• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/delayacct.h>
55 #include <asm/div64.h>
56 #include "internal.h"
57 #include "shuffle.h"
58 #include "page_reporting.h"
59 
60 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
61 typedef int __bitwise fpi_t;
62 
63 /* No special request */
64 #define FPI_NONE		((__force fpi_t)0)
65 
66 /*
67  * Skip free page reporting notification for the (possibly merged) page.
68  * This does not hinder free page reporting from grabbing the page,
69  * reporting it and marking it "reported" -  it only skips notifying
70  * the free page reporting infrastructure about a newly freed page. For
71  * example, used when temporarily pulling a page from a freelist and
72  * putting it back unmodified.
73  */
74 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
75 
76 /*
77  * Place the (possibly merged) page to the tail of the freelist. Will ignore
78  * page shuffling (relevant code - e.g., memory onlining - is expected to
79  * shuffle the whole zone).
80  *
81  * Note: No code should rely on this flag for correctness - it's purely
82  *       to allow for optimizations when handing back either fresh pages
83  *       (memory onlining) or untouched pages (page isolation, free page
84  *       reporting).
85  */
86 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
87 
88 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
89 static DEFINE_MUTEX(pcp_batch_high_lock);
90 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
91 
92 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
93 /*
94  * On SMP, spin_trylock is sufficient protection.
95  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
96  */
97 #define pcp_trylock_prepare(flags)	do { } while (0)
98 #define pcp_trylock_finish(flag)	do { } while (0)
99 #else
100 
101 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
102 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
103 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
104 #endif
105 
106 /*
107  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
108  * a migration causing the wrong PCP to be locked and remote memory being
109  * potentially allocated, pin the task to the CPU for the lookup+lock.
110  * preempt_disable is used on !RT because it is faster than migrate_disable.
111  * migrate_disable is used on RT because otherwise RT spinlock usage is
112  * interfered with and a high priority task cannot preempt the allocator.
113  */
114 #ifndef CONFIG_PREEMPT_RT
115 #define pcpu_task_pin()		preempt_disable()
116 #define pcpu_task_unpin()	preempt_enable()
117 #else
118 #define pcpu_task_pin()		migrate_disable()
119 #define pcpu_task_unpin()	migrate_enable()
120 #endif
121 
122 /*
123  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
124  * Return value should be used with equivalent unlock helper.
125  */
126 #define pcpu_spin_lock(type, member, ptr)				\
127 ({									\
128 	type *_ret;							\
129 	pcpu_task_pin();						\
130 	_ret = this_cpu_ptr(ptr);					\
131 	spin_lock(&_ret->member);					\
132 	_ret;								\
133 })
134 
135 #define pcpu_spin_trylock(type, member, ptr)				\
136 ({									\
137 	type *_ret;							\
138 	pcpu_task_pin();						\
139 	_ret = this_cpu_ptr(ptr);					\
140 	if (!spin_trylock(&_ret->member)) {				\
141 		pcpu_task_unpin();					\
142 		_ret = NULL;						\
143 	}								\
144 	_ret;								\
145 })
146 
147 #define pcpu_spin_unlock(member, ptr)					\
148 ({									\
149 	spin_unlock(&ptr->member);					\
150 	pcpu_task_unpin();						\
151 })
152 
153 /* struct per_cpu_pages specific helpers. */
154 #define pcp_spin_lock(ptr)						\
155 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
156 
157 #define pcp_spin_trylock(ptr)						\
158 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_unlock(ptr)						\
161 	pcpu_spin_unlock(lock, ptr)
162 
163 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
164 DEFINE_PER_CPU(int, numa_node);
165 EXPORT_PER_CPU_SYMBOL(numa_node);
166 #endif
167 
168 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
169 
170 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
171 /*
172  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
173  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
174  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
175  * defined in <linux/topology.h>.
176  */
177 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
178 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
179 #endif
180 
181 static DEFINE_MUTEX(pcpu_drain_mutex);
182 
183 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
184 volatile unsigned long latent_entropy __latent_entropy;
185 EXPORT_SYMBOL(latent_entropy);
186 #endif
187 
188 /*
189  * Array of node states.
190  */
191 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
192 	[N_POSSIBLE] = NODE_MASK_ALL,
193 	[N_ONLINE] = { { [0] = 1UL } },
194 #ifndef CONFIG_NUMA
195 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
196 #ifdef CONFIG_HIGHMEM
197 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
198 #endif
199 	[N_MEMORY] = { { [0] = 1UL } },
200 	[N_CPU] = { { [0] = 1UL } },
201 #endif	/* NUMA */
202 };
203 EXPORT_SYMBOL(node_states);
204 
205 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
206 
207 /*
208  * A cached value of the page's pageblock's migratetype, used when the page is
209  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
210  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
211  * Also the migratetype set in the page does not necessarily match the pcplist
212  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
213  * other index - this ensures that it will be put on the correct CMA freelist.
214  */
get_pcppage_migratetype(struct page * page)215 static inline int get_pcppage_migratetype(struct page *page)
216 {
217 	return page->index;
218 }
219 
set_pcppage_migratetype(struct page * page,int migratetype)220 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
221 {
222 	page->index = migratetype;
223 }
224 
225 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
226 unsigned int pageblock_order __read_mostly;
227 #endif
228 
229 static void __free_pages_ok(struct page *page, unsigned int order,
230 			    fpi_t fpi_flags);
231 
232 /*
233  * results with 256, 32 in the lowmem_reserve sysctl:
234  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
235  *	1G machine -> (16M dma, 784M normal, 224M high)
236  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
237  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
238  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
239  *
240  * TBD: should special case ZONE_DMA32 machines here - in those we normally
241  * don't need any ZONE_NORMAL reservation
242  */
243 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
244 #ifdef CONFIG_ZONE_DMA
245 	[ZONE_DMA] = 256,
246 #endif
247 #ifdef CONFIG_ZONE_DMA32
248 	[ZONE_DMA32] = 256,
249 #endif
250 	[ZONE_NORMAL] = 32,
251 #ifdef CONFIG_HIGHMEM
252 	[ZONE_HIGHMEM] = 0,
253 #endif
254 	[ZONE_MOVABLE] = 0,
255 };
256 
257 char * const zone_names[MAX_NR_ZONES] = {
258 #ifdef CONFIG_ZONE_DMA
259 	 "DMA",
260 #endif
261 #ifdef CONFIG_ZONE_DMA32
262 	 "DMA32",
263 #endif
264 	 "Normal",
265 #ifdef CONFIG_HIGHMEM
266 	 "HighMem",
267 #endif
268 	 "Movable",
269 #ifdef CONFIG_ZONE_DEVICE
270 	 "Device",
271 #endif
272 };
273 
274 const char * const migratetype_names[MIGRATE_TYPES] = {
275 	"Unmovable",
276 	"Movable",
277 	"Reclaimable",
278 #ifdef CONFIG_CMA_REUSE
279 	"CMA",
280 #endif
281 	"HighAtomic",
282 #if defined(CONFIG_CMA) && !defined(CONFIG_CMA_REUSE)
283 	"CMA",
284 #endif
285 #ifdef CONFIG_MEMORY_ISOLATION
286 	"Isolate",
287 #endif
288 };
289 
290 int min_free_kbytes = 1024;
291 int user_min_free_kbytes = -1;
292 static int watermark_boost_factor __read_mostly = 15000;
293 static int watermark_scale_factor = 10;
294 
295 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
296 int movable_zone;
297 EXPORT_SYMBOL(movable_zone);
298 
299 #if MAX_NUMNODES > 1
300 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
301 unsigned int nr_online_nodes __read_mostly = 1;
302 EXPORT_SYMBOL(nr_node_ids);
303 EXPORT_SYMBOL(nr_online_nodes);
304 #endif
305 
306 static bool page_contains_unaccepted(struct page *page, unsigned int order);
307 static void accept_page(struct page *page, unsigned int order);
308 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
309 static inline bool has_unaccepted_memory(void);
310 static bool __free_unaccepted(struct page *page);
311 
312 int page_group_by_mobility_disabled __read_mostly;
313 
314 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
315 /*
316  * During boot we initialize deferred pages on-demand, as needed, but once
317  * page_alloc_init_late() has finished, the deferred pages are all initialized,
318  * and we can permanently disable that path.
319  */
320 DEFINE_STATIC_KEY_TRUE(deferred_pages);
321 
deferred_pages_enabled(void)322 static inline bool deferred_pages_enabled(void)
323 {
324 	return static_branch_unlikely(&deferred_pages);
325 }
326 
327 /*
328  * deferred_grow_zone() is __init, but it is called from
329  * get_page_from_freelist() during early boot until deferred_pages permanently
330  * disables this call. This is why we have refdata wrapper to avoid warning,
331  * and to ensure that the function body gets unloaded.
332  */
333 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)334 _deferred_grow_zone(struct zone *zone, unsigned int order)
335 {
336        return deferred_grow_zone(zone, order);
337 }
338 #else
deferred_pages_enabled(void)339 static inline bool deferred_pages_enabled(void)
340 {
341 	return false;
342 }
343 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
344 
345 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)346 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
347 							unsigned long pfn)
348 {
349 #ifdef CONFIG_SPARSEMEM
350 	return section_to_usemap(__pfn_to_section(pfn));
351 #else
352 	return page_zone(page)->pageblock_flags;
353 #endif /* CONFIG_SPARSEMEM */
354 }
355 
pfn_to_bitidx(const struct page * page,unsigned long pfn)356 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
357 {
358 #ifdef CONFIG_SPARSEMEM
359 	pfn &= (PAGES_PER_SECTION-1);
360 #else
361 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
362 #endif /* CONFIG_SPARSEMEM */
363 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
364 }
365 
366 /**
367  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
368  * @page: The page within the block of interest
369  * @pfn: The target page frame number
370  * @mask: mask of bits that the caller is interested in
371  *
372  * Return: pageblock_bits flags
373  */
get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)374 unsigned long get_pfnblock_flags_mask(const struct page *page,
375 					unsigned long pfn, unsigned long mask)
376 {
377 	unsigned long *bitmap;
378 	unsigned long bitidx, word_bitidx;
379 	unsigned long word;
380 
381 	bitmap = get_pageblock_bitmap(page, pfn);
382 	bitidx = pfn_to_bitidx(page, pfn);
383 	word_bitidx = bitidx / BITS_PER_LONG;
384 	bitidx &= (BITS_PER_LONG-1);
385 	/*
386 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
387 	 * a consistent read of the memory array, so that results, even though
388 	 * racy, are not corrupted.
389 	 */
390 	word = READ_ONCE(bitmap[word_bitidx]);
391 	return (word >> bitidx) & mask;
392 }
393 
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)394 static __always_inline int get_pfnblock_migratetype(const struct page *page,
395 					unsigned long pfn)
396 {
397 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
398 }
399 
400 /**
401  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
402  * @page: The page within the block of interest
403  * @flags: The flags to set
404  * @pfn: The target page frame number
405  * @mask: mask of bits that the caller is interested in
406  */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)407 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
408 					unsigned long pfn,
409 					unsigned long mask)
410 {
411 	unsigned long *bitmap;
412 	unsigned long bitidx, word_bitidx;
413 	unsigned long word;
414 
415 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
416 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
417 
418 	bitmap = get_pageblock_bitmap(page, pfn);
419 	bitidx = pfn_to_bitidx(page, pfn);
420 	word_bitidx = bitidx / BITS_PER_LONG;
421 	bitidx &= (BITS_PER_LONG-1);
422 
423 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
424 
425 	mask <<= bitidx;
426 	flags <<= bitidx;
427 
428 	word = READ_ONCE(bitmap[word_bitidx]);
429 	do {
430 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
431 }
432 
set_pageblock_migratetype(struct page * page,int migratetype)433 void set_pageblock_migratetype(struct page *page, int migratetype)
434 {
435 	if (unlikely(page_group_by_mobility_disabled &&
436 		     migratetype < MIGRATE_PCPTYPES))
437 		migratetype = MIGRATE_UNMOVABLE;
438 
439 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
440 				page_to_pfn(page), MIGRATETYPE_MASK);
441 }
442 
443 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)444 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
445 {
446 	int ret;
447 	unsigned seq;
448 	unsigned long pfn = page_to_pfn(page);
449 	unsigned long sp, start_pfn;
450 
451 	do {
452 		seq = zone_span_seqbegin(zone);
453 		start_pfn = zone->zone_start_pfn;
454 		sp = zone->spanned_pages;
455 		ret = !zone_spans_pfn(zone, pfn);
456 	} while (zone_span_seqretry(zone, seq));
457 
458 	if (ret)
459 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
460 			pfn, zone_to_nid(zone), zone->name,
461 			start_pfn, start_pfn + sp);
462 
463 	return ret;
464 }
465 
466 /*
467  * Temporary debugging check for pages not lying within a given zone.
468  */
bad_range(struct zone * zone,struct page * page)469 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
470 {
471 	if (page_outside_zone_boundaries(zone, page))
472 		return 1;
473 	if (zone != page_zone(page))
474 		return 1;
475 
476 	return 0;
477 }
478 #else
bad_range(struct zone * zone,struct page * page)479 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
480 {
481 	return 0;
482 }
483 #endif
484 
bad_page(struct page * page,const char * reason)485 static void bad_page(struct page *page, const char *reason)
486 {
487 	static unsigned long resume;
488 	static unsigned long nr_shown;
489 	static unsigned long nr_unshown;
490 
491 	/*
492 	 * Allow a burst of 60 reports, then keep quiet for that minute;
493 	 * or allow a steady drip of one report per second.
494 	 */
495 	if (nr_shown == 60) {
496 		if (time_before(jiffies, resume)) {
497 			nr_unshown++;
498 			goto out;
499 		}
500 		if (nr_unshown) {
501 			pr_alert(
502 			      "BUG: Bad page state: %lu messages suppressed\n",
503 				nr_unshown);
504 			nr_unshown = 0;
505 		}
506 		nr_shown = 0;
507 	}
508 	if (nr_shown++ == 0)
509 		resume = jiffies + 60 * HZ;
510 
511 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
512 		current->comm, page_to_pfn(page));
513 	dump_page(page, reason);
514 
515 	print_modules();
516 	dump_stack();
517 out:
518 	/* Leave bad fields for debug, except PageBuddy could make trouble */
519 	page_mapcount_reset(page); /* remove PageBuddy */
520 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
521 }
522 
order_to_pindex(int migratetype,int order)523 static inline unsigned int order_to_pindex(int migratetype, int order)
524 {
525 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
526 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
527 		VM_BUG_ON(order != pageblock_order);
528 		return NR_LOWORDER_PCP_LISTS;
529 	}
530 #else
531 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
532 #endif
533 
534 	return (MIGRATE_PCPTYPES * order) + migratetype;
535 }
536 
pindex_to_order(unsigned int pindex)537 static inline int pindex_to_order(unsigned int pindex)
538 {
539 	int order = pindex / MIGRATE_PCPTYPES;
540 
541 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
542 	if (pindex == NR_LOWORDER_PCP_LISTS)
543 		order = pageblock_order;
544 #else
545 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
546 #endif
547 
548 	return order;
549 }
550 
pcp_allowed_order(unsigned int order)551 static inline bool pcp_allowed_order(unsigned int order)
552 {
553 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
554 		return true;
555 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
556 	if (order == pageblock_order)
557 		return true;
558 #endif
559 	return false;
560 }
561 
free_the_page(struct page * page,unsigned int order)562 static inline void free_the_page(struct page *page, unsigned int order)
563 {
564 	if (pcp_allowed_order(order))		/* Via pcp? */
565 		free_unref_page(page, order);
566 	else
567 		__free_pages_ok(page, order, FPI_NONE);
568 }
569 
570 /*
571  * Higher-order pages are called "compound pages".  They are structured thusly:
572  *
573  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
574  *
575  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
576  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
577  *
578  * The first tail page's ->compound_order holds the order of allocation.
579  * This usage means that zero-order pages may not be compound.
580  */
581 
prep_compound_page(struct page * page,unsigned int order)582 void prep_compound_page(struct page *page, unsigned int order)
583 {
584 	int i;
585 	int nr_pages = 1 << order;
586 
587 	__SetPageHead(page);
588 	for (i = 1; i < nr_pages; i++)
589 		prep_compound_tail(page, i);
590 
591 	prep_compound_head(page, order);
592 }
593 
destroy_large_folio(struct folio * folio)594 void destroy_large_folio(struct folio *folio)
595 {
596 	if (folio_test_hugetlb(folio)) {
597 		free_huge_folio(folio);
598 		return;
599 	}
600 
601 	if (folio_test_large_rmappable(folio))
602 		folio_undo_large_rmappable(folio);
603 
604 	mem_cgroup_uncharge(folio);
605 	free_the_page(&folio->page, folio_order(folio));
606 }
607 
set_buddy_order(struct page * page,unsigned int order)608 static inline void set_buddy_order(struct page *page, unsigned int order)
609 {
610 	set_page_private(page, order);
611 	__SetPageBuddy(page);
612 }
613 
614 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)615 static inline struct capture_control *task_capc(struct zone *zone)
616 {
617 	struct capture_control *capc = current->capture_control;
618 
619 	return unlikely(capc) &&
620 		!(current->flags & PF_KTHREAD) &&
621 		!capc->page &&
622 		capc->cc->zone == zone ? capc : NULL;
623 }
624 
625 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)626 compaction_capture(struct capture_control *capc, struct page *page,
627 		   int order, int migratetype)
628 {
629 	if (!capc || order != capc->cc->order)
630 		return false;
631 
632 	/* Do not accidentally pollute CMA or isolated regions*/
633 	if (is_migrate_cma(migratetype) ||
634 	    is_migrate_isolate(migratetype))
635 		return false;
636 
637 	/*
638 	 * Do not let lower order allocations pollute a movable pageblock.
639 	 * This might let an unmovable request use a reclaimable pageblock
640 	 * and vice-versa but no more than normal fallback logic which can
641 	 * have trouble finding a high-order free page.
642 	 */
643 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
644 		return false;
645 
646 	capc->page = page;
647 	return true;
648 }
649 
650 #else
task_capc(struct zone * zone)651 static inline struct capture_control *task_capc(struct zone *zone)
652 {
653 	return NULL;
654 }
655 
656 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)657 compaction_capture(struct capture_control *capc, struct page *page,
658 		   int order, int migratetype)
659 {
660 	return false;
661 }
662 #endif /* CONFIG_COMPACTION */
663 
664 /* Used for pages not on another list */
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)665 static inline void add_to_free_list(struct page *page, struct zone *zone,
666 				    unsigned int order, int migratetype)
667 {
668 	struct free_area *area = &zone->free_area[order];
669 
670 	list_add(&page->buddy_list, &area->free_list[migratetype]);
671 	area->nr_free++;
672 }
673 
674 /* Used for pages not on another list */
add_to_free_list_tail(struct page * page,struct zone * zone,unsigned int order,int migratetype)675 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
676 					 unsigned int order, int migratetype)
677 {
678 	struct free_area *area = &zone->free_area[order];
679 
680 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
681 	area->nr_free++;
682 }
683 
684 /*
685  * Used for pages which are on another list. Move the pages to the tail
686  * of the list - so the moved pages won't immediately be considered for
687  * allocation again (e.g., optimization for memory onlining).
688  */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)689 static inline void move_to_free_list(struct page *page, struct zone *zone,
690 				     unsigned int order, int migratetype)
691 {
692 	struct free_area *area = &zone->free_area[order];
693 
694 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
695 }
696 
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order)697 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
698 					   unsigned int order)
699 {
700 	/* clear reported state and update reported page count */
701 	if (page_reported(page))
702 		__ClearPageReported(page);
703 
704 	list_del(&page->buddy_list);
705 	__ClearPageBuddy(page);
706 	set_page_private(page, 0);
707 	zone->free_area[order].nr_free--;
708 }
709 
get_page_from_free_area(struct free_area * area,int migratetype)710 static inline struct page *get_page_from_free_area(struct free_area *area,
711 					    int migratetype)
712 {
713 	return list_first_entry_or_null(&area->free_list[migratetype],
714 					struct page, buddy_list);
715 }
716 
717 /*
718  * If this is not the largest possible page, check if the buddy
719  * of the next-highest order is free. If it is, it's possible
720  * that pages are being freed that will coalesce soon. In case,
721  * that is happening, add the free page to the tail of the list
722  * so it's less likely to be used soon and more likely to be merged
723  * as a higher order page
724  */
725 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)726 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
727 		   struct page *page, unsigned int order)
728 {
729 	unsigned long higher_page_pfn;
730 	struct page *higher_page;
731 
732 	if (order >= MAX_ORDER - 1)
733 		return false;
734 
735 	higher_page_pfn = buddy_pfn & pfn;
736 	higher_page = page + (higher_page_pfn - pfn);
737 
738 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
739 			NULL) != NULL;
740 }
741 
742 /*
743  * Freeing function for a buddy system allocator.
744  *
745  * The concept of a buddy system is to maintain direct-mapped table
746  * (containing bit values) for memory blocks of various "orders".
747  * The bottom level table contains the map for the smallest allocatable
748  * units of memory (here, pages), and each level above it describes
749  * pairs of units from the levels below, hence, "buddies".
750  * At a high level, all that happens here is marking the table entry
751  * at the bottom level available, and propagating the changes upward
752  * as necessary, plus some accounting needed to play nicely with other
753  * parts of the VM system.
754  * At each level, we keep a list of pages, which are heads of continuous
755  * free pages of length of (1 << order) and marked with PageBuddy.
756  * Page's order is recorded in page_private(page) field.
757  * So when we are allocating or freeing one, we can derive the state of the
758  * other.  That is, if we allocate a small block, and both were
759  * free, the remainder of the region must be split into blocks.
760  * If a block is freed, and its buddy is also free, then this
761  * triggers coalescing into a block of larger size.
762  *
763  * -- nyc
764  */
765 
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)766 static inline void __free_one_page(struct page *page,
767 		unsigned long pfn,
768 		struct zone *zone, unsigned int order,
769 		int migratetype, fpi_t fpi_flags)
770 {
771 	struct capture_control *capc = task_capc(zone);
772 	unsigned long buddy_pfn = 0;
773 	unsigned long combined_pfn;
774 	struct page *buddy;
775 	bool to_tail;
776 
777 	VM_BUG_ON(!zone_is_initialized(zone));
778 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
779 
780 	VM_BUG_ON(migratetype == -1);
781 	if (likely(!is_migrate_isolate(migratetype)))
782 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
783 
784 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
785 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
786 
787 	while (order < MAX_ORDER) {
788 		if (compaction_capture(capc, page, order, migratetype)) {
789 			__mod_zone_freepage_state(zone, -(1 << order),
790 								migratetype);
791 			return;
792 		}
793 
794 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
795 		if (!buddy)
796 			goto done_merging;
797 
798 		if (unlikely(order >= pageblock_order)) {
799 			/*
800 			 * We want to prevent merge between freepages on pageblock
801 			 * without fallbacks and normal pageblock. Without this,
802 			 * pageblock isolation could cause incorrect freepage or CMA
803 			 * accounting or HIGHATOMIC accounting.
804 			 */
805 			int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
806 
807 			if (migratetype != buddy_mt
808 					&& (!migratetype_is_mergeable(migratetype) ||
809 						!migratetype_is_mergeable(buddy_mt)))
810 				goto done_merging;
811 		}
812 
813 		/*
814 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
815 		 * merge with it and move up one order.
816 		 */
817 		if (page_is_guard(buddy))
818 			clear_page_guard(zone, buddy, order, migratetype);
819 		else
820 			del_page_from_free_list(buddy, zone, order);
821 		combined_pfn = buddy_pfn & pfn;
822 		page = page + (combined_pfn - pfn);
823 		pfn = combined_pfn;
824 		order++;
825 	}
826 
827 done_merging:
828 	set_buddy_order(page, order);
829 
830 	if (fpi_flags & FPI_TO_TAIL)
831 		to_tail = true;
832 	else if (is_shuffle_order(order))
833 		to_tail = shuffle_pick_tail();
834 	else
835 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
836 
837 	if (to_tail)
838 		add_to_free_list_tail(page, zone, order, migratetype);
839 	else
840 		add_to_free_list(page, zone, order, migratetype);
841 
842 	/* Notify page reporting subsystem of freed page */
843 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
844 		page_reporting_notify_free(order);
845 }
846 
847 /**
848  * split_free_page() -- split a free page at split_pfn_offset
849  * @free_page:		the original free page
850  * @order:		the order of the page
851  * @split_pfn_offset:	split offset within the page
852  *
853  * Return -ENOENT if the free page is changed, otherwise 0
854  *
855  * It is used when the free page crosses two pageblocks with different migratetypes
856  * at split_pfn_offset within the page. The split free page will be put into
857  * separate migratetype lists afterwards. Otherwise, the function achieves
858  * nothing.
859  */
split_free_page(struct page * free_page,unsigned int order,unsigned long split_pfn_offset)860 int split_free_page(struct page *free_page,
861 			unsigned int order, unsigned long split_pfn_offset)
862 {
863 	struct zone *zone = page_zone(free_page);
864 	unsigned long free_page_pfn = page_to_pfn(free_page);
865 	unsigned long pfn;
866 	unsigned long flags;
867 	int free_page_order;
868 	int mt;
869 	int ret = 0;
870 
871 	if (split_pfn_offset == 0)
872 		return ret;
873 
874 	spin_lock_irqsave(&zone->lock, flags);
875 
876 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
877 		ret = -ENOENT;
878 		goto out;
879 	}
880 
881 	mt = get_pfnblock_migratetype(free_page, free_page_pfn);
882 	if (likely(!is_migrate_isolate(mt)))
883 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
884 
885 	del_page_from_free_list(free_page, zone, order);
886 	for (pfn = free_page_pfn;
887 	     pfn < free_page_pfn + (1UL << order);) {
888 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
889 
890 		free_page_order = min_t(unsigned int,
891 					pfn ? __ffs(pfn) : order,
892 					__fls(split_pfn_offset));
893 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
894 				mt, FPI_NONE);
895 		pfn += 1UL << free_page_order;
896 		split_pfn_offset -= (1UL << free_page_order);
897 		/* we have done the first part, now switch to second part */
898 		if (split_pfn_offset == 0)
899 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
900 	}
901 out:
902 	spin_unlock_irqrestore(&zone->lock, flags);
903 	return ret;
904 }
905 /*
906  * A bad page could be due to a number of fields. Instead of multiple branches,
907  * try and check multiple fields with one check. The caller must do a detailed
908  * check if necessary.
909  */
page_expected_state(struct page * page,unsigned long check_flags)910 static inline bool page_expected_state(struct page *page,
911 					unsigned long check_flags)
912 {
913 	if (unlikely(atomic_read(&page->_mapcount) != -1))
914 		return false;
915 
916 	if (unlikely((unsigned long)page->mapping |
917 			page_ref_count(page) |
918 #ifdef CONFIG_MEMCG
919 			page->memcg_data |
920 #endif
921 			(page->flags & check_flags)))
922 		return false;
923 
924 	return true;
925 }
926 
page_bad_reason(struct page * page,unsigned long flags)927 static const char *page_bad_reason(struct page *page, unsigned long flags)
928 {
929 	const char *bad_reason = NULL;
930 
931 	if (unlikely(atomic_read(&page->_mapcount) != -1))
932 		bad_reason = "nonzero mapcount";
933 	if (unlikely(page->mapping != NULL))
934 		bad_reason = "non-NULL mapping";
935 	if (unlikely(page_ref_count(page) != 0))
936 		bad_reason = "nonzero _refcount";
937 	if (unlikely(page->flags & flags)) {
938 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
939 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
940 		else
941 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
942 	}
943 #ifdef CONFIG_MEMCG
944 	if (unlikely(page->memcg_data))
945 		bad_reason = "page still charged to cgroup";
946 #endif
947 	return bad_reason;
948 }
949 
free_page_is_bad_report(struct page * page)950 static void free_page_is_bad_report(struct page *page)
951 {
952 	bad_page(page,
953 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
954 }
955 
free_page_is_bad(struct page * page)956 static inline bool free_page_is_bad(struct page *page)
957 {
958 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
959 		return false;
960 
961 	/* Something has gone sideways, find it */
962 	free_page_is_bad_report(page);
963 	return true;
964 }
965 
is_check_pages_enabled(void)966 static inline bool is_check_pages_enabled(void)
967 {
968 	return static_branch_unlikely(&check_pages_enabled);
969 }
970 
free_tail_page_prepare(struct page * head_page,struct page * page)971 static int free_tail_page_prepare(struct page *head_page, struct page *page)
972 {
973 	struct folio *folio = (struct folio *)head_page;
974 	int ret = 1;
975 
976 	/*
977 	 * We rely page->lru.next never has bit 0 set, unless the page
978 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
979 	 */
980 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
981 
982 	if (!is_check_pages_enabled()) {
983 		ret = 0;
984 		goto out;
985 	}
986 	switch (page - head_page) {
987 	case 1:
988 		/* the first tail page: these may be in place of ->mapping */
989 		if (unlikely(folio_entire_mapcount(folio))) {
990 			bad_page(page, "nonzero entire_mapcount");
991 			goto out;
992 		}
993 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
994 			bad_page(page, "nonzero nr_pages_mapped");
995 			goto out;
996 		}
997 		if (unlikely(atomic_read(&folio->_pincount))) {
998 			bad_page(page, "nonzero pincount");
999 			goto out;
1000 		}
1001 		break;
1002 	case 2:
1003 		/*
1004 		 * the second tail page: ->mapping is
1005 		 * deferred_list.next -- ignore value.
1006 		 */
1007 		break;
1008 	default:
1009 		if (page->mapping != TAIL_MAPPING) {
1010 			bad_page(page, "corrupted mapping in tail page");
1011 			goto out;
1012 		}
1013 		break;
1014 	}
1015 	if (unlikely(!PageTail(page))) {
1016 		bad_page(page, "PageTail not set");
1017 		goto out;
1018 	}
1019 	if (unlikely(compound_head(page) != head_page)) {
1020 		bad_page(page, "compound_head not consistent");
1021 		goto out;
1022 	}
1023 	ret = 0;
1024 out:
1025 	page->mapping = NULL;
1026 	clear_compound_head(page);
1027 	return ret;
1028 }
1029 
1030 /*
1031  * Skip KASAN memory poisoning when either:
1032  *
1033  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1034  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1035  *    using page tags instead (see below).
1036  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1037  *    that error detection is disabled for accesses via the page address.
1038  *
1039  * Pages will have match-all tags in the following circumstances:
1040  *
1041  * 1. Pages are being initialized for the first time, including during deferred
1042  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1043  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1044  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1045  * 3. The allocation was excluded from being checked due to sampling,
1046  *    see the call to kasan_unpoison_pages.
1047  *
1048  * Poisoning pages during deferred memory init will greatly lengthen the
1049  * process and cause problem in large memory systems as the deferred pages
1050  * initialization is done with interrupt disabled.
1051  *
1052  * Assuming that there will be no reference to those newly initialized
1053  * pages before they are ever allocated, this should have no effect on
1054  * KASAN memory tracking as the poison will be properly inserted at page
1055  * allocation time. The only corner case is when pages are allocated by
1056  * on-demand allocation and then freed again before the deferred pages
1057  * initialization is done, but this is not likely to happen.
1058  */
should_skip_kasan_poison(struct page * page,fpi_t fpi_flags)1059 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1060 {
1061 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1062 		return deferred_pages_enabled();
1063 
1064 	return page_kasan_tag(page) == 0xff;
1065 }
1066 
kernel_init_pages(struct page * page,int numpages)1067 static void kernel_init_pages(struct page *page, int numpages)
1068 {
1069 	int i;
1070 
1071 	/* s390's use of memset() could override KASAN redzones. */
1072 	kasan_disable_current();
1073 	for (i = 0; i < numpages; i++)
1074 		clear_highpage_kasan_tagged(page + i);
1075 	kasan_enable_current();
1076 }
1077 
free_pages_prepare(struct page * page,unsigned int order,fpi_t fpi_flags)1078 static __always_inline bool free_pages_prepare(struct page *page,
1079 			unsigned int order, fpi_t fpi_flags)
1080 {
1081 	int bad = 0;
1082 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1083 	bool init = want_init_on_free();
1084 
1085 	VM_BUG_ON_PAGE(PageTail(page), page);
1086 
1087 	trace_mm_page_free(page, order);
1088 	kmsan_free_page(page, order);
1089 
1090 	if (unlikely(PageHWPoison(page)) && !order) {
1091 		/*
1092 		 * Do not let hwpoison pages hit pcplists/buddy
1093 		 * Untie memcg state and reset page's owner
1094 		 */
1095 		if (memcg_kmem_online() && PageMemcgKmem(page))
1096 			__memcg_kmem_uncharge_page(page, order);
1097 		reset_page_owner(page, order);
1098 		page_table_check_free(page, order);
1099 		return false;
1100 	}
1101 
1102 	/*
1103 	 * Check tail pages before head page information is cleared to
1104 	 * avoid checking PageCompound for order-0 pages.
1105 	 */
1106 	if (unlikely(order)) {
1107 		bool compound = PageCompound(page);
1108 		int i;
1109 
1110 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1111 
1112 		if (compound)
1113 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1114 		for (i = 1; i < (1 << order); i++) {
1115 			if (compound)
1116 				bad += free_tail_page_prepare(page, page + i);
1117 			if (is_check_pages_enabled()) {
1118 				if (free_page_is_bad(page + i)) {
1119 					bad++;
1120 					continue;
1121 				}
1122 			}
1123 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1124 		}
1125 	}
1126 	if (PageMappingFlags(page))
1127 		page->mapping = NULL;
1128 	if (memcg_kmem_online() && PageMemcgKmem(page))
1129 		__memcg_kmem_uncharge_page(page, order);
1130 	if (is_check_pages_enabled()) {
1131 		if (free_page_is_bad(page))
1132 			bad++;
1133 		if (bad)
1134 			return false;
1135 	}
1136 
1137 	page_cpupid_reset_last(page);
1138 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1139 	reset_page_owner(page, order);
1140 	page_table_check_free(page, order);
1141 
1142 	if (!PageHighMem(page)) {
1143 		debug_check_no_locks_freed(page_address(page),
1144 					   PAGE_SIZE << order);
1145 		debug_check_no_obj_freed(page_address(page),
1146 					   PAGE_SIZE << order);
1147 	}
1148 
1149 	kernel_poison_pages(page, 1 << order);
1150 
1151 	/*
1152 	 * As memory initialization might be integrated into KASAN,
1153 	 * KASAN poisoning and memory initialization code must be
1154 	 * kept together to avoid discrepancies in behavior.
1155 	 *
1156 	 * With hardware tag-based KASAN, memory tags must be set before the
1157 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1158 	 */
1159 	if (!skip_kasan_poison) {
1160 		kasan_poison_pages(page, order, init);
1161 
1162 		/* Memory is already initialized if KASAN did it internally. */
1163 		if (kasan_has_integrated_init())
1164 			init = false;
1165 	}
1166 	if (init)
1167 		kernel_init_pages(page, 1 << order);
1168 
1169 	/*
1170 	 * arch_free_page() can make the page's contents inaccessible.  s390
1171 	 * does this.  So nothing which can access the page's contents should
1172 	 * happen after this.
1173 	 */
1174 	arch_free_page(page, order);
1175 
1176 	debug_pagealloc_unmap_pages(page, 1 << order);
1177 
1178 	return true;
1179 }
1180 
1181 /*
1182  * Frees a number of pages from the PCP lists
1183  * Assumes all pages on list are in same zone.
1184  * count is the number of pages to free.
1185  */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp,int pindex)1186 static void free_pcppages_bulk(struct zone *zone, int count,
1187 					struct per_cpu_pages *pcp,
1188 					int pindex)
1189 {
1190 	unsigned long flags;
1191 	unsigned int order;
1192 	bool isolated_pageblocks;
1193 	struct page *page;
1194 
1195 	/*
1196 	 * Ensure proper count is passed which otherwise would stuck in the
1197 	 * below while (list_empty(list)) loop.
1198 	 */
1199 	count = min(pcp->count, count);
1200 
1201 	/* Ensure requested pindex is drained first. */
1202 	pindex = pindex - 1;
1203 
1204 	spin_lock_irqsave(&zone->lock, flags);
1205 	isolated_pageblocks = has_isolate_pageblock(zone);
1206 
1207 	while (count > 0) {
1208 		struct list_head *list;
1209 		int nr_pages;
1210 
1211 		/* Remove pages from lists in a round-robin fashion. */
1212 		do {
1213 			if (++pindex > NR_PCP_LISTS - 1)
1214 				pindex = 0;
1215 			list = &pcp->lists[pindex];
1216 		} while (list_empty(list));
1217 
1218 		order = pindex_to_order(pindex);
1219 		nr_pages = 1 << order;
1220 		do {
1221 			int mt;
1222 
1223 			page = list_last_entry(list, struct page, pcp_list);
1224 			mt = get_pcppage_migratetype(page);
1225 
1226 			/* must delete to avoid corrupting pcp list */
1227 			list_del(&page->pcp_list);
1228 			count -= nr_pages;
1229 			pcp->count -= nr_pages;
1230 
1231 			/* MIGRATE_ISOLATE page should not go to pcplists */
1232 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1233 			/* Pageblock could have been isolated meanwhile */
1234 			if (unlikely(isolated_pageblocks))
1235 				mt = get_pageblock_migratetype(page);
1236 
1237 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1238 			trace_mm_page_pcpu_drain(page, order, mt);
1239 		} while (count > 0 && !list_empty(list));
1240 	}
1241 
1242 	spin_unlock_irqrestore(&zone->lock, flags);
1243 }
1244 
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype,fpi_t fpi_flags)1245 static void free_one_page(struct zone *zone,
1246 				struct page *page, unsigned long pfn,
1247 				unsigned int order,
1248 				int migratetype, fpi_t fpi_flags)
1249 {
1250 	unsigned long flags;
1251 
1252 	spin_lock_irqsave(&zone->lock, flags);
1253 	if (unlikely(has_isolate_pageblock(zone) ||
1254 		is_migrate_isolate(migratetype))) {
1255 		migratetype = get_pfnblock_migratetype(page, pfn);
1256 	}
1257 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1258 	spin_unlock_irqrestore(&zone->lock, flags);
1259 }
1260 
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1261 static void __free_pages_ok(struct page *page, unsigned int order,
1262 			    fpi_t fpi_flags)
1263 {
1264 	unsigned long flags;
1265 	int migratetype;
1266 	unsigned long pfn = page_to_pfn(page);
1267 	struct zone *zone = page_zone(page);
1268 
1269 	if (!free_pages_prepare(page, order, fpi_flags))
1270 		return;
1271 
1272 	/*
1273 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1274 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1275 	 * This will reduce the lock holding time.
1276 	 */
1277 	migratetype = get_pfnblock_migratetype(page, pfn);
1278 
1279 	spin_lock_irqsave(&zone->lock, flags);
1280 	if (unlikely(has_isolate_pageblock(zone) ||
1281 		is_migrate_isolate(migratetype))) {
1282 		migratetype = get_pfnblock_migratetype(page, pfn);
1283 	}
1284 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1285 	spin_unlock_irqrestore(&zone->lock, flags);
1286 
1287 	__count_vm_events(PGFREE, 1 << order);
1288 }
1289 
__free_pages_core(struct page * page,unsigned int order)1290 void __free_pages_core(struct page *page, unsigned int order)
1291 {
1292 	unsigned int nr_pages = 1 << order;
1293 	struct page *p = page;
1294 	unsigned int loop;
1295 
1296 	/*
1297 	 * When initializing the memmap, __init_single_page() sets the refcount
1298 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1299 	 * refcount of all involved pages to 0.
1300 	 */
1301 	prefetchw(p);
1302 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1303 		prefetchw(p + 1);
1304 		__ClearPageReserved(p);
1305 		set_page_count(p, 0);
1306 	}
1307 	__ClearPageReserved(p);
1308 	set_page_count(p, 0);
1309 
1310 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1311 
1312 	if (page_contains_unaccepted(page, order)) {
1313 		if (order == MAX_ORDER && __free_unaccepted(page))
1314 			return;
1315 
1316 		accept_page(page, order);
1317 	}
1318 
1319 	/*
1320 	 * Bypass PCP and place fresh pages right to the tail, primarily
1321 	 * relevant for memory onlining.
1322 	 */
1323 	__free_pages_ok(page, order, FPI_TO_TAIL);
1324 }
1325 
1326 /*
1327  * Check that the whole (or subset of) a pageblock given by the interval of
1328  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1329  * with the migration of free compaction scanner.
1330  *
1331  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1332  *
1333  * It's possible on some configurations to have a setup like node0 node1 node0
1334  * i.e. it's possible that all pages within a zones range of pages do not
1335  * belong to a single zone. We assume that a border between node0 and node1
1336  * can occur within a single pageblock, but not a node0 node1 node0
1337  * interleaving within a single pageblock. It is therefore sufficient to check
1338  * the first and last page of a pageblock and avoid checking each individual
1339  * page in a pageblock.
1340  *
1341  * Note: the function may return non-NULL struct page even for a page block
1342  * which contains a memory hole (i.e. there is no physical memory for a subset
1343  * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1344  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1345  * even though the start pfn is online and valid. This should be safe most of
1346  * the time because struct pages are still initialized via init_unavailable_range()
1347  * and pfn walkers shouldn't touch any physical memory range for which they do
1348  * not recognize any specific metadata in struct pages.
1349  */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1350 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1351 				     unsigned long end_pfn, struct zone *zone)
1352 {
1353 	struct page *start_page;
1354 	struct page *end_page;
1355 
1356 	/* end_pfn is one past the range we are checking */
1357 	end_pfn--;
1358 
1359 	if (!pfn_valid(end_pfn))
1360 		return NULL;
1361 
1362 	start_page = pfn_to_online_page(start_pfn);
1363 	if (!start_page)
1364 		return NULL;
1365 
1366 	if (page_zone(start_page) != zone)
1367 		return NULL;
1368 
1369 	end_page = pfn_to_page(end_pfn);
1370 
1371 	/* This gives a shorter code than deriving page_zone(end_page) */
1372 	if (page_zone_id(start_page) != page_zone_id(end_page))
1373 		return NULL;
1374 
1375 	return start_page;
1376 }
1377 
1378 /*
1379  * The order of subdivision here is critical for the IO subsystem.
1380  * Please do not alter this order without good reasons and regression
1381  * testing. Specifically, as large blocks of memory are subdivided,
1382  * the order in which smaller blocks are delivered depends on the order
1383  * they're subdivided in this function. This is the primary factor
1384  * influencing the order in which pages are delivered to the IO
1385  * subsystem according to empirical testing, and this is also justified
1386  * by considering the behavior of a buddy system containing a single
1387  * large block of memory acted on by a series of small allocations.
1388  * This behavior is a critical factor in sglist merging's success.
1389  *
1390  * -- nyc
1391  */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1392 static inline void expand(struct zone *zone, struct page *page,
1393 	int low, int high, int migratetype)
1394 {
1395 	unsigned long size = 1 << high;
1396 
1397 	while (high > low) {
1398 		high--;
1399 		size >>= 1;
1400 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1401 
1402 		/*
1403 		 * Mark as guard pages (or page), that will allow to
1404 		 * merge back to allocator when buddy will be freed.
1405 		 * Corresponding page table entries will not be touched,
1406 		 * pages will stay not present in virtual address space
1407 		 */
1408 		if (set_page_guard(zone, &page[size], high, migratetype))
1409 			continue;
1410 
1411 		add_to_free_list(&page[size], zone, high, migratetype);
1412 		set_buddy_order(&page[size], high);
1413 	}
1414 }
1415 
check_new_page_bad(struct page * page)1416 static void check_new_page_bad(struct page *page)
1417 {
1418 	if (unlikely(page->flags & __PG_HWPOISON)) {
1419 		/* Don't complain about hwpoisoned pages */
1420 		page_mapcount_reset(page); /* remove PageBuddy */
1421 		return;
1422 	}
1423 
1424 	bad_page(page,
1425 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1426 }
1427 
1428 /*
1429  * This page is about to be returned from the page allocator
1430  */
check_new_page(struct page * page)1431 static int check_new_page(struct page *page)
1432 {
1433 	if (likely(page_expected_state(page,
1434 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1435 		return 0;
1436 
1437 	check_new_page_bad(page);
1438 	return 1;
1439 }
1440 
check_new_pages(struct page * page,unsigned int order)1441 static inline bool check_new_pages(struct page *page, unsigned int order)
1442 {
1443 	if (is_check_pages_enabled()) {
1444 		for (int i = 0; i < (1 << order); i++) {
1445 			struct page *p = page + i;
1446 
1447 			if (check_new_page(p))
1448 				return true;
1449 		}
1450 	}
1451 
1452 	return false;
1453 }
1454 
should_skip_kasan_unpoison(gfp_t flags)1455 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1456 {
1457 	/* Don't skip if a software KASAN mode is enabled. */
1458 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1459 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1460 		return false;
1461 
1462 	/* Skip, if hardware tag-based KASAN is not enabled. */
1463 	if (!kasan_hw_tags_enabled())
1464 		return true;
1465 
1466 	/*
1467 	 * With hardware tag-based KASAN enabled, skip if this has been
1468 	 * requested via __GFP_SKIP_KASAN.
1469 	 */
1470 	return flags & __GFP_SKIP_KASAN;
1471 }
1472 
should_skip_init(gfp_t flags)1473 static inline bool should_skip_init(gfp_t flags)
1474 {
1475 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1476 	if (!kasan_hw_tags_enabled())
1477 		return false;
1478 
1479 	/* For hardware tag-based KASAN, skip if requested. */
1480 	return (flags & __GFP_SKIP_ZERO);
1481 }
1482 
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)1483 inline void post_alloc_hook(struct page *page, unsigned int order,
1484 				gfp_t gfp_flags)
1485 {
1486 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1487 			!should_skip_init(gfp_flags);
1488 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1489 	int i;
1490 
1491 	set_page_private(page, 0);
1492 	set_page_refcounted(page);
1493 
1494 	arch_alloc_page(page, order);
1495 	debug_pagealloc_map_pages(page, 1 << order);
1496 
1497 	/*
1498 	 * Page unpoisoning must happen before memory initialization.
1499 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1500 	 * allocations and the page unpoisoning code will complain.
1501 	 */
1502 	kernel_unpoison_pages(page, 1 << order);
1503 
1504 	/*
1505 	 * As memory initialization might be integrated into KASAN,
1506 	 * KASAN unpoisoning and memory initializion code must be
1507 	 * kept together to avoid discrepancies in behavior.
1508 	 */
1509 
1510 	/*
1511 	 * If memory tags should be zeroed
1512 	 * (which happens only when memory should be initialized as well).
1513 	 */
1514 	if (zero_tags) {
1515 		/* Initialize both memory and memory tags. */
1516 		for (i = 0; i != 1 << order; ++i)
1517 			tag_clear_highpage(page + i);
1518 
1519 		/* Take note that memory was initialized by the loop above. */
1520 		init = false;
1521 	}
1522 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1523 	    kasan_unpoison_pages(page, order, init)) {
1524 		/* Take note that memory was initialized by KASAN. */
1525 		if (kasan_has_integrated_init())
1526 			init = false;
1527 	} else {
1528 		/*
1529 		 * If memory tags have not been set by KASAN, reset the page
1530 		 * tags to ensure page_address() dereferencing does not fault.
1531 		 */
1532 		for (i = 0; i != 1 << order; ++i)
1533 			page_kasan_tag_reset(page + i);
1534 	}
1535 	/* If memory is still not initialized, initialize it now. */
1536 	if (init)
1537 		kernel_init_pages(page, 1 << order);
1538 
1539 	set_page_owner(page, order, gfp_flags);
1540 	page_table_check_alloc(page, order);
1541 }
1542 
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)1543 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1544 							unsigned int alloc_flags)
1545 {
1546 	post_alloc_hook(page, order, gfp_flags);
1547 
1548 	if (order && (gfp_flags & __GFP_COMP))
1549 		prep_compound_page(page, order);
1550 
1551 	/*
1552 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1553 	 * allocate the page. The expectation is that the caller is taking
1554 	 * steps that will free more memory. The caller should avoid the page
1555 	 * being used for !PFMEMALLOC purposes.
1556 	 */
1557 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1558 		set_page_pfmemalloc(page);
1559 	else
1560 		clear_page_pfmemalloc(page);
1561 }
1562 
1563 /*
1564  * Go through the free lists for the given migratetype and remove
1565  * the smallest available page from the freelists
1566  */
1567 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1568 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1569 						int migratetype)
1570 {
1571 	unsigned int current_order;
1572 	struct free_area *area;
1573 	struct page *page;
1574 
1575 	/* Find a page of the appropriate size in the preferred list */
1576 	for (current_order = order; current_order <= MAX_ORDER; ++current_order) {
1577 		area = &(zone->free_area[current_order]);
1578 		page = get_page_from_free_area(area, migratetype);
1579 		if (!page)
1580 			continue;
1581 		del_page_from_free_list(page, zone, current_order);
1582 		expand(zone, page, order, current_order, migratetype);
1583 		set_pcppage_migratetype(page, migratetype);
1584 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1585 				pcp_allowed_order(order) &&
1586 				migratetype < MIGRATE_PCPTYPES);
1587 		return page;
1588 	}
1589 
1590 	return NULL;
1591 }
1592 
1593 
1594 /*
1595  * This array describes the order lists are fallen back to when
1596  * the free lists for the desirable migrate type are depleted
1597  *
1598  * The other migratetypes do not have fallbacks.
1599  */
1600 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1601 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1602 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1603 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1604 };
1605 
1606 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1607 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1608 					unsigned int order)
1609 {
1610 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1611 }
1612 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1613 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1614 					unsigned int order) { return NULL; }
1615 #endif
1616 
1617 /*
1618  * Move the free pages in a range to the freelist tail of the requested type.
1619  * Note that start_page and end_pages are not aligned on a pageblock
1620  * boundary. If alignment is required, use move_freepages_block()
1621  */
move_freepages(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,int migratetype,int * num_movable)1622 static int move_freepages(struct zone *zone,
1623 			  unsigned long start_pfn, unsigned long end_pfn,
1624 			  int migratetype, int *num_movable)
1625 {
1626 	struct page *page;
1627 	unsigned long pfn;
1628 	unsigned int order;
1629 	int pages_moved = 0;
1630 
1631 	for (pfn = start_pfn; pfn <= end_pfn;) {
1632 		page = pfn_to_page(pfn);
1633 		if (!PageBuddy(page)) {
1634 			/*
1635 			 * We assume that pages that could be isolated for
1636 			 * migration are movable. But we don't actually try
1637 			 * isolating, as that would be expensive.
1638 			 */
1639 			if (num_movable &&
1640 					(PageLRU(page) || __PageMovable(page)))
1641 				(*num_movable)++;
1642 			pfn++;
1643 			continue;
1644 		}
1645 
1646 		/* Make sure we are not inadvertently changing nodes */
1647 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1648 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1649 
1650 		order = buddy_order(page);
1651 		move_to_free_list(page, zone, order, migratetype);
1652 		pfn += 1 << order;
1653 		pages_moved += 1 << order;
1654 	}
1655 
1656 	return pages_moved;
1657 }
1658 
move_freepages_block(struct zone * zone,struct page * page,int migratetype,int * num_movable)1659 int move_freepages_block(struct zone *zone, struct page *page,
1660 				int migratetype, int *num_movable)
1661 {
1662 	unsigned long start_pfn, end_pfn, pfn;
1663 
1664 	if (num_movable)
1665 		*num_movable = 0;
1666 
1667 	pfn = page_to_pfn(page);
1668 	start_pfn = pageblock_start_pfn(pfn);
1669 	end_pfn = pageblock_end_pfn(pfn) - 1;
1670 
1671 	/* Do not cross zone boundaries */
1672 	if (!zone_spans_pfn(zone, start_pfn))
1673 		start_pfn = pfn;
1674 	if (!zone_spans_pfn(zone, end_pfn))
1675 		return 0;
1676 
1677 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1678 								num_movable);
1679 }
1680 
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1681 static void change_pageblock_range(struct page *pageblock_page,
1682 					int start_order, int migratetype)
1683 {
1684 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1685 
1686 	while (nr_pageblocks--) {
1687 		set_pageblock_migratetype(pageblock_page, migratetype);
1688 		pageblock_page += pageblock_nr_pages;
1689 	}
1690 }
1691 
1692 /*
1693  * When we are falling back to another migratetype during allocation, try to
1694  * steal extra free pages from the same pageblocks to satisfy further
1695  * allocations, instead of polluting multiple pageblocks.
1696  *
1697  * If we are stealing a relatively large buddy page, it is likely there will
1698  * be more free pages in the pageblock, so try to steal them all. For
1699  * reclaimable and unmovable allocations, we steal regardless of page size,
1700  * as fragmentation caused by those allocations polluting movable pageblocks
1701  * is worse than movable allocations stealing from unmovable and reclaimable
1702  * pageblocks.
1703  */
can_steal_fallback(unsigned int order,int start_mt)1704 static bool can_steal_fallback(unsigned int order, int start_mt)
1705 {
1706 	/*
1707 	 * Leaving this order check is intended, although there is
1708 	 * relaxed order check in next check. The reason is that
1709 	 * we can actually steal whole pageblock if this condition met,
1710 	 * but, below check doesn't guarantee it and that is just heuristic
1711 	 * so could be changed anytime.
1712 	 */
1713 	if (order >= pageblock_order)
1714 		return true;
1715 
1716 	if (order >= pageblock_order / 2 ||
1717 		start_mt == MIGRATE_RECLAIMABLE ||
1718 		start_mt == MIGRATE_UNMOVABLE ||
1719 		page_group_by_mobility_disabled)
1720 		return true;
1721 
1722 	return false;
1723 }
1724 
boost_watermark(struct zone * zone)1725 static inline bool boost_watermark(struct zone *zone)
1726 {
1727 	unsigned long max_boost;
1728 
1729 	if (!watermark_boost_factor)
1730 		return false;
1731 	/*
1732 	 * Don't bother in zones that are unlikely to produce results.
1733 	 * On small machines, including kdump capture kernels running
1734 	 * in a small area, boosting the watermark can cause an out of
1735 	 * memory situation immediately.
1736 	 */
1737 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1738 		return false;
1739 
1740 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1741 			watermark_boost_factor, 10000);
1742 
1743 	/*
1744 	 * high watermark may be uninitialised if fragmentation occurs
1745 	 * very early in boot so do not boost. We do not fall
1746 	 * through and boost by pageblock_nr_pages as failing
1747 	 * allocations that early means that reclaim is not going
1748 	 * to help and it may even be impossible to reclaim the
1749 	 * boosted watermark resulting in a hang.
1750 	 */
1751 	if (!max_boost)
1752 		return false;
1753 
1754 	max_boost = max(pageblock_nr_pages, max_boost);
1755 
1756 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1757 		max_boost);
1758 
1759 	return true;
1760 }
1761 
1762 /*
1763  * This function implements actual steal behaviour. If order is large enough,
1764  * we can steal whole pageblock. If not, we first move freepages in this
1765  * pageblock to our migratetype and determine how many already-allocated pages
1766  * are there in the pageblock with a compatible migratetype. If at least half
1767  * of pages are free or compatible, we can change migratetype of the pageblock
1768  * itself, so pages freed in the future will be put on the correct free list.
1769  */
steal_suitable_fallback(struct zone * zone,struct page * page,unsigned int alloc_flags,int start_type,bool whole_block)1770 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1771 		unsigned int alloc_flags, int start_type, bool whole_block)
1772 {
1773 	unsigned int current_order = buddy_order(page);
1774 	int free_pages, movable_pages, alike_pages;
1775 	int old_block_type;
1776 
1777 	old_block_type = get_pageblock_migratetype(page);
1778 
1779 	/*
1780 	 * This can happen due to races and we want to prevent broken
1781 	 * highatomic accounting.
1782 	 */
1783 	if (is_migrate_highatomic(old_block_type))
1784 		goto single_page;
1785 
1786 	/* Take ownership for orders >= pageblock_order */
1787 	if (current_order >= pageblock_order) {
1788 		change_pageblock_range(page, current_order, start_type);
1789 		goto single_page;
1790 	}
1791 
1792 	/*
1793 	 * Boost watermarks to increase reclaim pressure to reduce the
1794 	 * likelihood of future fallbacks. Wake kswapd now as the node
1795 	 * may be balanced overall and kswapd will not wake naturally.
1796 	 */
1797 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1798 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1799 
1800 	/* We are not allowed to try stealing from the whole block */
1801 	if (!whole_block)
1802 		goto single_page;
1803 
1804 	free_pages = move_freepages_block(zone, page, start_type,
1805 						&movable_pages);
1806 	/* moving whole block can fail due to zone boundary conditions */
1807 	if (!free_pages)
1808 		goto single_page;
1809 
1810 	/*
1811 	 * Determine how many pages are compatible with our allocation.
1812 	 * For movable allocation, it's the number of movable pages which
1813 	 * we just obtained. For other types it's a bit more tricky.
1814 	 */
1815 	if (start_type == MIGRATE_MOVABLE) {
1816 		alike_pages = movable_pages;
1817 	} else {
1818 		/*
1819 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1820 		 * to MOVABLE pageblock, consider all non-movable pages as
1821 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1822 		 * vice versa, be conservative since we can't distinguish the
1823 		 * exact migratetype of non-movable pages.
1824 		 */
1825 		if (old_block_type == MIGRATE_MOVABLE)
1826 			alike_pages = pageblock_nr_pages
1827 						- (free_pages + movable_pages);
1828 		else
1829 			alike_pages = 0;
1830 	}
1831 	/*
1832 	 * If a sufficient number of pages in the block are either free or of
1833 	 * compatible migratability as our allocation, claim the whole block.
1834 	 */
1835 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1836 			page_group_by_mobility_disabled)
1837 		set_pageblock_migratetype(page, start_type);
1838 
1839 	return;
1840 
1841 single_page:
1842 	move_to_free_list(page, zone, current_order, start_type);
1843 }
1844 
1845 /*
1846  * Check whether there is a suitable fallback freepage with requested order.
1847  * If only_stealable is true, this function returns fallback_mt only if
1848  * we can steal other freepages all together. This would help to reduce
1849  * fragmentation due to mixed migratetype pages in one pageblock.
1850  */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)1851 int find_suitable_fallback(struct free_area *area, unsigned int order,
1852 			int migratetype, bool only_stealable, bool *can_steal)
1853 {
1854 	int i;
1855 	int fallback_mt;
1856 
1857 	if (area->nr_free == 0)
1858 		return -1;
1859 
1860 	*can_steal = false;
1861 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1862 		fallback_mt = fallbacks[migratetype][i];
1863 		if (free_area_empty(area, fallback_mt))
1864 			continue;
1865 
1866 		if (can_steal_fallback(order, migratetype))
1867 			*can_steal = true;
1868 
1869 		if (!only_stealable)
1870 			return fallback_mt;
1871 
1872 		if (*can_steal)
1873 			return fallback_mt;
1874 	}
1875 
1876 	return -1;
1877 }
1878 
1879 /*
1880  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1881  * there are no empty page blocks that contain a page with a suitable order
1882  */
reserve_highatomic_pageblock(struct page * page,struct zone * zone)1883 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1884 {
1885 	int mt;
1886 	unsigned long max_managed, flags;
1887 
1888 	/*
1889 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1890 	 * Check is race-prone but harmless.
1891 	 */
1892 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
1893 	if (zone->nr_reserved_highatomic >= max_managed)
1894 		return;
1895 
1896 	spin_lock_irqsave(&zone->lock, flags);
1897 
1898 	/* Recheck the nr_reserved_highatomic limit under the lock */
1899 	if (zone->nr_reserved_highatomic >= max_managed)
1900 		goto out_unlock;
1901 
1902 	/* Yoink! */
1903 	mt = get_pageblock_migratetype(page);
1904 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1905 	if (migratetype_is_mergeable(mt)) {
1906 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1907 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1908 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1909 	}
1910 
1911 out_unlock:
1912 	spin_unlock_irqrestore(&zone->lock, flags);
1913 }
1914 
1915 /*
1916  * Used when an allocation is about to fail under memory pressure. This
1917  * potentially hurts the reliability of high-order allocations when under
1918  * intense memory pressure but failed atomic allocations should be easier
1919  * to recover from than an OOM.
1920  *
1921  * If @force is true, try to unreserve a pageblock even though highatomic
1922  * pageblock is exhausted.
1923  */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)1924 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1925 						bool force)
1926 {
1927 	struct zonelist *zonelist = ac->zonelist;
1928 	unsigned long flags;
1929 	struct zoneref *z;
1930 	struct zone *zone;
1931 	struct page *page;
1932 	int order;
1933 	bool ret;
1934 
1935 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1936 								ac->nodemask) {
1937 		/*
1938 		 * Preserve at least one pageblock unless memory pressure
1939 		 * is really high.
1940 		 */
1941 		if (!force && zone->nr_reserved_highatomic <=
1942 					pageblock_nr_pages)
1943 			continue;
1944 
1945 		spin_lock_irqsave(&zone->lock, flags);
1946 		for (order = 0; order <= MAX_ORDER; order++) {
1947 			struct free_area *area = &(zone->free_area[order]);
1948 
1949 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1950 			if (!page)
1951 				continue;
1952 
1953 			/*
1954 			 * In page freeing path, migratetype change is racy so
1955 			 * we can counter several free pages in a pageblock
1956 			 * in this loop although we changed the pageblock type
1957 			 * from highatomic to ac->migratetype. So we should
1958 			 * adjust the count once.
1959 			 */
1960 			if (is_migrate_highatomic_page(page)) {
1961 				/*
1962 				 * It should never happen but changes to
1963 				 * locking could inadvertently allow a per-cpu
1964 				 * drain to add pages to MIGRATE_HIGHATOMIC
1965 				 * while unreserving so be safe and watch for
1966 				 * underflows.
1967 				 */
1968 				zone->nr_reserved_highatomic -= min(
1969 						pageblock_nr_pages,
1970 						zone->nr_reserved_highatomic);
1971 			}
1972 
1973 			/*
1974 			 * Convert to ac->migratetype and avoid the normal
1975 			 * pageblock stealing heuristics. Minimally, the caller
1976 			 * is doing the work and needs the pages. More
1977 			 * importantly, if the block was always converted to
1978 			 * MIGRATE_UNMOVABLE or another type then the number
1979 			 * of pageblocks that cannot be completely freed
1980 			 * may increase.
1981 			 */
1982 			set_pageblock_migratetype(page, ac->migratetype);
1983 			ret = move_freepages_block(zone, page, ac->migratetype,
1984 									NULL);
1985 			if (ret) {
1986 				spin_unlock_irqrestore(&zone->lock, flags);
1987 				return ret;
1988 			}
1989 		}
1990 		spin_unlock_irqrestore(&zone->lock, flags);
1991 	}
1992 
1993 	return false;
1994 }
1995 
1996 /*
1997  * Try finding a free buddy page on the fallback list and put it on the free
1998  * list of requested migratetype, possibly along with other pages from the same
1999  * block, depending on fragmentation avoidance heuristics. Returns true if
2000  * fallback was found so that __rmqueue_smallest() can grab it.
2001  *
2002  * The use of signed ints for order and current_order is a deliberate
2003  * deviation from the rest of this file, to make the for loop
2004  * condition simpler.
2005  */
2006 static __always_inline bool
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2007 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2008 						unsigned int alloc_flags)
2009 {
2010 	struct free_area *area;
2011 	int current_order;
2012 	int min_order = order;
2013 	struct page *page;
2014 	int fallback_mt;
2015 	bool can_steal;
2016 
2017 	/*
2018 	 * Do not steal pages from freelists belonging to other pageblocks
2019 	 * i.e. orders < pageblock_order. If there are no local zones free,
2020 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2021 	 */
2022 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2023 		min_order = pageblock_order;
2024 
2025 	/*
2026 	 * Find the largest available free page in the other list. This roughly
2027 	 * approximates finding the pageblock with the most free pages, which
2028 	 * would be too costly to do exactly.
2029 	 */
2030 	for (current_order = MAX_ORDER; current_order >= min_order;
2031 				--current_order) {
2032 		area = &(zone->free_area[current_order]);
2033 		fallback_mt = find_suitable_fallback(area, current_order,
2034 				start_migratetype, false, &can_steal);
2035 		if (fallback_mt == -1)
2036 			continue;
2037 
2038 		/*
2039 		 * We cannot steal all free pages from the pageblock and the
2040 		 * requested migratetype is movable. In that case it's better to
2041 		 * steal and split the smallest available page instead of the
2042 		 * largest available page, because even if the next movable
2043 		 * allocation falls back into a different pageblock than this
2044 		 * one, it won't cause permanent fragmentation.
2045 		 */
2046 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2047 					&& current_order > order)
2048 			goto find_smallest;
2049 
2050 		goto do_steal;
2051 	}
2052 
2053 	return false;
2054 
2055 find_smallest:
2056 	for (current_order = order; current_order <= MAX_ORDER;
2057 							current_order++) {
2058 		area = &(zone->free_area[current_order]);
2059 		fallback_mt = find_suitable_fallback(area, current_order,
2060 				start_migratetype, false, &can_steal);
2061 		if (fallback_mt != -1)
2062 			break;
2063 	}
2064 
2065 	/*
2066 	 * This should not happen - we already found a suitable fallback
2067 	 * when looking for the largest page.
2068 	 */
2069 	VM_BUG_ON(current_order > MAX_ORDER);
2070 
2071 do_steal:
2072 	page = get_page_from_free_area(area, fallback_mt);
2073 
2074 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2075 								can_steal);
2076 
2077 	trace_mm_page_alloc_extfrag(page, order, current_order,
2078 		start_migratetype, fallback_mt);
2079 
2080 	return true;
2081 
2082 }
2083 
2084 static __always_inline struct page *
__rmqueue_with_cma_reuse(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2085 __rmqueue_with_cma_reuse(struct zone *zone, unsigned int order,
2086 					int migratetype, unsigned int alloc_flags)
2087 {
2088     struct page *page = NULL;
2089 retry:
2090 	page = __rmqueue_smallest(zone, order, migratetype);
2091 
2092     if (unlikely(!page) && is_migrate_cma(migratetype)) {
2093         migratetype = MIGRATE_MOVABLE;
2094         alloc_flags &= ~ALLOC_CMA;
2095         page = __rmqueue_smallest(zone, order, migratetype);
2096     }
2097 
2098     if (unlikely(!page) &&
2099 		__rmqueue_fallback(zone, order, migratetype, alloc_flags))
2100         goto retry;
2101 
2102     return page;
2103 }
2104 
2105 /*
2106  * Do the hard work of removing an element from the buddy allocator.
2107  * Call me with the zone->lock already held.
2108  */
2109 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2110 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2111 						unsigned int alloc_flags)
2112 {
2113 	struct page *page;
2114 
2115 #ifdef CONFIG_CMA_REUSE
2116 	page = __rmqueue_with_cma_reuse(zone, order, migratetype, alloc_flags);
2117 	if (page)
2118 		return page;
2119 #endif
2120 
2121 	if (IS_ENABLED(CONFIG_CMA)) {
2122 		/*
2123 		 * Balance movable allocations between regular and CMA areas by
2124 		 * allocating from CMA when over half of the zone's free memory
2125 		 * is in the CMA area.
2126 		 */
2127 		if (alloc_flags & ALLOC_CMA &&
2128 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2129 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2130 			page = __rmqueue_cma_fallback(zone, order);
2131 			if (page)
2132 				return page;
2133 		}
2134 	}
2135 retry:
2136 	page = __rmqueue_smallest(zone, order, migratetype);
2137 	if (unlikely(!page)) {
2138 		if (alloc_flags & ALLOC_CMA)
2139 			page = __rmqueue_cma_fallback(zone, order);
2140 
2141 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2142 								alloc_flags))
2143 			goto retry;
2144 	}
2145 	return page;
2146 }
2147 
2148 /*
2149  * Obtain a specified number of elements from the buddy allocator, all under
2150  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2151  * Returns the number of new pages which were placed at *list.
2152  */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2153 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2154 			unsigned long count, struct list_head *list,
2155 			int migratetype, unsigned int alloc_flags)
2156 {
2157 	unsigned long flags;
2158 	int i;
2159 
2160 	spin_lock_irqsave(&zone->lock, flags);
2161 	for (i = 0; i < count; ++i) {
2162 		struct page *page = __rmqueue(zone, order, migratetype,
2163 								alloc_flags);
2164 		if (unlikely(page == NULL))
2165 			break;
2166 
2167 		/*
2168 		 * Split buddy pages returned by expand() are received here in
2169 		 * physical page order. The page is added to the tail of
2170 		 * caller's list. From the callers perspective, the linked list
2171 		 * is ordered by page number under some conditions. This is
2172 		 * useful for IO devices that can forward direction from the
2173 		 * head, thus also in the physical page order. This is useful
2174 		 * for IO devices that can merge IO requests if the physical
2175 		 * pages are ordered properly.
2176 		 */
2177 		list_add_tail(&page->pcp_list, list);
2178 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2179 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2180 					      -(1 << order));
2181 	}
2182 
2183 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2184 	spin_unlock_irqrestore(&zone->lock, flags);
2185 
2186 	return i;
2187 }
2188 
2189 #ifdef CONFIG_NUMA
2190 /*
2191  * Called from the vmstat counter updater to drain pagesets of this
2192  * currently executing processor on remote nodes after they have
2193  * expired.
2194  */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2195 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2196 {
2197 	int to_drain, batch;
2198 
2199 	batch = READ_ONCE(pcp->batch);
2200 	to_drain = min(pcp->count, batch);
2201 	if (to_drain > 0) {
2202 		spin_lock(&pcp->lock);
2203 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2204 		spin_unlock(&pcp->lock);
2205 	}
2206 }
2207 #endif
2208 
2209 /*
2210  * Drain pcplists of the indicated processor and zone.
2211  */
drain_pages_zone(unsigned int cpu,struct zone * zone)2212 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2213 {
2214 	struct per_cpu_pages *pcp;
2215 
2216 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2217 	if (pcp->count) {
2218 		spin_lock(&pcp->lock);
2219 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
2220 		spin_unlock(&pcp->lock);
2221 	}
2222 }
2223 
2224 /*
2225  * Drain pcplists of all zones on the indicated processor.
2226  */
drain_pages(unsigned int cpu)2227 static void drain_pages(unsigned int cpu)
2228 {
2229 	struct zone *zone;
2230 
2231 	for_each_populated_zone(zone) {
2232 		drain_pages_zone(cpu, zone);
2233 	}
2234 }
2235 
2236 /*
2237  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2238  */
drain_local_pages(struct zone * zone)2239 void drain_local_pages(struct zone *zone)
2240 {
2241 	int cpu = smp_processor_id();
2242 
2243 	if (zone)
2244 		drain_pages_zone(cpu, zone);
2245 	else
2246 		drain_pages(cpu);
2247 }
2248 
2249 /*
2250  * The implementation of drain_all_pages(), exposing an extra parameter to
2251  * drain on all cpus.
2252  *
2253  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2254  * not empty. The check for non-emptiness can however race with a free to
2255  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2256  * that need the guarantee that every CPU has drained can disable the
2257  * optimizing racy check.
2258  */
__drain_all_pages(struct zone * zone,bool force_all_cpus)2259 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2260 {
2261 	int cpu;
2262 
2263 	/*
2264 	 * Allocate in the BSS so we won't require allocation in
2265 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2266 	 */
2267 	static cpumask_t cpus_with_pcps;
2268 
2269 	/*
2270 	 * Do not drain if one is already in progress unless it's specific to
2271 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2272 	 * the drain to be complete when the call returns.
2273 	 */
2274 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2275 		if (!zone)
2276 			return;
2277 		mutex_lock(&pcpu_drain_mutex);
2278 	}
2279 
2280 	/*
2281 	 * We don't care about racing with CPU hotplug event
2282 	 * as offline notification will cause the notified
2283 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2284 	 * disables preemption as part of its processing
2285 	 */
2286 	for_each_online_cpu(cpu) {
2287 		struct per_cpu_pages *pcp;
2288 		struct zone *z;
2289 		bool has_pcps = false;
2290 
2291 		if (force_all_cpus) {
2292 			/*
2293 			 * The pcp.count check is racy, some callers need a
2294 			 * guarantee that no cpu is missed.
2295 			 */
2296 			has_pcps = true;
2297 		} else if (zone) {
2298 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2299 			if (pcp->count)
2300 				has_pcps = true;
2301 		} else {
2302 			for_each_populated_zone(z) {
2303 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2304 				if (pcp->count) {
2305 					has_pcps = true;
2306 					break;
2307 				}
2308 			}
2309 		}
2310 
2311 		if (has_pcps)
2312 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2313 		else
2314 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2315 	}
2316 
2317 	for_each_cpu(cpu, &cpus_with_pcps) {
2318 		if (zone)
2319 			drain_pages_zone(cpu, zone);
2320 		else
2321 			drain_pages(cpu);
2322 	}
2323 
2324 	mutex_unlock(&pcpu_drain_mutex);
2325 }
2326 
2327 /*
2328  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2329  *
2330  * When zone parameter is non-NULL, spill just the single zone's pages.
2331  */
drain_all_pages(struct zone * zone)2332 void drain_all_pages(struct zone *zone)
2333 {
2334 	__drain_all_pages(zone, false);
2335 }
2336 
free_unref_page_prepare(struct page * page,unsigned long pfn,unsigned int order)2337 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2338 							unsigned int order)
2339 {
2340 	int migratetype;
2341 
2342 	if (!free_pages_prepare(page, order, FPI_NONE))
2343 		return false;
2344 
2345 	migratetype = get_pfnblock_migratetype(page, pfn);
2346 	set_pcppage_migratetype(page, migratetype);
2347 	return true;
2348 }
2349 
nr_pcp_free(struct per_cpu_pages * pcp,int high,bool free_high)2350 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, bool free_high)
2351 {
2352 	int min_nr_free, max_nr_free;
2353 	int batch = READ_ONCE(pcp->batch);
2354 
2355 	/* Free everything if batch freeing high-order pages. */
2356 	if (unlikely(free_high))
2357 		return pcp->count;
2358 
2359 	/* Check for PCP disabled or boot pageset */
2360 	if (unlikely(high < batch))
2361 		return 1;
2362 
2363 	/* Leave at least pcp->batch pages on the list */
2364 	min_nr_free = batch;
2365 	max_nr_free = high - batch;
2366 
2367 	/*
2368 	 * Double the number of pages freed each time there is subsequent
2369 	 * freeing of pages without any allocation.
2370 	 */
2371 	batch <<= pcp->free_factor;
2372 	if (batch < max_nr_free)
2373 		pcp->free_factor++;
2374 	batch = clamp(batch, min_nr_free, max_nr_free);
2375 
2376 	return batch;
2377 }
2378 
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone,bool free_high)2379 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2380 		       bool free_high)
2381 {
2382 	int high = READ_ONCE(pcp->high);
2383 
2384 	if (unlikely(!high || free_high))
2385 		return 0;
2386 
2387 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2388 		return high;
2389 
2390 	/*
2391 	 * If reclaim is active, limit the number of pages that can be
2392 	 * stored on pcp lists
2393 	 */
2394 	return min(READ_ONCE(pcp->batch) << 2, high);
2395 }
2396 
free_unref_page_commit(struct zone * zone,struct per_cpu_pages * pcp,struct page * page,int migratetype,unsigned int order)2397 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2398 				   struct page *page, int migratetype,
2399 				   unsigned int order)
2400 {
2401 	int high;
2402 	int pindex;
2403 	bool free_high;
2404 
2405 	__count_vm_events(PGFREE, 1 << order);
2406 	pindex = order_to_pindex(migratetype, order);
2407 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2408 	pcp->count += 1 << order;
2409 
2410 	/*
2411 	 * As high-order pages other than THP's stored on PCP can contribute
2412 	 * to fragmentation, limit the number stored when PCP is heavily
2413 	 * freeing without allocation. The remainder after bulk freeing
2414 	 * stops will be drained from vmstat refresh context.
2415 	 */
2416 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2417 
2418 	high = nr_pcp_high(pcp, zone, free_high);
2419 	if (pcp->count >= high) {
2420 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, free_high), pcp, pindex);
2421 	}
2422 }
2423 
2424 /*
2425  * Free a pcp page
2426  */
free_unref_page(struct page * page,unsigned int order)2427 void free_unref_page(struct page *page, unsigned int order)
2428 {
2429 	unsigned long __maybe_unused UP_flags;
2430 	struct per_cpu_pages *pcp;
2431 	struct zone *zone;
2432 	unsigned long pfn = page_to_pfn(page);
2433 	int migratetype, pcpmigratetype;
2434 
2435 	if (!free_unref_page_prepare(page, pfn, order))
2436 		return;
2437 
2438 	/*
2439 	 * We only track unmovable, reclaimable and movable on pcp lists.
2440 	 * Place ISOLATE pages on the isolated list because they are being
2441 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2442 	 * get those areas back if necessary. Otherwise, we may have to free
2443 	 * excessively into the page allocator
2444 	 */
2445 	migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2446 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2447 		if (unlikely(is_migrate_isolate(migratetype))) {
2448 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2449 			return;
2450 		}
2451 		pcpmigratetype = MIGRATE_MOVABLE;
2452 	}
2453 
2454 	zone = page_zone(page);
2455 	pcp_trylock_prepare(UP_flags);
2456 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2457 	if (pcp) {
2458 		free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2459 		pcp_spin_unlock(pcp);
2460 	} else {
2461 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2462 	}
2463 	pcp_trylock_finish(UP_flags);
2464 }
2465 
2466 /*
2467  * Free a list of 0-order pages
2468  */
free_unref_page_list(struct list_head * list)2469 void free_unref_page_list(struct list_head *list)
2470 {
2471 	unsigned long __maybe_unused UP_flags;
2472 	struct page *page, *next;
2473 	struct per_cpu_pages *pcp = NULL;
2474 	struct zone *locked_zone = NULL;
2475 	int batch_count = 0;
2476 	int migratetype;
2477 
2478 	/* Prepare pages for freeing */
2479 	list_for_each_entry_safe(page, next, list, lru) {
2480 		unsigned long pfn = page_to_pfn(page);
2481 		if (!free_unref_page_prepare(page, pfn, 0)) {
2482 			list_del(&page->lru);
2483 			continue;
2484 		}
2485 
2486 		/*
2487 		 * Free isolated pages directly to the allocator, see
2488 		 * comment in free_unref_page.
2489 		 */
2490 		migratetype = get_pcppage_migratetype(page);
2491 		if (unlikely(is_migrate_isolate(migratetype))) {
2492 			list_del(&page->lru);
2493 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2494 			continue;
2495 		}
2496 	}
2497 
2498 	list_for_each_entry_safe(page, next, list, lru) {
2499 		struct zone *zone = page_zone(page);
2500 
2501 		list_del(&page->lru);
2502 		migratetype = get_pcppage_migratetype(page);
2503 
2504 		/*
2505 		 * Either different zone requiring a different pcp lock or
2506 		 * excessive lock hold times when freeing a large list of
2507 		 * pages.
2508 		 */
2509 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2510 			if (pcp) {
2511 				pcp_spin_unlock(pcp);
2512 				pcp_trylock_finish(UP_flags);
2513 			}
2514 
2515 			batch_count = 0;
2516 
2517 			/*
2518 			 * trylock is necessary as pages may be getting freed
2519 			 * from IRQ or SoftIRQ context after an IO completion.
2520 			 */
2521 			pcp_trylock_prepare(UP_flags);
2522 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2523 			if (unlikely(!pcp)) {
2524 				pcp_trylock_finish(UP_flags);
2525 				free_one_page(zone, page, page_to_pfn(page),
2526 					      0, migratetype, FPI_NONE);
2527 				locked_zone = NULL;
2528 				continue;
2529 			}
2530 			locked_zone = zone;
2531 		}
2532 
2533 		/*
2534 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2535 		 * to the MIGRATE_MOVABLE pcp list.
2536 		 */
2537 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2538 			migratetype = MIGRATE_MOVABLE;
2539 
2540 		trace_mm_page_free_batched(page);
2541 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
2542 		batch_count++;
2543 	}
2544 
2545 	if (pcp) {
2546 		pcp_spin_unlock(pcp);
2547 		pcp_trylock_finish(UP_flags);
2548 	}
2549 }
2550 
2551 /*
2552  * split_page takes a non-compound higher-order page, and splits it into
2553  * n (1<<order) sub-pages: page[0..n]
2554  * Each sub-page must be freed individually.
2555  *
2556  * Note: this is probably too low level an operation for use in drivers.
2557  * Please consult with lkml before using this in your driver.
2558  */
split_page(struct page * page,unsigned int order)2559 void split_page(struct page *page, unsigned int order)
2560 {
2561 	int i;
2562 
2563 	VM_BUG_ON_PAGE(PageCompound(page), page);
2564 	VM_BUG_ON_PAGE(!page_count(page), page);
2565 
2566 	for (i = 1; i < (1 << order); i++)
2567 		set_page_refcounted(page + i);
2568 	split_page_owner(page, 1 << order);
2569 	split_page_memcg(page, 1 << order);
2570 }
2571 EXPORT_SYMBOL_GPL(split_page);
2572 
__isolate_free_page(struct page * page,unsigned int order)2573 int __isolate_free_page(struct page *page, unsigned int order)
2574 {
2575 	struct zone *zone = page_zone(page);
2576 	int mt = get_pageblock_migratetype(page);
2577 
2578 	if (!is_migrate_isolate(mt)) {
2579 		unsigned long watermark;
2580 		/*
2581 		 * Obey watermarks as if the page was being allocated. We can
2582 		 * emulate a high-order watermark check with a raised order-0
2583 		 * watermark, because we already know our high-order page
2584 		 * exists.
2585 		 */
2586 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2587 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2588 			return 0;
2589 
2590 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2591 	}
2592 
2593 	del_page_from_free_list(page, zone, order);
2594 
2595 	/*
2596 	 * Set the pageblock if the isolated page is at least half of a
2597 	 * pageblock
2598 	 */
2599 	if (order >= pageblock_order - 1) {
2600 		struct page *endpage = page + (1 << order) - 1;
2601 		for (; page < endpage; page += pageblock_nr_pages) {
2602 			int mt = get_pageblock_migratetype(page);
2603 			/*
2604 			 * Only change normal pageblocks (i.e., they can merge
2605 			 * with others)
2606 			 */
2607 			if (migratetype_is_mergeable(mt))
2608 				set_pageblock_migratetype(page,
2609 							  MIGRATE_MOVABLE);
2610 		}
2611 	}
2612 
2613 	return 1UL << order;
2614 }
2615 
2616 /**
2617  * __putback_isolated_page - Return a now-isolated page back where we got it
2618  * @page: Page that was isolated
2619  * @order: Order of the isolated page
2620  * @mt: The page's pageblock's migratetype
2621  *
2622  * This function is meant to return a page pulled from the free lists via
2623  * __isolate_free_page back to the free lists they were pulled from.
2624  */
__putback_isolated_page(struct page * page,unsigned int order,int mt)2625 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2626 {
2627 	struct zone *zone = page_zone(page);
2628 
2629 	/* zone lock should be held when this function is called */
2630 	lockdep_assert_held(&zone->lock);
2631 
2632 	/* Return isolated page to tail of freelist. */
2633 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2634 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2635 }
2636 
2637 /*
2638  * Update NUMA hit/miss statistics
2639  */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)2640 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2641 				   long nr_account)
2642 {
2643 #ifdef CONFIG_NUMA
2644 	enum numa_stat_item local_stat = NUMA_LOCAL;
2645 
2646 	/* skip numa counters update if numa stats is disabled */
2647 	if (!static_branch_likely(&vm_numa_stat_key))
2648 		return;
2649 
2650 	if (zone_to_nid(z) != numa_node_id())
2651 		local_stat = NUMA_OTHER;
2652 
2653 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2654 		__count_numa_events(z, NUMA_HIT, nr_account);
2655 	else {
2656 		__count_numa_events(z, NUMA_MISS, nr_account);
2657 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2658 	}
2659 	__count_numa_events(z, local_stat, nr_account);
2660 #endif
2661 }
2662 
2663 static __always_inline
rmqueue_buddy(struct zone * preferred_zone,struct zone * zone,unsigned int order,unsigned int alloc_flags,int migratetype)2664 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2665 			   unsigned int order, unsigned int alloc_flags,
2666 			   int migratetype)
2667 {
2668 	struct page *page;
2669 	unsigned long flags;
2670 
2671 	do {
2672 		page = NULL;
2673 		spin_lock_irqsave(&zone->lock, flags);
2674 		if (alloc_flags & ALLOC_HIGHATOMIC)
2675 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2676 		if (!page) {
2677 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2678 
2679 			/*
2680 			 * If the allocation fails, allow OOM handling access
2681 			 * to HIGHATOMIC reserves as failing now is worse than
2682 			 * failing a high-order atomic allocation in the
2683 			 * future.
2684 			 */
2685 			if (!page && (alloc_flags & ALLOC_OOM))
2686 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2687 
2688 			if (!page) {
2689 				spin_unlock_irqrestore(&zone->lock, flags);
2690 				return NULL;
2691 			}
2692 		}
2693 		__mod_zone_freepage_state(zone, -(1 << order),
2694 					  get_pcppage_migratetype(page));
2695 		spin_unlock_irqrestore(&zone->lock, flags);
2696 	} while (check_new_pages(page, order));
2697 
2698 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2699 	zone_statistics(preferred_zone, zone, 1);
2700 
2701 	return page;
2702 }
2703 
2704 /* Remove page from the per-cpu list, caller must protect the list */
2705 static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)2706 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2707 			int migratetype,
2708 			unsigned int alloc_flags,
2709 			struct per_cpu_pages *pcp,
2710 			struct list_head *list)
2711 {
2712 	struct page *page;
2713 
2714 	do {
2715 		if (list_empty(list)) {
2716 			int batch = READ_ONCE(pcp->batch);
2717 			int alloced;
2718 
2719 			/*
2720 			 * Scale batch relative to order if batch implies
2721 			 * free pages can be stored on the PCP. Batch can
2722 			 * be 1 for small zones or for boot pagesets which
2723 			 * should never store free pages as the pages may
2724 			 * belong to arbitrary zones.
2725 			 */
2726 			if (batch > 1)
2727 				batch = max(batch >> order, 2);
2728 			alloced = rmqueue_bulk(zone, order,
2729 					batch, list,
2730 					migratetype, alloc_flags);
2731 
2732 			pcp->count += alloced << order;
2733 			if (unlikely(list_empty(list)))
2734 				return NULL;
2735 		}
2736 
2737 		page = list_first_entry(list, struct page, pcp_list);
2738 		list_del(&page->pcp_list);
2739 		pcp->count -= 1 << order;
2740 	} while (check_new_pages(page, order));
2741 
2742 	return page;
2743 }
2744 
2745 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2746 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2747 			struct zone *zone, unsigned int order,
2748 			int migratetype, unsigned int alloc_flags)
2749 {
2750 	struct per_cpu_pages *pcp;
2751 	struct list_head *list;
2752 	struct page *page;
2753 	unsigned long __maybe_unused UP_flags;
2754 
2755 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2756 	pcp_trylock_prepare(UP_flags);
2757 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2758 	if (!pcp) {
2759 		pcp_trylock_finish(UP_flags);
2760 		return NULL;
2761 	}
2762 
2763 	/*
2764 	 * On allocation, reduce the number of pages that are batch freed.
2765 	 * See nr_pcp_free() where free_factor is increased for subsequent
2766 	 * frees.
2767 	 */
2768 	pcp->free_factor >>= 1;
2769 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2770 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2771 	pcp_spin_unlock(pcp);
2772 	pcp_trylock_finish(UP_flags);
2773 	if (page) {
2774 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2775 		zone_statistics(preferred_zone, zone, 1);
2776 	}
2777 	return page;
2778 }
2779 
2780 /*
2781  * Allocate a page from the given zone.
2782  * Use pcplists for THP or "cheap" high-order allocations.
2783  */
2784 
2785 /*
2786  * Do not instrument rmqueue() with KMSAN. This function may call
2787  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2788  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2789  * may call rmqueue() again, which will result in a deadlock.
2790  */
2791 __no_sanitize_memory
2792 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)2793 struct page *rmqueue(struct zone *preferred_zone,
2794 			struct zone *zone, unsigned int order,
2795 			gfp_t gfp_flags, unsigned int alloc_flags,
2796 			int migratetype)
2797 {
2798 	struct page *page;
2799 
2800 	/*
2801 	 * We most definitely don't want callers attempting to
2802 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2803 	 */
2804 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2805 
2806 	if (likely(pcp_allowed_order(order))) {
2807 		page = rmqueue_pcplist(preferred_zone, zone, order,
2808 				       migratetype, alloc_flags);
2809 		if (likely(page))
2810 			goto out;
2811 	}
2812 
2813 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2814 							migratetype);
2815 
2816 out:
2817 	/* Separate test+clear to avoid unnecessary atomics */
2818 	if ((alloc_flags & ALLOC_KSWAPD) &&
2819 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2820 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2821 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2822 	}
2823 
2824 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2825 	return page;
2826 }
2827 
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)2828 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2829 {
2830 	return __should_fail_alloc_page(gfp_mask, order);
2831 }
2832 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2833 
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)2834 static inline long __zone_watermark_unusable_free(struct zone *z,
2835 				unsigned int order, unsigned int alloc_flags)
2836 {
2837 	long unusable_free = (1 << order) - 1;
2838 
2839 	/*
2840 	 * If the caller does not have rights to reserves below the min
2841 	 * watermark then subtract the high-atomic reserves. This will
2842 	 * over-estimate the size of the atomic reserve but it avoids a search.
2843 	 */
2844 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
2845 		unusable_free += z->nr_reserved_highatomic;
2846 
2847 #ifdef CONFIG_CMA
2848 	/* If allocation can't use CMA areas don't use free CMA pages */
2849 	if (!(alloc_flags & ALLOC_CMA))
2850 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2851 #endif
2852 #ifdef CONFIG_UNACCEPTED_MEMORY
2853 	unusable_free += zone_page_state(z, NR_UNACCEPTED);
2854 #endif
2855 
2856 	return unusable_free;
2857 }
2858 
2859 /*
2860  * Return true if free base pages are above 'mark'. For high-order checks it
2861  * will return true of the order-0 watermark is reached and there is at least
2862  * one free page of a suitable size. Checking now avoids taking the zone lock
2863  * to check in the allocation paths if no pages are free.
2864  */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)2865 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2866 			 int highest_zoneidx, unsigned int alloc_flags,
2867 			 long free_pages)
2868 {
2869 	long min = mark;
2870 	int o;
2871 
2872 	/* free_pages may go negative - that's OK */
2873 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2874 
2875 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2876 		/*
2877 		 * __GFP_HIGH allows access to 50% of the min reserve as well
2878 		 * as OOM.
2879 		 */
2880 		if (alloc_flags & ALLOC_MIN_RESERVE) {
2881 			min -= min / 2;
2882 
2883 			/*
2884 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2885 			 * access more reserves than just __GFP_HIGH. Other
2886 			 * non-blocking allocations requests such as GFP_NOWAIT
2887 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2888 			 * access to the min reserve.
2889 			 */
2890 			if (alloc_flags & ALLOC_NON_BLOCK)
2891 				min -= min / 4;
2892 		}
2893 
2894 		/*
2895 		 * OOM victims can try even harder than the normal reserve
2896 		 * users on the grounds that it's definitely going to be in
2897 		 * the exit path shortly and free memory. Any allocation it
2898 		 * makes during the free path will be small and short-lived.
2899 		 */
2900 		if (alloc_flags & ALLOC_OOM)
2901 			min -= min / 2;
2902 	}
2903 
2904 	/*
2905 	 * Check watermarks for an order-0 allocation request. If these
2906 	 * are not met, then a high-order request also cannot go ahead
2907 	 * even if a suitable page happened to be free.
2908 	 */
2909 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
2910 		return false;
2911 
2912 	/* If this is an order-0 request then the watermark is fine */
2913 	if (!order)
2914 		return true;
2915 
2916 	/* For a high-order request, check at least one suitable page is free */
2917 	for (o = order; o <= MAX_ORDER; o++) {
2918 		struct free_area *area = &z->free_area[o];
2919 		int mt;
2920 
2921 		if (!area->nr_free)
2922 			continue;
2923 
2924 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2925 			if (!free_area_empty(area, mt))
2926 				return true;
2927 		}
2928 
2929 #ifdef CONFIG_CMA
2930 		if ((alloc_flags & ALLOC_CMA) &&
2931 		    !free_area_empty(area, MIGRATE_CMA)) {
2932 			return true;
2933 		}
2934 #endif
2935 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
2936 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
2937 			return true;
2938 		}
2939 	}
2940 	return false;
2941 }
2942 
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)2943 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2944 		      int highest_zoneidx, unsigned int alloc_flags)
2945 {
2946 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2947 					zone_page_state(z, NR_FREE_PAGES));
2948 }
2949 
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)2950 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2951 				unsigned long mark, int highest_zoneidx,
2952 				unsigned int alloc_flags, gfp_t gfp_mask)
2953 {
2954 	long free_pages;
2955 
2956 	free_pages = zone_page_state(z, NR_FREE_PAGES);
2957 
2958 	/*
2959 	 * Fast check for order-0 only. If this fails then the reserves
2960 	 * need to be calculated.
2961 	 */
2962 	if (!order) {
2963 		long usable_free;
2964 		long reserved;
2965 
2966 		usable_free = free_pages;
2967 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
2968 
2969 		/* reserved may over estimate high-atomic reserves. */
2970 		usable_free -= min(usable_free, reserved);
2971 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
2972 			return true;
2973 	}
2974 
2975 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2976 					free_pages))
2977 		return true;
2978 
2979 	/*
2980 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
2981 	 * when checking the min watermark. The min watermark is the
2982 	 * point where boosting is ignored so that kswapd is woken up
2983 	 * when below the low watermark.
2984 	 */
2985 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
2986 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
2987 		mark = z->_watermark[WMARK_MIN];
2988 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
2989 					alloc_flags, free_pages);
2990 	}
2991 
2992 	return false;
2993 }
2994 
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)2995 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2996 			unsigned long mark, int highest_zoneidx)
2997 {
2998 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2999 
3000 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3001 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3002 
3003 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3004 								free_pages);
3005 }
3006 
3007 #ifdef CONFIG_NUMA
3008 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3009 
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3010 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3011 {
3012 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3013 				node_reclaim_distance;
3014 }
3015 #else	/* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3016 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3017 {
3018 	return true;
3019 }
3020 #endif	/* CONFIG_NUMA */
3021 
3022 /*
3023  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3024  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3025  * premature use of a lower zone may cause lowmem pressure problems that
3026  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3027  * probably too small. It only makes sense to spread allocations to avoid
3028  * fragmentation between the Normal and DMA32 zones.
3029  */
3030 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3031 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3032 {
3033 	unsigned int alloc_flags;
3034 
3035 	/*
3036 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3037 	 * to save a branch.
3038 	 */
3039 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3040 
3041 #ifdef CONFIG_ZONE_DMA32
3042 	if (!zone)
3043 		return alloc_flags;
3044 
3045 	if (zone_idx(zone) != ZONE_NORMAL)
3046 		return alloc_flags;
3047 
3048 	/*
3049 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3050 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3051 	 * on UMA that if Normal is populated then so is DMA32.
3052 	 */
3053 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3054 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3055 		return alloc_flags;
3056 
3057 	alloc_flags |= ALLOC_NOFRAGMENT;
3058 #endif /* CONFIG_ZONE_DMA32 */
3059 	return alloc_flags;
3060 }
3061 
3062 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)3063 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3064 						  unsigned int alloc_flags)
3065 {
3066 #ifdef CONFIG_CMA
3067 	if (gfp_migratetype(gfp_mask) == get_cma_migratetype())
3068 		alloc_flags |= ALLOC_CMA;
3069 #endif
3070 	return alloc_flags;
3071 }
3072 
3073 /*
3074  * get_page_from_freelist goes through the zonelist trying to allocate
3075  * a page.
3076  */
3077 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3078 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3079 						const struct alloc_context *ac)
3080 {
3081 	struct zoneref *z;
3082 	struct zone *zone;
3083 	struct pglist_data *last_pgdat = NULL;
3084 	bool last_pgdat_dirty_ok = false;
3085 	bool no_fallback;
3086 
3087 retry:
3088 	/*
3089 	 * Scan zonelist, looking for a zone with enough free.
3090 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3091 	 */
3092 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3093 	z = ac->preferred_zoneref;
3094 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3095 					ac->nodemask) {
3096 		struct page *page;
3097 		unsigned long mark;
3098 
3099 		if (cpusets_enabled() &&
3100 			(alloc_flags & ALLOC_CPUSET) &&
3101 			!__cpuset_zone_allowed(zone, gfp_mask))
3102 				continue;
3103 		/*
3104 		 * When allocating a page cache page for writing, we
3105 		 * want to get it from a node that is within its dirty
3106 		 * limit, such that no single node holds more than its
3107 		 * proportional share of globally allowed dirty pages.
3108 		 * The dirty limits take into account the node's
3109 		 * lowmem reserves and high watermark so that kswapd
3110 		 * should be able to balance it without having to
3111 		 * write pages from its LRU list.
3112 		 *
3113 		 * XXX: For now, allow allocations to potentially
3114 		 * exceed the per-node dirty limit in the slowpath
3115 		 * (spread_dirty_pages unset) before going into reclaim,
3116 		 * which is important when on a NUMA setup the allowed
3117 		 * nodes are together not big enough to reach the
3118 		 * global limit.  The proper fix for these situations
3119 		 * will require awareness of nodes in the
3120 		 * dirty-throttling and the flusher threads.
3121 		 */
3122 		if (ac->spread_dirty_pages) {
3123 			if (last_pgdat != zone->zone_pgdat) {
3124 				last_pgdat = zone->zone_pgdat;
3125 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3126 			}
3127 
3128 			if (!last_pgdat_dirty_ok)
3129 				continue;
3130 		}
3131 
3132 		if (no_fallback && nr_online_nodes > 1 &&
3133 		    zone != ac->preferred_zoneref->zone) {
3134 			int local_nid;
3135 
3136 			/*
3137 			 * If moving to a remote node, retry but allow
3138 			 * fragmenting fallbacks. Locality is more important
3139 			 * than fragmentation avoidance.
3140 			 */
3141 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3142 			if (zone_to_nid(zone) != local_nid) {
3143 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3144 				goto retry;
3145 			}
3146 		}
3147 
3148 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3149 		if (!zone_watermark_fast(zone, order, mark,
3150 				       ac->highest_zoneidx, alloc_flags,
3151 				       gfp_mask)) {
3152 			int ret;
3153 
3154 			if (has_unaccepted_memory()) {
3155 				if (try_to_accept_memory(zone, order))
3156 					goto try_this_zone;
3157 			}
3158 
3159 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3160 			/*
3161 			 * Watermark failed for this zone, but see if we can
3162 			 * grow this zone if it contains deferred pages.
3163 			 */
3164 			if (deferred_pages_enabled()) {
3165 				if (_deferred_grow_zone(zone, order))
3166 					goto try_this_zone;
3167 			}
3168 #endif
3169 			/* Checked here to keep the fast path fast */
3170 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3171 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3172 				goto try_this_zone;
3173 
3174 			if (!node_reclaim_enabled() ||
3175 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3176 				continue;
3177 
3178 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3179 			switch (ret) {
3180 			case NODE_RECLAIM_NOSCAN:
3181 				/* did not scan */
3182 				continue;
3183 			case NODE_RECLAIM_FULL:
3184 				/* scanned but unreclaimable */
3185 				continue;
3186 			default:
3187 				/* did we reclaim enough */
3188 				if (zone_watermark_ok(zone, order, mark,
3189 					ac->highest_zoneidx, alloc_flags))
3190 					goto try_this_zone;
3191 
3192 				continue;
3193 			}
3194 		}
3195 
3196 try_this_zone:
3197 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3198 				gfp_mask, alloc_flags, ac->migratetype);
3199 		if (page) {
3200 			prep_new_page(page, order, gfp_mask, alloc_flags);
3201 
3202 			/*
3203 			 * If this is a high-order atomic allocation then check
3204 			 * if the pageblock should be reserved for the future
3205 			 */
3206 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3207 				reserve_highatomic_pageblock(page, zone);
3208 
3209 			return page;
3210 		} else {
3211 			if (has_unaccepted_memory()) {
3212 				if (try_to_accept_memory(zone, order))
3213 					goto try_this_zone;
3214 			}
3215 
3216 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3217 			/* Try again if zone has deferred pages */
3218 			if (deferred_pages_enabled()) {
3219 				if (_deferred_grow_zone(zone, order))
3220 					goto try_this_zone;
3221 			}
3222 #endif
3223 		}
3224 	}
3225 
3226 	/*
3227 	 * It's possible on a UMA machine to get through all zones that are
3228 	 * fragmented. If avoiding fragmentation, reset and try again.
3229 	 */
3230 	if (no_fallback) {
3231 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3232 		goto retry;
3233 	}
3234 
3235 	return NULL;
3236 }
3237 
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3238 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3239 {
3240 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3241 
3242 	/*
3243 	 * This documents exceptions given to allocations in certain
3244 	 * contexts that are allowed to allocate outside current's set
3245 	 * of allowed nodes.
3246 	 */
3247 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3248 		if (tsk_is_oom_victim(current) ||
3249 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3250 			filter &= ~SHOW_MEM_FILTER_NODES;
3251 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3252 		filter &= ~SHOW_MEM_FILTER_NODES;
3253 
3254 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3255 }
3256 
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3257 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3258 {
3259 	struct va_format vaf;
3260 	va_list args;
3261 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3262 
3263 	if ((gfp_mask & __GFP_NOWARN) ||
3264 	     !__ratelimit(&nopage_rs) ||
3265 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3266 		return;
3267 
3268 	va_start(args, fmt);
3269 	vaf.fmt = fmt;
3270 	vaf.va = &args;
3271 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3272 			current->comm, &vaf, gfp_mask, &gfp_mask,
3273 			nodemask_pr_args(nodemask));
3274 	va_end(args);
3275 
3276 	cpuset_print_current_mems_allowed();
3277 	pr_cont("\n");
3278 	dump_stack();
3279 	warn_alloc_show_mem(gfp_mask, nodemask);
3280 }
3281 
3282 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3283 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3284 			      unsigned int alloc_flags,
3285 			      const struct alloc_context *ac)
3286 {
3287 	struct page *page;
3288 
3289 	page = get_page_from_freelist(gfp_mask, order,
3290 			alloc_flags|ALLOC_CPUSET, ac);
3291 	/*
3292 	 * fallback to ignore cpuset restriction if our nodes
3293 	 * are depleted
3294 	 */
3295 	if (!page)
3296 		page = get_page_from_freelist(gfp_mask, order,
3297 				alloc_flags, ac);
3298 
3299 	return page;
3300 }
3301 
3302 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3303 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3304 	const struct alloc_context *ac, unsigned long *did_some_progress)
3305 {
3306 	struct oom_control oc = {
3307 		.zonelist = ac->zonelist,
3308 		.nodemask = ac->nodemask,
3309 		.memcg = NULL,
3310 		.gfp_mask = gfp_mask,
3311 		.order = order,
3312 	};
3313 	struct page *page;
3314 
3315 	*did_some_progress = 0;
3316 
3317 	/*
3318 	 * Acquire the oom lock.  If that fails, somebody else is
3319 	 * making progress for us.
3320 	 */
3321 	if (!mutex_trylock(&oom_lock)) {
3322 		*did_some_progress = 1;
3323 		schedule_timeout_uninterruptible(1);
3324 		return NULL;
3325 	}
3326 
3327 	/*
3328 	 * Go through the zonelist yet one more time, keep very high watermark
3329 	 * here, this is only to catch a parallel oom killing, we must fail if
3330 	 * we're still under heavy pressure. But make sure that this reclaim
3331 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3332 	 * allocation which will never fail due to oom_lock already held.
3333 	 */
3334 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3335 				      ~__GFP_DIRECT_RECLAIM, order,
3336 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3337 	if (page)
3338 		goto out;
3339 
3340 	/* Coredumps can quickly deplete all memory reserves */
3341 	if (current->flags & PF_DUMPCORE)
3342 		goto out;
3343 	/* The OOM killer will not help higher order allocs */
3344 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3345 		goto out;
3346 	/*
3347 	 * We have already exhausted all our reclaim opportunities without any
3348 	 * success so it is time to admit defeat. We will skip the OOM killer
3349 	 * because it is very likely that the caller has a more reasonable
3350 	 * fallback than shooting a random task.
3351 	 *
3352 	 * The OOM killer may not free memory on a specific node.
3353 	 */
3354 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3355 		goto out;
3356 	/* The OOM killer does not needlessly kill tasks for lowmem */
3357 	if (ac->highest_zoneidx < ZONE_NORMAL)
3358 		goto out;
3359 	if (pm_suspended_storage())
3360 		goto out;
3361 	/*
3362 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3363 	 * other request to make a forward progress.
3364 	 * We are in an unfortunate situation where out_of_memory cannot
3365 	 * do much for this context but let's try it to at least get
3366 	 * access to memory reserved if the current task is killed (see
3367 	 * out_of_memory). Once filesystems are ready to handle allocation
3368 	 * failures more gracefully we should just bail out here.
3369 	 */
3370 
3371 	/* Exhausted what can be done so it's blame time */
3372 	if (out_of_memory(&oc) ||
3373 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3374 		*did_some_progress = 1;
3375 
3376 		/*
3377 		 * Help non-failing allocations by giving them access to memory
3378 		 * reserves
3379 		 */
3380 		if (gfp_mask & __GFP_NOFAIL)
3381 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3382 					ALLOC_NO_WATERMARKS, ac);
3383 	}
3384 out:
3385 	mutex_unlock(&oom_lock);
3386 	return page;
3387 }
3388 
3389 /*
3390  * Maximum number of compaction retries with a progress before OOM
3391  * killer is consider as the only way to move forward.
3392  */
3393 #define MAX_COMPACT_RETRIES 16
3394 
3395 #ifdef CONFIG_COMPACTION
3396 /* Try memory compaction for high-order allocations before reclaim */
3397 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3398 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3399 		unsigned int alloc_flags, const struct alloc_context *ac,
3400 		enum compact_priority prio, enum compact_result *compact_result)
3401 {
3402 	struct page *page = NULL;
3403 	unsigned long pflags;
3404 	unsigned int noreclaim_flag;
3405 
3406 	if (!order)
3407 		return NULL;
3408 
3409 	psi_memstall_enter(&pflags);
3410 	delayacct_compact_start();
3411 	noreclaim_flag = memalloc_noreclaim_save();
3412 
3413 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3414 								prio, &page);
3415 
3416 	memalloc_noreclaim_restore(noreclaim_flag);
3417 	psi_memstall_leave(&pflags);
3418 	delayacct_compact_end();
3419 
3420 	if (*compact_result == COMPACT_SKIPPED)
3421 		return NULL;
3422 	/*
3423 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3424 	 * count a compaction stall
3425 	 */
3426 	count_vm_event(COMPACTSTALL);
3427 
3428 	/* Prep a captured page if available */
3429 	if (page)
3430 		prep_new_page(page, order, gfp_mask, alloc_flags);
3431 
3432 	/* Try get a page from the freelist if available */
3433 	if (!page)
3434 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3435 
3436 	if (page) {
3437 		struct zone *zone = page_zone(page);
3438 
3439 		zone->compact_blockskip_flush = false;
3440 		compaction_defer_reset(zone, order, true);
3441 		count_vm_event(COMPACTSUCCESS);
3442 		return page;
3443 	}
3444 
3445 	/*
3446 	 * It's bad if compaction run occurs and fails. The most likely reason
3447 	 * is that pages exist, but not enough to satisfy watermarks.
3448 	 */
3449 	count_vm_event(COMPACTFAIL);
3450 
3451 	cond_resched();
3452 
3453 	return NULL;
3454 }
3455 
3456 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3457 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3458 		     enum compact_result compact_result,
3459 		     enum compact_priority *compact_priority,
3460 		     int *compaction_retries)
3461 {
3462 	int max_retries = MAX_COMPACT_RETRIES;
3463 	int min_priority;
3464 	bool ret = false;
3465 	int retries = *compaction_retries;
3466 	enum compact_priority priority = *compact_priority;
3467 
3468 	if (!order)
3469 		return false;
3470 
3471 	if (fatal_signal_pending(current))
3472 		return false;
3473 
3474 	/*
3475 	 * Compaction was skipped due to a lack of free order-0
3476 	 * migration targets. Continue if reclaim can help.
3477 	 */
3478 	if (compact_result == COMPACT_SKIPPED) {
3479 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3480 		goto out;
3481 	}
3482 
3483 	/*
3484 	 * Compaction managed to coalesce some page blocks, but the
3485 	 * allocation failed presumably due to a race. Retry some.
3486 	 */
3487 	if (compact_result == COMPACT_SUCCESS) {
3488 		/*
3489 		 * !costly requests are much more important than
3490 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3491 		 * facto nofail and invoke OOM killer to move on while
3492 		 * costly can fail and users are ready to cope with
3493 		 * that. 1/4 retries is rather arbitrary but we would
3494 		 * need much more detailed feedback from compaction to
3495 		 * make a better decision.
3496 		 */
3497 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3498 			max_retries /= 4;
3499 
3500 		if (++(*compaction_retries) <= max_retries) {
3501 			ret = true;
3502 			goto out;
3503 		}
3504 	}
3505 
3506 	/*
3507 	 * Compaction failed. Retry with increasing priority.
3508 	 */
3509 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3510 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3511 
3512 	if (*compact_priority > min_priority) {
3513 		(*compact_priority)--;
3514 		*compaction_retries = 0;
3515 		ret = true;
3516 	}
3517 out:
3518 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3519 	return ret;
3520 }
3521 #else
3522 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3523 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3524 		unsigned int alloc_flags, const struct alloc_context *ac,
3525 		enum compact_priority prio, enum compact_result *compact_result)
3526 {
3527 	*compact_result = COMPACT_SKIPPED;
3528 	return NULL;
3529 }
3530 
3531 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3532 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3533 		     enum compact_result compact_result,
3534 		     enum compact_priority *compact_priority,
3535 		     int *compaction_retries)
3536 {
3537 	struct zone *zone;
3538 	struct zoneref *z;
3539 
3540 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3541 		return false;
3542 
3543 	/*
3544 	 * There are setups with compaction disabled which would prefer to loop
3545 	 * inside the allocator rather than hit the oom killer prematurely.
3546 	 * Let's give them a good hope and keep retrying while the order-0
3547 	 * watermarks are OK.
3548 	 */
3549 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3550 				ac->highest_zoneidx, ac->nodemask) {
3551 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3552 					ac->highest_zoneidx, alloc_flags))
3553 			return true;
3554 	}
3555 	return false;
3556 }
3557 #endif /* CONFIG_COMPACTION */
3558 
3559 #ifdef CONFIG_LOCKDEP
3560 static struct lockdep_map __fs_reclaim_map =
3561 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3562 
__need_reclaim(gfp_t gfp_mask)3563 static bool __need_reclaim(gfp_t gfp_mask)
3564 {
3565 	/* no reclaim without waiting on it */
3566 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3567 		return false;
3568 
3569 	/* this guy won't enter reclaim */
3570 	if (current->flags & PF_MEMALLOC)
3571 		return false;
3572 
3573 	if (gfp_mask & __GFP_NOLOCKDEP)
3574 		return false;
3575 
3576 	return true;
3577 }
3578 
__fs_reclaim_acquire(unsigned long ip)3579 void __fs_reclaim_acquire(unsigned long ip)
3580 {
3581 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3582 }
3583 
__fs_reclaim_release(unsigned long ip)3584 void __fs_reclaim_release(unsigned long ip)
3585 {
3586 	lock_release(&__fs_reclaim_map, ip);
3587 }
3588 
fs_reclaim_acquire(gfp_t gfp_mask)3589 void fs_reclaim_acquire(gfp_t gfp_mask)
3590 {
3591 	gfp_mask = current_gfp_context(gfp_mask);
3592 
3593 	if (__need_reclaim(gfp_mask)) {
3594 		if (gfp_mask & __GFP_FS)
3595 			__fs_reclaim_acquire(_RET_IP_);
3596 
3597 #ifdef CONFIG_MMU_NOTIFIER
3598 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3599 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3600 #endif
3601 
3602 	}
3603 }
3604 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3605 
fs_reclaim_release(gfp_t gfp_mask)3606 void fs_reclaim_release(gfp_t gfp_mask)
3607 {
3608 	gfp_mask = current_gfp_context(gfp_mask);
3609 
3610 	if (__need_reclaim(gfp_mask)) {
3611 		if (gfp_mask & __GFP_FS)
3612 			__fs_reclaim_release(_RET_IP_);
3613 	}
3614 }
3615 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3616 #endif
3617 
3618 /*
3619  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3620  * have been rebuilt so allocation retries. Reader side does not lock and
3621  * retries the allocation if zonelist changes. Writer side is protected by the
3622  * embedded spin_lock.
3623  */
3624 static DEFINE_SEQLOCK(zonelist_update_seq);
3625 
zonelist_iter_begin(void)3626 static unsigned int zonelist_iter_begin(void)
3627 {
3628 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3629 		return read_seqbegin(&zonelist_update_seq);
3630 
3631 	return 0;
3632 }
3633 
check_retry_zonelist(unsigned int seq)3634 static unsigned int check_retry_zonelist(unsigned int seq)
3635 {
3636 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3637 		return read_seqretry(&zonelist_update_seq, seq);
3638 
3639 	return seq;
3640 }
3641 
3642 /* Perform direct synchronous page reclaim */
3643 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)3644 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3645 					const struct alloc_context *ac)
3646 {
3647 	unsigned int noreclaim_flag;
3648 	unsigned long progress;
3649 
3650 	cond_resched();
3651 
3652 	/* We now go into synchronous reclaim */
3653 	cpuset_memory_pressure_bump();
3654 	fs_reclaim_acquire(gfp_mask);
3655 	noreclaim_flag = memalloc_noreclaim_save();
3656 
3657 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3658 								ac->nodemask);
3659 
3660 	memalloc_noreclaim_restore(noreclaim_flag);
3661 	fs_reclaim_release(gfp_mask);
3662 
3663 	cond_resched();
3664 
3665 	return progress;
3666 }
3667 
3668 /* The really slow allocator path where we enter direct reclaim */
3669 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)3670 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3671 		unsigned int alloc_flags, const struct alloc_context *ac,
3672 		unsigned long *did_some_progress)
3673 {
3674 	struct page *page = NULL;
3675 	unsigned long pflags;
3676 	bool drained = false;
3677 
3678 	psi_memstall_enter(&pflags);
3679 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3680 	if (unlikely(!(*did_some_progress)))
3681 		goto out;
3682 
3683 retry:
3684 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3685 
3686 	/*
3687 	 * If an allocation failed after direct reclaim, it could be because
3688 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3689 	 * Shrink them and try again
3690 	 */
3691 	if (!page && !drained) {
3692 		unreserve_highatomic_pageblock(ac, false);
3693 		drain_all_pages(NULL);
3694 		drained = true;
3695 		goto retry;
3696 	}
3697 out:
3698 	psi_memstall_leave(&pflags);
3699 
3700 	return page;
3701 }
3702 
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)3703 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3704 			     const struct alloc_context *ac)
3705 {
3706 	struct zoneref *z;
3707 	struct zone *zone;
3708 	pg_data_t *last_pgdat = NULL;
3709 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3710 
3711 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3712 					ac->nodemask) {
3713 		if (!managed_zone(zone))
3714 			continue;
3715 		if (last_pgdat != zone->zone_pgdat) {
3716 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3717 			last_pgdat = zone->zone_pgdat;
3718 		}
3719 	}
3720 }
3721 
3722 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask,unsigned int order)3723 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3724 {
3725 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3726 
3727 	/*
3728 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3729 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3730 	 * to save two branches.
3731 	 */
3732 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3733 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3734 
3735 	/*
3736 	 * The caller may dip into page reserves a bit more if the caller
3737 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3738 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3739 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3740 	 */
3741 	alloc_flags |= (__force int)
3742 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3743 
3744 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3745 		/*
3746 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3747 		 * if it can't schedule.
3748 		 */
3749 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3750 			alloc_flags |= ALLOC_NON_BLOCK;
3751 
3752 			if (order > 0)
3753 				alloc_flags |= ALLOC_HIGHATOMIC;
3754 		}
3755 
3756 		/*
3757 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3758 		 * GFP_ATOMIC) rather than fail, see the comment for
3759 		 * cpuset_node_allowed().
3760 		 */
3761 		if (alloc_flags & ALLOC_MIN_RESERVE)
3762 			alloc_flags &= ~ALLOC_CPUSET;
3763 	} else if (unlikely(rt_task(current)) && in_task())
3764 		alloc_flags |= ALLOC_MIN_RESERVE;
3765 
3766 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3767 
3768 	return alloc_flags;
3769 }
3770 
oom_reserves_allowed(struct task_struct * tsk)3771 static bool oom_reserves_allowed(struct task_struct *tsk)
3772 {
3773 	if (!tsk_is_oom_victim(tsk))
3774 		return false;
3775 
3776 	/*
3777 	 * !MMU doesn't have oom reaper so give access to memory reserves
3778 	 * only to the thread with TIF_MEMDIE set
3779 	 */
3780 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3781 		return false;
3782 
3783 	return true;
3784 }
3785 
3786 /*
3787  * Distinguish requests which really need access to full memory
3788  * reserves from oom victims which can live with a portion of it
3789  */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)3790 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3791 {
3792 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3793 		return 0;
3794 	if (gfp_mask & __GFP_MEMALLOC)
3795 		return ALLOC_NO_WATERMARKS;
3796 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3797 		return ALLOC_NO_WATERMARKS;
3798 	if (!in_interrupt()) {
3799 		if (current->flags & PF_MEMALLOC)
3800 			return ALLOC_NO_WATERMARKS;
3801 		else if (oom_reserves_allowed(current))
3802 			return ALLOC_OOM;
3803 	}
3804 
3805 	return 0;
3806 }
3807 
gfp_pfmemalloc_allowed(gfp_t gfp_mask)3808 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3809 {
3810 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3811 }
3812 
3813 /*
3814  * Checks whether it makes sense to retry the reclaim to make a forward progress
3815  * for the given allocation request.
3816  *
3817  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3818  * without success, or when we couldn't even meet the watermark if we
3819  * reclaimed all remaining pages on the LRU lists.
3820  *
3821  * Returns true if a retry is viable or false to enter the oom path.
3822  */
3823 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)3824 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3825 		     struct alloc_context *ac, int alloc_flags,
3826 		     bool did_some_progress, int *no_progress_loops)
3827 {
3828 	struct zone *zone;
3829 	struct zoneref *z;
3830 	bool ret = false;
3831 
3832 	/*
3833 	 * Costly allocations might have made a progress but this doesn't mean
3834 	 * their order will become available due to high fragmentation so
3835 	 * always increment the no progress counter for them
3836 	 */
3837 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3838 		*no_progress_loops = 0;
3839 	else
3840 		(*no_progress_loops)++;
3841 
3842 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3843 		goto out;
3844 
3845 
3846 	/*
3847 	 * Keep reclaiming pages while there is a chance this will lead
3848 	 * somewhere.  If none of the target zones can satisfy our allocation
3849 	 * request even if all reclaimable pages are considered then we are
3850 	 * screwed and have to go OOM.
3851 	 */
3852 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3853 				ac->highest_zoneidx, ac->nodemask) {
3854 		unsigned long available;
3855 		unsigned long reclaimable;
3856 		unsigned long min_wmark = min_wmark_pages(zone);
3857 		bool wmark;
3858 
3859 		available = reclaimable = zone_reclaimable_pages(zone);
3860 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3861 
3862 		/*
3863 		 * Would the allocation succeed if we reclaimed all
3864 		 * reclaimable pages?
3865 		 */
3866 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3867 				ac->highest_zoneidx, alloc_flags, available);
3868 		trace_reclaim_retry_zone(z, order, reclaimable,
3869 				available, min_wmark, *no_progress_loops, wmark);
3870 		if (wmark) {
3871 			ret = true;
3872 			break;
3873 		}
3874 	}
3875 
3876 	/*
3877 	 * Memory allocation/reclaim might be called from a WQ context and the
3878 	 * current implementation of the WQ concurrency control doesn't
3879 	 * recognize that a particular WQ is congested if the worker thread is
3880 	 * looping without ever sleeping. Therefore we have to do a short sleep
3881 	 * here rather than calling cond_resched().
3882 	 */
3883 	if (current->flags & PF_WQ_WORKER)
3884 		schedule_timeout_uninterruptible(1);
3885 	else
3886 		cond_resched();
3887 out:
3888 	/* Before OOM, exhaust highatomic_reserve */
3889 	if (!ret)
3890 		return unreserve_highatomic_pageblock(ac, true);
3891 
3892 	return ret;
3893 }
3894 
3895 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)3896 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3897 {
3898 	/*
3899 	 * It's possible that cpuset's mems_allowed and the nodemask from
3900 	 * mempolicy don't intersect. This should be normally dealt with by
3901 	 * policy_nodemask(), but it's possible to race with cpuset update in
3902 	 * such a way the check therein was true, and then it became false
3903 	 * before we got our cpuset_mems_cookie here.
3904 	 * This assumes that for all allocations, ac->nodemask can come only
3905 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3906 	 * when it does not intersect with the cpuset restrictions) or the
3907 	 * caller can deal with a violated nodemask.
3908 	 */
3909 	if (cpusets_enabled() && ac->nodemask &&
3910 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3911 		ac->nodemask = NULL;
3912 		return true;
3913 	}
3914 
3915 	/*
3916 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3917 	 * possible to race with parallel threads in such a way that our
3918 	 * allocation can fail while the mask is being updated. If we are about
3919 	 * to fail, check if the cpuset changed during allocation and if so,
3920 	 * retry.
3921 	 */
3922 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3923 		return true;
3924 
3925 	return false;
3926 }
3927 
3928 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)3929 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3930 						struct alloc_context *ac)
3931 {
3932 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3933 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3934 	struct page *page = NULL;
3935 	unsigned int alloc_flags;
3936 	unsigned long did_some_progress;
3937 	enum compact_priority compact_priority;
3938 	enum compact_result compact_result;
3939 	int compaction_retries;
3940 	int no_progress_loops;
3941 	unsigned int cpuset_mems_cookie;
3942 	unsigned int zonelist_iter_cookie;
3943 	int reserve_flags;
3944 
3945 restart:
3946 	compaction_retries = 0;
3947 	no_progress_loops = 0;
3948 	compact_priority = DEF_COMPACT_PRIORITY;
3949 	cpuset_mems_cookie = read_mems_allowed_begin();
3950 	zonelist_iter_cookie = zonelist_iter_begin();
3951 
3952 	/*
3953 	 * The fast path uses conservative alloc_flags to succeed only until
3954 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3955 	 * alloc_flags precisely. So we do that now.
3956 	 */
3957 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
3958 
3959 	/*
3960 	 * We need to recalculate the starting point for the zonelist iterator
3961 	 * because we might have used different nodemask in the fast path, or
3962 	 * there was a cpuset modification and we are retrying - otherwise we
3963 	 * could end up iterating over non-eligible zones endlessly.
3964 	 */
3965 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3966 					ac->highest_zoneidx, ac->nodemask);
3967 	if (!ac->preferred_zoneref->zone)
3968 		goto nopage;
3969 
3970 	/*
3971 	 * Check for insane configurations where the cpuset doesn't contain
3972 	 * any suitable zone to satisfy the request - e.g. non-movable
3973 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
3974 	 */
3975 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
3976 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
3977 					ac->highest_zoneidx,
3978 					&cpuset_current_mems_allowed);
3979 		if (!z->zone)
3980 			goto nopage;
3981 	}
3982 
3983 	if (alloc_flags & ALLOC_KSWAPD)
3984 		wake_all_kswapds(order, gfp_mask, ac);
3985 
3986 	/*
3987 	 * The adjusted alloc_flags might result in immediate success, so try
3988 	 * that first
3989 	 */
3990 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3991 	if (page)
3992 		goto got_pg;
3993 
3994 	/*
3995 	 * For costly allocations, try direct compaction first, as it's likely
3996 	 * that we have enough base pages and don't need to reclaim. For non-
3997 	 * movable high-order allocations, do that as well, as compaction will
3998 	 * try prevent permanent fragmentation by migrating from blocks of the
3999 	 * same migratetype.
4000 	 * Don't try this for allocations that are allowed to ignore
4001 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4002 	 */
4003 	if (can_direct_reclaim &&
4004 			(costly_order ||
4005 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4006 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4007 		page = __alloc_pages_direct_compact(gfp_mask, order,
4008 						alloc_flags, ac,
4009 						INIT_COMPACT_PRIORITY,
4010 						&compact_result);
4011 		if (page)
4012 			goto got_pg;
4013 
4014 		/*
4015 		 * Checks for costly allocations with __GFP_NORETRY, which
4016 		 * includes some THP page fault allocations
4017 		 */
4018 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4019 			/*
4020 			 * If allocating entire pageblock(s) and compaction
4021 			 * failed because all zones are below low watermarks
4022 			 * or is prohibited because it recently failed at this
4023 			 * order, fail immediately unless the allocator has
4024 			 * requested compaction and reclaim retry.
4025 			 *
4026 			 * Reclaim is
4027 			 *  - potentially very expensive because zones are far
4028 			 *    below their low watermarks or this is part of very
4029 			 *    bursty high order allocations,
4030 			 *  - not guaranteed to help because isolate_freepages()
4031 			 *    may not iterate over freed pages as part of its
4032 			 *    linear scan, and
4033 			 *  - unlikely to make entire pageblocks free on its
4034 			 *    own.
4035 			 */
4036 			if (compact_result == COMPACT_SKIPPED ||
4037 			    compact_result == COMPACT_DEFERRED)
4038 				goto nopage;
4039 
4040 			/*
4041 			 * Looks like reclaim/compaction is worth trying, but
4042 			 * sync compaction could be very expensive, so keep
4043 			 * using async compaction.
4044 			 */
4045 			compact_priority = INIT_COMPACT_PRIORITY;
4046 		}
4047 	}
4048 
4049 retry:
4050 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4051 	if (alloc_flags & ALLOC_KSWAPD)
4052 		wake_all_kswapds(order, gfp_mask, ac);
4053 
4054 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4055 	if (reserve_flags)
4056 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4057 					  (alloc_flags & ALLOC_KSWAPD);
4058 
4059 	/*
4060 	 * Reset the nodemask and zonelist iterators if memory policies can be
4061 	 * ignored. These allocations are high priority and system rather than
4062 	 * user oriented.
4063 	 */
4064 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4065 		ac->nodemask = NULL;
4066 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4067 					ac->highest_zoneidx, ac->nodemask);
4068 	}
4069 
4070 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4071 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4072 	if (page)
4073 		goto got_pg;
4074 
4075 	/* Caller is not willing to reclaim, we can't balance anything */
4076 	if (!can_direct_reclaim)
4077 		goto nopage;
4078 
4079 	/* Avoid recursion of direct reclaim */
4080 	if (current->flags & PF_MEMALLOC)
4081 		goto nopage;
4082 
4083 	/* Try direct reclaim and then allocating */
4084 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4085 							&did_some_progress);
4086 	if (page)
4087 		goto got_pg;
4088 
4089 	/* Try direct compaction and then allocating */
4090 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4091 					compact_priority, &compact_result);
4092 	if (page)
4093 		goto got_pg;
4094 
4095 	/* Do not loop if specifically requested */
4096 	if (gfp_mask & __GFP_NORETRY)
4097 		goto nopage;
4098 
4099 	/*
4100 	 * Do not retry costly high order allocations unless they are
4101 	 * __GFP_RETRY_MAYFAIL
4102 	 */
4103 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4104 		goto nopage;
4105 
4106 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4107 				 did_some_progress > 0, &no_progress_loops))
4108 		goto retry;
4109 
4110 	/*
4111 	 * It doesn't make any sense to retry for the compaction if the order-0
4112 	 * reclaim is not able to make any progress because the current
4113 	 * implementation of the compaction depends on the sufficient amount
4114 	 * of free memory (see __compaction_suitable)
4115 	 */
4116 	if (did_some_progress > 0 &&
4117 			should_compact_retry(ac, order, alloc_flags,
4118 				compact_result, &compact_priority,
4119 				&compaction_retries))
4120 		goto retry;
4121 
4122 
4123 	/*
4124 	 * Deal with possible cpuset update races or zonelist updates to avoid
4125 	 * a unnecessary OOM kill.
4126 	 */
4127 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4128 	    check_retry_zonelist(zonelist_iter_cookie))
4129 		goto restart;
4130 
4131 	/* Reclaim has failed us, start killing things */
4132 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4133 	if (page)
4134 		goto got_pg;
4135 
4136 	/* Avoid allocations with no watermarks from looping endlessly */
4137 	if (tsk_is_oom_victim(current) &&
4138 	    (alloc_flags & ALLOC_OOM ||
4139 	     (gfp_mask & __GFP_NOMEMALLOC)))
4140 		goto nopage;
4141 
4142 	/* Retry as long as the OOM killer is making progress */
4143 	if (did_some_progress) {
4144 		no_progress_loops = 0;
4145 		goto retry;
4146 	}
4147 
4148 nopage:
4149 	/*
4150 	 * Deal with possible cpuset update races or zonelist updates to avoid
4151 	 * a unnecessary OOM kill.
4152 	 */
4153 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4154 	    check_retry_zonelist(zonelist_iter_cookie))
4155 		goto restart;
4156 
4157 	/*
4158 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4159 	 * we always retry
4160 	 */
4161 	if (gfp_mask & __GFP_NOFAIL) {
4162 		/*
4163 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4164 		 * of any new users that actually require GFP_NOWAIT
4165 		 */
4166 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4167 			goto fail;
4168 
4169 		/*
4170 		 * PF_MEMALLOC request from this context is rather bizarre
4171 		 * because we cannot reclaim anything and only can loop waiting
4172 		 * for somebody to do a work for us
4173 		 */
4174 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4175 
4176 		/*
4177 		 * non failing costly orders are a hard requirement which we
4178 		 * are not prepared for much so let's warn about these users
4179 		 * so that we can identify them and convert them to something
4180 		 * else.
4181 		 */
4182 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4183 
4184 		/*
4185 		 * Help non-failing allocations by giving some access to memory
4186 		 * reserves normally used for high priority non-blocking
4187 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4188 		 * could deplete whole memory reserves which would just make
4189 		 * the situation worse.
4190 		 */
4191 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4192 		if (page)
4193 			goto got_pg;
4194 
4195 		cond_resched();
4196 		goto retry;
4197 	}
4198 fail:
4199 	warn_alloc(gfp_mask, ac->nodemask,
4200 			"page allocation failure: order:%u", order);
4201 got_pg:
4202 	return page;
4203 }
4204 
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)4205 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4206 		int preferred_nid, nodemask_t *nodemask,
4207 		struct alloc_context *ac, gfp_t *alloc_gfp,
4208 		unsigned int *alloc_flags)
4209 {
4210 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4211 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4212 	ac->nodemask = nodemask;
4213 	ac->migratetype = gfp_migratetype(gfp_mask);
4214 
4215 	if (cpusets_enabled()) {
4216 		*alloc_gfp |= __GFP_HARDWALL;
4217 		/*
4218 		 * When we are in the interrupt context, it is irrelevant
4219 		 * to the current task context. It means that any node ok.
4220 		 */
4221 		if (in_task() && !ac->nodemask)
4222 			ac->nodemask = &cpuset_current_mems_allowed;
4223 		else
4224 			*alloc_flags |= ALLOC_CPUSET;
4225 	}
4226 
4227 	might_alloc(gfp_mask);
4228 
4229 	if (should_fail_alloc_page(gfp_mask, order))
4230 		return false;
4231 
4232 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4233 
4234 	/* Dirty zone balancing only done in the fast path */
4235 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4236 
4237 	/*
4238 	 * The preferred zone is used for statistics but crucially it is
4239 	 * also used as the starting point for the zonelist iterator. It
4240 	 * may get reset for allocations that ignore memory policies.
4241 	 */
4242 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4243 					ac->highest_zoneidx, ac->nodemask);
4244 
4245 	return true;
4246 }
4247 
4248 /*
4249  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4250  * @gfp: GFP flags for the allocation
4251  * @preferred_nid: The preferred NUMA node ID to allocate from
4252  * @nodemask: Set of nodes to allocate from, may be NULL
4253  * @nr_pages: The number of pages desired on the list or array
4254  * @page_list: Optional list to store the allocated pages
4255  * @page_array: Optional array to store the pages
4256  *
4257  * This is a batched version of the page allocator that attempts to
4258  * allocate nr_pages quickly. Pages are added to page_list if page_list
4259  * is not NULL, otherwise it is assumed that the page_array is valid.
4260  *
4261  * For lists, nr_pages is the number of pages that should be allocated.
4262  *
4263  * For arrays, only NULL elements are populated with pages and nr_pages
4264  * is the maximum number of pages that will be stored in the array.
4265  *
4266  * Returns the number of pages on the list or array.
4267  */
__alloc_pages_bulk(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct list_head * page_list,struct page ** page_array)4268 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4269 			nodemask_t *nodemask, int nr_pages,
4270 			struct list_head *page_list,
4271 			struct page **page_array)
4272 {
4273 	struct page *page;
4274 	unsigned long __maybe_unused UP_flags;
4275 	struct zone *zone;
4276 	struct zoneref *z;
4277 	struct per_cpu_pages *pcp;
4278 	struct list_head *pcp_list;
4279 	struct alloc_context ac;
4280 	gfp_t alloc_gfp;
4281 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4282 	int nr_populated = 0, nr_account = 0;
4283 
4284 	/*
4285 	 * Skip populated array elements to determine if any pages need
4286 	 * to be allocated before disabling IRQs.
4287 	 */
4288 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4289 		nr_populated++;
4290 
4291 	/* No pages requested? */
4292 	if (unlikely(nr_pages <= 0))
4293 		goto out;
4294 
4295 	/* Already populated array? */
4296 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4297 		goto out;
4298 
4299 	/* Bulk allocator does not support memcg accounting. */
4300 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4301 		goto failed;
4302 
4303 	/* Use the single page allocator for one page. */
4304 	if (nr_pages - nr_populated == 1)
4305 		goto failed;
4306 
4307 #ifdef CONFIG_PAGE_OWNER
4308 	/*
4309 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4310 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4311 	 * removes much of the performance benefit of bulk allocation so
4312 	 * force the caller to allocate one page at a time as it'll have
4313 	 * similar performance to added complexity to the bulk allocator.
4314 	 */
4315 	if (static_branch_unlikely(&page_owner_inited))
4316 		goto failed;
4317 #endif
4318 
4319 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4320 	gfp &= gfp_allowed_mask;
4321 	alloc_gfp = gfp;
4322 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4323 		goto out;
4324 	gfp = alloc_gfp;
4325 
4326 	/* Find an allowed local zone that meets the low watermark. */
4327 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4328 		unsigned long mark;
4329 
4330 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4331 		    !__cpuset_zone_allowed(zone, gfp)) {
4332 			continue;
4333 		}
4334 
4335 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4336 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4337 			goto failed;
4338 		}
4339 
4340 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4341 		if (zone_watermark_fast(zone, 0,  mark,
4342 				zonelist_zone_idx(ac.preferred_zoneref),
4343 				alloc_flags, gfp)) {
4344 			break;
4345 		}
4346 	}
4347 
4348 	/*
4349 	 * If there are no allowed local zones that meets the watermarks then
4350 	 * try to allocate a single page and reclaim if necessary.
4351 	 */
4352 	if (unlikely(!zone))
4353 		goto failed;
4354 
4355 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4356 	pcp_trylock_prepare(UP_flags);
4357 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4358 	if (!pcp)
4359 		goto failed_irq;
4360 
4361 	/* Attempt the batch allocation */
4362 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4363 	while (nr_populated < nr_pages) {
4364 
4365 		/* Skip existing pages */
4366 		if (page_array && page_array[nr_populated]) {
4367 			nr_populated++;
4368 			continue;
4369 		}
4370 
4371 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4372 								pcp, pcp_list);
4373 		if (unlikely(!page)) {
4374 			/* Try and allocate at least one page */
4375 			if (!nr_account) {
4376 				pcp_spin_unlock(pcp);
4377 				goto failed_irq;
4378 			}
4379 			break;
4380 		}
4381 		nr_account++;
4382 
4383 		prep_new_page(page, 0, gfp, 0);
4384 		if (page_list)
4385 			list_add(&page->lru, page_list);
4386 		else
4387 			page_array[nr_populated] = page;
4388 		nr_populated++;
4389 	}
4390 
4391 	pcp_spin_unlock(pcp);
4392 	pcp_trylock_finish(UP_flags);
4393 
4394 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4395 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4396 
4397 out:
4398 	return nr_populated;
4399 
4400 failed_irq:
4401 	pcp_trylock_finish(UP_flags);
4402 
4403 failed:
4404 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4405 	if (page) {
4406 		if (page_list)
4407 			list_add(&page->lru, page_list);
4408 		else
4409 			page_array[nr_populated] = page;
4410 		nr_populated++;
4411 	}
4412 
4413 	goto out;
4414 }
4415 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4416 
4417 /*
4418  * This is the 'heart' of the zoned buddy allocator.
4419  */
__alloc_pages(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4420 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4421 							nodemask_t *nodemask)
4422 {
4423 	struct page *page;
4424 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4425 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4426 	struct alloc_context ac = { };
4427 
4428 	/*
4429 	 * There are several places where we assume that the order value is sane
4430 	 * so bail out early if the request is out of bound.
4431 	 */
4432 	if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4433 		return NULL;
4434 
4435 	gfp &= gfp_allowed_mask;
4436 	/*
4437 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4438 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4439 	 * from a particular context which has been marked by
4440 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4441 	 * movable zones are not used during allocation.
4442 	 */
4443 	gfp = current_gfp_context(gfp);
4444 	alloc_gfp = gfp;
4445 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4446 			&alloc_gfp, &alloc_flags))
4447 		return NULL;
4448 
4449 	/*
4450 	 * Forbid the first pass from falling back to types that fragment
4451 	 * memory until all local zones are considered.
4452 	 */
4453 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4454 
4455 	/* First allocation attempt */
4456 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4457 	if (likely(page))
4458 		goto out;
4459 
4460 	alloc_gfp = gfp;
4461 	ac.spread_dirty_pages = false;
4462 
4463 	/*
4464 	 * Restore the original nodemask if it was potentially replaced with
4465 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4466 	 */
4467 	ac.nodemask = nodemask;
4468 
4469 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4470 
4471 out:
4472 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4473 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4474 		__free_pages(page, order);
4475 		page = NULL;
4476 	}
4477 
4478 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4479 	kmsan_alloc_page(page, order, alloc_gfp);
4480 
4481 	return page;
4482 }
4483 EXPORT_SYMBOL(__alloc_pages);
4484 
__folio_alloc(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4485 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4486 		nodemask_t *nodemask)
4487 {
4488 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4489 			preferred_nid, nodemask);
4490 	struct folio *folio = (struct folio *)page;
4491 
4492 	if (folio && order > 1)
4493 		folio_prep_large_rmappable(folio);
4494 	return folio;
4495 }
4496 EXPORT_SYMBOL(__folio_alloc);
4497 
4498 /*
4499  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4500  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4501  * you need to access high mem.
4502  */
__get_free_pages(gfp_t gfp_mask,unsigned int order)4503 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4504 {
4505 	struct page *page;
4506 
4507 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4508 	if (!page)
4509 		return 0;
4510 	return (unsigned long) page_address(page);
4511 }
4512 EXPORT_SYMBOL(__get_free_pages);
4513 
get_zeroed_page(gfp_t gfp_mask)4514 unsigned long get_zeroed_page(gfp_t gfp_mask)
4515 {
4516 	return __get_free_page(gfp_mask | __GFP_ZERO);
4517 }
4518 EXPORT_SYMBOL(get_zeroed_page);
4519 
4520 /**
4521  * __free_pages - Free pages allocated with alloc_pages().
4522  * @page: The page pointer returned from alloc_pages().
4523  * @order: The order of the allocation.
4524  *
4525  * This function can free multi-page allocations that are not compound
4526  * pages.  It does not check that the @order passed in matches that of
4527  * the allocation, so it is easy to leak memory.  Freeing more memory
4528  * than was allocated will probably emit a warning.
4529  *
4530  * If the last reference to this page is speculative, it will be released
4531  * by put_page() which only frees the first page of a non-compound
4532  * allocation.  To prevent the remaining pages from being leaked, we free
4533  * the subsequent pages here.  If you want to use the page's reference
4534  * count to decide when to free the allocation, you should allocate a
4535  * compound page, and use put_page() instead of __free_pages().
4536  *
4537  * Context: May be called in interrupt context or while holding a normal
4538  * spinlock, but not in NMI context or while holding a raw spinlock.
4539  */
__free_pages(struct page * page,unsigned int order)4540 void __free_pages(struct page *page, unsigned int order)
4541 {
4542 	/* get PageHead before we drop reference */
4543 	int head = PageHead(page);
4544 
4545 	if (put_page_testzero(page))
4546 		free_the_page(page, order);
4547 	else if (!head)
4548 		while (order-- > 0)
4549 			free_the_page(page + (1 << order), order);
4550 }
4551 EXPORT_SYMBOL(__free_pages);
4552 
free_pages(unsigned long addr,unsigned int order)4553 void free_pages(unsigned long addr, unsigned int order)
4554 {
4555 	if (addr != 0) {
4556 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4557 		__free_pages(virt_to_page((void *)addr), order);
4558 	}
4559 }
4560 
4561 EXPORT_SYMBOL(free_pages);
4562 
4563 /*
4564  * Page Fragment:
4565  *  An arbitrary-length arbitrary-offset area of memory which resides
4566  *  within a 0 or higher order page.  Multiple fragments within that page
4567  *  are individually refcounted, in the page's reference counter.
4568  *
4569  * The page_frag functions below provide a simple allocation framework for
4570  * page fragments.  This is used by the network stack and network device
4571  * drivers to provide a backing region of memory for use as either an
4572  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4573  */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)4574 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4575 					     gfp_t gfp_mask)
4576 {
4577 	struct page *page = NULL;
4578 	gfp_t gfp = gfp_mask;
4579 
4580 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4581 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4582 		    __GFP_NOMEMALLOC;
4583 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4584 				PAGE_FRAG_CACHE_MAX_ORDER);
4585 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4586 #endif
4587 	if (unlikely(!page))
4588 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4589 
4590 	nc->va = page ? page_address(page) : NULL;
4591 
4592 	return page;
4593 }
4594 
__page_frag_cache_drain(struct page * page,unsigned int count)4595 void __page_frag_cache_drain(struct page *page, unsigned int count)
4596 {
4597 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4598 
4599 	if (page_ref_sub_and_test(page, count))
4600 		free_the_page(page, compound_order(page));
4601 }
4602 EXPORT_SYMBOL(__page_frag_cache_drain);
4603 
page_frag_alloc_align(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask,unsigned int align_mask)4604 void *page_frag_alloc_align(struct page_frag_cache *nc,
4605 		      unsigned int fragsz, gfp_t gfp_mask,
4606 		      unsigned int align_mask)
4607 {
4608 	unsigned int size = PAGE_SIZE;
4609 	struct page *page;
4610 	int offset;
4611 
4612 	if (unlikely(!nc->va)) {
4613 refill:
4614 		page = __page_frag_cache_refill(nc, gfp_mask);
4615 		if (!page)
4616 			return NULL;
4617 
4618 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4619 		/* if size can vary use size else just use PAGE_SIZE */
4620 		size = nc->size;
4621 #endif
4622 		/* Even if we own the page, we do not use atomic_set().
4623 		 * This would break get_page_unless_zero() users.
4624 		 */
4625 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4626 
4627 		/* reset page count bias and offset to start of new frag */
4628 		nc->pfmemalloc = page_is_pfmemalloc(page);
4629 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4630 		nc->offset = size;
4631 	}
4632 
4633 	offset = nc->offset - fragsz;
4634 	if (unlikely(offset < 0)) {
4635 		page = virt_to_page(nc->va);
4636 
4637 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4638 			goto refill;
4639 
4640 		if (unlikely(nc->pfmemalloc)) {
4641 			free_the_page(page, compound_order(page));
4642 			goto refill;
4643 		}
4644 
4645 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4646 		/* if size can vary use size else just use PAGE_SIZE */
4647 		size = nc->size;
4648 #endif
4649 		/* OK, page count is 0, we can safely set it */
4650 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4651 
4652 		/* reset page count bias and offset to start of new frag */
4653 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4654 		offset = size - fragsz;
4655 		if (unlikely(offset < 0)) {
4656 			/*
4657 			 * The caller is trying to allocate a fragment
4658 			 * with fragsz > PAGE_SIZE but the cache isn't big
4659 			 * enough to satisfy the request, this may
4660 			 * happen in low memory conditions.
4661 			 * We don't release the cache page because
4662 			 * it could make memory pressure worse
4663 			 * so we simply return NULL here.
4664 			 */
4665 			return NULL;
4666 		}
4667 	}
4668 
4669 	nc->pagecnt_bias--;
4670 	offset &= align_mask;
4671 	nc->offset = offset;
4672 
4673 	return nc->va + offset;
4674 }
4675 EXPORT_SYMBOL(page_frag_alloc_align);
4676 
4677 /*
4678  * Frees a page fragment allocated out of either a compound or order 0 page.
4679  */
page_frag_free(void * addr)4680 void page_frag_free(void *addr)
4681 {
4682 	struct page *page = virt_to_head_page(addr);
4683 
4684 	if (unlikely(put_page_testzero(page)))
4685 		free_the_page(page, compound_order(page));
4686 }
4687 EXPORT_SYMBOL(page_frag_free);
4688 
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)4689 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4690 		size_t size)
4691 {
4692 	if (addr) {
4693 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4694 		struct page *page = virt_to_page((void *)addr);
4695 		struct page *last = page + nr;
4696 
4697 		split_page_owner(page, 1 << order);
4698 		split_page_memcg(page, 1 << order);
4699 		while (page < --last)
4700 			set_page_refcounted(last);
4701 
4702 		last = page + (1UL << order);
4703 		for (page += nr; page < last; page++)
4704 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4705 	}
4706 	return (void *)addr;
4707 }
4708 
4709 /**
4710  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4711  * @size: the number of bytes to allocate
4712  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4713  *
4714  * This function is similar to alloc_pages(), except that it allocates the
4715  * minimum number of pages to satisfy the request.  alloc_pages() can only
4716  * allocate memory in power-of-two pages.
4717  *
4718  * This function is also limited by MAX_ORDER.
4719  *
4720  * Memory allocated by this function must be released by free_pages_exact().
4721  *
4722  * Return: pointer to the allocated area or %NULL in case of error.
4723  */
alloc_pages_exact(size_t size,gfp_t gfp_mask)4724 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4725 {
4726 	unsigned int order = get_order(size);
4727 	unsigned long addr;
4728 
4729 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4730 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4731 
4732 	addr = __get_free_pages(gfp_mask, order);
4733 	return make_alloc_exact(addr, order, size);
4734 }
4735 EXPORT_SYMBOL(alloc_pages_exact);
4736 
4737 /**
4738  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4739  *			   pages on a node.
4740  * @nid: the preferred node ID where memory should be allocated
4741  * @size: the number of bytes to allocate
4742  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4743  *
4744  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4745  * back.
4746  *
4747  * Return: pointer to the allocated area or %NULL in case of error.
4748  */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)4749 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4750 {
4751 	unsigned int order = get_order(size);
4752 	struct page *p;
4753 
4754 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4755 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4756 
4757 	p = alloc_pages_node(nid, gfp_mask, order);
4758 	if (!p)
4759 		return NULL;
4760 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4761 }
4762 
4763 /**
4764  * free_pages_exact - release memory allocated via alloc_pages_exact()
4765  * @virt: the value returned by alloc_pages_exact.
4766  * @size: size of allocation, same value as passed to alloc_pages_exact().
4767  *
4768  * Release the memory allocated by a previous call to alloc_pages_exact.
4769  */
free_pages_exact(void * virt,size_t size)4770 void free_pages_exact(void *virt, size_t size)
4771 {
4772 	unsigned long addr = (unsigned long)virt;
4773 	unsigned long end = addr + PAGE_ALIGN(size);
4774 
4775 	while (addr < end) {
4776 		free_page(addr);
4777 		addr += PAGE_SIZE;
4778 	}
4779 }
4780 EXPORT_SYMBOL(free_pages_exact);
4781 
4782 /**
4783  * nr_free_zone_pages - count number of pages beyond high watermark
4784  * @offset: The zone index of the highest zone
4785  *
4786  * nr_free_zone_pages() counts the number of pages which are beyond the
4787  * high watermark within all zones at or below a given zone index.  For each
4788  * zone, the number of pages is calculated as:
4789  *
4790  *     nr_free_zone_pages = managed_pages - high_pages
4791  *
4792  * Return: number of pages beyond high watermark.
4793  */
nr_free_zone_pages(int offset)4794 static unsigned long nr_free_zone_pages(int offset)
4795 {
4796 	struct zoneref *z;
4797 	struct zone *zone;
4798 
4799 	/* Just pick one node, since fallback list is circular */
4800 	unsigned long sum = 0;
4801 
4802 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4803 
4804 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4805 		unsigned long size = zone_managed_pages(zone);
4806 		unsigned long high = high_wmark_pages(zone);
4807 		if (size > high)
4808 			sum += size - high;
4809 	}
4810 
4811 	return sum;
4812 }
4813 
4814 /**
4815  * nr_free_buffer_pages - count number of pages beyond high watermark
4816  *
4817  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4818  * watermark within ZONE_DMA and ZONE_NORMAL.
4819  *
4820  * Return: number of pages beyond high watermark within ZONE_DMA and
4821  * ZONE_NORMAL.
4822  */
nr_free_buffer_pages(void)4823 unsigned long nr_free_buffer_pages(void)
4824 {
4825 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4826 }
4827 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4828 
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)4829 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4830 {
4831 	zoneref->zone = zone;
4832 	zoneref->zone_idx = zone_idx(zone);
4833 }
4834 
4835 /*
4836  * Builds allocation fallback zone lists.
4837  *
4838  * Add all populated zones of a node to the zonelist.
4839  */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)4840 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4841 {
4842 	struct zone *zone;
4843 	enum zone_type zone_type = MAX_NR_ZONES;
4844 	int nr_zones = 0;
4845 
4846 	do {
4847 		zone_type--;
4848 		zone = pgdat->node_zones + zone_type;
4849 		if (populated_zone(zone)) {
4850 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4851 			check_highest_zone(zone_type);
4852 		}
4853 	} while (zone_type);
4854 
4855 	return nr_zones;
4856 }
4857 
4858 #ifdef CONFIG_NUMA
4859 
__parse_numa_zonelist_order(char * s)4860 static int __parse_numa_zonelist_order(char *s)
4861 {
4862 	/*
4863 	 * We used to support different zonelists modes but they turned
4864 	 * out to be just not useful. Let's keep the warning in place
4865 	 * if somebody still use the cmd line parameter so that we do
4866 	 * not fail it silently
4867 	 */
4868 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4869 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4870 		return -EINVAL;
4871 	}
4872 	return 0;
4873 }
4874 
4875 static char numa_zonelist_order[] = "Node";
4876 #define NUMA_ZONELIST_ORDER_LEN	16
4877 /*
4878  * sysctl handler for numa_zonelist_order
4879  */
numa_zonelist_order_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4880 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4881 		void *buffer, size_t *length, loff_t *ppos)
4882 {
4883 	if (write)
4884 		return __parse_numa_zonelist_order(buffer);
4885 	return proc_dostring(table, write, buffer, length, ppos);
4886 }
4887 
4888 static int node_load[MAX_NUMNODES];
4889 
4890 /**
4891  * find_next_best_node - find the next node that should appear in a given node's fallback list
4892  * @node: node whose fallback list we're appending
4893  * @used_node_mask: nodemask_t of already used nodes
4894  *
4895  * We use a number of factors to determine which is the next node that should
4896  * appear on a given node's fallback list.  The node should not have appeared
4897  * already in @node's fallback list, and it should be the next closest node
4898  * according to the distance array (which contains arbitrary distance values
4899  * from each node to each node in the system), and should also prefer nodes
4900  * with no CPUs, since presumably they'll have very little allocation pressure
4901  * on them otherwise.
4902  *
4903  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
4904  */
find_next_best_node(int node,nodemask_t * used_node_mask)4905 int find_next_best_node(int node, nodemask_t *used_node_mask)
4906 {
4907 	int n, val;
4908 	int min_val = INT_MAX;
4909 	int best_node = NUMA_NO_NODE;
4910 
4911 	/* Use the local node if we haven't already */
4912 	if (!node_isset(node, *used_node_mask)) {
4913 		node_set(node, *used_node_mask);
4914 		return node;
4915 	}
4916 
4917 	for_each_node_state(n, N_MEMORY) {
4918 
4919 		/* Don't want a node to appear more than once */
4920 		if (node_isset(n, *used_node_mask))
4921 			continue;
4922 
4923 		/* Use the distance array to find the distance */
4924 		val = node_distance(node, n);
4925 
4926 		/* Penalize nodes under us ("prefer the next node") */
4927 		val += (n < node);
4928 
4929 		/* Give preference to headless and unused nodes */
4930 		if (!cpumask_empty(cpumask_of_node(n)))
4931 			val += PENALTY_FOR_NODE_WITH_CPUS;
4932 
4933 		/* Slight preference for less loaded node */
4934 		val *= MAX_NUMNODES;
4935 		val += node_load[n];
4936 
4937 		if (val < min_val) {
4938 			min_val = val;
4939 			best_node = n;
4940 		}
4941 	}
4942 
4943 	if (best_node >= 0)
4944 		node_set(best_node, *used_node_mask);
4945 
4946 	return best_node;
4947 }
4948 
4949 
4950 /*
4951  * Build zonelists ordered by node and zones within node.
4952  * This results in maximum locality--normal zone overflows into local
4953  * DMA zone, if any--but risks exhausting DMA zone.
4954  */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)4955 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
4956 		unsigned nr_nodes)
4957 {
4958 	struct zoneref *zonerefs;
4959 	int i;
4960 
4961 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
4962 
4963 	for (i = 0; i < nr_nodes; i++) {
4964 		int nr_zones;
4965 
4966 		pg_data_t *node = NODE_DATA(node_order[i]);
4967 
4968 		nr_zones = build_zonerefs_node(node, zonerefs);
4969 		zonerefs += nr_zones;
4970 	}
4971 	zonerefs->zone = NULL;
4972 	zonerefs->zone_idx = 0;
4973 }
4974 
4975 /*
4976  * Build gfp_thisnode zonelists
4977  */
build_thisnode_zonelists(pg_data_t * pgdat)4978 static void build_thisnode_zonelists(pg_data_t *pgdat)
4979 {
4980 	struct zoneref *zonerefs;
4981 	int nr_zones;
4982 
4983 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
4984 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
4985 	zonerefs += nr_zones;
4986 	zonerefs->zone = NULL;
4987 	zonerefs->zone_idx = 0;
4988 }
4989 
4990 /*
4991  * Build zonelists ordered by zone and nodes within zones.
4992  * This results in conserving DMA zone[s] until all Normal memory is
4993  * exhausted, but results in overflowing to remote node while memory
4994  * may still exist in local DMA zone.
4995  */
4996 
build_zonelists(pg_data_t * pgdat)4997 static void build_zonelists(pg_data_t *pgdat)
4998 {
4999 	static int node_order[MAX_NUMNODES];
5000 	int node, nr_nodes = 0;
5001 	nodemask_t used_mask = NODE_MASK_NONE;
5002 	int local_node, prev_node;
5003 
5004 	/* NUMA-aware ordering of nodes */
5005 	local_node = pgdat->node_id;
5006 	prev_node = local_node;
5007 
5008 	memset(node_order, 0, sizeof(node_order));
5009 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5010 		/*
5011 		 * We don't want to pressure a particular node.
5012 		 * So adding penalty to the first node in same
5013 		 * distance group to make it round-robin.
5014 		 */
5015 		if (node_distance(local_node, node) !=
5016 		    node_distance(local_node, prev_node))
5017 			node_load[node] += 1;
5018 
5019 		node_order[nr_nodes++] = node;
5020 		prev_node = node;
5021 	}
5022 
5023 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5024 	build_thisnode_zonelists(pgdat);
5025 	pr_info("Fallback order for Node %d: ", local_node);
5026 	for (node = 0; node < nr_nodes; node++)
5027 		pr_cont("%d ", node_order[node]);
5028 	pr_cont("\n");
5029 }
5030 
5031 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5032 /*
5033  * Return node id of node used for "local" allocations.
5034  * I.e., first node id of first zone in arg node's generic zonelist.
5035  * Used for initializing percpu 'numa_mem', which is used primarily
5036  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5037  */
local_memory_node(int node)5038 int local_memory_node(int node)
5039 {
5040 	struct zoneref *z;
5041 
5042 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5043 				   gfp_zone(GFP_KERNEL),
5044 				   NULL);
5045 	return zone_to_nid(z->zone);
5046 }
5047 #endif
5048 
5049 static void setup_min_unmapped_ratio(void);
5050 static void setup_min_slab_ratio(void);
5051 #else	/* CONFIG_NUMA */
5052 
build_zonelists(pg_data_t * pgdat)5053 static void build_zonelists(pg_data_t *pgdat)
5054 {
5055 	int node, local_node;
5056 	struct zoneref *zonerefs;
5057 	int nr_zones;
5058 
5059 	local_node = pgdat->node_id;
5060 
5061 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5062 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5063 	zonerefs += nr_zones;
5064 
5065 	/*
5066 	 * Now we build the zonelist so that it contains the zones
5067 	 * of all the other nodes.
5068 	 * We don't want to pressure a particular node, so when
5069 	 * building the zones for node N, we make sure that the
5070 	 * zones coming right after the local ones are those from
5071 	 * node N+1 (modulo N)
5072 	 */
5073 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5074 		if (!node_online(node))
5075 			continue;
5076 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5077 		zonerefs += nr_zones;
5078 	}
5079 	for (node = 0; node < local_node; node++) {
5080 		if (!node_online(node))
5081 			continue;
5082 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5083 		zonerefs += nr_zones;
5084 	}
5085 
5086 	zonerefs->zone = NULL;
5087 	zonerefs->zone_idx = 0;
5088 }
5089 
5090 #endif	/* CONFIG_NUMA */
5091 
5092 /*
5093  * Boot pageset table. One per cpu which is going to be used for all
5094  * zones and all nodes. The parameters will be set in such a way
5095  * that an item put on a list will immediately be handed over to
5096  * the buddy list. This is safe since pageset manipulation is done
5097  * with interrupts disabled.
5098  *
5099  * The boot_pagesets must be kept even after bootup is complete for
5100  * unused processors and/or zones. They do play a role for bootstrapping
5101  * hotplugged processors.
5102  *
5103  * zoneinfo_show() and maybe other functions do
5104  * not check if the processor is online before following the pageset pointer.
5105  * Other parts of the kernel may not check if the zone is available.
5106  */
5107 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5108 /* These effectively disable the pcplists in the boot pageset completely */
5109 #define BOOT_PAGESET_HIGH	0
5110 #define BOOT_PAGESET_BATCH	1
5111 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5112 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5113 
__build_all_zonelists(void * data)5114 static void __build_all_zonelists(void *data)
5115 {
5116 	int nid;
5117 	int __maybe_unused cpu;
5118 	pg_data_t *self = data;
5119 	unsigned long flags;
5120 
5121 	/*
5122 	 * The zonelist_update_seq must be acquired with irqsave because the
5123 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5124 	 */
5125 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5126 	/*
5127 	 * Also disable synchronous printk() to prevent any printk() from
5128 	 * trying to hold port->lock, for
5129 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5130 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5131 	 */
5132 	printk_deferred_enter();
5133 
5134 #ifdef CONFIG_NUMA
5135 	memset(node_load, 0, sizeof(node_load));
5136 #endif
5137 
5138 	/*
5139 	 * This node is hotadded and no memory is yet present.   So just
5140 	 * building zonelists is fine - no need to touch other nodes.
5141 	 */
5142 	if (self && !node_online(self->node_id)) {
5143 		build_zonelists(self);
5144 	} else {
5145 		/*
5146 		 * All possible nodes have pgdat preallocated
5147 		 * in free_area_init
5148 		 */
5149 		for_each_node(nid) {
5150 			pg_data_t *pgdat = NODE_DATA(nid);
5151 
5152 			build_zonelists(pgdat);
5153 		}
5154 
5155 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5156 		/*
5157 		 * We now know the "local memory node" for each node--
5158 		 * i.e., the node of the first zone in the generic zonelist.
5159 		 * Set up numa_mem percpu variable for on-line cpus.  During
5160 		 * boot, only the boot cpu should be on-line;  we'll init the
5161 		 * secondary cpus' numa_mem as they come on-line.  During
5162 		 * node/memory hotplug, we'll fixup all on-line cpus.
5163 		 */
5164 		for_each_online_cpu(cpu)
5165 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5166 #endif
5167 	}
5168 
5169 	printk_deferred_exit();
5170 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5171 }
5172 
5173 static noinline void __init
build_all_zonelists_init(void)5174 build_all_zonelists_init(void)
5175 {
5176 	int cpu;
5177 
5178 	__build_all_zonelists(NULL);
5179 
5180 	/*
5181 	 * Initialize the boot_pagesets that are going to be used
5182 	 * for bootstrapping processors. The real pagesets for
5183 	 * each zone will be allocated later when the per cpu
5184 	 * allocator is available.
5185 	 *
5186 	 * boot_pagesets are used also for bootstrapping offline
5187 	 * cpus if the system is already booted because the pagesets
5188 	 * are needed to initialize allocators on a specific cpu too.
5189 	 * F.e. the percpu allocator needs the page allocator which
5190 	 * needs the percpu allocator in order to allocate its pagesets
5191 	 * (a chicken-egg dilemma).
5192 	 */
5193 	for_each_possible_cpu(cpu)
5194 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5195 
5196 	mminit_verify_zonelist();
5197 	cpuset_init_current_mems_allowed();
5198 }
5199 
5200 /*
5201  * unless system_state == SYSTEM_BOOTING.
5202  *
5203  * __ref due to call of __init annotated helper build_all_zonelists_init
5204  * [protected by SYSTEM_BOOTING].
5205  */
build_all_zonelists(pg_data_t * pgdat)5206 void __ref build_all_zonelists(pg_data_t *pgdat)
5207 {
5208 	unsigned long vm_total_pages;
5209 
5210 	if (system_state == SYSTEM_BOOTING) {
5211 		build_all_zonelists_init();
5212 	} else {
5213 		__build_all_zonelists(pgdat);
5214 		/* cpuset refresh routine should be here */
5215 	}
5216 	/* Get the number of free pages beyond high watermark in all zones. */
5217 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5218 	/*
5219 	 * Disable grouping by mobility if the number of pages in the
5220 	 * system is too low to allow the mechanism to work. It would be
5221 	 * more accurate, but expensive to check per-zone. This check is
5222 	 * made on memory-hotadd so a system can start with mobility
5223 	 * disabled and enable it later
5224 	 */
5225 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5226 		page_group_by_mobility_disabled = 1;
5227 	else
5228 		page_group_by_mobility_disabled = 0;
5229 
5230 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5231 		nr_online_nodes,
5232 		page_group_by_mobility_disabled ? "off" : "on",
5233 		vm_total_pages);
5234 #ifdef CONFIG_NUMA
5235 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5236 #endif
5237 }
5238 
zone_batchsize(struct zone * zone)5239 static int zone_batchsize(struct zone *zone)
5240 {
5241 #ifdef CONFIG_MMU
5242 	int batch;
5243 
5244 	/*
5245 	 * The number of pages to batch allocate is either ~0.1%
5246 	 * of the zone or 1MB, whichever is smaller. The batch
5247 	 * size is striking a balance between allocation latency
5248 	 * and zone lock contention.
5249 	 */
5250 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5251 	batch /= 4;		/* We effectively *= 4 below */
5252 	if (batch < 1)
5253 		batch = 1;
5254 
5255 	/*
5256 	 * Clamp the batch to a 2^n - 1 value. Having a power
5257 	 * of 2 value was found to be more likely to have
5258 	 * suboptimal cache aliasing properties in some cases.
5259 	 *
5260 	 * For example if 2 tasks are alternately allocating
5261 	 * batches of pages, one task can end up with a lot
5262 	 * of pages of one half of the possible page colors
5263 	 * and the other with pages of the other colors.
5264 	 */
5265 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5266 
5267 	return batch;
5268 
5269 #else
5270 	/* The deferral and batching of frees should be suppressed under NOMMU
5271 	 * conditions.
5272 	 *
5273 	 * The problem is that NOMMU needs to be able to allocate large chunks
5274 	 * of contiguous memory as there's no hardware page translation to
5275 	 * assemble apparent contiguous memory from discontiguous pages.
5276 	 *
5277 	 * Queueing large contiguous runs of pages for batching, however,
5278 	 * causes the pages to actually be freed in smaller chunks.  As there
5279 	 * can be a significant delay between the individual batches being
5280 	 * recycled, this leads to the once large chunks of space being
5281 	 * fragmented and becoming unavailable for high-order allocations.
5282 	 */
5283 	return 0;
5284 #endif
5285 }
5286 
5287 static int percpu_pagelist_high_fraction;
zone_highsize(struct zone * zone,int batch,int cpu_online)5288 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5289 {
5290 #ifdef CONFIG_MMU
5291 	int high;
5292 	int nr_split_cpus;
5293 	unsigned long total_pages;
5294 
5295 	if (!percpu_pagelist_high_fraction) {
5296 		/*
5297 		 * By default, the high value of the pcp is based on the zone
5298 		 * low watermark so that if they are full then background
5299 		 * reclaim will not be started prematurely.
5300 		 */
5301 		total_pages = low_wmark_pages(zone);
5302 	} else {
5303 		/*
5304 		 * If percpu_pagelist_high_fraction is configured, the high
5305 		 * value is based on a fraction of the managed pages in the
5306 		 * zone.
5307 		 */
5308 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
5309 	}
5310 
5311 	/*
5312 	 * Split the high value across all online CPUs local to the zone. Note
5313 	 * that early in boot that CPUs may not be online yet and that during
5314 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5315 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
5316 	 * all online CPUs to mitigate the risk that reclaim is triggered
5317 	 * prematurely due to pages stored on pcp lists.
5318 	 */
5319 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5320 	if (!nr_split_cpus)
5321 		nr_split_cpus = num_online_cpus();
5322 	high = total_pages / nr_split_cpus;
5323 
5324 	/*
5325 	 * Ensure high is at least batch*4. The multiple is based on the
5326 	 * historical relationship between high and batch.
5327 	 */
5328 	high = max(high, batch << 2);
5329 
5330 	return high;
5331 #else
5332 	return 0;
5333 #endif
5334 }
5335 
5336 /*
5337  * pcp->high and pcp->batch values are related and generally batch is lower
5338  * than high. They are also related to pcp->count such that count is lower
5339  * than high, and as soon as it reaches high, the pcplist is flushed.
5340  *
5341  * However, guaranteeing these relations at all times would require e.g. write
5342  * barriers here but also careful usage of read barriers at the read side, and
5343  * thus be prone to error and bad for performance. Thus the update only prevents
5344  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
5345  * can cope with those fields changing asynchronously, and fully trust only the
5346  * pcp->count field on the local CPU with interrupts disabled.
5347  *
5348  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5349  * outside of boot time (or some other assurance that no concurrent updaters
5350  * exist).
5351  */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)5352 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5353 		unsigned long batch)
5354 {
5355 	WRITE_ONCE(pcp->batch, batch);
5356 	WRITE_ONCE(pcp->high, high);
5357 }
5358 
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)5359 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5360 {
5361 	int pindex;
5362 
5363 	memset(pcp, 0, sizeof(*pcp));
5364 	memset(pzstats, 0, sizeof(*pzstats));
5365 
5366 	spin_lock_init(&pcp->lock);
5367 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5368 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5369 
5370 	/*
5371 	 * Set batch and high values safe for a boot pageset. A true percpu
5372 	 * pageset's initialization will update them subsequently. Here we don't
5373 	 * need to be as careful as pageset_update() as nobody can access the
5374 	 * pageset yet.
5375 	 */
5376 	pcp->high = BOOT_PAGESET_HIGH;
5377 	pcp->batch = BOOT_PAGESET_BATCH;
5378 	pcp->free_factor = 0;
5379 }
5380 
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high,unsigned long batch)5381 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
5382 		unsigned long batch)
5383 {
5384 	struct per_cpu_pages *pcp;
5385 	int cpu;
5386 
5387 	for_each_possible_cpu(cpu) {
5388 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5389 		pageset_update(pcp, high, batch);
5390 	}
5391 }
5392 
5393 /*
5394  * Calculate and set new high and batch values for all per-cpu pagesets of a
5395  * zone based on the zone's size.
5396  */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)5397 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5398 {
5399 	int new_high, new_batch;
5400 
5401 	new_batch = max(1, zone_batchsize(zone));
5402 	new_high = zone_highsize(zone, new_batch, cpu_online);
5403 
5404 	if (zone->pageset_high == new_high &&
5405 	    zone->pageset_batch == new_batch)
5406 		return;
5407 
5408 	zone->pageset_high = new_high;
5409 	zone->pageset_batch = new_batch;
5410 
5411 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
5412 }
5413 
setup_zone_pageset(struct zone * zone)5414 void __meminit setup_zone_pageset(struct zone *zone)
5415 {
5416 	int cpu;
5417 
5418 	/* Size may be 0 on !SMP && !NUMA */
5419 	if (sizeof(struct per_cpu_zonestat) > 0)
5420 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5421 
5422 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5423 	for_each_possible_cpu(cpu) {
5424 		struct per_cpu_pages *pcp;
5425 		struct per_cpu_zonestat *pzstats;
5426 
5427 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5428 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5429 		per_cpu_pages_init(pcp, pzstats);
5430 	}
5431 
5432 	zone_set_pageset_high_and_batch(zone, 0);
5433 }
5434 
5435 /*
5436  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5437  * page high values need to be recalculated.
5438  */
zone_pcp_update(struct zone * zone,int cpu_online)5439 static void zone_pcp_update(struct zone *zone, int cpu_online)
5440 {
5441 	mutex_lock(&pcp_batch_high_lock);
5442 	zone_set_pageset_high_and_batch(zone, cpu_online);
5443 	mutex_unlock(&pcp_batch_high_lock);
5444 }
5445 
5446 /*
5447  * Allocate per cpu pagesets and initialize them.
5448  * Before this call only boot pagesets were available.
5449  */
setup_per_cpu_pageset(void)5450 void __init setup_per_cpu_pageset(void)
5451 {
5452 	struct pglist_data *pgdat;
5453 	struct zone *zone;
5454 	int __maybe_unused cpu;
5455 
5456 	for_each_populated_zone(zone)
5457 		setup_zone_pageset(zone);
5458 
5459 #ifdef CONFIG_NUMA
5460 	/*
5461 	 * Unpopulated zones continue using the boot pagesets.
5462 	 * The numa stats for these pagesets need to be reset.
5463 	 * Otherwise, they will end up skewing the stats of
5464 	 * the nodes these zones are associated with.
5465 	 */
5466 	for_each_possible_cpu(cpu) {
5467 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5468 		memset(pzstats->vm_numa_event, 0,
5469 		       sizeof(pzstats->vm_numa_event));
5470 	}
5471 #endif
5472 
5473 	for_each_online_pgdat(pgdat)
5474 		pgdat->per_cpu_nodestats =
5475 			alloc_percpu(struct per_cpu_nodestat);
5476 }
5477 
zone_pcp_init(struct zone * zone)5478 __meminit void zone_pcp_init(struct zone *zone)
5479 {
5480 	/*
5481 	 * per cpu subsystem is not up at this point. The following code
5482 	 * relies on the ability of the linker to provide the
5483 	 * offset of a (static) per cpu variable into the per cpu area.
5484 	 */
5485 	zone->per_cpu_pageset = &boot_pageset;
5486 	zone->per_cpu_zonestats = &boot_zonestats;
5487 	zone->pageset_high = BOOT_PAGESET_HIGH;
5488 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5489 
5490 	if (populated_zone(zone))
5491 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5492 			 zone->present_pages, zone_batchsize(zone));
5493 }
5494 
adjust_managed_page_count(struct page * page,long count)5495 void adjust_managed_page_count(struct page *page, long count)
5496 {
5497 	atomic_long_add(count, &page_zone(page)->managed_pages);
5498 	totalram_pages_add(count);
5499 #ifdef CONFIG_HIGHMEM
5500 	if (PageHighMem(page))
5501 		totalhigh_pages_add(count);
5502 #endif
5503 }
5504 EXPORT_SYMBOL(adjust_managed_page_count);
5505 
free_reserved_area(void * start,void * end,int poison,const char * s)5506 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5507 {
5508 	void *pos;
5509 	unsigned long pages = 0;
5510 
5511 	start = (void *)PAGE_ALIGN((unsigned long)start);
5512 	end = (void *)((unsigned long)end & PAGE_MASK);
5513 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5514 		struct page *page = virt_to_page(pos);
5515 		void *direct_map_addr;
5516 
5517 		/*
5518 		 * 'direct_map_addr' might be different from 'pos'
5519 		 * because some architectures' virt_to_page()
5520 		 * work with aliases.  Getting the direct map
5521 		 * address ensures that we get a _writeable_
5522 		 * alias for the memset().
5523 		 */
5524 		direct_map_addr = page_address(page);
5525 		/*
5526 		 * Perform a kasan-unchecked memset() since this memory
5527 		 * has not been initialized.
5528 		 */
5529 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5530 		if ((unsigned int)poison <= 0xFF)
5531 			memset(direct_map_addr, poison, PAGE_SIZE);
5532 
5533 		free_reserved_page(page);
5534 	}
5535 
5536 	if (pages && s)
5537 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5538 
5539 	return pages;
5540 }
5541 
page_alloc_cpu_dead(unsigned int cpu)5542 static int page_alloc_cpu_dead(unsigned int cpu)
5543 {
5544 	struct zone *zone;
5545 
5546 	lru_add_drain_cpu(cpu);
5547 	mlock_drain_remote(cpu);
5548 	drain_pages(cpu);
5549 
5550 	/*
5551 	 * Spill the event counters of the dead processor
5552 	 * into the current processors event counters.
5553 	 * This artificially elevates the count of the current
5554 	 * processor.
5555 	 */
5556 	vm_events_fold_cpu(cpu);
5557 
5558 	/*
5559 	 * Zero the differential counters of the dead processor
5560 	 * so that the vm statistics are consistent.
5561 	 *
5562 	 * This is only okay since the processor is dead and cannot
5563 	 * race with what we are doing.
5564 	 */
5565 	cpu_vm_stats_fold(cpu);
5566 
5567 	for_each_populated_zone(zone)
5568 		zone_pcp_update(zone, 0);
5569 
5570 	return 0;
5571 }
5572 
page_alloc_cpu_online(unsigned int cpu)5573 static int page_alloc_cpu_online(unsigned int cpu)
5574 {
5575 	struct zone *zone;
5576 
5577 	for_each_populated_zone(zone)
5578 		zone_pcp_update(zone, 1);
5579 	return 0;
5580 }
5581 
page_alloc_init_cpuhp(void)5582 void __init page_alloc_init_cpuhp(void)
5583 {
5584 	int ret;
5585 
5586 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5587 					"mm/page_alloc:pcp",
5588 					page_alloc_cpu_online,
5589 					page_alloc_cpu_dead);
5590 	WARN_ON(ret < 0);
5591 }
5592 
5593 /*
5594  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5595  *	or min_free_kbytes changes.
5596  */
calculate_totalreserve_pages(void)5597 static void calculate_totalreserve_pages(void)
5598 {
5599 	struct pglist_data *pgdat;
5600 	unsigned long reserve_pages = 0;
5601 	enum zone_type i, j;
5602 
5603 	for_each_online_pgdat(pgdat) {
5604 
5605 		pgdat->totalreserve_pages = 0;
5606 
5607 		for (i = 0; i < MAX_NR_ZONES; i++) {
5608 			struct zone *zone = pgdat->node_zones + i;
5609 			long max = 0;
5610 			unsigned long managed_pages = zone_managed_pages(zone);
5611 
5612 			/* Find valid and maximum lowmem_reserve in the zone */
5613 			for (j = i; j < MAX_NR_ZONES; j++) {
5614 				if (zone->lowmem_reserve[j] > max)
5615 					max = zone->lowmem_reserve[j];
5616 			}
5617 
5618 			/* we treat the high watermark as reserved pages. */
5619 			max += high_wmark_pages(zone);
5620 
5621 			if (max > managed_pages)
5622 				max = managed_pages;
5623 
5624 			pgdat->totalreserve_pages += max;
5625 
5626 			reserve_pages += max;
5627 		}
5628 	}
5629 	totalreserve_pages = reserve_pages;
5630 }
5631 
5632 /*
5633  * setup_per_zone_lowmem_reserve - called whenever
5634  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5635  *	has a correct pages reserved value, so an adequate number of
5636  *	pages are left in the zone after a successful __alloc_pages().
5637  */
setup_per_zone_lowmem_reserve(void)5638 static void setup_per_zone_lowmem_reserve(void)
5639 {
5640 	struct pglist_data *pgdat;
5641 	enum zone_type i, j;
5642 
5643 	for_each_online_pgdat(pgdat) {
5644 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5645 			struct zone *zone = &pgdat->node_zones[i];
5646 			int ratio = sysctl_lowmem_reserve_ratio[i];
5647 			bool clear = !ratio || !zone_managed_pages(zone);
5648 			unsigned long managed_pages = 0;
5649 
5650 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5651 				struct zone *upper_zone = &pgdat->node_zones[j];
5652 
5653 				managed_pages += zone_managed_pages(upper_zone);
5654 
5655 				if (clear)
5656 					zone->lowmem_reserve[j] = 0;
5657 				else
5658 					zone->lowmem_reserve[j] = managed_pages / ratio;
5659 			}
5660 		}
5661 	}
5662 
5663 	/* update totalreserve_pages */
5664 	calculate_totalreserve_pages();
5665 }
5666 
__setup_per_zone_wmarks(void)5667 static void __setup_per_zone_wmarks(void)
5668 {
5669 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5670 	unsigned long lowmem_pages = 0;
5671 	struct zone *zone;
5672 	unsigned long flags;
5673 
5674 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5675 	for_each_zone(zone) {
5676 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5677 			lowmem_pages += zone_managed_pages(zone);
5678 	}
5679 
5680 	for_each_zone(zone) {
5681 		u64 tmp;
5682 
5683 		spin_lock_irqsave(&zone->lock, flags);
5684 		tmp = (u64)pages_min * zone_managed_pages(zone);
5685 		do_div(tmp, lowmem_pages);
5686 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5687 			/*
5688 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5689 			 * need highmem and movable zones pages, so cap pages_min
5690 			 * to a small  value here.
5691 			 *
5692 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5693 			 * deltas control async page reclaim, and so should
5694 			 * not be capped for highmem and movable zones.
5695 			 */
5696 			unsigned long min_pages;
5697 
5698 			min_pages = zone_managed_pages(zone) / 1024;
5699 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5700 			zone->_watermark[WMARK_MIN] = min_pages;
5701 		} else {
5702 			/*
5703 			 * If it's a lowmem zone, reserve a number of pages
5704 			 * proportionate to the zone's size.
5705 			 */
5706 			zone->_watermark[WMARK_MIN] = tmp;
5707 		}
5708 
5709 		/*
5710 		 * Set the kswapd watermarks distance according to the
5711 		 * scale factor in proportion to available memory, but
5712 		 * ensure a minimum size on small systems.
5713 		 */
5714 		tmp = max_t(u64, tmp >> 2,
5715 			    mult_frac(zone_managed_pages(zone),
5716 				      watermark_scale_factor, 10000));
5717 
5718 		zone->watermark_boost = 0;
5719 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5720 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5721 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5722 
5723 		spin_unlock_irqrestore(&zone->lock, flags);
5724 	}
5725 
5726 	/* update totalreserve_pages */
5727 	calculate_totalreserve_pages();
5728 }
5729 
5730 /**
5731  * setup_per_zone_wmarks - called when min_free_kbytes changes
5732  * or when memory is hot-{added|removed}
5733  *
5734  * Ensures that the watermark[min,low,high] values for each zone are set
5735  * correctly with respect to min_free_kbytes.
5736  */
setup_per_zone_wmarks(void)5737 void setup_per_zone_wmarks(void)
5738 {
5739 	struct zone *zone;
5740 	static DEFINE_SPINLOCK(lock);
5741 
5742 	spin_lock(&lock);
5743 	__setup_per_zone_wmarks();
5744 	spin_unlock(&lock);
5745 
5746 	/*
5747 	 * The watermark size have changed so update the pcpu batch
5748 	 * and high limits or the limits may be inappropriate.
5749 	 */
5750 	for_each_zone(zone)
5751 		zone_pcp_update(zone, 0);
5752 }
5753 
5754 /*
5755  * Initialise min_free_kbytes.
5756  *
5757  * For small machines we want it small (128k min).  For large machines
5758  * we want it large (256MB max).  But it is not linear, because network
5759  * bandwidth does not increase linearly with machine size.  We use
5760  *
5761  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5762  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5763  *
5764  * which yields
5765  *
5766  * 16MB:	512k
5767  * 32MB:	724k
5768  * 64MB:	1024k
5769  * 128MB:	1448k
5770  * 256MB:	2048k
5771  * 512MB:	2896k
5772  * 1024MB:	4096k
5773  * 2048MB:	5792k
5774  * 4096MB:	8192k
5775  * 8192MB:	11584k
5776  * 16384MB:	16384k
5777  */
calculate_min_free_kbytes(void)5778 void calculate_min_free_kbytes(void)
5779 {
5780 	unsigned long lowmem_kbytes;
5781 	int new_min_free_kbytes;
5782 
5783 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5784 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5785 
5786 	if (new_min_free_kbytes > user_min_free_kbytes)
5787 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5788 	else
5789 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5790 				new_min_free_kbytes, user_min_free_kbytes);
5791 
5792 }
5793 
init_per_zone_wmark_min(void)5794 int __meminit init_per_zone_wmark_min(void)
5795 {
5796 	calculate_min_free_kbytes();
5797 	setup_per_zone_wmarks();
5798 	refresh_zone_stat_thresholds();
5799 	setup_per_zone_lowmem_reserve();
5800 
5801 #ifdef CONFIG_NUMA
5802 	setup_min_unmapped_ratio();
5803 	setup_min_slab_ratio();
5804 #endif
5805 
5806 	khugepaged_min_free_kbytes_update();
5807 
5808 	return 0;
5809 }
postcore_initcall(init_per_zone_wmark_min)5810 postcore_initcall(init_per_zone_wmark_min)
5811 
5812 /*
5813  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5814  *	that we can call two helper functions whenever min_free_kbytes
5815  *	changes.
5816  */
5817 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5818 		void *buffer, size_t *length, loff_t *ppos)
5819 {
5820 	int rc;
5821 
5822 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5823 	if (rc)
5824 		return rc;
5825 
5826 	if (write) {
5827 		user_min_free_kbytes = min_free_kbytes;
5828 		setup_per_zone_wmarks();
5829 	}
5830 	return 0;
5831 }
5832 
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5833 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5834 		void *buffer, size_t *length, loff_t *ppos)
5835 {
5836 	int rc;
5837 
5838 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5839 	if (rc)
5840 		return rc;
5841 
5842 	if (write)
5843 		setup_per_zone_wmarks();
5844 
5845 	return 0;
5846 }
5847 
5848 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)5849 static void setup_min_unmapped_ratio(void)
5850 {
5851 	pg_data_t *pgdat;
5852 	struct zone *zone;
5853 
5854 	for_each_online_pgdat(pgdat)
5855 		pgdat->min_unmapped_pages = 0;
5856 
5857 	for_each_zone(zone)
5858 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
5859 						         sysctl_min_unmapped_ratio) / 100;
5860 }
5861 
5862 
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5863 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5864 		void *buffer, size_t *length, loff_t *ppos)
5865 {
5866 	int rc;
5867 
5868 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5869 	if (rc)
5870 		return rc;
5871 
5872 	setup_min_unmapped_ratio();
5873 
5874 	return 0;
5875 }
5876 
setup_min_slab_ratio(void)5877 static void setup_min_slab_ratio(void)
5878 {
5879 	pg_data_t *pgdat;
5880 	struct zone *zone;
5881 
5882 	for_each_online_pgdat(pgdat)
5883 		pgdat->min_slab_pages = 0;
5884 
5885 	for_each_zone(zone)
5886 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
5887 						     sysctl_min_slab_ratio) / 100;
5888 }
5889 
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5890 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5891 		void *buffer, size_t *length, loff_t *ppos)
5892 {
5893 	int rc;
5894 
5895 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5896 	if (rc)
5897 		return rc;
5898 
5899 	setup_min_slab_ratio();
5900 
5901 	return 0;
5902 }
5903 #endif
5904 
5905 /*
5906  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5907  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5908  *	whenever sysctl_lowmem_reserve_ratio changes.
5909  *
5910  * The reserve ratio obviously has absolutely no relation with the
5911  * minimum watermarks. The lowmem reserve ratio can only make sense
5912  * if in function of the boot time zone sizes.
5913  */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5914 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
5915 		int write, void *buffer, size_t *length, loff_t *ppos)
5916 {
5917 	int i;
5918 
5919 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5920 
5921 	for (i = 0; i < MAX_NR_ZONES; i++) {
5922 		if (sysctl_lowmem_reserve_ratio[i] < 1)
5923 			sysctl_lowmem_reserve_ratio[i] = 0;
5924 	}
5925 
5926 	setup_per_zone_lowmem_reserve();
5927 	return 0;
5928 }
5929 
5930 /*
5931  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
5932  * cpu. It is the fraction of total pages in each zone that a hot per cpu
5933  * pagelist can have before it gets flushed back to buddy allocator.
5934  */
percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5935 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
5936 		int write, void *buffer, size_t *length, loff_t *ppos)
5937 {
5938 	struct zone *zone;
5939 	int old_percpu_pagelist_high_fraction;
5940 	int ret;
5941 
5942 	mutex_lock(&pcp_batch_high_lock);
5943 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
5944 
5945 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5946 	if (!write || ret < 0)
5947 		goto out;
5948 
5949 	/* Sanity checking to avoid pcp imbalance */
5950 	if (percpu_pagelist_high_fraction &&
5951 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
5952 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
5953 		ret = -EINVAL;
5954 		goto out;
5955 	}
5956 
5957 	/* No change? */
5958 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
5959 		goto out;
5960 
5961 	for_each_populated_zone(zone)
5962 		zone_set_pageset_high_and_batch(zone, 0);
5963 out:
5964 	mutex_unlock(&pcp_batch_high_lock);
5965 	return ret;
5966 }
5967 
5968 static struct ctl_table page_alloc_sysctl_table[] = {
5969 	{
5970 		.procname	= "min_free_kbytes",
5971 		.data		= &min_free_kbytes,
5972 		.maxlen		= sizeof(min_free_kbytes),
5973 		.mode		= 0644,
5974 		.proc_handler	= min_free_kbytes_sysctl_handler,
5975 		.extra1		= SYSCTL_ZERO,
5976 	},
5977 	{
5978 		.procname	= "watermark_boost_factor",
5979 		.data		= &watermark_boost_factor,
5980 		.maxlen		= sizeof(watermark_boost_factor),
5981 		.mode		= 0644,
5982 		.proc_handler	= proc_dointvec_minmax,
5983 		.extra1		= SYSCTL_ZERO,
5984 	},
5985 	{
5986 		.procname	= "watermark_scale_factor",
5987 		.data		= &watermark_scale_factor,
5988 		.maxlen		= sizeof(watermark_scale_factor),
5989 		.mode		= 0644,
5990 		.proc_handler	= watermark_scale_factor_sysctl_handler,
5991 		.extra1		= SYSCTL_ONE,
5992 		.extra2		= SYSCTL_THREE_THOUSAND,
5993 	},
5994 	{
5995 		.procname	= "percpu_pagelist_high_fraction",
5996 		.data		= &percpu_pagelist_high_fraction,
5997 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
5998 		.mode		= 0644,
5999 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6000 		.extra1		= SYSCTL_ZERO,
6001 	},
6002 	{
6003 		.procname	= "lowmem_reserve_ratio",
6004 		.data		= &sysctl_lowmem_reserve_ratio,
6005 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6006 		.mode		= 0644,
6007 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6008 	},
6009 #ifdef CONFIG_NUMA
6010 	{
6011 		.procname	= "numa_zonelist_order",
6012 		.data		= &numa_zonelist_order,
6013 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6014 		.mode		= 0644,
6015 		.proc_handler	= numa_zonelist_order_handler,
6016 	},
6017 	{
6018 		.procname	= "min_unmapped_ratio",
6019 		.data		= &sysctl_min_unmapped_ratio,
6020 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6021 		.mode		= 0644,
6022 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6023 		.extra1		= SYSCTL_ZERO,
6024 		.extra2		= SYSCTL_ONE_HUNDRED,
6025 	},
6026 	{
6027 		.procname	= "min_slab_ratio",
6028 		.data		= &sysctl_min_slab_ratio,
6029 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6030 		.mode		= 0644,
6031 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6032 		.extra1		= SYSCTL_ZERO,
6033 		.extra2		= SYSCTL_ONE_HUNDRED,
6034 	},
6035 #endif
6036 	{}
6037 };
6038 
page_alloc_sysctl_init(void)6039 void __init page_alloc_sysctl_init(void)
6040 {
6041 	register_sysctl_init("vm", page_alloc_sysctl_table);
6042 }
6043 
6044 #ifdef CONFIG_CONTIG_ALLOC
6045 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)6046 static void alloc_contig_dump_pages(struct list_head *page_list)
6047 {
6048 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6049 
6050 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6051 		struct page *page;
6052 
6053 		dump_stack();
6054 		list_for_each_entry(page, page_list, lru)
6055 			dump_page(page, "migration failure");
6056 	}
6057 }
6058 
6059 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)6060 int __alloc_contig_migrate_range(struct compact_control *cc,
6061 					unsigned long start, unsigned long end)
6062 {
6063 	/* This function is based on compact_zone() from compaction.c. */
6064 	unsigned int nr_reclaimed;
6065 	unsigned long pfn = start;
6066 	unsigned int tries = 0;
6067 	int ret = 0;
6068 	struct migration_target_control mtc = {
6069 		.nid = zone_to_nid(cc->zone),
6070 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6071 	};
6072 
6073 	lru_cache_disable();
6074 
6075 	while (pfn < end || !list_empty(&cc->migratepages)) {
6076 		if (fatal_signal_pending(current)) {
6077 			ret = -EINTR;
6078 			break;
6079 		}
6080 
6081 		if (list_empty(&cc->migratepages)) {
6082 			cc->nr_migratepages = 0;
6083 			ret = isolate_migratepages_range(cc, pfn, end);
6084 			if (ret && ret != -EAGAIN)
6085 				break;
6086 			pfn = cc->migrate_pfn;
6087 			tries = 0;
6088 		} else if (++tries == 5) {
6089 			ret = -EBUSY;
6090 			break;
6091 		}
6092 
6093 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6094 							&cc->migratepages);
6095 		cc->nr_migratepages -= nr_reclaimed;
6096 
6097 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6098 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6099 
6100 		/*
6101 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6102 		 * to retry again over this error, so do the same here.
6103 		 */
6104 		if (ret == -ENOMEM)
6105 			break;
6106 	}
6107 
6108 	lru_cache_enable();
6109 	if (ret < 0) {
6110 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6111 			alloc_contig_dump_pages(&cc->migratepages);
6112 		putback_movable_pages(&cc->migratepages);
6113 		return ret;
6114 	}
6115 	return 0;
6116 }
6117 
6118 /**
6119  * alloc_contig_range() -- tries to allocate given range of pages
6120  * @start:	start PFN to allocate
6121  * @end:	one-past-the-last PFN to allocate
6122  * @migratetype:	migratetype of the underlying pageblocks (either
6123  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6124  *			in range must have the same migratetype and it must
6125  *			be either of the two.
6126  * @gfp_mask:	GFP mask to use during compaction
6127  *
6128  * The PFN range does not have to be pageblock aligned. The PFN range must
6129  * belong to a single zone.
6130  *
6131  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6132  * pageblocks in the range.  Once isolated, the pageblocks should not
6133  * be modified by others.
6134  *
6135  * Return: zero on success or negative error code.  On success all
6136  * pages which PFN is in [start, end) are allocated for the caller and
6137  * need to be freed with free_contig_range().
6138  */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)6139 int alloc_contig_range(unsigned long start, unsigned long end,
6140 		       unsigned migratetype, gfp_t gfp_mask)
6141 {
6142 	unsigned long outer_start, outer_end;
6143 	int order;
6144 	int ret = 0;
6145 
6146 	struct compact_control cc = {
6147 		.nr_migratepages = 0,
6148 		.order = -1,
6149 		.zone = page_zone(pfn_to_page(start)),
6150 		.mode = MIGRATE_SYNC,
6151 		.ignore_skip_hint = true,
6152 		.no_set_skip_hint = true,
6153 		.gfp_mask = current_gfp_context(gfp_mask),
6154 		.alloc_contig = true,
6155 	};
6156 	INIT_LIST_HEAD(&cc.migratepages);
6157 
6158 	/*
6159 	 * What we do here is we mark all pageblocks in range as
6160 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6161 	 * have different sizes, and due to the way page allocator
6162 	 * work, start_isolate_page_range() has special handlings for this.
6163 	 *
6164 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6165 	 * migrate the pages from an unaligned range (ie. pages that
6166 	 * we are interested in). This will put all the pages in
6167 	 * range back to page allocator as MIGRATE_ISOLATE.
6168 	 *
6169 	 * When this is done, we take the pages in range from page
6170 	 * allocator removing them from the buddy system.  This way
6171 	 * page allocator will never consider using them.
6172 	 *
6173 	 * This lets us mark the pageblocks back as
6174 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6175 	 * aligned range but not in the unaligned, original range are
6176 	 * put back to page allocator so that buddy can use them.
6177 	 */
6178 
6179 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6180 	if (ret)
6181 		goto done;
6182 
6183 	drain_all_pages(cc.zone);
6184 
6185 	/*
6186 	 * In case of -EBUSY, we'd like to know which page causes problem.
6187 	 * So, just fall through. test_pages_isolated() has a tracepoint
6188 	 * which will report the busy page.
6189 	 *
6190 	 * It is possible that busy pages could become available before
6191 	 * the call to test_pages_isolated, and the range will actually be
6192 	 * allocated.  So, if we fall through be sure to clear ret so that
6193 	 * -EBUSY is not accidentally used or returned to caller.
6194 	 */
6195 	ret = __alloc_contig_migrate_range(&cc, start, end);
6196 	if (ret && ret != -EBUSY)
6197 		goto done;
6198 	ret = 0;
6199 
6200 	/*
6201 	 * Pages from [start, end) are within a pageblock_nr_pages
6202 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6203 	 * more, all pages in [start, end) are free in page allocator.
6204 	 * What we are going to do is to allocate all pages from
6205 	 * [start, end) (that is remove them from page allocator).
6206 	 *
6207 	 * The only problem is that pages at the beginning and at the
6208 	 * end of interesting range may be not aligned with pages that
6209 	 * page allocator holds, ie. they can be part of higher order
6210 	 * pages.  Because of this, we reserve the bigger range and
6211 	 * once this is done free the pages we are not interested in.
6212 	 *
6213 	 * We don't have to hold zone->lock here because the pages are
6214 	 * isolated thus they won't get removed from buddy.
6215 	 */
6216 
6217 	order = 0;
6218 	outer_start = start;
6219 	while (!PageBuddy(pfn_to_page(outer_start))) {
6220 		if (++order > MAX_ORDER) {
6221 			outer_start = start;
6222 			break;
6223 		}
6224 		outer_start &= ~0UL << order;
6225 	}
6226 
6227 	if (outer_start != start) {
6228 		order = buddy_order(pfn_to_page(outer_start));
6229 
6230 		/*
6231 		 * outer_start page could be small order buddy page and
6232 		 * it doesn't include start page. Adjust outer_start
6233 		 * in this case to report failed page properly
6234 		 * on tracepoint in test_pages_isolated()
6235 		 */
6236 		if (outer_start + (1UL << order) <= start)
6237 			outer_start = start;
6238 	}
6239 
6240 	/* Make sure the range is really isolated. */
6241 	if (test_pages_isolated(outer_start, end, 0)) {
6242 		ret = -EBUSY;
6243 		goto done;
6244 	}
6245 
6246 	/* Grab isolated pages from freelists. */
6247 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6248 	if (!outer_end) {
6249 		ret = -EBUSY;
6250 		goto done;
6251 	}
6252 
6253 	/* Free head and tail (if any) */
6254 	if (start != outer_start)
6255 		free_contig_range(outer_start, start - outer_start);
6256 	if (end != outer_end)
6257 		free_contig_range(end, outer_end - end);
6258 
6259 done:
6260 	undo_isolate_page_range(start, end, migratetype);
6261 	return ret;
6262 }
6263 EXPORT_SYMBOL(alloc_contig_range);
6264 
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)6265 static int __alloc_contig_pages(unsigned long start_pfn,
6266 				unsigned long nr_pages, gfp_t gfp_mask)
6267 {
6268 	unsigned long end_pfn = start_pfn + nr_pages;
6269 
6270 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6271 				  gfp_mask);
6272 }
6273 
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)6274 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6275 				   unsigned long nr_pages)
6276 {
6277 	unsigned long i, end_pfn = start_pfn + nr_pages;
6278 	struct page *page;
6279 
6280 	for (i = start_pfn; i < end_pfn; i++) {
6281 		page = pfn_to_online_page(i);
6282 		if (!page)
6283 			return false;
6284 
6285 		if (page_zone(page) != z)
6286 			return false;
6287 
6288 		if (PageReserved(page))
6289 			return false;
6290 
6291 		if (PageHuge(page))
6292 			return false;
6293 	}
6294 	return true;
6295 }
6296 
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)6297 static bool zone_spans_last_pfn(const struct zone *zone,
6298 				unsigned long start_pfn, unsigned long nr_pages)
6299 {
6300 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6301 
6302 	return zone_spans_pfn(zone, last_pfn);
6303 }
6304 
6305 /**
6306  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6307  * @nr_pages:	Number of contiguous pages to allocate
6308  * @gfp_mask:	GFP mask to limit search and used during compaction
6309  * @nid:	Target node
6310  * @nodemask:	Mask for other possible nodes
6311  *
6312  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6313  * on an applicable zonelist to find a contiguous pfn range which can then be
6314  * tried for allocation with alloc_contig_range(). This routine is intended
6315  * for allocation requests which can not be fulfilled with the buddy allocator.
6316  *
6317  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6318  * power of two, then allocated range is also guaranteed to be aligned to same
6319  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6320  *
6321  * Allocated pages can be freed with free_contig_range() or by manually calling
6322  * __free_page() on each allocated page.
6323  *
6324  * Return: pointer to contiguous pages on success, or NULL if not successful.
6325  */
alloc_contig_pages(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)6326 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6327 				int nid, nodemask_t *nodemask)
6328 {
6329 	unsigned long ret, pfn, flags;
6330 	struct zonelist *zonelist;
6331 	struct zone *zone;
6332 	struct zoneref *z;
6333 
6334 	zonelist = node_zonelist(nid, gfp_mask);
6335 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6336 					gfp_zone(gfp_mask), nodemask) {
6337 		spin_lock_irqsave(&zone->lock, flags);
6338 
6339 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6340 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6341 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6342 				/*
6343 				 * We release the zone lock here because
6344 				 * alloc_contig_range() will also lock the zone
6345 				 * at some point. If there's an allocation
6346 				 * spinning on this lock, it may win the race
6347 				 * and cause alloc_contig_range() to fail...
6348 				 */
6349 				spin_unlock_irqrestore(&zone->lock, flags);
6350 				ret = __alloc_contig_pages(pfn, nr_pages,
6351 							gfp_mask);
6352 				if (!ret)
6353 					return pfn_to_page(pfn);
6354 				spin_lock_irqsave(&zone->lock, flags);
6355 			}
6356 			pfn += nr_pages;
6357 		}
6358 		spin_unlock_irqrestore(&zone->lock, flags);
6359 	}
6360 	return NULL;
6361 }
6362 #endif /* CONFIG_CONTIG_ALLOC */
6363 
free_contig_range(unsigned long pfn,unsigned long nr_pages)6364 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6365 {
6366 	unsigned long count = 0;
6367 
6368 	for (; nr_pages--; pfn++) {
6369 		struct page *page = pfn_to_page(pfn);
6370 
6371 		count += page_count(page) != 1;
6372 		__free_page(page);
6373 	}
6374 	WARN(count != 0, "%lu pages are still in use!\n", count);
6375 }
6376 EXPORT_SYMBOL(free_contig_range);
6377 
6378 /*
6379  * Effectively disable pcplists for the zone by setting the high limit to 0
6380  * and draining all cpus. A concurrent page freeing on another CPU that's about
6381  * to put the page on pcplist will either finish before the drain and the page
6382  * will be drained, or observe the new high limit and skip the pcplist.
6383  *
6384  * Must be paired with a call to zone_pcp_enable().
6385  */
zone_pcp_disable(struct zone * zone)6386 void zone_pcp_disable(struct zone *zone)
6387 {
6388 	mutex_lock(&pcp_batch_high_lock);
6389 	__zone_set_pageset_high_and_batch(zone, 0, 1);
6390 	__drain_all_pages(zone, true);
6391 }
6392 
zone_pcp_enable(struct zone * zone)6393 void zone_pcp_enable(struct zone *zone)
6394 {
6395 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
6396 	mutex_unlock(&pcp_batch_high_lock);
6397 }
6398 
zone_pcp_reset(struct zone * zone)6399 void zone_pcp_reset(struct zone *zone)
6400 {
6401 	int cpu;
6402 	struct per_cpu_zonestat *pzstats;
6403 
6404 	if (zone->per_cpu_pageset != &boot_pageset) {
6405 		for_each_online_cpu(cpu) {
6406 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6407 			drain_zonestat(zone, pzstats);
6408 		}
6409 		free_percpu(zone->per_cpu_pageset);
6410 		zone->per_cpu_pageset = &boot_pageset;
6411 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6412 			free_percpu(zone->per_cpu_zonestats);
6413 			zone->per_cpu_zonestats = &boot_zonestats;
6414 		}
6415 	}
6416 }
6417 
6418 #ifdef CONFIG_MEMORY_HOTREMOVE
6419 /*
6420  * All pages in the range must be in a single zone, must not contain holes,
6421  * must span full sections, and must be isolated before calling this function.
6422  */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)6423 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6424 {
6425 	unsigned long pfn = start_pfn;
6426 	struct page *page;
6427 	struct zone *zone;
6428 	unsigned int order;
6429 	unsigned long flags;
6430 
6431 	offline_mem_sections(pfn, end_pfn);
6432 	zone = page_zone(pfn_to_page(pfn));
6433 	spin_lock_irqsave(&zone->lock, flags);
6434 	while (pfn < end_pfn) {
6435 		page = pfn_to_page(pfn);
6436 		/*
6437 		 * The HWPoisoned page may be not in buddy system, and
6438 		 * page_count() is not 0.
6439 		 */
6440 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6441 			pfn++;
6442 			continue;
6443 		}
6444 		/*
6445 		 * At this point all remaining PageOffline() pages have a
6446 		 * reference count of 0 and can simply be skipped.
6447 		 */
6448 		if (PageOffline(page)) {
6449 			BUG_ON(page_count(page));
6450 			BUG_ON(PageBuddy(page));
6451 			pfn++;
6452 			continue;
6453 		}
6454 
6455 		BUG_ON(page_count(page));
6456 		BUG_ON(!PageBuddy(page));
6457 		order = buddy_order(page);
6458 		del_page_from_free_list(page, zone, order);
6459 		pfn += (1 << order);
6460 	}
6461 	spin_unlock_irqrestore(&zone->lock, flags);
6462 }
6463 #endif
6464 
6465 /*
6466  * This function returns a stable result only if called under zone lock.
6467  */
is_free_buddy_page(struct page * page)6468 bool is_free_buddy_page(struct page *page)
6469 {
6470 	unsigned long pfn = page_to_pfn(page);
6471 	unsigned int order;
6472 
6473 	for (order = 0; order <= MAX_ORDER; order++) {
6474 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6475 
6476 		if (PageBuddy(page_head) &&
6477 		    buddy_order_unsafe(page_head) >= order)
6478 			break;
6479 	}
6480 
6481 	return order <= MAX_ORDER;
6482 }
6483 EXPORT_SYMBOL(is_free_buddy_page);
6484 
6485 #ifdef CONFIG_MEMORY_FAILURE
6486 /*
6487  * Break down a higher-order page in sub-pages, and keep our target out of
6488  * buddy allocator.
6489  */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)6490 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6491 				   struct page *target, int low, int high,
6492 				   int migratetype)
6493 {
6494 	unsigned long size = 1 << high;
6495 	struct page *current_buddy, *next_page;
6496 
6497 	while (high > low) {
6498 		high--;
6499 		size >>= 1;
6500 
6501 		if (target >= &page[size]) {
6502 			next_page = page + size;
6503 			current_buddy = page;
6504 		} else {
6505 			next_page = page;
6506 			current_buddy = page + size;
6507 		}
6508 		page = next_page;
6509 
6510 		if (set_page_guard(zone, current_buddy, high, migratetype))
6511 			continue;
6512 
6513 		if (current_buddy != target) {
6514 			add_to_free_list(current_buddy, zone, high, migratetype);
6515 			set_buddy_order(current_buddy, high);
6516 		}
6517 	}
6518 }
6519 
6520 /*
6521  * Take a page that will be marked as poisoned off the buddy allocator.
6522  */
take_page_off_buddy(struct page * page)6523 bool take_page_off_buddy(struct page *page)
6524 {
6525 	struct zone *zone = page_zone(page);
6526 	unsigned long pfn = page_to_pfn(page);
6527 	unsigned long flags;
6528 	unsigned int order;
6529 	bool ret = false;
6530 
6531 	spin_lock_irqsave(&zone->lock, flags);
6532 	for (order = 0; order <= MAX_ORDER; order++) {
6533 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6534 		int page_order = buddy_order(page_head);
6535 
6536 		if (PageBuddy(page_head) && page_order >= order) {
6537 			unsigned long pfn_head = page_to_pfn(page_head);
6538 			int migratetype = get_pfnblock_migratetype(page_head,
6539 								   pfn_head);
6540 
6541 			del_page_from_free_list(page_head, zone, page_order);
6542 			break_down_buddy_pages(zone, page_head, page, 0,
6543 						page_order, migratetype);
6544 			SetPageHWPoisonTakenOff(page);
6545 			if (!is_migrate_isolate(migratetype))
6546 				__mod_zone_freepage_state(zone, -1, migratetype);
6547 			ret = true;
6548 			break;
6549 		}
6550 		if (page_count(page_head) > 0)
6551 			break;
6552 	}
6553 	spin_unlock_irqrestore(&zone->lock, flags);
6554 	return ret;
6555 }
6556 
6557 /*
6558  * Cancel takeoff done by take_page_off_buddy().
6559  */
put_page_back_buddy(struct page * page)6560 bool put_page_back_buddy(struct page *page)
6561 {
6562 	struct zone *zone = page_zone(page);
6563 	unsigned long pfn = page_to_pfn(page);
6564 	unsigned long flags;
6565 	int migratetype = get_pfnblock_migratetype(page, pfn);
6566 	bool ret = false;
6567 
6568 	spin_lock_irqsave(&zone->lock, flags);
6569 	if (put_page_testzero(page)) {
6570 		ClearPageHWPoisonTakenOff(page);
6571 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6572 		if (TestClearPageHWPoison(page)) {
6573 			ret = true;
6574 		}
6575 	}
6576 	spin_unlock_irqrestore(&zone->lock, flags);
6577 
6578 	return ret;
6579 }
6580 #endif
6581 
6582 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)6583 bool has_managed_dma(void)
6584 {
6585 	struct pglist_data *pgdat;
6586 
6587 	for_each_online_pgdat(pgdat) {
6588 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6589 
6590 		if (managed_zone(zone))
6591 			return true;
6592 	}
6593 	return false;
6594 }
6595 #endif /* CONFIG_ZONE_DMA */
6596 
6597 #ifdef CONFIG_UNACCEPTED_MEMORY
6598 
6599 /* Counts number of zones with unaccepted pages. */
6600 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6601 
6602 static bool lazy_accept = true;
6603 
accept_memory_parse(char * p)6604 static int __init accept_memory_parse(char *p)
6605 {
6606 	if (!strcmp(p, "lazy")) {
6607 		lazy_accept = true;
6608 		return 0;
6609 	} else if (!strcmp(p, "eager")) {
6610 		lazy_accept = false;
6611 		return 0;
6612 	} else {
6613 		return -EINVAL;
6614 	}
6615 }
6616 early_param("accept_memory", accept_memory_parse);
6617 
page_contains_unaccepted(struct page * page,unsigned int order)6618 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6619 {
6620 	phys_addr_t start = page_to_phys(page);
6621 	phys_addr_t end = start + (PAGE_SIZE << order);
6622 
6623 	return range_contains_unaccepted_memory(start, end);
6624 }
6625 
accept_page(struct page * page,unsigned int order)6626 static void accept_page(struct page *page, unsigned int order)
6627 {
6628 	phys_addr_t start = page_to_phys(page);
6629 
6630 	accept_memory(start, start + (PAGE_SIZE << order));
6631 }
6632 
try_to_accept_memory_one(struct zone * zone)6633 static bool try_to_accept_memory_one(struct zone *zone)
6634 {
6635 	unsigned long flags;
6636 	struct page *page;
6637 	bool last;
6638 
6639 	if (list_empty(&zone->unaccepted_pages))
6640 		return false;
6641 
6642 	spin_lock_irqsave(&zone->lock, flags);
6643 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6644 					struct page, lru);
6645 	if (!page) {
6646 		spin_unlock_irqrestore(&zone->lock, flags);
6647 		return false;
6648 	}
6649 
6650 	list_del(&page->lru);
6651 	last = list_empty(&zone->unaccepted_pages);
6652 
6653 	__mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6654 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6655 	spin_unlock_irqrestore(&zone->lock, flags);
6656 
6657 	accept_page(page, MAX_ORDER);
6658 
6659 	__free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6660 
6661 	if (last)
6662 		static_branch_dec(&zones_with_unaccepted_pages);
6663 
6664 	return true;
6665 }
6666 
try_to_accept_memory(struct zone * zone,unsigned int order)6667 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6668 {
6669 	long to_accept;
6670 	int ret = false;
6671 
6672 	/* How much to accept to get to high watermark? */
6673 	to_accept = high_wmark_pages(zone) -
6674 		    (zone_page_state(zone, NR_FREE_PAGES) -
6675 		    __zone_watermark_unusable_free(zone, order, 0));
6676 
6677 	/* Accept at least one page */
6678 	do {
6679 		if (!try_to_accept_memory_one(zone))
6680 			break;
6681 		ret = true;
6682 		to_accept -= MAX_ORDER_NR_PAGES;
6683 	} while (to_accept > 0);
6684 
6685 	return ret;
6686 }
6687 
has_unaccepted_memory(void)6688 static inline bool has_unaccepted_memory(void)
6689 {
6690 	return static_branch_unlikely(&zones_with_unaccepted_pages);
6691 }
6692 
__free_unaccepted(struct page * page)6693 static bool __free_unaccepted(struct page *page)
6694 {
6695 	struct zone *zone = page_zone(page);
6696 	unsigned long flags;
6697 	bool first = false;
6698 
6699 	if (!lazy_accept)
6700 		return false;
6701 
6702 	spin_lock_irqsave(&zone->lock, flags);
6703 	first = list_empty(&zone->unaccepted_pages);
6704 	list_add_tail(&page->lru, &zone->unaccepted_pages);
6705 	__mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6706 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6707 	spin_unlock_irqrestore(&zone->lock, flags);
6708 
6709 	if (first)
6710 		static_branch_inc(&zones_with_unaccepted_pages);
6711 
6712 	return true;
6713 }
6714 
6715 #else
6716 
page_contains_unaccepted(struct page * page,unsigned int order)6717 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6718 {
6719 	return false;
6720 }
6721 
accept_page(struct page * page,unsigned int order)6722 static void accept_page(struct page *page, unsigned int order)
6723 {
6724 }
6725 
try_to_accept_memory(struct zone * zone,unsigned int order)6726 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6727 {
6728 	return false;
6729 }
6730 
has_unaccepted_memory(void)6731 static inline bool has_unaccepted_memory(void)
6732 {
6733 	return false;
6734 }
6735 
__free_unaccepted(struct page * page)6736 static bool __free_unaccepted(struct page *page)
6737 {
6738 	BUILD_BUG();
6739 	return false;
6740 }
6741 
6742 #endif /* CONFIG_UNACCEPTED_MEMORY */
6743