• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is part of FFmpeg.
3  *
4  * FFmpeg is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU Lesser General Public
6  * License as published by the Free Software Foundation; either
7  * version 2.1 of the License, or (at your option) any later version.
8  *
9  * FFmpeg is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * Lesser General Public License for more details.
13  *
14  * You should have received a copy of the GNU Lesser General Public
15  * License along with FFmpeg; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
17  */
18 
19 /**
20  * @file
21  * implementing an object detecting filter using deep learning networks.
22  */
23 
24 #include "libavformat/avio.h"
25 #include "libavutil/opt.h"
26 #include "libavutil/pixdesc.h"
27 #include "libavutil/avassert.h"
28 #include "libavutil/imgutils.h"
29 #include "filters.h"
30 #include "dnn_filter_common.h"
31 #include "formats.h"
32 #include "internal.h"
33 #include "libavutil/time.h"
34 #include "libavutil/avstring.h"
35 #include "libavutil/detection_bbox.h"
36 
37 typedef struct DnnDetectContext {
38     const AVClass *class;
39     DnnContext dnnctx;
40     float confidence;
41     char *labels_filename;
42     char **labels;
43     int label_count;
44 } DnnDetectContext;
45 
46 #define OFFSET(x) offsetof(DnnDetectContext, dnnctx.x)
47 #define OFFSET2(x) offsetof(DnnDetectContext, x)
48 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM
49 static const AVOption dnn_detect_options[] = {
50     { "dnn_backend", "DNN backend",                OFFSET(backend_type),     AV_OPT_TYPE_INT,       { .i64 = 2 },    INT_MIN, INT_MAX, FLAGS, "backend" },
51 #if (CONFIG_LIBTENSORFLOW == 1)
52     { "tensorflow",  "tensorflow backend flag",    0,                        AV_OPT_TYPE_CONST,     { .i64 = 1 },    0, 0, FLAGS, "backend" },
53 #endif
54 #if (CONFIG_LIBOPENVINO == 1)
55     { "openvino",    "openvino backend flag",      0,                        AV_OPT_TYPE_CONST,     { .i64 = 2 },    0, 0, FLAGS, "backend" },
56 #endif
57     DNN_COMMON_OPTIONS
58     { "confidence",  "threshold of confidence",    OFFSET2(confidence),      AV_OPT_TYPE_FLOAT,     { .dbl = 0.5 },  0, 1, FLAGS},
59     { "labels",      "path to labels file",        OFFSET2(labels_filename), AV_OPT_TYPE_STRING,    { .str = NULL }, 0, 0, FLAGS },
60     { NULL }
61 };
62 
63 AVFILTER_DEFINE_CLASS(dnn_detect);
64 
dnn_detect_post_proc_ov(AVFrame * frame,DNNData * output,AVFilterContext * filter_ctx)65 static int dnn_detect_post_proc_ov(AVFrame *frame, DNNData *output, AVFilterContext *filter_ctx)
66 {
67     DnnDetectContext *ctx = filter_ctx->priv;
68     float conf_threshold = ctx->confidence;
69     int proposal_count = output->height;
70     int detect_size = output->width;
71     float *detections = output->data;
72     int nb_bboxes = 0;
73     AVFrameSideData *sd;
74     AVDetectionBBox *bbox;
75     AVDetectionBBoxHeader *header;
76 
77     sd = av_frame_get_side_data(frame, AV_FRAME_DATA_DETECTION_BBOXES);
78     if (sd) {
79         av_log(filter_ctx, AV_LOG_ERROR, "already have bounding boxes in side data.\n");
80         return -1;
81     }
82 
83     for (int i = 0; i < proposal_count; ++i) {
84         float conf = detections[i * detect_size + 2];
85         if (conf < conf_threshold) {
86             continue;
87         }
88         nb_bboxes++;
89     }
90 
91     if (nb_bboxes == 0) {
92         av_log(filter_ctx, AV_LOG_VERBOSE, "nothing detected in this frame.\n");
93         return 0;
94     }
95 
96     header = av_detection_bbox_create_side_data(frame, nb_bboxes);
97     if (!header) {
98         av_log(filter_ctx, AV_LOG_ERROR, "failed to create side data with %d bounding boxes\n", nb_bboxes);
99         return -1;
100     }
101 
102     av_strlcpy(header->source, ctx->dnnctx.model_filename, sizeof(header->source));
103 
104     for (int i = 0; i < proposal_count; ++i) {
105         int av_unused image_id = (int)detections[i * detect_size + 0];
106         int label_id = (int)detections[i * detect_size + 1];
107         float conf   =      detections[i * detect_size + 2];
108         float x0     =      detections[i * detect_size + 3];
109         float y0     =      detections[i * detect_size + 4];
110         float x1     =      detections[i * detect_size + 5];
111         float y1     =      detections[i * detect_size + 6];
112 
113         bbox = av_get_detection_bbox(header, i);
114 
115         if (conf < conf_threshold) {
116             continue;
117         }
118 
119         bbox->x = (int)(x0 * frame->width);
120         bbox->w = (int)(x1 * frame->width) - bbox->x;
121         bbox->y = (int)(y0 * frame->height);
122         bbox->h = (int)(y1 * frame->height) - bbox->y;
123 
124         bbox->detect_confidence = av_make_q((int)(conf * 10000), 10000);
125         bbox->classify_count = 0;
126 
127         if (ctx->labels && label_id < ctx->label_count) {
128             av_strlcpy(bbox->detect_label, ctx->labels[label_id], sizeof(bbox->detect_label));
129         } else {
130             snprintf(bbox->detect_label, sizeof(bbox->detect_label), "%d", label_id);
131         }
132 
133         nb_bboxes--;
134         if (nb_bboxes == 0) {
135             break;
136         }
137     }
138 
139     return 0;
140 }
141 
dnn_detect_post_proc_tf(AVFrame * frame,DNNData * output,AVFilterContext * filter_ctx)142 static int dnn_detect_post_proc_tf(AVFrame *frame, DNNData *output, AVFilterContext *filter_ctx)
143 {
144     DnnDetectContext *ctx = filter_ctx->priv;
145     int proposal_count;
146     float conf_threshold = ctx->confidence;
147     float *conf, *position, *label_id, x0, y0, x1, y1;
148     int nb_bboxes = 0;
149     AVFrameSideData *sd;
150     AVDetectionBBox *bbox;
151     AVDetectionBBoxHeader *header;
152 
153     proposal_count = *(float *)(output[0].data);
154     conf           = output[1].data;
155     position       = output[3].data;
156     label_id       = output[2].data;
157 
158     sd = av_frame_get_side_data(frame, AV_FRAME_DATA_DETECTION_BBOXES);
159     if (sd) {
160         av_log(filter_ctx, AV_LOG_ERROR, "already have dnn bounding boxes in side data.\n");
161         return -1;
162     }
163 
164     for (int i = 0; i < proposal_count; ++i) {
165         if (conf[i] < conf_threshold)
166             continue;
167         nb_bboxes++;
168     }
169 
170     if (nb_bboxes == 0) {
171         av_log(filter_ctx, AV_LOG_VERBOSE, "nothing detected in this frame.\n");
172         return 0;
173     }
174 
175     header = av_detection_bbox_create_side_data(frame, nb_bboxes);
176     if (!header) {
177         av_log(filter_ctx, AV_LOG_ERROR, "failed to create side data with %d bounding boxes\n", nb_bboxes);
178         return -1;
179     }
180 
181     av_strlcpy(header->source, ctx->dnnctx.model_filename, sizeof(header->source));
182 
183     for (int i = 0; i < proposal_count; ++i) {
184         y0 = position[i * 4];
185         x0 = position[i * 4 + 1];
186         y1 = position[i * 4 + 2];
187         x1 = position[i * 4 + 3];
188 
189         bbox = av_get_detection_bbox(header, i);
190 
191         if (conf[i] < conf_threshold) {
192             continue;
193         }
194 
195         bbox->x = (int)(x0 * frame->width);
196         bbox->w = (int)(x1 * frame->width) - bbox->x;
197         bbox->y = (int)(y0 * frame->height);
198         bbox->h = (int)(y1 * frame->height) - bbox->y;
199 
200         bbox->detect_confidence = av_make_q((int)(conf[i] * 10000), 10000);
201         bbox->classify_count = 0;
202 
203         if (ctx->labels && label_id[i] < ctx->label_count) {
204             av_strlcpy(bbox->detect_label, ctx->labels[(int)label_id[i]], sizeof(bbox->detect_label));
205         } else {
206             snprintf(bbox->detect_label, sizeof(bbox->detect_label), "%d", (int)label_id[i]);
207         }
208 
209         nb_bboxes--;
210         if (nb_bboxes == 0) {
211             break;
212         }
213     }
214     return 0;
215 }
216 
dnn_detect_post_proc(AVFrame * frame,DNNData * output,uint32_t nb,AVFilterContext * filter_ctx)217 static int dnn_detect_post_proc(AVFrame *frame, DNNData *output, uint32_t nb, AVFilterContext *filter_ctx)
218 {
219     DnnDetectContext *ctx = filter_ctx->priv;
220     DnnContext *dnn_ctx = &ctx->dnnctx;
221     switch (dnn_ctx->backend_type) {
222     case DNN_OV:
223         return dnn_detect_post_proc_ov(frame, output, filter_ctx);
224     case DNN_TF:
225         return dnn_detect_post_proc_tf(frame, output, filter_ctx);
226     default:
227         avpriv_report_missing_feature(filter_ctx, "Current dnn backend does not support detect filter\n");
228         return AVERROR(EINVAL);
229     }
230 }
231 
free_detect_labels(DnnDetectContext * ctx)232 static void free_detect_labels(DnnDetectContext *ctx)
233 {
234     for (int i = 0; i < ctx->label_count; i++) {
235         av_freep(&ctx->labels[i]);
236     }
237     ctx->label_count = 0;
238     av_freep(&ctx->labels);
239 }
240 
read_detect_label_file(AVFilterContext * context)241 static int read_detect_label_file(AVFilterContext *context)
242 {
243     int line_len;
244     FILE *file;
245     DnnDetectContext *ctx = context->priv;
246 
247     file = avpriv_fopen_utf8(ctx->labels_filename, "r");
248     if (!file){
249         av_log(context, AV_LOG_ERROR, "failed to open file %s\n", ctx->labels_filename);
250         return AVERROR(EINVAL);
251     }
252 
253     while (!feof(file)) {
254         char *label;
255         char buf[256];
256         if (!fgets(buf, 256, file)) {
257             break;
258         }
259 
260         line_len = strlen(buf);
261         while (line_len) {
262             int i = line_len - 1;
263             if (buf[i] == '\n' || buf[i] == '\r' || buf[i] == ' ') {
264                 buf[i] = '\0';
265                 line_len--;
266             } else {
267                 break;
268             }
269         }
270 
271         if (line_len == 0)  // empty line
272             continue;
273 
274         if (line_len >= AV_DETECTION_BBOX_LABEL_NAME_MAX_SIZE) {
275             av_log(context, AV_LOG_ERROR, "label %s too long\n", buf);
276             fclose(file);
277             return AVERROR(EINVAL);
278         }
279 
280         label = av_strdup(buf);
281         if (!label) {
282             av_log(context, AV_LOG_ERROR, "failed to allocate memory for label %s\n", buf);
283             fclose(file);
284             return AVERROR(ENOMEM);
285         }
286 
287         if (av_dynarray_add_nofree(&ctx->labels, &ctx->label_count, label) < 0) {
288             av_log(context, AV_LOG_ERROR, "failed to do av_dynarray_add\n");
289             fclose(file);
290             av_freep(&label);
291             return AVERROR(ENOMEM);
292         }
293     }
294 
295     fclose(file);
296     return 0;
297 }
298 
check_output_nb(DnnDetectContext * ctx,DNNBackendType backend_type,int output_nb)299 static int check_output_nb(DnnDetectContext *ctx, DNNBackendType backend_type, int output_nb)
300 {
301     switch(backend_type) {
302     case DNN_TF:
303         if (output_nb != 4) {
304             av_log(ctx, AV_LOG_ERROR, "Only support tensorflow detect model with 4 outputs, \
305                                        but get %d instead\n", output_nb);
306             return AVERROR(EINVAL);
307         }
308         return 0;
309     case DNN_OV:
310         if (output_nb != 1) {
311             av_log(ctx, AV_LOG_ERROR, "Dnn detect filter with openvino backend needs 1 output only, \
312                                        but get %d instead\n", output_nb);
313             return AVERROR(EINVAL);
314         }
315         return 0;
316     default:
317         avpriv_report_missing_feature(ctx, "Dnn detect filter does not support current backend\n");
318         return AVERROR(EINVAL);
319     }
320     return 0;
321 }
322 
dnn_detect_init(AVFilterContext * context)323 static av_cold int dnn_detect_init(AVFilterContext *context)
324 {
325     DnnDetectContext *ctx = context->priv;
326     DnnContext *dnn_ctx = &ctx->dnnctx;
327     int ret;
328 
329     ret = ff_dnn_init(&ctx->dnnctx, DFT_ANALYTICS_DETECT, context);
330     if (ret < 0)
331         return ret;
332     ret = check_output_nb(ctx, dnn_ctx->backend_type, dnn_ctx->nb_outputs);
333     if (ret < 0)
334         return ret;
335     ff_dnn_set_detect_post_proc(&ctx->dnnctx, dnn_detect_post_proc);
336 
337     if (ctx->labels_filename) {
338         return read_detect_label_file(context);
339     }
340     return 0;
341 }
342 
343 static const enum AVPixelFormat pix_fmts[] = {
344     AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24,
345     AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAYF32,
346     AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
347     AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
348     AV_PIX_FMT_NV12,
349     AV_PIX_FMT_NONE
350 };
351 
dnn_detect_flush_frame(AVFilterLink * outlink,int64_t pts,int64_t * out_pts)352 static int dnn_detect_flush_frame(AVFilterLink *outlink, int64_t pts, int64_t *out_pts)
353 {
354     DnnDetectContext *ctx = outlink->src->priv;
355     int ret;
356     DNNAsyncStatusType async_state;
357 
358     ret = ff_dnn_flush(&ctx->dnnctx);
359     if (ret != 0) {
360         return -1;
361     }
362 
363     do {
364         AVFrame *in_frame = NULL;
365         AVFrame *out_frame = NULL;
366         async_state = ff_dnn_get_result(&ctx->dnnctx, &in_frame, &out_frame);
367         if (async_state == DAST_SUCCESS) {
368             ret = ff_filter_frame(outlink, in_frame);
369             if (ret < 0)
370                 return ret;
371             if (out_pts)
372                 *out_pts = in_frame->pts + pts;
373         }
374         av_usleep(5000);
375     } while (async_state >= DAST_NOT_READY);
376 
377     return 0;
378 }
379 
dnn_detect_activate(AVFilterContext * filter_ctx)380 static int dnn_detect_activate(AVFilterContext *filter_ctx)
381 {
382     AVFilterLink *inlink = filter_ctx->inputs[0];
383     AVFilterLink *outlink = filter_ctx->outputs[0];
384     DnnDetectContext *ctx = filter_ctx->priv;
385     AVFrame *in = NULL;
386     int64_t pts;
387     int ret, status;
388     int got_frame = 0;
389     int async_state;
390 
391     FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
392 
393     do {
394         // drain all input frames
395         ret = ff_inlink_consume_frame(inlink, &in);
396         if (ret < 0)
397             return ret;
398         if (ret > 0) {
399             if (ff_dnn_execute_model(&ctx->dnnctx, in, NULL) != 0) {
400                 return AVERROR(EIO);
401             }
402         }
403     } while (ret > 0);
404 
405     // drain all processed frames
406     do {
407         AVFrame *in_frame = NULL;
408         AVFrame *out_frame = NULL;
409         async_state = ff_dnn_get_result(&ctx->dnnctx, &in_frame, &out_frame);
410         if (async_state == DAST_SUCCESS) {
411             ret = ff_filter_frame(outlink, in_frame);
412             if (ret < 0)
413                 return ret;
414             got_frame = 1;
415         }
416     } while (async_state == DAST_SUCCESS);
417 
418     // if frame got, schedule to next filter
419     if (got_frame)
420         return 0;
421 
422     if (ff_inlink_acknowledge_status(inlink, &status, &pts)) {
423         if (status == AVERROR_EOF) {
424             int64_t out_pts = pts;
425             ret = dnn_detect_flush_frame(outlink, pts, &out_pts);
426             ff_outlink_set_status(outlink, status, out_pts);
427             return ret;
428         }
429     }
430 
431     FF_FILTER_FORWARD_WANTED(outlink, inlink);
432 
433     return 0;
434 }
435 
dnn_detect_uninit(AVFilterContext * context)436 static av_cold void dnn_detect_uninit(AVFilterContext *context)
437 {
438     DnnDetectContext *ctx = context->priv;
439     ff_dnn_uninit(&ctx->dnnctx);
440     free_detect_labels(ctx);
441 }
442 
443 static const AVFilterPad dnn_detect_inputs[] = {
444     {
445         .name         = "default",
446         .type         = AVMEDIA_TYPE_VIDEO,
447     },
448 };
449 
450 static const AVFilterPad dnn_detect_outputs[] = {
451     {
452         .name = "default",
453         .type = AVMEDIA_TYPE_VIDEO,
454     },
455 };
456 
457 const AVFilter ff_vf_dnn_detect = {
458     .name          = "dnn_detect",
459     .description   = NULL_IF_CONFIG_SMALL("Apply DNN detect filter to the input."),
460     .priv_size     = sizeof(DnnDetectContext),
461     .init          = dnn_detect_init,
462     .uninit        = dnn_detect_uninit,
463     FILTER_INPUTS(dnn_detect_inputs),
464     FILTER_OUTPUTS(dnn_detect_outputs),
465     FILTER_PIXFMTS_ARRAY(pix_fmts),
466     .priv_class    = &dnn_detect_class,
467     .activate      = dnn_detect_activate,
468 };
469