  * this function for each installed filter and remove the filters for
4462  * which it returns %true.
4463  */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4464 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4465 			 u32 flow_id, u16 filter_id)
4466 {
4467 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4468 	struct rps_dev_flow_table *flow_table;
4469 	struct rps_dev_flow *rflow;
4470 	bool expire = true;
4471 	unsigned int cpu;
4472 
4473 	rcu_read_lock();
4474 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4475 	if (flow_table && flow_id <= flow_table->mask) {
4476 		rflow = &flow_table->flows[flow_id];
4477 		cpu = READ_ONCE(rflow->cpu);
4478 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4479 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4480 			   rflow->last_qtail) <
4481 		     (int)(10 * flow_table->mask)))
4482 			expire = false;
4483 	}
4484 	rcu_read_unlock();
4485 	return expire;
4486 }
4487 EXPORT_SYMBOL(rps_may_expire_flow);
4488 
4489 #endif /* CONFIG_RFS_ACCEL */
4490 
4491 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4492 static void rps_trigger_softirq(void *data)
4493 {
4494 	struct softnet_data *sd = data;
4495 
4496 	____napi_schedule(sd, &sd->backlog);
4497 	sd->received_rps++;
4498 }
4499 
4500 #endif /* CONFIG_RPS */
4501 
4502 /*
4503  * Check if this softnet_data structure is another cpu one
4504  * If yes, queue it to our IPI list and return 1
4505  * If no, return 0
4506  */
rps_ipi_queued(struct softnet_data * sd)4507 static int rps_ipi_queued(struct softnet_data *sd)
4508 {
4509 #ifdef CONFIG_RPS
4510 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4511 
4512 	if (sd != mysd) {
4513 		sd->rps_ipi_next = mysd->rps_ipi_list;
4514 		mysd->rps_ipi_list = sd;
4515 
4516 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4517 		return 1;
4518 	}
4519 #endif /* CONFIG_RPS */
4520 	return 0;
4521 }
4522 
4523 #ifdef CONFIG_NET_FLOW_LIMIT
4524 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4525 #endif
4526 
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4527 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4528 {
4529 #ifdef CONFIG_NET_FLOW_LIMIT
4530 	struct sd_flow_limit *fl;
4531 	struct softnet_data *sd;
4532 	unsigned int old_flow, new_flow;
4533 
4534 	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4535 		return false;
4536 
4537 	sd = this_cpu_ptr(&softnet_data);
4538 
4539 	rcu_read_lock();
4540 	fl = rcu_dereference(sd->flow_limit);
4541 	if (fl) {
4542 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4543 		old_flow = fl->history[fl->history_head];
4544 		fl->history[fl->history_head] = new_flow;
4545 
4546 		fl->history_head++;
4547 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4548 
4549 		if (likely(fl->buckets[old_flow]))
4550 			fl->buckets[old_flow]--;
4551 
4552 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4553 			fl->count++;
4554 			rcu_read_unlock();
4555 			return true;
4556 		}
4557 	}
4558 	rcu_read_unlock();
4559 #endif
4560 	return false;
4561 }
4562 
4563 /*
4564  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4565  * queue (may be a remote CPU queue).
4566  */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4567 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4568 			      unsigned int *qtail)
4569 {
4570 	struct softnet_data *sd;
4571 	unsigned long flags;
4572 	unsigned int qlen;
4573 
4574 	sd = &per_cpu(softnet_data, cpu);
4575 
4576 	local_irq_save(flags);
4577 
4578 	rps_lock(sd);
4579 	if (!netif_running(skb->dev))
4580 		goto drop;
4581 	qlen = skb_queue_len(&sd->input_pkt_queue);
4582 	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4583 		if (qlen) {
4584 enqueue:
4585 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4586 			input_queue_tail_incr_save(sd, qtail);
4587 			rps_unlock(sd);
4588 			local_irq_restore(flags);
4589 			return NET_RX_SUCCESS;
4590 		}
4591 
4592 		/* Schedule NAPI for backlog device
4593 		 * We can use non atomic operation since we own the queue lock
4594 		 */
4595 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4596 			if (!rps_ipi_queued(sd))
4597 				____napi_schedule(sd, &sd->backlog);
4598 		}
4599 		goto enqueue;
4600 	}
4601 
4602 drop:
4603 	sd->dropped++;
4604 	rps_unlock(sd);
4605 
4606 	local_irq_restore(flags);
4607 
4608 	atomic_long_inc(&skb->dev->rx_dropped);
4609 	kfree_skb(skb);
4610 	return NET_RX_DROP;
4611 }
4612 
netif_get_rxqueue(struct sk_buff * skb)4613 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4614 {
4615 	struct net_device *dev = skb->dev;
4616 	struct netdev_rx_queue *rxqueue;
4617 
4618 	rxqueue = dev->_rx;
4619 
4620 	if (skb_rx_queue_recorded(skb)) {
4621 		u16 index = skb_get_rx_queue(skb);
4622 
4623 		if (unlikely(index >= dev->real_num_rx_queues)) {
4624 			WARN_ONCE(dev->real_num_rx_queues > 1,
4625 				  "%s received packet on queue %u, but number "
4626 				  "of RX queues is %u\n",
4627 				  dev->name, index, dev->real_num_rx_queues);
4628 
4629 			return rxqueue; /* Return first rxqueue */
4630 		}
4631 		rxqueue += index;
4632 	}
4633 	return rxqueue;
4634 }
4635 
netif_receive_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4636 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4637 				     struct xdp_buff *xdp,
4638 				     struct bpf_prog *xdp_prog)
4639 {
4640 	struct netdev_rx_queue *rxqueue;
4641 	void *orig_data, *orig_data_end;
4642 	u32 metalen, act = XDP_DROP;
4643 	__be16 orig_eth_type;
4644 	struct ethhdr *eth;
4645 	bool orig_bcast;
4646 	int hlen, off;
4647 	u32 mac_len;
4648 
4649 	/* Reinjected packets coming from act_mirred or similar should
4650 	 * not get XDP generic processing.
4651 	 */
4652 	if (skb_is_redirected(skb))
4653 		return XDP_PASS;
4654 
4655 	/* XDP packets must be linear and must have sufficient headroom
4656 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4657 	 * native XDP provides, thus we need to do it here as well.
4658 	 */
4659 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4660 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4661 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4662 		int troom = skb->tail + skb->data_len - skb->end;
4663 
4664 		/* In case we have to go down the path and also linearize,
4665 		 * then lets do the pskb_expand_head() work just once here.
4666 		 */
4667 		if (pskb_expand_head(skb,
4668 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4669 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4670 			goto do_drop;
4671 		if (skb_linearize(skb))
4672 			goto do_drop;
4673 	}
4674 
4675 	/* The XDP program wants to see the packet starting at the MAC
4676 	 * header.
4677 	 */
4678 	mac_len = skb->data - skb_mac_header(skb);
4679 	hlen = skb_headlen(skb) + mac_len;
4680 	xdp->data = skb->data - mac_len;
4681 	xdp->data_meta = xdp->data;
4682 	xdp->data_end = xdp->data + hlen;
4683 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4684 
4685 	/* SKB "head" area always have tailroom for skb_shared_info */
4686 	xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4687 	xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4688 
4689 	orig_data_end = xdp->data_end;
4690 	orig_data = xdp->data;
4691 	eth = (struct ethhdr *)xdp->data;
4692 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4693 	orig_eth_type = eth->h_proto;
4694 
4695 	rxqueue = netif_get_rxqueue(skb);
4696 	xdp->rxq = &rxqueue->xdp_rxq;
4697 
4698 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4699 
4700 	/* check if bpf_xdp_adjust_head was used */
4701 	off = xdp->data - orig_data;
4702 	if (off) {
4703 		if (off > 0)
4704 			__skb_pull(skb, off);
4705 		else if (off < 0)
4706 			__skb_push(skb, -off);
4707 
4708 		skb->mac_header += off;
4709 		skb_reset_network_header(skb);
4710 	}
4711 
4712 	/* check if bpf_xdp_adjust_tail was used */
4713 	off = xdp->data_end - orig_data_end;
4714 	if (off != 0) {
4715 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4716 		skb->len += off; /* positive on grow, negative on shrink */
4717 	}
4718 
4719 	/* check if XDP changed eth hdr such SKB needs update */
4720 	eth = (struct ethhdr *)xdp->data;
4721 	if ((orig_eth_type != eth->h_proto) ||
4722 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4723 		__skb_push(skb, ETH_HLEN);
4724 		skb->protocol = eth_type_trans(skb, skb->dev);
4725 	}
4726 
4727 	switch (act) {
4728 	case XDP_REDIRECT:
4729 	case XDP_TX:
4730 		__skb_push(skb, mac_len);
4731 		break;
4732 	case XDP_PASS:
4733 		metalen = xdp->data - xdp->data_meta;
4734 		if (metalen)
4735 			skb_metadata_set(skb, metalen);
4736 		break;
4737 	default:
4738 		bpf_warn_invalid_xdp_action(act);
4739 		fallthrough;
4740 	case XDP_ABORTED:
4741 		trace_xdp_exception(skb->dev, xdp_prog, act);
4742 		fallthrough;
4743 	case XDP_DROP:
4744 	do_drop:
4745 		kfree_skb(skb);
4746 		break;
4747 	}
4748 
4749 	return act;
4750 }
4751 
4752 /* When doing generic XDP we have to bypass the qdisc layer and the
4753  * network taps in order to match in-driver-XDP behavior.
4754  */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)4755 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4756 {
4757 	struct net_device *dev = skb->dev;
4758 	struct netdev_queue *txq;
4759 	bool free_skb = true;
4760 	int cpu, rc;
4761 
4762 	txq = netdev_core_pick_tx(dev, skb, NULL);
4763 	cpu = smp_processor_id();
4764 	HARD_TX_LOCK(dev, txq, cpu);
4765 	if (!netif_xmit_stopped(txq)) {
4766 		rc = netdev_start_xmit(skb, dev, txq, 0);
4767 		if (dev_xmit_complete(rc))
4768 			free_skb = false;
4769 	}
4770 	HARD_TX_UNLOCK(dev, txq);
4771 	if (free_skb) {
4772 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4773 		kfree_skb(skb);
4774 	}
4775 }
4776 
4777 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4778 
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)4779 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4780 {
4781 	if (xdp_prog) {
4782 		struct xdp_buff xdp;
4783 		u32 act;
4784 		int err;
4785 
4786 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4787 		if (act != XDP_PASS) {
4788 			switch (act) {
4789 			case XDP_REDIRECT:
4790 				err = xdp_do_generic_redirect(skb->dev, skb,
4791 							      &xdp, xdp_prog);
4792 				if (err)
4793 					goto out_redir;
4794 				break;
4795 			case XDP_TX:
4796 				generic_xdp_tx(skb, xdp_prog);
4797 				break;
4798 			}
4799 			return XDP_DROP;
4800 		}
4801 	}
4802 	return XDP_PASS;
4803 out_redir:
4804 	kfree_skb(skb);
4805 	return XDP_DROP;
4806 }
4807 EXPORT_SYMBOL_GPL(do_xdp_generic);
4808 
netif_rx_internal(struct sk_buff * skb)4809 static int netif_rx_internal(struct sk_buff *skb)
4810 {
4811 	int ret;
4812 
4813 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4814 
4815 	trace_netif_rx(skb);
4816 
4817 #ifdef CONFIG_RPS
4818 	if (static_branch_unlikely(&rps_needed)) {
4819 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4820 		int cpu;
4821 
4822 		preempt_disable();
4823 		rcu_read_lock();
4824 
4825 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4826 		if (cpu < 0)
4827 			cpu = smp_processor_id();
4828 
4829 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4830 
4831 		rcu_read_unlock();
4832 		preempt_enable();
4833 	} else
4834 #endif
4835 	{
4836 		unsigned int qtail;
4837 
4838 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4839 		put_cpu();
4840 	}
4841 	return ret;
4842 }
4843 
4844 /**
4845  *	netif_rx	-	post buffer to the network code
4846  *	@skb: buffer to post
4847  *
4848  *	This function receives a packet from a device driver and queues it for
4849  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4850  *	may be dropped during processing for congestion control or by the
4851  *	protocol layers.
4852  *
4853  *	return values:
4854  *	NET_RX_SUCCESS	(no congestion)
4855  *	NET_RX_DROP     (packet was dropped)
4856  *
4857  */
4858 
netif_rx(struct sk_buff * skb)4859 int netif_rx(struct sk_buff *skb)
4860 {
4861 	int ret;
4862 
4863 	trace_netif_rx_entry(skb);
4864 
4865 	ret = netif_rx_internal(skb);
4866 	trace_netif_rx_exit(ret);
4867 
4868 	return ret;
4869 }
4870 EXPORT_SYMBOL(netif_rx);
4871 
netif_rx_ni(struct sk_buff * skb)4872 int netif_rx_ni(struct sk_buff *skb)
4873 {
4874 	int err;
4875 
4876 	trace_netif_rx_ni_entry(skb);
4877 
4878 	preempt_disable();
4879 	err = netif_rx_internal(skb);
4880 	if (local_softirq_pending())
4881 		do_softirq();
4882 	preempt_enable();
4883 	trace_netif_rx_ni_exit(err);
4884 
4885 	return err;
4886 }
4887 EXPORT_SYMBOL(netif_rx_ni);
4888 
netif_rx_any_context(struct sk_buff * skb)4889 int netif_rx_any_context(struct sk_buff *skb)
4890 {
4891 	/*
4892 	 * If invoked from contexts which do not invoke bottom half
4893 	 * processing either at return from interrupt or when softrqs are
4894 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4895 	 * directly.
4896 	 */
4897 	if (in_interrupt())
4898 		return netif_rx(skb);
4899 	else
4900 		return netif_rx_ni(skb);
4901 }
4902 EXPORT_SYMBOL(netif_rx_any_context);
4903 
net_tx_action(struct softirq_action * h)4904 static __latent_entropy void net_tx_action(struct softirq_action *h)
4905 {
4906 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4907 
4908 	if (sd->completion_queue) {
4909 		struct sk_buff *clist;
4910 
4911 		local_irq_disable();
4912 		clist = sd->completion_queue;
4913 		sd->completion_queue = NULL;
4914 		local_irq_enable();
4915 
4916 		while (clist) {
4917 			struct sk_buff *skb = clist;
4918 
4919 			clist = clist->next;
4920 
4921 			WARN_ON(refcount_read(&skb->users));
4922 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4923 				trace_consume_skb(skb);
4924 			else
4925 				trace_kfree_skb(skb, net_tx_action);
4926 
4927 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4928 				__kfree_skb(skb);
4929 			else
4930 				__kfree_skb_defer(skb);
4931 		}
4932 
4933 		__kfree_skb_flush();
4934 	}
4935 
4936 	if (sd->output_queue) {
4937 		struct Qdisc *head;
4938 
4939 		local_irq_disable();
4940 		head = sd->output_queue;
4941 		sd->output_queue = NULL;
4942 		sd->output_queue_tailp = &sd->output_queue;
4943 		local_irq_enable();
4944 
4945 		rcu_read_lock();
4946 
4947 		while (head) {
4948 			struct Qdisc *q = head;
4949 			spinlock_t *root_lock = NULL;
4950 
4951 			head = head->next_sched;
4952 
4953 			/* We need to make sure head->next_sched is read
4954 			 * before clearing __QDISC_STATE_SCHED
4955 			 */
4956 			smp_mb__before_atomic();
4957 
4958 			if (!(q->flags & TCQ_F_NOLOCK)) {
4959 				root_lock = qdisc_lock(q);
4960 				spin_lock(root_lock);
4961 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4962 						     &q->state))) {
4963 				/* There is a synchronize_net() between
4964 				 * STATE_DEACTIVATED flag being set and
4965 				 * qdisc_reset()/some_qdisc_is_busy() in
4966 				 * dev_deactivate(), so we can safely bail out
4967 				 * early here to avoid data race between
4968 				 * qdisc_deactivate() and some_qdisc_is_busy()
4969 				 * for lockless qdisc.
4970 				 */
4971 				clear_bit(__QDISC_STATE_SCHED, &q->state);
4972 				continue;
4973 			}
4974 
4975 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4976 			qdisc_run(q);
4977 			if (root_lock)
4978 				spin_unlock(root_lock);
4979 		}
4980 
4981 		rcu_read_unlock();
4982 	}
4983 
4984 	xfrm_dev_backlog(sd);
4985 }
4986 
4987 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4988 /* This hook is defined here for ATM LANE */
4989 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4990 			     unsigned char *addr) __read_mostly;
4991 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4992 #endif
4993 
4994 static inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4995 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4996 		   struct net_device *orig_dev, bool *another)
4997 {
4998 #ifdef CONFIG_NET_CLS_ACT
4999 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5000 	struct tcf_result cl_res;
5001 
5002 	/* If there's at least one ingress present somewhere (so
5003 	 * we get here via enabled static key), remaining devices
5004 	 * that are not configured with an ingress qdisc will bail
5005 	 * out here.
5006 	 */
5007 	if (!miniq)
5008 		return skb;
5009 
5010 	if (*pt_prev) {
5011 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5012 		*pt_prev = NULL;
5013 	}
5014 
5015 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5016 	qdisc_skb_cb(skb)->mru = 0;
5017 	skb->tc_at_ingress = 1;
5018 	mini_qdisc_bstats_cpu_update(miniq, skb);
5019 
5020 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5021 				     &cl_res, false)) {
5022 	case TC_ACT_OK:
5023 	case TC_ACT_RECLASSIFY:
5024 		skb->tc_index = TC_H_MIN(cl_res.classid);
5025 		break;
5026 	case TC_ACT_SHOT:
5027 		mini_qdisc_qstats_cpu_drop(miniq);
5028 		kfree_skb(skb);
5029 		return NULL;
5030 	case TC_ACT_STOLEN:
5031 	case TC_ACT_QUEUED:
5032 	case TC_ACT_TRAP:
5033 		consume_skb(skb);
5034 		return NULL;
5035 	case TC_ACT_REDIRECT:
5036 		/* skb_mac_header check was done by cls/act_bpf, so
5037 		 * we can safely push the L2 header back before
5038 		 * redirecting to another netdev
5039 		 */
5040 		__skb_push(skb, skb->mac_len);
5041 		if (skb_do_redirect(skb) == -EAGAIN) {
5042 			__skb_pull(skb, skb->mac_len);
5043 			*another = true;
5044 			break;
5045 		}
5046 		return NULL;
5047 	case TC_ACT_CONSUMED:
5048 		return NULL;
5049 	default:
5050 		break;
5051 	}
5052 #endif /* CONFIG_NET_CLS_ACT */
5053 	return skb;
5054 }
5055 
5056 /**
5057  *	netdev_is_rx_handler_busy - check if receive handler is registered
5058  *	@dev: device to check
5059  *
5060  *	Check if a receive handler is already registered for a given device.
5061  *	Return true if there one.
5062  *
5063  *	The caller must hold the rtnl_mutex.
5064  */
netdev_is_rx_handler_busy(struct net_device * dev)5065 bool netdev_is_rx_handler_busy(struct net_device *dev)
5066 {
5067 	ASSERT_RTNL();
5068 	return dev && rtnl_dereference(dev->rx_handler);
5069 }
5070 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5071 
5072 /**
5073  *	netdev_rx_handler_register - register receive handler
5074  *	@dev: device to register a handler for
5075  *	@rx_handler: receive handler to register
5076  *	@rx_handler_data: data pointer that is used by rx handler
5077  *
5078  *	Register a receive handler for a device. This handler will then be
5079  *	called from __netif_receive_skb. A negative errno code is returned
5080  *	on a failure.
5081  *
5082  *	The caller must hold the rtnl_mutex.
5083  *
5084  *	For a general description of rx_handler, see enum rx_handler_result.
5085  */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5086 int netdev_rx_handler_register(struct net_device *dev,
5087 			       rx_handler_func_t *rx_handler,
5088 			       void *rx_handler_data)
5089 {
5090 	if (netdev_is_rx_handler_busy(dev))
5091 		return -EBUSY;
5092 
5093 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5094 		return -EINVAL;
5095 
5096 	/* Note: rx_handler_data must be set before rx_handler */
5097 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5098 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5099 
5100 	return 0;
5101 }
5102 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5103 
5104 /**
5105  *	netdev_rx_handler_unregister - unregister receive handler
5106  *	@dev: device to unregister a handler from
5107  *
5108  *	Unregister a receive handler from a device.
5109  *
5110  *	The caller must hold the rtnl_mutex.
5111  */
netdev_rx_handler_unregister(struct net_device * dev)5112 void netdev_rx_handler_unregister(struct net_device *dev)
5113 {
5114 
5115 	ASSERT_RTNL();
5116 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5117 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5118 	 * section has a guarantee to see a non NULL rx_handler_data
5119 	 * as well.
5120 	 */
5121 	synchronize_net();
5122 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5123 }
5124 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5125 
5126 /*
5127  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5128  * the special handling of PFMEMALLOC skbs.
5129  */
skb_pfmemalloc_protocol(struct sk_buff * skb)5130 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5131 {
5132 	switch (skb->protocol) {
5133 	case htons(ETH_P_ARP):
5134 	case htons(ETH_P_IP):
5135 	case htons(ETH_P_IPV6):
5136 	case htons(ETH_P_8021Q):
5137 	case htons(ETH_P_8021AD):
5138 		return true;
5139 	default:
5140 		return false;
5141 	}
5142 }
5143 
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5144 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5145 			     int *ret, struct net_device *orig_dev)
5146 {
5147 	if (nf_hook_ingress_active(skb)) {
5148 		int ingress_retval;
5149 
5150 		if (*pt_prev) {
5151 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5152 			*pt_prev = NULL;
5153 		}
5154 
5155 		rcu_read_lock();
5156 		ingress_retval = nf_hook_ingress(skb);
5157 		rcu_read_unlock();
5158 		return ingress_retval;
5159 	}
5160 	return 0;
5161 }
5162 
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5163 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5164 				    struct packet_type **ppt_prev)
5165 {
5166 	struct packet_type *ptype, *pt_prev;
5167 	rx_handler_func_t *rx_handler;
5168 	struct sk_buff *skb = *pskb;
5169 	struct net_device *orig_dev;
5170 	bool deliver_exact = false;
5171 	int ret = NET_RX_DROP;
5172 	__be16 type;
5173 
5174 	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5175 
5176 	trace_netif_receive_skb(skb);
5177 
5178 	orig_dev = skb->dev;
5179 
5180 	skb_reset_network_header(skb);
5181 	if (!skb_transport_header_was_set(skb))
5182 		skb_reset_transport_header(skb);
5183 	skb_reset_mac_len(skb);
5184 
5185 	pt_prev = NULL;
5186 
5187 another_round:
5188 	skb->skb_iif = skb->dev->ifindex;
5189 
5190 	__this_cpu_inc(softnet_data.processed);
5191 
5192 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5193 		int ret2;
5194 
5195 		preempt_disable();
5196 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5197 		preempt_enable();
5198 
5199 		if (ret2 != XDP_PASS) {
5200 			ret = NET_RX_DROP;
5201 			goto out;
5202 		}
5203 		skb_reset_mac_len(skb);
5204 	}
5205 
5206 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5207 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5208 		skb = skb_vlan_untag(skb);
5209 		if (unlikely(!skb))
5210 			goto out;
5211 	}
5212 
5213 	if (skb_skip_tc_classify(skb))
5214 		goto skip_classify;
5215 
5216 	if (pfmemalloc)
5217 		goto skip_taps;
5218 
5219 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5220 		if (pt_prev)
5221 			ret = deliver_skb(skb, pt_prev, orig_dev);
5222 		pt_prev = ptype;
5223 	}
5224 
5225 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5226 		if (pt_prev)
5227 			ret = deliver_skb(skb, pt_prev, orig_dev);
5228 		pt_prev = ptype;
5229 	}
5230 
5231 skip_taps:
5232 #ifdef CONFIG_NET_INGRESS
5233 	if (static_branch_unlikely(&ingress_needed_key)) {
5234 		bool another = false;
5235 
5236 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5237 					 &another);
5238 		if (another)
5239 			goto another_round;
5240 		if (!skb)
5241 			goto out;
5242 
5243 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5244 			goto out;
5245 	}
5246 #endif
5247 	skb_reset_redirect(skb);
5248 skip_classify:
5249 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5250 		goto drop;
5251 
5252 	if (skb_vlan_tag_present(skb)) {
5253 		if (pt_prev) {
5254 			ret = deliver_skb(skb, pt_prev, orig_dev);
5255 			pt_prev = NULL;
5256 		}
5257 		if (vlan_do_receive(&skb))
5258 			goto another_round;
5259 		else if (unlikely(!skb))
5260 			goto out;
5261 	}
5262 
5263 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5264 	if (rx_handler) {
5265 		if (pt_prev) {
5266 			ret = deliver_skb(skb, pt_prev, orig_dev);
5267 			pt_prev = NULL;
5268 		}
5269 		switch (rx_handler(&skb)) {
5270 		case RX_HANDLER_CONSUMED:
5271 			ret = NET_RX_SUCCESS;
5272 			goto out;
5273 		case RX_HANDLER_ANOTHER:
5274 			goto another_round;
5275 		case RX_HANDLER_EXACT:
5276 			deliver_exact = true;
5277 		case RX_HANDLER_PASS:
5278 			break;
5279 		default:
5280 			BUG();
5281 		}
5282 	}
5283 
5284 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5285 check_vlan_id:
5286 		if (skb_vlan_tag_get_id(skb)) {
5287 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5288 			 * find vlan device.
5289 			 */
5290 			skb->pkt_type = PACKET_OTHERHOST;
5291 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5292 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5293 			/* Outer header is 802.1P with vlan 0, inner header is
5294 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5295 			 * not find vlan dev for vlan id 0.
5296 			 */
5297 			__vlan_hwaccel_clear_tag(skb);
5298 			skb = skb_vlan_untag(skb);
5299 			if (unlikely(!skb))
5300 				goto out;
5301 			if (vlan_do_receive(&skb))
5302 				/* After stripping off 802.1P header with vlan 0
5303 				 * vlan dev is found for inner header.
5304 				 */
5305 				goto another_round;
5306 			else if (unlikely(!skb))
5307 				goto out;
5308 			else
5309 				/* We have stripped outer 802.1P vlan 0 header.
5310 				 * But could not find vlan dev.
5311 				 * check again for vlan id to set OTHERHOST.
5312 				 */
5313 				goto check_vlan_id;
5314 		}
5315 		/* Note: we might in the future use prio bits
5316 		 * and set skb->priority like in vlan_do_receive()
5317 		 * For the time being, just ignore Priority Code Point
5318 		 */
5319 		__vlan_hwaccel_clear_tag(skb);
5320 	}
5321 
5322 	type = skb->protocol;
5323 
5324 	/* deliver only exact match when indicated */
5325 	if (likely(!deliver_exact)) {
5326 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5327 				       &ptype_base[ntohs(type) &
5328 						   PTYPE_HASH_MASK]);
5329 	}
5330 
5331 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5332 			       &orig_dev->ptype_specific);
5333 
5334 	if (unlikely(skb->dev != orig_dev)) {
5335 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5336 				       &skb->dev->ptype_specific);
5337 	}
5338 
5339 	if (pt_prev) {
5340 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5341 			goto drop;
5342 		*ppt_prev = pt_prev;
5343 	} else {
5344 drop:
5345 		if (!deliver_exact)
5346 			atomic_long_inc(&skb->dev->rx_dropped);
5347 		else
5348 			atomic_long_inc(&skb->dev->rx_nohandler);
5349 		kfree_skb(skb);
5350 		/* Jamal, now you will not able to escape explaining
5351 		 * me how you were going to use this. :-)
5352 		 */
5353 		ret = NET_RX_DROP;
5354 	}
5355 
5356 out:
5357 	/* The invariant here is that if *ppt_prev is not NULL
5358 	 * then skb should also be non-NULL.
5359 	 *
5360 	 * Apparently *ppt_prev assignment above holds this invariant due to
5361 	 * skb dereferencing near it.
5362 	 */
5363 	*pskb = skb;
5364 	return ret;
5365 }
5366 
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5367 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5368 {
5369 	struct net_device *orig_dev = skb->dev;
5370 	struct packet_type *pt_prev = NULL;
5371 	int ret;
5372 
5373 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5374 	if (pt_prev)
5375 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5376 					 skb->dev, pt_prev, orig_dev);
5377 	return ret;
5378 }
5379 
5380 /**
5381  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5382  *	@skb: buffer to process
5383  *
5384  *	More direct receive version of netif_receive_skb().  It should
5385  *	only be used by callers that have a need to skip RPS and Generic XDP.
5386  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5387  *
5388  *	This function may only be called from softirq context and interrupts
5389  *	should be enabled.
5390  *
5391  *	Return values (usually ignored):
5392  *	NET_RX_SUCCESS: no congestion
5393  *	NET_RX_DROP: packet was dropped
5394  */
netif_receive_skb_core(struct sk_buff * skb)5395 int netif_receive_skb_core(struct sk_buff *skb)
5396 {
5397 	int ret;
5398 
5399 	rcu_read_lock();
5400 	ret = __netif_receive_skb_one_core(skb, false);
5401 	rcu_read_unlock();
5402 
5403 	return ret;
5404 }
5405 EXPORT_SYMBOL(netif_receive_skb_core);
5406 
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5407 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5408 						  struct packet_type *pt_prev,
5409 						  struct net_device *orig_dev)
5410 {
5411 	struct sk_buff *skb, *next;
5412 
5413 	if (!pt_prev)
5414 		return;
5415 	if (list_empty(head))
5416 		return;
5417 	if (pt_prev->list_func != NULL)
5418 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5419 				   ip_list_rcv, head, pt_prev, orig_dev);
5420 	else
5421 		list_for_each_entry_safe(skb, next, head, list) {
5422 			skb_list_del_init(skb);
5423 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5424 		}
5425 }
5426 
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5427 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5428 {
5429 	/* Fast-path assumptions:
5430 	 * - There is no RX handler.
5431 	 * - Only one packet_type matches.
5432 	 * If either of these fails, we will end up doing some per-packet
5433 	 * processing in-line, then handling the 'last ptype' for the whole
5434 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5435 	 * because the 'last ptype' must be constant across the sublist, and all
5436 	 * other ptypes are handled per-packet.
5437 	 */
5438 	/* Current (common) ptype of sublist */
5439 	struct packet_type *pt_curr = NULL;
5440 	/* Current (common) orig_dev of sublist */
5441 	struct net_device *od_curr = NULL;
5442 	struct list_head sublist;
5443 	struct sk_buff *skb, *next;
5444 
5445 	INIT_LIST_HEAD(&sublist);
5446 	list_for_each_entry_safe(skb, next, head, list) {
5447 		struct net_device *orig_dev = skb->dev;
5448 		struct packet_type *pt_prev = NULL;
5449 
5450 		skb_list_del_init(skb);
5451 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5452 		if (!pt_prev)
5453 			continue;
5454 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5455 			/* dispatch old sublist */
5456 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5457 			/* start new sublist */
5458 			INIT_LIST_HEAD(&sublist);
5459 			pt_curr = pt_prev;
5460 			od_curr = orig_dev;
5461 		}
5462 		list_add_tail(&skb->list, &sublist);
5463 	}
5464 
5465 	/* dispatch final sublist */
5466 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5467 }
5468 
__netif_receive_skb(struct sk_buff * skb)5469 static int __netif_receive_skb(struct sk_buff *skb)
5470 {
5471 	int ret;
5472 
5473 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5474 		unsigned int noreclaim_flag;
5475 
5476 		/*
5477 		 * PFMEMALLOC skbs are special, they should
5478 		 * - be delivered to SOCK_MEMALLOC sockets only
5479 		 * - stay away from userspace
5480 		 * - have bounded memory usage
5481 		 *
5482 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5483 		 * context down to all allocation sites.
5484 		 */
5485 		noreclaim_flag = memalloc_noreclaim_save();
5486 		ret = __netif_receive_skb_one_core(skb, true);
5487 		memalloc_noreclaim_restore(noreclaim_flag);
5488 	} else
5489 		ret = __netif_receive_skb_one_core(skb, false);
5490 
5491 	return ret;
5492 }
5493 
__netif_receive_skb_list(struct list_head * head)5494 static void __netif_receive_skb_list(struct list_head *head)
5495 {
5496 	unsigned long noreclaim_flag = 0;
5497 	struct sk_buff *skb, *next;
5498 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5499 
5500 	list_for_each_entry_safe(skb, next, head, list) {
5501 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5502 			struct list_head sublist;
5503 
5504 			/* Handle the previous sublist */
5505 			list_cut_before(&sublist, head, &skb->list);
5506 			if (!list_empty(&sublist))
5507 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5508 			pfmemalloc = !pfmemalloc;
5509 			/* See comments in __netif_receive_skb */
5510 			if (pfmemalloc)
5511 				noreclaim_flag = memalloc_noreclaim_save();
5512 			else
5513 				memalloc_noreclaim_restore(noreclaim_flag);
5514 		}
5515 	}
5516 	/* Handle the remaining sublist */
5517 	if (!list_empty(head))
5518 		__netif_receive_skb_list_core(head, pfmemalloc);
5519 	/* Restore pflags */
5520 	if (pfmemalloc)
5521 		memalloc_noreclaim_restore(noreclaim_flag);
5522 }
5523 
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5524 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5525 {
5526 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5527 	struct bpf_prog *new = xdp->prog;
5528 	int ret = 0;
5529 
5530 	if (new) {
5531 		u32 i;
5532 
5533 		mutex_lock(&new->aux->used_maps_mutex);
5534 
5535 		/* generic XDP does not work with DEVMAPs that can
5536 		 * have a bpf_prog installed on an entry
5537 		 */
5538 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5539 			if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5540 			    cpu_map_prog_allowed(new->aux->used_maps[i])) {
5541 				mutex_unlock(&new->aux->used_maps_mutex);
5542 				return -EINVAL;
5543 			}
5544 		}
5545 
5546 		mutex_unlock(&new->aux->used_maps_mutex);
5547 	}
5548 
5549 	switch (xdp->command) {
5550 	case XDP_SETUP_PROG:
5551 		rcu_assign_pointer(dev->xdp_prog, new);
5552 		if (old)
5553 			bpf_prog_put(old);
5554 
5555 		if (old && !new) {
5556 			static_branch_dec(&generic_xdp_needed_key);
5557 		} else if (new && !old) {
5558 			static_branch_inc(&generic_xdp_needed_key);
5559 			dev_disable_lro(dev);
5560 			dev_disable_gro_hw(dev);
5561 		}
5562 		break;
5563 
5564 	default:
5565 		ret = -EINVAL;
5566 		break;
5567 	}
5568 
5569 	return ret;
5570 }
5571 
netif_receive_skb_internal(struct sk_buff * skb)5572 static int netif_receive_skb_internal(struct sk_buff *skb)
5573 {
5574 	int ret;
5575 
5576 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5577 
5578 	if (skb_defer_rx_timestamp(skb))
5579 		return NET_RX_SUCCESS;
5580 
5581 	rcu_read_lock();
5582 #ifdef CONFIG_RPS
5583 	if (static_branch_unlikely(&rps_needed)) {
5584 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5585 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5586 
5587 		if (cpu >= 0) {
5588 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5589 			rcu_read_unlock();
5590 			return ret;
5591 		}
5592 	}
5593 #endif
5594 	ret = __netif_receive_skb(skb);
5595 	rcu_read_unlock();
5596 	return ret;
5597 }
5598 
netif_receive_skb_list_internal(struct list_head * head)5599 static void netif_receive_skb_list_internal(struct list_head *head)
5600 {
5601 	struct sk_buff *skb, *next;
5602 	struct list_head sublist;
5603 
5604 	INIT_LIST_HEAD(&sublist);
5605 	list_for_each_entry_safe(skb, next, head, list) {
5606 		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5607 		skb_list_del_init(skb);
5608 		if (!skb_defer_rx_timestamp(skb))
5609 			list_add_tail(&skb->list, &sublist);
5610 	}
5611 	list_splice_init(&sublist, head);
5612 
5613 	rcu_read_lock();
5614 #ifdef CONFIG_RPS
5615 	if (static_branch_unlikely(&rps_needed)) {
5616 		list_for_each_entry_safe(skb, next, head, list) {
5617 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5618 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5619 
5620 			if (cpu >= 0) {
5621 				/* Will be handled, remove from list */
5622 				skb_list_del_init(skb);
5623 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5624 			}
5625 		}
5626 	}
5627 #endif
5628 	__netif_receive_skb_list(head);
5629 	rcu_read_unlock();
5630 }
5631 
5632 /**
5633  *	netif_receive_skb - process receive buffer from network
5634  *	@skb: buffer to process
5635  *
5636  *	netif_receive_skb() is the main receive data processing function.
5637  *	It always succeeds. The buffer may be dropped during processing
5638  *	for congestion control or by the protocol layers.
5639  *
5640  *	This function may only be called from softirq context and interrupts
5641  *	should be enabled.
5642  *
5643  *	Return values (usually ignored):
5644  *	NET_RX_SUCCESS: no congestion
5645  *	NET_RX_DROP: packet was dropped
5646  */
netif_receive_skb(struct sk_buff * skb)5647 int netif_receive_skb(struct sk_buff *skb)
5648 {
5649 	int ret;
5650 
5651 	trace_netif_receive_skb_entry(skb);
5652 
5653 	ret = netif_receive_skb_internal(skb);
5654 	trace_netif_receive_skb_exit(ret);
5655 
5656 	return ret;
5657 }
5658 EXPORT_SYMBOL(netif_receive_skb);
5659 
5660 /**
5661  *	netif_receive_skb_list - process many receive buffers from network
5662  *	@head: list of skbs to process.
5663  *
5664  *	Since return value of netif_receive_skb() is normally ignored, and
5665  *	wouldn't be meaningful for a list, this function returns void.
5666  *
5667  *	This function may only be called from softirq context and interrupts
5668  *	should be enabled.
5669  */
netif_receive_skb_list(struct list_head * head)5670 void netif_receive_skb_list(struct list_head *head)
5671 {
5672 	struct sk_buff *skb;
5673 
5674 	if (list_empty(head))
5675 		return;
5676 	if (trace_netif_receive_skb_list_entry_enabled()) {
5677 		list_for_each_entry(skb, head, list)
5678 			trace_netif_receive_skb_list_entry(skb);
5679 	}
5680 	netif_receive_skb_list_internal(head);
5681 	trace_netif_receive_skb_list_exit(0);
5682 }
5683 EXPORT_SYMBOL(netif_receive_skb_list);
5684 
5685 static DEFINE_PER_CPU(struct work_struct, flush_works);
5686 
5687 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)5688 static void flush_backlog(struct work_struct *work)
5689 {
5690 	struct sk_buff *skb, *tmp;
5691 	struct softnet_data *sd;
5692 
5693 	local_bh_disable();
5694 	sd = this_cpu_ptr(&softnet_data);
5695 
5696 	local_irq_disable();
5697 	rps_lock(sd);
5698 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5699 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5700 			__skb_unlink(skb, &sd->input_pkt_queue);
5701 			dev_kfree_skb_irq(skb);
5702 			input_queue_head_incr(sd);
5703 		}
5704 	}
5705 	rps_unlock(sd);
5706 	local_irq_enable();
5707 
5708 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5709 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5710 			__skb_unlink(skb, &sd->process_queue);
5711 			kfree_skb(skb);
5712 			input_queue_head_incr(sd);
5713 		}
5714 	}
5715 	local_bh_enable();
5716 }
5717 
flush_required(int cpu)5718 static bool flush_required(int cpu)
5719 {
5720 #if IS_ENABLED(CONFIG_RPS)
5721 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5722 	bool do_flush;
5723 
5724 	local_irq_disable();
5725 	rps_lock(sd);
5726 
5727 	/* as insertion into process_queue happens with the rps lock held,
5728 	 * process_queue access may race only with dequeue
5729 	 */
5730 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5731 		   !skb_queue_empty_lockless(&sd->process_queue);
5732 	rps_unlock(sd);
5733 	local_irq_enable();
5734 
5735 	return do_flush;
5736 #endif
5737 	/* without RPS we can't safely check input_pkt_queue: during a
5738 	 * concurrent remote skb_queue_splice() we can detect as empty both
5739 	 * input_pkt_queue and process_queue even if the latter could end-up
5740 	 * containing a lot of packets.
5741 	 */
5742 	return true;
5743 }
5744 
flush_all_backlogs(void)5745 static void flush_all_backlogs(void)
5746 {
5747 	static cpumask_t flush_cpus;
5748 	unsigned int cpu;
5749 
5750 	/* since we are under rtnl lock protection we can use static data
5751 	 * for the cpumask and avoid allocating on stack the possibly
5752 	 * large mask
5753 	 */
5754 	ASSERT_RTNL();
5755 
5756 	get_online_cpus();
5757 
5758 	cpumask_clear(&flush_cpus);
5759 	for_each_online_cpu(cpu) {
5760 		if (flush_required(cpu)) {
5761 			queue_work_on(cpu, system_highpri_wq,
5762 				      per_cpu_ptr(&flush_works, cpu));
5763 			cpumask_set_cpu(cpu, &flush_cpus);
5764 		}
5765 	}
5766 
5767 	/* we can have in flight packet[s] on the cpus we are not flushing,
5768 	 * synchronize_net() in unregister_netdevice_many() will take care of
5769 	 * them
5770 	 */
5771 	for_each_cpu(cpu, &flush_cpus)
5772 		flush_work(per_cpu_ptr(&flush_works, cpu));
5773 
5774 	put_online_cpus();
5775 }
5776 
5777 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
gro_normal_list(struct napi_struct * napi)5778 static void gro_normal_list(struct napi_struct *napi)
5779 {
5780 	if (!napi->rx_count)
5781 		return;
5782 	netif_receive_skb_list_internal(&napi->rx_list);
5783 	INIT_LIST_HEAD(&napi->rx_list);
5784 	napi->rx_count = 0;
5785 }
5786 
5787 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5788  * pass the whole batch up to the stack.
5789  */
gro_normal_one(struct napi_struct * napi,struct sk_buff * skb,int segs)5790 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5791 {
5792 	list_add_tail(&skb->list, &napi->rx_list);
5793 	napi->rx_count += segs;
5794 	if (napi->rx_count >= gro_normal_batch)
5795 		gro_normal_list(napi);
5796 }
5797 
5798 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5799 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
napi_gro_complete(struct napi_struct * napi,struct sk_buff * skb)5800 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5801 {
5802 	struct packet_offload *ptype;
5803 	__be16 type = skb->protocol;
5804 	struct list_head *head = &offload_base;
5805 	int err = -ENOENT;
5806 
5807 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5808 
5809 	if (NAPI_GRO_CB(skb)->count == 1) {
5810 		skb_shinfo(skb)->gso_size = 0;
5811 		goto out;
5812 	}
5813 
5814 	rcu_read_lock();
5815 	list_for_each_entry_rcu(ptype, head, list) {
5816 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5817 			continue;
5818 
5819 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5820 					 ipv6_gro_complete, inet_gro_complete,
5821 					 skb, 0);
5822 		break;
5823 	}
5824 	rcu_read_unlock();
5825 
5826 	if (err) {
5827 		WARN_ON(&ptype->list == head);
5828 		kfree_skb(skb);
5829 		return NET_RX_SUCCESS;
5830 	}
5831 
5832 out:
5833 	gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5834 	return NET_RX_SUCCESS;
5835 }
5836 
__napi_gro_flush_chain(struct napi_struct * napi,u32 index,bool flush_old)5837 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5838 				   bool flush_old)
5839 {
5840 	struct list_head *head = &napi->gro_hash[index].list;
5841 	struct sk_buff *skb, *p;
5842 
5843 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5844 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5845 			return;
5846 		skb_list_del_init(skb);
5847 		napi_gro_complete(napi, skb);
5848 		napi->gro_hash[index].count--;
5849 	}
5850 
5851 	if (!napi->gro_hash[index].count)
5852 		__clear_bit(index, &napi->gro_bitmask);
5853 }
5854 
5855 /* napi->gro_hash[].list contains packets ordered by age.
5856  * youngest packets at the head of it.
5857  * Complete skbs in reverse order to reduce latencies.
5858  */
napi_gro_flush(struct napi_struct * napi,bool flush_old)5859 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5860 {
5861 	unsigned long bitmask = napi->gro_bitmask;
5862 	unsigned int i, base = ~0U;
5863 
5864 	while ((i = ffs(bitmask)) != 0) {
5865 		bitmask >>= i;
5866 		base += i;
5867 		__napi_gro_flush_chain(napi, base, flush_old);
5868 	}
5869 }
5870 EXPORT_SYMBOL(napi_gro_flush);
5871 
gro_list_prepare(struct napi_struct * napi,struct sk_buff * skb)5872 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5873 					  struct sk_buff *skb)
5874 {
5875 	unsigned int maclen = skb->dev->hard_header_len;
5876 	u32 hash = skb_get_hash_raw(skb);
5877 	struct list_head *head;
5878 	struct sk_buff *p;
5879 
5880 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5881 	list_for_each_entry(p, head, list) {
5882 		unsigned long diffs;
5883 
5884 		NAPI_GRO_CB(p)->flush = 0;
5885 
5886 		if (hash != skb_get_hash_raw(p)) {
5887 			NAPI_GRO_CB(p)->same_flow = 0;
5888 			continue;
5889 		}
5890 
5891 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5892 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5893 		if (skb_vlan_tag_present(p))
5894 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5895 		diffs |= skb_metadata_dst_cmp(p, skb);
5896 		diffs |= skb_metadata_differs(p, skb);
5897 		if (maclen == ETH_HLEN)
5898 			diffs |= compare_ether_header(skb_mac_header(p),
5899 						      skb_mac_header(skb));
5900 		else if (!diffs)
5901 			diffs = memcmp(skb_mac_header(p),
5902 				       skb_mac_header(skb),
5903 				       maclen);
5904 
5905 		diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5906 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5907 		if (!diffs) {
5908 			struct tc_skb_ext *skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5909 			struct tc_skb_ext *p_ext = skb_ext_find(p, TC_SKB_EXT);
5910 
5911 			diffs |= (!!p_ext) ^ (!!skb_ext);
5912 			if (!diffs && unlikely(skb_ext))
5913 				diffs |= p_ext->chain ^ skb_ext->chain;
5914 		}
5915 #endif
5916 
5917 		NAPI_GRO_CB(p)->same_flow = !diffs;
5918 	}
5919 
5920 	return head;
5921 }
5922 
skb_gro_reset_offset(struct sk_buff * skb,u32 nhoff)5923 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5924 {
5925 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5926 	const skb_frag_t *frag0 = &pinfo->frags[0];
5927 
5928 	NAPI_GRO_CB(skb)->data_offset = 0;
5929 	NAPI_GRO_CB(skb)->frag0 = NULL;
5930 	NAPI_GRO_CB(skb)->frag0_len = 0;
5931 
5932 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5933 	    !PageHighMem(skb_frag_page(frag0)) &&
5934 	    (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
5935 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5936 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5937 						    skb_frag_size(frag0),
5938 						    skb->end - skb->tail);
5939 	}
5940 }
5941 
gro_pull_from_frag0(struct sk_buff * skb,int grow)5942 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5943 {
5944 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5945 
5946 	BUG_ON(skb->end - skb->tail < grow);
5947 
5948 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5949 
5950 	skb->data_len -= grow;
5951 	skb->tail += grow;
5952 
5953 	skb_frag_off_add(&pinfo->frags[0], grow);
5954 	skb_frag_size_sub(&pinfo->frags[0], grow);
5955 
5956 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5957 		skb_frag_unref(skb, 0);
5958 		memmove(pinfo->frags, pinfo->frags + 1,
5959 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5960 	}
5961 }
5962 
gro_flush_oldest(struct napi_struct * napi,struct list_head * head)5963 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5964 {
5965 	struct sk_buff *oldest;
5966 
5967 	oldest = list_last_entry(head, struct sk_buff, list);
5968 
5969 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5970 	 * impossible.
5971 	 */
5972 	if (WARN_ON_ONCE(!oldest))
5973 		return;
5974 
5975 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5976 	 * SKB to the chain.
5977 	 */
5978 	skb_list_del_init(oldest);
5979 	napi_gro_complete(napi, oldest);
5980 }
5981 
5982 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5983 							   struct sk_buff *));
5984 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5985 							   struct sk_buff *));
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)5986 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5987 {
5988 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5989 	struct list_head *head = &offload_base;
5990 	struct packet_offload *ptype;
5991 	__be16 type = skb->protocol;
5992 	struct list_head *gro_head;
5993 	struct sk_buff *pp = NULL;
5994 	enum gro_result ret;
5995 	int same_flow;
5996 	int grow;
5997 
5998 	if (netif_elide_gro(skb->dev))
5999 		goto normal;
6000 
6001 	gro_head = gro_list_prepare(napi, skb);
6002 
6003 	rcu_read_lock();
6004 	list_for_each_entry_rcu(ptype, head, list) {
6005 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6006 			continue;
6007 
6008 		skb_set_network_header(skb, skb_gro_offset(skb));
6009 		skb_reset_mac_len(skb);
6010 		NAPI_GRO_CB(skb)->same_flow = 0;
6011 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6012 		NAPI_GRO_CB(skb)->free = 0;
6013 		NAPI_GRO_CB(skb)->encap_mark = 0;
6014 		NAPI_GRO_CB(skb)->recursion_counter = 0;
6015 		NAPI_GRO_CB(skb)->is_fou = 0;
6016 		NAPI_GRO_CB(skb)->is_atomic = 1;
6017 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6018 
6019 		/* Setup for GRO checksum validation */
6020 		switch (skb->ip_summed) {
6021 		case CHECKSUM_COMPLETE:
6022 			NAPI_GRO_CB(skb)->csum = skb->csum;
6023 			NAPI_GRO_CB(skb)->csum_valid = 1;
6024 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6025 			break;
6026 		case CHECKSUM_UNNECESSARY:
6027 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6028 			NAPI_GRO_CB(skb)->csum_valid = 0;
6029 			break;
6030 		default:
6031 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6032 			NAPI_GRO_CB(skb)->csum_valid = 0;
6033 		}
6034 
6035 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6036 					ipv6_gro_receive, inet_gro_receive,
6037 					gro_head, skb);
6038 		break;
6039 	}
6040 	rcu_read_unlock();
6041 
6042 	if (&ptype->list == head)
6043 		goto normal;
6044 
6045 	if (PTR_ERR(pp) == -EINPROGRESS) {
6046 		ret = GRO_CONSUMED;
6047 		goto ok;
6048 	}
6049 
6050 	same_flow = NAPI_GRO_CB(skb)->same_flow;
6051 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6052 
6053 	if (pp) {
6054 		skb_list_del_init(pp);
6055 		napi_gro_complete(napi, pp);
6056 		napi->gro_hash[hash].count--;
6057 	}
6058 
6059 	if (same_flow)
6060 		goto ok;
6061 
6062 	if (NAPI_GRO_CB(skb)->flush)
6063 		goto normal;
6064 
6065 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
6066 		gro_flush_oldest(napi, gro_head);
6067 	} else {
6068 		napi->gro_hash[hash].count++;
6069 	}
6070 	NAPI_GRO_CB(skb)->count = 1;
6071 	NAPI_GRO_CB(skb)->age = jiffies;
6072 	NAPI_GRO_CB(skb)->last = skb;
6073 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6074 	list_add(&skb->list, gro_head);
6075 	ret = GRO_HELD;
6076 
6077 pull:
6078 	grow = skb_gro_offset(skb) - skb_headlen(skb);
6079 	if (grow > 0)
6080 		gro_pull_from_frag0(skb, grow);
6081 ok:
6082 	if (napi->gro_hash[hash].count) {
6083 		if (!test_bit(hash, &napi->gro_bitmask))
6084 			__set_bit(hash, &napi->gro_bitmask);
6085 	} else if (test_bit(hash, &napi->gro_bitmask)) {
6086 		__clear_bit(hash, &napi->gro_bitmask);
6087 	}
6088 
6089 	return ret;
6090 
6091 normal:
6092 	ret = GRO_NORMAL;
6093 	goto pull;
6094 }
6095 
gro_find_receive_by_type(__be16 type)6096 struct packet_offload *gro_find_receive_by_type(__be16 type)
6097 {
6098 	struct list_head *offload_head = &offload_base;
6099 	struct packet_offload *ptype;
6100 
6101 	list_for_each_entry_rcu(ptype, offload_head, list) {
6102 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6103 			continue;
6104 		return ptype;
6105 	}
6106 	return NULL;
6107 }
6108 EXPORT_SYMBOL(gro_find_receive_by_type);
6109 
gro_find_complete_by_type(__be16 type)6110 struct packet_offload *gro_find_complete_by_type(__be16 type)
6111 {
6112 	struct list_head *offload_head = &offload_base;
6113 	struct packet_offload *ptype;
6114 
6115 	list_for_each_entry_rcu(ptype, offload_head, list) {
6116 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6117 			continue;
6118 		return ptype;
6119 	}
6120 	return NULL;
6121 }
6122 EXPORT_SYMBOL(gro_find_complete_by_type);
6123 
napi_skb_free_stolen_head(struct sk_buff * skb)6124 static void napi_skb_free_stolen_head(struct sk_buff *skb)
6125 {
6126 	nf_reset_ct(skb);
6127 	skb_dst_drop(skb);
6128 	skb_ext_put(skb);
6129 	kmem_cache_free(skbuff_head_cache, skb);
6130 }
6131 
napi_skb_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)6132 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6133 				    struct sk_buff *skb,
6134 				    gro_result_t ret)
6135 {
6136 	switch (ret) {
6137 	case GRO_NORMAL:
6138 		gro_normal_one(napi, skb, 1);
6139 		break;
6140 
6141 	case GRO_DROP:
6142 		kfree_skb(skb);
6143 		break;
6144 
6145 	case GRO_MERGED_FREE:
6146 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6147 			napi_skb_free_stolen_head(skb);
6148 		else
6149 			__kfree_skb(skb);
6150 		break;
6151 
6152 	case GRO_HELD:
6153 	case GRO_MERGED:
6154 	case GRO_CONSUMED:
6155 		break;
6156 	}
6157 
6158 	return ret;
6159 }
6160 
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)6161 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6162 {
6163 	gro_result_t ret;
6164 
6165 	skb_mark_napi_id(skb, napi);
6166 	trace_napi_gro_receive_entry(skb);
6167 
6168 	skb_gro_reset_offset(skb, 0);
6169 
6170 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6171 	trace_napi_gro_receive_exit(ret);
6172 
6173 	return ret;
6174 }
6175 EXPORT_SYMBOL(napi_gro_receive);
6176 
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)6177 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6178 {
6179 	if (unlikely(skb->pfmemalloc)) {
6180 		consume_skb(skb);
6181 		return;
6182 	}
6183 	__skb_pull(skb, skb_headlen(skb));
6184 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6185 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6186 	__vlan_hwaccel_clear_tag(skb);
6187 	skb->dev = napi->dev;
6188 	skb->skb_iif = 0;
6189 
6190 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6191 	skb->pkt_type = PACKET_HOST;
6192 
6193 	skb->encapsulation = 0;
6194 	skb_shinfo(skb)->gso_type = 0;
6195 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6196 	skb_ext_reset(skb);
6197 	nf_reset_ct(skb);
6198 
6199 	napi->skb = skb;
6200 }
6201 
napi_get_frags(struct napi_struct * napi)6202 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6203 {
6204 	struct sk_buff *skb = napi->skb;
6205 
6206 	if (!skb) {
6207 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6208 		if (skb) {
6209 			napi->skb = skb;
6210 			skb_mark_napi_id(skb, napi);
6211 		}
6212 	}
6213 	return skb;
6214 }
6215 EXPORT_SYMBOL(napi_get_frags);
6216 
napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)6217 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6218 				      struct sk_buff *skb,
6219 				      gro_result_t ret)
6220 {
6221 	switch (ret) {
6222 	case GRO_NORMAL:
6223 	case GRO_HELD:
6224 		__skb_push(skb, ETH_HLEN);
6225 		skb->protocol = eth_type_trans(skb, skb->dev);
6226 		if (ret == GRO_NORMAL)
6227 			gro_normal_one(napi, skb, 1);
6228 		break;
6229 
6230 	case GRO_DROP:
6231 		napi_reuse_skb(napi, skb);
6232 		break;
6233 
6234 	case GRO_MERGED_FREE:
6235 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6236 			napi_skb_free_stolen_head(skb);
6237 		else
6238 			napi_reuse_skb(napi, skb);
6239 		break;
6240 
6241 	case GRO_MERGED:
6242 	case GRO_CONSUMED:
6243 		break;
6244 	}
6245 
6246 	return ret;
6247 }
6248 
6249 /* Upper GRO stack assumes network header starts at gro_offset=0
6250  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6251  * We copy ethernet header into skb->data to have a common layout.
6252  */
napi_frags_skb(struct napi_struct * napi)6253 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6254 {
6255 	struct sk_buff *skb = napi->skb;
6256 	const struct ethhdr *eth;
6257 	unsigned int hlen = sizeof(*eth);
6258 
6259 	napi->skb = NULL;
6260 
6261 	skb_reset_mac_header(skb);
6262 	skb_gro_reset_offset(skb, hlen);
6263 
6264 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6265 		eth = skb_gro_header_slow(skb, hlen, 0);
6266 		if (unlikely(!eth)) {
6267 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6268 					     __func__, napi->dev->name);
6269 			napi_reuse_skb(napi, skb);
6270 			return NULL;
6271 		}
6272 	} else {
6273 		eth = (const struct ethhdr *)skb->data;
6274 		gro_pull_from_frag0(skb, hlen);
6275 		NAPI_GRO_CB(skb)->frag0 += hlen;
6276 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6277 	}
6278 	__skb_pull(skb, hlen);
6279 
6280 	/*
6281 	 * This works because the only protocols we care about don't require
6282 	 * special handling.
6283 	 * We'll fix it up properly in napi_frags_finish()
6284 	 */
6285 	skb->protocol = eth->h_proto;
6286 
6287 	return skb;
6288 }
6289 
napi_gro_frags(struct napi_struct * napi)6290 gro_result_t napi_gro_frags(struct napi_struct *napi)
6291 {
6292 	gro_result_t ret;
6293 	struct sk_buff *skb = napi_frags_skb(napi);
6294 
6295 	if (!skb)
6296 		return GRO_DROP;
6297 
6298 	trace_napi_gro_frags_entry(skb);
6299 
6300 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6301 	trace_napi_gro_frags_exit(ret);
6302 
6303 	return ret;
6304 }
6305 EXPORT_SYMBOL(napi_gro_frags);
6306 
6307 /* Compute the checksum from gro_offset and return the folded value
6308  * after adding in any pseudo checksum.
6309  */
__skb_gro_checksum_complete(struct sk_buff * skb)6310 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6311 {
6312 	__wsum wsum;
6313 	__sum16 sum;
6314 
6315 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6316 
6317 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6318 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6319 	/* See comments in __skb_checksum_complete(). */
6320 	if (likely(!sum)) {
6321 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6322 		    !skb->csum_complete_sw)
6323 			netdev_rx_csum_fault(skb->dev, skb);
6324 	}
6325 
6326 	NAPI_GRO_CB(skb)->csum = wsum;
6327 	NAPI_GRO_CB(skb)->csum_valid = 1;
6328 
6329 	return sum;
6330 }
6331 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6332 
net_rps_send_ipi(struct softnet_data * remsd)6333 static void net_rps_send_ipi(struct softnet_data *remsd)
6334 {
6335 #ifdef CONFIG_RPS
6336 	while (remsd) {
6337 		struct softnet_data *next = remsd->rps_ipi_next;
6338 
6339 		if (cpu_online(remsd->cpu))
6340 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6341 		remsd = next;
6342 	}
6343 #endif
6344 }
6345 
6346 /*
6347  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6348  * Note: called with local irq disabled, but exits with local irq enabled.
6349  */
net_rps_action_and_irq_enable(struct softnet_data * sd)6350 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6351 {
6352 #ifdef CONFIG_RPS
6353 	struct softnet_data *remsd = sd->rps_ipi_list;
6354 
6355 	if (remsd) {
6356 		sd->rps_ipi_list = NULL;
6357 
6358 		local_irq_enable();
6359 
6360 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6361 		net_rps_send_ipi(remsd);
6362 	} else
6363 #endif
6364 		local_irq_enable();
6365 }
6366 
sd_has_rps_ipi_waiting(struct softnet_data * sd)6367 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6368 {
6369 #ifdef CONFIG_RPS
6370 	return sd->rps_ipi_list != NULL;
6371 #else
6372 	return false;
6373 #endif
6374 }
6375 
process_backlog(struct napi_struct * napi,int quota)6376 static int process_backlog(struct napi_struct *napi, int quota)
6377 {
6378 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6379 	bool again = true;
6380 	int work = 0;
6381 
6382 	/* Check if we have pending ipi, its better to send them now,
6383 	 * not waiting net_rx_action() end.
6384 	 */
6385 	if (sd_has_rps_ipi_waiting(sd)) {
6386 		local_irq_disable();
6387 		net_rps_action_and_irq_enable(sd);
6388 	}
6389 
6390 	napi->weight = READ_ONCE(dev_rx_weight);
6391 	while (again) {
6392 		struct sk_buff *skb;
6393 
6394 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6395 			rcu_read_lock();
6396 			__netif_receive_skb(skb);
6397 			rcu_read_unlock();
6398 			input_queue_head_incr(sd);
6399 			if (++work >= quota)
6400 				return work;
6401 
6402 		}
6403 
6404 		local_irq_disable();
6405 		rps_lock(sd);
6406 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6407 			/*
6408 			 * Inline a custom version of __napi_complete().
6409 			 * only current cpu owns and manipulates this napi,
6410 			 * and NAPI_STATE_SCHED is the only possible flag set
6411 			 * on backlog.
6412 			 * We can use a plain write instead of clear_bit(),
6413 			 * and we dont need an smp_mb() memory barrier.
6414 			 */
6415 			napi->state = 0;
6416 			again = false;
6417 		} else {
6418 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6419 						   &sd->process_queue);
6420 		}
6421 		rps_unlock(sd);
6422 		local_irq_enable();
6423 	}
6424 
6425 	return work;
6426 }
6427 
6428 /**
6429  * __napi_schedule - schedule for receive
6430  * @n: entry to schedule
6431  *
6432  * The entry's receive function will be scheduled to run.
6433  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6434  */
__napi_schedule(struct napi_struct * n)6435 void __napi_schedule(struct napi_struct *n)
6436 {
6437 	unsigned long flags;
6438 
6439 	local_irq_save(flags);
6440 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6441 	local_irq_restore(flags);
6442 }
6443 EXPORT_SYMBOL(__napi_schedule);
6444 
6445 /**
6446  *	napi_schedule_prep - check if napi can be scheduled
6447  *	@n: napi context
6448  *
6449  * Test if NAPI routine is already running, and if not mark
6450  * it as running.  This is used as a condition variable to
6451  * insure only one NAPI poll instance runs.  We also make
6452  * sure there is no pending NAPI disable.
6453  */
napi_schedule_prep(struct napi_struct * n)6454 bool napi_schedule_prep(struct napi_struct *n)
6455 {
6456 	unsigned long val, new;
6457 
6458 	do {
6459 		val = READ_ONCE(n->state);
6460 		if (unlikely(val & NAPIF_STATE_DISABLE))
6461 			return false;
6462 		new = val | NAPIF_STATE_SCHED;
6463 
6464 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6465 		 * This was suggested by Alexander Duyck, as compiler
6466 		 * emits better code than :
6467 		 * if (val & NAPIF_STATE_SCHED)
6468 		 *     new |= NAPIF_STATE_MISSED;
6469 		 */
6470 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6471 						   NAPIF_STATE_MISSED;
6472 	} while (cmpxchg(&n->state, val, new) != val);
6473 
6474 	return !(val & NAPIF_STATE_SCHED);
6475 }
6476 EXPORT_SYMBOL(napi_schedule_prep);
6477 
6478 /**
6479  * __napi_schedule_irqoff - schedule for receive
6480  * @n: entry to schedule
6481  *
6482  * Variant of __napi_schedule() assuming hard irqs are masked.
6483  *
6484  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6485  * because the interrupt disabled assumption might not be true
6486  * due to force-threaded interrupts and spinlock substitution.
6487  */
__napi_schedule_irqoff(struct napi_struct * n)6488 void __napi_schedule_irqoff(struct napi_struct *n)
6489 {
6490 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6491 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6492 	else
6493 		__napi_schedule(n);
6494 }
6495 EXPORT_SYMBOL(__napi_schedule_irqoff);
6496 
napi_complete_done(struct napi_struct * n,int work_done)6497 bool napi_complete_done(struct napi_struct *n, int work_done)
6498 {
6499 	unsigned long flags, val, new, timeout = 0;
6500 	bool ret = true;
6501 
6502 	/*
6503 	 * 1) Don't let napi dequeue from the cpu poll list
6504 	 *    just in case its running on a different cpu.
6505 	 * 2) If we are busy polling, do nothing here, we have
6506 	 *    the guarantee we will be called later.
6507 	 */
6508 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6509 				 NAPIF_STATE_IN_BUSY_POLL)))
6510 		return false;
6511 
6512 	if (work_done) {
6513 		if (n->gro_bitmask)
6514 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6515 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6516 	}
6517 	if (n->defer_hard_irqs_count > 0) {
6518 		n->defer_hard_irqs_count--;
6519 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6520 		if (timeout)
6521 			ret = false;
6522 	}
6523 	if (n->gro_bitmask) {
6524 		/* When the NAPI instance uses a timeout and keeps postponing
6525 		 * it, we need to bound somehow the time packets are kept in
6526 		 * the GRO layer
6527 		 */
6528 		napi_gro_flush(n, !!timeout);
6529 	}
6530 
6531 	gro_normal_list(n);
6532 
6533 	if (unlikely(!list_empty(&n->poll_list))) {
6534 		/* If n->poll_list is not empty, we need to mask irqs */
6535 		local_irq_save(flags);
6536 		list_del_init(&n->poll_list);
6537 		local_irq_restore(flags);
6538 	}
6539 
6540 	do {
6541 		val = READ_ONCE(n->state);
6542 
6543 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6544 
6545 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6546 
6547 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6548 		 * because we will call napi->poll() one more time.
6549 		 * This C code was suggested by Alexander Duyck to help gcc.
6550 		 */
6551 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6552 						    NAPIF_STATE_SCHED;
6553 	} while (cmpxchg(&n->state, val, new) != val);
6554 
6555 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6556 		__napi_schedule(n);
6557 		return false;
6558 	}
6559 
6560 	if (timeout)
6561 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6562 			      HRTIMER_MODE_REL_PINNED);
6563 	return ret;
6564 }
6565 EXPORT_SYMBOL(napi_complete_done);
6566 
6567 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)6568 static struct napi_struct *napi_by_id(unsigned int napi_id)
6569 {
6570 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6571 	struct napi_struct *napi;
6572 
6573 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6574 		if (napi->napi_id == napi_id)
6575 			return napi;
6576 
6577 	return NULL;
6578 }
6579 
6580 #if defined(CONFIG_NET_RX_BUSY_POLL)
6581 
6582 #define BUSY_POLL_BUDGET 8
6583 
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock)6584 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6585 {
6586 	int rc;
6587 
6588 	/* Busy polling means there is a high chance device driver hard irq
6589 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6590 	 * set in napi_schedule_prep().
6591 	 * Since we are about to call napi->poll() once more, we can safely
6592 	 * clear NAPI_STATE_MISSED.
6593 	 *
6594 	 * Note: x86 could use a single "lock and ..." instruction
6595 	 * to perform these two clear_bit()
6596 	 */
6597 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6598 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6599 
6600 	local_bh_disable();
6601 
6602 	/* All we really want here is to re-enable device interrupts.
6603 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6604 	 */
6605 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6606 	/* We can't gro_normal_list() here, because napi->poll() might have
6607 	 * rearmed the napi (napi_complete_done()) in which case it could
6608 	 * already be running on another CPU.
6609 	 */
6610 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6611 	netpoll_poll_unlock(have_poll_lock);
6612 	if (rc == BUSY_POLL_BUDGET) {
6613 		/* As the whole budget was spent, we still own the napi so can
6614 		 * safely handle the rx_list.
6615 		 */
6616 		gro_normal_list(napi);
6617 		__napi_schedule(napi);
6618 	}
6619 	local_bh_enable();
6620 }
6621 
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg)6622 void napi_busy_loop(unsigned int napi_id,
6623 		    bool (*loop_end)(void *, unsigned long),
6624 		    void *loop_end_arg)
6625 {
6626 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6627 	int (*napi_poll)(struct napi_struct *napi, int budget);
6628 	void *have_poll_lock = NULL;
6629 	struct napi_struct *napi;
6630 
6631 restart:
6632 	napi_poll = NULL;
6633 
6634 	rcu_read_lock();
6635 
6636 	napi = napi_by_id(napi_id);
6637 	if (!napi)
6638 		goto out;
6639 
6640 	preempt_disable();
6641 	for (;;) {
6642 		int work = 0;
6643 
6644 		local_bh_disable();
6645 		if (!napi_poll) {
6646 			unsigned long val = READ_ONCE(napi->state);
6647 
6648 			/* If multiple threads are competing for this napi,
6649 			 * we avoid dirtying napi->state as much as we can.
6650 			 */
6651 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6652 				   NAPIF_STATE_IN_BUSY_POLL))
6653 				goto count;
6654 			if (cmpxchg(&napi->state, val,
6655 				    val | NAPIF_STATE_IN_BUSY_POLL |
6656 					  NAPIF_STATE_SCHED) != val)
6657 				goto count;
6658 			have_poll_lock = netpoll_poll_lock(napi);
6659 			napi_poll = napi->poll;
6660 		}
6661 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6662 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6663 		gro_normal_list(napi);
6664 count:
6665 		if (work > 0)
6666 			__NET_ADD_STATS(dev_net(napi->dev),
6667 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6668 		local_bh_enable();
6669 
6670 		if (!loop_end || loop_end(loop_end_arg, start_time))
6671 			break;
6672 
6673 		if (unlikely(need_resched())) {
6674 			if (napi_poll)
6675 				busy_poll_stop(napi, have_poll_lock);
6676 			preempt_enable();
6677 			rcu_read_unlock();
6678 			cond_resched();
6679 			if (loop_end(loop_end_arg, start_time))
6680 				return;
6681 			goto restart;
6682 		}
6683 		cpu_relax();
6684 	}
6685 	if (napi_poll)
6686 		busy_poll_stop(napi, have_poll_lock);
6687 	preempt_enable();
6688 out:
6689 	rcu_read_unlock();
6690 }
6691 EXPORT_SYMBOL(napi_busy_loop);
6692 
6693 #endif /* CONFIG_NET_RX_BUSY_POLL */
6694 
napi_hash_add(struct napi_struct * napi)6695 static void napi_hash_add(struct napi_struct *napi)
6696 {
6697 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6698 		return;
6699 
6700 	spin_lock(&napi_hash_lock);
6701 
6702 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6703 	do {
6704 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6705 			napi_gen_id = MIN_NAPI_ID;
6706 	} while (napi_by_id(napi_gen_id));
6707 	napi->napi_id = napi_gen_id;
6708 
6709 	hlist_add_head_rcu(&napi->napi_hash_node,
6710 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6711 
6712 	spin_unlock(&napi_hash_lock);
6713 }
6714 
6715 /* Warning : caller is responsible to make sure rcu grace period
6716  * is respected before freeing memory containing @napi
6717  */
napi_hash_del(struct napi_struct * napi)6718 static void napi_hash_del(struct napi_struct *napi)
6719 {
6720 	spin_lock(&napi_hash_lock);
6721 
6722 	hlist_del_init_rcu(&napi->napi_hash_node);
6723 
6724 	spin_unlock(&napi_hash_lock);
6725 }
6726 
napi_watchdog(struct hrtimer * timer)6727 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6728 {
6729 	struct napi_struct *napi;
6730 
6731 	napi = container_of(timer, struct napi_struct, timer);
6732 
6733 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6734 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6735 	 */
6736 	if (!napi_disable_pending(napi) &&
6737 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6738 		__napi_schedule_irqoff(napi);
6739 
6740 	return HRTIMER_NORESTART;
6741 }
6742 
init_gro_hash(struct napi_struct * napi)6743 static void init_gro_hash(struct napi_struct *napi)
6744 {
6745 	int i;
6746 
6747 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6748 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6749 		napi->gro_hash[i].count = 0;
6750 	}
6751 	napi->gro_bitmask = 0;
6752 }
6753 
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6754 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6755 		    int (*poll)(struct napi_struct *, int), int weight)
6756 {
6757 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6758 		return;
6759 
6760 	INIT_LIST_HEAD(&napi->poll_list);
6761 	INIT_HLIST_NODE(&napi->napi_hash_node);
6762 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6763 	napi->timer.function = napi_watchdog;
6764 	init_gro_hash(napi);
6765 	napi->skb = NULL;
6766 	INIT_LIST_HEAD(&napi->rx_list);
6767 	napi->rx_count = 0;
6768 	napi->poll = poll;
6769 	if (weight > NAPI_POLL_WEIGHT)
6770 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6771 				weight);
6772 	napi->weight = weight;
6773 	napi->dev = dev;
6774 #ifdef CONFIG_NETPOLL
6775 	napi->poll_owner = -1;
6776 #endif
6777 	set_bit(NAPI_STATE_SCHED, &napi->state);
6778 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6779 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6780 	napi_hash_add(napi);
6781 }
6782 EXPORT_SYMBOL(netif_napi_add);
6783 
napi_disable(struct napi_struct * n)6784 void napi_disable(struct napi_struct *n)
6785 {
6786 	might_sleep();
6787 	set_bit(NAPI_STATE_DISABLE, &n->state);
6788 
6789 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6790 		msleep(1);
6791 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6792 		msleep(1);
6793 
6794 	hrtimer_cancel(&n->timer);
6795 
6796 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6797 }
6798 EXPORT_SYMBOL(napi_disable);
6799 
flush_gro_hash(struct napi_struct * napi)6800 static void flush_gro_hash(struct napi_struct *napi)
6801 {
6802 	int i;
6803 
6804 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6805 		struct sk_buff *skb, *n;
6806 
6807 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6808 			kfree_skb(skb);
6809 		napi->gro_hash[i].count = 0;
6810 	}
6811 }
6812 
6813 /* Must be called in process context */
__netif_napi_del(struct napi_struct * napi)6814 void __netif_napi_del(struct napi_struct *napi)
6815 {
6816 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6817 		return;
6818 
6819 	napi_hash_del(napi);
6820 	list_del_rcu(&napi->dev_list);
6821 	napi_free_frags(napi);
6822 
6823 	flush_gro_hash(napi);
6824 	napi->gro_bitmask = 0;
6825 }
6826 EXPORT_SYMBOL(__netif_napi_del);
6827 
napi_poll(struct napi_struct * n,struct list_head * repoll)6828 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6829 {
6830 	void *have;
6831 	int work, weight;
6832 
6833 	list_del_init(&n->poll_list);
6834 
6835 	have = netpoll_poll_lock(n);
6836 
6837 	weight = n->weight;
6838 
6839 	/* This NAPI_STATE_SCHED test is for avoiding a race
6840 	 * with netpoll's poll_napi().  Only the entity which
6841 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6842 	 * actually make the ->poll() call.  Therefore we avoid
6843 	 * accidentally calling ->poll() when NAPI is not scheduled.
6844 	 */
6845 	work = 0;
6846 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6847 		work = n->poll(n, weight);
6848 		trace_napi_poll(n, work, weight);
6849 	}
6850 
6851 	if (unlikely(work > weight))
6852 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6853 			    n->poll, work, weight);
6854 
6855 	if (likely(work < weight))
6856 		goto out_unlock;
6857 
6858 	/* Drivers must not modify the NAPI state if they
6859 	 * consume the entire weight.  In such cases this code
6860 	 * still "owns" the NAPI instance and therefore can
6861 	 * move the instance around on the list at-will.
6862 	 */
6863 	if (unlikely(napi_disable_pending(n))) {
6864 		napi_complete(n);
6865 		goto out_unlock;
6866 	}
6867 
6868 	if (n->gro_bitmask) {
6869 		/* flush too old packets
6870 		 * If HZ < 1000, flush all packets.
6871 		 */
6872 		napi_gro_flush(n, HZ >= 1000);
6873 	}
6874 
6875 	gro_normal_list(n);
6876 
6877 	/* Some drivers may have called napi_schedule
6878 	 * prior to exhausting their budget.
6879 	 */
6880 	if (unlikely(!list_empty(&n->poll_list))) {
6881 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6882 			     n->dev ? n->dev->name : "backlog");
6883 		goto out_unlock;
6884 	}
6885 
6886 	list_add_tail(&n->poll_list, repoll);
6887 
6888 out_unlock:
6889 	netpoll_poll_unlock(have);
6890 
6891 	return work;
6892 }
6893 
net_rx_action(struct softirq_action * h)6894 static __latent_entropy void net_rx_action(struct softirq_action *h)
6895 {
6896 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6897 	unsigned long time_limit = jiffies +
6898 		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6899 	int budget = READ_ONCE(netdev_budget);
6900 	LIST_HEAD(list);
6901 	LIST_HEAD(repoll);
6902 
6903 	local_irq_disable();
6904 	list_splice_init(&sd->poll_list, &list);
6905 	local_irq_enable();
6906 
6907 	for (;;) {
6908 		struct napi_struct *n;
6909 
6910 		if (list_empty(&list)) {
6911 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6912 				goto out;
6913 			break;
6914 		}
6915 
6916 		n = list_first_entry(&list, struct napi_struct, poll_list);
6917 		budget -= napi_poll(n, &repoll);
6918 
6919 		/* If softirq window is exhausted then punt.
6920 		 * Allow this to run for 2 jiffies since which will allow
6921 		 * an average latency of 1.5/HZ.
6922 		 */
6923 		if (unlikely(budget <= 0 ||
6924 			     time_after_eq(jiffies, time_limit))) {
6925 			sd->time_squeeze++;
6926 			break;
6927 		}
6928 	}
6929 
6930 	local_irq_disable();
6931 
6932 	list_splice_tail_init(&sd->poll_list, &list);
6933 	list_splice_tail(&repoll, &list);
6934 	list_splice(&list, &sd->poll_list);
6935 	if (!list_empty(&sd->poll_list))
6936 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6937 
6938 	net_rps_action_and_irq_enable(sd);
6939 out:
6940 	__kfree_skb_flush();
6941 }
6942 
6943 struct netdev_adjacent {
6944 	struct net_device *dev;
6945 
6946 	/* upper master flag, there can only be one master device per list */
6947 	bool master;
6948 
6949 	/* lookup ignore flag */
6950 	bool ignore;
6951 
6952 	/* counter for the number of times this device was added to us */
6953 	u16 ref_nr;
6954 
6955 	/* private field for the users */
6956 	void *private;
6957 
6958 	struct list_head list;
6959 	struct rcu_head rcu;
6960 };
6961 
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)6962 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6963 						 struct list_head *adj_list)
6964 {
6965 	struct netdev_adjacent *adj;
6966 
6967 	list_for_each_entry(adj, adj_list, list) {
6968 		if (adj->dev == adj_dev)
6969 			return adj;
6970 	}
6971 	return NULL;
6972 }
6973 
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)6974 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6975 				    struct netdev_nested_priv *priv)
6976 {
6977 	struct net_device *dev = (struct net_device *)priv->data;
6978 
6979 	return upper_dev == dev;
6980 }
6981 
6982 /**
6983  * netdev_has_upper_dev - Check if device is linked to an upper device
6984  * @dev: device
6985  * @upper_dev: upper device to check
6986  *
6987  * Find out if a device is linked to specified upper device and return true
6988  * in case it is. Note that this checks only immediate upper device,
6989  * not through a complete stack of devices. The caller must hold the RTNL lock.
6990  */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)6991 bool netdev_has_upper_dev(struct net_device *dev,
6992 			  struct net_device *upper_dev)
6993 {
6994 	struct netdev_nested_priv priv = {
6995 		.data = (void *)upper_dev,
6996 	};
6997 
6998 	ASSERT_RTNL();
6999 
7000 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7001 					     &priv);
7002 }
7003 EXPORT_SYMBOL(netdev_has_upper_dev);
7004 
7005 /**
7006  * netdev_has_upper_dev_all - Check if device is linked to an upper device
7007  * @dev: device
7008  * @upper_dev: upper device to check
7009  *
7010  * Find out if a device is linked to specified upper device and return true
7011  * in case it is. Note that this checks the entire upper device chain.
7012  * The caller must hold rcu lock.
7013  */
7014 
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7015 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7016 				  struct net_device *upper_dev)
7017 {
7018 	struct netdev_nested_priv priv = {
7019 		.data = (void *)upper_dev,
7020 	};
7021 
7022 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7023 					       &priv);
7024 }
7025 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7026 
7027 /**
7028  * netdev_has_any_upper_dev - Check if device is linked to some device
7029  * @dev: device
7030  *
7031  * Find out if a device is linked to an upper device and return true in case
7032  * it is. The caller must hold the RTNL lock.
7033  */
netdev_has_any_upper_dev(struct net_device * dev)7034 bool netdev_has_any_upper_dev(struct net_device *dev)
7035 {
7036 	ASSERT_RTNL();
7037 
7038 	return !list_empty(&dev->adj_list.upper);
7039 }
7040 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7041 
7042 /**
7043  * netdev_master_upper_dev_get - Get master upper device
7044  * @dev: device
7045  *
7046  * Find a master upper device and return pointer to it or NULL in case
7047  * it's not there. The caller must hold the RTNL lock.
7048  */
netdev_master_upper_dev_get(struct net_device * dev)7049 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7050 {
7051 	struct netdev_adjacent *upper;
7052 
7053 	ASSERT_RTNL();
7054 
7055 	if (list_empty(&dev->adj_list.upper))
7056 		return NULL;
7057 
7058 	upper = list_first_entry(&dev->adj_list.upper,
7059 				 struct netdev_adjacent, list);
7060 	if (likely(upper->master))
7061 		return upper->dev;
7062 	return NULL;
7063 }
7064 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7065 
__netdev_master_upper_dev_get(struct net_device * dev)7066 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7067 {
7068 	struct netdev_adjacent *upper;
7069 
7070 	ASSERT_RTNL();
7071 
7072 	if (list_empty(&dev->adj_list.upper))
7073 		return NULL;
7074 
7075 	upper = list_first_entry(&dev->adj_list.upper,
7076 				 struct netdev_adjacent, list);
7077 	if (likely(upper->master) && !upper->ignore)
7078 		return upper->dev;
7079 	return NULL;
7080 }
7081 
7082 /**
7083  * netdev_has_any_lower_dev - Check if device is linked to some device
7084  * @dev: device
7085  *
7086  * Find out if a device is linked to a lower device and return true in case
7087  * it is. The caller must hold the RTNL lock.
7088  */
netdev_has_any_lower_dev(struct net_device * dev)7089 static bool netdev_has_any_lower_dev(struct net_device *dev)
7090 {
7091 	ASSERT_RTNL();
7092 
7093 	return !list_empty(&dev->adj_list.lower);
7094 }
7095 
netdev_adjacent_get_private(struct list_head * adj_list)7096 void *netdev_adjacent_get_private(struct list_head *adj_list)
7097 {
7098 	struct netdev_adjacent *adj;
7099 
7100 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7101 
7102 	return adj->private;
7103 }
7104 EXPORT_SYMBOL(netdev_adjacent_get_private);
7105 
7106 /**
7107  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7108  * @dev: device
7109  * @iter: list_head ** of the current position
7110  *
7111  * Gets the next device from the dev's upper list, starting from iter
7112  * position. The caller must hold RCU read lock.
7113  */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7114 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7115 						 struct list_head **iter)
7116 {
7117 	struct netdev_adjacent *upper;
7118 
7119 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7120 
7121 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7122 
7123 	if (&upper->list == &dev->adj_list.upper)
7124 		return NULL;
7125 
7126 	*iter = &upper->list;
7127 
7128 	return upper->dev;
7129 }
7130 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7131 
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7132 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7133 						  struct list_head **iter,
7134 						  bool *ignore)
7135 {
7136 	struct netdev_adjacent *upper;
7137 
7138 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7139 
7140 	if (&upper->list == &dev->adj_list.upper)
7141 		return NULL;
7142 
7143 	*iter = &upper->list;
7144 	*ignore = upper->ignore;
7145 
7146 	return upper->dev;
7147 }
7148 
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7149 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7150 						    struct list_head **iter)
7151 {
7152 	struct netdev_adjacent *upper;
7153 
7154 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7155 
7156 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7157 
7158 	if (&upper->list == &dev->adj_list.upper)
7159 		return NULL;
7160 
7161 	*iter = &upper->list;
7162 
7163 	return upper->dev;
7164 }
7165 
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7166 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7167 				       int (*fn)(struct net_device *dev,
7168 					 struct netdev_nested_priv *priv),
7169 				       struct netdev_nested_priv *priv)
7170 {
7171 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7172 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7173 	int ret, cur = 0;
7174 	bool ignore;
7175 
7176 	now = dev;
7177 	iter = &dev->adj_list.upper;
7178 
7179 	while (1) {
7180 		if (now != dev) {
7181 			ret = fn(now, priv);
7182 			if (ret)
7183 				return ret;
7184 		}
7185 
7186 		next = NULL;
7187 		while (1) {
7188 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7189 			if (!udev)
7190 				break;
7191 			if (ignore)
7192 				continue;
7193 
7194 			next = udev;
7195 			niter = &udev->adj_list.upper;
7196 			dev_stack[cur] = now;
7197 			iter_stack[cur++] = iter;
7198 			break;
7199 		}
7200 
7201 		if (!next) {
7202 			if (!cur)
7203 				return 0;
7204 			next = dev_stack[--cur];
7205 			niter = iter_stack[cur];
7206 		}
7207 
7208 		now = next;
7209 		iter = niter;
7210 	}
7211 
7212 	return 0;
7213 }
7214 
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7215 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7216 				  int (*fn)(struct net_device *dev,
7217 					    struct netdev_nested_priv *priv),
7218 				  struct netdev_nested_priv *priv)
7219 {
7220 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7221 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7222 	int ret, cur = 0;
7223 
7224 	now = dev;
7225 	iter = &dev->adj_list.upper;
7226 
7227 	while (1) {
7228 		if (now != dev) {
7229 			ret = fn(now, priv);
7230 			if (ret)
7231 				return ret;
7232 		}
7233 
7234 		next = NULL;
7235 		while (1) {
7236 			udev = netdev_next_upper_dev_rcu(now, &iter);
7237 			if (!udev)
7238 				break;
7239 
7240 			next = udev;
7241 			niter = &udev->adj_list.upper;
7242 			dev_stack[cur] = now;
7243 			iter_stack[cur++] = iter;
7244 			break;
7245 		}
7246 
7247 		if (!next) {
7248 			if (!cur)
7249 				return 0;
7250 			next = dev_stack[--cur];
7251 			niter = iter_stack[cur];
7252 		}
7253 
7254 		now = next;
7255 		iter = niter;
7256 	}
7257 
7258 	return 0;
7259 }
7260 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7261 
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7262 static bool __netdev_has_upper_dev(struct net_device *dev,
7263 				   struct net_device *upper_dev)
7264 {
7265 	struct netdev_nested_priv priv = {
7266 		.flags = 0,
7267 		.data = (void *)upper_dev,
7268 	};
7269 
7270 	ASSERT_RTNL();
7271 
7272 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7273 					   &priv);
7274 }
7275 
7276 /**
7277  * netdev_lower_get_next_private - Get the next ->private from the
7278  *				   lower neighbour list
7279  * @dev: device
7280  * @iter: list_head ** of the current position
7281  *
7282  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7283  * list, starting from iter position. The caller must hold either hold the
7284  * RTNL lock or its own locking that guarantees that the neighbour lower
7285  * list will remain unchanged.
7286  */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7287 void *netdev_lower_get_next_private(struct net_device *dev,
7288 				    struct list_head **iter)
7289 {
7290 	struct netdev_adjacent *lower;
7291 
7292 	lower = list_entry(*iter, struct netdev_adjacent, list);
7293 
7294 	if (&lower->list == &dev->adj_list.lower)
7295 		return NULL;
7296 
7297 	*iter = lower->list.next;
7298 
7299 	return lower->private;
7300 }
7301 EXPORT_SYMBOL(netdev_lower_get_next_private);
7302 
7303 /**
7304  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7305  *				       lower neighbour list, RCU
7306  *				       variant
7307  * @dev: device
7308  * @iter: list_head ** of the current position
7309  *
7310  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7311  * list, starting from iter position. The caller must hold RCU read lock.
7312  */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7313 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7314 					struct list_head **iter)
7315 {
7316 	struct netdev_adjacent *lower;
7317 
7318 	WARN_ON_ONCE(!rcu_read_lock_held());
7319 
7320 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7321 
7322 	if (&lower->list == &dev->adj_list.lower)
7323 		return NULL;
7324 
7325 	*iter = &lower->list;
7326 
7327 	return lower->private;
7328 }
7329 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7330 
7331 /**
7332  * netdev_lower_get_next - Get the next device from the lower neighbour
7333  *                         list
7334  * @dev: device
7335  * @iter: list_head ** of the current position
7336  *
7337  * Gets the next netdev_adjacent from the dev's lower neighbour
7338  * list, starting from iter position. The caller must hold RTNL lock or
7339  * its own locking that guarantees that the neighbour lower
7340  * list will remain unchanged.
7341  */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7342 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7343 {
7344 	struct netdev_adjacent *lower;
7345 
7346 	lower = list_entry(*iter, struct netdev_adjacent, list);
7347 
7348 	if (&lower->list == &dev->adj_list.lower)
7349 		return NULL;
7350 
7351 	*iter = lower->list.next;
7352 
7353 	return lower->dev;
7354 }
7355 EXPORT_SYMBOL(netdev_lower_get_next);
7356 
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7357 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7358 						struct list_head **iter)
7359 {
7360 	struct netdev_adjacent *lower;
7361 
7362 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7363 
7364 	if (&lower->list == &dev->adj_list.lower)
7365 		return NULL;
7366 
7367 	*iter = &lower->list;
7368 
7369 	return lower->dev;
7370 }
7371 
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7372 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7373 						  struct list_head **iter,
7374 						  bool *ignore)
7375 {
7376 	struct netdev_adjacent *lower;
7377 
7378 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7379 
7380 	if (&lower->list == &dev->adj_list.lower)
7381 		return NULL;
7382 
7383 	*iter = &lower->list;
7384 	*ignore = lower->ignore;
7385 
7386 	return lower->dev;
7387 }
7388 
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7389 int netdev_walk_all_lower_dev(struct net_device *dev,
7390 			      int (*fn)(struct net_device *dev,
7391 					struct netdev_nested_priv *priv),
7392 			      struct netdev_nested_priv *priv)
7393 {
7394 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7395 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7396 	int ret, cur = 0;
7397 
7398 	now = dev;
7399 	iter = &dev->adj_list.lower;
7400 
7401 	while (1) {
7402 		if (now != dev) {
7403 			ret = fn(now, priv);
7404 			if (ret)
7405 				return ret;
7406 		}
7407 
7408 		next = NULL;
7409 		while (1) {
7410 			ldev = netdev_next_lower_dev(now, &iter);
7411 			if (!ldev)
7412 				break;
7413 
7414 			next = ldev;
7415 			niter = &ldev->adj_list.lower;
7416 			dev_stack[cur] = now;
7417 			iter_stack[cur++] = iter;
7418 			break;
7419 		}
7420 
7421 		if (!next) {
7422 			if (!cur)
7423 				return 0;
7424 			next = dev_stack[--cur];
7425 			niter = iter_stack[cur];
7426 		}
7427 
7428 		now = next;
7429 		iter = niter;
7430 	}
7431 
7432 	return 0;
7433 }
7434 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7435 
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7436 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7437 				       int (*fn)(struct net_device *dev,
7438 					 struct netdev_nested_priv *priv),
7439 				       struct netdev_nested_priv *priv)
7440 {
7441 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7442 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7443 	int ret, cur = 0;
7444 	bool ignore;
7445 
7446 	now = dev;
7447 	iter = &dev->adj_list.lower;
7448 
7449 	while (1) {
7450 		if (now != dev) {
7451 			ret = fn(now, priv);
7452 			if (ret)
7453 				return ret;
7454 		}
7455 
7456 		next = NULL;
7457 		while (1) {
7458 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7459 			if (!ldev)
7460 				break;
7461 			if (ignore)
7462 				continue;
7463 
7464 			next = ldev;
7465 			niter = &ldev->adj_list.lower;
7466 			dev_stack[cur] = now;
7467 			iter_stack[cur++] = iter;
7468 			break;
7469 		}
7470 
7471 		if (!next) {
7472 			if (!cur)
7473 				return 0;
7474 			next = dev_stack[--cur];
7475 			niter = iter_stack[cur];
7476 		}
7477 
7478 		now = next;
7479 		iter = niter;
7480 	}
7481 
7482 	return 0;
7483 }
7484 
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)7485 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7486 					     struct list_head **iter)
7487 {
7488 	struct netdev_adjacent *lower;
7489 
7490 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7491 	if (&lower->list == &dev->adj_list.lower)
7492 		return NULL;
7493 
7494 	*iter = &lower->list;
7495 
7496 	return lower->dev;
7497 }
7498 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7499 
__netdev_upper_depth(struct net_device * dev)7500 static u8 __netdev_upper_depth(struct net_device *dev)
7501 {
7502 	struct net_device *udev;
7503 	struct list_head *iter;
7504 	u8 max_depth = 0;
7505 	bool ignore;
7506 
7507 	for (iter = &dev->adj_list.upper,
7508 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7509 	     udev;
7510 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7511 		if (ignore)
7512 			continue;
7513 		if (max_depth < udev->upper_level)
7514 			max_depth = udev->upper_level;
7515 	}
7516 
7517 	return max_depth;
7518 }
7519 
__netdev_lower_depth(struct net_device * dev)7520 static u8 __netdev_lower_depth(struct net_device *dev)
7521 {
7522 	struct net_device *ldev;
7523 	struct list_head *iter;
7524 	u8 max_depth = 0;
7525 	bool ignore;
7526 
7527 	for (iter = &dev->adj_list.lower,
7528 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7529 	     ldev;
7530 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7531 		if (ignore)
7532 			continue;
7533 		if (max_depth < ldev->lower_level)
7534 			max_depth = ldev->lower_level;
7535 	}
7536 
7537 	return max_depth;
7538 }
7539 
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)7540 static int __netdev_update_upper_level(struct net_device *dev,
7541 				       struct netdev_nested_priv *__unused)
7542 {
7543 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7544 	return 0;
7545 }
7546 
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)7547 static int __netdev_update_lower_level(struct net_device *dev,
7548 				       struct netdev_nested_priv *priv)
7549 {
7550 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7551 
7552 #ifdef CONFIG_LOCKDEP
7553 	if (!priv)
7554 		return 0;
7555 
7556 	if (priv->flags & NESTED_SYNC_IMM)
7557 		dev->nested_level = dev->lower_level - 1;
7558 	if (priv->flags & NESTED_SYNC_TODO)
7559 		net_unlink_todo(dev);
7560 #endif
7561 	return 0;
7562 }
7563 
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7564 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7565 				  int (*fn)(struct net_device *dev,
7566 					    struct netdev_nested_priv *priv),
7567 				  struct netdev_nested_priv *priv)
7568 {
7569 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7570 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7571 	int ret, cur = 0;
7572 
7573 	now = dev;
7574 	iter = &dev->adj_list.lower;
7575 
7576 	while (1) {
7577 		if (now != dev) {
7578 			ret = fn(now, priv);
7579 			if (ret)
7580 				return ret;
7581 		}
7582 
7583 		next = NULL;
7584 		while (1) {
7585 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7586 			if (!ldev)
7587 				break;
7588 
7589 			next = ldev;
7590 			niter = &ldev->adj_list.lower;
7591 			dev_stack[cur] = now;
7592 			iter_stack[cur++] = iter;
7593 			break;
7594 		}
7595 
7596 		if (!next) {
7597 			if (!cur)
7598 				return 0;
7599 			next = dev_stack[--cur];
7600 			niter = iter_stack[cur];
7601 		}
7602 
7603 		now = next;
7604 		iter = niter;
7605 	}
7606 
7607 	return 0;
7608 }
7609 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7610 
7611 /**
7612  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7613  *				       lower neighbour list, RCU
7614  *				       variant
7615  * @dev: device
7616  *
7617  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7618  * list. The caller must hold RCU read lock.
7619  */
netdev_lower_get_first_private_rcu(struct net_device * dev)7620 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7621 {
7622 	struct netdev_adjacent *lower;
7623 
7624 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7625 			struct netdev_adjacent, list);
7626 	if (lower)
7627 		return lower->private;
7628 	return NULL;
7629 }
7630 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7631 
7632 /**
7633  * netdev_master_upper_dev_get_rcu - Get master upper device
7634  * @dev: device
7635  *
7636  * Find a master upper device and return pointer to it or NULL in case
7637  * it's not there. The caller must hold the RCU read lock.
7638  */
netdev_master_upper_dev_get_rcu(struct net_device * dev)7639 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7640 {
7641 	struct netdev_adjacent *upper;
7642 
7643 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7644 				       struct netdev_adjacent, list);
7645 	if (upper && likely(upper->master))
7646 		return upper->dev;
7647 	return NULL;
7648 }
7649 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7650 
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7651 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7652 			      struct net_device *adj_dev,
7653 			      struct list_head *dev_list)
7654 {
7655 	char linkname[IFNAMSIZ+7];
7656 
7657 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7658 		"upper_%s" : "lower_%s", adj_dev->name);
7659 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7660 				 linkname);
7661 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)7662 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7663 			       char *name,
7664 			       struct list_head *dev_list)
7665 {
7666 	char linkname[IFNAMSIZ+7];
7667 
7668 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7669 		"upper_%s" : "lower_%s", name);
7670 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7671 }
7672 
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7673 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7674 						 struct net_device *adj_dev,
7675 						 struct list_head *dev_list)
7676 {
7677 	return (dev_list == &dev->adj_list.upper ||
7678 		dev_list == &dev->adj_list.lower) &&
7679 		net_eq(dev_net(dev), dev_net(adj_dev));
7680 }
7681 
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)7682 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7683 					struct net_device *adj_dev,
7684 					struct list_head *dev_list,
7685 					void *private, bool master)
7686 {
7687 	struct netdev_adjacent *adj;
7688 	int ret;
7689 
7690 	adj = __netdev_find_adj(adj_dev, dev_list);
7691 
7692 	if (adj) {
7693 		adj->ref_nr += 1;
7694 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7695 			 dev->name, adj_dev->name, adj->ref_nr);
7696 
7697 		return 0;
7698 	}
7699 
7700 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7701 	if (!adj)
7702 		return -ENOMEM;
7703 
7704 	adj->dev = adj_dev;
7705 	adj->master = master;
7706 	adj->ref_nr = 1;
7707 	adj->private = private;
7708 	adj->ignore = false;
7709 	dev_hold(adj_dev);
7710 
7711 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7712 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7713 
7714 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7715 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7716 		if (ret)
7717 			goto free_adj;
7718 	}
7719 
7720 	/* Ensure that master link is always the first item in list. */
7721 	if (master) {
7722 		ret = sysfs_create_link(&(dev->dev.kobj),
7723 					&(adj_dev->dev.kobj), "master");
7724 		if (ret)
7725 			goto remove_symlinks;
7726 
7727 		list_add_rcu(&adj->list, dev_list);
7728 	} else {
7729 		list_add_tail_rcu(&adj->list, dev_list);
7730 	}
7731 
7732 	return 0;
7733 
7734 remove_symlinks:
7735 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7736 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7737 free_adj:
7738 	kfree(adj);
7739 	dev_put(adj_dev);
7740 
7741 	return ret;
7742 }
7743 
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)7744 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7745 					 struct net_device *adj_dev,
7746 					 u16 ref_nr,
7747 					 struct list_head *dev_list)
7748 {
7749 	struct netdev_adjacent *adj;
7750 
7751 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7752 		 dev->name, adj_dev->name, ref_nr);
7753 
7754 	adj = __netdev_find_adj(adj_dev, dev_list);
7755 
7756 	if (!adj) {
7757 		pr_err("Adjacency does not exist for device %s from %s\n",
7758 		       dev->name, adj_dev->name);
7759 		WARN_ON(1);
7760 		return;
7761 	}
7762 
7763 	if (adj->ref_nr > ref_nr) {
7764 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7765 			 dev->name, adj_dev->name, ref_nr,
7766 			 adj->ref_nr - ref_nr);
7767 		adj->ref_nr -= ref_nr;
7768 		return;
7769 	}
7770 
7771 	if (adj->master)
7772 		sysfs_remove_link(&(dev->dev.kobj), "master");
7773 
7774 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7775 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7776 
7777 	list_del_rcu(&adj->list);
7778 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7779 		 adj_dev->name, dev->name, adj_dev->name);
7780 	dev_put(adj_dev);
7781 	kfree_rcu(adj, rcu);
7782 }
7783 
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)7784 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7785 					    struct net_device *upper_dev,
7786 					    struct list_head *up_list,
7787 					    struct list_head *down_list,
7788 					    void *private, bool master)
7789 {
7790 	int ret;
7791 
7792 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7793 					   private, master);
7794 	if (ret)
7795 		return ret;
7796 
7797 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7798 					   private, false);
7799 	if (ret) {
7800 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7801 		return ret;
7802 	}
7803 
7804 	return 0;
7805 }
7806 
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)7807 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7808 					       struct net_device *upper_dev,
7809 					       u16 ref_nr,
7810 					       struct list_head *up_list,
7811 					       struct list_head *down_list)
7812 {
7813 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7814 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7815 }
7816 
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)7817 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7818 						struct net_device *upper_dev,
7819 						void *private, bool master)
7820 {
7821 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7822 						&dev->adj_list.upper,
7823 						&upper_dev->adj_list.lower,
7824 						private, master);
7825 }
7826 
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)7827 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7828 						   struct net_device *upper_dev)
7829 {
7830 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7831 					   &dev->adj_list.upper,
7832 					   &upper_dev->adj_list.lower);
7833 }
7834 
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)7835 static int __netdev_upper_dev_link(struct net_device *dev,
7836 				   struct net_device *upper_dev, bool master,
7837 				   void *upper_priv, void *upper_info,
7838 				   struct netdev_nested_priv *priv,
7839 				   struct netlink_ext_ack *extack)
7840 {
7841 	struct netdev_notifier_changeupper_info changeupper_info = {
7842 		.info = {
7843 			.dev = dev,
7844 			.extack = extack,
7845 		},
7846 		.upper_dev = upper_dev,
7847 		.master = master,
7848 		.linking = true,
7849 		.upper_info = upper_info,
7850 	};
7851 	struct net_device *master_dev;
7852 	int ret = 0;
7853 
7854 	ASSERT_RTNL();
7855 
7856 	if (dev == upper_dev)
7857 		return -EBUSY;
7858 
7859 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7860 	if (__netdev_has_upper_dev(upper_dev, dev))
7861 		return -EBUSY;
7862 
7863 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7864 		return -EMLINK;
7865 
7866 	if (!master) {
7867 		if (__netdev_has_upper_dev(dev, upper_dev))
7868 			return -EEXIST;
7869 	} else {
7870 		master_dev = __netdev_master_upper_dev_get(dev);
7871 		if (master_dev)
7872 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7873 	}
7874 
7875 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7876 					    &changeupper_info.info);
7877 	ret = notifier_to_errno(ret);
7878 	if (ret)
7879 		return ret;
7880 
7881 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7882 						   master);
7883 	if (ret)
7884 		return ret;
7885 
7886 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7887 					    &changeupper_info.info);
7888 	ret = notifier_to_errno(ret);
7889 	if (ret)
7890 		goto rollback;
7891 
7892 	__netdev_update_upper_level(dev, NULL);
7893 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7894 
7895 	__netdev_update_lower_level(upper_dev, priv);
7896 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7897 				    priv);
7898 
7899 	return 0;
7900 
7901 rollback:
7902 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7903 
7904 	return ret;
7905 }
7906 
7907 /**
7908  * netdev_upper_dev_link - Add a link to the upper device
7909  * @dev: device
7910  * @upper_dev: new upper device
7911  * @extack: netlink extended ack
7912  *
7913  * Adds a link to device which is upper to this one. The caller must hold
7914  * the RTNL lock. On a failure a negative errno code is returned.
7915  * On success the reference counts are adjusted and the function
7916  * returns zero.
7917  */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)7918 int netdev_upper_dev_link(struct net_device *dev,
7919 			  struct net_device *upper_dev,
7920 			  struct netlink_ext_ack *extack)
7921 {
7922 	struct netdev_nested_priv priv = {
7923 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7924 		.data = NULL,
7925 	};
7926 
7927 	return __netdev_upper_dev_link(dev, upper_dev, false,
7928 				       NULL, NULL, &priv, extack);
7929 }
7930 EXPORT_SYMBOL(netdev_upper_dev_link);
7931 
7932 /**
7933  * netdev_master_upper_dev_link - Add a master link to the upper device
7934  * @dev: device
7935  * @upper_dev: new upper device
7936  * @upper_priv: upper device private
7937  * @upper_info: upper info to be passed down via notifier
7938  * @extack: netlink extended ack
7939  *
7940  * Adds a link to device which is upper to this one. In this case, only
7941  * one master upper device can be linked, although other non-master devices
7942  * might be linked as well. The caller must hold the RTNL lock.
7943  * On a failure a negative errno code is returned. On success the reference
7944  * counts are adjusted and the function returns zero.
7945  */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)7946 int netdev_master_upper_dev_link(struct net_device *dev,
7947 				 struct net_device *upper_dev,
7948 				 void *upper_priv, void *upper_info,
7949 				 struct netlink_ext_ack *extack)
7950 {
7951 	struct netdev_nested_priv priv = {
7952 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7953 		.data = NULL,
7954 	};
7955 
7956 	return __netdev_upper_dev_link(dev, upper_dev, true,
7957 				       upper_priv, upper_info, &priv, extack);
7958 }
7959 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7960 
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)7961 static void __netdev_upper_dev_unlink(struct net_device *dev,
7962 				      struct net_device *upper_dev,
7963 				      struct netdev_nested_priv *priv)
7964 {
7965 	struct netdev_notifier_changeupper_info changeupper_info = {
7966 		.info = {
7967 			.dev = dev,
7968 		},
7969 		.upper_dev = upper_dev,
7970 		.linking = false,
7971 	};
7972 
7973 	ASSERT_RTNL();
7974 
7975 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7976 
7977 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7978 				      &changeupper_info.info);
7979 
7980 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7981 
7982 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7983 				      &changeupper_info.info);
7984 
7985 	__netdev_update_upper_level(dev, NULL);
7986 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7987 
7988 	__netdev_update_lower_level(upper_dev, priv);
7989 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7990 				    priv);
7991 }
7992 
7993 /**
7994  * netdev_upper_dev_unlink - Removes a link to upper device
7995  * @dev: device
7996  * @upper_dev: new upper device
7997  *
7998  * Removes a link to device which is upper to this one. The caller must hold
7999  * the RTNL lock.
8000  */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8001 void netdev_upper_dev_unlink(struct net_device *dev,
8002 			     struct net_device *upper_dev)
8003 {
8004 	struct netdev_nested_priv priv = {
8005 		.flags = NESTED_SYNC_TODO,
8006 		.data = NULL,
8007 	};
8008 
8009 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8010 }
8011 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8012 
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)8013 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8014 				      struct net_device *lower_dev,
8015 				      bool val)
8016 {
8017 	struct netdev_adjacent *adj;
8018 
8019 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8020 	if (adj)
8021 		adj->ignore = val;
8022 
8023 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8024 	if (adj)
8025 		adj->ignore = val;
8026 }
8027 
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)8028 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8029 					struct net_device *lower_dev)
8030 {
8031 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8032 }
8033 
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)8034 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8035 				       struct net_device *lower_dev)
8036 {
8037 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8038 }
8039 
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)8040 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8041 				   struct net_device *new_dev,
8042 				   struct net_device *dev,
8043 				   struct netlink_ext_ack *extack)
8044 {
8045 	struct netdev_nested_priv priv = {
8046 		.flags = 0,
8047 		.data = NULL,
8048 	};
8049 	int err;
8050 
8051 	if (!new_dev)
8052 		return 0;
8053 
8054 	if (old_dev && new_dev != old_dev)
8055 		netdev_adjacent_dev_disable(dev, old_dev);
8056 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8057 				      extack);
8058 	if (err) {
8059 		if (old_dev && new_dev != old_dev)
8060 			netdev_adjacent_dev_enable(dev, old_dev);
8061 		return err;
8062 	}
8063 
8064 	return 0;
8065 }
8066 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8067 
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8068 void netdev_adjacent_change_commit(struct net_device *old_dev,
8069 				   struct net_device *new_dev,
8070 				   struct net_device *dev)
8071 {
8072 	struct netdev_nested_priv priv = {
8073 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8074 		.data = NULL,
8075 	};
8076 
8077 	if (!new_dev || !old_dev)
8078 		return;
8079 
8080 	if (new_dev == old_dev)
8081 		return;
8082 
8083 	netdev_adjacent_dev_enable(dev, old_dev);
8084 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8085 }
8086 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8087 
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8088 void netdev_adjacent_change_abort(struct net_device *old_dev,
8089 				  struct net_device *new_dev,
8090 				  struct net_device *dev)
8091 {
8092 	struct netdev_nested_priv priv = {
8093 		.flags = 0,
8094 		.data = NULL,
8095 	};
8096 
8097 	if (!new_dev)
8098 		return;
8099 
8100 	if (old_dev && new_dev != old_dev)
8101 		netdev_adjacent_dev_enable(dev, old_dev);
8102 
8103 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8104 }
8105 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8106 
8107 /**
8108  * netdev_bonding_info_change - Dispatch event about slave change
8109  * @dev: device
8110  * @bonding_info: info to dispatch
8111  *
8112  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8113  * The caller must hold the RTNL lock.
8114  */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8115 void netdev_bonding_info_change(struct net_device *dev,
8116 				struct netdev_bonding_info *bonding_info)
8117 {
8118 	struct netdev_notifier_bonding_info info = {
8119 		.info.dev = dev,
8120 	};
8121 
8122 	memcpy(&info.bonding_info, bonding_info,
8123 	       sizeof(struct netdev_bonding_info));
8124 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8125 				      &info.info);
8126 }
8127 EXPORT_SYMBOL(netdev_bonding_info_change);
8128 
8129 /**
8130  * netdev_get_xmit_slave - Get the xmit slave of master device
8131  * @dev: device
8132  * @skb: The packet
8133  * @all_slaves: assume all the slaves are active
8134  *
8135  * The reference counters are not incremented so the caller must be
8136  * careful with locks. The caller must hold RCU lock.
8137  * %NULL is returned if no slave is found.
8138  */
8139 
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8140 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8141 					 struct sk_buff *skb,
8142 					 bool all_slaves)
8143 {
8144 	const struct net_device_ops *ops = dev->netdev_ops;
8145 
8146 	if (!ops->ndo_get_xmit_slave)
8147 		return NULL;
8148 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8149 }
8150 EXPORT_SYMBOL(netdev_get_xmit_slave);
8151 
netdev_adjacent_add_links(struct net_device * dev)8152 static void netdev_adjacent_add_links(struct net_device *dev)
8153 {
8154 	struct netdev_adjacent *iter;
8155 
8156 	struct net *net = dev_net(dev);
8157 
8158 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8159 		if (!net_eq(net, dev_net(iter->dev)))
8160 			continue;
8161 		netdev_adjacent_sysfs_add(iter->dev, dev,
8162 					  &iter->dev->adj_list.lower);
8163 		netdev_adjacent_sysfs_add(dev, iter->dev,
8164 					  &dev->adj_list.upper);
8165 	}
8166 
8167 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8168 		if (!net_eq(net, dev_net(iter->dev)))
8169 			continue;
8170 		netdev_adjacent_sysfs_add(iter->dev, dev,
8171 					  &iter->dev->adj_list.upper);
8172 		netdev_adjacent_sysfs_add(dev, iter->dev,
8173 					  &dev->adj_list.lower);
8174 	}
8175 }
8176 
netdev_adjacent_del_links(struct net_device * dev)8177 static void netdev_adjacent_del_links(struct net_device *dev)
8178 {
8179 	struct netdev_adjacent *iter;
8180 
8181 	struct net *net = dev_net(dev);
8182 
8183 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8184 		if (!net_eq(net, dev_net(iter->dev)))
8185 			continue;
8186 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8187 					  &iter->dev->adj_list.lower);
8188 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8189 					  &dev->adj_list.upper);
8190 	}
8191 
8192 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8193 		if (!net_eq(net, dev_net(iter->dev)))
8194 			continue;
8195 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8196 					  &iter->dev->adj_list.upper);
8197 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8198 					  &dev->adj_list.lower);
8199 	}
8200 }
8201 
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)8202 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8203 {
8204 	struct netdev_adjacent *iter;
8205 
8206 	struct net *net = dev_net(dev);
8207 
8208 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8209 		if (!net_eq(net, dev_net(iter->dev)))
8210 			continue;
8211 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8212 					  &iter->dev->adj_list.lower);
8213 		netdev_adjacent_sysfs_add(iter->dev, dev,
8214 					  &iter->dev->adj_list.lower);
8215 	}
8216 
8217 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8218 		if (!net_eq(net, dev_net(iter->dev)))
8219 			continue;
8220 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8221 					  &iter->dev->adj_list.upper);
8222 		netdev_adjacent_sysfs_add(iter->dev, dev,
8223 					  &iter->dev->adj_list.upper);
8224 	}
8225 }
8226 
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)8227 void *netdev_lower_dev_get_private(struct net_device *dev,
8228 				   struct net_device *lower_dev)
8229 {
8230 	struct netdev_adjacent *lower;
8231 
8232 	if (!lower_dev)
8233 		return NULL;
8234 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8235 	if (!lower)
8236 		return NULL;
8237 
8238 	return lower->private;
8239 }
8240 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8241 
8242 
8243 /**
8244  * netdev_lower_change - Dispatch event about lower device state change
8245  * @lower_dev: device
8246  * @lower_state_info: state to dispatch
8247  *
8248  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8249  * The caller must hold the RTNL lock.
8250  */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)8251 void netdev_lower_state_changed(struct net_device *lower_dev,
8252 				void *lower_state_info)
8253 {
8254 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8255 		.info.dev = lower_dev,
8256 	};
8257 
8258 	ASSERT_RTNL();
8259 	changelowerstate_info.lower_state_info = lower_state_info;
8260 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8261 				      &changelowerstate_info.info);
8262 }
8263 EXPORT_SYMBOL(netdev_lower_state_changed);
8264 
dev_change_rx_flags(struct net_device * dev,int flags)8265 static void dev_change_rx_flags(struct net_device *dev, int flags)
8266 {
8267 	const struct net_device_ops *ops = dev->netdev_ops;
8268 
8269 	if (ops->ndo_change_rx_flags)
8270 		ops->ndo_change_rx_flags(dev, flags);
8271 }
8272 
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)8273 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8274 {
8275 	unsigned int old_flags = dev->flags;
8276 	kuid_t uid;
8277 	kgid_t gid;
8278 
8279 	ASSERT_RTNL();
8280 
8281 	dev->flags |= IFF_PROMISC;
8282 	dev->promiscuity += inc;
8283 	if (dev->promiscuity == 0) {
8284 		/*
8285 		 * Avoid overflow.
8286 		 * If inc causes overflow, untouch promisc and return error.
8287 		 */
8288 		if (inc < 0)
8289 			dev->flags &= ~IFF_PROMISC;
8290 		else {
8291 			dev->promiscuity -= inc;
8292 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8293 				dev->name);
8294 			return -EOVERFLOW;
8295 		}
8296 	}
8297 	if (dev->flags != old_flags) {
8298 		pr_info("device %s %s promiscuous mode\n",
8299 			dev->name,
8300 			dev->flags & IFF_PROMISC ? "entered" : "left");
8301 		if (audit_enabled) {
8302 			current_uid_gid(&uid, &gid);
8303 			audit_log(audit_context(), GFP_ATOMIC,
8304 				  AUDIT_ANOM_PROMISCUOUS,
8305 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8306 				  dev->name, (dev->flags & IFF_PROMISC),
8307 				  (old_flags & IFF_PROMISC),
8308 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8309 				  from_kuid(&init_user_ns, uid),
8310 				  from_kgid(&init_user_ns, gid),
8311 				  audit_get_sessionid(current));
8312 		}
8313 
8314 		dev_change_rx_flags(dev, IFF_PROMISC);
8315 	}
8316 	if (notify)
8317 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8318 	return 0;
8319 }
8320 
8321 /**
8322  *	dev_set_promiscuity	- update promiscuity count on a device
8323  *	@dev: device
8324  *	@inc: modifier
8325  *
8326  *	Add or remove promiscuity from a device. While the count in the device
8327  *	remains above zero the interface remains promiscuous. Once it hits zero
8328  *	the device reverts back to normal filtering operation. A negative inc
8329  *	value is used to drop promiscuity on the device.
8330  *	Return 0 if successful or a negative errno code on error.
8331  */
dev_set_promiscuity(struct net_device * dev,int inc)8332 int dev_set_promiscuity(struct net_device *dev, int inc)
8333 {
8334 	unsigned int old_flags = dev->flags;
8335 	int err;
8336 
8337 	err = __dev_set_promiscuity(dev, inc, true);
8338 	if (err < 0)
8339 		return err;
8340 	if (dev->flags != old_flags)
8341 		dev_set_rx_mode(dev);
8342 	return err;
8343 }
8344 EXPORT_SYMBOL(dev_set_promiscuity);
8345 
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)8346 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8347 {
8348 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8349 
8350 	ASSERT_RTNL();
8351 
8352 	dev->flags |= IFF_ALLMULTI;
8353 	dev->allmulti += inc;
8354 	if (dev->allmulti == 0) {
8355 		/*
8356 		 * Avoid overflow.
8357 		 * If inc causes overflow, untouch allmulti and return error.
8358 		 */
8359 		if (inc < 0)
8360 			dev->flags &= ~IFF_ALLMULTI;
8361 		else {
8362 			dev->allmulti -= inc;
8363 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8364 				dev->name);
8365 			return -EOVERFLOW;
8366 		}
8367 	}
8368 	if (dev->flags ^ old_flags) {
8369 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8370 		dev_set_rx_mode(dev);
8371 		if (notify)
8372 			__dev_notify_flags(dev, old_flags,
8373 					   dev->gflags ^ old_gflags);
8374 	}
8375 	return 0;
8376 }
8377 
8378 /**
8379  *	dev_set_allmulti	- update allmulti count on a device
8380  *	@dev: device
8381  *	@inc: modifier
8382  *
8383  *	Add or remove reception of all multicast frames to a device. While the
8384  *	count in the device remains above zero the interface remains listening
8385  *	to all interfaces. Once it hits zero the device reverts back to normal
8386  *	filtering operation. A negative @inc value is used to drop the counter
8387  *	when releasing a resource needing all multicasts.
8388  *	Return 0 if successful or a negative errno code on error.
8389  */
8390 
dev_set_allmulti(struct net_device * dev,int inc)8391 int dev_set_allmulti(struct net_device *dev, int inc)
8392 {
8393 	return __dev_set_allmulti(dev, inc, true);
8394 }
8395 EXPORT_SYMBOL(dev_set_allmulti);
8396 
8397 /*
8398  *	Upload unicast and multicast address lists to device and
8399  *	configure RX filtering. When the device doesn't support unicast
8400  *	filtering it is put in promiscuous mode while unicast addresses
8401  *	are present.
8402  */
__dev_set_rx_mode(struct net_device * dev)8403 void __dev_set_rx_mode(struct net_device *dev)
8404 {
8405 	const struct net_device_ops *ops = dev->netdev_ops;
8406 
8407 	/* dev_open will call this function so the list will stay sane. */
8408 	if (!(dev->flags&IFF_UP))
8409 		return;
8410 
8411 	if (!netif_device_present(dev))
8412 		return;
8413 
8414 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8415 		/* Unicast addresses changes may only happen under the rtnl,
8416 		 * therefore calling __dev_set_promiscuity here is safe.
8417 		 */
8418 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8419 			__dev_set_promiscuity(dev, 1, false);
8420 			dev->uc_promisc = true;
8421 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8422 			__dev_set_promiscuity(dev, -1, false);
8423 			dev->uc_promisc = false;
8424 		}
8425 	}
8426 
8427 	if (ops->ndo_set_rx_mode)
8428 		ops->ndo_set_rx_mode(dev);
8429 }
8430 
dev_set_rx_mode(struct net_device * dev)8431 void dev_set_rx_mode(struct net_device *dev)
8432 {
8433 	netif_addr_lock_bh(dev);
8434 	__dev_set_rx_mode(dev);
8435 	netif_addr_unlock_bh(dev);
8436 }
8437 
8438 /**
8439  *	dev_get_flags - get flags reported to userspace
8440  *	@dev: device
8441  *
8442  *	Get the combination of flag bits exported through APIs to userspace.
8443  */
dev_get_flags(const struct net_device * dev)8444 unsigned int dev_get_flags(const struct net_device *dev)
8445 {
8446 	unsigned int flags;
8447 
8448 	flags = (dev->flags & ~(IFF_PROMISC |
8449 				IFF_ALLMULTI |
8450 				IFF_RUNNING |
8451 				IFF_LOWER_UP |
8452 				IFF_DORMANT)) |
8453 		(dev->gflags & (IFF_PROMISC |
8454 				IFF_ALLMULTI));
8455 
8456 	if (netif_running(dev)) {
8457 		if (netif_oper_up(dev))
8458 			flags |= IFF_RUNNING;
8459 		if (netif_carrier_ok(dev))
8460 			flags |= IFF_LOWER_UP;
8461 		if (netif_dormant(dev))
8462 			flags |= IFF_DORMANT;
8463 	}
8464 
8465 	return flags;
8466 }
8467 EXPORT_SYMBOL(dev_get_flags);
8468 
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8469 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8470 		       struct netlink_ext_ack *extack)
8471 {
8472 	unsigned int old_flags = dev->flags;
8473 	int ret;
8474 
8475 	ASSERT_RTNL();
8476 
8477 	/*
8478 	 *	Set the flags on our device.
8479 	 */
8480 
8481 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8482 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8483 			       IFF_AUTOMEDIA)) |
8484 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8485 				    IFF_ALLMULTI));
8486 
8487 	/*
8488 	 *	Load in the correct multicast list now the flags have changed.
8489 	 */
8490 
8491 	if ((old_flags ^ flags) & IFF_MULTICAST)
8492 		dev_change_rx_flags(dev, IFF_MULTICAST);
8493 
8494 	dev_set_rx_mode(dev);
8495 
8496 	/*
8497 	 *	Have we downed the interface. We handle IFF_UP ourselves
8498 	 *	according to user attempts to set it, rather than blindly
8499 	 *	setting it.
8500 	 */
8501 
8502 	ret = 0;
8503 	if ((old_flags ^ flags) & IFF_UP) {
8504 		if (old_flags & IFF_UP)
8505 			__dev_close(dev);
8506 		else
8507 			ret = __dev_open(dev, extack);
8508 	}
8509 
8510 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8511 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8512 		unsigned int old_flags = dev->flags;
8513 
8514 		dev->gflags ^= IFF_PROMISC;
8515 
8516 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8517 			if (dev->flags != old_flags)
8518 				dev_set_rx_mode(dev);
8519 	}
8520 
8521 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8522 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8523 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8524 	 */
8525 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8526 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8527 
8528 		dev->gflags ^= IFF_ALLMULTI;
8529 		__dev_set_allmulti(dev, inc, false);
8530 	}
8531 
8532 	return ret;
8533 }
8534 
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges)8535 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8536 			unsigned int gchanges)
8537 {
8538 	unsigned int changes = dev->flags ^ old_flags;
8539 
8540 	if (gchanges)
8541 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8542 
8543 	if (changes & IFF_UP) {
8544 		if (dev->flags & IFF_UP)
8545 			call_netdevice_notifiers(NETDEV_UP, dev);
8546 		else
8547 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8548 	}
8549 
8550 	if (dev->flags & IFF_UP &&
8551 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8552 		struct netdev_notifier_change_info change_info = {
8553 			.info = {
8554 				.dev = dev,
8555 			},
8556 			.flags_changed = changes,
8557 		};
8558 
8559 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8560 	}
8561 }
8562 
8563 /**
8564  *	dev_change_flags - change device settings
8565  *	@dev: device
8566  *	@flags: device state flags
8567  *	@extack: netlink extended ack
8568  *
8569  *	Change settings on device based state flags. The flags are
8570  *	in the userspace exported format.
8571  */
dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8572 int dev_change_flags(struct net_device *dev, unsigned int flags,
8573 		     struct netlink_ext_ack *extack)
8574 {
8575 	int ret;
8576 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8577 
8578 	ret = __dev_change_flags(dev, flags, extack);
8579 	if (ret < 0)
8580 		return ret;
8581 
8582 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8583 	__dev_notify_flags(dev, old_flags, changes);
8584 	return ret;
8585 }
8586 EXPORT_SYMBOL(dev_change_flags);
8587 
__dev_set_mtu(struct net_device * dev,int new_mtu)8588 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8589 {
8590 	const struct net_device_ops *ops = dev->netdev_ops;
8591 
8592 	if (ops->ndo_change_mtu)
8593 		return ops->ndo_change_mtu(dev, new_mtu);
8594 
8595 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8596 	WRITE_ONCE(dev->mtu, new_mtu);
8597 	return 0;
8598 }
8599 EXPORT_SYMBOL(__dev_set_mtu);
8600 
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8601 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8602 		     struct netlink_ext_ack *extack)
8603 {
8604 	/* MTU must be positive, and in range */
8605 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8606 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8607 		return -EINVAL;
8608 	}
8609 
8610 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8611 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8612 		return -EINVAL;
8613 	}
8614 	return 0;
8615 }
8616 
8617 /**
8618  *	dev_set_mtu_ext - Change maximum transfer unit
8619  *	@dev: device
8620  *	@new_mtu: new transfer unit
8621  *	@extack: netlink extended ack
8622  *
8623  *	Change the maximum transfer size of the network device.
8624  */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8625 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8626 		    struct netlink_ext_ack *extack)
8627 {
8628 	int err, orig_mtu;
8629 
8630 	if (new_mtu == dev->mtu)
8631 		return 0;
8632 
8633 	err = dev_validate_mtu(dev, new_mtu, extack);
8634 	if (err)
8635 		return err;
8636 
8637 	if (!netif_device_present(dev))
8638 		return -ENODEV;
8639 
8640 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8641 	err = notifier_to_errno(err);
8642 	if (err)
8643 		return err;
8644 
8645 	orig_mtu = dev->mtu;
8646 	err = __dev_set_mtu(dev, new_mtu);
8647 
8648 	if (!err) {
8649 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8650 						   orig_mtu);
8651 		err = notifier_to_errno(err);
8652 		if (err) {
8653 			/* setting mtu back and notifying everyone again,
8654 			 * so that they have a chance to revert changes.
8655 			 */
8656 			__dev_set_mtu(dev, orig_mtu);
8657 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8658 						     new_mtu);
8659 		}
8660 	}
8661 	return err;
8662 }
8663 
dev_set_mtu(struct net_device * dev,int new_mtu)8664 int dev_set_mtu(struct net_device *dev, int new_mtu)
8665 {
8666 	struct netlink_ext_ack extack;
8667 	int err;
8668 
8669 	memset(&extack, 0, sizeof(extack));
8670 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8671 	if (err && extack._msg)
8672 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8673 	return err;
8674 }
8675 EXPORT_SYMBOL(dev_set_mtu);
8676 
8677 /**
8678  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8679  *	@dev: device
8680  *	@new_len: new tx queue length
8681  */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)8682 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8683 {
8684 	unsigned int orig_len = dev->tx_queue_len;
8685 	int res;
8686 
8687 	if (new_len != (unsigned int)new_len)
8688 		return -ERANGE;
8689 
8690 	if (new_len != orig_len) {
8691 		dev->tx_queue_len = new_len;
8692 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8693 		res = notifier_to_errno(res);
8694 		if (res)
8695 			goto err_rollback;
8696 		res = dev_qdisc_change_tx_queue_len(dev);
8697 		if (res)
8698 			goto err_rollback;
8699 	}
8700 
8701 	return 0;
8702 
8703 err_rollback:
8704 	netdev_err(dev, "refused to change device tx_queue_len\n");
8705 	dev->tx_queue_len = orig_len;
8706 	return res;
8707 }
8708 
8709 /**
8710  *	dev_set_group - Change group this device belongs to
8711  *	@dev: device
8712  *	@new_group: group this device should belong to
8713  */
dev_set_group(struct net_device * dev,int new_group)8714 void dev_set_group(struct net_device *dev, int new_group)
8715 {
8716 	dev->group = new_group;
8717 }
8718 EXPORT_SYMBOL(dev_set_group);
8719 
8720 /**
8721  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8722  *	@dev: device
8723  *	@addr: new address
8724  *	@extack: netlink extended ack
8725  */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)8726 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8727 			      struct netlink_ext_ack *extack)
8728 {
8729 	struct netdev_notifier_pre_changeaddr_info info = {
8730 		.info.dev = dev,
8731 		.info.extack = extack,
8732 		.dev_addr = addr,
8733 	};
8734 	int rc;
8735 
8736 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8737 	return notifier_to_errno(rc);
8738 }
8739 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8740 
8741 /**
8742  *	dev_set_mac_address - Change Media Access Control Address
8743  *	@dev: device
8744  *	@sa: new address
8745  *	@extack: netlink extended ack
8746  *
8747  *	Change the hardware (MAC) address of the device
8748  */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8749 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8750 			struct netlink_ext_ack *extack)
8751 {
8752 	const struct net_device_ops *ops = dev->netdev_ops;
8753 	int err;
8754 
8755 	if (!ops->ndo_set_mac_address)
8756 		return -EOPNOTSUPP;
8757 	if (sa->sa_family != dev->type)
8758 		return -EINVAL;
8759 	if (!netif_device_present(dev))
8760 		return -ENODEV;
8761 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8762 	if (err)
8763 		return err;
8764 	err = ops->ndo_set_mac_address(dev, sa);
8765 	if (err)
8766 		return err;
8767 	dev->addr_assign_type = NET_ADDR_SET;
8768 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8769 	add_device_randomness(dev->dev_addr, dev->addr_len);
8770 	return 0;
8771 }
8772 EXPORT_SYMBOL(dev_set_mac_address);
8773 
8774 static DECLARE_RWSEM(dev_addr_sem);
8775 
dev_set_mac_address_user(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8776 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8777 			     struct netlink_ext_ack *extack)
8778 {
8779 	int ret;
8780 
8781 	down_write(&dev_addr_sem);
8782 	ret = dev_set_mac_address(dev, sa, extack);
8783 	up_write(&dev_addr_sem);
8784 	return ret;
8785 }
8786 EXPORT_SYMBOL(dev_set_mac_address_user);
8787 
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)8788 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8789 {
8790 	size_t size = sizeof(sa->sa_data_min);
8791 	struct net_device *dev;
8792 	int ret = 0;
8793 
8794 	down_read(&dev_addr_sem);
8795 	rcu_read_lock();
8796 
8797 	dev = dev_get_by_name_rcu(net, dev_name);
8798 	if (!dev) {
8799 		ret = -ENODEV;
8800 		goto unlock;
8801 	}
8802 	if (!dev->addr_len)
8803 		memset(sa->sa_data, 0, size);
8804 	else
8805 		memcpy(sa->sa_data, dev->dev_addr,
8806 		       min_t(size_t, size, dev->addr_len));
8807 	sa->sa_family = dev->type;
8808 
8809 unlock:
8810 	rcu_read_unlock();
8811 	up_read(&dev_addr_sem);
8812 	return ret;
8813 }
8814 EXPORT_SYMBOL(dev_get_mac_address);
8815 
8816 /**
8817  *	dev_change_carrier - Change device carrier
8818  *	@dev: device
8819  *	@new_carrier: new value
8820  *
8821  *	Change device carrier
8822  */
dev_change_carrier(struct net_device * dev,bool new_carrier)8823 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8824 {
8825 	const struct net_device_ops *ops = dev->netdev_ops;
8826 
8827 	if (!ops->ndo_change_carrier)
8828 		return -EOPNOTSUPP;
8829 	if (!netif_device_present(dev))
8830 		return -ENODEV;
8831 	return ops->ndo_change_carrier(dev, new_carrier);
8832 }
8833 EXPORT_SYMBOL(dev_change_carrier);
8834 
8835 /**
8836  *	dev_get_phys_port_id - Get device physical port ID
8837  *	@dev: device
8838  *	@ppid: port ID
8839  *
8840  *	Get device physical port ID
8841  */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)8842 int dev_get_phys_port_id(struct net_device *dev,
8843 			 struct netdev_phys_item_id *ppid)
8844 {
8845 	const struct net_device_ops *ops = dev->netdev_ops;
8846 
8847 	if (!ops->ndo_get_phys_port_id)
8848 		return -EOPNOTSUPP;
8849 	return ops->ndo_get_phys_port_id(dev, ppid);
8850 }
8851 EXPORT_SYMBOL(dev_get_phys_port_id);
8852 
8853 /**
8854  *	dev_get_phys_port_name - Get device physical port name
8855  *	@dev: device
8856  *	@name: port name
8857  *	@len: limit of bytes to copy to name
8858  *
8859  *	Get device physical port name
8860  */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)8861 int dev_get_phys_port_name(struct net_device *dev,
8862 			   char *name, size_t len)
8863 {
8864 	const struct net_device_ops *ops = dev->netdev_ops;
8865 	int err;
8866 
8867 	if (ops->ndo_get_phys_port_name) {
8868 		err = ops->ndo_get_phys_port_name(dev, name, len);
8869 		if (err != -EOPNOTSUPP)
8870 			return err;
8871 	}
8872 	return devlink_compat_phys_port_name_get(dev, name, len);
8873 }
8874 EXPORT_SYMBOL(dev_get_phys_port_name);
8875 
8876 /**
8877  *	dev_get_port_parent_id - Get the device's port parent identifier
8878  *	@dev: network device
8879  *	@ppid: pointer to a storage for the port's parent identifier
8880  *	@recurse: allow/disallow recursion to lower devices
8881  *
8882  *	Get the devices's port parent identifier
8883  */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)8884 int dev_get_port_parent_id(struct net_device *dev,
8885 			   struct netdev_phys_item_id *ppid,
8886 			   bool recurse)
8887 {
8888 	const struct net_device_ops *ops = dev->netdev_ops;
8889 	struct netdev_phys_item_id first = { };
8890 	struct net_device *lower_dev;
8891 	struct list_head *iter;
8892 	int err;
8893 
8894 	if (ops->ndo_get_port_parent_id) {
8895 		err = ops->ndo_get_port_parent_id(dev, ppid);
8896 		if (err != -EOPNOTSUPP)
8897 			return err;
8898 	}
8899 
8900 	err = devlink_compat_switch_id_get(dev, ppid);
8901 	if (!err || err != -EOPNOTSUPP)
8902 		return err;
8903 
8904 	if (!recurse)
8905 		return -EOPNOTSUPP;
8906 
8907 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8908 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8909 		if (err)
8910 			break;
8911 		if (!first.id_len)
8912 			first = *ppid;
8913 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8914 			return -EOPNOTSUPP;
8915 	}
8916 
8917 	return err;
8918 }
8919 EXPORT_SYMBOL(dev_get_port_parent_id);
8920 
8921 /**
8922  *	netdev_port_same_parent_id - Indicate if two network devices have
8923  *	the same port parent identifier
8924  *	@a: first network device
8925  *	@b: second network device
8926  */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)8927 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8928 {
8929 	struct netdev_phys_item_id a_id = { };
8930 	struct netdev_phys_item_id b_id = { };
8931 
8932 	if (dev_get_port_parent_id(a, &a_id, true) ||
8933 	    dev_get_port_parent_id(b, &b_id, true))
8934 		return false;
8935 
8936 	return netdev_phys_item_id_same(&a_id, &b_id);
8937 }
8938 EXPORT_SYMBOL(netdev_port_same_parent_id);
8939 
8940 /**
8941  *	dev_change_proto_down - update protocol port state information
8942  *	@dev: device
8943  *	@proto_down: new value
8944  *
8945  *	This info can be used by switch drivers to set the phys state of the
8946  *	port.
8947  */
dev_change_proto_down(struct net_device * dev,bool proto_down)8948 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8949 {
8950 	const struct net_device_ops *ops = dev->netdev_ops;
8951 
8952 	if (!ops->ndo_change_proto_down)
8953 		return -EOPNOTSUPP;
8954 	if (!netif_device_present(dev))
8955 		return -ENODEV;
8956 	return ops->ndo_change_proto_down(dev, proto_down);
8957 }
8958 EXPORT_SYMBOL(dev_change_proto_down);
8959 
8960 /**
8961  *	dev_change_proto_down_generic - generic implementation for
8962  * 	ndo_change_proto_down that sets carrier according to
8963  * 	proto_down.
8964  *
8965  *	@dev: device
8966  *	@proto_down: new value
8967  */
dev_change_proto_down_generic(struct net_device * dev,bool proto_down)8968 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8969 {
8970 	if (proto_down)
8971 		netif_carrier_off(dev);
8972 	else
8973 		netif_carrier_on(dev);
8974 	dev->proto_down = proto_down;
8975 	return 0;
8976 }
8977 EXPORT_SYMBOL(dev_change_proto_down_generic);
8978 
8979 /**
8980  *	dev_change_proto_down_reason - proto down reason
8981  *
8982  *	@dev: device
8983  *	@mask: proto down mask
8984  *	@value: proto down value
8985  */
dev_change_proto_down_reason(struct net_device * dev,unsigned long mask,u32 value)8986 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8987 				  u32 value)
8988 {
8989 	int b;
8990 
8991 	if (!mask) {
8992 		dev->proto_down_reason = value;
8993 	} else {
8994 		for_each_set_bit(b, &mask, 32) {
8995 			if (value & (1 << b))
8996 				dev->proto_down_reason |= BIT(b);
8997 			else
8998 				dev->proto_down_reason &= ~BIT(b);
8999 		}
9000 	}
9001 }
9002 EXPORT_SYMBOL(dev_change_proto_down_reason);
9003 
9004 struct bpf_xdp_link {
9005 	struct bpf_link link;
9006 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9007 	int flags;
9008 };
9009 
dev_xdp_mode(struct net_device * dev,u32 flags)9010 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9011 {
9012 	if (flags & XDP_FLAGS_HW_MODE)
9013 		return XDP_MODE_HW;
9014 	if (flags & XDP_FLAGS_DRV_MODE)
9015 		return XDP_MODE_DRV;
9016 	if (flags & XDP_FLAGS_SKB_MODE)
9017 		return XDP_MODE_SKB;
9018 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9019 }
9020 
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9021 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9022 {
9023 	switch (mode) {
9024 	case XDP_MODE_SKB:
9025 		return generic_xdp_install;
9026 	case XDP_MODE_DRV:
9027 	case XDP_MODE_HW:
9028 		return dev->netdev_ops->ndo_bpf;
9029 	default:
9030 		return NULL;
9031 	};
9032 }
9033 
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9034 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9035 					 enum bpf_xdp_mode mode)
9036 {
9037 	return dev->xdp_state[mode].link;
9038 }
9039 
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9040 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9041 				     enum bpf_xdp_mode mode)
9042 {
9043 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9044 
9045 	if (link)
9046 		return link->link.prog;
9047 	return dev->xdp_state[mode].prog;
9048 }
9049 
dev_xdp_prog_count(struct net_device * dev)9050 static u8 dev_xdp_prog_count(struct net_device *dev)
9051 {
9052 	u8 count = 0;
9053 	int i;
9054 
9055 	for (i = 0; i < __MAX_XDP_MODE; i++)
9056 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9057 			count++;
9058 	return count;
9059 }
9060 
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9061 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9062 {
9063 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9064 
9065 	return prog ? prog->aux->id : 0;
9066 }
9067 
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9068 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9069 			     struct bpf_xdp_link *link)
9070 {
9071 	dev->xdp_state[mode].link = link;
9072 	dev->xdp_state[mode].prog = NULL;
9073 }
9074 
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9075 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9076 			     struct bpf_prog *prog)
9077 {
9078 	dev->xdp_state[mode].link = NULL;
9079 	dev->xdp_state[mode].prog = prog;
9080 }
9081 
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9082 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9083 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9084 			   u32 flags, struct bpf_prog *prog)
9085 {
9086 	struct netdev_bpf xdp;
9087 	int err;
9088 
9089 	memset(&xdp, 0, sizeof(xdp));
9090 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9091 	xdp.extack = extack;
9092 	xdp.flags = flags;
9093 	xdp.prog = prog;
9094 
9095 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9096 	 * "moved" into driver), so they don't increment it on their own, but
9097 	 * they do decrement refcnt when program is detached or replaced.
9098 	 * Given net_device also owns link/prog, we need to bump refcnt here
9099 	 * to prevent drivers from underflowing it.
9100 	 */
9101 	if (prog)
9102 		bpf_prog_inc(prog);
9103 	err = bpf_op(dev, &xdp);
9104 	if (err) {
9105 		if (prog)
9106 			bpf_prog_put(prog);
9107 		return err;
9108 	}
9109 
9110 	if (mode != XDP_MODE_HW)
9111 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9112 
9113 	return 0;
9114 }
9115 
dev_xdp_uninstall(struct net_device * dev)9116 static void dev_xdp_uninstall(struct net_device *dev)
9117 {
9118 	struct bpf_xdp_link *link;
9119 	struct bpf_prog *prog;
9120 	enum bpf_xdp_mode mode;
9121 	bpf_op_t bpf_op;
9122 
9123 	ASSERT_RTNL();
9124 
9125 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9126 		prog = dev_xdp_prog(dev, mode);
9127 		if (!prog)
9128 			continue;
9129 
9130 		bpf_op = dev_xdp_bpf_op(dev, mode);
9131 		if (!bpf_op)
9132 			continue;
9133 
9134 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9135 
9136 		/* auto-detach link from net device */
9137 		link = dev_xdp_link(dev, mode);
9138 		if (link)
9139 			link->dev = NULL;
9140 		else
9141 			bpf_prog_put(prog);
9142 
9143 		dev_xdp_set_link(dev, mode, NULL);
9144 	}
9145 }
9146 
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9147 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9148 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9149 			  struct bpf_prog *old_prog, u32 flags)
9150 {
9151 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9152 	struct bpf_prog *cur_prog;
9153 	enum bpf_xdp_mode mode;
9154 	bpf_op_t bpf_op;
9155 	int err;
9156 
9157 	ASSERT_RTNL();
9158 
9159 	/* either link or prog attachment, never both */
9160 	if (link && (new_prog || old_prog))
9161 		return -EINVAL;
9162 	/* link supports only XDP mode flags */
9163 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9164 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9165 		return -EINVAL;
9166 	}
9167 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9168 	if (num_modes > 1) {
9169 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9170 		return -EINVAL;
9171 	}
9172 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9173 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9174 		NL_SET_ERR_MSG(extack,
9175 			       "More than one program loaded, unset mode is ambiguous");
9176 		return -EINVAL;
9177 	}
9178 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9179 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9180 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9181 		return -EINVAL;
9182 	}
9183 
9184 	mode = dev_xdp_mode(dev, flags);
9185 	/* can't replace attached link */
9186 	if (dev_xdp_link(dev, mode)) {
9187 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9188 		return -EBUSY;
9189 	}
9190 
9191 	cur_prog = dev_xdp_prog(dev, mode);
9192 	/* can't replace attached prog with link */
9193 	if (link && cur_prog) {
9194 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9195 		return -EBUSY;
9196 	}
9197 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9198 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9199 		return -EEXIST;
9200 	}
9201 
9202 	/* put effective new program into new_prog */
9203 	if (link)
9204 		new_prog = link->link.prog;
9205 
9206 	if (new_prog) {
9207 		bool offload = mode == XDP_MODE_HW;
9208 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9209 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9210 
9211 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9212 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9213 			return -EBUSY;
9214 		}
9215 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9216 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9217 			return -EEXIST;
9218 		}
9219 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9220 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9221 			return -EINVAL;
9222 		}
9223 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9224 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9225 			return -EINVAL;
9226 		}
9227 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9228 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9229 			return -EINVAL;
9230 		}
9231 	}
9232 
9233 	/* don't call drivers if the effective program didn't change */
9234 	if (new_prog != cur_prog) {
9235 		bpf_op = dev_xdp_bpf_op(dev, mode);
9236 		if (!bpf_op) {
9237 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9238 			return -EOPNOTSUPP;
9239 		}
9240 
9241 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9242 		if (err)
9243 			return err;
9244 	}
9245 
9246 	if (link)
9247 		dev_xdp_set_link(dev, mode, link);
9248 	else
9249 		dev_xdp_set_prog(dev, mode, new_prog);
9250 	if (cur_prog)
9251 		bpf_prog_put(cur_prog);
9252 
9253 	return 0;
9254 }
9255 
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9256 static int dev_xdp_attach_link(struct net_device *dev,
9257 			       struct netlink_ext_ack *extack,
9258 			       struct bpf_xdp_link *link)
9259 {
9260 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9261 }
9262 
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9263 static int dev_xdp_detach_link(struct net_device *dev,
9264 			       struct netlink_ext_ack *extack,
9265 			       struct bpf_xdp_link *link)
9266 {
9267 	enum bpf_xdp_mode mode;
9268 	bpf_op_t bpf_op;
9269 
9270 	ASSERT_RTNL();
9271 
9272 	mode = dev_xdp_mode(dev, link->flags);
9273 	if (dev_xdp_link(dev, mode) != link)
9274 		return -EINVAL;
9275 
9276 	bpf_op = dev_xdp_bpf_op(dev, mode);
9277 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9278 	dev_xdp_set_link(dev, mode, NULL);
9279 	return 0;
9280 }
9281 
bpf_xdp_link_release(struct bpf_link * link)9282 static void bpf_xdp_link_release(struct bpf_link *link)
9283 {
9284 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9285 
9286 	rtnl_lock();
9287 
9288 	/* if racing with net_device's tear down, xdp_link->dev might be
9289 	 * already NULL, in which case link was already auto-detached
9290 	 */
9291 	if (xdp_link->dev) {
9292 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9293 		xdp_link->dev = NULL;
9294 	}
9295 
9296 	rtnl_unlock();
9297 }
9298 
bpf_xdp_link_detach(struct bpf_link * link)9299 static int bpf_xdp_link_detach(struct bpf_link *link)
9300 {
9301 	bpf_xdp_link_release(link);
9302 	return 0;
9303 }
9304 
bpf_xdp_link_dealloc(struct bpf_link * link)9305 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9306 {
9307 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9308 
9309 	kfree(xdp_link);
9310 }
9311 
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)9312 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9313 				     struct seq_file *seq)
9314 {
9315 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9316 	u32 ifindex = 0;
9317 
9318 	rtnl_lock();
9319 	if (xdp_link->dev)
9320 		ifindex = xdp_link->dev->ifindex;
9321 	rtnl_unlock();
9322 
9323 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9324 }
9325 
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)9326 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9327 				       struct bpf_link_info *info)
9328 {
9329 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9330 	u32 ifindex = 0;
9331 
9332 	rtnl_lock();
9333 	if (xdp_link->dev)
9334 		ifindex = xdp_link->dev->ifindex;
9335 	rtnl_unlock();
9336 
9337 	info->xdp.ifindex = ifindex;
9338 	return 0;
9339 }
9340 
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)9341 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9342 			       struct bpf_prog *old_prog)
9343 {
9344 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9345 	enum bpf_xdp_mode mode;
9346 	bpf_op_t bpf_op;
9347 	int err = 0;
9348 
9349 	rtnl_lock();
9350 
9351 	/* link might have been auto-released already, so fail */
9352 	if (!xdp_link->dev) {
9353 		err = -ENOLINK;
9354 		goto out_unlock;
9355 	}
9356 
9357 	if (old_prog && link->prog != old_prog) {
9358 		err = -EPERM;
9359 		goto out_unlock;
9360 	}
9361 	old_prog = link->prog;
9362 	if (old_prog->type != new_prog->type ||
9363 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9364 		err = -EINVAL;
9365 		goto out_unlock;
9366 	}
9367 
9368 	if (old_prog == new_prog) {
9369 		/* no-op, don't disturb drivers */
9370 		bpf_prog_put(new_prog);
9371 		goto out_unlock;
9372 	}
9373 
9374 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9375 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9376 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9377 			      xdp_link->flags, new_prog);
9378 	if (err)
9379 		goto out_unlock;
9380 
9381 	old_prog = xchg(&link->prog, new_prog);
9382 	bpf_prog_put(old_prog);
9383 
9384 out_unlock:
9385 	rtnl_unlock();
9386 	return err;
9387 }
9388 
9389 static const struct bpf_link_ops bpf_xdp_link_lops = {
9390 	.release = bpf_xdp_link_release,
9391 	.dealloc = bpf_xdp_link_dealloc,
9392 	.detach = bpf_xdp_link_detach,
9393 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9394 	.fill_link_info = bpf_xdp_link_fill_link_info,
9395 	.update_prog = bpf_xdp_link_update,
9396 };
9397 
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)9398 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9399 {
9400 	struct net *net = current->nsproxy->net_ns;
9401 	struct bpf_link_primer link_primer;
9402 	struct bpf_xdp_link *link;
9403 	struct net_device *dev;
9404 	int err, fd;
9405 
9406 	rtnl_lock();
9407 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9408 	if (!dev) {
9409 		rtnl_unlock();
9410 		return -EINVAL;
9411 	}
9412 
9413 	link = kzalloc(sizeof(*link), GFP_USER);
9414 	if (!link) {
9415 		err = -ENOMEM;
9416 		goto unlock;
9417 	}
9418 
9419 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9420 	link->dev = dev;
9421 	link->flags = attr->link_create.flags;
9422 
9423 	err = bpf_link_prime(&link->link, &link_primer);
9424 	if (err) {
9425 		kfree(link);
9426 		goto unlock;
9427 	}
9428 
9429 	err = dev_xdp_attach_link(dev, NULL, link);
9430 	rtnl_unlock();
9431 
9432 	if (err) {
9433 		link->dev = NULL;
9434 		bpf_link_cleanup(&link_primer);
9435 		goto out_put_dev;
9436 	}
9437 
9438 	fd = bpf_link_settle(&link_primer);
9439 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9440 	dev_put(dev);
9441 	return fd;
9442 
9443 unlock:
9444 	rtnl_unlock();
9445 
9446 out_put_dev:
9447 	dev_put(dev);
9448 	return err;
9449 }
9450 
9451 /**
9452  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9453  *	@dev: device
9454  *	@extack: netlink extended ack
9455  *	@fd: new program fd or negative value to clear
9456  *	@expected_fd: old program fd that userspace expects to replace or clear
9457  *	@flags: xdp-related flags
9458  *
9459  *	Set or clear a bpf program for a device
9460  */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)9461 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9462 		      int fd, int expected_fd, u32 flags)
9463 {
9464 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9465 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9466 	int err;
9467 
9468 	ASSERT_RTNL();
9469 
9470 	if (fd >= 0) {
9471 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9472 						 mode != XDP_MODE_SKB);
9473 		if (IS_ERR(new_prog))
9474 			return PTR_ERR(new_prog);
9475 	}
9476 
9477 	if (expected_fd >= 0) {
9478 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9479 						 mode != XDP_MODE_SKB);
9480 		if (IS_ERR(old_prog)) {
9481 			err = PTR_ERR(old_prog);
9482 			old_prog = NULL;
9483 			goto err_out;
9484 		}
9485 	}
9486 
9487 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9488 
9489 err_out:
9490 	if (err && new_prog)
9491 		bpf_prog_put(new_prog);
9492 	if (old_prog)
9493 		bpf_prog_put(old_prog);
9494 	return err;
9495 }
9496 
9497 /**
9498  *	dev_new_index	-	allocate an ifindex
9499  *	@net: the applicable net namespace
9500  *
9501  *	Returns a suitable unique value for a new device interface
9502  *	number.  The caller must hold the rtnl semaphore or the
9503  *	dev_base_lock to be sure it remains unique.
9504  */
dev_new_index(struct net * net)9505 static int dev_new_index(struct net *net)
9506 {
9507 	int ifindex = net->ifindex;
9508 
9509 	for (;;) {
9510 		if (++ifindex <= 0)
9511 			ifindex = 1;
9512 		if (!__dev_get_by_index(net, ifindex))
9513 			return net->ifindex = ifindex;
9514 	}
9515 }
9516 
9517 /* Delayed registration/unregisteration */
9518 static LIST_HEAD(net_todo_list);
9519 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9520 
net_set_todo(struct net_device * dev)9521 static void net_set_todo(struct net_device *dev)
9522 {
9523 	list_add_tail(&dev->todo_list, &net_todo_list);
9524 	dev_net(dev)->dev_unreg_count++;
9525 }
9526 
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)9527 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9528 	struct net_device *upper, netdev_features_t features)
9529 {
9530 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9531 	netdev_features_t feature;
9532 	int feature_bit;
9533 
9534 	for_each_netdev_feature(upper_disables, feature_bit) {
9535 		feature = __NETIF_F_BIT(feature_bit);
9536 		if (!(upper->wanted_features & feature)
9537 		    && (features & feature)) {
9538 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9539 				   &feature, upper->name);
9540 			features &= ~feature;
9541 		}
9542 	}
9543 
9544 	return features;
9545 }
9546 
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)9547 static void netdev_sync_lower_features(struct net_device *upper,
9548 	struct net_device *lower, netdev_features_t features)
9549 {
9550 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9551 	netdev_features_t feature;
9552 	int feature_bit;
9553 
9554 	for_each_netdev_feature(upper_disables, feature_bit) {
9555 		feature = __NETIF_F_BIT(feature_bit);
9556 		if (!(features & feature) && (lower->features & feature)) {
9557 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9558 				   &feature, lower->name);
9559 			lower->wanted_features &= ~feature;
9560 			__netdev_update_features(lower);
9561 
9562 			if (unlikely(lower->features & feature))
9563 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9564 					    &feature, lower->name);
9565 			else
9566 				netdev_features_change(lower);
9567 		}
9568 	}
9569 }
9570 
netdev_fix_features(struct net_device * dev,netdev_features_t features)9571 static netdev_features_t netdev_fix_features(struct net_device *dev,
9572 	netdev_features_t features)
9573 {
9574 	/* Fix illegal checksum combinations */
9575 	if ((features & NETIF_F_HW_CSUM) &&
9576 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9577 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9578 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9579 	}
9580 
9581 	/* TSO requires that SG is present as well. */
9582 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9583 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9584 		features &= ~NETIF_F_ALL_TSO;
9585 	}
9586 
9587 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9588 					!(features & NETIF_F_IP_CSUM)) {
9589 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9590 		features &= ~NETIF_F_TSO;
9591 		features &= ~NETIF_F_TSO_ECN;
9592 	}
9593 
9594 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9595 					 !(features & NETIF_F_IPV6_CSUM)) {
9596 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9597 		features &= ~NETIF_F_TSO6;
9598 	}
9599 
9600 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9601 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9602 		features &= ~NETIF_F_TSO_MANGLEID;
9603 
9604 	/* TSO ECN requires that TSO is present as well. */
9605 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9606 		features &= ~NETIF_F_TSO_ECN;
9607 
9608 	/* Software GSO depends on SG. */
9609 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9610 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9611 		features &= ~NETIF_F_GSO;
9612 	}
9613 
9614 	/* GSO partial features require GSO partial be set */
9615 	if ((features & dev->gso_partial_features) &&
9616 	    !(features & NETIF_F_GSO_PARTIAL)) {
9617 		netdev_dbg(dev,
9618 			   "Dropping partially supported GSO features since no GSO partial.\n");
9619 		features &= ~dev->gso_partial_features;
9620 	}
9621 
9622 	if (!(features & NETIF_F_RXCSUM)) {
9623 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9624 		 * successfully merged by hardware must also have the
9625 		 * checksum verified by hardware.  If the user does not
9626 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9627 		 */
9628 		if (features & NETIF_F_GRO_HW) {
9629 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9630 			features &= ~NETIF_F_GRO_HW;
9631 		}
9632 	}
9633 
9634 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9635 	if (features & NETIF_F_RXFCS) {
9636 		if (features & NETIF_F_LRO) {
9637 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9638 			features &= ~NETIF_F_LRO;
9639 		}
9640 
9641 		if (features & NETIF_F_GRO_HW) {
9642 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9643 			features &= ~NETIF_F_GRO_HW;
9644 		}
9645 	}
9646 
9647 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9648 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9649 		features &= ~NETIF_F_HW_TLS_RX;
9650 	}
9651 
9652 	return features;
9653 }
9654 
__netdev_update_features(struct net_device * dev)9655 int __netdev_update_features(struct net_device *dev)
9656 {
9657 	struct net_device *upper, *lower;
9658 	netdev_features_t features;
9659 	struct list_head *iter;
9660 	int err = -1;
9661 
9662 	ASSERT_RTNL();
9663 
9664 	features = netdev_get_wanted_features(dev);
9665 
9666 	if (dev->netdev_ops->ndo_fix_features)
9667 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9668 
9669 	/* driver might be less strict about feature dependencies */
9670 	features = netdev_fix_features(dev, features);
9671 
9672 	/* some features can't be enabled if they're off on an upper device */
9673 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9674 		features = netdev_sync_upper_features(dev, upper, features);
9675 
9676 	if (dev->features == features)
9677 		goto sync_lower;
9678 
9679 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9680 		&dev->features, &features);
9681 
9682 	if (dev->netdev_ops->ndo_set_features)
9683 		err = dev->netdev_ops->ndo_set_features(dev, features);
9684 	else
9685 		err = 0;
9686 
9687 	if (unlikely(err < 0)) {
9688 		netdev_err(dev,
9689 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9690 			err, &features, &dev->features);
9691 		/* return non-0 since some features might have changed and
9692 		 * it's better to fire a spurious notification than miss it
9693 		 */
9694 		return -1;
9695 	}
9696 
9697 sync_lower:
9698 	/* some features must be disabled on lower devices when disabled
9699 	 * on an upper device (think: bonding master or bridge)
9700 	 */
9701 	netdev_for_each_lower_dev(dev, lower, iter)
9702 		netdev_sync_lower_features(dev, lower, features);
9703 
9704 	if (!err) {
9705 		netdev_features_t diff = features ^ dev->features;
9706 
9707 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9708 			/* udp_tunnel_{get,drop}_rx_info both need
9709 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9710 			 * device, or they won't do anything.
9711 			 * Thus we need to update dev->features
9712 			 * *before* calling udp_tunnel_get_rx_info,
9713 			 * but *after* calling udp_tunnel_drop_rx_info.
9714 			 */
9715 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9716 				dev->features = features;
9717 				udp_tunnel_get_rx_info(dev);
9718 			} else {
9719 				udp_tunnel_drop_rx_info(dev);
9720 			}
9721 		}
9722 
9723 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9724 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9725 				dev->features = features;
9726 				err |= vlan_get_rx_ctag_filter_info(dev);
9727 			} else {
9728 				vlan_drop_rx_ctag_filter_info(dev);
9729 			}
9730 		}
9731 
9732 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9733 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9734 				dev->features = features;
9735 				err |= vlan_get_rx_stag_filter_info(dev);
9736 			} else {
9737 				vlan_drop_rx_stag_filter_info(dev);
9738 			}
9739 		}
9740 
9741 		dev->features = features;
9742 	}
9743 
9744 	return err < 0 ? 0 : 1;
9745 }
9746 
9747 /**
9748  *	netdev_update_features - recalculate device features
9749  *	@dev: the device to check
9750  *
9751  *	Recalculate dev->features set and send notifications if it
9752  *	has changed. Should be called after driver or hardware dependent
9753  *	conditions might have changed that influence the features.
9754  */
netdev_update_features(struct net_device * dev)9755 void netdev_update_features(struct net_device *dev)
9756 {
9757 	if (__netdev_update_features(dev))
9758 		netdev_features_change(dev);
9759 }
9760 EXPORT_SYMBOL(netdev_update_features);
9761 
9762 /**
9763  *	netdev_change_features - recalculate device features
9764  *	@dev: the device to check
9765  *
9766  *	Recalculate dev->features set and send notifications even
9767  *	if they have not changed. Should be called instead of
9768  *	netdev_update_features() if also dev->vlan_features might
9769  *	have changed to allow the changes to be propagated to stacked
9770  *	VLAN devices.
9771  */
netdev_change_features(struct net_device * dev)9772 void netdev_change_features(struct net_device *dev)
9773 {
9774 	__netdev_update_features(dev);
9775 	netdev_features_change(dev);
9776 }
9777 EXPORT_SYMBOL(netdev_change_features);
9778 
9779 /**
9780  *	netif_stacked_transfer_operstate -	transfer operstate
9781  *	@rootdev: the root or lower level device to transfer state from
9782  *	@dev: the device to transfer operstate to
9783  *
9784  *	Transfer operational state from root to device. This is normally
9785  *	called when a stacking relationship exists between the root
9786  *	device and the device(a leaf device).
9787  */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)9788 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9789 					struct net_device *dev)
9790 {
9791 	if (rootdev->operstate == IF_OPER_DORMANT)
9792 		netif_dormant_on(dev);
9793 	else
9794 		netif_dormant_off(dev);
9795 
9796 	if (rootdev->operstate == IF_OPER_TESTING)
9797 		netif_testing_on(dev);
9798 	else
9799 		netif_testing_off(dev);
9800 
9801 	if (netif_carrier_ok(rootdev))
9802 		netif_carrier_on(dev);
9803 	else
9804 		netif_carrier_off(dev);
9805 }
9806 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9807 
netif_alloc_rx_queues(struct net_device * dev)9808 static int netif_alloc_rx_queues(struct net_device *dev)
9809 {
9810 	unsigned int i, count = dev->num_rx_queues;
9811 	struct netdev_rx_queue *rx;
9812 	size_t sz = count * sizeof(*rx);
9813 	int err = 0;
9814 
9815 	BUG_ON(count < 1);
9816 
9817 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9818 	if (!rx)
9819 		return -ENOMEM;
9820 
9821 	dev->_rx = rx;
9822 
9823 	for (i = 0; i < count; i++) {
9824 		rx[i].dev = dev;
9825 
9826 		/* XDP RX-queue setup */
9827 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9828 		if (err < 0)
9829 			goto err_rxq_info;
9830 	}
9831 	return 0;
9832 
9833 err_rxq_info:
9834 	/* Rollback successful reg's and free other resources */
9835 	while (i--)
9836 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9837 	kvfree(dev->_rx);
9838 	dev->_rx = NULL;
9839 	return err;
9840 }
9841 
netif_free_rx_queues(struct net_device * dev)9842 static void netif_free_rx_queues(struct net_device *dev)
9843 {
9844 	unsigned int i, count = dev->num_rx_queues;
9845 
9846 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9847 	if (!dev->_rx)
9848 		return;
9849 
9850 	for (i = 0; i < count; i++)
9851 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9852 
9853 	kvfree(dev->_rx);
9854 }
9855 
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)9856 static void netdev_init_one_queue(struct net_device *dev,
9857 				  struct netdev_queue *queue, void *_unused)
9858 {
9859 	/* Initialize queue lock */
9860 	spin_lock_init(&queue->_xmit_lock);
9861 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9862 	queue->xmit_lock_owner = -1;
9863 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9864 	queue->dev = dev;
9865 #ifdef CONFIG_BQL
9866 	dql_init(&queue->dql, HZ);
9867 #endif
9868 }
9869 
netif_free_tx_queues(struct net_device * dev)9870 static void netif_free_tx_queues(struct net_device *dev)
9871 {
9872 	kvfree(dev->_tx);
9873 }
9874 
netif_alloc_netdev_queues(struct net_device * dev)9875 static int netif_alloc_netdev_queues(struct net_device *dev)
9876 {
9877 	unsigned int count = dev->num_tx_queues;
9878 	struct netdev_queue *tx;
9879 	size_t sz = count * sizeof(*tx);
9880 
9881 	if (count < 1 || count > 0xffff)
9882 		return -EINVAL;
9883 
9884 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9885 	if (!tx)
9886 		return -ENOMEM;
9887 
9888 	dev->_tx = tx;
9889 
9890 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9891 	spin_lock_init(&dev->tx_global_lock);
9892 
9893 	return 0;
9894 }
9895 
netif_tx_stop_all_queues(struct net_device * dev)9896 void netif_tx_stop_all_queues(struct net_device *dev)
9897 {
9898 	unsigned int i;
9899 
9900 	for (i = 0; i < dev->num_tx_queues; i++) {
9901 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9902 
9903 		netif_tx_stop_queue(txq);
9904 	}
9905 }
9906 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9907 
9908 /**
9909  *	register_netdevice	- register a network device
9910  *	@dev: device to register
9911  *
9912  *	Take a completed network device structure and add it to the kernel
9913  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9914  *	chain. 0 is returned on success. A negative errno code is returned
9915  *	on a failure to set up the device, or if the name is a duplicate.
9916  *
9917  *	Callers must hold the rtnl semaphore. You may want
9918  *	register_netdev() instead of this.
9919  *
9920  *	BUGS:
9921  *	The locking appears insufficient to guarantee two parallel registers
9922  *	will not get the same name.
9923  */
9924 
register_netdevice(struct net_device * dev)9925 int register_netdevice(struct net_device *dev)
9926 {
9927 	int ret;
9928 	struct net *net = dev_net(dev);
9929 
9930 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9931 		     NETDEV_FEATURE_COUNT);
9932 	BUG_ON(dev_boot_phase);
9933 	ASSERT_RTNL();
9934 
9935 	might_sleep();
9936 
9937 	/* When net_device's are persistent, this will be fatal. */
9938 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9939 	BUG_ON(!net);
9940 
9941 	ret = ethtool_check_ops(dev->ethtool_ops);
9942 	if (ret)
9943 		return ret;
9944 
9945 	spin_lock_init(&dev->addr_list_lock);
9946 	netdev_set_addr_lockdep_class(dev);
9947 
9948 	ret = dev_get_valid_name(net, dev, dev->name);
9949 	if (ret < 0)
9950 		goto out;
9951 
9952 	ret = -ENOMEM;
9953 	dev->name_node = netdev_name_node_head_alloc(dev);
9954 	if (!dev->name_node)
9955 		goto out;
9956 
9957 	/* Init, if this function is available */
9958 	if (dev->netdev_ops->ndo_init) {
9959 		ret = dev->netdev_ops->ndo_init(dev);
9960 		if (ret) {
9961 			if (ret > 0)
9962 				ret = -EIO;
9963 			goto err_free_name;
9964 		}
9965 	}
9966 
9967 	if (((dev->hw_features | dev->features) &
9968 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9969 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9970 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9971 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9972 		ret = -EINVAL;
9973 		goto err_uninit;
9974 	}
9975 
9976 	ret = -EBUSY;
9977 	if (!dev->ifindex)
9978 		dev->ifindex = dev_new_index(net);
9979 	else if (__dev_get_by_index(net, dev->ifindex))
9980 		goto err_uninit;
9981 
9982 	/* Transfer changeable features to wanted_features and enable
9983 	 * software offloads (GSO and GRO).
9984 	 */
9985 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9986 	dev->features |= NETIF_F_SOFT_FEATURES;
9987 
9988 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
9989 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9990 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9991 	}
9992 
9993 	dev->wanted_features = dev->features & dev->hw_features;
9994 
9995 	if (!(dev->flags & IFF_LOOPBACK))
9996 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9997 
9998 	/* If IPv4 TCP segmentation offload is supported we should also
9999 	 * allow the device to enable segmenting the frame with the option
10000 	 * of ignoring a static IP ID value.  This doesn't enable the
10001 	 * feature itself but allows the user to enable it later.
10002 	 */
10003 	if (dev->hw_features & NETIF_F_TSO)
10004 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10005 	if (dev->vlan_features & NETIF_F_TSO)
10006 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10007 	if (dev->mpls_features & NETIF_F_TSO)
10008 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10009 	if (dev->hw_enc_features & NETIF_F_TSO)
10010 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10011 
10012 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10013 	 */
10014 	dev->vlan_features |= NETIF_F_HIGHDMA;
10015 
10016 	/* Make NETIF_F_SG inheritable to tunnel devices.
10017 	 */
10018 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10019 
10020 	/* Make NETIF_F_SG inheritable to MPLS.
10021 	 */
10022 	dev->mpls_features |= NETIF_F_SG;
10023 
10024 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10025 	ret = notifier_to_errno(ret);
10026 	if (ret)
10027 		goto err_uninit;
10028 
10029 	ret = netdev_register_kobject(dev);
10030 	if (ret) {
10031 		dev->reg_state = NETREG_UNREGISTERED;
10032 		goto err_uninit;
10033 	}
10034 	dev->reg_state = NETREG_REGISTERED;
10035 
10036 	__netdev_update_features(dev);
10037 
10038 	/*
10039 	 *	Default initial state at registry is that the
10040 	 *	device is present.
10041 	 */
10042 
10043 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10044 
10045 	linkwatch_init_dev(dev);
10046 
10047 	dev_init_scheduler(dev);
10048 	dev_hold(dev);
10049 	list_netdevice(dev);
10050 	add_device_randomness(dev->dev_addr, dev->addr_len);
10051 
10052 	/* If the device has permanent device address, driver should
10053 	 * set dev_addr and also addr_assign_type should be set to
10054 	 * NET_ADDR_PERM (default value).
10055 	 */
10056 	if (dev->addr_assign_type == NET_ADDR_PERM)
10057 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10058 
10059 	/* Notify protocols, that a new device appeared. */
10060 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10061 	ret = notifier_to_errno(ret);
10062 	if (ret) {
10063 		/* Expect explicit free_netdev() on failure */
10064 		dev->needs_free_netdev = false;
10065 		unregister_netdevice_queue(dev, NULL);
10066 		goto out;
10067 	}
10068 	/*
10069 	 *	Prevent userspace races by waiting until the network
10070 	 *	device is fully setup before sending notifications.
10071 	 */
10072 	if (!dev->rtnl_link_ops ||
10073 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10074 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10075 
10076 out:
10077 	return ret;
10078 
10079 err_uninit:
10080 	if (dev->netdev_ops->ndo_uninit)
10081 		dev->netdev_ops->ndo_uninit(dev);
10082 	if (dev->priv_destructor)
10083 		dev->priv_destructor(dev);
10084 err_free_name:
10085 	netdev_name_node_free(dev->name_node);
10086 	goto out;
10087 }
10088 EXPORT_SYMBOL(register_netdevice);
10089 
10090 /**
10091  *	init_dummy_netdev	- init a dummy network device for NAPI
10092  *	@dev: device to init
10093  *
10094  *	This takes a network device structure and initialize the minimum
10095  *	amount of fields so it can be used to schedule NAPI polls without
10096  *	registering a full blown interface. This is to be used by drivers
10097  *	that need to tie several hardware interfaces to a single NAPI
10098  *	poll scheduler due to HW limitations.
10099  */
init_dummy_netdev(struct net_device * dev)10100 int init_dummy_netdev(struct net_device *dev)
10101 {
10102 	/* Clear everything. Note we don't initialize spinlocks
10103 	 * are they aren't supposed to be taken by any of the
10104 	 * NAPI code and this dummy netdev is supposed to be
10105 	 * only ever used for NAPI polls
10106 	 */
10107 	memset(dev, 0, sizeof(struct net_device));
10108 
10109 	/* make sure we BUG if trying to hit standard
10110 	 * register/unregister code path
10111 	 */
10112 	dev->reg_state = NETREG_DUMMY;
10113 
10114 	/* NAPI wants this */
10115 	INIT_LIST_HEAD(&dev->napi_list);
10116 
10117 	/* a dummy interface is started by default */
10118 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10119 	set_bit(__LINK_STATE_START, &dev->state);
10120 
10121 	/* napi_busy_loop stats accounting wants this */
10122 	dev_net_set(dev, &init_net);
10123 
10124 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10125 	 * because users of this 'device' dont need to change
10126 	 * its refcount.
10127 	 */
10128 
10129 	return 0;
10130 }
10131 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10132 
10133 
10134 /**
10135  *	register_netdev	- register a network device
10136  *	@dev: device to register
10137  *
10138  *	Take a completed network device structure and add it to the kernel
10139  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10140  *	chain. 0 is returned on success. A negative errno code is returned
10141  *	on a failure to set up the device, or if the name is a duplicate.
10142  *
10143  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10144  *	and expands the device name if you passed a format string to
10145  *	alloc_netdev.
10146  */
register_netdev(struct net_device * dev)10147 int register_netdev(struct net_device *dev)
10148 {
10149 	int err;
10150 
10151 	if (rtnl_lock_killable())
10152 		return -EINTR;
10153 	err = register_netdevice(dev);
10154 	rtnl_unlock();
10155 	return err;
10156 }
10157 EXPORT_SYMBOL(register_netdev);
10158 
netdev_refcnt_read(const struct net_device * dev)10159 int netdev_refcnt_read(const struct net_device *dev)
10160 {
10161 	int i, refcnt = 0;
10162 
10163 	for_each_possible_cpu(i)
10164 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10165 	return refcnt;
10166 }
10167 EXPORT_SYMBOL(netdev_refcnt_read);
10168 
10169 #define WAIT_REFS_MIN_MSECS 1
10170 #define WAIT_REFS_MAX_MSECS 250
10171 /**
10172  * netdev_wait_allrefs - wait until all references are gone.
10173  * @dev: target net_device
10174  *
10175  * This is called when unregistering network devices.
10176  *
10177  * Any protocol or device that holds a reference should register
10178  * for netdevice notification, and cleanup and put back the
10179  * reference if they receive an UNREGISTER event.
10180  * We can get stuck here if buggy protocols don't correctly
10181  * call dev_put.
10182  */
netdev_wait_allrefs(struct net_device * dev)10183 static void netdev_wait_allrefs(struct net_device *dev)
10184 {
10185 	unsigned long rebroadcast_time, warning_time;
10186 	int wait = 0, refcnt;
10187 
10188 	linkwatch_forget_dev(dev);
10189 
10190 	rebroadcast_time = warning_time = jiffies;
10191 	refcnt = netdev_refcnt_read(dev);
10192 
10193 	while (refcnt != 0) {
10194 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10195 			rtnl_lock();
10196 
10197 			/* Rebroadcast unregister notification */
10198 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10199 
10200 			__rtnl_unlock();
10201 			rcu_barrier();
10202 			rtnl_lock();
10203 
10204 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10205 				     &dev->state)) {
10206 				/* We must not have linkwatch events
10207 				 * pending on unregister. If this
10208 				 * happens, we simply run the queue
10209 				 * unscheduled, resulting in a noop
10210 				 * for this device.
10211 				 */
10212 				linkwatch_run_queue();
10213 			}
10214 
10215 			__rtnl_unlock();
10216 
10217 			rebroadcast_time = jiffies;
10218 		}
10219 
10220 		if (!wait) {
10221 			rcu_barrier();
10222 			wait = WAIT_REFS_MIN_MSECS;
10223 		} else {
10224 			msleep(wait);
10225 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10226 		}
10227 
10228 		refcnt = netdev_refcnt_read(dev);
10229 
10230 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10231 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10232 				 dev->name, refcnt);
10233 			warning_time = jiffies;
10234 		}
10235 	}
10236 }
10237 
10238 /* The sequence is:
10239  *
10240  *	rtnl_lock();
10241  *	...
10242  *	register_netdevice(x1);
10243  *	register_netdevice(x2);
10244  *	...
10245  *	unregister_netdevice(y1);
10246  *	unregister_netdevice(y2);
10247  *      ...
10248  *	rtnl_unlock();
10249  *	free_netdev(y1);
10250  *	free_netdev(y2);
10251  *
10252  * We are invoked by rtnl_unlock().
10253  * This allows us to deal with problems:
10254  * 1) We can delete sysfs objects which invoke hotplug
10255  *    without deadlocking with linkwatch via keventd.
10256  * 2) Since we run with the RTNL semaphore not held, we can sleep
10257  *    safely in order to wait for the netdev refcnt to drop to zero.
10258  *
10259  * We must not return until all unregister events added during
10260  * the interval the lock was held have been completed.
10261  */
netdev_run_todo(void)10262 void netdev_run_todo(void)
10263 {
10264 	struct list_head list;
10265 #ifdef CONFIG_LOCKDEP
10266 	struct list_head unlink_list;
10267 
10268 	list_replace_init(&net_unlink_list, &unlink_list);
10269 
10270 	while (!list_empty(&unlink_list)) {
10271 		struct net_device *dev = list_first_entry(&unlink_list,
10272 							  struct net_device,
10273 							  unlink_list);
10274 		list_del_init(&dev->unlink_list);
10275 		dev->nested_level = dev->lower_level - 1;
10276 	}
10277 #endif
10278 
10279 	/* Snapshot list, allow later requests */
10280 	list_replace_init(&net_todo_list, &list);
10281 
10282 	__rtnl_unlock();
10283 
10284 
10285 	/* Wait for rcu callbacks to finish before next phase */
10286 	if (!list_empty(&list))
10287 		rcu_barrier();
10288 
10289 	while (!list_empty(&list)) {
10290 		struct net_device *dev
10291 			= list_first_entry(&list, struct net_device, todo_list);
10292 		list_del(&dev->todo_list);
10293 
10294 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10295 			pr_err("network todo '%s' but state %d\n",
10296 			       dev->name, dev->reg_state);
10297 			dump_stack();
10298 			continue;
10299 		}
10300 
10301 		dev->reg_state = NETREG_UNREGISTERED;
10302 
10303 		netdev_wait_allrefs(dev);
10304 
10305 		/* paranoia */
10306 		BUG_ON(netdev_refcnt_read(dev));
10307 		BUG_ON(!list_empty(&dev->ptype_all));
10308 		BUG_ON(!list_empty(&dev->ptype_specific));
10309 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10310 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10311 
10312 		if (dev->priv_destructor)
10313 			dev->priv_destructor(dev);
10314 		if (dev->needs_free_netdev)
10315 			free_netdev(dev);
10316 
10317 		/* Report a network device has been unregistered */
10318 		rtnl_lock();
10319 		dev_net(dev)->dev_unreg_count--;
10320 		__rtnl_unlock();
10321 		wake_up(&netdev_unregistering_wq);
10322 
10323 		/* Free network device */
10324 		kobject_put(&dev->dev.kobj);
10325 	}
10326 }
10327 
10328 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10329  * all the same fields in the same order as net_device_stats, with only
10330  * the type differing, but rtnl_link_stats64 may have additional fields
10331  * at the end for newer counters.
10332  */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)10333 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10334 			     const struct net_device_stats *netdev_stats)
10335 {
10336 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10337 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10338 	u64 *dst = (u64 *)stats64;
10339 
10340 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10341 	for (i = 0; i < n; i++)
10342 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10343 	/* zero out counters that only exist in rtnl_link_stats64 */
10344 	memset((char *)stats64 + n * sizeof(u64), 0,
10345 	       sizeof(*stats64) - n * sizeof(u64));
10346 }
10347 EXPORT_SYMBOL(netdev_stats_to_stats64);
10348 
10349 /**
10350  *	dev_get_stats	- get network device statistics
10351  *	@dev: device to get statistics from
10352  *	@storage: place to store stats
10353  *
10354  *	Get network statistics from device. Return @storage.
10355  *	The device driver may provide its own method by setting
10356  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10357  *	otherwise the internal statistics structure is used.
10358  */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)10359 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10360 					struct rtnl_link_stats64 *storage)
10361 {
10362 	const struct net_device_ops *ops = dev->netdev_ops;
10363 
10364 	if (ops->ndo_get_stats64) {
10365 		memset(storage, 0, sizeof(*storage));
10366 		ops->ndo_get_stats64(dev, storage);
10367 	} else if (ops->ndo_get_stats) {
10368 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10369 	} else {
10370 		netdev_stats_to_stats64(storage, &dev->stats);
10371 	}
10372 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10373 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10374 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10375 	return storage;
10376 }
10377 EXPORT_SYMBOL(dev_get_stats);
10378 
10379 /**
10380  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10381  *	@s: place to store stats
10382  *	@netstats: per-cpu network stats to read from
10383  *
10384  *	Read per-cpu network statistics and populate the related fields in @s.
10385  */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)10386 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10387 			   const struct pcpu_sw_netstats __percpu *netstats)
10388 {
10389 	int cpu;
10390 
10391 	for_each_possible_cpu(cpu) {
10392 		const struct pcpu_sw_netstats *stats;
10393 		struct pcpu_sw_netstats tmp;
10394 		unsigned int start;
10395 
10396 		stats = per_cpu_ptr(netstats, cpu);
10397 		do {
10398 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10399 			tmp.rx_packets = stats->rx_packets;
10400 			tmp.rx_bytes   = stats->rx_bytes;
10401 			tmp.tx_packets = stats->tx_packets;
10402 			tmp.tx_bytes   = stats->tx_bytes;
10403 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10404 
10405 		s->rx_packets += tmp.rx_packets;
10406 		s->rx_bytes   += tmp.rx_bytes;
10407 		s->tx_packets += tmp.tx_packets;
10408 		s->tx_bytes   += tmp.tx_bytes;
10409 	}
10410 }
10411 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10412 
dev_ingress_queue_create(struct net_device * dev)10413 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10414 {
10415 	struct netdev_queue *queue = dev_ingress_queue(dev);
10416 
10417 #ifdef CONFIG_NET_CLS_ACT
10418 	if (queue)
10419 		return queue;
10420 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10421 	if (!queue)
10422 		return NULL;
10423 	netdev_init_one_queue(dev, queue, NULL);
10424 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10425 	queue->qdisc_sleeping = &noop_qdisc;
10426 	rcu_assign_pointer(dev->ingress_queue, queue);
10427 #endif
10428 	return queue;
10429 }
10430 
10431 static const struct ethtool_ops default_ethtool_ops;
10432 
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)10433 void netdev_set_default_ethtool_ops(struct net_device *dev,
10434 				    const struct ethtool_ops *ops)
10435 {
10436 	if (dev->ethtool_ops == &default_ethtool_ops)
10437 		dev->ethtool_ops = ops;
10438 }
10439 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10440 
netdev_freemem(struct net_device * dev)10441 void netdev_freemem(struct net_device *dev)
10442 {
10443 	char *addr = (char *)dev - dev->padded;
10444 
10445 	kvfree(addr);
10446 }
10447 
10448 /**
10449  * alloc_netdev_mqs - allocate network device
10450  * @sizeof_priv: size of private data to allocate space for
10451  * @name: device name format string
10452  * @name_assign_type: origin of device name
10453  * @setup: callback to initialize device
10454  * @txqs: the number of TX subqueues to allocate
10455  * @rxqs: the number of RX subqueues to allocate
10456  *
10457  * Allocates a struct net_device with private data area for driver use
10458  * and performs basic initialization.  Also allocates subqueue structs
10459  * for each queue on the device.
10460  */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)10461 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10462 		unsigned char name_assign_type,
10463 		void (*setup)(struct net_device *),
10464 		unsigned int txqs, unsigned int rxqs)
10465 {
10466 	struct net_device *dev;
10467 	unsigned int alloc_size;
10468 	struct net_device *p;
10469 
10470 	BUG_ON(strlen(name) >= sizeof(dev->name));
10471 
10472 	if (txqs < 1) {
10473 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10474 		return NULL;
10475 	}
10476 
10477 	if (rxqs < 1) {
10478 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10479 		return NULL;
10480 	}
10481 
10482 	alloc_size = sizeof(struct net_device);
10483 	if (sizeof_priv) {
10484 		/* ensure 32-byte alignment of private area */
10485 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10486 		alloc_size += sizeof_priv;
10487 	}
10488 	/* ensure 32-byte alignment of whole construct */
10489 	alloc_size += NETDEV_ALIGN - 1;
10490 
10491 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10492 	if (!p)
10493 		return NULL;
10494 
10495 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10496 	dev->padded = (char *)dev - (char *)p;
10497 
10498 	dev->pcpu_refcnt = alloc_percpu(int);
10499 	if (!dev->pcpu_refcnt)
10500 		goto free_dev;
10501 
10502 	if (dev_addr_init(dev))
10503 		goto free_pcpu;
10504 
10505 	dev_mc_init(dev);
10506 	dev_uc_init(dev);
10507 
10508 	dev_net_set(dev, &init_net);
10509 
10510 	dev->gso_max_size = GSO_MAX_SIZE;
10511 	dev->gso_max_segs = GSO_MAX_SEGS;
10512 	dev->upper_level = 1;
10513 	dev->lower_level = 1;
10514 #ifdef CONFIG_LOCKDEP
10515 	dev->nested_level = 0;
10516 	INIT_LIST_HEAD(&dev->unlink_list);
10517 #endif
10518 
10519 	INIT_LIST_HEAD(&dev->napi_list);
10520 	INIT_LIST_HEAD(&dev->unreg_list);
10521 	INIT_LIST_HEAD(&dev->close_list);
10522 	INIT_LIST_HEAD(&dev->link_watch_list);
10523 	INIT_LIST_HEAD(&dev->adj_list.upper);
10524 	INIT_LIST_HEAD(&dev->adj_list.lower);
10525 	INIT_LIST_HEAD(&dev->ptype_all);
10526 	INIT_LIST_HEAD(&dev->ptype_specific);
10527 	INIT_LIST_HEAD(&dev->net_notifier_list);
10528 #ifdef CONFIG_NET_SCHED
10529 	hash_init(dev->qdisc_hash);
10530 #endif
10531 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10532 	setup(dev);
10533 
10534 	if (!dev->tx_queue_len) {
10535 		dev->priv_flags |= IFF_NO_QUEUE;
10536 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10537 	}
10538 
10539 	dev->num_tx_queues = txqs;
10540 	dev->real_num_tx_queues = txqs;
10541 	if (netif_alloc_netdev_queues(dev))
10542 		goto free_all;
10543 
10544 	dev->num_rx_queues = rxqs;
10545 	dev->real_num_rx_queues = rxqs;
10546 	if (netif_alloc_rx_queues(dev))
10547 		goto free_all;
10548 
10549 	strcpy(dev->name, name);
10550 	dev->name_assign_type = name_assign_type;
10551 	dev->group = INIT_NETDEV_GROUP;
10552 	if (!dev->ethtool_ops)
10553 		dev->ethtool_ops = &default_ethtool_ops;
10554 
10555 	nf_hook_ingress_init(dev);
10556 
10557 	return dev;
10558 
10559 free_all:
10560 	free_netdev(dev);
10561 	return NULL;
10562 
10563 free_pcpu:
10564 	free_percpu(dev->pcpu_refcnt);
10565 free_dev:
10566 	netdev_freemem(dev);
10567 	return NULL;
10568 }
10569 EXPORT_SYMBOL(alloc_netdev_mqs);
10570 
10571 /**
10572  * free_netdev - free network device
10573  * @dev: device
10574  *
10575  * This function does the last stage of destroying an allocated device
10576  * interface. The reference to the device object is released. If this
10577  * is the last reference then it will be freed.Must be called in process
10578  * context.
10579  */
free_netdev(struct net_device * dev)10580 void free_netdev(struct net_device *dev)
10581 {
10582 	struct napi_struct *p, *n;
10583 
10584 	might_sleep();
10585 
10586 	/* When called immediately after register_netdevice() failed the unwind
10587 	 * handling may still be dismantling the device. Handle that case by
10588 	 * deferring the free.
10589 	 */
10590 	if (dev->reg_state == NETREG_UNREGISTERING) {
10591 		ASSERT_RTNL();
10592 		dev->needs_free_netdev = true;
10593 		return;
10594 	}
10595 
10596 	netif_free_tx_queues(dev);
10597 	netif_free_rx_queues(dev);
10598 
10599 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10600 
10601 	/* Flush device addresses */
10602 	dev_addr_flush(dev);
10603 
10604 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10605 		netif_napi_del(p);
10606 
10607 	free_percpu(dev->pcpu_refcnt);
10608 	dev->pcpu_refcnt = NULL;
10609 	free_percpu(dev->xdp_bulkq);
10610 	dev->xdp_bulkq = NULL;
10611 
10612 	/*  Compatibility with error handling in drivers */
10613 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10614 		netdev_freemem(dev);
10615 		return;
10616 	}
10617 
10618 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10619 	dev->reg_state = NETREG_RELEASED;
10620 
10621 	/* will free via device release */
10622 	put_device(&dev->dev);
10623 }
10624 EXPORT_SYMBOL(free_netdev);
10625 
10626 /**
10627  *	synchronize_net -  Synchronize with packet receive processing
10628  *
10629  *	Wait for packets currently being received to be done.
10630  *	Does not block later packets from starting.
10631  */
synchronize_net(void)10632 void synchronize_net(void)
10633 {
10634 	might_sleep();
10635 	if (rtnl_is_locked())
10636 		synchronize_rcu_expedited();
10637 	else
10638 		synchronize_rcu();
10639 }
10640 EXPORT_SYMBOL(synchronize_net);
10641 
10642 /**
10643  *	unregister_netdevice_queue - remove device from the kernel
10644  *	@dev: device
10645  *	@head: list
10646  *
10647  *	This function shuts down a device interface and removes it
10648  *	from the kernel tables.
10649  *	If head not NULL, device is queued to be unregistered later.
10650  *
10651  *	Callers must hold the rtnl semaphore.  You may want
10652  *	unregister_netdev() instead of this.
10653  */
10654 
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)10655 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10656 {
10657 	ASSERT_RTNL();
10658 
10659 	if (head) {
10660 		list_move_tail(&dev->unreg_list, head);
10661 	} else {
10662 		LIST_HEAD(single);
10663 
10664 		list_add(&dev->unreg_list, &single);
10665 		unregister_netdevice_many(&single);
10666 	}
10667 }
10668 EXPORT_SYMBOL(unregister_netdevice_queue);
10669 
10670 /**
10671  *	unregister_netdevice_many - unregister many devices
10672  *	@head: list of devices
10673  *
10674  *  Note: As most callers use a stack allocated list_head,
10675  *  we force a list_del() to make sure stack wont be corrupted later.
10676  */
unregister_netdevice_many(struct list_head * head)10677 void unregister_netdevice_many(struct list_head *head)
10678 {
10679 	struct net_device *dev, *tmp;
10680 	LIST_HEAD(close_head);
10681 
10682 	BUG_ON(dev_boot_phase);
10683 	ASSERT_RTNL();
10684 
10685 	if (list_empty(head))
10686 		return;
10687 
10688 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10689 		/* Some devices call without registering
10690 		 * for initialization unwind. Remove those
10691 		 * devices and proceed with the remaining.
10692 		 */
10693 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10694 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10695 				 dev->name, dev);
10696 
10697 			WARN_ON(1);
10698 			list_del(&dev->unreg_list);
10699 			continue;
10700 		}
10701 		dev->dismantle = true;
10702 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10703 	}
10704 
10705 	/* If device is running, close it first. */
10706 	list_for_each_entry(dev, head, unreg_list)
10707 		list_add_tail(&dev->close_list, &close_head);
10708 	dev_close_many(&close_head, true);
10709 
10710 	list_for_each_entry(dev, head, unreg_list) {
10711 		/* And unlink it from device chain. */
10712 		unlist_netdevice(dev);
10713 
10714 		dev->reg_state = NETREG_UNREGISTERING;
10715 	}
10716 	flush_all_backlogs();
10717 
10718 	synchronize_net();
10719 
10720 	list_for_each_entry(dev, head, unreg_list) {
10721 		struct sk_buff *skb = NULL;
10722 
10723 		/* Shutdown queueing discipline. */
10724 		dev_shutdown(dev);
10725 
10726 		dev_xdp_uninstall(dev);
10727 
10728 		/* Notify protocols, that we are about to destroy
10729 		 * this device. They should clean all the things.
10730 		 */
10731 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10732 
10733 		if (!dev->rtnl_link_ops ||
10734 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10735 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10736 						     GFP_KERNEL, NULL, 0);
10737 
10738 		/*
10739 		 *	Flush the unicast and multicast chains
10740 		 */
10741 		dev_uc_flush(dev);
10742 		dev_mc_flush(dev);
10743 
10744 		netdev_name_node_alt_flush(dev);
10745 		netdev_name_node_free(dev->name_node);
10746 
10747 		if (dev->netdev_ops->ndo_uninit)
10748 			dev->netdev_ops->ndo_uninit(dev);
10749 
10750 		if (skb)
10751 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10752 
10753 		/* Notifier chain MUST detach us all upper devices. */
10754 		WARN_ON(netdev_has_any_upper_dev(dev));
10755 		WARN_ON(netdev_has_any_lower_dev(dev));
10756 
10757 		/* Remove entries from kobject tree */
10758 		netdev_unregister_kobject(dev);
10759 #ifdef CONFIG_XPS
10760 		/* Remove XPS queueing entries */
10761 		netif_reset_xps_queues_gt(dev, 0);
10762 #endif
10763 	}
10764 
10765 	synchronize_net();
10766 
10767 	list_for_each_entry(dev, head, unreg_list) {
10768 		dev_put(dev);
10769 		net_set_todo(dev);
10770 	}
10771 
10772 	list_del(head);
10773 }
10774 EXPORT_SYMBOL(unregister_netdevice_many);
10775 
10776 /**
10777  *	unregister_netdev - remove device from the kernel
10778  *	@dev: device
10779  *
10780  *	This function shuts down a device interface and removes it
10781  *	from the kernel tables.
10782  *
10783  *	This is just a wrapper for unregister_netdevice that takes
10784  *	the rtnl semaphore.  In general you want to use this and not
10785  *	unregister_netdevice.
10786  */
unregister_netdev(struct net_device * dev)10787 void unregister_netdev(struct net_device *dev)
10788 {
10789 	rtnl_lock();
10790 	unregister_netdevice(dev);
10791 	rtnl_unlock();
10792 }
10793 EXPORT_SYMBOL(unregister_netdev);
10794 
10795 /**
10796  *	dev_change_net_namespace - move device to different nethost namespace
10797  *	@dev: device
10798  *	@net: network namespace
10799  *	@pat: If not NULL name pattern to try if the current device name
10800  *	      is already taken in the destination network namespace.
10801  *
10802  *	This function shuts down a device interface and moves it
10803  *	to a new network namespace. On success 0 is returned, on
10804  *	a failure a netagive errno code is returned.
10805  *
10806  *	Callers must hold the rtnl semaphore.
10807  */
10808 
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)10809 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10810 {
10811 	struct net *net_old = dev_net(dev);
10812 	int err, new_nsid, new_ifindex;
10813 
10814 	ASSERT_RTNL();
10815 
10816 	/* Don't allow namespace local devices to be moved. */
10817 	err = -EINVAL;
10818 	if (dev->features & NETIF_F_NETNS_LOCAL)
10819 		goto out;
10820 
10821 	/* Ensure the device has been registrered */
10822 	if (dev->reg_state != NETREG_REGISTERED)
10823 		goto out;
10824 
10825 	/* Get out if there is nothing todo */
10826 	err = 0;
10827 	if (net_eq(net_old, net))
10828 		goto out;
10829 
10830 	/* Pick the destination device name, and ensure
10831 	 * we can use it in the destination network namespace.
10832 	 */
10833 	err = -EEXIST;
10834 	if (__dev_get_by_name(net, dev->name)) {
10835 		/* We get here if we can't use the current device name */
10836 		if (!pat)
10837 			goto out;
10838 		err = dev_get_valid_name(net, dev, pat);
10839 		if (err < 0)
10840 			goto out;
10841 	}
10842 
10843 	/*
10844 	 * And now a mini version of register_netdevice unregister_netdevice.
10845 	 */
10846 
10847 	/* If device is running close it first. */
10848 	dev_close(dev);
10849 
10850 	/* And unlink it from device chain */
10851 	unlist_netdevice(dev);
10852 
10853 	synchronize_net();
10854 
10855 	/* Shutdown queueing discipline. */
10856 	dev_shutdown(dev);
10857 
10858 	/* Notify protocols, that we are about to destroy
10859 	 * this device. They should clean all the things.
10860 	 *
10861 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10862 	 * This is wanted because this way 8021q and macvlan know
10863 	 * the device is just moving and can keep their slaves up.
10864 	 */
10865 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10866 	rcu_barrier();
10867 
10868 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10869 	/* If there is an ifindex conflict assign a new one */
10870 	if (__dev_get_by_index(net, dev->ifindex))
10871 		new_ifindex = dev_new_index(net);
10872 	else
10873 		new_ifindex = dev->ifindex;
10874 
10875 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10876 			    new_ifindex);
10877 
10878 	/*
10879 	 *	Flush the unicast and multicast chains
10880 	 */
10881 	dev_uc_flush(dev);
10882 	dev_mc_flush(dev);
10883 
10884 	/* Send a netdev-removed uevent to the old namespace */
10885 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10886 	netdev_adjacent_del_links(dev);
10887 
10888 	/* Move per-net netdevice notifiers that are following the netdevice */
10889 	move_netdevice_notifiers_dev_net(dev, net);
10890 
10891 	/* Actually switch the network namespace */
10892 	dev_net_set(dev, net);
10893 	dev->ifindex = new_ifindex;
10894 
10895 	/* Send a netdev-add uevent to the new namespace */
10896 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10897 	netdev_adjacent_add_links(dev);
10898 
10899 	/* Fixup kobjects */
10900 	err = device_rename(&dev->dev, dev->name);
10901 	WARN_ON(err);
10902 
10903 	/* Adapt owner in case owning user namespace of target network
10904 	 * namespace is different from the original one.
10905 	 */
10906 	err = netdev_change_owner(dev, net_old, net);
10907 	WARN_ON(err);
10908 
10909 	/* Add the device back in the hashes */
10910 	list_netdevice(dev);
10911 
10912 	/* Notify protocols, that a new device appeared. */
10913 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10914 
10915 	/*
10916 	 *	Prevent userspace races by waiting until the network
10917 	 *	device is fully setup before sending notifications.
10918 	 */
10919 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10920 
10921 	synchronize_net();
10922 	err = 0;
10923 out:
10924 	return err;
10925 }
10926 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10927 
dev_cpu_dead(unsigned int oldcpu)10928 static int dev_cpu_dead(unsigned int oldcpu)
10929 {
10930 	struct sk_buff **list_skb;
10931 	struct sk_buff *skb;
10932 	unsigned int cpu;
10933 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10934 
10935 	local_irq_disable();
10936 	cpu = smp_processor_id();
10937 	sd = &per_cpu(softnet_data, cpu);
10938 	oldsd = &per_cpu(softnet_data, oldcpu);
10939 
10940 	/* Find end of our completion_queue. */
10941 	list_skb = &sd->completion_queue;
10942 	while (*list_skb)
10943 		list_skb = &(*list_skb)->next;
10944 	/* Append completion queue from offline CPU. */
10945 	*list_skb = oldsd->completion_queue;
10946 	oldsd->completion_queue = NULL;
10947 
10948 	/* Append output queue from offline CPU. */
10949 	if (oldsd->output_queue) {
10950 		*sd->output_queue_tailp = oldsd->output_queue;
10951 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10952 		oldsd->output_queue = NULL;
10953 		oldsd->output_queue_tailp = &oldsd->output_queue;
10954 	}
10955 	/* Append NAPI poll list from offline CPU, with one exception :
10956 	 * process_backlog() must be called by cpu owning percpu backlog.
10957 	 * We properly handle process_queue & input_pkt_queue later.
10958 	 */
10959 	while (!list_empty(&oldsd->poll_list)) {
10960 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10961 							    struct napi_struct,
10962 							    poll_list);
10963 
10964 		list_del_init(&napi->poll_list);
10965 		if (napi->poll == process_backlog)
10966 			napi->state = 0;
10967 		else
10968 			____napi_schedule(sd, napi);
10969 	}
10970 
10971 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10972 	local_irq_enable();
10973 
10974 #ifdef CONFIG_RPS
10975 	remsd = oldsd->rps_ipi_list;
10976 	oldsd->rps_ipi_list = NULL;
10977 #endif
10978 	/* send out pending IPI's on offline CPU */
10979 	net_rps_send_ipi(remsd);
10980 
10981 	/* Process offline CPU's input_pkt_queue */
10982 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10983 		netif_rx_ni(skb);
10984 		input_queue_head_incr(oldsd);
10985 	}
10986 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10987 		netif_rx_ni(skb);
10988 		input_queue_head_incr(oldsd);
10989 	}
10990 
10991 	return 0;
10992 }
10993 
10994 /**
10995  *	netdev_increment_features - increment feature set by one
10996  *	@all: current feature set
10997  *	@one: new feature set
10998  *	@mask: mask feature set
10999  *
11000  *	Computes a new feature set after adding a device with feature set
11001  *	@one to the master device with current feature set @all.  Will not
11002  *	enable anything that is off in @mask. Returns the new feature set.
11003  */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)11004 netdev_features_t netdev_increment_features(netdev_features_t all,
11005 	netdev_features_t one, netdev_features_t mask)
11006 {
11007 	if (mask & NETIF_F_HW_CSUM)
11008 		mask |= NETIF_F_CSUM_MASK;
11009 	mask |= NETIF_F_VLAN_CHALLENGED;
11010 
11011 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11012 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11013 
11014 	/* If one device supports hw checksumming, set for all. */
11015 	if (all & NETIF_F_HW_CSUM)
11016 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11017 
11018 	return all;
11019 }
11020 EXPORT_SYMBOL(netdev_increment_features);
11021 
netdev_create_hash(void)11022 static struct hlist_head * __net_init netdev_create_hash(void)
11023 {
11024 	int i;
11025 	struct hlist_head *hash;
11026 
11027 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11028 	if (hash != NULL)
11029 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11030 			INIT_HLIST_HEAD(&hash[i]);
11031 
11032 	return hash;
11033 }
11034 
11035 /* Initialize per network namespace state */
netdev_init(struct net * net)11036 static int __net_init netdev_init(struct net *net)
11037 {
11038 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11039 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11040 
11041 	if (net != &init_net)
11042 		INIT_LIST_HEAD(&net->dev_base_head);
11043 
11044 	net->dev_name_head = netdev_create_hash();
11045 	if (net->dev_name_head == NULL)
11046 		goto err_name;
11047 
11048 	net->dev_index_head = netdev_create_hash();
11049 	if (net->dev_index_head == NULL)
11050 		goto err_idx;
11051 
11052 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11053 
11054 	return 0;
11055 
11056 err_idx:
11057 	kfree(net->dev_name_head);
11058 err_name:
11059 	return -ENOMEM;
11060 }
11061 
11062 /**
11063  *	netdev_drivername - network driver for the device
11064  *	@dev: network device
11065  *
11066  *	Determine network driver for device.
11067  */
netdev_drivername(const struct net_device * dev)11068 const char *netdev_drivername(const struct net_device *dev)
11069 {
11070 	const struct device_driver *driver;
11071 	const struct device *parent;
11072 	const char *empty = "";
11073 
11074 	parent = dev->dev.parent;
11075 	if (!parent)
11076 		return empty;
11077 
11078 	driver = parent->driver;
11079 	if (driver && driver->name)
11080 		return driver->name;
11081 	return empty;
11082 }
11083 
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)11084 static void __netdev_printk(const char *level, const struct net_device *dev,
11085 			    struct va_format *vaf)
11086 {
11087 	if (dev && dev->dev.parent) {
11088 		dev_printk_emit(level[1] - '0',
11089 				dev->dev.parent,
11090 				"%s %s %s%s: %pV",
11091 				dev_driver_string(dev->dev.parent),
11092 				dev_name(dev->dev.parent),
11093 				netdev_name(dev), netdev_reg_state(dev),
11094 				vaf);
11095 	} else if (dev) {
11096 		printk("%s%s%s: %pV",
11097 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11098 	} else {
11099 		printk("%s(NULL net_device): %pV", level, vaf);
11100 	}
11101 }
11102 
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)11103 void netdev_printk(const char *level, const struct net_device *dev,
11104 		   const char *format, ...)
11105 {
11106 	struct va_format vaf;
11107 	va_list args;
11108 
11109 	va_start(args, format);
11110 
11111 	vaf.fmt = format;
11112 	vaf.va = &args;
11113 
11114 	__netdev_printk(level, dev, &vaf);
11115 
11116 	va_end(args);
11117 }
11118 EXPORT_SYMBOL(netdev_printk);
11119 
11120 #define define_netdev_printk_level(func, level)			\
11121 void func(const struct net_device *dev, const char *fmt, ...)	\
11122 {								\
11123 	struct va_format vaf;					\
11124 	va_list args;						\
11125 								\
11126 	va_start(args, fmt);					\
11127 								\
11128 	vaf.fmt = fmt;						\
11129 	vaf.va = &args;						\
11130 								\
11131 	__netdev_printk(level, dev, &vaf);			\
11132 								\
11133 	va_end(args);						\
11134 }								\
11135 EXPORT_SYMBOL(func);
11136 
11137 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11138 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11139 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11140 define_netdev_printk_level(netdev_err, KERN_ERR);
11141 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11142 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11143 define_netdev_printk_level(netdev_info, KERN_INFO);
11144 
netdev_exit(struct net * net)11145 static void __net_exit netdev_exit(struct net *net)
11146 {
11147 	kfree(net->dev_name_head);
11148 	kfree(net->dev_index_head);
11149 	if (net != &init_net)
11150 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11151 }
11152 
11153 static struct pernet_operations __net_initdata netdev_net_ops = {
11154 	.init = netdev_init,
11155 	.exit = netdev_exit,
11156 };
11157 
default_device_exit(struct net * net)11158 static void __net_exit default_device_exit(struct net *net)
11159 {
11160 	struct net_device *dev, *aux;
11161 	/*
11162 	 * Push all migratable network devices back to the
11163 	 * initial network namespace
11164 	 */
11165 	rtnl_lock();
11166 	for_each_netdev_safe(net, dev, aux) {
11167 		int err;
11168 		char fb_name[IFNAMSIZ];
11169 
11170 		/* Ignore unmoveable devices (i.e. loopback) */
11171 		if (dev->features & NETIF_F_NETNS_LOCAL)
11172 			continue;
11173 
11174 		/* Leave virtual devices for the generic cleanup */
11175 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11176 			continue;
11177 
11178 		/* Push remaining network devices to init_net */
11179 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11180 		if (__dev_get_by_name(&init_net, fb_name))
11181 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11182 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11183 		if (err) {
11184 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11185 				 __func__, dev->name, err);
11186 			BUG();
11187 		}
11188 	}
11189 	rtnl_unlock();
11190 }
11191 
rtnl_lock_unregistering(struct list_head * net_list)11192 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11193 {
11194 	/* Return with the rtnl_lock held when there are no network
11195 	 * devices unregistering in any network namespace in net_list.
11196 	 */
11197 	struct net *net;
11198 	bool unregistering;
11199 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
11200 
11201 	add_wait_queue(&netdev_unregistering_wq, &wait);
11202 	for (;;) {
11203 		unregistering = false;
11204 		rtnl_lock();
11205 		list_for_each_entry(net, net_list, exit_list) {
11206 			if (net->dev_unreg_count > 0) {
11207 				unregistering = true;
11208 				break;
11209 			}
11210 		}
11211 		if (!unregistering)
11212 			break;
11213 		__rtnl_unlock();
11214 
11215 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11216 	}
11217 	remove_wait_queue(&netdev_unregistering_wq, &wait);
11218 }
11219 
default_device_exit_batch(struct list_head * net_list)11220 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11221 {
11222 	/* At exit all network devices most be removed from a network
11223 	 * namespace.  Do this in the reverse order of registration.
11224 	 * Do this across as many network namespaces as possible to
11225 	 * improve batching efficiency.
11226 	 */
11227 	struct net_device *dev;
11228 	struct net *net;
11229 	LIST_HEAD(dev_kill_list);
11230 
11231 	/* To prevent network device cleanup code from dereferencing
11232 	 * loopback devices or network devices that have been freed
11233 	 * wait here for all pending unregistrations to complete,
11234 	 * before unregistring the loopback device and allowing the
11235 	 * network namespace be freed.
11236 	 *
11237 	 * The netdev todo list containing all network devices
11238 	 * unregistrations that happen in default_device_exit_batch
11239 	 * will run in the rtnl_unlock() at the end of
11240 	 * default_device_exit_batch.
11241 	 */
11242 	rtnl_lock_unregistering(net_list);
11243 	list_for_each_entry(net, net_list, exit_list) {
11244 		for_each_netdev_reverse(net, dev) {
11245 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11246 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11247 			else
11248 				unregister_netdevice_queue(dev, &dev_kill_list);
11249 		}
11250 	}
11251 	unregister_netdevice_many(&dev_kill_list);
11252 	rtnl_unlock();
11253 }
11254 
11255 static struct pernet_operations __net_initdata default_device_ops = {
11256 	.exit = default_device_exit,
11257 	.exit_batch = default_device_exit_batch,
11258 };
11259 
11260 /*
11261  *	Initialize the DEV module. At boot time this walks the device list and
11262  *	unhooks any devices that fail to initialise (normally hardware not
11263  *	present) and leaves us with a valid list of present and active devices.
11264  *
11265  */
11266 
11267 /*
11268  *       This is called single threaded during boot, so no need
11269  *       to take the rtnl semaphore.
11270  */
net_dev_init(void)11271 static int __init net_dev_init(void)
11272 {
11273 	int i, rc = -ENOMEM;
11274 
11275 	BUG_ON(!dev_boot_phase);
11276 
11277 	if (dev_proc_init())
11278 		goto out;
11279 
11280 	if (netdev_kobject_init())
11281 		goto out;
11282 
11283 	INIT_LIST_HEAD(&ptype_all);
11284 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11285 		INIT_LIST_HEAD(&ptype_base[i]);
11286 
11287 	INIT_LIST_HEAD(&offload_base);
11288 
11289 	if (register_pernet_subsys(&netdev_net_ops))
11290 		goto out;
11291 
11292 	/*
11293 	 *	Initialise the packet receive queues.
11294 	 */
11295 
11296 	for_each_possible_cpu(i) {
11297 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11298 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11299 
11300 		INIT_WORK(flush, flush_backlog);
11301 
11302 		skb_queue_head_init(&sd->input_pkt_queue);
11303 		skb_queue_head_init(&sd->process_queue);
11304 #ifdef CONFIG_XFRM_OFFLOAD
11305 		skb_queue_head_init(&sd->xfrm_backlog);
11306 #endif
11307 		INIT_LIST_HEAD(&sd->poll_list);
11308 		sd->output_queue_tailp = &sd->output_queue;
11309 #ifdef CONFIG_RPS
11310 		sd->csd.func = rps_trigger_softirq;
11311 		sd->csd.info = sd;
11312 		sd->cpu = i;
11313 #endif
11314 
11315 		init_gro_hash(&sd->backlog);
11316 		sd->backlog.poll = process_backlog;
11317 		sd->backlog.weight = weight_p;
11318 	}
11319 
11320 	dev_boot_phase = 0;
11321 
11322 	/* The loopback device is special if any other network devices
11323 	 * is present in a network namespace the loopback device must
11324 	 * be present. Since we now dynamically allocate and free the
11325 	 * loopback device ensure this invariant is maintained by
11326 	 * keeping the loopback device as the first device on the
11327 	 * list of network devices.  Ensuring the loopback devices
11328 	 * is the first device that appears and the last network device
11329 	 * that disappears.
11330 	 */
11331 	if (register_pernet_device(&loopback_net_ops))
11332 		goto out;
11333 
11334 	if (register_pernet_device(&default_device_ops))
11335 		goto out;
11336 
11337 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11338 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11339 
11340 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11341 				       NULL, dev_cpu_dead);
11342 	WARN_ON(rc < 0);
11343 	rc = 0;
11344 out:
11345 	return rc;
11346 }
11347 
11348 subsys_initcall(net_dev_init);
11349